mm: convert printk(KERN_<LEVEL> to pr_<level>
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 /* Always populate low zones for address-contrained allocations */
312 if (zone_end < pgdat_end_pfn(pgdat))
313 return true;
314
315 /* Initialise at least 2G of the highest zone */
316 (*nr_initialised)++;
317 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
318 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
319 pgdat->first_deferred_pfn = pfn;
320 return false;
321 }
322
323 return true;
324 }
325 #else
326 static inline void reset_deferred_meminit(pg_data_t *pgdat)
327 {
328 }
329
330 static inline bool early_page_uninitialised(unsigned long pfn)
331 {
332 return false;
333 }
334
335 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
336 {
337 return false;
338 }
339
340 static inline bool update_defer_init(pg_data_t *pgdat,
341 unsigned long pfn, unsigned long zone_end,
342 unsigned long *nr_initialised)
343 {
344 return true;
345 }
346 #endif
347
348
349 void set_pageblock_migratetype(struct page *page, int migratetype)
350 {
351 if (unlikely(page_group_by_mobility_disabled &&
352 migratetype < MIGRATE_PCPTYPES))
353 migratetype = MIGRATE_UNMOVABLE;
354
355 set_pageblock_flags_group(page, (unsigned long)migratetype,
356 PB_migrate, PB_migrate_end);
357 }
358
359 #ifdef CONFIG_DEBUG_VM
360 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
361 {
362 int ret = 0;
363 unsigned seq;
364 unsigned long pfn = page_to_pfn(page);
365 unsigned long sp, start_pfn;
366
367 do {
368 seq = zone_span_seqbegin(zone);
369 start_pfn = zone->zone_start_pfn;
370 sp = zone->spanned_pages;
371 if (!zone_spans_pfn(zone, pfn))
372 ret = 1;
373 } while (zone_span_seqretry(zone, seq));
374
375 if (ret)
376 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
377 pfn, zone_to_nid(zone), zone->name,
378 start_pfn, start_pfn + sp);
379
380 return ret;
381 }
382
383 static int page_is_consistent(struct zone *zone, struct page *page)
384 {
385 if (!pfn_valid_within(page_to_pfn(page)))
386 return 0;
387 if (zone != page_zone(page))
388 return 0;
389
390 return 1;
391 }
392 /*
393 * Temporary debugging check for pages not lying within a given zone.
394 */
395 static int bad_range(struct zone *zone, struct page *page)
396 {
397 if (page_outside_zone_boundaries(zone, page))
398 return 1;
399 if (!page_is_consistent(zone, page))
400 return 1;
401
402 return 0;
403 }
404 #else
405 static inline int bad_range(struct zone *zone, struct page *page)
406 {
407 return 0;
408 }
409 #endif
410
411 static void bad_page(struct page *page, const char *reason,
412 unsigned long bad_flags)
413 {
414 static unsigned long resume;
415 static unsigned long nr_shown;
416 static unsigned long nr_unshown;
417
418 /* Don't complain about poisoned pages */
419 if (PageHWPoison(page)) {
420 page_mapcount_reset(page); /* remove PageBuddy */
421 return;
422 }
423
424 /*
425 * Allow a burst of 60 reports, then keep quiet for that minute;
426 * or allow a steady drip of one report per second.
427 */
428 if (nr_shown == 60) {
429 if (time_before(jiffies, resume)) {
430 nr_unshown++;
431 goto out;
432 }
433 if (nr_unshown) {
434 pr_alert(
435 "BUG: Bad page state: %lu messages suppressed\n",
436 nr_unshown);
437 nr_unshown = 0;
438 }
439 nr_shown = 0;
440 }
441 if (nr_shown++ == 0)
442 resume = jiffies + 60 * HZ;
443
444 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
445 current->comm, page_to_pfn(page));
446 __dump_page(page, reason);
447 bad_flags &= page->flags;
448 if (bad_flags)
449 pr_alert("bad because of flags: %#lx(%pGp)\n",
450 bad_flags, &bad_flags);
451 dump_page_owner(page);
452
453 print_modules();
454 dump_stack();
455 out:
456 /* Leave bad fields for debug, except PageBuddy could make trouble */
457 page_mapcount_reset(page); /* remove PageBuddy */
458 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
459 }
460
461 /*
462 * Higher-order pages are called "compound pages". They are structured thusly:
463 *
464 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
465 *
466 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
467 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
468 *
469 * The first tail page's ->compound_dtor holds the offset in array of compound
470 * page destructors. See compound_page_dtors.
471 *
472 * The first tail page's ->compound_order holds the order of allocation.
473 * This usage means that zero-order pages may not be compound.
474 */
475
476 void free_compound_page(struct page *page)
477 {
478 __free_pages_ok(page, compound_order(page));
479 }
480
481 void prep_compound_page(struct page *page, unsigned int order)
482 {
483 int i;
484 int nr_pages = 1 << order;
485
486 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
487 set_compound_order(page, order);
488 __SetPageHead(page);
489 for (i = 1; i < nr_pages; i++) {
490 struct page *p = page + i;
491 set_page_count(p, 0);
492 p->mapping = TAIL_MAPPING;
493 set_compound_head(p, page);
494 }
495 atomic_set(compound_mapcount_ptr(page), -1);
496 }
497
498 #ifdef CONFIG_DEBUG_PAGEALLOC
499 unsigned int _debug_guardpage_minorder;
500 bool _debug_pagealloc_enabled __read_mostly
501 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
502 EXPORT_SYMBOL(_debug_pagealloc_enabled);
503 bool _debug_guardpage_enabled __read_mostly;
504
505 static int __init early_debug_pagealloc(char *buf)
506 {
507 if (!buf)
508 return -EINVAL;
509
510 if (strcmp(buf, "on") == 0)
511 _debug_pagealloc_enabled = true;
512
513 if (strcmp(buf, "off") == 0)
514 _debug_pagealloc_enabled = false;
515
516 return 0;
517 }
518 early_param("debug_pagealloc", early_debug_pagealloc);
519
520 static bool need_debug_guardpage(void)
521 {
522 /* If we don't use debug_pagealloc, we don't need guard page */
523 if (!debug_pagealloc_enabled())
524 return false;
525
526 return true;
527 }
528
529 static void init_debug_guardpage(void)
530 {
531 if (!debug_pagealloc_enabled())
532 return;
533
534 _debug_guardpage_enabled = true;
535 }
536
537 struct page_ext_operations debug_guardpage_ops = {
538 .need = need_debug_guardpage,
539 .init = init_debug_guardpage,
540 };
541
542 static int __init debug_guardpage_minorder_setup(char *buf)
543 {
544 unsigned long res;
545
546 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
547 pr_err("Bad debug_guardpage_minorder value\n");
548 return 0;
549 }
550 _debug_guardpage_minorder = res;
551 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
552 return 0;
553 }
554 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
555
556 static inline void set_page_guard(struct zone *zone, struct page *page,
557 unsigned int order, int migratetype)
558 {
559 struct page_ext *page_ext;
560
561 if (!debug_guardpage_enabled())
562 return;
563
564 page_ext = lookup_page_ext(page);
565 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
566
567 INIT_LIST_HEAD(&page->lru);
568 set_page_private(page, order);
569 /* Guard pages are not available for any usage */
570 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
571 }
572
573 static inline void clear_page_guard(struct zone *zone, struct page *page,
574 unsigned int order, int migratetype)
575 {
576 struct page_ext *page_ext;
577
578 if (!debug_guardpage_enabled())
579 return;
580
581 page_ext = lookup_page_ext(page);
582 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
583
584 set_page_private(page, 0);
585 if (!is_migrate_isolate(migratetype))
586 __mod_zone_freepage_state(zone, (1 << order), migratetype);
587 }
588 #else
589 struct page_ext_operations debug_guardpage_ops = { NULL, };
590 static inline void set_page_guard(struct zone *zone, struct page *page,
591 unsigned int order, int migratetype) {}
592 static inline void clear_page_guard(struct zone *zone, struct page *page,
593 unsigned int order, int migratetype) {}
594 #endif
595
596 static inline void set_page_order(struct page *page, unsigned int order)
597 {
598 set_page_private(page, order);
599 __SetPageBuddy(page);
600 }
601
602 static inline void rmv_page_order(struct page *page)
603 {
604 __ClearPageBuddy(page);
605 set_page_private(page, 0);
606 }
607
608 /*
609 * This function checks whether a page is free && is the buddy
610 * we can do coalesce a page and its buddy if
611 * (a) the buddy is not in a hole &&
612 * (b) the buddy is in the buddy system &&
613 * (c) a page and its buddy have the same order &&
614 * (d) a page and its buddy are in the same zone.
615 *
616 * For recording whether a page is in the buddy system, we set ->_mapcount
617 * PAGE_BUDDY_MAPCOUNT_VALUE.
618 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
619 * serialized by zone->lock.
620 *
621 * For recording page's order, we use page_private(page).
622 */
623 static inline int page_is_buddy(struct page *page, struct page *buddy,
624 unsigned int order)
625 {
626 if (!pfn_valid_within(page_to_pfn(buddy)))
627 return 0;
628
629 if (page_is_guard(buddy) && page_order(buddy) == order) {
630 if (page_zone_id(page) != page_zone_id(buddy))
631 return 0;
632
633 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
634
635 return 1;
636 }
637
638 if (PageBuddy(buddy) && page_order(buddy) == order) {
639 /*
640 * zone check is done late to avoid uselessly
641 * calculating zone/node ids for pages that could
642 * never merge.
643 */
644 if (page_zone_id(page) != page_zone_id(buddy))
645 return 0;
646
647 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
648
649 return 1;
650 }
651 return 0;
652 }
653
654 /*
655 * Freeing function for a buddy system allocator.
656 *
657 * The concept of a buddy system is to maintain direct-mapped table
658 * (containing bit values) for memory blocks of various "orders".
659 * The bottom level table contains the map for the smallest allocatable
660 * units of memory (here, pages), and each level above it describes
661 * pairs of units from the levels below, hence, "buddies".
662 * At a high level, all that happens here is marking the table entry
663 * at the bottom level available, and propagating the changes upward
664 * as necessary, plus some accounting needed to play nicely with other
665 * parts of the VM system.
666 * At each level, we keep a list of pages, which are heads of continuous
667 * free pages of length of (1 << order) and marked with _mapcount
668 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
669 * field.
670 * So when we are allocating or freeing one, we can derive the state of the
671 * other. That is, if we allocate a small block, and both were
672 * free, the remainder of the region must be split into blocks.
673 * If a block is freed, and its buddy is also free, then this
674 * triggers coalescing into a block of larger size.
675 *
676 * -- nyc
677 */
678
679 static inline void __free_one_page(struct page *page,
680 unsigned long pfn,
681 struct zone *zone, unsigned int order,
682 int migratetype)
683 {
684 unsigned long page_idx;
685 unsigned long combined_idx;
686 unsigned long uninitialized_var(buddy_idx);
687 struct page *buddy;
688 unsigned int max_order = MAX_ORDER;
689
690 VM_BUG_ON(!zone_is_initialized(zone));
691 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
692
693 VM_BUG_ON(migratetype == -1);
694 if (is_migrate_isolate(migratetype)) {
695 /*
696 * We restrict max order of merging to prevent merge
697 * between freepages on isolate pageblock and normal
698 * pageblock. Without this, pageblock isolation
699 * could cause incorrect freepage accounting.
700 */
701 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
702 } else {
703 __mod_zone_freepage_state(zone, 1 << order, migratetype);
704 }
705
706 page_idx = pfn & ((1 << max_order) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 while (order < max_order - 1) {
712 buddy_idx = __find_buddy_index(page_idx, order);
713 buddy = page + (buddy_idx - page_idx);
714 if (!page_is_buddy(page, buddy, order))
715 break;
716 /*
717 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
718 * merge with it and move up one order.
719 */
720 if (page_is_guard(buddy)) {
721 clear_page_guard(zone, buddy, order, migratetype);
722 } else {
723 list_del(&buddy->lru);
724 zone->free_area[order].nr_free--;
725 rmv_page_order(buddy);
726 }
727 combined_idx = buddy_idx & page_idx;
728 page = page + (combined_idx - page_idx);
729 page_idx = combined_idx;
730 order++;
731 }
732 set_page_order(page, order);
733
734 /*
735 * If this is not the largest possible page, check if the buddy
736 * of the next-highest order is free. If it is, it's possible
737 * that pages are being freed that will coalesce soon. In case,
738 * that is happening, add the free page to the tail of the list
739 * so it's less likely to be used soon and more likely to be merged
740 * as a higher order page
741 */
742 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
743 struct page *higher_page, *higher_buddy;
744 combined_idx = buddy_idx & page_idx;
745 higher_page = page + (combined_idx - page_idx);
746 buddy_idx = __find_buddy_index(combined_idx, order + 1);
747 higher_buddy = higher_page + (buddy_idx - combined_idx);
748 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
749 list_add_tail(&page->lru,
750 &zone->free_area[order].free_list[migratetype]);
751 goto out;
752 }
753 }
754
755 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
756 out:
757 zone->free_area[order].nr_free++;
758 }
759
760 static inline int free_pages_check(struct page *page)
761 {
762 const char *bad_reason = NULL;
763 unsigned long bad_flags = 0;
764
765 if (unlikely(atomic_read(&page->_mapcount) != -1))
766 bad_reason = "nonzero mapcount";
767 if (unlikely(page->mapping != NULL))
768 bad_reason = "non-NULL mapping";
769 if (unlikely(page_ref_count(page) != 0))
770 bad_reason = "nonzero _count";
771 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
772 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
773 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
774 }
775 #ifdef CONFIG_MEMCG
776 if (unlikely(page->mem_cgroup))
777 bad_reason = "page still charged to cgroup";
778 #endif
779 if (unlikely(bad_reason)) {
780 bad_page(page, bad_reason, bad_flags);
781 return 1;
782 }
783 page_cpupid_reset_last(page);
784 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
785 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
786 return 0;
787 }
788
789 /*
790 * Frees a number of pages from the PCP lists
791 * Assumes all pages on list are in same zone, and of same order.
792 * count is the number of pages to free.
793 *
794 * If the zone was previously in an "all pages pinned" state then look to
795 * see if this freeing clears that state.
796 *
797 * And clear the zone's pages_scanned counter, to hold off the "all pages are
798 * pinned" detection logic.
799 */
800 static void free_pcppages_bulk(struct zone *zone, int count,
801 struct per_cpu_pages *pcp)
802 {
803 int migratetype = 0;
804 int batch_free = 0;
805 int to_free = count;
806 unsigned long nr_scanned;
807
808 spin_lock(&zone->lock);
809 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
810 if (nr_scanned)
811 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
812
813 while (to_free) {
814 struct page *page;
815 struct list_head *list;
816
817 /*
818 * Remove pages from lists in a round-robin fashion. A
819 * batch_free count is maintained that is incremented when an
820 * empty list is encountered. This is so more pages are freed
821 * off fuller lists instead of spinning excessively around empty
822 * lists
823 */
824 do {
825 batch_free++;
826 if (++migratetype == MIGRATE_PCPTYPES)
827 migratetype = 0;
828 list = &pcp->lists[migratetype];
829 } while (list_empty(list));
830
831 /* This is the only non-empty list. Free them all. */
832 if (batch_free == MIGRATE_PCPTYPES)
833 batch_free = to_free;
834
835 do {
836 int mt; /* migratetype of the to-be-freed page */
837
838 page = list_last_entry(list, struct page, lru);
839 /* must delete as __free_one_page list manipulates */
840 list_del(&page->lru);
841
842 mt = get_pcppage_migratetype(page);
843 /* MIGRATE_ISOLATE page should not go to pcplists */
844 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
845 /* Pageblock could have been isolated meanwhile */
846 if (unlikely(has_isolate_pageblock(zone)))
847 mt = get_pageblock_migratetype(page);
848
849 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
850 trace_mm_page_pcpu_drain(page, 0, mt);
851 } while (--to_free && --batch_free && !list_empty(list));
852 }
853 spin_unlock(&zone->lock);
854 }
855
856 static void free_one_page(struct zone *zone,
857 struct page *page, unsigned long pfn,
858 unsigned int order,
859 int migratetype)
860 {
861 unsigned long nr_scanned;
862 spin_lock(&zone->lock);
863 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
864 if (nr_scanned)
865 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
866
867 if (unlikely(has_isolate_pageblock(zone) ||
868 is_migrate_isolate(migratetype))) {
869 migratetype = get_pfnblock_migratetype(page, pfn);
870 }
871 __free_one_page(page, pfn, zone, order, migratetype);
872 spin_unlock(&zone->lock);
873 }
874
875 static int free_tail_pages_check(struct page *head_page, struct page *page)
876 {
877 int ret = 1;
878
879 /*
880 * We rely page->lru.next never has bit 0 set, unless the page
881 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
882 */
883 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
884
885 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
886 ret = 0;
887 goto out;
888 }
889 switch (page - head_page) {
890 case 1:
891 /* the first tail page: ->mapping is compound_mapcount() */
892 if (unlikely(compound_mapcount(page))) {
893 bad_page(page, "nonzero compound_mapcount", 0);
894 goto out;
895 }
896 break;
897 case 2:
898 /*
899 * the second tail page: ->mapping is
900 * page_deferred_list().next -- ignore value.
901 */
902 break;
903 default:
904 if (page->mapping != TAIL_MAPPING) {
905 bad_page(page, "corrupted mapping in tail page", 0);
906 goto out;
907 }
908 break;
909 }
910 if (unlikely(!PageTail(page))) {
911 bad_page(page, "PageTail not set", 0);
912 goto out;
913 }
914 if (unlikely(compound_head(page) != head_page)) {
915 bad_page(page, "compound_head not consistent", 0);
916 goto out;
917 }
918 ret = 0;
919 out:
920 page->mapping = NULL;
921 clear_compound_head(page);
922 return ret;
923 }
924
925 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
926 unsigned long zone, int nid)
927 {
928 set_page_links(page, zone, nid, pfn);
929 init_page_count(page);
930 page_mapcount_reset(page);
931 page_cpupid_reset_last(page);
932
933 INIT_LIST_HEAD(&page->lru);
934 #ifdef WANT_PAGE_VIRTUAL
935 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
936 if (!is_highmem_idx(zone))
937 set_page_address(page, __va(pfn << PAGE_SHIFT));
938 #endif
939 }
940
941 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
942 int nid)
943 {
944 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
945 }
946
947 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
948 static void init_reserved_page(unsigned long pfn)
949 {
950 pg_data_t *pgdat;
951 int nid, zid;
952
953 if (!early_page_uninitialised(pfn))
954 return;
955
956 nid = early_pfn_to_nid(pfn);
957 pgdat = NODE_DATA(nid);
958
959 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
960 struct zone *zone = &pgdat->node_zones[zid];
961
962 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
963 break;
964 }
965 __init_single_pfn(pfn, zid, nid);
966 }
967 #else
968 static inline void init_reserved_page(unsigned long pfn)
969 {
970 }
971 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
972
973 /*
974 * Initialised pages do not have PageReserved set. This function is
975 * called for each range allocated by the bootmem allocator and
976 * marks the pages PageReserved. The remaining valid pages are later
977 * sent to the buddy page allocator.
978 */
979 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
980 {
981 unsigned long start_pfn = PFN_DOWN(start);
982 unsigned long end_pfn = PFN_UP(end);
983
984 for (; start_pfn < end_pfn; start_pfn++) {
985 if (pfn_valid(start_pfn)) {
986 struct page *page = pfn_to_page(start_pfn);
987
988 init_reserved_page(start_pfn);
989
990 /* Avoid false-positive PageTail() */
991 INIT_LIST_HEAD(&page->lru);
992
993 SetPageReserved(page);
994 }
995 }
996 }
997
998 static bool free_pages_prepare(struct page *page, unsigned int order)
999 {
1000 bool compound = PageCompound(page);
1001 int i, bad = 0;
1002
1003 VM_BUG_ON_PAGE(PageTail(page), page);
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005
1006 trace_mm_page_free(page, order);
1007 kmemcheck_free_shadow(page, order);
1008 kasan_free_pages(page, order);
1009
1010 if (PageAnon(page))
1011 page->mapping = NULL;
1012 bad += free_pages_check(page);
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
1016 bad += free_pages_check(page + i);
1017 }
1018 if (bad)
1019 return false;
1020
1021 reset_page_owner(page, order);
1022
1023 if (!PageHighMem(page)) {
1024 debug_check_no_locks_freed(page_address(page),
1025 PAGE_SIZE << order);
1026 debug_check_no_obj_freed(page_address(page),
1027 PAGE_SIZE << order);
1028 }
1029 arch_free_page(page, order);
1030 kernel_poison_pages(page, 1 << order, 0);
1031 kernel_map_pages(page, 1 << order, 0);
1032
1033 return true;
1034 }
1035
1036 static void __free_pages_ok(struct page *page, unsigned int order)
1037 {
1038 unsigned long flags;
1039 int migratetype;
1040 unsigned long pfn = page_to_pfn(page);
1041
1042 if (!free_pages_prepare(page, order))
1043 return;
1044
1045 migratetype = get_pfnblock_migratetype(page, pfn);
1046 local_irq_save(flags);
1047 __count_vm_events(PGFREE, 1 << order);
1048 free_one_page(page_zone(page), page, pfn, order, migratetype);
1049 local_irq_restore(flags);
1050 }
1051
1052 static void __init __free_pages_boot_core(struct page *page,
1053 unsigned long pfn, unsigned int order)
1054 {
1055 unsigned int nr_pages = 1 << order;
1056 struct page *p = page;
1057 unsigned int loop;
1058
1059 prefetchw(p);
1060 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1061 prefetchw(p + 1);
1062 __ClearPageReserved(p);
1063 set_page_count(p, 0);
1064 }
1065 __ClearPageReserved(p);
1066 set_page_count(p, 0);
1067
1068 page_zone(page)->managed_pages += nr_pages;
1069 set_page_refcounted(page);
1070 __free_pages(page, order);
1071 }
1072
1073 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1074 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1075
1076 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1077
1078 int __meminit early_pfn_to_nid(unsigned long pfn)
1079 {
1080 static DEFINE_SPINLOCK(early_pfn_lock);
1081 int nid;
1082
1083 spin_lock(&early_pfn_lock);
1084 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1085 if (nid < 0)
1086 nid = 0;
1087 spin_unlock(&early_pfn_lock);
1088
1089 return nid;
1090 }
1091 #endif
1092
1093 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1094 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1095 struct mminit_pfnnid_cache *state)
1096 {
1097 int nid;
1098
1099 nid = __early_pfn_to_nid(pfn, state);
1100 if (nid >= 0 && nid != node)
1101 return false;
1102 return true;
1103 }
1104
1105 /* Only safe to use early in boot when initialisation is single-threaded */
1106 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1107 {
1108 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1109 }
1110
1111 #else
1112
1113 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1114 {
1115 return true;
1116 }
1117 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1118 struct mminit_pfnnid_cache *state)
1119 {
1120 return true;
1121 }
1122 #endif
1123
1124
1125 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1126 unsigned int order)
1127 {
1128 if (early_page_uninitialised(pfn))
1129 return;
1130 return __free_pages_boot_core(page, pfn, order);
1131 }
1132
1133 /*
1134 * Check that the whole (or subset of) a pageblock given by the interval of
1135 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1136 * with the migration of free compaction scanner. The scanners then need to
1137 * use only pfn_valid_within() check for arches that allow holes within
1138 * pageblocks.
1139 *
1140 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1141 *
1142 * It's possible on some configurations to have a setup like node0 node1 node0
1143 * i.e. it's possible that all pages within a zones range of pages do not
1144 * belong to a single zone. We assume that a border between node0 and node1
1145 * can occur within a single pageblock, but not a node0 node1 node0
1146 * interleaving within a single pageblock. It is therefore sufficient to check
1147 * the first and last page of a pageblock and avoid checking each individual
1148 * page in a pageblock.
1149 */
1150 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1151 unsigned long end_pfn, struct zone *zone)
1152 {
1153 struct page *start_page;
1154 struct page *end_page;
1155
1156 /* end_pfn is one past the range we are checking */
1157 end_pfn--;
1158
1159 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1160 return NULL;
1161
1162 start_page = pfn_to_page(start_pfn);
1163
1164 if (page_zone(start_page) != zone)
1165 return NULL;
1166
1167 end_page = pfn_to_page(end_pfn);
1168
1169 /* This gives a shorter code than deriving page_zone(end_page) */
1170 if (page_zone_id(start_page) != page_zone_id(end_page))
1171 return NULL;
1172
1173 return start_page;
1174 }
1175
1176 void set_zone_contiguous(struct zone *zone)
1177 {
1178 unsigned long block_start_pfn = zone->zone_start_pfn;
1179 unsigned long block_end_pfn;
1180
1181 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1182 for (; block_start_pfn < zone_end_pfn(zone);
1183 block_start_pfn = block_end_pfn,
1184 block_end_pfn += pageblock_nr_pages) {
1185
1186 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1187
1188 if (!__pageblock_pfn_to_page(block_start_pfn,
1189 block_end_pfn, zone))
1190 return;
1191 }
1192
1193 /* We confirm that there is no hole */
1194 zone->contiguous = true;
1195 }
1196
1197 void clear_zone_contiguous(struct zone *zone)
1198 {
1199 zone->contiguous = false;
1200 }
1201
1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203 static void __init deferred_free_range(struct page *page,
1204 unsigned long pfn, int nr_pages)
1205 {
1206 int i;
1207
1208 if (!page)
1209 return;
1210
1211 /* Free a large naturally-aligned chunk if possible */
1212 if (nr_pages == MAX_ORDER_NR_PAGES &&
1213 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1214 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1215 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1216 return;
1217 }
1218
1219 for (i = 0; i < nr_pages; i++, page++, pfn++)
1220 __free_pages_boot_core(page, pfn, 0);
1221 }
1222
1223 /* Completion tracking for deferred_init_memmap() threads */
1224 static atomic_t pgdat_init_n_undone __initdata;
1225 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1226
1227 static inline void __init pgdat_init_report_one_done(void)
1228 {
1229 if (atomic_dec_and_test(&pgdat_init_n_undone))
1230 complete(&pgdat_init_all_done_comp);
1231 }
1232
1233 /* Initialise remaining memory on a node */
1234 static int __init deferred_init_memmap(void *data)
1235 {
1236 pg_data_t *pgdat = data;
1237 int nid = pgdat->node_id;
1238 struct mminit_pfnnid_cache nid_init_state = { };
1239 unsigned long start = jiffies;
1240 unsigned long nr_pages = 0;
1241 unsigned long walk_start, walk_end;
1242 int i, zid;
1243 struct zone *zone;
1244 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1245 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1246
1247 if (first_init_pfn == ULONG_MAX) {
1248 pgdat_init_report_one_done();
1249 return 0;
1250 }
1251
1252 /* Bind memory initialisation thread to a local node if possible */
1253 if (!cpumask_empty(cpumask))
1254 set_cpus_allowed_ptr(current, cpumask);
1255
1256 /* Sanity check boundaries */
1257 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1258 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1259 pgdat->first_deferred_pfn = ULONG_MAX;
1260
1261 /* Only the highest zone is deferred so find it */
1262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1263 zone = pgdat->node_zones + zid;
1264 if (first_init_pfn < zone_end_pfn(zone))
1265 break;
1266 }
1267
1268 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1269 unsigned long pfn, end_pfn;
1270 struct page *page = NULL;
1271 struct page *free_base_page = NULL;
1272 unsigned long free_base_pfn = 0;
1273 int nr_to_free = 0;
1274
1275 end_pfn = min(walk_end, zone_end_pfn(zone));
1276 pfn = first_init_pfn;
1277 if (pfn < walk_start)
1278 pfn = walk_start;
1279 if (pfn < zone->zone_start_pfn)
1280 pfn = zone->zone_start_pfn;
1281
1282 for (; pfn < end_pfn; pfn++) {
1283 if (!pfn_valid_within(pfn))
1284 goto free_range;
1285
1286 /*
1287 * Ensure pfn_valid is checked every
1288 * MAX_ORDER_NR_PAGES for memory holes
1289 */
1290 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1291 if (!pfn_valid(pfn)) {
1292 page = NULL;
1293 goto free_range;
1294 }
1295 }
1296
1297 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1298 page = NULL;
1299 goto free_range;
1300 }
1301
1302 /* Minimise pfn page lookups and scheduler checks */
1303 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1304 page++;
1305 } else {
1306 nr_pages += nr_to_free;
1307 deferred_free_range(free_base_page,
1308 free_base_pfn, nr_to_free);
1309 free_base_page = NULL;
1310 free_base_pfn = nr_to_free = 0;
1311
1312 page = pfn_to_page(pfn);
1313 cond_resched();
1314 }
1315
1316 if (page->flags) {
1317 VM_BUG_ON(page_zone(page) != zone);
1318 goto free_range;
1319 }
1320
1321 __init_single_page(page, pfn, zid, nid);
1322 if (!free_base_page) {
1323 free_base_page = page;
1324 free_base_pfn = pfn;
1325 nr_to_free = 0;
1326 }
1327 nr_to_free++;
1328
1329 /* Where possible, batch up pages for a single free */
1330 continue;
1331 free_range:
1332 /* Free the current block of pages to allocator */
1333 nr_pages += nr_to_free;
1334 deferred_free_range(free_base_page, free_base_pfn,
1335 nr_to_free);
1336 free_base_page = NULL;
1337 free_base_pfn = nr_to_free = 0;
1338 }
1339
1340 first_init_pfn = max(end_pfn, first_init_pfn);
1341 }
1342
1343 /* Sanity check that the next zone really is unpopulated */
1344 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1345
1346 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1347 jiffies_to_msecs(jiffies - start));
1348
1349 pgdat_init_report_one_done();
1350 return 0;
1351 }
1352 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1353
1354 void __init page_alloc_init_late(void)
1355 {
1356 struct zone *zone;
1357
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 int nid;
1360
1361 /* There will be num_node_state(N_MEMORY) threads */
1362 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1363 for_each_node_state(nid, N_MEMORY) {
1364 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1365 }
1366
1367 /* Block until all are initialised */
1368 wait_for_completion(&pgdat_init_all_done_comp);
1369
1370 /* Reinit limits that are based on free pages after the kernel is up */
1371 files_maxfiles_init();
1372 #endif
1373
1374 for_each_populated_zone(zone)
1375 set_zone_contiguous(zone);
1376 }
1377
1378 #ifdef CONFIG_CMA
1379 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1380 void __init init_cma_reserved_pageblock(struct page *page)
1381 {
1382 unsigned i = pageblock_nr_pages;
1383 struct page *p = page;
1384
1385 do {
1386 __ClearPageReserved(p);
1387 set_page_count(p, 0);
1388 } while (++p, --i);
1389
1390 set_pageblock_migratetype(page, MIGRATE_CMA);
1391
1392 if (pageblock_order >= MAX_ORDER) {
1393 i = pageblock_nr_pages;
1394 p = page;
1395 do {
1396 set_page_refcounted(p);
1397 __free_pages(p, MAX_ORDER - 1);
1398 p += MAX_ORDER_NR_PAGES;
1399 } while (i -= MAX_ORDER_NR_PAGES);
1400 } else {
1401 set_page_refcounted(page);
1402 __free_pages(page, pageblock_order);
1403 }
1404
1405 adjust_managed_page_count(page, pageblock_nr_pages);
1406 }
1407 #endif
1408
1409 /*
1410 * The order of subdivision here is critical for the IO subsystem.
1411 * Please do not alter this order without good reasons and regression
1412 * testing. Specifically, as large blocks of memory are subdivided,
1413 * the order in which smaller blocks are delivered depends on the order
1414 * they're subdivided in this function. This is the primary factor
1415 * influencing the order in which pages are delivered to the IO
1416 * subsystem according to empirical testing, and this is also justified
1417 * by considering the behavior of a buddy system containing a single
1418 * large block of memory acted on by a series of small allocations.
1419 * This behavior is a critical factor in sglist merging's success.
1420 *
1421 * -- nyc
1422 */
1423 static inline void expand(struct zone *zone, struct page *page,
1424 int low, int high, struct free_area *area,
1425 int migratetype)
1426 {
1427 unsigned long size = 1 << high;
1428
1429 while (high > low) {
1430 area--;
1431 high--;
1432 size >>= 1;
1433 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1434
1435 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1436 debug_guardpage_enabled() &&
1437 high < debug_guardpage_minorder()) {
1438 /*
1439 * Mark as guard pages (or page), that will allow to
1440 * merge back to allocator when buddy will be freed.
1441 * Corresponding page table entries will not be touched,
1442 * pages will stay not present in virtual address space
1443 */
1444 set_page_guard(zone, &page[size], high, migratetype);
1445 continue;
1446 }
1447 list_add(&page[size].lru, &area->free_list[migratetype]);
1448 area->nr_free++;
1449 set_page_order(&page[size], high);
1450 }
1451 }
1452
1453 /*
1454 * This page is about to be returned from the page allocator
1455 */
1456 static inline int check_new_page(struct page *page)
1457 {
1458 const char *bad_reason = NULL;
1459 unsigned long bad_flags = 0;
1460
1461 if (unlikely(atomic_read(&page->_mapcount) != -1))
1462 bad_reason = "nonzero mapcount";
1463 if (unlikely(page->mapping != NULL))
1464 bad_reason = "non-NULL mapping";
1465 if (unlikely(page_ref_count(page) != 0))
1466 bad_reason = "nonzero _count";
1467 if (unlikely(page->flags & __PG_HWPOISON)) {
1468 bad_reason = "HWPoisoned (hardware-corrupted)";
1469 bad_flags = __PG_HWPOISON;
1470 }
1471 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1472 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1473 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1474 }
1475 #ifdef CONFIG_MEMCG
1476 if (unlikely(page->mem_cgroup))
1477 bad_reason = "page still charged to cgroup";
1478 #endif
1479 if (unlikely(bad_reason)) {
1480 bad_page(page, bad_reason, bad_flags);
1481 return 1;
1482 }
1483 return 0;
1484 }
1485
1486 static inline bool free_pages_prezeroed(bool poisoned)
1487 {
1488 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1489 page_poisoning_enabled() && poisoned;
1490 }
1491
1492 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1493 int alloc_flags)
1494 {
1495 int i;
1496 bool poisoned = true;
1497
1498 for (i = 0; i < (1 << order); i++) {
1499 struct page *p = page + i;
1500 if (unlikely(check_new_page(p)))
1501 return 1;
1502 if (poisoned)
1503 poisoned &= page_is_poisoned(p);
1504 }
1505
1506 set_page_private(page, 0);
1507 set_page_refcounted(page);
1508
1509 arch_alloc_page(page, order);
1510 kernel_map_pages(page, 1 << order, 1);
1511 kernel_poison_pages(page, 1 << order, 1);
1512 kasan_alloc_pages(page, order);
1513
1514 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1515 for (i = 0; i < (1 << order); i++)
1516 clear_highpage(page + i);
1517
1518 if (order && (gfp_flags & __GFP_COMP))
1519 prep_compound_page(page, order);
1520
1521 set_page_owner(page, order, gfp_flags);
1522
1523 /*
1524 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1525 * allocate the page. The expectation is that the caller is taking
1526 * steps that will free more memory. The caller should avoid the page
1527 * being used for !PFMEMALLOC purposes.
1528 */
1529 if (alloc_flags & ALLOC_NO_WATERMARKS)
1530 set_page_pfmemalloc(page);
1531 else
1532 clear_page_pfmemalloc(page);
1533
1534 return 0;
1535 }
1536
1537 /*
1538 * Go through the free lists for the given migratetype and remove
1539 * the smallest available page from the freelists
1540 */
1541 static inline
1542 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1543 int migratetype)
1544 {
1545 unsigned int current_order;
1546 struct free_area *area;
1547 struct page *page;
1548
1549 /* Find a page of the appropriate size in the preferred list */
1550 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1551 area = &(zone->free_area[current_order]);
1552 page = list_first_entry_or_null(&area->free_list[migratetype],
1553 struct page, lru);
1554 if (!page)
1555 continue;
1556 list_del(&page->lru);
1557 rmv_page_order(page);
1558 area->nr_free--;
1559 expand(zone, page, order, current_order, area, migratetype);
1560 set_pcppage_migratetype(page, migratetype);
1561 return page;
1562 }
1563
1564 return NULL;
1565 }
1566
1567
1568 /*
1569 * This array describes the order lists are fallen back to when
1570 * the free lists for the desirable migrate type are depleted
1571 */
1572 static int fallbacks[MIGRATE_TYPES][4] = {
1573 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1574 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1575 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1576 #ifdef CONFIG_CMA
1577 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1578 #endif
1579 #ifdef CONFIG_MEMORY_ISOLATION
1580 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1581 #endif
1582 };
1583
1584 #ifdef CONFIG_CMA
1585 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1586 unsigned int order)
1587 {
1588 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1589 }
1590 #else
1591 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1592 unsigned int order) { return NULL; }
1593 #endif
1594
1595 /*
1596 * Move the free pages in a range to the free lists of the requested type.
1597 * Note that start_page and end_pages are not aligned on a pageblock
1598 * boundary. If alignment is required, use move_freepages_block()
1599 */
1600 int move_freepages(struct zone *zone,
1601 struct page *start_page, struct page *end_page,
1602 int migratetype)
1603 {
1604 struct page *page;
1605 unsigned int order;
1606 int pages_moved = 0;
1607
1608 #ifndef CONFIG_HOLES_IN_ZONE
1609 /*
1610 * page_zone is not safe to call in this context when
1611 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1612 * anyway as we check zone boundaries in move_freepages_block().
1613 * Remove at a later date when no bug reports exist related to
1614 * grouping pages by mobility
1615 */
1616 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1617 #endif
1618
1619 for (page = start_page; page <= end_page;) {
1620 /* Make sure we are not inadvertently changing nodes */
1621 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1622
1623 if (!pfn_valid_within(page_to_pfn(page))) {
1624 page++;
1625 continue;
1626 }
1627
1628 if (!PageBuddy(page)) {
1629 page++;
1630 continue;
1631 }
1632
1633 order = page_order(page);
1634 list_move(&page->lru,
1635 &zone->free_area[order].free_list[migratetype]);
1636 page += 1 << order;
1637 pages_moved += 1 << order;
1638 }
1639
1640 return pages_moved;
1641 }
1642
1643 int move_freepages_block(struct zone *zone, struct page *page,
1644 int migratetype)
1645 {
1646 unsigned long start_pfn, end_pfn;
1647 struct page *start_page, *end_page;
1648
1649 start_pfn = page_to_pfn(page);
1650 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1651 start_page = pfn_to_page(start_pfn);
1652 end_page = start_page + pageblock_nr_pages - 1;
1653 end_pfn = start_pfn + pageblock_nr_pages - 1;
1654
1655 /* Do not cross zone boundaries */
1656 if (!zone_spans_pfn(zone, start_pfn))
1657 start_page = page;
1658 if (!zone_spans_pfn(zone, end_pfn))
1659 return 0;
1660
1661 return move_freepages(zone, start_page, end_page, migratetype);
1662 }
1663
1664 static void change_pageblock_range(struct page *pageblock_page,
1665 int start_order, int migratetype)
1666 {
1667 int nr_pageblocks = 1 << (start_order - pageblock_order);
1668
1669 while (nr_pageblocks--) {
1670 set_pageblock_migratetype(pageblock_page, migratetype);
1671 pageblock_page += pageblock_nr_pages;
1672 }
1673 }
1674
1675 /*
1676 * When we are falling back to another migratetype during allocation, try to
1677 * steal extra free pages from the same pageblocks to satisfy further
1678 * allocations, instead of polluting multiple pageblocks.
1679 *
1680 * If we are stealing a relatively large buddy page, it is likely there will
1681 * be more free pages in the pageblock, so try to steal them all. For
1682 * reclaimable and unmovable allocations, we steal regardless of page size,
1683 * as fragmentation caused by those allocations polluting movable pageblocks
1684 * is worse than movable allocations stealing from unmovable and reclaimable
1685 * pageblocks.
1686 */
1687 static bool can_steal_fallback(unsigned int order, int start_mt)
1688 {
1689 /*
1690 * Leaving this order check is intended, although there is
1691 * relaxed order check in next check. The reason is that
1692 * we can actually steal whole pageblock if this condition met,
1693 * but, below check doesn't guarantee it and that is just heuristic
1694 * so could be changed anytime.
1695 */
1696 if (order >= pageblock_order)
1697 return true;
1698
1699 if (order >= pageblock_order / 2 ||
1700 start_mt == MIGRATE_RECLAIMABLE ||
1701 start_mt == MIGRATE_UNMOVABLE ||
1702 page_group_by_mobility_disabled)
1703 return true;
1704
1705 return false;
1706 }
1707
1708 /*
1709 * This function implements actual steal behaviour. If order is large enough,
1710 * we can steal whole pageblock. If not, we first move freepages in this
1711 * pageblock and check whether half of pages are moved or not. If half of
1712 * pages are moved, we can change migratetype of pageblock and permanently
1713 * use it's pages as requested migratetype in the future.
1714 */
1715 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1716 int start_type)
1717 {
1718 unsigned int current_order = page_order(page);
1719 int pages;
1720
1721 /* Take ownership for orders >= pageblock_order */
1722 if (current_order >= pageblock_order) {
1723 change_pageblock_range(page, current_order, start_type);
1724 return;
1725 }
1726
1727 pages = move_freepages_block(zone, page, start_type);
1728
1729 /* Claim the whole block if over half of it is free */
1730 if (pages >= (1 << (pageblock_order-1)) ||
1731 page_group_by_mobility_disabled)
1732 set_pageblock_migratetype(page, start_type);
1733 }
1734
1735 /*
1736 * Check whether there is a suitable fallback freepage with requested order.
1737 * If only_stealable is true, this function returns fallback_mt only if
1738 * we can steal other freepages all together. This would help to reduce
1739 * fragmentation due to mixed migratetype pages in one pageblock.
1740 */
1741 int find_suitable_fallback(struct free_area *area, unsigned int order,
1742 int migratetype, bool only_stealable, bool *can_steal)
1743 {
1744 int i;
1745 int fallback_mt;
1746
1747 if (area->nr_free == 0)
1748 return -1;
1749
1750 *can_steal = false;
1751 for (i = 0;; i++) {
1752 fallback_mt = fallbacks[migratetype][i];
1753 if (fallback_mt == MIGRATE_TYPES)
1754 break;
1755
1756 if (list_empty(&area->free_list[fallback_mt]))
1757 continue;
1758
1759 if (can_steal_fallback(order, migratetype))
1760 *can_steal = true;
1761
1762 if (!only_stealable)
1763 return fallback_mt;
1764
1765 if (*can_steal)
1766 return fallback_mt;
1767 }
1768
1769 return -1;
1770 }
1771
1772 /*
1773 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1774 * there are no empty page blocks that contain a page with a suitable order
1775 */
1776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1777 unsigned int alloc_order)
1778 {
1779 int mt;
1780 unsigned long max_managed, flags;
1781
1782 /*
1783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1784 * Check is race-prone but harmless.
1785 */
1786 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1787 if (zone->nr_reserved_highatomic >= max_managed)
1788 return;
1789
1790 spin_lock_irqsave(&zone->lock, flags);
1791
1792 /* Recheck the nr_reserved_highatomic limit under the lock */
1793 if (zone->nr_reserved_highatomic >= max_managed)
1794 goto out_unlock;
1795
1796 /* Yoink! */
1797 mt = get_pageblock_migratetype(page);
1798 if (mt != MIGRATE_HIGHATOMIC &&
1799 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1800 zone->nr_reserved_highatomic += pageblock_nr_pages;
1801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1803 }
1804
1805 out_unlock:
1806 spin_unlock_irqrestore(&zone->lock, flags);
1807 }
1808
1809 /*
1810 * Used when an allocation is about to fail under memory pressure. This
1811 * potentially hurts the reliability of high-order allocations when under
1812 * intense memory pressure but failed atomic allocations should be easier
1813 * to recover from than an OOM.
1814 */
1815 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1816 {
1817 struct zonelist *zonelist = ac->zonelist;
1818 unsigned long flags;
1819 struct zoneref *z;
1820 struct zone *zone;
1821 struct page *page;
1822 int order;
1823
1824 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1825 ac->nodemask) {
1826 /* Preserve at least one pageblock */
1827 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1828 continue;
1829
1830 spin_lock_irqsave(&zone->lock, flags);
1831 for (order = 0; order < MAX_ORDER; order++) {
1832 struct free_area *area = &(zone->free_area[order]);
1833
1834 page = list_first_entry_or_null(
1835 &area->free_list[MIGRATE_HIGHATOMIC],
1836 struct page, lru);
1837 if (!page)
1838 continue;
1839
1840 /*
1841 * It should never happen but changes to locking could
1842 * inadvertently allow a per-cpu drain to add pages
1843 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1844 * and watch for underflows.
1845 */
1846 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1847 zone->nr_reserved_highatomic);
1848
1849 /*
1850 * Convert to ac->migratetype and avoid the normal
1851 * pageblock stealing heuristics. Minimally, the caller
1852 * is doing the work and needs the pages. More
1853 * importantly, if the block was always converted to
1854 * MIGRATE_UNMOVABLE or another type then the number
1855 * of pageblocks that cannot be completely freed
1856 * may increase.
1857 */
1858 set_pageblock_migratetype(page, ac->migratetype);
1859 move_freepages_block(zone, page, ac->migratetype);
1860 spin_unlock_irqrestore(&zone->lock, flags);
1861 return;
1862 }
1863 spin_unlock_irqrestore(&zone->lock, flags);
1864 }
1865 }
1866
1867 /* Remove an element from the buddy allocator from the fallback list */
1868 static inline struct page *
1869 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1870 {
1871 struct free_area *area;
1872 unsigned int current_order;
1873 struct page *page;
1874 int fallback_mt;
1875 bool can_steal;
1876
1877 /* Find the largest possible block of pages in the other list */
1878 for (current_order = MAX_ORDER-1;
1879 current_order >= order && current_order <= MAX_ORDER-1;
1880 --current_order) {
1881 area = &(zone->free_area[current_order]);
1882 fallback_mt = find_suitable_fallback(area, current_order,
1883 start_migratetype, false, &can_steal);
1884 if (fallback_mt == -1)
1885 continue;
1886
1887 page = list_first_entry(&area->free_list[fallback_mt],
1888 struct page, lru);
1889 if (can_steal)
1890 steal_suitable_fallback(zone, page, start_migratetype);
1891
1892 /* Remove the page from the freelists */
1893 area->nr_free--;
1894 list_del(&page->lru);
1895 rmv_page_order(page);
1896
1897 expand(zone, page, order, current_order, area,
1898 start_migratetype);
1899 /*
1900 * The pcppage_migratetype may differ from pageblock's
1901 * migratetype depending on the decisions in
1902 * find_suitable_fallback(). This is OK as long as it does not
1903 * differ for MIGRATE_CMA pageblocks. Those can be used as
1904 * fallback only via special __rmqueue_cma_fallback() function
1905 */
1906 set_pcppage_migratetype(page, start_migratetype);
1907
1908 trace_mm_page_alloc_extfrag(page, order, current_order,
1909 start_migratetype, fallback_mt);
1910
1911 return page;
1912 }
1913
1914 return NULL;
1915 }
1916
1917 /*
1918 * Do the hard work of removing an element from the buddy allocator.
1919 * Call me with the zone->lock already held.
1920 */
1921 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1922 int migratetype)
1923 {
1924 struct page *page;
1925
1926 page = __rmqueue_smallest(zone, order, migratetype);
1927 if (unlikely(!page)) {
1928 if (migratetype == MIGRATE_MOVABLE)
1929 page = __rmqueue_cma_fallback(zone, order);
1930
1931 if (!page)
1932 page = __rmqueue_fallback(zone, order, migratetype);
1933 }
1934
1935 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1936 return page;
1937 }
1938
1939 /*
1940 * Obtain a specified number of elements from the buddy allocator, all under
1941 * a single hold of the lock, for efficiency. Add them to the supplied list.
1942 * Returns the number of new pages which were placed at *list.
1943 */
1944 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1945 unsigned long count, struct list_head *list,
1946 int migratetype, bool cold)
1947 {
1948 int i;
1949
1950 spin_lock(&zone->lock);
1951 for (i = 0; i < count; ++i) {
1952 struct page *page = __rmqueue(zone, order, migratetype);
1953 if (unlikely(page == NULL))
1954 break;
1955
1956 /*
1957 * Split buddy pages returned by expand() are received here
1958 * in physical page order. The page is added to the callers and
1959 * list and the list head then moves forward. From the callers
1960 * perspective, the linked list is ordered by page number in
1961 * some conditions. This is useful for IO devices that can
1962 * merge IO requests if the physical pages are ordered
1963 * properly.
1964 */
1965 if (likely(!cold))
1966 list_add(&page->lru, list);
1967 else
1968 list_add_tail(&page->lru, list);
1969 list = &page->lru;
1970 if (is_migrate_cma(get_pcppage_migratetype(page)))
1971 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1972 -(1 << order));
1973 }
1974 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1975 spin_unlock(&zone->lock);
1976 return i;
1977 }
1978
1979 #ifdef CONFIG_NUMA
1980 /*
1981 * Called from the vmstat counter updater to drain pagesets of this
1982 * currently executing processor on remote nodes after they have
1983 * expired.
1984 *
1985 * Note that this function must be called with the thread pinned to
1986 * a single processor.
1987 */
1988 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1989 {
1990 unsigned long flags;
1991 int to_drain, batch;
1992
1993 local_irq_save(flags);
1994 batch = READ_ONCE(pcp->batch);
1995 to_drain = min(pcp->count, batch);
1996 if (to_drain > 0) {
1997 free_pcppages_bulk(zone, to_drain, pcp);
1998 pcp->count -= to_drain;
1999 }
2000 local_irq_restore(flags);
2001 }
2002 #endif
2003
2004 /*
2005 * Drain pcplists of the indicated processor and zone.
2006 *
2007 * The processor must either be the current processor and the
2008 * thread pinned to the current processor or a processor that
2009 * is not online.
2010 */
2011 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2012 {
2013 unsigned long flags;
2014 struct per_cpu_pageset *pset;
2015 struct per_cpu_pages *pcp;
2016
2017 local_irq_save(flags);
2018 pset = per_cpu_ptr(zone->pageset, cpu);
2019
2020 pcp = &pset->pcp;
2021 if (pcp->count) {
2022 free_pcppages_bulk(zone, pcp->count, pcp);
2023 pcp->count = 0;
2024 }
2025 local_irq_restore(flags);
2026 }
2027
2028 /*
2029 * Drain pcplists of all zones on the indicated processor.
2030 *
2031 * The processor must either be the current processor and the
2032 * thread pinned to the current processor or a processor that
2033 * is not online.
2034 */
2035 static void drain_pages(unsigned int cpu)
2036 {
2037 struct zone *zone;
2038
2039 for_each_populated_zone(zone) {
2040 drain_pages_zone(cpu, zone);
2041 }
2042 }
2043
2044 /*
2045 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2046 *
2047 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2048 * the single zone's pages.
2049 */
2050 void drain_local_pages(struct zone *zone)
2051 {
2052 int cpu = smp_processor_id();
2053
2054 if (zone)
2055 drain_pages_zone(cpu, zone);
2056 else
2057 drain_pages(cpu);
2058 }
2059
2060 /*
2061 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2062 *
2063 * When zone parameter is non-NULL, spill just the single zone's pages.
2064 *
2065 * Note that this code is protected against sending an IPI to an offline
2066 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2067 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2068 * nothing keeps CPUs from showing up after we populated the cpumask and
2069 * before the call to on_each_cpu_mask().
2070 */
2071 void drain_all_pages(struct zone *zone)
2072 {
2073 int cpu;
2074
2075 /*
2076 * Allocate in the BSS so we wont require allocation in
2077 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2078 */
2079 static cpumask_t cpus_with_pcps;
2080
2081 /*
2082 * We don't care about racing with CPU hotplug event
2083 * as offline notification will cause the notified
2084 * cpu to drain that CPU pcps and on_each_cpu_mask
2085 * disables preemption as part of its processing
2086 */
2087 for_each_online_cpu(cpu) {
2088 struct per_cpu_pageset *pcp;
2089 struct zone *z;
2090 bool has_pcps = false;
2091
2092 if (zone) {
2093 pcp = per_cpu_ptr(zone->pageset, cpu);
2094 if (pcp->pcp.count)
2095 has_pcps = true;
2096 } else {
2097 for_each_populated_zone(z) {
2098 pcp = per_cpu_ptr(z->pageset, cpu);
2099 if (pcp->pcp.count) {
2100 has_pcps = true;
2101 break;
2102 }
2103 }
2104 }
2105
2106 if (has_pcps)
2107 cpumask_set_cpu(cpu, &cpus_with_pcps);
2108 else
2109 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2110 }
2111 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2112 zone, 1);
2113 }
2114
2115 #ifdef CONFIG_HIBERNATION
2116
2117 void mark_free_pages(struct zone *zone)
2118 {
2119 unsigned long pfn, max_zone_pfn;
2120 unsigned long flags;
2121 unsigned int order, t;
2122 struct page *page;
2123
2124 if (zone_is_empty(zone))
2125 return;
2126
2127 spin_lock_irqsave(&zone->lock, flags);
2128
2129 max_zone_pfn = zone_end_pfn(zone);
2130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2131 if (pfn_valid(pfn)) {
2132 page = pfn_to_page(pfn);
2133 if (!swsusp_page_is_forbidden(page))
2134 swsusp_unset_page_free(page);
2135 }
2136
2137 for_each_migratetype_order(order, t) {
2138 list_for_each_entry(page,
2139 &zone->free_area[order].free_list[t], lru) {
2140 unsigned long i;
2141
2142 pfn = page_to_pfn(page);
2143 for (i = 0; i < (1UL << order); i++)
2144 swsusp_set_page_free(pfn_to_page(pfn + i));
2145 }
2146 }
2147 spin_unlock_irqrestore(&zone->lock, flags);
2148 }
2149 #endif /* CONFIG_PM */
2150
2151 /*
2152 * Free a 0-order page
2153 * cold == true ? free a cold page : free a hot page
2154 */
2155 void free_hot_cold_page(struct page *page, bool cold)
2156 {
2157 struct zone *zone = page_zone(page);
2158 struct per_cpu_pages *pcp;
2159 unsigned long flags;
2160 unsigned long pfn = page_to_pfn(page);
2161 int migratetype;
2162
2163 if (!free_pages_prepare(page, 0))
2164 return;
2165
2166 migratetype = get_pfnblock_migratetype(page, pfn);
2167 set_pcppage_migratetype(page, migratetype);
2168 local_irq_save(flags);
2169 __count_vm_event(PGFREE);
2170
2171 /*
2172 * We only track unmovable, reclaimable and movable on pcp lists.
2173 * Free ISOLATE pages back to the allocator because they are being
2174 * offlined but treat RESERVE as movable pages so we can get those
2175 * areas back if necessary. Otherwise, we may have to free
2176 * excessively into the page allocator
2177 */
2178 if (migratetype >= MIGRATE_PCPTYPES) {
2179 if (unlikely(is_migrate_isolate(migratetype))) {
2180 free_one_page(zone, page, pfn, 0, migratetype);
2181 goto out;
2182 }
2183 migratetype = MIGRATE_MOVABLE;
2184 }
2185
2186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2187 if (!cold)
2188 list_add(&page->lru, &pcp->lists[migratetype]);
2189 else
2190 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2191 pcp->count++;
2192 if (pcp->count >= pcp->high) {
2193 unsigned long batch = READ_ONCE(pcp->batch);
2194 free_pcppages_bulk(zone, batch, pcp);
2195 pcp->count -= batch;
2196 }
2197
2198 out:
2199 local_irq_restore(flags);
2200 }
2201
2202 /*
2203 * Free a list of 0-order pages
2204 */
2205 void free_hot_cold_page_list(struct list_head *list, bool cold)
2206 {
2207 struct page *page, *next;
2208
2209 list_for_each_entry_safe(page, next, list, lru) {
2210 trace_mm_page_free_batched(page, cold);
2211 free_hot_cold_page(page, cold);
2212 }
2213 }
2214
2215 /*
2216 * split_page takes a non-compound higher-order page, and splits it into
2217 * n (1<<order) sub-pages: page[0..n]
2218 * Each sub-page must be freed individually.
2219 *
2220 * Note: this is probably too low level an operation for use in drivers.
2221 * Please consult with lkml before using this in your driver.
2222 */
2223 void split_page(struct page *page, unsigned int order)
2224 {
2225 int i;
2226 gfp_t gfp_mask;
2227
2228 VM_BUG_ON_PAGE(PageCompound(page), page);
2229 VM_BUG_ON_PAGE(!page_count(page), page);
2230
2231 #ifdef CONFIG_KMEMCHECK
2232 /*
2233 * Split shadow pages too, because free(page[0]) would
2234 * otherwise free the whole shadow.
2235 */
2236 if (kmemcheck_page_is_tracked(page))
2237 split_page(virt_to_page(page[0].shadow), order);
2238 #endif
2239
2240 gfp_mask = get_page_owner_gfp(page);
2241 set_page_owner(page, 0, gfp_mask);
2242 for (i = 1; i < (1 << order); i++) {
2243 set_page_refcounted(page + i);
2244 set_page_owner(page + i, 0, gfp_mask);
2245 }
2246 }
2247 EXPORT_SYMBOL_GPL(split_page);
2248
2249 int __isolate_free_page(struct page *page, unsigned int order)
2250 {
2251 unsigned long watermark;
2252 struct zone *zone;
2253 int mt;
2254
2255 BUG_ON(!PageBuddy(page));
2256
2257 zone = page_zone(page);
2258 mt = get_pageblock_migratetype(page);
2259
2260 if (!is_migrate_isolate(mt)) {
2261 /* Obey watermarks as if the page was being allocated */
2262 watermark = low_wmark_pages(zone) + (1 << order);
2263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2264 return 0;
2265
2266 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2267 }
2268
2269 /* Remove page from free list */
2270 list_del(&page->lru);
2271 zone->free_area[order].nr_free--;
2272 rmv_page_order(page);
2273
2274 set_page_owner(page, order, __GFP_MOVABLE);
2275
2276 /* Set the pageblock if the isolated page is at least a pageblock */
2277 if (order >= pageblock_order - 1) {
2278 struct page *endpage = page + (1 << order) - 1;
2279 for (; page < endpage; page += pageblock_nr_pages) {
2280 int mt = get_pageblock_migratetype(page);
2281 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2282 set_pageblock_migratetype(page,
2283 MIGRATE_MOVABLE);
2284 }
2285 }
2286
2287
2288 return 1UL << order;
2289 }
2290
2291 /*
2292 * Similar to split_page except the page is already free. As this is only
2293 * being used for migration, the migratetype of the block also changes.
2294 * As this is called with interrupts disabled, the caller is responsible
2295 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2296 * are enabled.
2297 *
2298 * Note: this is probably too low level an operation for use in drivers.
2299 * Please consult with lkml before using this in your driver.
2300 */
2301 int split_free_page(struct page *page)
2302 {
2303 unsigned int order;
2304 int nr_pages;
2305
2306 order = page_order(page);
2307
2308 nr_pages = __isolate_free_page(page, order);
2309 if (!nr_pages)
2310 return 0;
2311
2312 /* Split into individual pages */
2313 set_page_refcounted(page);
2314 split_page(page, order);
2315 return nr_pages;
2316 }
2317
2318 /*
2319 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2320 */
2321 static inline
2322 struct page *buffered_rmqueue(struct zone *preferred_zone,
2323 struct zone *zone, unsigned int order,
2324 gfp_t gfp_flags, int alloc_flags, int migratetype)
2325 {
2326 unsigned long flags;
2327 struct page *page;
2328 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2329
2330 if (likely(order == 0)) {
2331 struct per_cpu_pages *pcp;
2332 struct list_head *list;
2333
2334 local_irq_save(flags);
2335 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2336 list = &pcp->lists[migratetype];
2337 if (list_empty(list)) {
2338 pcp->count += rmqueue_bulk(zone, 0,
2339 pcp->batch, list,
2340 migratetype, cold);
2341 if (unlikely(list_empty(list)))
2342 goto failed;
2343 }
2344
2345 if (cold)
2346 page = list_last_entry(list, struct page, lru);
2347 else
2348 page = list_first_entry(list, struct page, lru);
2349
2350 list_del(&page->lru);
2351 pcp->count--;
2352 } else {
2353 /*
2354 * We most definitely don't want callers attempting to
2355 * allocate greater than order-1 page units with __GFP_NOFAIL.
2356 */
2357 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2358 spin_lock_irqsave(&zone->lock, flags);
2359
2360 page = NULL;
2361 if (alloc_flags & ALLOC_HARDER) {
2362 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2363 if (page)
2364 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2365 }
2366 if (!page)
2367 page = __rmqueue(zone, order, migratetype);
2368 spin_unlock(&zone->lock);
2369 if (!page)
2370 goto failed;
2371 __mod_zone_freepage_state(zone, -(1 << order),
2372 get_pcppage_migratetype(page));
2373 }
2374
2375 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2376 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2377 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2378 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2379
2380 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2381 zone_statistics(preferred_zone, zone, gfp_flags);
2382 local_irq_restore(flags);
2383
2384 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2385 return page;
2386
2387 failed:
2388 local_irq_restore(flags);
2389 return NULL;
2390 }
2391
2392 #ifdef CONFIG_FAIL_PAGE_ALLOC
2393
2394 static struct {
2395 struct fault_attr attr;
2396
2397 bool ignore_gfp_highmem;
2398 bool ignore_gfp_reclaim;
2399 u32 min_order;
2400 } fail_page_alloc = {
2401 .attr = FAULT_ATTR_INITIALIZER,
2402 .ignore_gfp_reclaim = true,
2403 .ignore_gfp_highmem = true,
2404 .min_order = 1,
2405 };
2406
2407 static int __init setup_fail_page_alloc(char *str)
2408 {
2409 return setup_fault_attr(&fail_page_alloc.attr, str);
2410 }
2411 __setup("fail_page_alloc=", setup_fail_page_alloc);
2412
2413 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2414 {
2415 if (order < fail_page_alloc.min_order)
2416 return false;
2417 if (gfp_mask & __GFP_NOFAIL)
2418 return false;
2419 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2420 return false;
2421 if (fail_page_alloc.ignore_gfp_reclaim &&
2422 (gfp_mask & __GFP_DIRECT_RECLAIM))
2423 return false;
2424
2425 return should_fail(&fail_page_alloc.attr, 1 << order);
2426 }
2427
2428 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2429
2430 static int __init fail_page_alloc_debugfs(void)
2431 {
2432 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2433 struct dentry *dir;
2434
2435 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2436 &fail_page_alloc.attr);
2437 if (IS_ERR(dir))
2438 return PTR_ERR(dir);
2439
2440 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2441 &fail_page_alloc.ignore_gfp_reclaim))
2442 goto fail;
2443 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2444 &fail_page_alloc.ignore_gfp_highmem))
2445 goto fail;
2446 if (!debugfs_create_u32("min-order", mode, dir,
2447 &fail_page_alloc.min_order))
2448 goto fail;
2449
2450 return 0;
2451 fail:
2452 debugfs_remove_recursive(dir);
2453
2454 return -ENOMEM;
2455 }
2456
2457 late_initcall(fail_page_alloc_debugfs);
2458
2459 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2460
2461 #else /* CONFIG_FAIL_PAGE_ALLOC */
2462
2463 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2464 {
2465 return false;
2466 }
2467
2468 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2469
2470 /*
2471 * Return true if free base pages are above 'mark'. For high-order checks it
2472 * will return true of the order-0 watermark is reached and there is at least
2473 * one free page of a suitable size. Checking now avoids taking the zone lock
2474 * to check in the allocation paths if no pages are free.
2475 */
2476 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2477 unsigned long mark, int classzone_idx, int alloc_flags,
2478 long free_pages)
2479 {
2480 long min = mark;
2481 int o;
2482 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2483
2484 /* free_pages may go negative - that's OK */
2485 free_pages -= (1 << order) - 1;
2486
2487 if (alloc_flags & ALLOC_HIGH)
2488 min -= min / 2;
2489
2490 /*
2491 * If the caller does not have rights to ALLOC_HARDER then subtract
2492 * the high-atomic reserves. This will over-estimate the size of the
2493 * atomic reserve but it avoids a search.
2494 */
2495 if (likely(!alloc_harder))
2496 free_pages -= z->nr_reserved_highatomic;
2497 else
2498 min -= min / 4;
2499
2500 #ifdef CONFIG_CMA
2501 /* If allocation can't use CMA areas don't use free CMA pages */
2502 if (!(alloc_flags & ALLOC_CMA))
2503 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2504 #endif
2505
2506 /*
2507 * Check watermarks for an order-0 allocation request. If these
2508 * are not met, then a high-order request also cannot go ahead
2509 * even if a suitable page happened to be free.
2510 */
2511 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2512 return false;
2513
2514 /* If this is an order-0 request then the watermark is fine */
2515 if (!order)
2516 return true;
2517
2518 /* For a high-order request, check at least one suitable page is free */
2519 for (o = order; o < MAX_ORDER; o++) {
2520 struct free_area *area = &z->free_area[o];
2521 int mt;
2522
2523 if (!area->nr_free)
2524 continue;
2525
2526 if (alloc_harder)
2527 return true;
2528
2529 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2530 if (!list_empty(&area->free_list[mt]))
2531 return true;
2532 }
2533
2534 #ifdef CONFIG_CMA
2535 if ((alloc_flags & ALLOC_CMA) &&
2536 !list_empty(&area->free_list[MIGRATE_CMA])) {
2537 return true;
2538 }
2539 #endif
2540 }
2541 return false;
2542 }
2543
2544 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2545 int classzone_idx, int alloc_flags)
2546 {
2547 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2548 zone_page_state(z, NR_FREE_PAGES));
2549 }
2550
2551 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2552 unsigned long mark, int classzone_idx)
2553 {
2554 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2555
2556 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2557 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2558
2559 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2560 free_pages);
2561 }
2562
2563 #ifdef CONFIG_NUMA
2564 static bool zone_local(struct zone *local_zone, struct zone *zone)
2565 {
2566 return local_zone->node == zone->node;
2567 }
2568
2569 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2570 {
2571 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2572 RECLAIM_DISTANCE;
2573 }
2574 #else /* CONFIG_NUMA */
2575 static bool zone_local(struct zone *local_zone, struct zone *zone)
2576 {
2577 return true;
2578 }
2579
2580 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2581 {
2582 return true;
2583 }
2584 #endif /* CONFIG_NUMA */
2585
2586 static void reset_alloc_batches(struct zone *preferred_zone)
2587 {
2588 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2589
2590 do {
2591 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2592 high_wmark_pages(zone) - low_wmark_pages(zone) -
2593 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2594 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2595 } while (zone++ != preferred_zone);
2596 }
2597
2598 /*
2599 * get_page_from_freelist goes through the zonelist trying to allocate
2600 * a page.
2601 */
2602 static struct page *
2603 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2604 const struct alloc_context *ac)
2605 {
2606 struct zonelist *zonelist = ac->zonelist;
2607 struct zoneref *z;
2608 struct page *page = NULL;
2609 struct zone *zone;
2610 int nr_fair_skipped = 0;
2611 bool zonelist_rescan;
2612
2613 zonelist_scan:
2614 zonelist_rescan = false;
2615
2616 /*
2617 * Scan zonelist, looking for a zone with enough free.
2618 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2619 */
2620 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2621 ac->nodemask) {
2622 unsigned long mark;
2623
2624 if (cpusets_enabled() &&
2625 (alloc_flags & ALLOC_CPUSET) &&
2626 !cpuset_zone_allowed(zone, gfp_mask))
2627 continue;
2628 /*
2629 * Distribute pages in proportion to the individual
2630 * zone size to ensure fair page aging. The zone a
2631 * page was allocated in should have no effect on the
2632 * time the page has in memory before being reclaimed.
2633 */
2634 if (alloc_flags & ALLOC_FAIR) {
2635 if (!zone_local(ac->preferred_zone, zone))
2636 break;
2637 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2638 nr_fair_skipped++;
2639 continue;
2640 }
2641 }
2642 /*
2643 * When allocating a page cache page for writing, we
2644 * want to get it from a zone that is within its dirty
2645 * limit, such that no single zone holds more than its
2646 * proportional share of globally allowed dirty pages.
2647 * The dirty limits take into account the zone's
2648 * lowmem reserves and high watermark so that kswapd
2649 * should be able to balance it without having to
2650 * write pages from its LRU list.
2651 *
2652 * This may look like it could increase pressure on
2653 * lower zones by failing allocations in higher zones
2654 * before they are full. But the pages that do spill
2655 * over are limited as the lower zones are protected
2656 * by this very same mechanism. It should not become
2657 * a practical burden to them.
2658 *
2659 * XXX: For now, allow allocations to potentially
2660 * exceed the per-zone dirty limit in the slowpath
2661 * (spread_dirty_pages unset) before going into reclaim,
2662 * which is important when on a NUMA setup the allowed
2663 * zones are together not big enough to reach the
2664 * global limit. The proper fix for these situations
2665 * will require awareness of zones in the
2666 * dirty-throttling and the flusher threads.
2667 */
2668 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2669 continue;
2670
2671 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2672 if (!zone_watermark_ok(zone, order, mark,
2673 ac->classzone_idx, alloc_flags)) {
2674 int ret;
2675
2676 /* Checked here to keep the fast path fast */
2677 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2678 if (alloc_flags & ALLOC_NO_WATERMARKS)
2679 goto try_this_zone;
2680
2681 if (zone_reclaim_mode == 0 ||
2682 !zone_allows_reclaim(ac->preferred_zone, zone))
2683 continue;
2684
2685 ret = zone_reclaim(zone, gfp_mask, order);
2686 switch (ret) {
2687 case ZONE_RECLAIM_NOSCAN:
2688 /* did not scan */
2689 continue;
2690 case ZONE_RECLAIM_FULL:
2691 /* scanned but unreclaimable */
2692 continue;
2693 default:
2694 /* did we reclaim enough */
2695 if (zone_watermark_ok(zone, order, mark,
2696 ac->classzone_idx, alloc_flags))
2697 goto try_this_zone;
2698
2699 continue;
2700 }
2701 }
2702
2703 try_this_zone:
2704 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2705 gfp_mask, alloc_flags, ac->migratetype);
2706 if (page) {
2707 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2708 goto try_this_zone;
2709
2710 /*
2711 * If this is a high-order atomic allocation then check
2712 * if the pageblock should be reserved for the future
2713 */
2714 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2715 reserve_highatomic_pageblock(page, zone, order);
2716
2717 return page;
2718 }
2719 }
2720
2721 /*
2722 * The first pass makes sure allocations are spread fairly within the
2723 * local node. However, the local node might have free pages left
2724 * after the fairness batches are exhausted, and remote zones haven't
2725 * even been considered yet. Try once more without fairness, and
2726 * include remote zones now, before entering the slowpath and waking
2727 * kswapd: prefer spilling to a remote zone over swapping locally.
2728 */
2729 if (alloc_flags & ALLOC_FAIR) {
2730 alloc_flags &= ~ALLOC_FAIR;
2731 if (nr_fair_skipped) {
2732 zonelist_rescan = true;
2733 reset_alloc_batches(ac->preferred_zone);
2734 }
2735 if (nr_online_nodes > 1)
2736 zonelist_rescan = true;
2737 }
2738
2739 if (zonelist_rescan)
2740 goto zonelist_scan;
2741
2742 return NULL;
2743 }
2744
2745 /*
2746 * Large machines with many possible nodes should not always dump per-node
2747 * meminfo in irq context.
2748 */
2749 static inline bool should_suppress_show_mem(void)
2750 {
2751 bool ret = false;
2752
2753 #if NODES_SHIFT > 8
2754 ret = in_interrupt();
2755 #endif
2756 return ret;
2757 }
2758
2759 static DEFINE_RATELIMIT_STATE(nopage_rs,
2760 DEFAULT_RATELIMIT_INTERVAL,
2761 DEFAULT_RATELIMIT_BURST);
2762
2763 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2764 {
2765 unsigned int filter = SHOW_MEM_FILTER_NODES;
2766
2767 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2768 debug_guardpage_minorder() > 0)
2769 return;
2770
2771 /*
2772 * This documents exceptions given to allocations in certain
2773 * contexts that are allowed to allocate outside current's set
2774 * of allowed nodes.
2775 */
2776 if (!(gfp_mask & __GFP_NOMEMALLOC))
2777 if (test_thread_flag(TIF_MEMDIE) ||
2778 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2779 filter &= ~SHOW_MEM_FILTER_NODES;
2780 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2781 filter &= ~SHOW_MEM_FILTER_NODES;
2782
2783 if (fmt) {
2784 struct va_format vaf;
2785 va_list args;
2786
2787 va_start(args, fmt);
2788
2789 vaf.fmt = fmt;
2790 vaf.va = &args;
2791
2792 pr_warn("%pV", &vaf);
2793
2794 va_end(args);
2795 }
2796
2797 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2798 current->comm, order, gfp_mask, &gfp_mask);
2799 dump_stack();
2800 if (!should_suppress_show_mem())
2801 show_mem(filter);
2802 }
2803
2804 static inline struct page *
2805 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2806 const struct alloc_context *ac, unsigned long *did_some_progress)
2807 {
2808 struct oom_control oc = {
2809 .zonelist = ac->zonelist,
2810 .nodemask = ac->nodemask,
2811 .gfp_mask = gfp_mask,
2812 .order = order,
2813 };
2814 struct page *page;
2815
2816 *did_some_progress = 0;
2817
2818 /*
2819 * Acquire the oom lock. If that fails, somebody else is
2820 * making progress for us.
2821 */
2822 if (!mutex_trylock(&oom_lock)) {
2823 *did_some_progress = 1;
2824 schedule_timeout_uninterruptible(1);
2825 return NULL;
2826 }
2827
2828 /*
2829 * Go through the zonelist yet one more time, keep very high watermark
2830 * here, this is only to catch a parallel oom killing, we must fail if
2831 * we're still under heavy pressure.
2832 */
2833 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2834 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2835 if (page)
2836 goto out;
2837
2838 if (!(gfp_mask & __GFP_NOFAIL)) {
2839 /* Coredumps can quickly deplete all memory reserves */
2840 if (current->flags & PF_DUMPCORE)
2841 goto out;
2842 /* The OOM killer will not help higher order allocs */
2843 if (order > PAGE_ALLOC_COSTLY_ORDER)
2844 goto out;
2845 /* The OOM killer does not needlessly kill tasks for lowmem */
2846 if (ac->high_zoneidx < ZONE_NORMAL)
2847 goto out;
2848 /* The OOM killer does not compensate for IO-less reclaim */
2849 if (!(gfp_mask & __GFP_FS)) {
2850 /*
2851 * XXX: Page reclaim didn't yield anything,
2852 * and the OOM killer can't be invoked, but
2853 * keep looping as per tradition.
2854 */
2855 *did_some_progress = 1;
2856 goto out;
2857 }
2858 if (pm_suspended_storage())
2859 goto out;
2860 /* The OOM killer may not free memory on a specific node */
2861 if (gfp_mask & __GFP_THISNODE)
2862 goto out;
2863 }
2864 /* Exhausted what can be done so it's blamo time */
2865 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2866 *did_some_progress = 1;
2867
2868 if (gfp_mask & __GFP_NOFAIL) {
2869 page = get_page_from_freelist(gfp_mask, order,
2870 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2871 /*
2872 * fallback to ignore cpuset restriction if our nodes
2873 * are depleted
2874 */
2875 if (!page)
2876 page = get_page_from_freelist(gfp_mask, order,
2877 ALLOC_NO_WATERMARKS, ac);
2878 }
2879 }
2880 out:
2881 mutex_unlock(&oom_lock);
2882 return page;
2883 }
2884
2885 #ifdef CONFIG_COMPACTION
2886 /* Try memory compaction for high-order allocations before reclaim */
2887 static struct page *
2888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2889 int alloc_flags, const struct alloc_context *ac,
2890 enum migrate_mode mode, int *contended_compaction,
2891 bool *deferred_compaction)
2892 {
2893 unsigned long compact_result;
2894 struct page *page;
2895
2896 if (!order)
2897 return NULL;
2898
2899 current->flags |= PF_MEMALLOC;
2900 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2901 mode, contended_compaction);
2902 current->flags &= ~PF_MEMALLOC;
2903
2904 switch (compact_result) {
2905 case COMPACT_DEFERRED:
2906 *deferred_compaction = true;
2907 /* fall-through */
2908 case COMPACT_SKIPPED:
2909 return NULL;
2910 default:
2911 break;
2912 }
2913
2914 /*
2915 * At least in one zone compaction wasn't deferred or skipped, so let's
2916 * count a compaction stall
2917 */
2918 count_vm_event(COMPACTSTALL);
2919
2920 page = get_page_from_freelist(gfp_mask, order,
2921 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2922
2923 if (page) {
2924 struct zone *zone = page_zone(page);
2925
2926 zone->compact_blockskip_flush = false;
2927 compaction_defer_reset(zone, order, true);
2928 count_vm_event(COMPACTSUCCESS);
2929 return page;
2930 }
2931
2932 /*
2933 * It's bad if compaction run occurs and fails. The most likely reason
2934 * is that pages exist, but not enough to satisfy watermarks.
2935 */
2936 count_vm_event(COMPACTFAIL);
2937
2938 cond_resched();
2939
2940 return NULL;
2941 }
2942 #else
2943 static inline struct page *
2944 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2945 int alloc_flags, const struct alloc_context *ac,
2946 enum migrate_mode mode, int *contended_compaction,
2947 bool *deferred_compaction)
2948 {
2949 return NULL;
2950 }
2951 #endif /* CONFIG_COMPACTION */
2952
2953 /* Perform direct synchronous page reclaim */
2954 static int
2955 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2956 const struct alloc_context *ac)
2957 {
2958 struct reclaim_state reclaim_state;
2959 int progress;
2960
2961 cond_resched();
2962
2963 /* We now go into synchronous reclaim */
2964 cpuset_memory_pressure_bump();
2965 current->flags |= PF_MEMALLOC;
2966 lockdep_set_current_reclaim_state(gfp_mask);
2967 reclaim_state.reclaimed_slab = 0;
2968 current->reclaim_state = &reclaim_state;
2969
2970 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2971 ac->nodemask);
2972
2973 current->reclaim_state = NULL;
2974 lockdep_clear_current_reclaim_state();
2975 current->flags &= ~PF_MEMALLOC;
2976
2977 cond_resched();
2978
2979 return progress;
2980 }
2981
2982 /* The really slow allocator path where we enter direct reclaim */
2983 static inline struct page *
2984 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2985 int alloc_flags, const struct alloc_context *ac,
2986 unsigned long *did_some_progress)
2987 {
2988 struct page *page = NULL;
2989 bool drained = false;
2990
2991 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2992 if (unlikely(!(*did_some_progress)))
2993 return NULL;
2994
2995 retry:
2996 page = get_page_from_freelist(gfp_mask, order,
2997 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2998
2999 /*
3000 * If an allocation failed after direct reclaim, it could be because
3001 * pages are pinned on the per-cpu lists or in high alloc reserves.
3002 * Shrink them them and try again
3003 */
3004 if (!page && !drained) {
3005 unreserve_highatomic_pageblock(ac);
3006 drain_all_pages(NULL);
3007 drained = true;
3008 goto retry;
3009 }
3010
3011 return page;
3012 }
3013
3014 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3015 {
3016 struct zoneref *z;
3017 struct zone *zone;
3018
3019 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3020 ac->high_zoneidx, ac->nodemask)
3021 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3022 }
3023
3024 static inline int
3025 gfp_to_alloc_flags(gfp_t gfp_mask)
3026 {
3027 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3028
3029 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3030 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3031
3032 /*
3033 * The caller may dip into page reserves a bit more if the caller
3034 * cannot run direct reclaim, or if the caller has realtime scheduling
3035 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3036 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3037 */
3038 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3039
3040 if (gfp_mask & __GFP_ATOMIC) {
3041 /*
3042 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3043 * if it can't schedule.
3044 */
3045 if (!(gfp_mask & __GFP_NOMEMALLOC))
3046 alloc_flags |= ALLOC_HARDER;
3047 /*
3048 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3049 * comment for __cpuset_node_allowed().
3050 */
3051 alloc_flags &= ~ALLOC_CPUSET;
3052 } else if (unlikely(rt_task(current)) && !in_interrupt())
3053 alloc_flags |= ALLOC_HARDER;
3054
3055 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3056 if (gfp_mask & __GFP_MEMALLOC)
3057 alloc_flags |= ALLOC_NO_WATERMARKS;
3058 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3059 alloc_flags |= ALLOC_NO_WATERMARKS;
3060 else if (!in_interrupt() &&
3061 ((current->flags & PF_MEMALLOC) ||
3062 unlikely(test_thread_flag(TIF_MEMDIE))))
3063 alloc_flags |= ALLOC_NO_WATERMARKS;
3064 }
3065 #ifdef CONFIG_CMA
3066 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3067 alloc_flags |= ALLOC_CMA;
3068 #endif
3069 return alloc_flags;
3070 }
3071
3072 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3073 {
3074 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3075 }
3076
3077 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3078 {
3079 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3080 }
3081
3082 static inline struct page *
3083 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3084 struct alloc_context *ac)
3085 {
3086 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3087 struct page *page = NULL;
3088 int alloc_flags;
3089 unsigned long pages_reclaimed = 0;
3090 unsigned long did_some_progress;
3091 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3092 bool deferred_compaction = false;
3093 int contended_compaction = COMPACT_CONTENDED_NONE;
3094
3095 /*
3096 * In the slowpath, we sanity check order to avoid ever trying to
3097 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3098 * be using allocators in order of preference for an area that is
3099 * too large.
3100 */
3101 if (order >= MAX_ORDER) {
3102 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3103 return NULL;
3104 }
3105
3106 /*
3107 * We also sanity check to catch abuse of atomic reserves being used by
3108 * callers that are not in atomic context.
3109 */
3110 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3111 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3112 gfp_mask &= ~__GFP_ATOMIC;
3113
3114 retry:
3115 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3116 wake_all_kswapds(order, ac);
3117
3118 /*
3119 * OK, we're below the kswapd watermark and have kicked background
3120 * reclaim. Now things get more complex, so set up alloc_flags according
3121 * to how we want to proceed.
3122 */
3123 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3124
3125 /*
3126 * Find the true preferred zone if the allocation is unconstrained by
3127 * cpusets.
3128 */
3129 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3130 struct zoneref *preferred_zoneref;
3131 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3132 ac->high_zoneidx, NULL, &ac->preferred_zone);
3133 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3134 }
3135
3136 /* This is the last chance, in general, before the goto nopage. */
3137 page = get_page_from_freelist(gfp_mask, order,
3138 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3139 if (page)
3140 goto got_pg;
3141
3142 /* Allocate without watermarks if the context allows */
3143 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3144 /*
3145 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3146 * the allocation is high priority and these type of
3147 * allocations are system rather than user orientated
3148 */
3149 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3150 page = get_page_from_freelist(gfp_mask, order,
3151 ALLOC_NO_WATERMARKS, ac);
3152 if (page)
3153 goto got_pg;
3154 }
3155
3156 /* Caller is not willing to reclaim, we can't balance anything */
3157 if (!can_direct_reclaim) {
3158 /*
3159 * All existing users of the __GFP_NOFAIL are blockable, so warn
3160 * of any new users that actually allow this type of allocation
3161 * to fail.
3162 */
3163 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3164 goto nopage;
3165 }
3166
3167 /* Avoid recursion of direct reclaim */
3168 if (current->flags & PF_MEMALLOC) {
3169 /*
3170 * __GFP_NOFAIL request from this context is rather bizarre
3171 * because we cannot reclaim anything and only can loop waiting
3172 * for somebody to do a work for us.
3173 */
3174 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3175 cond_resched();
3176 goto retry;
3177 }
3178 goto nopage;
3179 }
3180
3181 /* Avoid allocations with no watermarks from looping endlessly */
3182 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3183 goto nopage;
3184
3185 /*
3186 * Try direct compaction. The first pass is asynchronous. Subsequent
3187 * attempts after direct reclaim are synchronous
3188 */
3189 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3190 migration_mode,
3191 &contended_compaction,
3192 &deferred_compaction);
3193 if (page)
3194 goto got_pg;
3195
3196 /* Checks for THP-specific high-order allocations */
3197 if (is_thp_gfp_mask(gfp_mask)) {
3198 /*
3199 * If compaction is deferred for high-order allocations, it is
3200 * because sync compaction recently failed. If this is the case
3201 * and the caller requested a THP allocation, we do not want
3202 * to heavily disrupt the system, so we fail the allocation
3203 * instead of entering direct reclaim.
3204 */
3205 if (deferred_compaction)
3206 goto nopage;
3207
3208 /*
3209 * In all zones where compaction was attempted (and not
3210 * deferred or skipped), lock contention has been detected.
3211 * For THP allocation we do not want to disrupt the others
3212 * so we fallback to base pages instead.
3213 */
3214 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3215 goto nopage;
3216
3217 /*
3218 * If compaction was aborted due to need_resched(), we do not
3219 * want to further increase allocation latency, unless it is
3220 * khugepaged trying to collapse.
3221 */
3222 if (contended_compaction == COMPACT_CONTENDED_SCHED
3223 && !(current->flags & PF_KTHREAD))
3224 goto nopage;
3225 }
3226
3227 /*
3228 * It can become very expensive to allocate transparent hugepages at
3229 * fault, so use asynchronous memory compaction for THP unless it is
3230 * khugepaged trying to collapse.
3231 */
3232 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3233 migration_mode = MIGRATE_SYNC_LIGHT;
3234
3235 /* Try direct reclaim and then allocating */
3236 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3237 &did_some_progress);
3238 if (page)
3239 goto got_pg;
3240
3241 /* Do not loop if specifically requested */
3242 if (gfp_mask & __GFP_NORETRY)
3243 goto noretry;
3244
3245 /* Keep reclaiming pages as long as there is reasonable progress */
3246 pages_reclaimed += did_some_progress;
3247 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3248 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3249 /* Wait for some write requests to complete then retry */
3250 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3251 goto retry;
3252 }
3253
3254 /* Reclaim has failed us, start killing things */
3255 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3256 if (page)
3257 goto got_pg;
3258
3259 /* Retry as long as the OOM killer is making progress */
3260 if (did_some_progress)
3261 goto retry;
3262
3263 noretry:
3264 /*
3265 * High-order allocations do not necessarily loop after
3266 * direct reclaim and reclaim/compaction depends on compaction
3267 * being called after reclaim so call directly if necessary
3268 */
3269 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3270 ac, migration_mode,
3271 &contended_compaction,
3272 &deferred_compaction);
3273 if (page)
3274 goto got_pg;
3275 nopage:
3276 warn_alloc_failed(gfp_mask, order, NULL);
3277 got_pg:
3278 return page;
3279 }
3280
3281 /*
3282 * This is the 'heart' of the zoned buddy allocator.
3283 */
3284 struct page *
3285 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3286 struct zonelist *zonelist, nodemask_t *nodemask)
3287 {
3288 struct zoneref *preferred_zoneref;
3289 struct page *page = NULL;
3290 unsigned int cpuset_mems_cookie;
3291 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3292 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3293 struct alloc_context ac = {
3294 .high_zoneidx = gfp_zone(gfp_mask),
3295 .nodemask = nodemask,
3296 .migratetype = gfpflags_to_migratetype(gfp_mask),
3297 };
3298
3299 gfp_mask &= gfp_allowed_mask;
3300
3301 lockdep_trace_alloc(gfp_mask);
3302
3303 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3304
3305 if (should_fail_alloc_page(gfp_mask, order))
3306 return NULL;
3307
3308 /*
3309 * Check the zones suitable for the gfp_mask contain at least one
3310 * valid zone. It's possible to have an empty zonelist as a result
3311 * of __GFP_THISNODE and a memoryless node
3312 */
3313 if (unlikely(!zonelist->_zonerefs->zone))
3314 return NULL;
3315
3316 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3317 alloc_flags |= ALLOC_CMA;
3318
3319 retry_cpuset:
3320 cpuset_mems_cookie = read_mems_allowed_begin();
3321
3322 /* We set it here, as __alloc_pages_slowpath might have changed it */
3323 ac.zonelist = zonelist;
3324
3325 /* Dirty zone balancing only done in the fast path */
3326 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3327
3328 /* The preferred zone is used for statistics later */
3329 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3330 ac.nodemask ? : &cpuset_current_mems_allowed,
3331 &ac.preferred_zone);
3332 if (!ac.preferred_zone)
3333 goto out;
3334 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3335
3336 /* First allocation attempt */
3337 alloc_mask = gfp_mask|__GFP_HARDWALL;
3338 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3339 if (unlikely(!page)) {
3340 /*
3341 * Runtime PM, block IO and its error handling path
3342 * can deadlock because I/O on the device might not
3343 * complete.
3344 */
3345 alloc_mask = memalloc_noio_flags(gfp_mask);
3346 ac.spread_dirty_pages = false;
3347
3348 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3349 }
3350
3351 if (kmemcheck_enabled && page)
3352 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3353
3354 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3355
3356 out:
3357 /*
3358 * When updating a task's mems_allowed, it is possible to race with
3359 * parallel threads in such a way that an allocation can fail while
3360 * the mask is being updated. If a page allocation is about to fail,
3361 * check if the cpuset changed during allocation and if so, retry.
3362 */
3363 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3364 goto retry_cpuset;
3365
3366 return page;
3367 }
3368 EXPORT_SYMBOL(__alloc_pages_nodemask);
3369
3370 /*
3371 * Common helper functions.
3372 */
3373 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3374 {
3375 struct page *page;
3376
3377 /*
3378 * __get_free_pages() returns a 32-bit address, which cannot represent
3379 * a highmem page
3380 */
3381 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3382
3383 page = alloc_pages(gfp_mask, order);
3384 if (!page)
3385 return 0;
3386 return (unsigned long) page_address(page);
3387 }
3388 EXPORT_SYMBOL(__get_free_pages);
3389
3390 unsigned long get_zeroed_page(gfp_t gfp_mask)
3391 {
3392 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3393 }
3394 EXPORT_SYMBOL(get_zeroed_page);
3395
3396 void __free_pages(struct page *page, unsigned int order)
3397 {
3398 if (put_page_testzero(page)) {
3399 if (order == 0)
3400 free_hot_cold_page(page, false);
3401 else
3402 __free_pages_ok(page, order);
3403 }
3404 }
3405
3406 EXPORT_SYMBOL(__free_pages);
3407
3408 void free_pages(unsigned long addr, unsigned int order)
3409 {
3410 if (addr != 0) {
3411 VM_BUG_ON(!virt_addr_valid((void *)addr));
3412 __free_pages(virt_to_page((void *)addr), order);
3413 }
3414 }
3415
3416 EXPORT_SYMBOL(free_pages);
3417
3418 /*
3419 * Page Fragment:
3420 * An arbitrary-length arbitrary-offset area of memory which resides
3421 * within a 0 or higher order page. Multiple fragments within that page
3422 * are individually refcounted, in the page's reference counter.
3423 *
3424 * The page_frag functions below provide a simple allocation framework for
3425 * page fragments. This is used by the network stack and network device
3426 * drivers to provide a backing region of memory for use as either an
3427 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3428 */
3429 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3430 gfp_t gfp_mask)
3431 {
3432 struct page *page = NULL;
3433 gfp_t gfp = gfp_mask;
3434
3435 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3436 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3437 __GFP_NOMEMALLOC;
3438 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3439 PAGE_FRAG_CACHE_MAX_ORDER);
3440 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3441 #endif
3442 if (unlikely(!page))
3443 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3444
3445 nc->va = page ? page_address(page) : NULL;
3446
3447 return page;
3448 }
3449
3450 void *__alloc_page_frag(struct page_frag_cache *nc,
3451 unsigned int fragsz, gfp_t gfp_mask)
3452 {
3453 unsigned int size = PAGE_SIZE;
3454 struct page *page;
3455 int offset;
3456
3457 if (unlikely(!nc->va)) {
3458 refill:
3459 page = __page_frag_refill(nc, gfp_mask);
3460 if (!page)
3461 return NULL;
3462
3463 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3464 /* if size can vary use size else just use PAGE_SIZE */
3465 size = nc->size;
3466 #endif
3467 /* Even if we own the page, we do not use atomic_set().
3468 * This would break get_page_unless_zero() users.
3469 */
3470 page_ref_add(page, size - 1);
3471
3472 /* reset page count bias and offset to start of new frag */
3473 nc->pfmemalloc = page_is_pfmemalloc(page);
3474 nc->pagecnt_bias = size;
3475 nc->offset = size;
3476 }
3477
3478 offset = nc->offset - fragsz;
3479 if (unlikely(offset < 0)) {
3480 page = virt_to_page(nc->va);
3481
3482 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3483 goto refill;
3484
3485 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3486 /* if size can vary use size else just use PAGE_SIZE */
3487 size = nc->size;
3488 #endif
3489 /* OK, page count is 0, we can safely set it */
3490 set_page_count(page, size);
3491
3492 /* reset page count bias and offset to start of new frag */
3493 nc->pagecnt_bias = size;
3494 offset = size - fragsz;
3495 }
3496
3497 nc->pagecnt_bias--;
3498 nc->offset = offset;
3499
3500 return nc->va + offset;
3501 }
3502 EXPORT_SYMBOL(__alloc_page_frag);
3503
3504 /*
3505 * Frees a page fragment allocated out of either a compound or order 0 page.
3506 */
3507 void __free_page_frag(void *addr)
3508 {
3509 struct page *page = virt_to_head_page(addr);
3510
3511 if (unlikely(put_page_testzero(page)))
3512 __free_pages_ok(page, compound_order(page));
3513 }
3514 EXPORT_SYMBOL(__free_page_frag);
3515
3516 /*
3517 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3518 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3519 * equivalent to alloc_pages.
3520 *
3521 * It should be used when the caller would like to use kmalloc, but since the
3522 * allocation is large, it has to fall back to the page allocator.
3523 */
3524 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3525 {
3526 struct page *page;
3527
3528 page = alloc_pages(gfp_mask, order);
3529 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3530 __free_pages(page, order);
3531 page = NULL;
3532 }
3533 return page;
3534 }
3535
3536 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3537 {
3538 struct page *page;
3539
3540 page = alloc_pages_node(nid, gfp_mask, order);
3541 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3542 __free_pages(page, order);
3543 page = NULL;
3544 }
3545 return page;
3546 }
3547
3548 /*
3549 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3550 * alloc_kmem_pages.
3551 */
3552 void __free_kmem_pages(struct page *page, unsigned int order)
3553 {
3554 memcg_kmem_uncharge(page, order);
3555 __free_pages(page, order);
3556 }
3557
3558 void free_kmem_pages(unsigned long addr, unsigned int order)
3559 {
3560 if (addr != 0) {
3561 VM_BUG_ON(!virt_addr_valid((void *)addr));
3562 __free_kmem_pages(virt_to_page((void *)addr), order);
3563 }
3564 }
3565
3566 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3567 size_t size)
3568 {
3569 if (addr) {
3570 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3571 unsigned long used = addr + PAGE_ALIGN(size);
3572
3573 split_page(virt_to_page((void *)addr), order);
3574 while (used < alloc_end) {
3575 free_page(used);
3576 used += PAGE_SIZE;
3577 }
3578 }
3579 return (void *)addr;
3580 }
3581
3582 /**
3583 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3584 * @size: the number of bytes to allocate
3585 * @gfp_mask: GFP flags for the allocation
3586 *
3587 * This function is similar to alloc_pages(), except that it allocates the
3588 * minimum number of pages to satisfy the request. alloc_pages() can only
3589 * allocate memory in power-of-two pages.
3590 *
3591 * This function is also limited by MAX_ORDER.
3592 *
3593 * Memory allocated by this function must be released by free_pages_exact().
3594 */
3595 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3596 {
3597 unsigned int order = get_order(size);
3598 unsigned long addr;
3599
3600 addr = __get_free_pages(gfp_mask, order);
3601 return make_alloc_exact(addr, order, size);
3602 }
3603 EXPORT_SYMBOL(alloc_pages_exact);
3604
3605 /**
3606 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3607 * pages on a node.
3608 * @nid: the preferred node ID where memory should be allocated
3609 * @size: the number of bytes to allocate
3610 * @gfp_mask: GFP flags for the allocation
3611 *
3612 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3613 * back.
3614 */
3615 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3616 {
3617 unsigned int order = get_order(size);
3618 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3619 if (!p)
3620 return NULL;
3621 return make_alloc_exact((unsigned long)page_address(p), order, size);
3622 }
3623
3624 /**
3625 * free_pages_exact - release memory allocated via alloc_pages_exact()
3626 * @virt: the value returned by alloc_pages_exact.
3627 * @size: size of allocation, same value as passed to alloc_pages_exact().
3628 *
3629 * Release the memory allocated by a previous call to alloc_pages_exact.
3630 */
3631 void free_pages_exact(void *virt, size_t size)
3632 {
3633 unsigned long addr = (unsigned long)virt;
3634 unsigned long end = addr + PAGE_ALIGN(size);
3635
3636 while (addr < end) {
3637 free_page(addr);
3638 addr += PAGE_SIZE;
3639 }
3640 }
3641 EXPORT_SYMBOL(free_pages_exact);
3642
3643 /**
3644 * nr_free_zone_pages - count number of pages beyond high watermark
3645 * @offset: The zone index of the highest zone
3646 *
3647 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3648 * high watermark within all zones at or below a given zone index. For each
3649 * zone, the number of pages is calculated as:
3650 * managed_pages - high_pages
3651 */
3652 static unsigned long nr_free_zone_pages(int offset)
3653 {
3654 struct zoneref *z;
3655 struct zone *zone;
3656
3657 /* Just pick one node, since fallback list is circular */
3658 unsigned long sum = 0;
3659
3660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3661
3662 for_each_zone_zonelist(zone, z, zonelist, offset) {
3663 unsigned long size = zone->managed_pages;
3664 unsigned long high = high_wmark_pages(zone);
3665 if (size > high)
3666 sum += size - high;
3667 }
3668
3669 return sum;
3670 }
3671
3672 /**
3673 * nr_free_buffer_pages - count number of pages beyond high watermark
3674 *
3675 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3676 * watermark within ZONE_DMA and ZONE_NORMAL.
3677 */
3678 unsigned long nr_free_buffer_pages(void)
3679 {
3680 return nr_free_zone_pages(gfp_zone(GFP_USER));
3681 }
3682 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3683
3684 /**
3685 * nr_free_pagecache_pages - count number of pages beyond high watermark
3686 *
3687 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3688 * high watermark within all zones.
3689 */
3690 unsigned long nr_free_pagecache_pages(void)
3691 {
3692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3693 }
3694
3695 static inline void show_node(struct zone *zone)
3696 {
3697 if (IS_ENABLED(CONFIG_NUMA))
3698 printk("Node %d ", zone_to_nid(zone));
3699 }
3700
3701 long si_mem_available(void)
3702 {
3703 long available;
3704 unsigned long pagecache;
3705 unsigned long wmark_low = 0;
3706 unsigned long pages[NR_LRU_LISTS];
3707 struct zone *zone;
3708 int lru;
3709
3710 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3711 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3712
3713 for_each_zone(zone)
3714 wmark_low += zone->watermark[WMARK_LOW];
3715
3716 /*
3717 * Estimate the amount of memory available for userspace allocations,
3718 * without causing swapping.
3719 */
3720 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3721
3722 /*
3723 * Not all the page cache can be freed, otherwise the system will
3724 * start swapping. Assume at least half of the page cache, or the
3725 * low watermark worth of cache, needs to stay.
3726 */
3727 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3728 pagecache -= min(pagecache / 2, wmark_low);
3729 available += pagecache;
3730
3731 /*
3732 * Part of the reclaimable slab consists of items that are in use,
3733 * and cannot be freed. Cap this estimate at the low watermark.
3734 */
3735 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3736 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3737
3738 if (available < 0)
3739 available = 0;
3740 return available;
3741 }
3742 EXPORT_SYMBOL_GPL(si_mem_available);
3743
3744 void si_meminfo(struct sysinfo *val)
3745 {
3746 val->totalram = totalram_pages;
3747 val->sharedram = global_page_state(NR_SHMEM);
3748 val->freeram = global_page_state(NR_FREE_PAGES);
3749 val->bufferram = nr_blockdev_pages();
3750 val->totalhigh = totalhigh_pages;
3751 val->freehigh = nr_free_highpages();
3752 val->mem_unit = PAGE_SIZE;
3753 }
3754
3755 EXPORT_SYMBOL(si_meminfo);
3756
3757 #ifdef CONFIG_NUMA
3758 void si_meminfo_node(struct sysinfo *val, int nid)
3759 {
3760 int zone_type; /* needs to be signed */
3761 unsigned long managed_pages = 0;
3762 pg_data_t *pgdat = NODE_DATA(nid);
3763
3764 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3765 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3766 val->totalram = managed_pages;
3767 val->sharedram = node_page_state(nid, NR_SHMEM);
3768 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3769 #ifdef CONFIG_HIGHMEM
3770 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3771 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3772 NR_FREE_PAGES);
3773 #else
3774 val->totalhigh = 0;
3775 val->freehigh = 0;
3776 #endif
3777 val->mem_unit = PAGE_SIZE;
3778 }
3779 #endif
3780
3781 /*
3782 * Determine whether the node should be displayed or not, depending on whether
3783 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3784 */
3785 bool skip_free_areas_node(unsigned int flags, int nid)
3786 {
3787 bool ret = false;
3788 unsigned int cpuset_mems_cookie;
3789
3790 if (!(flags & SHOW_MEM_FILTER_NODES))
3791 goto out;
3792
3793 do {
3794 cpuset_mems_cookie = read_mems_allowed_begin();
3795 ret = !node_isset(nid, cpuset_current_mems_allowed);
3796 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3797 out:
3798 return ret;
3799 }
3800
3801 #define K(x) ((x) << (PAGE_SHIFT-10))
3802
3803 static void show_migration_types(unsigned char type)
3804 {
3805 static const char types[MIGRATE_TYPES] = {
3806 [MIGRATE_UNMOVABLE] = 'U',
3807 [MIGRATE_MOVABLE] = 'M',
3808 [MIGRATE_RECLAIMABLE] = 'E',
3809 [MIGRATE_HIGHATOMIC] = 'H',
3810 #ifdef CONFIG_CMA
3811 [MIGRATE_CMA] = 'C',
3812 #endif
3813 #ifdef CONFIG_MEMORY_ISOLATION
3814 [MIGRATE_ISOLATE] = 'I',
3815 #endif
3816 };
3817 char tmp[MIGRATE_TYPES + 1];
3818 char *p = tmp;
3819 int i;
3820
3821 for (i = 0; i < MIGRATE_TYPES; i++) {
3822 if (type & (1 << i))
3823 *p++ = types[i];
3824 }
3825
3826 *p = '\0';
3827 printk("(%s) ", tmp);
3828 }
3829
3830 /*
3831 * Show free area list (used inside shift_scroll-lock stuff)
3832 * We also calculate the percentage fragmentation. We do this by counting the
3833 * memory on each free list with the exception of the first item on the list.
3834 *
3835 * Bits in @filter:
3836 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3837 * cpuset.
3838 */
3839 void show_free_areas(unsigned int filter)
3840 {
3841 unsigned long free_pcp = 0;
3842 int cpu;
3843 struct zone *zone;
3844
3845 for_each_populated_zone(zone) {
3846 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3847 continue;
3848
3849 for_each_online_cpu(cpu)
3850 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3851 }
3852
3853 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3854 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3855 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3856 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3857 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3858 " free:%lu free_pcp:%lu free_cma:%lu\n",
3859 global_page_state(NR_ACTIVE_ANON),
3860 global_page_state(NR_INACTIVE_ANON),
3861 global_page_state(NR_ISOLATED_ANON),
3862 global_page_state(NR_ACTIVE_FILE),
3863 global_page_state(NR_INACTIVE_FILE),
3864 global_page_state(NR_ISOLATED_FILE),
3865 global_page_state(NR_UNEVICTABLE),
3866 global_page_state(NR_FILE_DIRTY),
3867 global_page_state(NR_WRITEBACK),
3868 global_page_state(NR_UNSTABLE_NFS),
3869 global_page_state(NR_SLAB_RECLAIMABLE),
3870 global_page_state(NR_SLAB_UNRECLAIMABLE),
3871 global_page_state(NR_FILE_MAPPED),
3872 global_page_state(NR_SHMEM),
3873 global_page_state(NR_PAGETABLE),
3874 global_page_state(NR_BOUNCE),
3875 global_page_state(NR_FREE_PAGES),
3876 free_pcp,
3877 global_page_state(NR_FREE_CMA_PAGES));
3878
3879 for_each_populated_zone(zone) {
3880 int i;
3881
3882 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3883 continue;
3884
3885 free_pcp = 0;
3886 for_each_online_cpu(cpu)
3887 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3888
3889 show_node(zone);
3890 printk("%s"
3891 " free:%lukB"
3892 " min:%lukB"
3893 " low:%lukB"
3894 " high:%lukB"
3895 " active_anon:%lukB"
3896 " inactive_anon:%lukB"
3897 " active_file:%lukB"
3898 " inactive_file:%lukB"
3899 " unevictable:%lukB"
3900 " isolated(anon):%lukB"
3901 " isolated(file):%lukB"
3902 " present:%lukB"
3903 " managed:%lukB"
3904 " mlocked:%lukB"
3905 " dirty:%lukB"
3906 " writeback:%lukB"
3907 " mapped:%lukB"
3908 " shmem:%lukB"
3909 " slab_reclaimable:%lukB"
3910 " slab_unreclaimable:%lukB"
3911 " kernel_stack:%lukB"
3912 " pagetables:%lukB"
3913 " unstable:%lukB"
3914 " bounce:%lukB"
3915 " free_pcp:%lukB"
3916 " local_pcp:%ukB"
3917 " free_cma:%lukB"
3918 " writeback_tmp:%lukB"
3919 " pages_scanned:%lu"
3920 " all_unreclaimable? %s"
3921 "\n",
3922 zone->name,
3923 K(zone_page_state(zone, NR_FREE_PAGES)),
3924 K(min_wmark_pages(zone)),
3925 K(low_wmark_pages(zone)),
3926 K(high_wmark_pages(zone)),
3927 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3928 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3929 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3930 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3931 K(zone_page_state(zone, NR_UNEVICTABLE)),
3932 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3933 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3934 K(zone->present_pages),
3935 K(zone->managed_pages),
3936 K(zone_page_state(zone, NR_MLOCK)),
3937 K(zone_page_state(zone, NR_FILE_DIRTY)),
3938 K(zone_page_state(zone, NR_WRITEBACK)),
3939 K(zone_page_state(zone, NR_FILE_MAPPED)),
3940 K(zone_page_state(zone, NR_SHMEM)),
3941 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3942 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3943 zone_page_state(zone, NR_KERNEL_STACK) *
3944 THREAD_SIZE / 1024,
3945 K(zone_page_state(zone, NR_PAGETABLE)),
3946 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3947 K(zone_page_state(zone, NR_BOUNCE)),
3948 K(free_pcp),
3949 K(this_cpu_read(zone->pageset->pcp.count)),
3950 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3951 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3952 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3953 (!zone_reclaimable(zone) ? "yes" : "no")
3954 );
3955 printk("lowmem_reserve[]:");
3956 for (i = 0; i < MAX_NR_ZONES; i++)
3957 printk(" %ld", zone->lowmem_reserve[i]);
3958 printk("\n");
3959 }
3960
3961 for_each_populated_zone(zone) {
3962 unsigned int order;
3963 unsigned long nr[MAX_ORDER], flags, total = 0;
3964 unsigned char types[MAX_ORDER];
3965
3966 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3967 continue;
3968 show_node(zone);
3969 printk("%s: ", zone->name);
3970
3971 spin_lock_irqsave(&zone->lock, flags);
3972 for (order = 0; order < MAX_ORDER; order++) {
3973 struct free_area *area = &zone->free_area[order];
3974 int type;
3975
3976 nr[order] = area->nr_free;
3977 total += nr[order] << order;
3978
3979 types[order] = 0;
3980 for (type = 0; type < MIGRATE_TYPES; type++) {
3981 if (!list_empty(&area->free_list[type]))
3982 types[order] |= 1 << type;
3983 }
3984 }
3985 spin_unlock_irqrestore(&zone->lock, flags);
3986 for (order = 0; order < MAX_ORDER; order++) {
3987 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3988 if (nr[order])
3989 show_migration_types(types[order]);
3990 }
3991 printk("= %lukB\n", K(total));
3992 }
3993
3994 hugetlb_show_meminfo();
3995
3996 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3997
3998 show_swap_cache_info();
3999 }
4000
4001 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4002 {
4003 zoneref->zone = zone;
4004 zoneref->zone_idx = zone_idx(zone);
4005 }
4006
4007 /*
4008 * Builds allocation fallback zone lists.
4009 *
4010 * Add all populated zones of a node to the zonelist.
4011 */
4012 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4013 int nr_zones)
4014 {
4015 struct zone *zone;
4016 enum zone_type zone_type = MAX_NR_ZONES;
4017
4018 do {
4019 zone_type--;
4020 zone = pgdat->node_zones + zone_type;
4021 if (populated_zone(zone)) {
4022 zoneref_set_zone(zone,
4023 &zonelist->_zonerefs[nr_zones++]);
4024 check_highest_zone(zone_type);
4025 }
4026 } while (zone_type);
4027
4028 return nr_zones;
4029 }
4030
4031
4032 /*
4033 * zonelist_order:
4034 * 0 = automatic detection of better ordering.
4035 * 1 = order by ([node] distance, -zonetype)
4036 * 2 = order by (-zonetype, [node] distance)
4037 *
4038 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4039 * the same zonelist. So only NUMA can configure this param.
4040 */
4041 #define ZONELIST_ORDER_DEFAULT 0
4042 #define ZONELIST_ORDER_NODE 1
4043 #define ZONELIST_ORDER_ZONE 2
4044
4045 /* zonelist order in the kernel.
4046 * set_zonelist_order() will set this to NODE or ZONE.
4047 */
4048 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4049 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4050
4051
4052 #ifdef CONFIG_NUMA
4053 /* The value user specified ....changed by config */
4054 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4055 /* string for sysctl */
4056 #define NUMA_ZONELIST_ORDER_LEN 16
4057 char numa_zonelist_order[16] = "default";
4058
4059 /*
4060 * interface for configure zonelist ordering.
4061 * command line option "numa_zonelist_order"
4062 * = "[dD]efault - default, automatic configuration.
4063 * = "[nN]ode - order by node locality, then by zone within node
4064 * = "[zZ]one - order by zone, then by locality within zone
4065 */
4066
4067 static int __parse_numa_zonelist_order(char *s)
4068 {
4069 if (*s == 'd' || *s == 'D') {
4070 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4071 } else if (*s == 'n' || *s == 'N') {
4072 user_zonelist_order = ZONELIST_ORDER_NODE;
4073 } else if (*s == 'z' || *s == 'Z') {
4074 user_zonelist_order = ZONELIST_ORDER_ZONE;
4075 } else {
4076 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4077 return -EINVAL;
4078 }
4079 return 0;
4080 }
4081
4082 static __init int setup_numa_zonelist_order(char *s)
4083 {
4084 int ret;
4085
4086 if (!s)
4087 return 0;
4088
4089 ret = __parse_numa_zonelist_order(s);
4090 if (ret == 0)
4091 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4092
4093 return ret;
4094 }
4095 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4096
4097 /*
4098 * sysctl handler for numa_zonelist_order
4099 */
4100 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4101 void __user *buffer, size_t *length,
4102 loff_t *ppos)
4103 {
4104 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4105 int ret;
4106 static DEFINE_MUTEX(zl_order_mutex);
4107
4108 mutex_lock(&zl_order_mutex);
4109 if (write) {
4110 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4111 ret = -EINVAL;
4112 goto out;
4113 }
4114 strcpy(saved_string, (char *)table->data);
4115 }
4116 ret = proc_dostring(table, write, buffer, length, ppos);
4117 if (ret)
4118 goto out;
4119 if (write) {
4120 int oldval = user_zonelist_order;
4121
4122 ret = __parse_numa_zonelist_order((char *)table->data);
4123 if (ret) {
4124 /*
4125 * bogus value. restore saved string
4126 */
4127 strncpy((char *)table->data, saved_string,
4128 NUMA_ZONELIST_ORDER_LEN);
4129 user_zonelist_order = oldval;
4130 } else if (oldval != user_zonelist_order) {
4131 mutex_lock(&zonelists_mutex);
4132 build_all_zonelists(NULL, NULL);
4133 mutex_unlock(&zonelists_mutex);
4134 }
4135 }
4136 out:
4137 mutex_unlock(&zl_order_mutex);
4138 return ret;
4139 }
4140
4141
4142 #define MAX_NODE_LOAD (nr_online_nodes)
4143 static int node_load[MAX_NUMNODES];
4144
4145 /**
4146 * find_next_best_node - find the next node that should appear in a given node's fallback list
4147 * @node: node whose fallback list we're appending
4148 * @used_node_mask: nodemask_t of already used nodes
4149 *
4150 * We use a number of factors to determine which is the next node that should
4151 * appear on a given node's fallback list. The node should not have appeared
4152 * already in @node's fallback list, and it should be the next closest node
4153 * according to the distance array (which contains arbitrary distance values
4154 * from each node to each node in the system), and should also prefer nodes
4155 * with no CPUs, since presumably they'll have very little allocation pressure
4156 * on them otherwise.
4157 * It returns -1 if no node is found.
4158 */
4159 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4160 {
4161 int n, val;
4162 int min_val = INT_MAX;
4163 int best_node = NUMA_NO_NODE;
4164 const struct cpumask *tmp = cpumask_of_node(0);
4165
4166 /* Use the local node if we haven't already */
4167 if (!node_isset(node, *used_node_mask)) {
4168 node_set(node, *used_node_mask);
4169 return node;
4170 }
4171
4172 for_each_node_state(n, N_MEMORY) {
4173
4174 /* Don't want a node to appear more than once */
4175 if (node_isset(n, *used_node_mask))
4176 continue;
4177
4178 /* Use the distance array to find the distance */
4179 val = node_distance(node, n);
4180
4181 /* Penalize nodes under us ("prefer the next node") */
4182 val += (n < node);
4183
4184 /* Give preference to headless and unused nodes */
4185 tmp = cpumask_of_node(n);
4186 if (!cpumask_empty(tmp))
4187 val += PENALTY_FOR_NODE_WITH_CPUS;
4188
4189 /* Slight preference for less loaded node */
4190 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4191 val += node_load[n];
4192
4193 if (val < min_val) {
4194 min_val = val;
4195 best_node = n;
4196 }
4197 }
4198
4199 if (best_node >= 0)
4200 node_set(best_node, *used_node_mask);
4201
4202 return best_node;
4203 }
4204
4205
4206 /*
4207 * Build zonelists ordered by node and zones within node.
4208 * This results in maximum locality--normal zone overflows into local
4209 * DMA zone, if any--but risks exhausting DMA zone.
4210 */
4211 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4212 {
4213 int j;
4214 struct zonelist *zonelist;
4215
4216 zonelist = &pgdat->node_zonelists[0];
4217 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4218 ;
4219 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4220 zonelist->_zonerefs[j].zone = NULL;
4221 zonelist->_zonerefs[j].zone_idx = 0;
4222 }
4223
4224 /*
4225 * Build gfp_thisnode zonelists
4226 */
4227 static void build_thisnode_zonelists(pg_data_t *pgdat)
4228 {
4229 int j;
4230 struct zonelist *zonelist;
4231
4232 zonelist = &pgdat->node_zonelists[1];
4233 j = build_zonelists_node(pgdat, zonelist, 0);
4234 zonelist->_zonerefs[j].zone = NULL;
4235 zonelist->_zonerefs[j].zone_idx = 0;
4236 }
4237
4238 /*
4239 * Build zonelists ordered by zone and nodes within zones.
4240 * This results in conserving DMA zone[s] until all Normal memory is
4241 * exhausted, but results in overflowing to remote node while memory
4242 * may still exist in local DMA zone.
4243 */
4244 static int node_order[MAX_NUMNODES];
4245
4246 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4247 {
4248 int pos, j, node;
4249 int zone_type; /* needs to be signed */
4250 struct zone *z;
4251 struct zonelist *zonelist;
4252
4253 zonelist = &pgdat->node_zonelists[0];
4254 pos = 0;
4255 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4256 for (j = 0; j < nr_nodes; j++) {
4257 node = node_order[j];
4258 z = &NODE_DATA(node)->node_zones[zone_type];
4259 if (populated_zone(z)) {
4260 zoneref_set_zone(z,
4261 &zonelist->_zonerefs[pos++]);
4262 check_highest_zone(zone_type);
4263 }
4264 }
4265 }
4266 zonelist->_zonerefs[pos].zone = NULL;
4267 zonelist->_zonerefs[pos].zone_idx = 0;
4268 }
4269
4270 #if defined(CONFIG_64BIT)
4271 /*
4272 * Devices that require DMA32/DMA are relatively rare and do not justify a
4273 * penalty to every machine in case the specialised case applies. Default
4274 * to Node-ordering on 64-bit NUMA machines
4275 */
4276 static int default_zonelist_order(void)
4277 {
4278 return ZONELIST_ORDER_NODE;
4279 }
4280 #else
4281 /*
4282 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4283 * by the kernel. If processes running on node 0 deplete the low memory zone
4284 * then reclaim will occur more frequency increasing stalls and potentially
4285 * be easier to OOM if a large percentage of the zone is under writeback or
4286 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4287 * Hence, default to zone ordering on 32-bit.
4288 */
4289 static int default_zonelist_order(void)
4290 {
4291 return ZONELIST_ORDER_ZONE;
4292 }
4293 #endif /* CONFIG_64BIT */
4294
4295 static void set_zonelist_order(void)
4296 {
4297 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4298 current_zonelist_order = default_zonelist_order();
4299 else
4300 current_zonelist_order = user_zonelist_order;
4301 }
4302
4303 static void build_zonelists(pg_data_t *pgdat)
4304 {
4305 int i, node, load;
4306 nodemask_t used_mask;
4307 int local_node, prev_node;
4308 struct zonelist *zonelist;
4309 unsigned int order = current_zonelist_order;
4310
4311 /* initialize zonelists */
4312 for (i = 0; i < MAX_ZONELISTS; i++) {
4313 zonelist = pgdat->node_zonelists + i;
4314 zonelist->_zonerefs[0].zone = NULL;
4315 zonelist->_zonerefs[0].zone_idx = 0;
4316 }
4317
4318 /* NUMA-aware ordering of nodes */
4319 local_node = pgdat->node_id;
4320 load = nr_online_nodes;
4321 prev_node = local_node;
4322 nodes_clear(used_mask);
4323
4324 memset(node_order, 0, sizeof(node_order));
4325 i = 0;
4326
4327 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4328 /*
4329 * We don't want to pressure a particular node.
4330 * So adding penalty to the first node in same
4331 * distance group to make it round-robin.
4332 */
4333 if (node_distance(local_node, node) !=
4334 node_distance(local_node, prev_node))
4335 node_load[node] = load;
4336
4337 prev_node = node;
4338 load--;
4339 if (order == ZONELIST_ORDER_NODE)
4340 build_zonelists_in_node_order(pgdat, node);
4341 else
4342 node_order[i++] = node; /* remember order */
4343 }
4344
4345 if (order == ZONELIST_ORDER_ZONE) {
4346 /* calculate node order -- i.e., DMA last! */
4347 build_zonelists_in_zone_order(pgdat, i);
4348 }
4349
4350 build_thisnode_zonelists(pgdat);
4351 }
4352
4353 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4354 /*
4355 * Return node id of node used for "local" allocations.
4356 * I.e., first node id of first zone in arg node's generic zonelist.
4357 * Used for initializing percpu 'numa_mem', which is used primarily
4358 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4359 */
4360 int local_memory_node(int node)
4361 {
4362 struct zone *zone;
4363
4364 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4365 gfp_zone(GFP_KERNEL),
4366 NULL,
4367 &zone);
4368 return zone->node;
4369 }
4370 #endif
4371
4372 #else /* CONFIG_NUMA */
4373
4374 static void set_zonelist_order(void)
4375 {
4376 current_zonelist_order = ZONELIST_ORDER_ZONE;
4377 }
4378
4379 static void build_zonelists(pg_data_t *pgdat)
4380 {
4381 int node, local_node;
4382 enum zone_type j;
4383 struct zonelist *zonelist;
4384
4385 local_node = pgdat->node_id;
4386
4387 zonelist = &pgdat->node_zonelists[0];
4388 j = build_zonelists_node(pgdat, zonelist, 0);
4389
4390 /*
4391 * Now we build the zonelist so that it contains the zones
4392 * of all the other nodes.
4393 * We don't want to pressure a particular node, so when
4394 * building the zones for node N, we make sure that the
4395 * zones coming right after the local ones are those from
4396 * node N+1 (modulo N)
4397 */
4398 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4399 if (!node_online(node))
4400 continue;
4401 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4402 }
4403 for (node = 0; node < local_node; node++) {
4404 if (!node_online(node))
4405 continue;
4406 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4407 }
4408
4409 zonelist->_zonerefs[j].zone = NULL;
4410 zonelist->_zonerefs[j].zone_idx = 0;
4411 }
4412
4413 #endif /* CONFIG_NUMA */
4414
4415 /*
4416 * Boot pageset table. One per cpu which is going to be used for all
4417 * zones and all nodes. The parameters will be set in such a way
4418 * that an item put on a list will immediately be handed over to
4419 * the buddy list. This is safe since pageset manipulation is done
4420 * with interrupts disabled.
4421 *
4422 * The boot_pagesets must be kept even after bootup is complete for
4423 * unused processors and/or zones. They do play a role for bootstrapping
4424 * hotplugged processors.
4425 *
4426 * zoneinfo_show() and maybe other functions do
4427 * not check if the processor is online before following the pageset pointer.
4428 * Other parts of the kernel may not check if the zone is available.
4429 */
4430 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4431 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4432 static void setup_zone_pageset(struct zone *zone);
4433
4434 /*
4435 * Global mutex to protect against size modification of zonelists
4436 * as well as to serialize pageset setup for the new populated zone.
4437 */
4438 DEFINE_MUTEX(zonelists_mutex);
4439
4440 /* return values int ....just for stop_machine() */
4441 static int __build_all_zonelists(void *data)
4442 {
4443 int nid;
4444 int cpu;
4445 pg_data_t *self = data;
4446
4447 #ifdef CONFIG_NUMA
4448 memset(node_load, 0, sizeof(node_load));
4449 #endif
4450
4451 if (self && !node_online(self->node_id)) {
4452 build_zonelists(self);
4453 }
4454
4455 for_each_online_node(nid) {
4456 pg_data_t *pgdat = NODE_DATA(nid);
4457
4458 build_zonelists(pgdat);
4459 }
4460
4461 /*
4462 * Initialize the boot_pagesets that are going to be used
4463 * for bootstrapping processors. The real pagesets for
4464 * each zone will be allocated later when the per cpu
4465 * allocator is available.
4466 *
4467 * boot_pagesets are used also for bootstrapping offline
4468 * cpus if the system is already booted because the pagesets
4469 * are needed to initialize allocators on a specific cpu too.
4470 * F.e. the percpu allocator needs the page allocator which
4471 * needs the percpu allocator in order to allocate its pagesets
4472 * (a chicken-egg dilemma).
4473 */
4474 for_each_possible_cpu(cpu) {
4475 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4476
4477 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4478 /*
4479 * We now know the "local memory node" for each node--
4480 * i.e., the node of the first zone in the generic zonelist.
4481 * Set up numa_mem percpu variable for on-line cpus. During
4482 * boot, only the boot cpu should be on-line; we'll init the
4483 * secondary cpus' numa_mem as they come on-line. During
4484 * node/memory hotplug, we'll fixup all on-line cpus.
4485 */
4486 if (cpu_online(cpu))
4487 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4488 #endif
4489 }
4490
4491 return 0;
4492 }
4493
4494 static noinline void __init
4495 build_all_zonelists_init(void)
4496 {
4497 __build_all_zonelists(NULL);
4498 mminit_verify_zonelist();
4499 cpuset_init_current_mems_allowed();
4500 }
4501
4502 /*
4503 * Called with zonelists_mutex held always
4504 * unless system_state == SYSTEM_BOOTING.
4505 *
4506 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4507 * [we're only called with non-NULL zone through __meminit paths] and
4508 * (2) call of __init annotated helper build_all_zonelists_init
4509 * [protected by SYSTEM_BOOTING].
4510 */
4511 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4512 {
4513 set_zonelist_order();
4514
4515 if (system_state == SYSTEM_BOOTING) {
4516 build_all_zonelists_init();
4517 } else {
4518 #ifdef CONFIG_MEMORY_HOTPLUG
4519 if (zone)
4520 setup_zone_pageset(zone);
4521 #endif
4522 /* we have to stop all cpus to guarantee there is no user
4523 of zonelist */
4524 stop_machine(__build_all_zonelists, pgdat, NULL);
4525 /* cpuset refresh routine should be here */
4526 }
4527 vm_total_pages = nr_free_pagecache_pages();
4528 /*
4529 * Disable grouping by mobility if the number of pages in the
4530 * system is too low to allow the mechanism to work. It would be
4531 * more accurate, but expensive to check per-zone. This check is
4532 * made on memory-hotadd so a system can start with mobility
4533 * disabled and enable it later
4534 */
4535 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4536 page_group_by_mobility_disabled = 1;
4537 else
4538 page_group_by_mobility_disabled = 0;
4539
4540 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4541 nr_online_nodes,
4542 zonelist_order_name[current_zonelist_order],
4543 page_group_by_mobility_disabled ? "off" : "on",
4544 vm_total_pages);
4545 #ifdef CONFIG_NUMA
4546 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4547 #endif
4548 }
4549
4550 /*
4551 * Helper functions to size the waitqueue hash table.
4552 * Essentially these want to choose hash table sizes sufficiently
4553 * large so that collisions trying to wait on pages are rare.
4554 * But in fact, the number of active page waitqueues on typical
4555 * systems is ridiculously low, less than 200. So this is even
4556 * conservative, even though it seems large.
4557 *
4558 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4559 * waitqueues, i.e. the size of the waitq table given the number of pages.
4560 */
4561 #define PAGES_PER_WAITQUEUE 256
4562
4563 #ifndef CONFIG_MEMORY_HOTPLUG
4564 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4565 {
4566 unsigned long size = 1;
4567
4568 pages /= PAGES_PER_WAITQUEUE;
4569
4570 while (size < pages)
4571 size <<= 1;
4572
4573 /*
4574 * Once we have dozens or even hundreds of threads sleeping
4575 * on IO we've got bigger problems than wait queue collision.
4576 * Limit the size of the wait table to a reasonable size.
4577 */
4578 size = min(size, 4096UL);
4579
4580 return max(size, 4UL);
4581 }
4582 #else
4583 /*
4584 * A zone's size might be changed by hot-add, so it is not possible to determine
4585 * a suitable size for its wait_table. So we use the maximum size now.
4586 *
4587 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4588 *
4589 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4590 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4591 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4592 *
4593 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4594 * or more by the traditional way. (See above). It equals:
4595 *
4596 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4597 * ia64(16K page size) : = ( 8G + 4M)byte.
4598 * powerpc (64K page size) : = (32G +16M)byte.
4599 */
4600 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4601 {
4602 return 4096UL;
4603 }
4604 #endif
4605
4606 /*
4607 * This is an integer logarithm so that shifts can be used later
4608 * to extract the more random high bits from the multiplicative
4609 * hash function before the remainder is taken.
4610 */
4611 static inline unsigned long wait_table_bits(unsigned long size)
4612 {
4613 return ffz(~size);
4614 }
4615
4616 /*
4617 * Initially all pages are reserved - free ones are freed
4618 * up by free_all_bootmem() once the early boot process is
4619 * done. Non-atomic initialization, single-pass.
4620 */
4621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4622 unsigned long start_pfn, enum memmap_context context)
4623 {
4624 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4625 unsigned long end_pfn = start_pfn + size;
4626 pg_data_t *pgdat = NODE_DATA(nid);
4627 unsigned long pfn;
4628 unsigned long nr_initialised = 0;
4629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4630 struct memblock_region *r = NULL, *tmp;
4631 #endif
4632
4633 if (highest_memmap_pfn < end_pfn - 1)
4634 highest_memmap_pfn = end_pfn - 1;
4635
4636 /*
4637 * Honor reservation requested by the driver for this ZONE_DEVICE
4638 * memory
4639 */
4640 if (altmap && start_pfn == altmap->base_pfn)
4641 start_pfn += altmap->reserve;
4642
4643 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4644 /*
4645 * There can be holes in boot-time mem_map[]s handed to this
4646 * function. They do not exist on hotplugged memory.
4647 */
4648 if (context != MEMMAP_EARLY)
4649 goto not_early;
4650
4651 if (!early_pfn_valid(pfn))
4652 continue;
4653 if (!early_pfn_in_nid(pfn, nid))
4654 continue;
4655 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4656 break;
4657
4658 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4659 /*
4660 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4661 * from zone_movable_pfn[nid] to end of each node should be
4662 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4663 */
4664 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4665 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4666 continue;
4667
4668 /*
4669 * Check given memblock attribute by firmware which can affect
4670 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4671 * mirrored, it's an overlapped memmap init. skip it.
4672 */
4673 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4674 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4675 for_each_memblock(memory, tmp)
4676 if (pfn < memblock_region_memory_end_pfn(tmp))
4677 break;
4678 r = tmp;
4679 }
4680 if (pfn >= memblock_region_memory_base_pfn(r) &&
4681 memblock_is_mirror(r)) {
4682 /* already initialized as NORMAL */
4683 pfn = memblock_region_memory_end_pfn(r);
4684 continue;
4685 }
4686 }
4687 #endif
4688
4689 not_early:
4690 /*
4691 * Mark the block movable so that blocks are reserved for
4692 * movable at startup. This will force kernel allocations
4693 * to reserve their blocks rather than leaking throughout
4694 * the address space during boot when many long-lived
4695 * kernel allocations are made.
4696 *
4697 * bitmap is created for zone's valid pfn range. but memmap
4698 * can be created for invalid pages (for alignment)
4699 * check here not to call set_pageblock_migratetype() against
4700 * pfn out of zone.
4701 */
4702 if (!(pfn & (pageblock_nr_pages - 1))) {
4703 struct page *page = pfn_to_page(pfn);
4704
4705 __init_single_page(page, pfn, zone, nid);
4706 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4707 } else {
4708 __init_single_pfn(pfn, zone, nid);
4709 }
4710 }
4711 }
4712
4713 static void __meminit zone_init_free_lists(struct zone *zone)
4714 {
4715 unsigned int order, t;
4716 for_each_migratetype_order(order, t) {
4717 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4718 zone->free_area[order].nr_free = 0;
4719 }
4720 }
4721
4722 #ifndef __HAVE_ARCH_MEMMAP_INIT
4723 #define memmap_init(size, nid, zone, start_pfn) \
4724 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4725 #endif
4726
4727 static int zone_batchsize(struct zone *zone)
4728 {
4729 #ifdef CONFIG_MMU
4730 int batch;
4731
4732 /*
4733 * The per-cpu-pages pools are set to around 1000th of the
4734 * size of the zone. But no more than 1/2 of a meg.
4735 *
4736 * OK, so we don't know how big the cache is. So guess.
4737 */
4738 batch = zone->managed_pages / 1024;
4739 if (batch * PAGE_SIZE > 512 * 1024)
4740 batch = (512 * 1024) / PAGE_SIZE;
4741 batch /= 4; /* We effectively *= 4 below */
4742 if (batch < 1)
4743 batch = 1;
4744
4745 /*
4746 * Clamp the batch to a 2^n - 1 value. Having a power
4747 * of 2 value was found to be more likely to have
4748 * suboptimal cache aliasing properties in some cases.
4749 *
4750 * For example if 2 tasks are alternately allocating
4751 * batches of pages, one task can end up with a lot
4752 * of pages of one half of the possible page colors
4753 * and the other with pages of the other colors.
4754 */
4755 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4756
4757 return batch;
4758
4759 #else
4760 /* The deferral and batching of frees should be suppressed under NOMMU
4761 * conditions.
4762 *
4763 * The problem is that NOMMU needs to be able to allocate large chunks
4764 * of contiguous memory as there's no hardware page translation to
4765 * assemble apparent contiguous memory from discontiguous pages.
4766 *
4767 * Queueing large contiguous runs of pages for batching, however,
4768 * causes the pages to actually be freed in smaller chunks. As there
4769 * can be a significant delay between the individual batches being
4770 * recycled, this leads to the once large chunks of space being
4771 * fragmented and becoming unavailable for high-order allocations.
4772 */
4773 return 0;
4774 #endif
4775 }
4776
4777 /*
4778 * pcp->high and pcp->batch values are related and dependent on one another:
4779 * ->batch must never be higher then ->high.
4780 * The following function updates them in a safe manner without read side
4781 * locking.
4782 *
4783 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4784 * those fields changing asynchronously (acording the the above rule).
4785 *
4786 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4787 * outside of boot time (or some other assurance that no concurrent updaters
4788 * exist).
4789 */
4790 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4791 unsigned long batch)
4792 {
4793 /* start with a fail safe value for batch */
4794 pcp->batch = 1;
4795 smp_wmb();
4796
4797 /* Update high, then batch, in order */
4798 pcp->high = high;
4799 smp_wmb();
4800
4801 pcp->batch = batch;
4802 }
4803
4804 /* a companion to pageset_set_high() */
4805 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4806 {
4807 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4808 }
4809
4810 static void pageset_init(struct per_cpu_pageset *p)
4811 {
4812 struct per_cpu_pages *pcp;
4813 int migratetype;
4814
4815 memset(p, 0, sizeof(*p));
4816
4817 pcp = &p->pcp;
4818 pcp->count = 0;
4819 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4820 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4821 }
4822
4823 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4824 {
4825 pageset_init(p);
4826 pageset_set_batch(p, batch);
4827 }
4828
4829 /*
4830 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4831 * to the value high for the pageset p.
4832 */
4833 static void pageset_set_high(struct per_cpu_pageset *p,
4834 unsigned long high)
4835 {
4836 unsigned long batch = max(1UL, high / 4);
4837 if ((high / 4) > (PAGE_SHIFT * 8))
4838 batch = PAGE_SHIFT * 8;
4839
4840 pageset_update(&p->pcp, high, batch);
4841 }
4842
4843 static void pageset_set_high_and_batch(struct zone *zone,
4844 struct per_cpu_pageset *pcp)
4845 {
4846 if (percpu_pagelist_fraction)
4847 pageset_set_high(pcp,
4848 (zone->managed_pages /
4849 percpu_pagelist_fraction));
4850 else
4851 pageset_set_batch(pcp, zone_batchsize(zone));
4852 }
4853
4854 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4855 {
4856 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4857
4858 pageset_init(pcp);
4859 pageset_set_high_and_batch(zone, pcp);
4860 }
4861
4862 static void __meminit setup_zone_pageset(struct zone *zone)
4863 {
4864 int cpu;
4865 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4866 for_each_possible_cpu(cpu)
4867 zone_pageset_init(zone, cpu);
4868 }
4869
4870 /*
4871 * Allocate per cpu pagesets and initialize them.
4872 * Before this call only boot pagesets were available.
4873 */
4874 void __init setup_per_cpu_pageset(void)
4875 {
4876 struct zone *zone;
4877
4878 for_each_populated_zone(zone)
4879 setup_zone_pageset(zone);
4880 }
4881
4882 static noinline __init_refok
4883 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4884 {
4885 int i;
4886 size_t alloc_size;
4887
4888 /*
4889 * The per-page waitqueue mechanism uses hashed waitqueues
4890 * per zone.
4891 */
4892 zone->wait_table_hash_nr_entries =
4893 wait_table_hash_nr_entries(zone_size_pages);
4894 zone->wait_table_bits =
4895 wait_table_bits(zone->wait_table_hash_nr_entries);
4896 alloc_size = zone->wait_table_hash_nr_entries
4897 * sizeof(wait_queue_head_t);
4898
4899 if (!slab_is_available()) {
4900 zone->wait_table = (wait_queue_head_t *)
4901 memblock_virt_alloc_node_nopanic(
4902 alloc_size, zone->zone_pgdat->node_id);
4903 } else {
4904 /*
4905 * This case means that a zone whose size was 0 gets new memory
4906 * via memory hot-add.
4907 * But it may be the case that a new node was hot-added. In
4908 * this case vmalloc() will not be able to use this new node's
4909 * memory - this wait_table must be initialized to use this new
4910 * node itself as well.
4911 * To use this new node's memory, further consideration will be
4912 * necessary.
4913 */
4914 zone->wait_table = vmalloc(alloc_size);
4915 }
4916 if (!zone->wait_table)
4917 return -ENOMEM;
4918
4919 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4920 init_waitqueue_head(zone->wait_table + i);
4921
4922 return 0;
4923 }
4924
4925 static __meminit void zone_pcp_init(struct zone *zone)
4926 {
4927 /*
4928 * per cpu subsystem is not up at this point. The following code
4929 * relies on the ability of the linker to provide the
4930 * offset of a (static) per cpu variable into the per cpu area.
4931 */
4932 zone->pageset = &boot_pageset;
4933
4934 if (populated_zone(zone))
4935 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4936 zone->name, zone->present_pages,
4937 zone_batchsize(zone));
4938 }
4939
4940 int __meminit init_currently_empty_zone(struct zone *zone,
4941 unsigned long zone_start_pfn,
4942 unsigned long size)
4943 {
4944 struct pglist_data *pgdat = zone->zone_pgdat;
4945 int ret;
4946 ret = zone_wait_table_init(zone, size);
4947 if (ret)
4948 return ret;
4949 pgdat->nr_zones = zone_idx(zone) + 1;
4950
4951 zone->zone_start_pfn = zone_start_pfn;
4952
4953 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4954 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4955 pgdat->node_id,
4956 (unsigned long)zone_idx(zone),
4957 zone_start_pfn, (zone_start_pfn + size));
4958
4959 zone_init_free_lists(zone);
4960
4961 return 0;
4962 }
4963
4964 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4965 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4966
4967 /*
4968 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4969 */
4970 int __meminit __early_pfn_to_nid(unsigned long pfn,
4971 struct mminit_pfnnid_cache *state)
4972 {
4973 unsigned long start_pfn, end_pfn;
4974 int nid;
4975
4976 if (state->last_start <= pfn && pfn < state->last_end)
4977 return state->last_nid;
4978
4979 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4980 if (nid != -1) {
4981 state->last_start = start_pfn;
4982 state->last_end = end_pfn;
4983 state->last_nid = nid;
4984 }
4985
4986 return nid;
4987 }
4988 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4989
4990 /**
4991 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4992 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4993 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4994 *
4995 * If an architecture guarantees that all ranges registered contain no holes
4996 * and may be freed, this this function may be used instead of calling
4997 * memblock_free_early_nid() manually.
4998 */
4999 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5000 {
5001 unsigned long start_pfn, end_pfn;
5002 int i, this_nid;
5003
5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5005 start_pfn = min(start_pfn, max_low_pfn);
5006 end_pfn = min(end_pfn, max_low_pfn);
5007
5008 if (start_pfn < end_pfn)
5009 memblock_free_early_nid(PFN_PHYS(start_pfn),
5010 (end_pfn - start_pfn) << PAGE_SHIFT,
5011 this_nid);
5012 }
5013 }
5014
5015 /**
5016 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5017 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5018 *
5019 * If an architecture guarantees that all ranges registered contain no holes and may
5020 * be freed, this function may be used instead of calling memory_present() manually.
5021 */
5022 void __init sparse_memory_present_with_active_regions(int nid)
5023 {
5024 unsigned long start_pfn, end_pfn;
5025 int i, this_nid;
5026
5027 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5028 memory_present(this_nid, start_pfn, end_pfn);
5029 }
5030
5031 /**
5032 * get_pfn_range_for_nid - Return the start and end page frames for a node
5033 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5034 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5035 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5036 *
5037 * It returns the start and end page frame of a node based on information
5038 * provided by memblock_set_node(). If called for a node
5039 * with no available memory, a warning is printed and the start and end
5040 * PFNs will be 0.
5041 */
5042 void __meminit get_pfn_range_for_nid(unsigned int nid,
5043 unsigned long *start_pfn, unsigned long *end_pfn)
5044 {
5045 unsigned long this_start_pfn, this_end_pfn;
5046 int i;
5047
5048 *start_pfn = -1UL;
5049 *end_pfn = 0;
5050
5051 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5052 *start_pfn = min(*start_pfn, this_start_pfn);
5053 *end_pfn = max(*end_pfn, this_end_pfn);
5054 }
5055
5056 if (*start_pfn == -1UL)
5057 *start_pfn = 0;
5058 }
5059
5060 /*
5061 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5062 * assumption is made that zones within a node are ordered in monotonic
5063 * increasing memory addresses so that the "highest" populated zone is used
5064 */
5065 static void __init find_usable_zone_for_movable(void)
5066 {
5067 int zone_index;
5068 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5069 if (zone_index == ZONE_MOVABLE)
5070 continue;
5071
5072 if (arch_zone_highest_possible_pfn[zone_index] >
5073 arch_zone_lowest_possible_pfn[zone_index])
5074 break;
5075 }
5076
5077 VM_BUG_ON(zone_index == -1);
5078 movable_zone = zone_index;
5079 }
5080
5081 /*
5082 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5083 * because it is sized independent of architecture. Unlike the other zones,
5084 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5085 * in each node depending on the size of each node and how evenly kernelcore
5086 * is distributed. This helper function adjusts the zone ranges
5087 * provided by the architecture for a given node by using the end of the
5088 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5089 * zones within a node are in order of monotonic increases memory addresses
5090 */
5091 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5092 unsigned long zone_type,
5093 unsigned long node_start_pfn,
5094 unsigned long node_end_pfn,
5095 unsigned long *zone_start_pfn,
5096 unsigned long *zone_end_pfn)
5097 {
5098 /* Only adjust if ZONE_MOVABLE is on this node */
5099 if (zone_movable_pfn[nid]) {
5100 /* Size ZONE_MOVABLE */
5101 if (zone_type == ZONE_MOVABLE) {
5102 *zone_start_pfn = zone_movable_pfn[nid];
5103 *zone_end_pfn = min(node_end_pfn,
5104 arch_zone_highest_possible_pfn[movable_zone]);
5105
5106 /* Check if this whole range is within ZONE_MOVABLE */
5107 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5108 *zone_start_pfn = *zone_end_pfn;
5109 }
5110 }
5111
5112 /*
5113 * Return the number of pages a zone spans in a node, including holes
5114 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5115 */
5116 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5117 unsigned long zone_type,
5118 unsigned long node_start_pfn,
5119 unsigned long node_end_pfn,
5120 unsigned long *zone_start_pfn,
5121 unsigned long *zone_end_pfn,
5122 unsigned long *ignored)
5123 {
5124 /* When hotadd a new node from cpu_up(), the node should be empty */
5125 if (!node_start_pfn && !node_end_pfn)
5126 return 0;
5127
5128 /* Get the start and end of the zone */
5129 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5130 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5131 adjust_zone_range_for_zone_movable(nid, zone_type,
5132 node_start_pfn, node_end_pfn,
5133 zone_start_pfn, zone_end_pfn);
5134
5135 /* Check that this node has pages within the zone's required range */
5136 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5137 return 0;
5138
5139 /* Move the zone boundaries inside the node if necessary */
5140 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5141 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5142
5143 /* Return the spanned pages */
5144 return *zone_end_pfn - *zone_start_pfn;
5145 }
5146
5147 /*
5148 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5149 * then all holes in the requested range will be accounted for.
5150 */
5151 unsigned long __meminit __absent_pages_in_range(int nid,
5152 unsigned long range_start_pfn,
5153 unsigned long range_end_pfn)
5154 {
5155 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5156 unsigned long start_pfn, end_pfn;
5157 int i;
5158
5159 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5160 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5161 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5162 nr_absent -= end_pfn - start_pfn;
5163 }
5164 return nr_absent;
5165 }
5166
5167 /**
5168 * absent_pages_in_range - Return number of page frames in holes within a range
5169 * @start_pfn: The start PFN to start searching for holes
5170 * @end_pfn: The end PFN to stop searching for holes
5171 *
5172 * It returns the number of pages frames in memory holes within a range.
5173 */
5174 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5175 unsigned long end_pfn)
5176 {
5177 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5178 }
5179
5180 /* Return the number of page frames in holes in a zone on a node */
5181 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5182 unsigned long zone_type,
5183 unsigned long node_start_pfn,
5184 unsigned long node_end_pfn,
5185 unsigned long *ignored)
5186 {
5187 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5188 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5189 unsigned long zone_start_pfn, zone_end_pfn;
5190 unsigned long nr_absent;
5191
5192 /* When hotadd a new node from cpu_up(), the node should be empty */
5193 if (!node_start_pfn && !node_end_pfn)
5194 return 0;
5195
5196 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5197 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5198
5199 adjust_zone_range_for_zone_movable(nid, zone_type,
5200 node_start_pfn, node_end_pfn,
5201 &zone_start_pfn, &zone_end_pfn);
5202 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5203
5204 /*
5205 * ZONE_MOVABLE handling.
5206 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5207 * and vice versa.
5208 */
5209 if (zone_movable_pfn[nid]) {
5210 if (mirrored_kernelcore) {
5211 unsigned long start_pfn, end_pfn;
5212 struct memblock_region *r;
5213
5214 for_each_memblock(memory, r) {
5215 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5216 zone_start_pfn, zone_end_pfn);
5217 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5218 zone_start_pfn, zone_end_pfn);
5219
5220 if (zone_type == ZONE_MOVABLE &&
5221 memblock_is_mirror(r))
5222 nr_absent += end_pfn - start_pfn;
5223
5224 if (zone_type == ZONE_NORMAL &&
5225 !memblock_is_mirror(r))
5226 nr_absent += end_pfn - start_pfn;
5227 }
5228 } else {
5229 if (zone_type == ZONE_NORMAL)
5230 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5231 }
5232 }
5233
5234 return nr_absent;
5235 }
5236
5237 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5238 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5239 unsigned long zone_type,
5240 unsigned long node_start_pfn,
5241 unsigned long node_end_pfn,
5242 unsigned long *zone_start_pfn,
5243 unsigned long *zone_end_pfn,
5244 unsigned long *zones_size)
5245 {
5246 unsigned int zone;
5247
5248 *zone_start_pfn = node_start_pfn;
5249 for (zone = 0; zone < zone_type; zone++)
5250 *zone_start_pfn += zones_size[zone];
5251
5252 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5253
5254 return zones_size[zone_type];
5255 }
5256
5257 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5258 unsigned long zone_type,
5259 unsigned long node_start_pfn,
5260 unsigned long node_end_pfn,
5261 unsigned long *zholes_size)
5262 {
5263 if (!zholes_size)
5264 return 0;
5265
5266 return zholes_size[zone_type];
5267 }
5268
5269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5270
5271 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5272 unsigned long node_start_pfn,
5273 unsigned long node_end_pfn,
5274 unsigned long *zones_size,
5275 unsigned long *zholes_size)
5276 {
5277 unsigned long realtotalpages = 0, totalpages = 0;
5278 enum zone_type i;
5279
5280 for (i = 0; i < MAX_NR_ZONES; i++) {
5281 struct zone *zone = pgdat->node_zones + i;
5282 unsigned long zone_start_pfn, zone_end_pfn;
5283 unsigned long size, real_size;
5284
5285 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5286 node_start_pfn,
5287 node_end_pfn,
5288 &zone_start_pfn,
5289 &zone_end_pfn,
5290 zones_size);
5291 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5292 node_start_pfn, node_end_pfn,
5293 zholes_size);
5294 if (size)
5295 zone->zone_start_pfn = zone_start_pfn;
5296 else
5297 zone->zone_start_pfn = 0;
5298 zone->spanned_pages = size;
5299 zone->present_pages = real_size;
5300
5301 totalpages += size;
5302 realtotalpages += real_size;
5303 }
5304
5305 pgdat->node_spanned_pages = totalpages;
5306 pgdat->node_present_pages = realtotalpages;
5307 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5308 realtotalpages);
5309 }
5310
5311 #ifndef CONFIG_SPARSEMEM
5312 /*
5313 * Calculate the size of the zone->blockflags rounded to an unsigned long
5314 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5315 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5316 * round what is now in bits to nearest long in bits, then return it in
5317 * bytes.
5318 */
5319 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5320 {
5321 unsigned long usemapsize;
5322
5323 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5324 usemapsize = roundup(zonesize, pageblock_nr_pages);
5325 usemapsize = usemapsize >> pageblock_order;
5326 usemapsize *= NR_PAGEBLOCK_BITS;
5327 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5328
5329 return usemapsize / 8;
5330 }
5331
5332 static void __init setup_usemap(struct pglist_data *pgdat,
5333 struct zone *zone,
5334 unsigned long zone_start_pfn,
5335 unsigned long zonesize)
5336 {
5337 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5338 zone->pageblock_flags = NULL;
5339 if (usemapsize)
5340 zone->pageblock_flags =
5341 memblock_virt_alloc_node_nopanic(usemapsize,
5342 pgdat->node_id);
5343 }
5344 #else
5345 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5346 unsigned long zone_start_pfn, unsigned long zonesize) {}
5347 #endif /* CONFIG_SPARSEMEM */
5348
5349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5350
5351 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5352 void __paginginit set_pageblock_order(void)
5353 {
5354 unsigned int order;
5355
5356 /* Check that pageblock_nr_pages has not already been setup */
5357 if (pageblock_order)
5358 return;
5359
5360 if (HPAGE_SHIFT > PAGE_SHIFT)
5361 order = HUGETLB_PAGE_ORDER;
5362 else
5363 order = MAX_ORDER - 1;
5364
5365 /*
5366 * Assume the largest contiguous order of interest is a huge page.
5367 * This value may be variable depending on boot parameters on IA64 and
5368 * powerpc.
5369 */
5370 pageblock_order = order;
5371 }
5372 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5373
5374 /*
5375 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5376 * is unused as pageblock_order is set at compile-time. See
5377 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5378 * the kernel config
5379 */
5380 void __paginginit set_pageblock_order(void)
5381 {
5382 }
5383
5384 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5385
5386 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5387 unsigned long present_pages)
5388 {
5389 unsigned long pages = spanned_pages;
5390
5391 /*
5392 * Provide a more accurate estimation if there are holes within
5393 * the zone and SPARSEMEM is in use. If there are holes within the
5394 * zone, each populated memory region may cost us one or two extra
5395 * memmap pages due to alignment because memmap pages for each
5396 * populated regions may not naturally algined on page boundary.
5397 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5398 */
5399 if (spanned_pages > present_pages + (present_pages >> 4) &&
5400 IS_ENABLED(CONFIG_SPARSEMEM))
5401 pages = present_pages;
5402
5403 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5404 }
5405
5406 /*
5407 * Set up the zone data structures:
5408 * - mark all pages reserved
5409 * - mark all memory queues empty
5410 * - clear the memory bitmaps
5411 *
5412 * NOTE: pgdat should get zeroed by caller.
5413 */
5414 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5415 {
5416 enum zone_type j;
5417 int nid = pgdat->node_id;
5418 int ret;
5419
5420 pgdat_resize_init(pgdat);
5421 #ifdef CONFIG_NUMA_BALANCING
5422 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5423 pgdat->numabalancing_migrate_nr_pages = 0;
5424 pgdat->numabalancing_migrate_next_window = jiffies;
5425 #endif
5426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5427 spin_lock_init(&pgdat->split_queue_lock);
5428 INIT_LIST_HEAD(&pgdat->split_queue);
5429 pgdat->split_queue_len = 0;
5430 #endif
5431 init_waitqueue_head(&pgdat->kswapd_wait);
5432 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5433 #ifdef CONFIG_COMPACTION
5434 init_waitqueue_head(&pgdat->kcompactd_wait);
5435 #endif
5436 pgdat_page_ext_init(pgdat);
5437
5438 for (j = 0; j < MAX_NR_ZONES; j++) {
5439 struct zone *zone = pgdat->node_zones + j;
5440 unsigned long size, realsize, freesize, memmap_pages;
5441 unsigned long zone_start_pfn = zone->zone_start_pfn;
5442
5443 size = zone->spanned_pages;
5444 realsize = freesize = zone->present_pages;
5445
5446 /*
5447 * Adjust freesize so that it accounts for how much memory
5448 * is used by this zone for memmap. This affects the watermark
5449 * and per-cpu initialisations
5450 */
5451 memmap_pages = calc_memmap_size(size, realsize);
5452 if (!is_highmem_idx(j)) {
5453 if (freesize >= memmap_pages) {
5454 freesize -= memmap_pages;
5455 if (memmap_pages)
5456 printk(KERN_DEBUG
5457 " %s zone: %lu pages used for memmap\n",
5458 zone_names[j], memmap_pages);
5459 } else
5460 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5461 zone_names[j], memmap_pages, freesize);
5462 }
5463
5464 /* Account for reserved pages */
5465 if (j == 0 && freesize > dma_reserve) {
5466 freesize -= dma_reserve;
5467 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5468 zone_names[0], dma_reserve);
5469 }
5470
5471 if (!is_highmem_idx(j))
5472 nr_kernel_pages += freesize;
5473 /* Charge for highmem memmap if there are enough kernel pages */
5474 else if (nr_kernel_pages > memmap_pages * 2)
5475 nr_kernel_pages -= memmap_pages;
5476 nr_all_pages += freesize;
5477
5478 /*
5479 * Set an approximate value for lowmem here, it will be adjusted
5480 * when the bootmem allocator frees pages into the buddy system.
5481 * And all highmem pages will be managed by the buddy system.
5482 */
5483 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5484 #ifdef CONFIG_NUMA
5485 zone->node = nid;
5486 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5487 / 100;
5488 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5489 #endif
5490 zone->name = zone_names[j];
5491 spin_lock_init(&zone->lock);
5492 spin_lock_init(&zone->lru_lock);
5493 zone_seqlock_init(zone);
5494 zone->zone_pgdat = pgdat;
5495 zone_pcp_init(zone);
5496
5497 /* For bootup, initialized properly in watermark setup */
5498 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5499
5500 lruvec_init(&zone->lruvec);
5501 if (!size)
5502 continue;
5503
5504 set_pageblock_order();
5505 setup_usemap(pgdat, zone, zone_start_pfn, size);
5506 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5507 BUG_ON(ret);
5508 memmap_init(size, nid, j, zone_start_pfn);
5509 }
5510 }
5511
5512 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5513 {
5514 unsigned long __maybe_unused start = 0;
5515 unsigned long __maybe_unused offset = 0;
5516
5517 /* Skip empty nodes */
5518 if (!pgdat->node_spanned_pages)
5519 return;
5520
5521 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5522 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5523 offset = pgdat->node_start_pfn - start;
5524 /* ia64 gets its own node_mem_map, before this, without bootmem */
5525 if (!pgdat->node_mem_map) {
5526 unsigned long size, end;
5527 struct page *map;
5528
5529 /*
5530 * The zone's endpoints aren't required to be MAX_ORDER
5531 * aligned but the node_mem_map endpoints must be in order
5532 * for the buddy allocator to function correctly.
5533 */
5534 end = pgdat_end_pfn(pgdat);
5535 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5536 size = (end - start) * sizeof(struct page);
5537 map = alloc_remap(pgdat->node_id, size);
5538 if (!map)
5539 map = memblock_virt_alloc_node_nopanic(size,
5540 pgdat->node_id);
5541 pgdat->node_mem_map = map + offset;
5542 }
5543 #ifndef CONFIG_NEED_MULTIPLE_NODES
5544 /*
5545 * With no DISCONTIG, the global mem_map is just set as node 0's
5546 */
5547 if (pgdat == NODE_DATA(0)) {
5548 mem_map = NODE_DATA(0)->node_mem_map;
5549 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5550 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5551 mem_map -= offset;
5552 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5553 }
5554 #endif
5555 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5556 }
5557
5558 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5559 unsigned long node_start_pfn, unsigned long *zholes_size)
5560 {
5561 pg_data_t *pgdat = NODE_DATA(nid);
5562 unsigned long start_pfn = 0;
5563 unsigned long end_pfn = 0;
5564
5565 /* pg_data_t should be reset to zero when it's allocated */
5566 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5567
5568 reset_deferred_meminit(pgdat);
5569 pgdat->node_id = nid;
5570 pgdat->node_start_pfn = node_start_pfn;
5571 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5572 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5573 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5574 (u64)start_pfn << PAGE_SHIFT,
5575 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5576 #else
5577 start_pfn = node_start_pfn;
5578 #endif
5579 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5580 zones_size, zholes_size);
5581
5582 alloc_node_mem_map(pgdat);
5583 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5584 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5585 nid, (unsigned long)pgdat,
5586 (unsigned long)pgdat->node_mem_map);
5587 #endif
5588
5589 free_area_init_core(pgdat);
5590 }
5591
5592 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5593
5594 #if MAX_NUMNODES > 1
5595 /*
5596 * Figure out the number of possible node ids.
5597 */
5598 void __init setup_nr_node_ids(void)
5599 {
5600 unsigned int highest;
5601
5602 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5603 nr_node_ids = highest + 1;
5604 }
5605 #endif
5606
5607 /**
5608 * node_map_pfn_alignment - determine the maximum internode alignment
5609 *
5610 * This function should be called after node map is populated and sorted.
5611 * It calculates the maximum power of two alignment which can distinguish
5612 * all the nodes.
5613 *
5614 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5615 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5616 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5617 * shifted, 1GiB is enough and this function will indicate so.
5618 *
5619 * This is used to test whether pfn -> nid mapping of the chosen memory
5620 * model has fine enough granularity to avoid incorrect mapping for the
5621 * populated node map.
5622 *
5623 * Returns the determined alignment in pfn's. 0 if there is no alignment
5624 * requirement (single node).
5625 */
5626 unsigned long __init node_map_pfn_alignment(void)
5627 {
5628 unsigned long accl_mask = 0, last_end = 0;
5629 unsigned long start, end, mask;
5630 int last_nid = -1;
5631 int i, nid;
5632
5633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5634 if (!start || last_nid < 0 || last_nid == nid) {
5635 last_nid = nid;
5636 last_end = end;
5637 continue;
5638 }
5639
5640 /*
5641 * Start with a mask granular enough to pin-point to the
5642 * start pfn and tick off bits one-by-one until it becomes
5643 * too coarse to separate the current node from the last.
5644 */
5645 mask = ~((1 << __ffs(start)) - 1);
5646 while (mask && last_end <= (start & (mask << 1)))
5647 mask <<= 1;
5648
5649 /* accumulate all internode masks */
5650 accl_mask |= mask;
5651 }
5652
5653 /* convert mask to number of pages */
5654 return ~accl_mask + 1;
5655 }
5656
5657 /* Find the lowest pfn for a node */
5658 static unsigned long __init find_min_pfn_for_node(int nid)
5659 {
5660 unsigned long min_pfn = ULONG_MAX;
5661 unsigned long start_pfn;
5662 int i;
5663
5664 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5665 min_pfn = min(min_pfn, start_pfn);
5666
5667 if (min_pfn == ULONG_MAX) {
5668 pr_warn("Could not find start_pfn for node %d\n", nid);
5669 return 0;
5670 }
5671
5672 return min_pfn;
5673 }
5674
5675 /**
5676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5677 *
5678 * It returns the minimum PFN based on information provided via
5679 * memblock_set_node().
5680 */
5681 unsigned long __init find_min_pfn_with_active_regions(void)
5682 {
5683 return find_min_pfn_for_node(MAX_NUMNODES);
5684 }
5685
5686 /*
5687 * early_calculate_totalpages()
5688 * Sum pages in active regions for movable zone.
5689 * Populate N_MEMORY for calculating usable_nodes.
5690 */
5691 static unsigned long __init early_calculate_totalpages(void)
5692 {
5693 unsigned long totalpages = 0;
5694 unsigned long start_pfn, end_pfn;
5695 int i, nid;
5696
5697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5698 unsigned long pages = end_pfn - start_pfn;
5699
5700 totalpages += pages;
5701 if (pages)
5702 node_set_state(nid, N_MEMORY);
5703 }
5704 return totalpages;
5705 }
5706
5707 /*
5708 * Find the PFN the Movable zone begins in each node. Kernel memory
5709 * is spread evenly between nodes as long as the nodes have enough
5710 * memory. When they don't, some nodes will have more kernelcore than
5711 * others
5712 */
5713 static void __init find_zone_movable_pfns_for_nodes(void)
5714 {
5715 int i, nid;
5716 unsigned long usable_startpfn;
5717 unsigned long kernelcore_node, kernelcore_remaining;
5718 /* save the state before borrow the nodemask */
5719 nodemask_t saved_node_state = node_states[N_MEMORY];
5720 unsigned long totalpages = early_calculate_totalpages();
5721 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5722 struct memblock_region *r;
5723
5724 /* Need to find movable_zone earlier when movable_node is specified. */
5725 find_usable_zone_for_movable();
5726
5727 /*
5728 * If movable_node is specified, ignore kernelcore and movablecore
5729 * options.
5730 */
5731 if (movable_node_is_enabled()) {
5732 for_each_memblock(memory, r) {
5733 if (!memblock_is_hotpluggable(r))
5734 continue;
5735
5736 nid = r->nid;
5737
5738 usable_startpfn = PFN_DOWN(r->base);
5739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5740 min(usable_startpfn, zone_movable_pfn[nid]) :
5741 usable_startpfn;
5742 }
5743
5744 goto out2;
5745 }
5746
5747 /*
5748 * If kernelcore=mirror is specified, ignore movablecore option
5749 */
5750 if (mirrored_kernelcore) {
5751 bool mem_below_4gb_not_mirrored = false;
5752
5753 for_each_memblock(memory, r) {
5754 if (memblock_is_mirror(r))
5755 continue;
5756
5757 nid = r->nid;
5758
5759 usable_startpfn = memblock_region_memory_base_pfn(r);
5760
5761 if (usable_startpfn < 0x100000) {
5762 mem_below_4gb_not_mirrored = true;
5763 continue;
5764 }
5765
5766 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5767 min(usable_startpfn, zone_movable_pfn[nid]) :
5768 usable_startpfn;
5769 }
5770
5771 if (mem_below_4gb_not_mirrored)
5772 pr_warn("This configuration results in unmirrored kernel memory.");
5773
5774 goto out2;
5775 }
5776
5777 /*
5778 * If movablecore=nn[KMG] was specified, calculate what size of
5779 * kernelcore that corresponds so that memory usable for
5780 * any allocation type is evenly spread. If both kernelcore
5781 * and movablecore are specified, then the value of kernelcore
5782 * will be used for required_kernelcore if it's greater than
5783 * what movablecore would have allowed.
5784 */
5785 if (required_movablecore) {
5786 unsigned long corepages;
5787
5788 /*
5789 * Round-up so that ZONE_MOVABLE is at least as large as what
5790 * was requested by the user
5791 */
5792 required_movablecore =
5793 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5794 required_movablecore = min(totalpages, required_movablecore);
5795 corepages = totalpages - required_movablecore;
5796
5797 required_kernelcore = max(required_kernelcore, corepages);
5798 }
5799
5800 /*
5801 * If kernelcore was not specified or kernelcore size is larger
5802 * than totalpages, there is no ZONE_MOVABLE.
5803 */
5804 if (!required_kernelcore || required_kernelcore >= totalpages)
5805 goto out;
5806
5807 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5808 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5809
5810 restart:
5811 /* Spread kernelcore memory as evenly as possible throughout nodes */
5812 kernelcore_node = required_kernelcore / usable_nodes;
5813 for_each_node_state(nid, N_MEMORY) {
5814 unsigned long start_pfn, end_pfn;
5815
5816 /*
5817 * Recalculate kernelcore_node if the division per node
5818 * now exceeds what is necessary to satisfy the requested
5819 * amount of memory for the kernel
5820 */
5821 if (required_kernelcore < kernelcore_node)
5822 kernelcore_node = required_kernelcore / usable_nodes;
5823
5824 /*
5825 * As the map is walked, we track how much memory is usable
5826 * by the kernel using kernelcore_remaining. When it is
5827 * 0, the rest of the node is usable by ZONE_MOVABLE
5828 */
5829 kernelcore_remaining = kernelcore_node;
5830
5831 /* Go through each range of PFNs within this node */
5832 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5833 unsigned long size_pages;
5834
5835 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5836 if (start_pfn >= end_pfn)
5837 continue;
5838
5839 /* Account for what is only usable for kernelcore */
5840 if (start_pfn < usable_startpfn) {
5841 unsigned long kernel_pages;
5842 kernel_pages = min(end_pfn, usable_startpfn)
5843 - start_pfn;
5844
5845 kernelcore_remaining -= min(kernel_pages,
5846 kernelcore_remaining);
5847 required_kernelcore -= min(kernel_pages,
5848 required_kernelcore);
5849
5850 /* Continue if range is now fully accounted */
5851 if (end_pfn <= usable_startpfn) {
5852
5853 /*
5854 * Push zone_movable_pfn to the end so
5855 * that if we have to rebalance
5856 * kernelcore across nodes, we will
5857 * not double account here
5858 */
5859 zone_movable_pfn[nid] = end_pfn;
5860 continue;
5861 }
5862 start_pfn = usable_startpfn;
5863 }
5864
5865 /*
5866 * The usable PFN range for ZONE_MOVABLE is from
5867 * start_pfn->end_pfn. Calculate size_pages as the
5868 * number of pages used as kernelcore
5869 */
5870 size_pages = end_pfn - start_pfn;
5871 if (size_pages > kernelcore_remaining)
5872 size_pages = kernelcore_remaining;
5873 zone_movable_pfn[nid] = start_pfn + size_pages;
5874
5875 /*
5876 * Some kernelcore has been met, update counts and
5877 * break if the kernelcore for this node has been
5878 * satisfied
5879 */
5880 required_kernelcore -= min(required_kernelcore,
5881 size_pages);
5882 kernelcore_remaining -= size_pages;
5883 if (!kernelcore_remaining)
5884 break;
5885 }
5886 }
5887
5888 /*
5889 * If there is still required_kernelcore, we do another pass with one
5890 * less node in the count. This will push zone_movable_pfn[nid] further
5891 * along on the nodes that still have memory until kernelcore is
5892 * satisfied
5893 */
5894 usable_nodes--;
5895 if (usable_nodes && required_kernelcore > usable_nodes)
5896 goto restart;
5897
5898 out2:
5899 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5900 for (nid = 0; nid < MAX_NUMNODES; nid++)
5901 zone_movable_pfn[nid] =
5902 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5903
5904 out:
5905 /* restore the node_state */
5906 node_states[N_MEMORY] = saved_node_state;
5907 }
5908
5909 /* Any regular or high memory on that node ? */
5910 static void check_for_memory(pg_data_t *pgdat, int nid)
5911 {
5912 enum zone_type zone_type;
5913
5914 if (N_MEMORY == N_NORMAL_MEMORY)
5915 return;
5916
5917 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5918 struct zone *zone = &pgdat->node_zones[zone_type];
5919 if (populated_zone(zone)) {
5920 node_set_state(nid, N_HIGH_MEMORY);
5921 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5922 zone_type <= ZONE_NORMAL)
5923 node_set_state(nid, N_NORMAL_MEMORY);
5924 break;
5925 }
5926 }
5927 }
5928
5929 /**
5930 * free_area_init_nodes - Initialise all pg_data_t and zone data
5931 * @max_zone_pfn: an array of max PFNs for each zone
5932 *
5933 * This will call free_area_init_node() for each active node in the system.
5934 * Using the page ranges provided by memblock_set_node(), the size of each
5935 * zone in each node and their holes is calculated. If the maximum PFN
5936 * between two adjacent zones match, it is assumed that the zone is empty.
5937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5939 * starts where the previous one ended. For example, ZONE_DMA32 starts
5940 * at arch_max_dma_pfn.
5941 */
5942 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5943 {
5944 unsigned long start_pfn, end_pfn;
5945 int i, nid;
5946
5947 /* Record where the zone boundaries are */
5948 memset(arch_zone_lowest_possible_pfn, 0,
5949 sizeof(arch_zone_lowest_possible_pfn));
5950 memset(arch_zone_highest_possible_pfn, 0,
5951 sizeof(arch_zone_highest_possible_pfn));
5952 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5953 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5954 for (i = 1; i < MAX_NR_ZONES; i++) {
5955 if (i == ZONE_MOVABLE)
5956 continue;
5957 arch_zone_lowest_possible_pfn[i] =
5958 arch_zone_highest_possible_pfn[i-1];
5959 arch_zone_highest_possible_pfn[i] =
5960 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5961 }
5962 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5963 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5964
5965 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5966 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5967 find_zone_movable_pfns_for_nodes();
5968
5969 /* Print out the zone ranges */
5970 pr_info("Zone ranges:\n");
5971 for (i = 0; i < MAX_NR_ZONES; i++) {
5972 if (i == ZONE_MOVABLE)
5973 continue;
5974 pr_info(" %-8s ", zone_names[i]);
5975 if (arch_zone_lowest_possible_pfn[i] ==
5976 arch_zone_highest_possible_pfn[i])
5977 pr_cont("empty\n");
5978 else
5979 pr_cont("[mem %#018Lx-%#018Lx]\n",
5980 (u64)arch_zone_lowest_possible_pfn[i]
5981 << PAGE_SHIFT,
5982 ((u64)arch_zone_highest_possible_pfn[i]
5983 << PAGE_SHIFT) - 1);
5984 }
5985
5986 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5987 pr_info("Movable zone start for each node\n");
5988 for (i = 0; i < MAX_NUMNODES; i++) {
5989 if (zone_movable_pfn[i])
5990 pr_info(" Node %d: %#018Lx\n", i,
5991 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5992 }
5993
5994 /* Print out the early node map */
5995 pr_info("Early memory node ranges\n");
5996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5997 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5998 (u64)start_pfn << PAGE_SHIFT,
5999 ((u64)end_pfn << PAGE_SHIFT) - 1);
6000
6001 /* Initialise every node */
6002 mminit_verify_pageflags_layout();
6003 setup_nr_node_ids();
6004 for_each_online_node(nid) {
6005 pg_data_t *pgdat = NODE_DATA(nid);
6006 free_area_init_node(nid, NULL,
6007 find_min_pfn_for_node(nid), NULL);
6008
6009 /* Any memory on that node */
6010 if (pgdat->node_present_pages)
6011 node_set_state(nid, N_MEMORY);
6012 check_for_memory(pgdat, nid);
6013 }
6014 }
6015
6016 static int __init cmdline_parse_core(char *p, unsigned long *core)
6017 {
6018 unsigned long long coremem;
6019 if (!p)
6020 return -EINVAL;
6021
6022 coremem = memparse(p, &p);
6023 *core = coremem >> PAGE_SHIFT;
6024
6025 /* Paranoid check that UL is enough for the coremem value */
6026 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6027
6028 return 0;
6029 }
6030
6031 /*
6032 * kernelcore=size sets the amount of memory for use for allocations that
6033 * cannot be reclaimed or migrated.
6034 */
6035 static int __init cmdline_parse_kernelcore(char *p)
6036 {
6037 /* parse kernelcore=mirror */
6038 if (parse_option_str(p, "mirror")) {
6039 mirrored_kernelcore = true;
6040 return 0;
6041 }
6042
6043 return cmdline_parse_core(p, &required_kernelcore);
6044 }
6045
6046 /*
6047 * movablecore=size sets the amount of memory for use for allocations that
6048 * can be reclaimed or migrated.
6049 */
6050 static int __init cmdline_parse_movablecore(char *p)
6051 {
6052 return cmdline_parse_core(p, &required_movablecore);
6053 }
6054
6055 early_param("kernelcore", cmdline_parse_kernelcore);
6056 early_param("movablecore", cmdline_parse_movablecore);
6057
6058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060 void adjust_managed_page_count(struct page *page, long count)
6061 {
6062 spin_lock(&managed_page_count_lock);
6063 page_zone(page)->managed_pages += count;
6064 totalram_pages += count;
6065 #ifdef CONFIG_HIGHMEM
6066 if (PageHighMem(page))
6067 totalhigh_pages += count;
6068 #endif
6069 spin_unlock(&managed_page_count_lock);
6070 }
6071 EXPORT_SYMBOL(adjust_managed_page_count);
6072
6073 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6074 {
6075 void *pos;
6076 unsigned long pages = 0;
6077
6078 start = (void *)PAGE_ALIGN((unsigned long)start);
6079 end = (void *)((unsigned long)end & PAGE_MASK);
6080 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6081 if ((unsigned int)poison <= 0xFF)
6082 memset(pos, poison, PAGE_SIZE);
6083 free_reserved_page(virt_to_page(pos));
6084 }
6085
6086 if (pages && s)
6087 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6088 s, pages << (PAGE_SHIFT - 10), start, end);
6089
6090 return pages;
6091 }
6092 EXPORT_SYMBOL(free_reserved_area);
6093
6094 #ifdef CONFIG_HIGHMEM
6095 void free_highmem_page(struct page *page)
6096 {
6097 __free_reserved_page(page);
6098 totalram_pages++;
6099 page_zone(page)->managed_pages++;
6100 totalhigh_pages++;
6101 }
6102 #endif
6103
6104
6105 void __init mem_init_print_info(const char *str)
6106 {
6107 unsigned long physpages, codesize, datasize, rosize, bss_size;
6108 unsigned long init_code_size, init_data_size;
6109
6110 physpages = get_num_physpages();
6111 codesize = _etext - _stext;
6112 datasize = _edata - _sdata;
6113 rosize = __end_rodata - __start_rodata;
6114 bss_size = __bss_stop - __bss_start;
6115 init_data_size = __init_end - __init_begin;
6116 init_code_size = _einittext - _sinittext;
6117
6118 /*
6119 * Detect special cases and adjust section sizes accordingly:
6120 * 1) .init.* may be embedded into .data sections
6121 * 2) .init.text.* may be out of [__init_begin, __init_end],
6122 * please refer to arch/tile/kernel/vmlinux.lds.S.
6123 * 3) .rodata.* may be embedded into .text or .data sections.
6124 */
6125 #define adj_init_size(start, end, size, pos, adj) \
6126 do { \
6127 if (start <= pos && pos < end && size > adj) \
6128 size -= adj; \
6129 } while (0)
6130
6131 adj_init_size(__init_begin, __init_end, init_data_size,
6132 _sinittext, init_code_size);
6133 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6134 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6135 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6136 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6137
6138 #undef adj_init_size
6139
6140 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6141 #ifdef CONFIG_HIGHMEM
6142 ", %luK highmem"
6143 #endif
6144 "%s%s)\n",
6145 nr_free_pages() << (PAGE_SHIFT - 10),
6146 physpages << (PAGE_SHIFT - 10),
6147 codesize >> 10, datasize >> 10, rosize >> 10,
6148 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6149 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6150 totalcma_pages << (PAGE_SHIFT - 10),
6151 #ifdef CONFIG_HIGHMEM
6152 totalhigh_pages << (PAGE_SHIFT - 10),
6153 #endif
6154 str ? ", " : "", str ? str : "");
6155 }
6156
6157 /**
6158 * set_dma_reserve - set the specified number of pages reserved in the first zone
6159 * @new_dma_reserve: The number of pages to mark reserved
6160 *
6161 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6162 * In the DMA zone, a significant percentage may be consumed by kernel image
6163 * and other unfreeable allocations which can skew the watermarks badly. This
6164 * function may optionally be used to account for unfreeable pages in the
6165 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6166 * smaller per-cpu batchsize.
6167 */
6168 void __init set_dma_reserve(unsigned long new_dma_reserve)
6169 {
6170 dma_reserve = new_dma_reserve;
6171 }
6172
6173 void __init free_area_init(unsigned long *zones_size)
6174 {
6175 free_area_init_node(0, zones_size,
6176 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6177 }
6178
6179 static int page_alloc_cpu_notify(struct notifier_block *self,
6180 unsigned long action, void *hcpu)
6181 {
6182 int cpu = (unsigned long)hcpu;
6183
6184 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6185 lru_add_drain_cpu(cpu);
6186 drain_pages(cpu);
6187
6188 /*
6189 * Spill the event counters of the dead processor
6190 * into the current processors event counters.
6191 * This artificially elevates the count of the current
6192 * processor.
6193 */
6194 vm_events_fold_cpu(cpu);
6195
6196 /*
6197 * Zero the differential counters of the dead processor
6198 * so that the vm statistics are consistent.
6199 *
6200 * This is only okay since the processor is dead and cannot
6201 * race with what we are doing.
6202 */
6203 cpu_vm_stats_fold(cpu);
6204 }
6205 return NOTIFY_OK;
6206 }
6207
6208 void __init page_alloc_init(void)
6209 {
6210 hotcpu_notifier(page_alloc_cpu_notify, 0);
6211 }
6212
6213 /*
6214 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6215 * or min_free_kbytes changes.
6216 */
6217 static void calculate_totalreserve_pages(void)
6218 {
6219 struct pglist_data *pgdat;
6220 unsigned long reserve_pages = 0;
6221 enum zone_type i, j;
6222
6223 for_each_online_pgdat(pgdat) {
6224 for (i = 0; i < MAX_NR_ZONES; i++) {
6225 struct zone *zone = pgdat->node_zones + i;
6226 long max = 0;
6227
6228 /* Find valid and maximum lowmem_reserve in the zone */
6229 for (j = i; j < MAX_NR_ZONES; j++) {
6230 if (zone->lowmem_reserve[j] > max)
6231 max = zone->lowmem_reserve[j];
6232 }
6233
6234 /* we treat the high watermark as reserved pages. */
6235 max += high_wmark_pages(zone);
6236
6237 if (max > zone->managed_pages)
6238 max = zone->managed_pages;
6239
6240 zone->totalreserve_pages = max;
6241
6242 reserve_pages += max;
6243 }
6244 }
6245 totalreserve_pages = reserve_pages;
6246 }
6247
6248 /*
6249 * setup_per_zone_lowmem_reserve - called whenever
6250 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6251 * has a correct pages reserved value, so an adequate number of
6252 * pages are left in the zone after a successful __alloc_pages().
6253 */
6254 static void setup_per_zone_lowmem_reserve(void)
6255 {
6256 struct pglist_data *pgdat;
6257 enum zone_type j, idx;
6258
6259 for_each_online_pgdat(pgdat) {
6260 for (j = 0; j < MAX_NR_ZONES; j++) {
6261 struct zone *zone = pgdat->node_zones + j;
6262 unsigned long managed_pages = zone->managed_pages;
6263
6264 zone->lowmem_reserve[j] = 0;
6265
6266 idx = j;
6267 while (idx) {
6268 struct zone *lower_zone;
6269
6270 idx--;
6271
6272 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6273 sysctl_lowmem_reserve_ratio[idx] = 1;
6274
6275 lower_zone = pgdat->node_zones + idx;
6276 lower_zone->lowmem_reserve[j] = managed_pages /
6277 sysctl_lowmem_reserve_ratio[idx];
6278 managed_pages += lower_zone->managed_pages;
6279 }
6280 }
6281 }
6282
6283 /* update totalreserve_pages */
6284 calculate_totalreserve_pages();
6285 }
6286
6287 static void __setup_per_zone_wmarks(void)
6288 {
6289 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6290 unsigned long lowmem_pages = 0;
6291 struct zone *zone;
6292 unsigned long flags;
6293
6294 /* Calculate total number of !ZONE_HIGHMEM pages */
6295 for_each_zone(zone) {
6296 if (!is_highmem(zone))
6297 lowmem_pages += zone->managed_pages;
6298 }
6299
6300 for_each_zone(zone) {
6301 u64 tmp;
6302
6303 spin_lock_irqsave(&zone->lock, flags);
6304 tmp = (u64)pages_min * zone->managed_pages;
6305 do_div(tmp, lowmem_pages);
6306 if (is_highmem(zone)) {
6307 /*
6308 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6309 * need highmem pages, so cap pages_min to a small
6310 * value here.
6311 *
6312 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6313 * deltas control asynch page reclaim, and so should
6314 * not be capped for highmem.
6315 */
6316 unsigned long min_pages;
6317
6318 min_pages = zone->managed_pages / 1024;
6319 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6320 zone->watermark[WMARK_MIN] = min_pages;
6321 } else {
6322 /*
6323 * If it's a lowmem zone, reserve a number of pages
6324 * proportionate to the zone's size.
6325 */
6326 zone->watermark[WMARK_MIN] = tmp;
6327 }
6328
6329 /*
6330 * Set the kswapd watermarks distance according to the
6331 * scale factor in proportion to available memory, but
6332 * ensure a minimum size on small systems.
6333 */
6334 tmp = max_t(u64, tmp >> 2,
6335 mult_frac(zone->managed_pages,
6336 watermark_scale_factor, 10000));
6337
6338 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6339 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6340
6341 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6342 high_wmark_pages(zone) - low_wmark_pages(zone) -
6343 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6344
6345 spin_unlock_irqrestore(&zone->lock, flags);
6346 }
6347
6348 /* update totalreserve_pages */
6349 calculate_totalreserve_pages();
6350 }
6351
6352 /**
6353 * setup_per_zone_wmarks - called when min_free_kbytes changes
6354 * or when memory is hot-{added|removed}
6355 *
6356 * Ensures that the watermark[min,low,high] values for each zone are set
6357 * correctly with respect to min_free_kbytes.
6358 */
6359 void setup_per_zone_wmarks(void)
6360 {
6361 mutex_lock(&zonelists_mutex);
6362 __setup_per_zone_wmarks();
6363 mutex_unlock(&zonelists_mutex);
6364 }
6365
6366 /*
6367 * The inactive anon list should be small enough that the VM never has to
6368 * do too much work, but large enough that each inactive page has a chance
6369 * to be referenced again before it is swapped out.
6370 *
6371 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6372 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6373 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6374 * the anonymous pages are kept on the inactive list.
6375 *
6376 * total target max
6377 * memory ratio inactive anon
6378 * -------------------------------------
6379 * 10MB 1 5MB
6380 * 100MB 1 50MB
6381 * 1GB 3 250MB
6382 * 10GB 10 0.9GB
6383 * 100GB 31 3GB
6384 * 1TB 101 10GB
6385 * 10TB 320 32GB
6386 */
6387 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6388 {
6389 unsigned int gb, ratio;
6390
6391 /* Zone size in gigabytes */
6392 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6393 if (gb)
6394 ratio = int_sqrt(10 * gb);
6395 else
6396 ratio = 1;
6397
6398 zone->inactive_ratio = ratio;
6399 }
6400
6401 static void __meminit setup_per_zone_inactive_ratio(void)
6402 {
6403 struct zone *zone;
6404
6405 for_each_zone(zone)
6406 calculate_zone_inactive_ratio(zone);
6407 }
6408
6409 /*
6410 * Initialise min_free_kbytes.
6411 *
6412 * For small machines we want it small (128k min). For large machines
6413 * we want it large (64MB max). But it is not linear, because network
6414 * bandwidth does not increase linearly with machine size. We use
6415 *
6416 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6417 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6418 *
6419 * which yields
6420 *
6421 * 16MB: 512k
6422 * 32MB: 724k
6423 * 64MB: 1024k
6424 * 128MB: 1448k
6425 * 256MB: 2048k
6426 * 512MB: 2896k
6427 * 1024MB: 4096k
6428 * 2048MB: 5792k
6429 * 4096MB: 8192k
6430 * 8192MB: 11584k
6431 * 16384MB: 16384k
6432 */
6433 int __meminit init_per_zone_wmark_min(void)
6434 {
6435 unsigned long lowmem_kbytes;
6436 int new_min_free_kbytes;
6437
6438 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6439 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6440
6441 if (new_min_free_kbytes > user_min_free_kbytes) {
6442 min_free_kbytes = new_min_free_kbytes;
6443 if (min_free_kbytes < 128)
6444 min_free_kbytes = 128;
6445 if (min_free_kbytes > 65536)
6446 min_free_kbytes = 65536;
6447 } else {
6448 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6449 new_min_free_kbytes, user_min_free_kbytes);
6450 }
6451 setup_per_zone_wmarks();
6452 refresh_zone_stat_thresholds();
6453 setup_per_zone_lowmem_reserve();
6454 setup_per_zone_inactive_ratio();
6455 return 0;
6456 }
6457 module_init(init_per_zone_wmark_min)
6458
6459 /*
6460 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6461 * that we can call two helper functions whenever min_free_kbytes
6462 * changes.
6463 */
6464 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6465 void __user *buffer, size_t *length, loff_t *ppos)
6466 {
6467 int rc;
6468
6469 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6470 if (rc)
6471 return rc;
6472
6473 if (write) {
6474 user_min_free_kbytes = min_free_kbytes;
6475 setup_per_zone_wmarks();
6476 }
6477 return 0;
6478 }
6479
6480 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6481 void __user *buffer, size_t *length, loff_t *ppos)
6482 {
6483 int rc;
6484
6485 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6486 if (rc)
6487 return rc;
6488
6489 if (write)
6490 setup_per_zone_wmarks();
6491
6492 return 0;
6493 }
6494
6495 #ifdef CONFIG_NUMA
6496 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6497 void __user *buffer, size_t *length, loff_t *ppos)
6498 {
6499 struct zone *zone;
6500 int rc;
6501
6502 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6503 if (rc)
6504 return rc;
6505
6506 for_each_zone(zone)
6507 zone->min_unmapped_pages = (zone->managed_pages *
6508 sysctl_min_unmapped_ratio) / 100;
6509 return 0;
6510 }
6511
6512 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6513 void __user *buffer, size_t *length, loff_t *ppos)
6514 {
6515 struct zone *zone;
6516 int rc;
6517
6518 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6519 if (rc)
6520 return rc;
6521
6522 for_each_zone(zone)
6523 zone->min_slab_pages = (zone->managed_pages *
6524 sysctl_min_slab_ratio) / 100;
6525 return 0;
6526 }
6527 #endif
6528
6529 /*
6530 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6531 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6532 * whenever sysctl_lowmem_reserve_ratio changes.
6533 *
6534 * The reserve ratio obviously has absolutely no relation with the
6535 * minimum watermarks. The lowmem reserve ratio can only make sense
6536 * if in function of the boot time zone sizes.
6537 */
6538 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6539 void __user *buffer, size_t *length, loff_t *ppos)
6540 {
6541 proc_dointvec_minmax(table, write, buffer, length, ppos);
6542 setup_per_zone_lowmem_reserve();
6543 return 0;
6544 }
6545
6546 /*
6547 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6548 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6549 * pagelist can have before it gets flushed back to buddy allocator.
6550 */
6551 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6552 void __user *buffer, size_t *length, loff_t *ppos)
6553 {
6554 struct zone *zone;
6555 int old_percpu_pagelist_fraction;
6556 int ret;
6557
6558 mutex_lock(&pcp_batch_high_lock);
6559 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6560
6561 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6562 if (!write || ret < 0)
6563 goto out;
6564
6565 /* Sanity checking to avoid pcp imbalance */
6566 if (percpu_pagelist_fraction &&
6567 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6568 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6569 ret = -EINVAL;
6570 goto out;
6571 }
6572
6573 /* No change? */
6574 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6575 goto out;
6576
6577 for_each_populated_zone(zone) {
6578 unsigned int cpu;
6579
6580 for_each_possible_cpu(cpu)
6581 pageset_set_high_and_batch(zone,
6582 per_cpu_ptr(zone->pageset, cpu));
6583 }
6584 out:
6585 mutex_unlock(&pcp_batch_high_lock);
6586 return ret;
6587 }
6588
6589 #ifdef CONFIG_NUMA
6590 int hashdist = HASHDIST_DEFAULT;
6591
6592 static int __init set_hashdist(char *str)
6593 {
6594 if (!str)
6595 return 0;
6596 hashdist = simple_strtoul(str, &str, 0);
6597 return 1;
6598 }
6599 __setup("hashdist=", set_hashdist);
6600 #endif
6601
6602 /*
6603 * allocate a large system hash table from bootmem
6604 * - it is assumed that the hash table must contain an exact power-of-2
6605 * quantity of entries
6606 * - limit is the number of hash buckets, not the total allocation size
6607 */
6608 void *__init alloc_large_system_hash(const char *tablename,
6609 unsigned long bucketsize,
6610 unsigned long numentries,
6611 int scale,
6612 int flags,
6613 unsigned int *_hash_shift,
6614 unsigned int *_hash_mask,
6615 unsigned long low_limit,
6616 unsigned long high_limit)
6617 {
6618 unsigned long long max = high_limit;
6619 unsigned long log2qty, size;
6620 void *table = NULL;
6621
6622 /* allow the kernel cmdline to have a say */
6623 if (!numentries) {
6624 /* round applicable memory size up to nearest megabyte */
6625 numentries = nr_kernel_pages;
6626
6627 /* It isn't necessary when PAGE_SIZE >= 1MB */
6628 if (PAGE_SHIFT < 20)
6629 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6630
6631 /* limit to 1 bucket per 2^scale bytes of low memory */
6632 if (scale > PAGE_SHIFT)
6633 numentries >>= (scale - PAGE_SHIFT);
6634 else
6635 numentries <<= (PAGE_SHIFT - scale);
6636
6637 /* Make sure we've got at least a 0-order allocation.. */
6638 if (unlikely(flags & HASH_SMALL)) {
6639 /* Makes no sense without HASH_EARLY */
6640 WARN_ON(!(flags & HASH_EARLY));
6641 if (!(numentries >> *_hash_shift)) {
6642 numentries = 1UL << *_hash_shift;
6643 BUG_ON(!numentries);
6644 }
6645 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6646 numentries = PAGE_SIZE / bucketsize;
6647 }
6648 numentries = roundup_pow_of_two(numentries);
6649
6650 /* limit allocation size to 1/16 total memory by default */
6651 if (max == 0) {
6652 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6653 do_div(max, bucketsize);
6654 }
6655 max = min(max, 0x80000000ULL);
6656
6657 if (numentries < low_limit)
6658 numentries = low_limit;
6659 if (numentries > max)
6660 numentries = max;
6661
6662 log2qty = ilog2(numentries);
6663
6664 do {
6665 size = bucketsize << log2qty;
6666 if (flags & HASH_EARLY)
6667 table = memblock_virt_alloc_nopanic(size, 0);
6668 else if (hashdist)
6669 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6670 else {
6671 /*
6672 * If bucketsize is not a power-of-two, we may free
6673 * some pages at the end of hash table which
6674 * alloc_pages_exact() automatically does
6675 */
6676 if (get_order(size) < MAX_ORDER) {
6677 table = alloc_pages_exact(size, GFP_ATOMIC);
6678 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6679 }
6680 }
6681 } while (!table && size > PAGE_SIZE && --log2qty);
6682
6683 if (!table)
6684 panic("Failed to allocate %s hash table\n", tablename);
6685
6686 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6687 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6688
6689 if (_hash_shift)
6690 *_hash_shift = log2qty;
6691 if (_hash_mask)
6692 *_hash_mask = (1 << log2qty) - 1;
6693
6694 return table;
6695 }
6696
6697 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6698 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6699 unsigned long pfn)
6700 {
6701 #ifdef CONFIG_SPARSEMEM
6702 return __pfn_to_section(pfn)->pageblock_flags;
6703 #else
6704 return zone->pageblock_flags;
6705 #endif /* CONFIG_SPARSEMEM */
6706 }
6707
6708 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6709 {
6710 #ifdef CONFIG_SPARSEMEM
6711 pfn &= (PAGES_PER_SECTION-1);
6712 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6713 #else
6714 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6715 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6716 #endif /* CONFIG_SPARSEMEM */
6717 }
6718
6719 /**
6720 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6721 * @page: The page within the block of interest
6722 * @pfn: The target page frame number
6723 * @end_bitidx: The last bit of interest to retrieve
6724 * @mask: mask of bits that the caller is interested in
6725 *
6726 * Return: pageblock_bits flags
6727 */
6728 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6729 unsigned long end_bitidx,
6730 unsigned long mask)
6731 {
6732 struct zone *zone;
6733 unsigned long *bitmap;
6734 unsigned long bitidx, word_bitidx;
6735 unsigned long word;
6736
6737 zone = page_zone(page);
6738 bitmap = get_pageblock_bitmap(zone, pfn);
6739 bitidx = pfn_to_bitidx(zone, pfn);
6740 word_bitidx = bitidx / BITS_PER_LONG;
6741 bitidx &= (BITS_PER_LONG-1);
6742
6743 word = bitmap[word_bitidx];
6744 bitidx += end_bitidx;
6745 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6746 }
6747
6748 /**
6749 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6750 * @page: The page within the block of interest
6751 * @flags: The flags to set
6752 * @pfn: The target page frame number
6753 * @end_bitidx: The last bit of interest
6754 * @mask: mask of bits that the caller is interested in
6755 */
6756 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6757 unsigned long pfn,
6758 unsigned long end_bitidx,
6759 unsigned long mask)
6760 {
6761 struct zone *zone;
6762 unsigned long *bitmap;
6763 unsigned long bitidx, word_bitidx;
6764 unsigned long old_word, word;
6765
6766 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6767
6768 zone = page_zone(page);
6769 bitmap = get_pageblock_bitmap(zone, pfn);
6770 bitidx = pfn_to_bitidx(zone, pfn);
6771 word_bitidx = bitidx / BITS_PER_LONG;
6772 bitidx &= (BITS_PER_LONG-1);
6773
6774 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6775
6776 bitidx += end_bitidx;
6777 mask <<= (BITS_PER_LONG - bitidx - 1);
6778 flags <<= (BITS_PER_LONG - bitidx - 1);
6779
6780 word = READ_ONCE(bitmap[word_bitidx]);
6781 for (;;) {
6782 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6783 if (word == old_word)
6784 break;
6785 word = old_word;
6786 }
6787 }
6788
6789 /*
6790 * This function checks whether pageblock includes unmovable pages or not.
6791 * If @count is not zero, it is okay to include less @count unmovable pages
6792 *
6793 * PageLRU check without isolation or lru_lock could race so that
6794 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6795 * expect this function should be exact.
6796 */
6797 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6798 bool skip_hwpoisoned_pages)
6799 {
6800 unsigned long pfn, iter, found;
6801 int mt;
6802
6803 /*
6804 * For avoiding noise data, lru_add_drain_all() should be called
6805 * If ZONE_MOVABLE, the zone never contains unmovable pages
6806 */
6807 if (zone_idx(zone) == ZONE_MOVABLE)
6808 return false;
6809 mt = get_pageblock_migratetype(page);
6810 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6811 return false;
6812
6813 pfn = page_to_pfn(page);
6814 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6815 unsigned long check = pfn + iter;
6816
6817 if (!pfn_valid_within(check))
6818 continue;
6819
6820 page = pfn_to_page(check);
6821
6822 /*
6823 * Hugepages are not in LRU lists, but they're movable.
6824 * We need not scan over tail pages bacause we don't
6825 * handle each tail page individually in migration.
6826 */
6827 if (PageHuge(page)) {
6828 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6829 continue;
6830 }
6831
6832 /*
6833 * We can't use page_count without pin a page
6834 * because another CPU can free compound page.
6835 * This check already skips compound tails of THP
6836 * because their page->_count is zero at all time.
6837 */
6838 if (!page_ref_count(page)) {
6839 if (PageBuddy(page))
6840 iter += (1 << page_order(page)) - 1;
6841 continue;
6842 }
6843
6844 /*
6845 * The HWPoisoned page may be not in buddy system, and
6846 * page_count() is not 0.
6847 */
6848 if (skip_hwpoisoned_pages && PageHWPoison(page))
6849 continue;
6850
6851 if (!PageLRU(page))
6852 found++;
6853 /*
6854 * If there are RECLAIMABLE pages, we need to check
6855 * it. But now, memory offline itself doesn't call
6856 * shrink_node_slabs() and it still to be fixed.
6857 */
6858 /*
6859 * If the page is not RAM, page_count()should be 0.
6860 * we don't need more check. This is an _used_ not-movable page.
6861 *
6862 * The problematic thing here is PG_reserved pages. PG_reserved
6863 * is set to both of a memory hole page and a _used_ kernel
6864 * page at boot.
6865 */
6866 if (found > count)
6867 return true;
6868 }
6869 return false;
6870 }
6871
6872 bool is_pageblock_removable_nolock(struct page *page)
6873 {
6874 struct zone *zone;
6875 unsigned long pfn;
6876
6877 /*
6878 * We have to be careful here because we are iterating over memory
6879 * sections which are not zone aware so we might end up outside of
6880 * the zone but still within the section.
6881 * We have to take care about the node as well. If the node is offline
6882 * its NODE_DATA will be NULL - see page_zone.
6883 */
6884 if (!node_online(page_to_nid(page)))
6885 return false;
6886
6887 zone = page_zone(page);
6888 pfn = page_to_pfn(page);
6889 if (!zone_spans_pfn(zone, pfn))
6890 return false;
6891
6892 return !has_unmovable_pages(zone, page, 0, true);
6893 }
6894
6895 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6896
6897 static unsigned long pfn_max_align_down(unsigned long pfn)
6898 {
6899 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6900 pageblock_nr_pages) - 1);
6901 }
6902
6903 static unsigned long pfn_max_align_up(unsigned long pfn)
6904 {
6905 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6906 pageblock_nr_pages));
6907 }
6908
6909 /* [start, end) must belong to a single zone. */
6910 static int __alloc_contig_migrate_range(struct compact_control *cc,
6911 unsigned long start, unsigned long end)
6912 {
6913 /* This function is based on compact_zone() from compaction.c. */
6914 unsigned long nr_reclaimed;
6915 unsigned long pfn = start;
6916 unsigned int tries = 0;
6917 int ret = 0;
6918
6919 migrate_prep();
6920
6921 while (pfn < end || !list_empty(&cc->migratepages)) {
6922 if (fatal_signal_pending(current)) {
6923 ret = -EINTR;
6924 break;
6925 }
6926
6927 if (list_empty(&cc->migratepages)) {
6928 cc->nr_migratepages = 0;
6929 pfn = isolate_migratepages_range(cc, pfn, end);
6930 if (!pfn) {
6931 ret = -EINTR;
6932 break;
6933 }
6934 tries = 0;
6935 } else if (++tries == 5) {
6936 ret = ret < 0 ? ret : -EBUSY;
6937 break;
6938 }
6939
6940 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6941 &cc->migratepages);
6942 cc->nr_migratepages -= nr_reclaimed;
6943
6944 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6945 NULL, 0, cc->mode, MR_CMA);
6946 }
6947 if (ret < 0) {
6948 putback_movable_pages(&cc->migratepages);
6949 return ret;
6950 }
6951 return 0;
6952 }
6953
6954 /**
6955 * alloc_contig_range() -- tries to allocate given range of pages
6956 * @start: start PFN to allocate
6957 * @end: one-past-the-last PFN to allocate
6958 * @migratetype: migratetype of the underlaying pageblocks (either
6959 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6960 * in range must have the same migratetype and it must
6961 * be either of the two.
6962 *
6963 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6964 * aligned, however it's the caller's responsibility to guarantee that
6965 * we are the only thread that changes migrate type of pageblocks the
6966 * pages fall in.
6967 *
6968 * The PFN range must belong to a single zone.
6969 *
6970 * Returns zero on success or negative error code. On success all
6971 * pages which PFN is in [start, end) are allocated for the caller and
6972 * need to be freed with free_contig_range().
6973 */
6974 int alloc_contig_range(unsigned long start, unsigned long end,
6975 unsigned migratetype)
6976 {
6977 unsigned long outer_start, outer_end;
6978 unsigned int order;
6979 int ret = 0;
6980
6981 struct compact_control cc = {
6982 .nr_migratepages = 0,
6983 .order = -1,
6984 .zone = page_zone(pfn_to_page(start)),
6985 .mode = MIGRATE_SYNC,
6986 .ignore_skip_hint = true,
6987 };
6988 INIT_LIST_HEAD(&cc.migratepages);
6989
6990 /*
6991 * What we do here is we mark all pageblocks in range as
6992 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6993 * have different sizes, and due to the way page allocator
6994 * work, we align the range to biggest of the two pages so
6995 * that page allocator won't try to merge buddies from
6996 * different pageblocks and change MIGRATE_ISOLATE to some
6997 * other migration type.
6998 *
6999 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7000 * migrate the pages from an unaligned range (ie. pages that
7001 * we are interested in). This will put all the pages in
7002 * range back to page allocator as MIGRATE_ISOLATE.
7003 *
7004 * When this is done, we take the pages in range from page
7005 * allocator removing them from the buddy system. This way
7006 * page allocator will never consider using them.
7007 *
7008 * This lets us mark the pageblocks back as
7009 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7010 * aligned range but not in the unaligned, original range are
7011 * put back to page allocator so that buddy can use them.
7012 */
7013
7014 ret = start_isolate_page_range(pfn_max_align_down(start),
7015 pfn_max_align_up(end), migratetype,
7016 false);
7017 if (ret)
7018 return ret;
7019
7020 /*
7021 * In case of -EBUSY, we'd like to know which page causes problem.
7022 * So, just fall through. We will check it in test_pages_isolated().
7023 */
7024 ret = __alloc_contig_migrate_range(&cc, start, end);
7025 if (ret && ret != -EBUSY)
7026 goto done;
7027
7028 /*
7029 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7030 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7031 * more, all pages in [start, end) are free in page allocator.
7032 * What we are going to do is to allocate all pages from
7033 * [start, end) (that is remove them from page allocator).
7034 *
7035 * The only problem is that pages at the beginning and at the
7036 * end of interesting range may be not aligned with pages that
7037 * page allocator holds, ie. they can be part of higher order
7038 * pages. Because of this, we reserve the bigger range and
7039 * once this is done free the pages we are not interested in.
7040 *
7041 * We don't have to hold zone->lock here because the pages are
7042 * isolated thus they won't get removed from buddy.
7043 */
7044
7045 lru_add_drain_all();
7046 drain_all_pages(cc.zone);
7047
7048 order = 0;
7049 outer_start = start;
7050 while (!PageBuddy(pfn_to_page(outer_start))) {
7051 if (++order >= MAX_ORDER) {
7052 outer_start = start;
7053 break;
7054 }
7055 outer_start &= ~0UL << order;
7056 }
7057
7058 if (outer_start != start) {
7059 order = page_order(pfn_to_page(outer_start));
7060
7061 /*
7062 * outer_start page could be small order buddy page and
7063 * it doesn't include start page. Adjust outer_start
7064 * in this case to report failed page properly
7065 * on tracepoint in test_pages_isolated()
7066 */
7067 if (outer_start + (1UL << order) <= start)
7068 outer_start = start;
7069 }
7070
7071 /* Make sure the range is really isolated. */
7072 if (test_pages_isolated(outer_start, end, false)) {
7073 pr_info("%s: [%lx, %lx) PFNs busy\n",
7074 __func__, outer_start, end);
7075 ret = -EBUSY;
7076 goto done;
7077 }
7078
7079 /* Grab isolated pages from freelists. */
7080 outer_end = isolate_freepages_range(&cc, outer_start, end);
7081 if (!outer_end) {
7082 ret = -EBUSY;
7083 goto done;
7084 }
7085
7086 /* Free head and tail (if any) */
7087 if (start != outer_start)
7088 free_contig_range(outer_start, start - outer_start);
7089 if (end != outer_end)
7090 free_contig_range(end, outer_end - end);
7091
7092 done:
7093 undo_isolate_page_range(pfn_max_align_down(start),
7094 pfn_max_align_up(end), migratetype);
7095 return ret;
7096 }
7097
7098 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7099 {
7100 unsigned int count = 0;
7101
7102 for (; nr_pages--; pfn++) {
7103 struct page *page = pfn_to_page(pfn);
7104
7105 count += page_count(page) != 1;
7106 __free_page(page);
7107 }
7108 WARN(count != 0, "%d pages are still in use!\n", count);
7109 }
7110 #endif
7111
7112 #ifdef CONFIG_MEMORY_HOTPLUG
7113 /*
7114 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7115 * page high values need to be recalulated.
7116 */
7117 void __meminit zone_pcp_update(struct zone *zone)
7118 {
7119 unsigned cpu;
7120 mutex_lock(&pcp_batch_high_lock);
7121 for_each_possible_cpu(cpu)
7122 pageset_set_high_and_batch(zone,
7123 per_cpu_ptr(zone->pageset, cpu));
7124 mutex_unlock(&pcp_batch_high_lock);
7125 }
7126 #endif
7127
7128 void zone_pcp_reset(struct zone *zone)
7129 {
7130 unsigned long flags;
7131 int cpu;
7132 struct per_cpu_pageset *pset;
7133
7134 /* avoid races with drain_pages() */
7135 local_irq_save(flags);
7136 if (zone->pageset != &boot_pageset) {
7137 for_each_online_cpu(cpu) {
7138 pset = per_cpu_ptr(zone->pageset, cpu);
7139 drain_zonestat(zone, pset);
7140 }
7141 free_percpu(zone->pageset);
7142 zone->pageset = &boot_pageset;
7143 }
7144 local_irq_restore(flags);
7145 }
7146
7147 #ifdef CONFIG_MEMORY_HOTREMOVE
7148 /*
7149 * All pages in the range must be isolated before calling this.
7150 */
7151 void
7152 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7153 {
7154 struct page *page;
7155 struct zone *zone;
7156 unsigned int order, i;
7157 unsigned long pfn;
7158 unsigned long flags;
7159 /* find the first valid pfn */
7160 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7161 if (pfn_valid(pfn))
7162 break;
7163 if (pfn == end_pfn)
7164 return;
7165 zone = page_zone(pfn_to_page(pfn));
7166 spin_lock_irqsave(&zone->lock, flags);
7167 pfn = start_pfn;
7168 while (pfn < end_pfn) {
7169 if (!pfn_valid(pfn)) {
7170 pfn++;
7171 continue;
7172 }
7173 page = pfn_to_page(pfn);
7174 /*
7175 * The HWPoisoned page may be not in buddy system, and
7176 * page_count() is not 0.
7177 */
7178 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7179 pfn++;
7180 SetPageReserved(page);
7181 continue;
7182 }
7183
7184 BUG_ON(page_count(page));
7185 BUG_ON(!PageBuddy(page));
7186 order = page_order(page);
7187 #ifdef CONFIG_DEBUG_VM
7188 pr_info("remove from free list %lx %d %lx\n",
7189 pfn, 1 << order, end_pfn);
7190 #endif
7191 list_del(&page->lru);
7192 rmv_page_order(page);
7193 zone->free_area[order].nr_free--;
7194 for (i = 0; i < (1 << order); i++)
7195 SetPageReserved((page+i));
7196 pfn += (1 << order);
7197 }
7198 spin_unlock_irqrestore(&zone->lock, flags);
7199 }
7200 #endif
7201
7202 bool is_free_buddy_page(struct page *page)
7203 {
7204 struct zone *zone = page_zone(page);
7205 unsigned long pfn = page_to_pfn(page);
7206 unsigned long flags;
7207 unsigned int order;
7208
7209 spin_lock_irqsave(&zone->lock, flags);
7210 for (order = 0; order < MAX_ORDER; order++) {
7211 struct page *page_head = page - (pfn & ((1 << order) - 1));
7212
7213 if (PageBuddy(page_head) && page_order(page_head) >= order)
7214 break;
7215 }
7216 spin_unlock_irqrestore(&zone->lock, flags);
7217
7218 return order < MAX_ORDER;
7219 }
This page took 0.265939 seconds and 5 git commands to generate.