Automerge with /usr/src/ntfs-2.6.git.
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40
41 /*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
52 long nr_swap_pages;
53
54 /*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
66
67 /*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71 struct zone *zone_table[1 << ZONETABLE_SHIFT];
72 EXPORT_SYMBOL(zone_table);
73
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
76
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
79
80 /*
81 * Temporary debugging check for pages not lying within a given zone.
82 */
83 static int bad_range(struct zone *zone, struct page *page)
84 {
85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 return 1;
87 if (page_to_pfn(page) < zone->zone_start_pfn)
88 return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page)))
91 return 1;
92 #endif
93 if (zone != page_zone(page))
94 return 1;
95 return 0;
96 }
97
98 static void bad_page(const char *function, struct page *page)
99 {
100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 function, current->comm, page);
102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 page->mapping, page_mapcount(page), page_count(page));
105 printk(KERN_EMERG "Backtrace:\n");
106 dump_stack();
107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 page->flags &= ~(1 << PG_lru |
109 1 << PG_private |
110 1 << PG_locked |
111 1 << PG_active |
112 1 << PG_dirty |
113 1 << PG_reclaim |
114 1 << PG_slab |
115 1 << PG_swapcache |
116 1 << PG_writeback);
117 set_page_count(page, 0);
118 reset_page_mapcount(page);
119 page->mapping = NULL;
120 tainted |= TAINT_BAD_PAGE;
121 }
122
123 #ifndef CONFIG_HUGETLB_PAGE
124 #define prep_compound_page(page, order) do { } while (0)
125 #define destroy_compound_page(page, order) do { } while (0)
126 #else
127 /*
128 * Higher-order pages are called "compound pages". They are structured thusly:
129 *
130 * The first PAGE_SIZE page is called the "head page".
131 *
132 * The remaining PAGE_SIZE pages are called "tail pages".
133 *
134 * All pages have PG_compound set. All pages have their ->private pointing at
135 * the head page (even the head page has this).
136 *
137 * The first tail page's ->mapping, if non-zero, holds the address of the
138 * compound page's put_page() function.
139 *
140 * The order of the allocation is stored in the first tail page's ->index
141 * This is only for debug at present. This usage means that zero-order pages
142 * may not be compound.
143 */
144 static void prep_compound_page(struct page *page, unsigned long order)
145 {
146 int i;
147 int nr_pages = 1 << order;
148
149 page[1].mapping = NULL;
150 page[1].index = order;
151 for (i = 0; i < nr_pages; i++) {
152 struct page *p = page + i;
153
154 SetPageCompound(p);
155 p->private = (unsigned long)page;
156 }
157 }
158
159 static void destroy_compound_page(struct page *page, unsigned long order)
160 {
161 int i;
162 int nr_pages = 1 << order;
163
164 if (!PageCompound(page))
165 return;
166
167 if (page[1].index != order)
168 bad_page(__FUNCTION__, page);
169
170 for (i = 0; i < nr_pages; i++) {
171 struct page *p = page + i;
172
173 if (!PageCompound(p))
174 bad_page(__FUNCTION__, page);
175 if (p->private != (unsigned long)page)
176 bad_page(__FUNCTION__, page);
177 ClearPageCompound(p);
178 }
179 }
180 #endif /* CONFIG_HUGETLB_PAGE */
181
182 /*
183 * function for dealing with page's order in buddy system.
184 * zone->lock is already acquired when we use these.
185 * So, we don't need atomic page->flags operations here.
186 */
187 static inline unsigned long page_order(struct page *page) {
188 return page->private;
189 }
190
191 static inline void set_page_order(struct page *page, int order) {
192 page->private = order;
193 __SetPagePrivate(page);
194 }
195
196 static inline void rmv_page_order(struct page *page)
197 {
198 __ClearPagePrivate(page);
199 page->private = 0;
200 }
201
202 /*
203 * Locate the struct page for both the matching buddy in our
204 * pair (buddy1) and the combined O(n+1) page they form (page).
205 *
206 * 1) Any buddy B1 will have an order O twin B2 which satisfies
207 * the following equation:
208 * B2 = B1 ^ (1 << O)
209 * For example, if the starting buddy (buddy2) is #8 its order
210 * 1 buddy is #10:
211 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
212 *
213 * 2) Any buddy B will have an order O+1 parent P which
214 * satisfies the following equation:
215 * P = B & ~(1 << O)
216 *
217 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
218 */
219 static inline struct page *
220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
221 {
222 unsigned long buddy_idx = page_idx ^ (1 << order);
223
224 return page + (buddy_idx - page_idx);
225 }
226
227 static inline unsigned long
228 __find_combined_index(unsigned long page_idx, unsigned int order)
229 {
230 return (page_idx & ~(1 << order));
231 }
232
233 /*
234 * This function checks whether a page is free && is the buddy
235 * we can do coalesce a page and its buddy if
236 * (a) the buddy is free &&
237 * (b) the buddy is on the buddy system &&
238 * (c) a page and its buddy have the same order.
239 * for recording page's order, we use page->private and PG_private.
240 *
241 */
242 static inline int page_is_buddy(struct page *page, int order)
243 {
244 if (PagePrivate(page) &&
245 (page_order(page) == order) &&
246 !PageReserved(page) &&
247 page_count(page) == 0)
248 return 1;
249 return 0;
250 }
251
252 /*
253 * Freeing function for a buddy system allocator.
254 *
255 * The concept of a buddy system is to maintain direct-mapped table
256 * (containing bit values) for memory blocks of various "orders".
257 * The bottom level table contains the map for the smallest allocatable
258 * units of memory (here, pages), and each level above it describes
259 * pairs of units from the levels below, hence, "buddies".
260 * At a high level, all that happens here is marking the table entry
261 * at the bottom level available, and propagating the changes upward
262 * as necessary, plus some accounting needed to play nicely with other
263 * parts of the VM system.
264 * At each level, we keep a list of pages, which are heads of continuous
265 * free pages of length of (1 << order) and marked with PG_Private.Page's
266 * order is recorded in page->private field.
267 * So when we are allocating or freeing one, we can derive the state of the
268 * other. That is, if we allocate a small block, and both were
269 * free, the remainder of the region must be split into blocks.
270 * If a block is freed, and its buddy is also free, then this
271 * triggers coalescing into a block of larger size.
272 *
273 * -- wli
274 */
275
276 static inline void __free_pages_bulk (struct page *page,
277 struct zone *zone, unsigned int order)
278 {
279 unsigned long page_idx;
280 int order_size = 1 << order;
281
282 if (unlikely(order))
283 destroy_compound_page(page, order);
284
285 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
286
287 BUG_ON(page_idx & (order_size - 1));
288 BUG_ON(bad_range(zone, page));
289
290 zone->free_pages += order_size;
291 while (order < MAX_ORDER-1) {
292 unsigned long combined_idx;
293 struct free_area *area;
294 struct page *buddy;
295
296 combined_idx = __find_combined_index(page_idx, order);
297 buddy = __page_find_buddy(page, page_idx, order);
298
299 if (bad_range(zone, buddy))
300 break;
301 if (!page_is_buddy(buddy, order))
302 break; /* Move the buddy up one level. */
303 list_del(&buddy->lru);
304 area = zone->free_area + order;
305 area->nr_free--;
306 rmv_page_order(buddy);
307 page = page + (combined_idx - page_idx);
308 page_idx = combined_idx;
309 order++;
310 }
311 set_page_order(page, order);
312 list_add(&page->lru, &zone->free_area[order].free_list);
313 zone->free_area[order].nr_free++;
314 }
315
316 static inline void free_pages_check(const char *function, struct page *page)
317 {
318 if ( page_mapcount(page) ||
319 page->mapping != NULL ||
320 page_count(page) != 0 ||
321 (page->flags & (
322 1 << PG_lru |
323 1 << PG_private |
324 1 << PG_locked |
325 1 << PG_active |
326 1 << PG_reclaim |
327 1 << PG_slab |
328 1 << PG_swapcache |
329 1 << PG_writeback )))
330 bad_page(function, page);
331 if (PageDirty(page))
332 ClearPageDirty(page);
333 }
334
335 /*
336 * Frees a list of pages.
337 * Assumes all pages on list are in same zone, and of same order.
338 * count is the number of pages to free, or 0 for all on the list.
339 *
340 * If the zone was previously in an "all pages pinned" state then look to
341 * see if this freeing clears that state.
342 *
343 * And clear the zone's pages_scanned counter, to hold off the "all pages are
344 * pinned" detection logic.
345 */
346 static int
347 free_pages_bulk(struct zone *zone, int count,
348 struct list_head *list, unsigned int order)
349 {
350 unsigned long flags;
351 struct page *page = NULL;
352 int ret = 0;
353
354 spin_lock_irqsave(&zone->lock, flags);
355 zone->all_unreclaimable = 0;
356 zone->pages_scanned = 0;
357 while (!list_empty(list) && count--) {
358 page = list_entry(list->prev, struct page, lru);
359 /* have to delete it as __free_pages_bulk list manipulates */
360 list_del(&page->lru);
361 __free_pages_bulk(page, zone, order);
362 ret++;
363 }
364 spin_unlock_irqrestore(&zone->lock, flags);
365 return ret;
366 }
367
368 void __free_pages_ok(struct page *page, unsigned int order)
369 {
370 LIST_HEAD(list);
371 int i;
372
373 arch_free_page(page, order);
374
375 mod_page_state(pgfree, 1 << order);
376
377 #ifndef CONFIG_MMU
378 if (order > 0)
379 for (i = 1 ; i < (1 << order) ; ++i)
380 __put_page(page + i);
381 #endif
382
383 for (i = 0 ; i < (1 << order) ; ++i)
384 free_pages_check(__FUNCTION__, page + i);
385 list_add(&page->lru, &list);
386 kernel_map_pages(page, 1<<order, 0);
387 free_pages_bulk(page_zone(page), 1, &list, order);
388 }
389
390
391 /*
392 * The order of subdivision here is critical for the IO subsystem.
393 * Please do not alter this order without good reasons and regression
394 * testing. Specifically, as large blocks of memory are subdivided,
395 * the order in which smaller blocks are delivered depends on the order
396 * they're subdivided in this function. This is the primary factor
397 * influencing the order in which pages are delivered to the IO
398 * subsystem according to empirical testing, and this is also justified
399 * by considering the behavior of a buddy system containing a single
400 * large block of memory acted on by a series of small allocations.
401 * This behavior is a critical factor in sglist merging's success.
402 *
403 * -- wli
404 */
405 static inline struct page *
406 expand(struct zone *zone, struct page *page,
407 int low, int high, struct free_area *area)
408 {
409 unsigned long size = 1 << high;
410
411 while (high > low) {
412 area--;
413 high--;
414 size >>= 1;
415 BUG_ON(bad_range(zone, &page[size]));
416 list_add(&page[size].lru, &area->free_list);
417 area->nr_free++;
418 set_page_order(&page[size], high);
419 }
420 return page;
421 }
422
423 void set_page_refs(struct page *page, int order)
424 {
425 #ifdef CONFIG_MMU
426 set_page_count(page, 1);
427 #else
428 int i;
429
430 /*
431 * We need to reference all the pages for this order, otherwise if
432 * anyone accesses one of the pages with (get/put) it will be freed.
433 * - eg: access_process_vm()
434 */
435 for (i = 0; i < (1 << order); i++)
436 set_page_count(page + i, 1);
437 #endif /* CONFIG_MMU */
438 }
439
440 /*
441 * This page is about to be returned from the page allocator
442 */
443 static void prep_new_page(struct page *page, int order)
444 {
445 if ( page_mapcount(page) ||
446 page->mapping != NULL ||
447 page_count(page) != 0 ||
448 (page->flags & (
449 1 << PG_lru |
450 1 << PG_private |
451 1 << PG_locked |
452 1 << PG_active |
453 1 << PG_dirty |
454 1 << PG_reclaim |
455 1 << PG_slab |
456 1 << PG_swapcache |
457 1 << PG_writeback )))
458 bad_page(__FUNCTION__, page);
459
460 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 1 << PG_referenced | 1 << PG_arch_1 |
462 1 << PG_checked | 1 << PG_mappedtodisk);
463 page->private = 0;
464 set_page_refs(page, order);
465 kernel_map_pages(page, 1 << order, 1);
466 }
467
468 /*
469 * Do the hard work of removing an element from the buddy allocator.
470 * Call me with the zone->lock already held.
471 */
472 static struct page *__rmqueue(struct zone *zone, unsigned int order)
473 {
474 struct free_area * area;
475 unsigned int current_order;
476 struct page *page;
477
478 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 area = zone->free_area + current_order;
480 if (list_empty(&area->free_list))
481 continue;
482
483 page = list_entry(area->free_list.next, struct page, lru);
484 list_del(&page->lru);
485 rmv_page_order(page);
486 area->nr_free--;
487 zone->free_pages -= 1UL << order;
488 return expand(zone, page, order, current_order, area);
489 }
490
491 return NULL;
492 }
493
494 /*
495 * Obtain a specified number of elements from the buddy allocator, all under
496 * a single hold of the lock, for efficiency. Add them to the supplied list.
497 * Returns the number of new pages which were placed at *list.
498 */
499 static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 unsigned long count, struct list_head *list)
501 {
502 unsigned long flags;
503 int i;
504 int allocated = 0;
505 struct page *page;
506
507 spin_lock_irqsave(&zone->lock, flags);
508 for (i = 0; i < count; ++i) {
509 page = __rmqueue(zone, order);
510 if (page == NULL)
511 break;
512 allocated++;
513 list_add_tail(&page->lru, list);
514 }
515 spin_unlock_irqrestore(&zone->lock, flags);
516 return allocated;
517 }
518
519 #ifdef CONFIG_NUMA
520 /* Called from the slab reaper to drain remote pagesets */
521 void drain_remote_pages(void)
522 {
523 struct zone *zone;
524 int i;
525 unsigned long flags;
526
527 local_irq_save(flags);
528 for_each_zone(zone) {
529 struct per_cpu_pageset *pset;
530
531 /* Do not drain local pagesets */
532 if (zone->zone_pgdat->node_id == numa_node_id())
533 continue;
534
535 pset = zone->pageset[smp_processor_id()];
536 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537 struct per_cpu_pages *pcp;
538
539 pcp = &pset->pcp[i];
540 if (pcp->count)
541 pcp->count -= free_pages_bulk(zone, pcp->count,
542 &pcp->list, 0);
543 }
544 }
545 local_irq_restore(flags);
546 }
547 #endif
548
549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550 static void __drain_pages(unsigned int cpu)
551 {
552 struct zone *zone;
553 int i;
554
555 for_each_zone(zone) {
556 struct per_cpu_pageset *pset;
557
558 pset = zone_pcp(zone, cpu);
559 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560 struct per_cpu_pages *pcp;
561
562 pcp = &pset->pcp[i];
563 pcp->count -= free_pages_bulk(zone, pcp->count,
564 &pcp->list, 0);
565 }
566 }
567 }
568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
569
570 #ifdef CONFIG_PM
571
572 void mark_free_pages(struct zone *zone)
573 {
574 unsigned long zone_pfn, flags;
575 int order;
576 struct list_head *curr;
577
578 if (!zone->spanned_pages)
579 return;
580
581 spin_lock_irqsave(&zone->lock, flags);
582 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
584
585 for (order = MAX_ORDER - 1; order >= 0; --order)
586 list_for_each(curr, &zone->free_area[order].free_list) {
587 unsigned long start_pfn, i;
588
589 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
590
591 for (i=0; i < (1<<order); i++)
592 SetPageNosaveFree(pfn_to_page(start_pfn+i));
593 }
594 spin_unlock_irqrestore(&zone->lock, flags);
595 }
596
597 /*
598 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
599 */
600 void drain_local_pages(void)
601 {
602 unsigned long flags;
603
604 local_irq_save(flags);
605 __drain_pages(smp_processor_id());
606 local_irq_restore(flags);
607 }
608 #endif /* CONFIG_PM */
609
610 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
611 {
612 #ifdef CONFIG_NUMA
613 unsigned long flags;
614 int cpu;
615 pg_data_t *pg = z->zone_pgdat;
616 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617 struct per_cpu_pageset *p;
618
619 local_irq_save(flags);
620 cpu = smp_processor_id();
621 p = zone_pcp(z,cpu);
622 if (pg == orig) {
623 p->numa_hit++;
624 } else {
625 p->numa_miss++;
626 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
627 }
628 if (pg == NODE_DATA(numa_node_id()))
629 p->local_node++;
630 else
631 p->other_node++;
632 local_irq_restore(flags);
633 #endif
634 }
635
636 /*
637 * Free a 0-order page
638 */
639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640 static void fastcall free_hot_cold_page(struct page *page, int cold)
641 {
642 struct zone *zone = page_zone(page);
643 struct per_cpu_pages *pcp;
644 unsigned long flags;
645
646 arch_free_page(page, 0);
647
648 kernel_map_pages(page, 1, 0);
649 inc_page_state(pgfree);
650 if (PageAnon(page))
651 page->mapping = NULL;
652 free_pages_check(__FUNCTION__, page);
653 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654 local_irq_save(flags);
655 list_add(&page->lru, &pcp->list);
656 pcp->count++;
657 if (pcp->count >= pcp->high)
658 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659 local_irq_restore(flags);
660 put_cpu();
661 }
662
663 void fastcall free_hot_page(struct page *page)
664 {
665 free_hot_cold_page(page, 0);
666 }
667
668 void fastcall free_cold_page(struct page *page)
669 {
670 free_hot_cold_page(page, 1);
671 }
672
673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
674 {
675 int i;
676
677 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678 for(i = 0; i < (1 << order); i++)
679 clear_highpage(page + i);
680 }
681
682 /*
683 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
684 * we cheat by calling it from here, in the order > 0 path. Saves a branch
685 * or two.
686 */
687 static struct page *
688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
689 {
690 unsigned long flags;
691 struct page *page = NULL;
692 int cold = !!(gfp_flags & __GFP_COLD);
693
694 if (order == 0) {
695 struct per_cpu_pages *pcp;
696
697 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698 local_irq_save(flags);
699 if (pcp->count <= pcp->low)
700 pcp->count += rmqueue_bulk(zone, 0,
701 pcp->batch, &pcp->list);
702 if (pcp->count) {
703 page = list_entry(pcp->list.next, struct page, lru);
704 list_del(&page->lru);
705 pcp->count--;
706 }
707 local_irq_restore(flags);
708 put_cpu();
709 }
710
711 if (page == NULL) {
712 spin_lock_irqsave(&zone->lock, flags);
713 page = __rmqueue(zone, order);
714 spin_unlock_irqrestore(&zone->lock, flags);
715 }
716
717 if (page != NULL) {
718 BUG_ON(bad_range(zone, page));
719 mod_page_state_zone(zone, pgalloc, 1 << order);
720 prep_new_page(page, order);
721
722 if (gfp_flags & __GFP_ZERO)
723 prep_zero_page(page, order, gfp_flags);
724
725 if (order && (gfp_flags & __GFP_COMP))
726 prep_compound_page(page, order);
727 }
728 return page;
729 }
730
731 /*
732 * Return 1 if free pages are above 'mark'. This takes into account the order
733 * of the allocation.
734 */
735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 int classzone_idx, int can_try_harder, int gfp_high)
737 {
738 /* free_pages my go negative - that's OK */
739 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
740 int o;
741
742 if (gfp_high)
743 min -= min / 2;
744 if (can_try_harder)
745 min -= min / 4;
746
747 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
748 return 0;
749 for (o = 0; o < order; o++) {
750 /* At the next order, this order's pages become unavailable */
751 free_pages -= z->free_area[o].nr_free << o;
752
753 /* Require fewer higher order pages to be free */
754 min >>= 1;
755
756 if (free_pages <= min)
757 return 0;
758 }
759 return 1;
760 }
761
762 static inline int
763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
764 {
765 if (!z->reclaim_pages)
766 return 0;
767 if (gfp_mask & __GFP_NORECLAIM)
768 return 0;
769 return 1;
770 }
771
772 /*
773 * This is the 'heart' of the zoned buddy allocator.
774 */
775 struct page * fastcall
776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777 struct zonelist *zonelist)
778 {
779 const int wait = gfp_mask & __GFP_WAIT;
780 struct zone **zones, *z;
781 struct page *page;
782 struct reclaim_state reclaim_state;
783 struct task_struct *p = current;
784 int i;
785 int classzone_idx;
786 int do_retry;
787 int can_try_harder;
788 int did_some_progress;
789
790 might_sleep_if(wait);
791
792 /*
793 * The caller may dip into page reserves a bit more if the caller
794 * cannot run direct reclaim, or is the caller has realtime scheduling
795 * policy
796 */
797 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
798
799 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
800
801 if (unlikely(zones[0] == NULL)) {
802 /* Should this ever happen?? */
803 return NULL;
804 }
805
806 classzone_idx = zone_idx(zones[0]);
807
808 restart:
809 /* Go through the zonelist once, looking for a zone with enough free */
810 for (i = 0; (z = zones[i]) != NULL; i++) {
811 int do_reclaim = should_reclaim_zone(z, gfp_mask);
812
813 if (!cpuset_zone_allowed(z))
814 continue;
815
816 /*
817 * If the zone is to attempt early page reclaim then this loop
818 * will try to reclaim pages and check the watermark a second
819 * time before giving up and falling back to the next zone.
820 */
821 zone_reclaim_retry:
822 if (!zone_watermark_ok(z, order, z->pages_low,
823 classzone_idx, 0, 0)) {
824 if (!do_reclaim)
825 continue;
826 else {
827 zone_reclaim(z, gfp_mask, order);
828 /* Only try reclaim once */
829 do_reclaim = 0;
830 goto zone_reclaim_retry;
831 }
832 }
833
834 page = buffered_rmqueue(z, order, gfp_mask);
835 if (page)
836 goto got_pg;
837 }
838
839 for (i = 0; (z = zones[i]) != NULL; i++)
840 wakeup_kswapd(z, order);
841
842 /*
843 * Go through the zonelist again. Let __GFP_HIGH and allocations
844 * coming from realtime tasks to go deeper into reserves
845 *
846 * This is the last chance, in general, before the goto nopage.
847 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
848 */
849 for (i = 0; (z = zones[i]) != NULL; i++) {
850 if (!zone_watermark_ok(z, order, z->pages_min,
851 classzone_idx, can_try_harder,
852 gfp_mask & __GFP_HIGH))
853 continue;
854
855 if (wait && !cpuset_zone_allowed(z))
856 continue;
857
858 page = buffered_rmqueue(z, order, gfp_mask);
859 if (page)
860 goto got_pg;
861 }
862
863 /* This allocation should allow future memory freeing. */
864
865 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
866 && !in_interrupt()) {
867 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
868 /* go through the zonelist yet again, ignoring mins */
869 for (i = 0; (z = zones[i]) != NULL; i++) {
870 if (!cpuset_zone_allowed(z))
871 continue;
872 page = buffered_rmqueue(z, order, gfp_mask);
873 if (page)
874 goto got_pg;
875 }
876 }
877 goto nopage;
878 }
879
880 /* Atomic allocations - we can't balance anything */
881 if (!wait)
882 goto nopage;
883
884 rebalance:
885 cond_resched();
886
887 /* We now go into synchronous reclaim */
888 p->flags |= PF_MEMALLOC;
889 reclaim_state.reclaimed_slab = 0;
890 p->reclaim_state = &reclaim_state;
891
892 did_some_progress = try_to_free_pages(zones, gfp_mask);
893
894 p->reclaim_state = NULL;
895 p->flags &= ~PF_MEMALLOC;
896
897 cond_resched();
898
899 if (likely(did_some_progress)) {
900 /*
901 * Go through the zonelist yet one more time, keep
902 * very high watermark here, this is only to catch
903 * a parallel oom killing, we must fail if we're still
904 * under heavy pressure.
905 */
906 for (i = 0; (z = zones[i]) != NULL; i++) {
907 if (!zone_watermark_ok(z, order, z->pages_min,
908 classzone_idx, can_try_harder,
909 gfp_mask & __GFP_HIGH))
910 continue;
911
912 if (!cpuset_zone_allowed(z))
913 continue;
914
915 page = buffered_rmqueue(z, order, gfp_mask);
916 if (page)
917 goto got_pg;
918 }
919 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
920 /*
921 * Go through the zonelist yet one more time, keep
922 * very high watermark here, this is only to catch
923 * a parallel oom killing, we must fail if we're still
924 * under heavy pressure.
925 */
926 for (i = 0; (z = zones[i]) != NULL; i++) {
927 if (!zone_watermark_ok(z, order, z->pages_high,
928 classzone_idx, 0, 0))
929 continue;
930
931 if (!cpuset_zone_allowed(z))
932 continue;
933
934 page = buffered_rmqueue(z, order, gfp_mask);
935 if (page)
936 goto got_pg;
937 }
938
939 out_of_memory(gfp_mask);
940 goto restart;
941 }
942
943 /*
944 * Don't let big-order allocations loop unless the caller explicitly
945 * requests that. Wait for some write requests to complete then retry.
946 *
947 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
948 * <= 3, but that may not be true in other implementations.
949 */
950 do_retry = 0;
951 if (!(gfp_mask & __GFP_NORETRY)) {
952 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
953 do_retry = 1;
954 if (gfp_mask & __GFP_NOFAIL)
955 do_retry = 1;
956 }
957 if (do_retry) {
958 blk_congestion_wait(WRITE, HZ/50);
959 goto rebalance;
960 }
961
962 nopage:
963 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
964 printk(KERN_WARNING "%s: page allocation failure."
965 " order:%d, mode:0x%x\n",
966 p->comm, order, gfp_mask);
967 dump_stack();
968 show_mem();
969 }
970 return NULL;
971 got_pg:
972 zone_statistics(zonelist, z);
973 return page;
974 }
975
976 EXPORT_SYMBOL(__alloc_pages);
977
978 /*
979 * Common helper functions.
980 */
981 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
982 {
983 struct page * page;
984 page = alloc_pages(gfp_mask, order);
985 if (!page)
986 return 0;
987 return (unsigned long) page_address(page);
988 }
989
990 EXPORT_SYMBOL(__get_free_pages);
991
992 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
993 {
994 struct page * page;
995
996 /*
997 * get_zeroed_page() returns a 32-bit address, which cannot represent
998 * a highmem page
999 */
1000 BUG_ON(gfp_mask & __GFP_HIGHMEM);
1001
1002 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1003 if (page)
1004 return (unsigned long) page_address(page);
1005 return 0;
1006 }
1007
1008 EXPORT_SYMBOL(get_zeroed_page);
1009
1010 void __pagevec_free(struct pagevec *pvec)
1011 {
1012 int i = pagevec_count(pvec);
1013
1014 while (--i >= 0)
1015 free_hot_cold_page(pvec->pages[i], pvec->cold);
1016 }
1017
1018 fastcall void __free_pages(struct page *page, unsigned int order)
1019 {
1020 if (!PageReserved(page) && put_page_testzero(page)) {
1021 if (order == 0)
1022 free_hot_page(page);
1023 else
1024 __free_pages_ok(page, order);
1025 }
1026 }
1027
1028 EXPORT_SYMBOL(__free_pages);
1029
1030 fastcall void free_pages(unsigned long addr, unsigned int order)
1031 {
1032 if (addr != 0) {
1033 BUG_ON(!virt_addr_valid((void *)addr));
1034 __free_pages(virt_to_page((void *)addr), order);
1035 }
1036 }
1037
1038 EXPORT_SYMBOL(free_pages);
1039
1040 /*
1041 * Total amount of free (allocatable) RAM:
1042 */
1043 unsigned int nr_free_pages(void)
1044 {
1045 unsigned int sum = 0;
1046 struct zone *zone;
1047
1048 for_each_zone(zone)
1049 sum += zone->free_pages;
1050
1051 return sum;
1052 }
1053
1054 EXPORT_SYMBOL(nr_free_pages);
1055
1056 #ifdef CONFIG_NUMA
1057 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1058 {
1059 unsigned int i, sum = 0;
1060
1061 for (i = 0; i < MAX_NR_ZONES; i++)
1062 sum += pgdat->node_zones[i].free_pages;
1063
1064 return sum;
1065 }
1066 #endif
1067
1068 static unsigned int nr_free_zone_pages(int offset)
1069 {
1070 pg_data_t *pgdat;
1071 unsigned int sum = 0;
1072
1073 for_each_pgdat(pgdat) {
1074 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1075 struct zone **zonep = zonelist->zones;
1076 struct zone *zone;
1077
1078 for (zone = *zonep++; zone; zone = *zonep++) {
1079 unsigned long size = zone->present_pages;
1080 unsigned long high = zone->pages_high;
1081 if (size > high)
1082 sum += size - high;
1083 }
1084 }
1085
1086 return sum;
1087 }
1088
1089 /*
1090 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1091 */
1092 unsigned int nr_free_buffer_pages(void)
1093 {
1094 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1095 }
1096
1097 /*
1098 * Amount of free RAM allocatable within all zones
1099 */
1100 unsigned int nr_free_pagecache_pages(void)
1101 {
1102 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1103 }
1104
1105 #ifdef CONFIG_HIGHMEM
1106 unsigned int nr_free_highpages (void)
1107 {
1108 pg_data_t *pgdat;
1109 unsigned int pages = 0;
1110
1111 for_each_pgdat(pgdat)
1112 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1113
1114 return pages;
1115 }
1116 #endif
1117
1118 #ifdef CONFIG_NUMA
1119 static void show_node(struct zone *zone)
1120 {
1121 printk("Node %d ", zone->zone_pgdat->node_id);
1122 }
1123 #else
1124 #define show_node(zone) do { } while (0)
1125 #endif
1126
1127 /*
1128 * Accumulate the page_state information across all CPUs.
1129 * The result is unavoidably approximate - it can change
1130 * during and after execution of this function.
1131 */
1132 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1133
1134 atomic_t nr_pagecache = ATOMIC_INIT(0);
1135 EXPORT_SYMBOL(nr_pagecache);
1136 #ifdef CONFIG_SMP
1137 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1138 #endif
1139
1140 void __get_page_state(struct page_state *ret, int nr)
1141 {
1142 int cpu = 0;
1143
1144 memset(ret, 0, sizeof(*ret));
1145
1146 cpu = first_cpu(cpu_online_map);
1147 while (cpu < NR_CPUS) {
1148 unsigned long *in, *out, off;
1149
1150 in = (unsigned long *)&per_cpu(page_states, cpu);
1151
1152 cpu = next_cpu(cpu, cpu_online_map);
1153
1154 if (cpu < NR_CPUS)
1155 prefetch(&per_cpu(page_states, cpu));
1156
1157 out = (unsigned long *)ret;
1158 for (off = 0; off < nr; off++)
1159 *out++ += *in++;
1160 }
1161 }
1162
1163 void get_page_state(struct page_state *ret)
1164 {
1165 int nr;
1166
1167 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1168 nr /= sizeof(unsigned long);
1169
1170 __get_page_state(ret, nr + 1);
1171 }
1172
1173 void get_full_page_state(struct page_state *ret)
1174 {
1175 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1176 }
1177
1178 unsigned long __read_page_state(unsigned long offset)
1179 {
1180 unsigned long ret = 0;
1181 int cpu;
1182
1183 for_each_online_cpu(cpu) {
1184 unsigned long in;
1185
1186 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1187 ret += *((unsigned long *)in);
1188 }
1189 return ret;
1190 }
1191
1192 void __mod_page_state(unsigned long offset, unsigned long delta)
1193 {
1194 unsigned long flags;
1195 void* ptr;
1196
1197 local_irq_save(flags);
1198 ptr = &__get_cpu_var(page_states);
1199 *(unsigned long*)(ptr + offset) += delta;
1200 local_irq_restore(flags);
1201 }
1202
1203 EXPORT_SYMBOL(__mod_page_state);
1204
1205 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1206 unsigned long *free, struct pglist_data *pgdat)
1207 {
1208 struct zone *zones = pgdat->node_zones;
1209 int i;
1210
1211 *active = 0;
1212 *inactive = 0;
1213 *free = 0;
1214 for (i = 0; i < MAX_NR_ZONES; i++) {
1215 *active += zones[i].nr_active;
1216 *inactive += zones[i].nr_inactive;
1217 *free += zones[i].free_pages;
1218 }
1219 }
1220
1221 void get_zone_counts(unsigned long *active,
1222 unsigned long *inactive, unsigned long *free)
1223 {
1224 struct pglist_data *pgdat;
1225
1226 *active = 0;
1227 *inactive = 0;
1228 *free = 0;
1229 for_each_pgdat(pgdat) {
1230 unsigned long l, m, n;
1231 __get_zone_counts(&l, &m, &n, pgdat);
1232 *active += l;
1233 *inactive += m;
1234 *free += n;
1235 }
1236 }
1237
1238 void si_meminfo(struct sysinfo *val)
1239 {
1240 val->totalram = totalram_pages;
1241 val->sharedram = 0;
1242 val->freeram = nr_free_pages();
1243 val->bufferram = nr_blockdev_pages();
1244 #ifdef CONFIG_HIGHMEM
1245 val->totalhigh = totalhigh_pages;
1246 val->freehigh = nr_free_highpages();
1247 #else
1248 val->totalhigh = 0;
1249 val->freehigh = 0;
1250 #endif
1251 val->mem_unit = PAGE_SIZE;
1252 }
1253
1254 EXPORT_SYMBOL(si_meminfo);
1255
1256 #ifdef CONFIG_NUMA
1257 void si_meminfo_node(struct sysinfo *val, int nid)
1258 {
1259 pg_data_t *pgdat = NODE_DATA(nid);
1260
1261 val->totalram = pgdat->node_present_pages;
1262 val->freeram = nr_free_pages_pgdat(pgdat);
1263 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1264 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1265 val->mem_unit = PAGE_SIZE;
1266 }
1267 #endif
1268
1269 #define K(x) ((x) << (PAGE_SHIFT-10))
1270
1271 /*
1272 * Show free area list (used inside shift_scroll-lock stuff)
1273 * We also calculate the percentage fragmentation. We do this by counting the
1274 * memory on each free list with the exception of the first item on the list.
1275 */
1276 void show_free_areas(void)
1277 {
1278 struct page_state ps;
1279 int cpu, temperature;
1280 unsigned long active;
1281 unsigned long inactive;
1282 unsigned long free;
1283 struct zone *zone;
1284
1285 for_each_zone(zone) {
1286 show_node(zone);
1287 printk("%s per-cpu:", zone->name);
1288
1289 if (!zone->present_pages) {
1290 printk(" empty\n");
1291 continue;
1292 } else
1293 printk("\n");
1294
1295 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1296 struct per_cpu_pageset *pageset;
1297
1298 if (!cpu_possible(cpu))
1299 continue;
1300
1301 pageset = zone_pcp(zone, cpu);
1302
1303 for (temperature = 0; temperature < 2; temperature++)
1304 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1305 cpu,
1306 temperature ? "cold" : "hot",
1307 pageset->pcp[temperature].low,
1308 pageset->pcp[temperature].high,
1309 pageset->pcp[temperature].batch,
1310 pageset->pcp[temperature].count);
1311 }
1312 }
1313
1314 get_page_state(&ps);
1315 get_zone_counts(&active, &inactive, &free);
1316
1317 printk("Free pages: %11ukB (%ukB HighMem)\n",
1318 K(nr_free_pages()),
1319 K(nr_free_highpages()));
1320
1321 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1322 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1323 active,
1324 inactive,
1325 ps.nr_dirty,
1326 ps.nr_writeback,
1327 ps.nr_unstable,
1328 nr_free_pages(),
1329 ps.nr_slab,
1330 ps.nr_mapped,
1331 ps.nr_page_table_pages);
1332
1333 for_each_zone(zone) {
1334 int i;
1335
1336 show_node(zone);
1337 printk("%s"
1338 " free:%lukB"
1339 " min:%lukB"
1340 " low:%lukB"
1341 " high:%lukB"
1342 " active:%lukB"
1343 " inactive:%lukB"
1344 " present:%lukB"
1345 " pages_scanned:%lu"
1346 " all_unreclaimable? %s"
1347 "\n",
1348 zone->name,
1349 K(zone->free_pages),
1350 K(zone->pages_min),
1351 K(zone->pages_low),
1352 K(zone->pages_high),
1353 K(zone->nr_active),
1354 K(zone->nr_inactive),
1355 K(zone->present_pages),
1356 zone->pages_scanned,
1357 (zone->all_unreclaimable ? "yes" : "no")
1358 );
1359 printk("lowmem_reserve[]:");
1360 for (i = 0; i < MAX_NR_ZONES; i++)
1361 printk(" %lu", zone->lowmem_reserve[i]);
1362 printk("\n");
1363 }
1364
1365 for_each_zone(zone) {
1366 unsigned long nr, flags, order, total = 0;
1367
1368 show_node(zone);
1369 printk("%s: ", zone->name);
1370 if (!zone->present_pages) {
1371 printk("empty\n");
1372 continue;
1373 }
1374
1375 spin_lock_irqsave(&zone->lock, flags);
1376 for (order = 0; order < MAX_ORDER; order++) {
1377 nr = zone->free_area[order].nr_free;
1378 total += nr << order;
1379 printk("%lu*%lukB ", nr, K(1UL) << order);
1380 }
1381 spin_unlock_irqrestore(&zone->lock, flags);
1382 printk("= %lukB\n", K(total));
1383 }
1384
1385 show_swap_cache_info();
1386 }
1387
1388 /*
1389 * Builds allocation fallback zone lists.
1390 */
1391 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1392 {
1393 switch (k) {
1394 struct zone *zone;
1395 default:
1396 BUG();
1397 case ZONE_HIGHMEM:
1398 zone = pgdat->node_zones + ZONE_HIGHMEM;
1399 if (zone->present_pages) {
1400 #ifndef CONFIG_HIGHMEM
1401 BUG();
1402 #endif
1403 zonelist->zones[j++] = zone;
1404 }
1405 case ZONE_NORMAL:
1406 zone = pgdat->node_zones + ZONE_NORMAL;
1407 if (zone->present_pages)
1408 zonelist->zones[j++] = zone;
1409 case ZONE_DMA:
1410 zone = pgdat->node_zones + ZONE_DMA;
1411 if (zone->present_pages)
1412 zonelist->zones[j++] = zone;
1413 }
1414
1415 return j;
1416 }
1417
1418 #ifdef CONFIG_NUMA
1419 #define MAX_NODE_LOAD (num_online_nodes())
1420 static int __initdata node_load[MAX_NUMNODES];
1421 /**
1422 * find_next_best_node - find the next node that should appear in a given node's fallback list
1423 * @node: node whose fallback list we're appending
1424 * @used_node_mask: nodemask_t of already used nodes
1425 *
1426 * We use a number of factors to determine which is the next node that should
1427 * appear on a given node's fallback list. The node should not have appeared
1428 * already in @node's fallback list, and it should be the next closest node
1429 * according to the distance array (which contains arbitrary distance values
1430 * from each node to each node in the system), and should also prefer nodes
1431 * with no CPUs, since presumably they'll have very little allocation pressure
1432 * on them otherwise.
1433 * It returns -1 if no node is found.
1434 */
1435 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1436 {
1437 int i, n, val;
1438 int min_val = INT_MAX;
1439 int best_node = -1;
1440
1441 for_each_online_node(i) {
1442 cpumask_t tmp;
1443
1444 /* Start from local node */
1445 n = (node+i) % num_online_nodes();
1446
1447 /* Don't want a node to appear more than once */
1448 if (node_isset(n, *used_node_mask))
1449 continue;
1450
1451 /* Use the local node if we haven't already */
1452 if (!node_isset(node, *used_node_mask)) {
1453 best_node = node;
1454 break;
1455 }
1456
1457 /* Use the distance array to find the distance */
1458 val = node_distance(node, n);
1459
1460 /* Give preference to headless and unused nodes */
1461 tmp = node_to_cpumask(n);
1462 if (!cpus_empty(tmp))
1463 val += PENALTY_FOR_NODE_WITH_CPUS;
1464
1465 /* Slight preference for less loaded node */
1466 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1467 val += node_load[n];
1468
1469 if (val < min_val) {
1470 min_val = val;
1471 best_node = n;
1472 }
1473 }
1474
1475 if (best_node >= 0)
1476 node_set(best_node, *used_node_mask);
1477
1478 return best_node;
1479 }
1480
1481 static void __init build_zonelists(pg_data_t *pgdat)
1482 {
1483 int i, j, k, node, local_node;
1484 int prev_node, load;
1485 struct zonelist *zonelist;
1486 nodemask_t used_mask;
1487
1488 /* initialize zonelists */
1489 for (i = 0; i < GFP_ZONETYPES; i++) {
1490 zonelist = pgdat->node_zonelists + i;
1491 zonelist->zones[0] = NULL;
1492 }
1493
1494 /* NUMA-aware ordering of nodes */
1495 local_node = pgdat->node_id;
1496 load = num_online_nodes();
1497 prev_node = local_node;
1498 nodes_clear(used_mask);
1499 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1500 /*
1501 * We don't want to pressure a particular node.
1502 * So adding penalty to the first node in same
1503 * distance group to make it round-robin.
1504 */
1505 if (node_distance(local_node, node) !=
1506 node_distance(local_node, prev_node))
1507 node_load[node] += load;
1508 prev_node = node;
1509 load--;
1510 for (i = 0; i < GFP_ZONETYPES; i++) {
1511 zonelist = pgdat->node_zonelists + i;
1512 for (j = 0; zonelist->zones[j] != NULL; j++);
1513
1514 k = ZONE_NORMAL;
1515 if (i & __GFP_HIGHMEM)
1516 k = ZONE_HIGHMEM;
1517 if (i & __GFP_DMA)
1518 k = ZONE_DMA;
1519
1520 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1521 zonelist->zones[j] = NULL;
1522 }
1523 }
1524 }
1525
1526 #else /* CONFIG_NUMA */
1527
1528 static void __init build_zonelists(pg_data_t *pgdat)
1529 {
1530 int i, j, k, node, local_node;
1531
1532 local_node = pgdat->node_id;
1533 for (i = 0; i < GFP_ZONETYPES; i++) {
1534 struct zonelist *zonelist;
1535
1536 zonelist = pgdat->node_zonelists + i;
1537
1538 j = 0;
1539 k = ZONE_NORMAL;
1540 if (i & __GFP_HIGHMEM)
1541 k = ZONE_HIGHMEM;
1542 if (i & __GFP_DMA)
1543 k = ZONE_DMA;
1544
1545 j = build_zonelists_node(pgdat, zonelist, j, k);
1546 /*
1547 * Now we build the zonelist so that it contains the zones
1548 * of all the other nodes.
1549 * We don't want to pressure a particular node, so when
1550 * building the zones for node N, we make sure that the
1551 * zones coming right after the local ones are those from
1552 * node N+1 (modulo N)
1553 */
1554 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1555 if (!node_online(node))
1556 continue;
1557 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1558 }
1559 for (node = 0; node < local_node; node++) {
1560 if (!node_online(node))
1561 continue;
1562 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1563 }
1564
1565 zonelist->zones[j] = NULL;
1566 }
1567 }
1568
1569 #endif /* CONFIG_NUMA */
1570
1571 void __init build_all_zonelists(void)
1572 {
1573 int i;
1574
1575 for_each_online_node(i)
1576 build_zonelists(NODE_DATA(i));
1577 printk("Built %i zonelists\n", num_online_nodes());
1578 cpuset_init_current_mems_allowed();
1579 }
1580
1581 /*
1582 * Helper functions to size the waitqueue hash table.
1583 * Essentially these want to choose hash table sizes sufficiently
1584 * large so that collisions trying to wait on pages are rare.
1585 * But in fact, the number of active page waitqueues on typical
1586 * systems is ridiculously low, less than 200. So this is even
1587 * conservative, even though it seems large.
1588 *
1589 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1590 * waitqueues, i.e. the size of the waitq table given the number of pages.
1591 */
1592 #define PAGES_PER_WAITQUEUE 256
1593
1594 static inline unsigned long wait_table_size(unsigned long pages)
1595 {
1596 unsigned long size = 1;
1597
1598 pages /= PAGES_PER_WAITQUEUE;
1599
1600 while (size < pages)
1601 size <<= 1;
1602
1603 /*
1604 * Once we have dozens or even hundreds of threads sleeping
1605 * on IO we've got bigger problems than wait queue collision.
1606 * Limit the size of the wait table to a reasonable size.
1607 */
1608 size = min(size, 4096UL);
1609
1610 return max(size, 4UL);
1611 }
1612
1613 /*
1614 * This is an integer logarithm so that shifts can be used later
1615 * to extract the more random high bits from the multiplicative
1616 * hash function before the remainder is taken.
1617 */
1618 static inline unsigned long wait_table_bits(unsigned long size)
1619 {
1620 return ffz(~size);
1621 }
1622
1623 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1624
1625 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1626 unsigned long *zones_size, unsigned long *zholes_size)
1627 {
1628 unsigned long realtotalpages, totalpages = 0;
1629 int i;
1630
1631 for (i = 0; i < MAX_NR_ZONES; i++)
1632 totalpages += zones_size[i];
1633 pgdat->node_spanned_pages = totalpages;
1634
1635 realtotalpages = totalpages;
1636 if (zholes_size)
1637 for (i = 0; i < MAX_NR_ZONES; i++)
1638 realtotalpages -= zholes_size[i];
1639 pgdat->node_present_pages = realtotalpages;
1640 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1641 }
1642
1643
1644 /*
1645 * Initially all pages are reserved - free ones are freed
1646 * up by free_all_bootmem() once the early boot process is
1647 * done. Non-atomic initialization, single-pass.
1648 */
1649 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1650 unsigned long start_pfn)
1651 {
1652 struct page *page;
1653 unsigned long end_pfn = start_pfn + size;
1654 unsigned long pfn;
1655
1656 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1657 if (!early_pfn_valid(pfn))
1658 continue;
1659 if (!early_pfn_in_nid(pfn, nid))
1660 continue;
1661 page = pfn_to_page(pfn);
1662 set_page_links(page, zone, nid, pfn);
1663 set_page_count(page, 0);
1664 reset_page_mapcount(page);
1665 SetPageReserved(page);
1666 INIT_LIST_HEAD(&page->lru);
1667 #ifdef WANT_PAGE_VIRTUAL
1668 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1669 if (!is_highmem_idx(zone))
1670 set_page_address(page, __va(pfn << PAGE_SHIFT));
1671 #endif
1672 }
1673 }
1674
1675 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1676 unsigned long size)
1677 {
1678 int order;
1679 for (order = 0; order < MAX_ORDER ; order++) {
1680 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1681 zone->free_area[order].nr_free = 0;
1682 }
1683 }
1684
1685 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1686 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1687 unsigned long size)
1688 {
1689 unsigned long snum = pfn_to_section_nr(pfn);
1690 unsigned long end = pfn_to_section_nr(pfn + size);
1691
1692 if (FLAGS_HAS_NODE)
1693 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1694 else
1695 for (; snum <= end; snum++)
1696 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1697 }
1698
1699 #ifndef __HAVE_ARCH_MEMMAP_INIT
1700 #define memmap_init(size, nid, zone, start_pfn) \
1701 memmap_init_zone((size), (nid), (zone), (start_pfn))
1702 #endif
1703
1704 static int __devinit zone_batchsize(struct zone *zone)
1705 {
1706 int batch;
1707
1708 /*
1709 * The per-cpu-pages pools are set to around 1000th of the
1710 * size of the zone. But no more than 1/4 of a meg - there's
1711 * no point in going beyond the size of L2 cache.
1712 *
1713 * OK, so we don't know how big the cache is. So guess.
1714 */
1715 batch = zone->present_pages / 1024;
1716 if (batch * PAGE_SIZE > 256 * 1024)
1717 batch = (256 * 1024) / PAGE_SIZE;
1718 batch /= 4; /* We effectively *= 4 below */
1719 if (batch < 1)
1720 batch = 1;
1721
1722 /*
1723 * Clamp the batch to a 2^n - 1 value. Having a power
1724 * of 2 value was found to be more likely to have
1725 * suboptimal cache aliasing properties in some cases.
1726 *
1727 * For example if 2 tasks are alternately allocating
1728 * batches of pages, one task can end up with a lot
1729 * of pages of one half of the possible page colors
1730 * and the other with pages of the other colors.
1731 */
1732 batch = (1 << fls(batch + batch/2)) - 1;
1733 return batch;
1734 }
1735
1736 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1737 {
1738 struct per_cpu_pages *pcp;
1739
1740 pcp = &p->pcp[0]; /* hot */
1741 pcp->count = 0;
1742 pcp->low = 2 * batch;
1743 pcp->high = 6 * batch;
1744 pcp->batch = max(1UL, 1 * batch);
1745 INIT_LIST_HEAD(&pcp->list);
1746
1747 pcp = &p->pcp[1]; /* cold*/
1748 pcp->count = 0;
1749 pcp->low = 0;
1750 pcp->high = 2 * batch;
1751 pcp->batch = max(1UL, 1 * batch);
1752 INIT_LIST_HEAD(&pcp->list);
1753 }
1754
1755 #ifdef CONFIG_NUMA
1756 /*
1757 * Boot pageset table. One per cpu which is going to be used for all
1758 * zones and all nodes. The parameters will be set in such a way
1759 * that an item put on a list will immediately be handed over to
1760 * the buddy list. This is safe since pageset manipulation is done
1761 * with interrupts disabled.
1762 *
1763 * Some NUMA counter updates may also be caught by the boot pagesets.
1764 *
1765 * The boot_pagesets must be kept even after bootup is complete for
1766 * unused processors and/or zones. They do play a role for bootstrapping
1767 * hotplugged processors.
1768 *
1769 * zoneinfo_show() and maybe other functions do
1770 * not check if the processor is online before following the pageset pointer.
1771 * Other parts of the kernel may not check if the zone is available.
1772 */
1773 static struct per_cpu_pageset
1774 boot_pageset[NR_CPUS];
1775
1776 /*
1777 * Dynamically allocate memory for the
1778 * per cpu pageset array in struct zone.
1779 */
1780 static int __devinit process_zones(int cpu)
1781 {
1782 struct zone *zone, *dzone;
1783
1784 for_each_zone(zone) {
1785
1786 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1787 GFP_KERNEL, cpu_to_node(cpu));
1788 if (!zone->pageset[cpu])
1789 goto bad;
1790
1791 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1792 }
1793
1794 return 0;
1795 bad:
1796 for_each_zone(dzone) {
1797 if (dzone == zone)
1798 break;
1799 kfree(dzone->pageset[cpu]);
1800 dzone->pageset[cpu] = NULL;
1801 }
1802 return -ENOMEM;
1803 }
1804
1805 static inline void free_zone_pagesets(int cpu)
1806 {
1807 #ifdef CONFIG_NUMA
1808 struct zone *zone;
1809
1810 for_each_zone(zone) {
1811 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1812
1813 zone_pcp(zone, cpu) = NULL;
1814 kfree(pset);
1815 }
1816 #endif
1817 }
1818
1819 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1820 unsigned long action,
1821 void *hcpu)
1822 {
1823 int cpu = (long)hcpu;
1824 int ret = NOTIFY_OK;
1825
1826 switch (action) {
1827 case CPU_UP_PREPARE:
1828 if (process_zones(cpu))
1829 ret = NOTIFY_BAD;
1830 break;
1831 #ifdef CONFIG_HOTPLUG_CPU
1832 case CPU_DEAD:
1833 free_zone_pagesets(cpu);
1834 break;
1835 #endif
1836 default:
1837 break;
1838 }
1839 return ret;
1840 }
1841
1842 static struct notifier_block pageset_notifier =
1843 { &pageset_cpuup_callback, NULL, 0 };
1844
1845 void __init setup_per_cpu_pageset()
1846 {
1847 int err;
1848
1849 /* Initialize per_cpu_pageset for cpu 0.
1850 * A cpuup callback will do this for every cpu
1851 * as it comes online
1852 */
1853 err = process_zones(smp_processor_id());
1854 BUG_ON(err);
1855 register_cpu_notifier(&pageset_notifier);
1856 }
1857
1858 #endif
1859
1860 /*
1861 * Set up the zone data structures:
1862 * - mark all pages reserved
1863 * - mark all memory queues empty
1864 * - clear the memory bitmaps
1865 */
1866 static void __init free_area_init_core(struct pglist_data *pgdat,
1867 unsigned long *zones_size, unsigned long *zholes_size)
1868 {
1869 unsigned long i, j;
1870 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1871 int cpu, nid = pgdat->node_id;
1872 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1873
1874 pgdat->nr_zones = 0;
1875 init_waitqueue_head(&pgdat->kswapd_wait);
1876 pgdat->kswapd_max_order = 0;
1877
1878 for (j = 0; j < MAX_NR_ZONES; j++) {
1879 struct zone *zone = pgdat->node_zones + j;
1880 unsigned long size, realsize;
1881 unsigned long batch;
1882
1883 realsize = size = zones_size[j];
1884 if (zholes_size)
1885 realsize -= zholes_size[j];
1886
1887 if (j == ZONE_DMA || j == ZONE_NORMAL)
1888 nr_kernel_pages += realsize;
1889 nr_all_pages += realsize;
1890
1891 zone->spanned_pages = size;
1892 zone->present_pages = realsize;
1893 zone->name = zone_names[j];
1894 spin_lock_init(&zone->lock);
1895 spin_lock_init(&zone->lru_lock);
1896 zone->zone_pgdat = pgdat;
1897 zone->free_pages = 0;
1898
1899 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1900
1901 batch = zone_batchsize(zone);
1902
1903 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1904 #ifdef CONFIG_NUMA
1905 /* Early boot. Slab allocator not functional yet */
1906 zone->pageset[cpu] = &boot_pageset[cpu];
1907 setup_pageset(&boot_pageset[cpu],0);
1908 #else
1909 setup_pageset(zone_pcp(zone,cpu), batch);
1910 #endif
1911 }
1912 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1913 zone_names[j], realsize, batch);
1914 INIT_LIST_HEAD(&zone->active_list);
1915 INIT_LIST_HEAD(&zone->inactive_list);
1916 zone->nr_scan_active = 0;
1917 zone->nr_scan_inactive = 0;
1918 zone->nr_active = 0;
1919 zone->nr_inactive = 0;
1920 atomic_set(&zone->reclaim_in_progress, -1);
1921 if (!size)
1922 continue;
1923
1924 /*
1925 * The per-page waitqueue mechanism uses hashed waitqueues
1926 * per zone.
1927 */
1928 zone->wait_table_size = wait_table_size(size);
1929 zone->wait_table_bits =
1930 wait_table_bits(zone->wait_table_size);
1931 zone->wait_table = (wait_queue_head_t *)
1932 alloc_bootmem_node(pgdat, zone->wait_table_size
1933 * sizeof(wait_queue_head_t));
1934
1935 for(i = 0; i < zone->wait_table_size; ++i)
1936 init_waitqueue_head(zone->wait_table + i);
1937
1938 pgdat->nr_zones = j+1;
1939
1940 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1941 zone->zone_start_pfn = zone_start_pfn;
1942
1943 if ((zone_start_pfn) & (zone_required_alignment-1))
1944 printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1945
1946 memmap_init(size, nid, j, zone_start_pfn);
1947
1948 zonetable_add(zone, nid, j, zone_start_pfn, size);
1949
1950 zone_start_pfn += size;
1951
1952 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1953 }
1954 }
1955
1956 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1957 {
1958 /* Skip empty nodes */
1959 if (!pgdat->node_spanned_pages)
1960 return;
1961
1962 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1963 /* ia64 gets its own node_mem_map, before this, without bootmem */
1964 if (!pgdat->node_mem_map) {
1965 unsigned long size;
1966 struct page *map;
1967
1968 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1969 map = alloc_remap(pgdat->node_id, size);
1970 if (!map)
1971 map = alloc_bootmem_node(pgdat, size);
1972 pgdat->node_mem_map = map;
1973 }
1974 #ifdef CONFIG_FLATMEM
1975 /*
1976 * With no DISCONTIG, the global mem_map is just set as node 0's
1977 */
1978 if (pgdat == NODE_DATA(0))
1979 mem_map = NODE_DATA(0)->node_mem_map;
1980 #endif
1981 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1982 }
1983
1984 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1985 unsigned long *zones_size, unsigned long node_start_pfn,
1986 unsigned long *zholes_size)
1987 {
1988 pgdat->node_id = nid;
1989 pgdat->node_start_pfn = node_start_pfn;
1990 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1991
1992 alloc_node_mem_map(pgdat);
1993
1994 free_area_init_core(pgdat, zones_size, zholes_size);
1995 }
1996
1997 #ifndef CONFIG_NEED_MULTIPLE_NODES
1998 static bootmem_data_t contig_bootmem_data;
1999 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2000
2001 EXPORT_SYMBOL(contig_page_data);
2002 #endif
2003
2004 void __init free_area_init(unsigned long *zones_size)
2005 {
2006 free_area_init_node(0, NODE_DATA(0), zones_size,
2007 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2008 }
2009
2010 #ifdef CONFIG_PROC_FS
2011
2012 #include <linux/seq_file.h>
2013
2014 static void *frag_start(struct seq_file *m, loff_t *pos)
2015 {
2016 pg_data_t *pgdat;
2017 loff_t node = *pos;
2018
2019 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2020 --node;
2021
2022 return pgdat;
2023 }
2024
2025 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2026 {
2027 pg_data_t *pgdat = (pg_data_t *)arg;
2028
2029 (*pos)++;
2030 return pgdat->pgdat_next;
2031 }
2032
2033 static void frag_stop(struct seq_file *m, void *arg)
2034 {
2035 }
2036
2037 /*
2038 * This walks the free areas for each zone.
2039 */
2040 static int frag_show(struct seq_file *m, void *arg)
2041 {
2042 pg_data_t *pgdat = (pg_data_t *)arg;
2043 struct zone *zone;
2044 struct zone *node_zones = pgdat->node_zones;
2045 unsigned long flags;
2046 int order;
2047
2048 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2049 if (!zone->present_pages)
2050 continue;
2051
2052 spin_lock_irqsave(&zone->lock, flags);
2053 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2054 for (order = 0; order < MAX_ORDER; ++order)
2055 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2056 spin_unlock_irqrestore(&zone->lock, flags);
2057 seq_putc(m, '\n');
2058 }
2059 return 0;
2060 }
2061
2062 struct seq_operations fragmentation_op = {
2063 .start = frag_start,
2064 .next = frag_next,
2065 .stop = frag_stop,
2066 .show = frag_show,
2067 };
2068
2069 /*
2070 * Output information about zones in @pgdat.
2071 */
2072 static int zoneinfo_show(struct seq_file *m, void *arg)
2073 {
2074 pg_data_t *pgdat = arg;
2075 struct zone *zone;
2076 struct zone *node_zones = pgdat->node_zones;
2077 unsigned long flags;
2078
2079 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2080 int i;
2081
2082 if (!zone->present_pages)
2083 continue;
2084
2085 spin_lock_irqsave(&zone->lock, flags);
2086 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2087 seq_printf(m,
2088 "\n pages free %lu"
2089 "\n min %lu"
2090 "\n low %lu"
2091 "\n high %lu"
2092 "\n active %lu"
2093 "\n inactive %lu"
2094 "\n scanned %lu (a: %lu i: %lu)"
2095 "\n spanned %lu"
2096 "\n present %lu",
2097 zone->free_pages,
2098 zone->pages_min,
2099 zone->pages_low,
2100 zone->pages_high,
2101 zone->nr_active,
2102 zone->nr_inactive,
2103 zone->pages_scanned,
2104 zone->nr_scan_active, zone->nr_scan_inactive,
2105 zone->spanned_pages,
2106 zone->present_pages);
2107 seq_printf(m,
2108 "\n protection: (%lu",
2109 zone->lowmem_reserve[0]);
2110 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2111 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2112 seq_printf(m,
2113 ")"
2114 "\n pagesets");
2115 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2116 struct per_cpu_pageset *pageset;
2117 int j;
2118
2119 pageset = zone_pcp(zone, i);
2120 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2121 if (pageset->pcp[j].count)
2122 break;
2123 }
2124 if (j == ARRAY_SIZE(pageset->pcp))
2125 continue;
2126 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2127 seq_printf(m,
2128 "\n cpu: %i pcp: %i"
2129 "\n count: %i"
2130 "\n low: %i"
2131 "\n high: %i"
2132 "\n batch: %i",
2133 i, j,
2134 pageset->pcp[j].count,
2135 pageset->pcp[j].low,
2136 pageset->pcp[j].high,
2137 pageset->pcp[j].batch);
2138 }
2139 #ifdef CONFIG_NUMA
2140 seq_printf(m,
2141 "\n numa_hit: %lu"
2142 "\n numa_miss: %lu"
2143 "\n numa_foreign: %lu"
2144 "\n interleave_hit: %lu"
2145 "\n local_node: %lu"
2146 "\n other_node: %lu",
2147 pageset->numa_hit,
2148 pageset->numa_miss,
2149 pageset->numa_foreign,
2150 pageset->interleave_hit,
2151 pageset->local_node,
2152 pageset->other_node);
2153 #endif
2154 }
2155 seq_printf(m,
2156 "\n all_unreclaimable: %u"
2157 "\n prev_priority: %i"
2158 "\n temp_priority: %i"
2159 "\n start_pfn: %lu",
2160 zone->all_unreclaimable,
2161 zone->prev_priority,
2162 zone->temp_priority,
2163 zone->zone_start_pfn);
2164 spin_unlock_irqrestore(&zone->lock, flags);
2165 seq_putc(m, '\n');
2166 }
2167 return 0;
2168 }
2169
2170 struct seq_operations zoneinfo_op = {
2171 .start = frag_start, /* iterate over all zones. The same as in
2172 * fragmentation. */
2173 .next = frag_next,
2174 .stop = frag_stop,
2175 .show = zoneinfo_show,
2176 };
2177
2178 static char *vmstat_text[] = {
2179 "nr_dirty",
2180 "nr_writeback",
2181 "nr_unstable",
2182 "nr_page_table_pages",
2183 "nr_mapped",
2184 "nr_slab",
2185
2186 "pgpgin",
2187 "pgpgout",
2188 "pswpin",
2189 "pswpout",
2190 "pgalloc_high",
2191
2192 "pgalloc_normal",
2193 "pgalloc_dma",
2194 "pgfree",
2195 "pgactivate",
2196 "pgdeactivate",
2197
2198 "pgfault",
2199 "pgmajfault",
2200 "pgrefill_high",
2201 "pgrefill_normal",
2202 "pgrefill_dma",
2203
2204 "pgsteal_high",
2205 "pgsteal_normal",
2206 "pgsteal_dma",
2207 "pgscan_kswapd_high",
2208 "pgscan_kswapd_normal",
2209
2210 "pgscan_kswapd_dma",
2211 "pgscan_direct_high",
2212 "pgscan_direct_normal",
2213 "pgscan_direct_dma",
2214 "pginodesteal",
2215
2216 "slabs_scanned",
2217 "kswapd_steal",
2218 "kswapd_inodesteal",
2219 "pageoutrun",
2220 "allocstall",
2221
2222 "pgrotated",
2223 "nr_bounce",
2224 };
2225
2226 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2227 {
2228 struct page_state *ps;
2229
2230 if (*pos >= ARRAY_SIZE(vmstat_text))
2231 return NULL;
2232
2233 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2234 m->private = ps;
2235 if (!ps)
2236 return ERR_PTR(-ENOMEM);
2237 get_full_page_state(ps);
2238 ps->pgpgin /= 2; /* sectors -> kbytes */
2239 ps->pgpgout /= 2;
2240 return (unsigned long *)ps + *pos;
2241 }
2242
2243 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2244 {
2245 (*pos)++;
2246 if (*pos >= ARRAY_SIZE(vmstat_text))
2247 return NULL;
2248 return (unsigned long *)m->private + *pos;
2249 }
2250
2251 static int vmstat_show(struct seq_file *m, void *arg)
2252 {
2253 unsigned long *l = arg;
2254 unsigned long off = l - (unsigned long *)m->private;
2255
2256 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2257 return 0;
2258 }
2259
2260 static void vmstat_stop(struct seq_file *m, void *arg)
2261 {
2262 kfree(m->private);
2263 m->private = NULL;
2264 }
2265
2266 struct seq_operations vmstat_op = {
2267 .start = vmstat_start,
2268 .next = vmstat_next,
2269 .stop = vmstat_stop,
2270 .show = vmstat_show,
2271 };
2272
2273 #endif /* CONFIG_PROC_FS */
2274
2275 #ifdef CONFIG_HOTPLUG_CPU
2276 static int page_alloc_cpu_notify(struct notifier_block *self,
2277 unsigned long action, void *hcpu)
2278 {
2279 int cpu = (unsigned long)hcpu;
2280 long *count;
2281 unsigned long *src, *dest;
2282
2283 if (action == CPU_DEAD) {
2284 int i;
2285
2286 /* Drain local pagecache count. */
2287 count = &per_cpu(nr_pagecache_local, cpu);
2288 atomic_add(*count, &nr_pagecache);
2289 *count = 0;
2290 local_irq_disable();
2291 __drain_pages(cpu);
2292
2293 /* Add dead cpu's page_states to our own. */
2294 dest = (unsigned long *)&__get_cpu_var(page_states);
2295 src = (unsigned long *)&per_cpu(page_states, cpu);
2296
2297 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2298 i++) {
2299 dest[i] += src[i];
2300 src[i] = 0;
2301 }
2302
2303 local_irq_enable();
2304 }
2305 return NOTIFY_OK;
2306 }
2307 #endif /* CONFIG_HOTPLUG_CPU */
2308
2309 void __init page_alloc_init(void)
2310 {
2311 hotcpu_notifier(page_alloc_cpu_notify, 0);
2312 }
2313
2314 /*
2315 * setup_per_zone_lowmem_reserve - called whenever
2316 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2317 * has a correct pages reserved value, so an adequate number of
2318 * pages are left in the zone after a successful __alloc_pages().
2319 */
2320 static void setup_per_zone_lowmem_reserve(void)
2321 {
2322 struct pglist_data *pgdat;
2323 int j, idx;
2324
2325 for_each_pgdat(pgdat) {
2326 for (j = 0; j < MAX_NR_ZONES; j++) {
2327 struct zone *zone = pgdat->node_zones + j;
2328 unsigned long present_pages = zone->present_pages;
2329
2330 zone->lowmem_reserve[j] = 0;
2331
2332 for (idx = j-1; idx >= 0; idx--) {
2333 struct zone *lower_zone;
2334
2335 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2336 sysctl_lowmem_reserve_ratio[idx] = 1;
2337
2338 lower_zone = pgdat->node_zones + idx;
2339 lower_zone->lowmem_reserve[j] = present_pages /
2340 sysctl_lowmem_reserve_ratio[idx];
2341 present_pages += lower_zone->present_pages;
2342 }
2343 }
2344 }
2345 }
2346
2347 /*
2348 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2349 * that the pages_{min,low,high} values for each zone are set correctly
2350 * with respect to min_free_kbytes.
2351 */
2352 static void setup_per_zone_pages_min(void)
2353 {
2354 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2355 unsigned long lowmem_pages = 0;
2356 struct zone *zone;
2357 unsigned long flags;
2358
2359 /* Calculate total number of !ZONE_HIGHMEM pages */
2360 for_each_zone(zone) {
2361 if (!is_highmem(zone))
2362 lowmem_pages += zone->present_pages;
2363 }
2364
2365 for_each_zone(zone) {
2366 spin_lock_irqsave(&zone->lru_lock, flags);
2367 if (is_highmem(zone)) {
2368 /*
2369 * Often, highmem doesn't need to reserve any pages.
2370 * But the pages_min/low/high values are also used for
2371 * batching up page reclaim activity so we need a
2372 * decent value here.
2373 */
2374 int min_pages;
2375
2376 min_pages = zone->present_pages / 1024;
2377 if (min_pages < SWAP_CLUSTER_MAX)
2378 min_pages = SWAP_CLUSTER_MAX;
2379 if (min_pages > 128)
2380 min_pages = 128;
2381 zone->pages_min = min_pages;
2382 } else {
2383 /* if it's a lowmem zone, reserve a number of pages
2384 * proportionate to the zone's size.
2385 */
2386 zone->pages_min = (pages_min * zone->present_pages) /
2387 lowmem_pages;
2388 }
2389
2390 /*
2391 * When interpreting these watermarks, just keep in mind that:
2392 * zone->pages_min == (zone->pages_min * 4) / 4;
2393 */
2394 zone->pages_low = (zone->pages_min * 5) / 4;
2395 zone->pages_high = (zone->pages_min * 6) / 4;
2396 spin_unlock_irqrestore(&zone->lru_lock, flags);
2397 }
2398 }
2399
2400 /*
2401 * Initialise min_free_kbytes.
2402 *
2403 * For small machines we want it small (128k min). For large machines
2404 * we want it large (64MB max). But it is not linear, because network
2405 * bandwidth does not increase linearly with machine size. We use
2406 *
2407 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2408 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2409 *
2410 * which yields
2411 *
2412 * 16MB: 512k
2413 * 32MB: 724k
2414 * 64MB: 1024k
2415 * 128MB: 1448k
2416 * 256MB: 2048k
2417 * 512MB: 2896k
2418 * 1024MB: 4096k
2419 * 2048MB: 5792k
2420 * 4096MB: 8192k
2421 * 8192MB: 11584k
2422 * 16384MB: 16384k
2423 */
2424 static int __init init_per_zone_pages_min(void)
2425 {
2426 unsigned long lowmem_kbytes;
2427
2428 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2429
2430 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2431 if (min_free_kbytes < 128)
2432 min_free_kbytes = 128;
2433 if (min_free_kbytes > 65536)
2434 min_free_kbytes = 65536;
2435 setup_per_zone_pages_min();
2436 setup_per_zone_lowmem_reserve();
2437 return 0;
2438 }
2439 module_init(init_per_zone_pages_min)
2440
2441 /*
2442 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2443 * that we can call two helper functions whenever min_free_kbytes
2444 * changes.
2445 */
2446 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2447 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2448 {
2449 proc_dointvec(table, write, file, buffer, length, ppos);
2450 setup_per_zone_pages_min();
2451 return 0;
2452 }
2453
2454 /*
2455 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2456 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2457 * whenever sysctl_lowmem_reserve_ratio changes.
2458 *
2459 * The reserve ratio obviously has absolutely no relation with the
2460 * pages_min watermarks. The lowmem reserve ratio can only make sense
2461 * if in function of the boot time zone sizes.
2462 */
2463 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2464 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2465 {
2466 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2467 setup_per_zone_lowmem_reserve();
2468 return 0;
2469 }
2470
2471 __initdata int hashdist = HASHDIST_DEFAULT;
2472
2473 #ifdef CONFIG_NUMA
2474 static int __init set_hashdist(char *str)
2475 {
2476 if (!str)
2477 return 0;
2478 hashdist = simple_strtoul(str, &str, 0);
2479 return 1;
2480 }
2481 __setup("hashdist=", set_hashdist);
2482 #endif
2483
2484 /*
2485 * allocate a large system hash table from bootmem
2486 * - it is assumed that the hash table must contain an exact power-of-2
2487 * quantity of entries
2488 * - limit is the number of hash buckets, not the total allocation size
2489 */
2490 void *__init alloc_large_system_hash(const char *tablename,
2491 unsigned long bucketsize,
2492 unsigned long numentries,
2493 int scale,
2494 int flags,
2495 unsigned int *_hash_shift,
2496 unsigned int *_hash_mask,
2497 unsigned long limit)
2498 {
2499 unsigned long long max = limit;
2500 unsigned long log2qty, size;
2501 void *table = NULL;
2502
2503 /* allow the kernel cmdline to have a say */
2504 if (!numentries) {
2505 /* round applicable memory size up to nearest megabyte */
2506 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2507 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2508 numentries >>= 20 - PAGE_SHIFT;
2509 numentries <<= 20 - PAGE_SHIFT;
2510
2511 /* limit to 1 bucket per 2^scale bytes of low memory */
2512 if (scale > PAGE_SHIFT)
2513 numentries >>= (scale - PAGE_SHIFT);
2514 else
2515 numentries <<= (PAGE_SHIFT - scale);
2516 }
2517 /* rounded up to nearest power of 2 in size */
2518 numentries = 1UL << (long_log2(numentries) + 1);
2519
2520 /* limit allocation size to 1/16 total memory by default */
2521 if (max == 0) {
2522 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2523 do_div(max, bucketsize);
2524 }
2525
2526 if (numentries > max)
2527 numentries = max;
2528
2529 log2qty = long_log2(numentries);
2530
2531 do {
2532 size = bucketsize << log2qty;
2533 if (flags & HASH_EARLY)
2534 table = alloc_bootmem(size);
2535 else if (hashdist)
2536 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2537 else {
2538 unsigned long order;
2539 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2540 ;
2541 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2542 }
2543 } while (!table && size > PAGE_SIZE && --log2qty);
2544
2545 if (!table)
2546 panic("Failed to allocate %s hash table\n", tablename);
2547
2548 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2549 tablename,
2550 (1U << log2qty),
2551 long_log2(size) - PAGE_SHIFT,
2552 size);
2553
2554 if (_hash_shift)
2555 *_hash_shift = log2qty;
2556 if (_hash_mask)
2557 *_hash_mask = (1 << log2qty) - 1;
2558
2559 return table;
2560 }
This page took 0.091606 seconds and 5 git commands to generate.