swap: cull unevictable pages in fault path
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
245 }
246
247 /*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262 static void free_compound_page(struct page *page)
263 {
264 __free_pages_ok(page, compound_order(page));
265 }
266
267 void prep_compound_page(struct page *page, unsigned long order)
268 {
269 int i;
270 int nr_pages = 1 << order;
271 struct page *p = page + 1;
272
273 set_compound_page_dtor(page, free_compound_page);
274 set_compound_order(page, order);
275 __SetPageHead(page);
276 for (i = 1; i < nr_pages; i++, p++) {
277 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
278 p = pfn_to_page(page_to_pfn(page) + i);
279 __SetPageTail(p);
280 p->first_page = page;
281 }
282 }
283
284 static void destroy_compound_page(struct page *page, unsigned long order)
285 {
286 int i;
287 int nr_pages = 1 << order;
288 struct page *p = page + 1;
289
290 if (unlikely(compound_order(page) != order))
291 bad_page(page);
292
293 if (unlikely(!PageHead(page)))
294 bad_page(page);
295 __ClearPageHead(page);
296 for (i = 1; i < nr_pages; i++, p++) {
297 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
298 p = pfn_to_page(page_to_pfn(page) + i);
299
300 if (unlikely(!PageTail(p) |
301 (p->first_page != page)))
302 bad_page(page);
303 __ClearPageTail(p);
304 }
305 }
306
307 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
308 {
309 int i;
310
311 /*
312 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
313 * and __GFP_HIGHMEM from hard or soft interrupt context.
314 */
315 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
316 for (i = 0; i < (1 << order); i++)
317 clear_highpage(page + i);
318 }
319
320 static inline void set_page_order(struct page *page, int order)
321 {
322 set_page_private(page, order);
323 __SetPageBuddy(page);
324 }
325
326 static inline void rmv_page_order(struct page *page)
327 {
328 __ClearPageBuddy(page);
329 set_page_private(page, 0);
330 }
331
332 /*
333 * Locate the struct page for both the matching buddy in our
334 * pair (buddy1) and the combined O(n+1) page they form (page).
335 *
336 * 1) Any buddy B1 will have an order O twin B2 which satisfies
337 * the following equation:
338 * B2 = B1 ^ (1 << O)
339 * For example, if the starting buddy (buddy2) is #8 its order
340 * 1 buddy is #10:
341 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
342 *
343 * 2) Any buddy B will have an order O+1 parent P which
344 * satisfies the following equation:
345 * P = B & ~(1 << O)
346 *
347 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
348 */
349 static inline struct page *
350 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
351 {
352 unsigned long buddy_idx = page_idx ^ (1 << order);
353
354 return page + (buddy_idx - page_idx);
355 }
356
357 static inline unsigned long
358 __find_combined_index(unsigned long page_idx, unsigned int order)
359 {
360 return (page_idx & ~(1 << order));
361 }
362
363 /*
364 * This function checks whether a page is free && is the buddy
365 * we can do coalesce a page and its buddy if
366 * (a) the buddy is not in a hole &&
367 * (b) the buddy is in the buddy system &&
368 * (c) a page and its buddy have the same order &&
369 * (d) a page and its buddy are in the same zone.
370 *
371 * For recording whether a page is in the buddy system, we use PG_buddy.
372 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
373 *
374 * For recording page's order, we use page_private(page).
375 */
376 static inline int page_is_buddy(struct page *page, struct page *buddy,
377 int order)
378 {
379 if (!pfn_valid_within(page_to_pfn(buddy)))
380 return 0;
381
382 if (page_zone_id(page) != page_zone_id(buddy))
383 return 0;
384
385 if (PageBuddy(buddy) && page_order(buddy) == order) {
386 BUG_ON(page_count(buddy) != 0);
387 return 1;
388 }
389 return 0;
390 }
391
392 /*
393 * Freeing function for a buddy system allocator.
394 *
395 * The concept of a buddy system is to maintain direct-mapped table
396 * (containing bit values) for memory blocks of various "orders".
397 * The bottom level table contains the map for the smallest allocatable
398 * units of memory (here, pages), and each level above it describes
399 * pairs of units from the levels below, hence, "buddies".
400 * At a high level, all that happens here is marking the table entry
401 * at the bottom level available, and propagating the changes upward
402 * as necessary, plus some accounting needed to play nicely with other
403 * parts of the VM system.
404 * At each level, we keep a list of pages, which are heads of continuous
405 * free pages of length of (1 << order) and marked with PG_buddy. Page's
406 * order is recorded in page_private(page) field.
407 * So when we are allocating or freeing one, we can derive the state of the
408 * other. That is, if we allocate a small block, and both were
409 * free, the remainder of the region must be split into blocks.
410 * If a block is freed, and its buddy is also free, then this
411 * triggers coalescing into a block of larger size.
412 *
413 * -- wli
414 */
415
416 static inline void __free_one_page(struct page *page,
417 struct zone *zone, unsigned int order)
418 {
419 unsigned long page_idx;
420 int order_size = 1 << order;
421 int migratetype = get_pageblock_migratetype(page);
422
423 if (unlikely(PageCompound(page)))
424 destroy_compound_page(page, order);
425
426 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
427
428 VM_BUG_ON(page_idx & (order_size - 1));
429 VM_BUG_ON(bad_range(zone, page));
430
431 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
432 while (order < MAX_ORDER-1) {
433 unsigned long combined_idx;
434 struct page *buddy;
435
436 buddy = __page_find_buddy(page, page_idx, order);
437 if (!page_is_buddy(page, buddy, order))
438 break;
439
440 /* Our buddy is free, merge with it and move up one order. */
441 list_del(&buddy->lru);
442 zone->free_area[order].nr_free--;
443 rmv_page_order(buddy);
444 combined_idx = __find_combined_index(page_idx, order);
445 page = page + (combined_idx - page_idx);
446 page_idx = combined_idx;
447 order++;
448 }
449 set_page_order(page, order);
450 list_add(&page->lru,
451 &zone->free_area[order].free_list[migratetype]);
452 zone->free_area[order].nr_free++;
453 }
454
455 static inline int free_pages_check(struct page *page)
456 {
457 if (unlikely(page_mapcount(page) |
458 (page->mapping != NULL) |
459 (page_get_page_cgroup(page) != NULL) |
460 (page_count(page) != 0) |
461 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
462 bad_page(page);
463 if (PageDirty(page))
464 __ClearPageDirty(page);
465 if (PageSwapBacked(page))
466 __ClearPageSwapBacked(page);
467 /*
468 * For now, we report if PG_reserved was found set, but do not
469 * clear it, and do not free the page. But we shall soon need
470 * to do more, for when the ZERO_PAGE count wraps negative.
471 */
472 return PageReserved(page);
473 }
474
475 /*
476 * Frees a list of pages.
477 * Assumes all pages on list are in same zone, and of same order.
478 * count is the number of pages to free.
479 *
480 * If the zone was previously in an "all pages pinned" state then look to
481 * see if this freeing clears that state.
482 *
483 * And clear the zone's pages_scanned counter, to hold off the "all pages are
484 * pinned" detection logic.
485 */
486 static void free_pages_bulk(struct zone *zone, int count,
487 struct list_head *list, int order)
488 {
489 spin_lock(&zone->lock);
490 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
491 zone->pages_scanned = 0;
492 while (count--) {
493 struct page *page;
494
495 VM_BUG_ON(list_empty(list));
496 page = list_entry(list->prev, struct page, lru);
497 /* have to delete it as __free_one_page list manipulates */
498 list_del(&page->lru);
499 __free_one_page(page, zone, order);
500 }
501 spin_unlock(&zone->lock);
502 }
503
504 static void free_one_page(struct zone *zone, struct page *page, int order)
505 {
506 spin_lock(&zone->lock);
507 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
508 zone->pages_scanned = 0;
509 __free_one_page(page, zone, order);
510 spin_unlock(&zone->lock);
511 }
512
513 static void __free_pages_ok(struct page *page, unsigned int order)
514 {
515 unsigned long flags;
516 int i;
517 int reserved = 0;
518
519 for (i = 0 ; i < (1 << order) ; ++i)
520 reserved += free_pages_check(page + i);
521 if (reserved)
522 return;
523
524 if (!PageHighMem(page)) {
525 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
526 debug_check_no_obj_freed(page_address(page),
527 PAGE_SIZE << order);
528 }
529 arch_free_page(page, order);
530 kernel_map_pages(page, 1 << order, 0);
531
532 local_irq_save(flags);
533 __count_vm_events(PGFREE, 1 << order);
534 free_one_page(page_zone(page), page, order);
535 local_irq_restore(flags);
536 }
537
538 /*
539 * permit the bootmem allocator to evade page validation on high-order frees
540 */
541 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
542 {
543 if (order == 0) {
544 __ClearPageReserved(page);
545 set_page_count(page, 0);
546 set_page_refcounted(page);
547 __free_page(page);
548 } else {
549 int loop;
550
551 prefetchw(page);
552 for (loop = 0; loop < BITS_PER_LONG; loop++) {
553 struct page *p = &page[loop];
554
555 if (loop + 1 < BITS_PER_LONG)
556 prefetchw(p + 1);
557 __ClearPageReserved(p);
558 set_page_count(p, 0);
559 }
560
561 set_page_refcounted(page);
562 __free_pages(page, order);
563 }
564 }
565
566
567 /*
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
578 *
579 * -- wli
580 */
581 static inline void expand(struct zone *zone, struct page *page,
582 int low, int high, struct free_area *area,
583 int migratetype)
584 {
585 unsigned long size = 1 << high;
586
587 while (high > low) {
588 area--;
589 high--;
590 size >>= 1;
591 VM_BUG_ON(bad_range(zone, &page[size]));
592 list_add(&page[size].lru, &area->free_list[migratetype]);
593 area->nr_free++;
594 set_page_order(&page[size], high);
595 }
596 }
597
598 /*
599 * This page is about to be returned from the page allocator
600 */
601 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602 {
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (page_get_page_cgroup(page) != NULL) |
606 (page_count(page) != 0) |
607 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
608 bad_page(page);
609
610 /*
611 * For now, we report if PG_reserved was found set, but do not
612 * clear it, and do not allocate the page: as a safety net.
613 */
614 if (PageReserved(page))
615 return 1;
616
617 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
618 1 << PG_referenced | 1 << PG_arch_1 |
619 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
620 #ifdef CONFIG_UNEVICTABLE_LRU
621 | 1 << PG_mlocked
622 #endif
623 );
624 set_page_private(page, 0);
625 set_page_refcounted(page);
626
627 arch_alloc_page(page, order);
628 kernel_map_pages(page, 1 << order, 1);
629
630 if (gfp_flags & __GFP_ZERO)
631 prep_zero_page(page, order, gfp_flags);
632
633 if (order && (gfp_flags & __GFP_COMP))
634 prep_compound_page(page, order);
635
636 return 0;
637 }
638
639 /*
640 * Go through the free lists for the given migratetype and remove
641 * the smallest available page from the freelists
642 */
643 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
644 int migratetype)
645 {
646 unsigned int current_order;
647 struct free_area * area;
648 struct page *page;
649
650 /* Find a page of the appropriate size in the preferred list */
651 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
652 area = &(zone->free_area[current_order]);
653 if (list_empty(&area->free_list[migratetype]))
654 continue;
655
656 page = list_entry(area->free_list[migratetype].next,
657 struct page, lru);
658 list_del(&page->lru);
659 rmv_page_order(page);
660 area->nr_free--;
661 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
662 expand(zone, page, order, current_order, area, migratetype);
663 return page;
664 }
665
666 return NULL;
667 }
668
669
670 /*
671 * This array describes the order lists are fallen back to when
672 * the free lists for the desirable migrate type are depleted
673 */
674 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
675 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
676 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
677 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
678 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
679 };
680
681 /*
682 * Move the free pages in a range to the free lists of the requested type.
683 * Note that start_page and end_pages are not aligned on a pageblock
684 * boundary. If alignment is required, use move_freepages_block()
685 */
686 static int move_freepages(struct zone *zone,
687 struct page *start_page, struct page *end_page,
688 int migratetype)
689 {
690 struct page *page;
691 unsigned long order;
692 int pages_moved = 0;
693
694 #ifndef CONFIG_HOLES_IN_ZONE
695 /*
696 * page_zone is not safe to call in this context when
697 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
698 * anyway as we check zone boundaries in move_freepages_block().
699 * Remove at a later date when no bug reports exist related to
700 * grouping pages by mobility
701 */
702 BUG_ON(page_zone(start_page) != page_zone(end_page));
703 #endif
704
705 for (page = start_page; page <= end_page;) {
706 /* Make sure we are not inadvertently changing nodes */
707 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
708
709 if (!pfn_valid_within(page_to_pfn(page))) {
710 page++;
711 continue;
712 }
713
714 if (!PageBuddy(page)) {
715 page++;
716 continue;
717 }
718
719 order = page_order(page);
720 list_del(&page->lru);
721 list_add(&page->lru,
722 &zone->free_area[order].free_list[migratetype]);
723 page += 1 << order;
724 pages_moved += 1 << order;
725 }
726
727 return pages_moved;
728 }
729
730 static int move_freepages_block(struct zone *zone, struct page *page,
731 int migratetype)
732 {
733 unsigned long start_pfn, end_pfn;
734 struct page *start_page, *end_page;
735
736 start_pfn = page_to_pfn(page);
737 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738 start_page = pfn_to_page(start_pfn);
739 end_page = start_page + pageblock_nr_pages - 1;
740 end_pfn = start_pfn + pageblock_nr_pages - 1;
741
742 /* Do not cross zone boundaries */
743 if (start_pfn < zone->zone_start_pfn)
744 start_page = page;
745 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746 return 0;
747
748 return move_freepages(zone, start_page, end_page, migratetype);
749 }
750
751 /* Remove an element from the buddy allocator from the fallback list */
752 static struct page *__rmqueue_fallback(struct zone *zone, int order,
753 int start_migratetype)
754 {
755 struct free_area * area;
756 int current_order;
757 struct page *page;
758 int migratetype, i;
759
760 /* Find the largest possible block of pages in the other list */
761 for (current_order = MAX_ORDER-1; current_order >= order;
762 --current_order) {
763 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
764 migratetype = fallbacks[start_migratetype][i];
765
766 /* MIGRATE_RESERVE handled later if necessary */
767 if (migratetype == MIGRATE_RESERVE)
768 continue;
769
770 area = &(zone->free_area[current_order]);
771 if (list_empty(&area->free_list[migratetype]))
772 continue;
773
774 page = list_entry(area->free_list[migratetype].next,
775 struct page, lru);
776 area->nr_free--;
777
778 /*
779 * If breaking a large block of pages, move all free
780 * pages to the preferred allocation list. If falling
781 * back for a reclaimable kernel allocation, be more
782 * agressive about taking ownership of free pages
783 */
784 if (unlikely(current_order >= (pageblock_order >> 1)) ||
785 start_migratetype == MIGRATE_RECLAIMABLE) {
786 unsigned long pages;
787 pages = move_freepages_block(zone, page,
788 start_migratetype);
789
790 /* Claim the whole block if over half of it is free */
791 if (pages >= (1 << (pageblock_order-1)))
792 set_pageblock_migratetype(page,
793 start_migratetype);
794
795 migratetype = start_migratetype;
796 }
797
798 /* Remove the page from the freelists */
799 list_del(&page->lru);
800 rmv_page_order(page);
801 __mod_zone_page_state(zone, NR_FREE_PAGES,
802 -(1UL << order));
803
804 if (current_order == pageblock_order)
805 set_pageblock_migratetype(page,
806 start_migratetype);
807
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811 }
812
813 /* Use MIGRATE_RESERVE rather than fail an allocation */
814 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
815 }
816
817 /*
818 * Do the hard work of removing an element from the buddy allocator.
819 * Call me with the zone->lock already held.
820 */
821 static struct page *__rmqueue(struct zone *zone, unsigned int order,
822 int migratetype)
823 {
824 struct page *page;
825
826 page = __rmqueue_smallest(zone, order, migratetype);
827
828 if (unlikely(!page))
829 page = __rmqueue_fallback(zone, order, migratetype);
830
831 return page;
832 }
833
834 /*
835 * Obtain a specified number of elements from the buddy allocator, all under
836 * a single hold of the lock, for efficiency. Add them to the supplied list.
837 * Returns the number of new pages which were placed at *list.
838 */
839 static int rmqueue_bulk(struct zone *zone, unsigned int order,
840 unsigned long count, struct list_head *list,
841 int migratetype)
842 {
843 int i;
844
845 spin_lock(&zone->lock);
846 for (i = 0; i < count; ++i) {
847 struct page *page = __rmqueue(zone, order, migratetype);
848 if (unlikely(page == NULL))
849 break;
850
851 /*
852 * Split buddy pages returned by expand() are received here
853 * in physical page order. The page is added to the callers and
854 * list and the list head then moves forward. From the callers
855 * perspective, the linked list is ordered by page number in
856 * some conditions. This is useful for IO devices that can
857 * merge IO requests if the physical pages are ordered
858 * properly.
859 */
860 list_add(&page->lru, list);
861 set_page_private(page, migratetype);
862 list = &page->lru;
863 }
864 spin_unlock(&zone->lock);
865 return i;
866 }
867
868 #ifdef CONFIG_NUMA
869 /*
870 * Called from the vmstat counter updater to drain pagesets of this
871 * currently executing processor on remote nodes after they have
872 * expired.
873 *
874 * Note that this function must be called with the thread pinned to
875 * a single processor.
876 */
877 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
878 {
879 unsigned long flags;
880 int to_drain;
881
882 local_irq_save(flags);
883 if (pcp->count >= pcp->batch)
884 to_drain = pcp->batch;
885 else
886 to_drain = pcp->count;
887 free_pages_bulk(zone, to_drain, &pcp->list, 0);
888 pcp->count -= to_drain;
889 local_irq_restore(flags);
890 }
891 #endif
892
893 /*
894 * Drain pages of the indicated processor.
895 *
896 * The processor must either be the current processor and the
897 * thread pinned to the current processor or a processor that
898 * is not online.
899 */
900 static void drain_pages(unsigned int cpu)
901 {
902 unsigned long flags;
903 struct zone *zone;
904
905 for_each_zone(zone) {
906 struct per_cpu_pageset *pset;
907 struct per_cpu_pages *pcp;
908
909 if (!populated_zone(zone))
910 continue;
911
912 pset = zone_pcp(zone, cpu);
913
914 pcp = &pset->pcp;
915 local_irq_save(flags);
916 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
917 pcp->count = 0;
918 local_irq_restore(flags);
919 }
920 }
921
922 /*
923 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
924 */
925 void drain_local_pages(void *arg)
926 {
927 drain_pages(smp_processor_id());
928 }
929
930 /*
931 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
932 */
933 void drain_all_pages(void)
934 {
935 on_each_cpu(drain_local_pages, NULL, 1);
936 }
937
938 #ifdef CONFIG_HIBERNATION
939
940 void mark_free_pages(struct zone *zone)
941 {
942 unsigned long pfn, max_zone_pfn;
943 unsigned long flags;
944 int order, t;
945 struct list_head *curr;
946
947 if (!zone->spanned_pages)
948 return;
949
950 spin_lock_irqsave(&zone->lock, flags);
951
952 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
953 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
954 if (pfn_valid(pfn)) {
955 struct page *page = pfn_to_page(pfn);
956
957 if (!swsusp_page_is_forbidden(page))
958 swsusp_unset_page_free(page);
959 }
960
961 for_each_migratetype_order(order, t) {
962 list_for_each(curr, &zone->free_area[order].free_list[t]) {
963 unsigned long i;
964
965 pfn = page_to_pfn(list_entry(curr, struct page, lru));
966 for (i = 0; i < (1UL << order); i++)
967 swsusp_set_page_free(pfn_to_page(pfn + i));
968 }
969 }
970 spin_unlock_irqrestore(&zone->lock, flags);
971 }
972 #endif /* CONFIG_PM */
973
974 /*
975 * Free a 0-order page
976 */
977 static void free_hot_cold_page(struct page *page, int cold)
978 {
979 struct zone *zone = page_zone(page);
980 struct per_cpu_pages *pcp;
981 unsigned long flags;
982
983 if (PageAnon(page))
984 page->mapping = NULL;
985 if (free_pages_check(page))
986 return;
987
988 if (!PageHighMem(page)) {
989 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
990 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
991 }
992 arch_free_page(page, 0);
993 kernel_map_pages(page, 1, 0);
994
995 pcp = &zone_pcp(zone, get_cpu())->pcp;
996 local_irq_save(flags);
997 __count_vm_event(PGFREE);
998 if (cold)
999 list_add_tail(&page->lru, &pcp->list);
1000 else
1001 list_add(&page->lru, &pcp->list);
1002 set_page_private(page, get_pageblock_migratetype(page));
1003 pcp->count++;
1004 if (pcp->count >= pcp->high) {
1005 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1006 pcp->count -= pcp->batch;
1007 }
1008 local_irq_restore(flags);
1009 put_cpu();
1010 }
1011
1012 void free_hot_page(struct page *page)
1013 {
1014 free_hot_cold_page(page, 0);
1015 }
1016
1017 void free_cold_page(struct page *page)
1018 {
1019 free_hot_cold_page(page, 1);
1020 }
1021
1022 /*
1023 * split_page takes a non-compound higher-order page, and splits it into
1024 * n (1<<order) sub-pages: page[0..n]
1025 * Each sub-page must be freed individually.
1026 *
1027 * Note: this is probably too low level an operation for use in drivers.
1028 * Please consult with lkml before using this in your driver.
1029 */
1030 void split_page(struct page *page, unsigned int order)
1031 {
1032 int i;
1033
1034 VM_BUG_ON(PageCompound(page));
1035 VM_BUG_ON(!page_count(page));
1036 for (i = 1; i < (1 << order); i++)
1037 set_page_refcounted(page + i);
1038 }
1039
1040 /*
1041 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1042 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1043 * or two.
1044 */
1045 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1046 struct zone *zone, int order, gfp_t gfp_flags)
1047 {
1048 unsigned long flags;
1049 struct page *page;
1050 int cold = !!(gfp_flags & __GFP_COLD);
1051 int cpu;
1052 int migratetype = allocflags_to_migratetype(gfp_flags);
1053
1054 again:
1055 cpu = get_cpu();
1056 if (likely(order == 0)) {
1057 struct per_cpu_pages *pcp;
1058
1059 pcp = &zone_pcp(zone, cpu)->pcp;
1060 local_irq_save(flags);
1061 if (!pcp->count) {
1062 pcp->count = rmqueue_bulk(zone, 0,
1063 pcp->batch, &pcp->list, migratetype);
1064 if (unlikely(!pcp->count))
1065 goto failed;
1066 }
1067
1068 /* Find a page of the appropriate migrate type */
1069 if (cold) {
1070 list_for_each_entry_reverse(page, &pcp->list, lru)
1071 if (page_private(page) == migratetype)
1072 break;
1073 } else {
1074 list_for_each_entry(page, &pcp->list, lru)
1075 if (page_private(page) == migratetype)
1076 break;
1077 }
1078
1079 /* Allocate more to the pcp list if necessary */
1080 if (unlikely(&page->lru == &pcp->list)) {
1081 pcp->count += rmqueue_bulk(zone, 0,
1082 pcp->batch, &pcp->list, migratetype);
1083 page = list_entry(pcp->list.next, struct page, lru);
1084 }
1085
1086 list_del(&page->lru);
1087 pcp->count--;
1088 } else {
1089 spin_lock_irqsave(&zone->lock, flags);
1090 page = __rmqueue(zone, order, migratetype);
1091 spin_unlock(&zone->lock);
1092 if (!page)
1093 goto failed;
1094 }
1095
1096 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1097 zone_statistics(preferred_zone, zone);
1098 local_irq_restore(flags);
1099 put_cpu();
1100
1101 VM_BUG_ON(bad_range(zone, page));
1102 if (prep_new_page(page, order, gfp_flags))
1103 goto again;
1104 return page;
1105
1106 failed:
1107 local_irq_restore(flags);
1108 put_cpu();
1109 return NULL;
1110 }
1111
1112 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1113 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1114 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1115 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1116 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1117 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1118 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1119
1120 #ifdef CONFIG_FAIL_PAGE_ALLOC
1121
1122 static struct fail_page_alloc_attr {
1123 struct fault_attr attr;
1124
1125 u32 ignore_gfp_highmem;
1126 u32 ignore_gfp_wait;
1127 u32 min_order;
1128
1129 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1130
1131 struct dentry *ignore_gfp_highmem_file;
1132 struct dentry *ignore_gfp_wait_file;
1133 struct dentry *min_order_file;
1134
1135 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1136
1137 } fail_page_alloc = {
1138 .attr = FAULT_ATTR_INITIALIZER,
1139 .ignore_gfp_wait = 1,
1140 .ignore_gfp_highmem = 1,
1141 .min_order = 1,
1142 };
1143
1144 static int __init setup_fail_page_alloc(char *str)
1145 {
1146 return setup_fault_attr(&fail_page_alloc.attr, str);
1147 }
1148 __setup("fail_page_alloc=", setup_fail_page_alloc);
1149
1150 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1151 {
1152 if (order < fail_page_alloc.min_order)
1153 return 0;
1154 if (gfp_mask & __GFP_NOFAIL)
1155 return 0;
1156 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1157 return 0;
1158 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1159 return 0;
1160
1161 return should_fail(&fail_page_alloc.attr, 1 << order);
1162 }
1163
1164 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1165
1166 static int __init fail_page_alloc_debugfs(void)
1167 {
1168 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1169 struct dentry *dir;
1170 int err;
1171
1172 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1173 "fail_page_alloc");
1174 if (err)
1175 return err;
1176 dir = fail_page_alloc.attr.dentries.dir;
1177
1178 fail_page_alloc.ignore_gfp_wait_file =
1179 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1180 &fail_page_alloc.ignore_gfp_wait);
1181
1182 fail_page_alloc.ignore_gfp_highmem_file =
1183 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1184 &fail_page_alloc.ignore_gfp_highmem);
1185 fail_page_alloc.min_order_file =
1186 debugfs_create_u32("min-order", mode, dir,
1187 &fail_page_alloc.min_order);
1188
1189 if (!fail_page_alloc.ignore_gfp_wait_file ||
1190 !fail_page_alloc.ignore_gfp_highmem_file ||
1191 !fail_page_alloc.min_order_file) {
1192 err = -ENOMEM;
1193 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1194 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1195 debugfs_remove(fail_page_alloc.min_order_file);
1196 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1197 }
1198
1199 return err;
1200 }
1201
1202 late_initcall(fail_page_alloc_debugfs);
1203
1204 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1205
1206 #else /* CONFIG_FAIL_PAGE_ALLOC */
1207
1208 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1209 {
1210 return 0;
1211 }
1212
1213 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1214
1215 /*
1216 * Return 1 if free pages are above 'mark'. This takes into account the order
1217 * of the allocation.
1218 */
1219 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1220 int classzone_idx, int alloc_flags)
1221 {
1222 /* free_pages my go negative - that's OK */
1223 long min = mark;
1224 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1225 int o;
1226
1227 if (alloc_flags & ALLOC_HIGH)
1228 min -= min / 2;
1229 if (alloc_flags & ALLOC_HARDER)
1230 min -= min / 4;
1231
1232 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1233 return 0;
1234 for (o = 0; o < order; o++) {
1235 /* At the next order, this order's pages become unavailable */
1236 free_pages -= z->free_area[o].nr_free << o;
1237
1238 /* Require fewer higher order pages to be free */
1239 min >>= 1;
1240
1241 if (free_pages <= min)
1242 return 0;
1243 }
1244 return 1;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 /*
1249 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1250 * skip over zones that are not allowed by the cpuset, or that have
1251 * been recently (in last second) found to be nearly full. See further
1252 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1253 * that have to skip over a lot of full or unallowed zones.
1254 *
1255 * If the zonelist cache is present in the passed in zonelist, then
1256 * returns a pointer to the allowed node mask (either the current
1257 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1258 *
1259 * If the zonelist cache is not available for this zonelist, does
1260 * nothing and returns NULL.
1261 *
1262 * If the fullzones BITMAP in the zonelist cache is stale (more than
1263 * a second since last zap'd) then we zap it out (clear its bits.)
1264 *
1265 * We hold off even calling zlc_setup, until after we've checked the
1266 * first zone in the zonelist, on the theory that most allocations will
1267 * be satisfied from that first zone, so best to examine that zone as
1268 * quickly as we can.
1269 */
1270 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1271 {
1272 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1273 nodemask_t *allowednodes; /* zonelist_cache approximation */
1274
1275 zlc = zonelist->zlcache_ptr;
1276 if (!zlc)
1277 return NULL;
1278
1279 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1280 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1281 zlc->last_full_zap = jiffies;
1282 }
1283
1284 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1285 &cpuset_current_mems_allowed :
1286 &node_states[N_HIGH_MEMORY];
1287 return allowednodes;
1288 }
1289
1290 /*
1291 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1292 * if it is worth looking at further for free memory:
1293 * 1) Check that the zone isn't thought to be full (doesn't have its
1294 * bit set in the zonelist_cache fullzones BITMAP).
1295 * 2) Check that the zones node (obtained from the zonelist_cache
1296 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1297 * Return true (non-zero) if zone is worth looking at further, or
1298 * else return false (zero) if it is not.
1299 *
1300 * This check -ignores- the distinction between various watermarks,
1301 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1302 * found to be full for any variation of these watermarks, it will
1303 * be considered full for up to one second by all requests, unless
1304 * we are so low on memory on all allowed nodes that we are forced
1305 * into the second scan of the zonelist.
1306 *
1307 * In the second scan we ignore this zonelist cache and exactly
1308 * apply the watermarks to all zones, even it is slower to do so.
1309 * We are low on memory in the second scan, and should leave no stone
1310 * unturned looking for a free page.
1311 */
1312 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1313 nodemask_t *allowednodes)
1314 {
1315 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1316 int i; /* index of *z in zonelist zones */
1317 int n; /* node that zone *z is on */
1318
1319 zlc = zonelist->zlcache_ptr;
1320 if (!zlc)
1321 return 1;
1322
1323 i = z - zonelist->_zonerefs;
1324 n = zlc->z_to_n[i];
1325
1326 /* This zone is worth trying if it is allowed but not full */
1327 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1328 }
1329
1330 /*
1331 * Given 'z' scanning a zonelist, set the corresponding bit in
1332 * zlc->fullzones, so that subsequent attempts to allocate a page
1333 * from that zone don't waste time re-examining it.
1334 */
1335 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1336 {
1337 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1338 int i; /* index of *z in zonelist zones */
1339
1340 zlc = zonelist->zlcache_ptr;
1341 if (!zlc)
1342 return;
1343
1344 i = z - zonelist->_zonerefs;
1345
1346 set_bit(i, zlc->fullzones);
1347 }
1348
1349 #else /* CONFIG_NUMA */
1350
1351 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1352 {
1353 return NULL;
1354 }
1355
1356 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1357 nodemask_t *allowednodes)
1358 {
1359 return 1;
1360 }
1361
1362 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1363 {
1364 }
1365 #endif /* CONFIG_NUMA */
1366
1367 /*
1368 * get_page_from_freelist goes through the zonelist trying to allocate
1369 * a page.
1370 */
1371 static struct page *
1372 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1373 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1374 {
1375 struct zoneref *z;
1376 struct page *page = NULL;
1377 int classzone_idx;
1378 struct zone *zone, *preferred_zone;
1379 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1380 int zlc_active = 0; /* set if using zonelist_cache */
1381 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1382
1383 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1384 &preferred_zone);
1385 if (!preferred_zone)
1386 return NULL;
1387
1388 classzone_idx = zone_idx(preferred_zone);
1389
1390 zonelist_scan:
1391 /*
1392 * Scan zonelist, looking for a zone with enough free.
1393 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1394 */
1395 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1396 high_zoneidx, nodemask) {
1397 if (NUMA_BUILD && zlc_active &&
1398 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1399 continue;
1400 if ((alloc_flags & ALLOC_CPUSET) &&
1401 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1402 goto try_next_zone;
1403
1404 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1405 unsigned long mark;
1406 if (alloc_flags & ALLOC_WMARK_MIN)
1407 mark = zone->pages_min;
1408 else if (alloc_flags & ALLOC_WMARK_LOW)
1409 mark = zone->pages_low;
1410 else
1411 mark = zone->pages_high;
1412 if (!zone_watermark_ok(zone, order, mark,
1413 classzone_idx, alloc_flags)) {
1414 if (!zone_reclaim_mode ||
1415 !zone_reclaim(zone, gfp_mask, order))
1416 goto this_zone_full;
1417 }
1418 }
1419
1420 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1421 if (page)
1422 break;
1423 this_zone_full:
1424 if (NUMA_BUILD)
1425 zlc_mark_zone_full(zonelist, z);
1426 try_next_zone:
1427 if (NUMA_BUILD && !did_zlc_setup) {
1428 /* we do zlc_setup after the first zone is tried */
1429 allowednodes = zlc_setup(zonelist, alloc_flags);
1430 zlc_active = 1;
1431 did_zlc_setup = 1;
1432 }
1433 }
1434
1435 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1436 /* Disable zlc cache for second zonelist scan */
1437 zlc_active = 0;
1438 goto zonelist_scan;
1439 }
1440 return page;
1441 }
1442
1443 /*
1444 * This is the 'heart' of the zoned buddy allocator.
1445 */
1446 struct page *
1447 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1448 struct zonelist *zonelist, nodemask_t *nodemask)
1449 {
1450 const gfp_t wait = gfp_mask & __GFP_WAIT;
1451 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1452 struct zoneref *z;
1453 struct zone *zone;
1454 struct page *page;
1455 struct reclaim_state reclaim_state;
1456 struct task_struct *p = current;
1457 int do_retry;
1458 int alloc_flags;
1459 unsigned long did_some_progress;
1460 unsigned long pages_reclaimed = 0;
1461
1462 might_sleep_if(wait);
1463
1464 if (should_fail_alloc_page(gfp_mask, order))
1465 return NULL;
1466
1467 restart:
1468 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1469
1470 if (unlikely(!z->zone)) {
1471 /*
1472 * Happens if we have an empty zonelist as a result of
1473 * GFP_THISNODE being used on a memoryless node
1474 */
1475 return NULL;
1476 }
1477
1478 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1479 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1480 if (page)
1481 goto got_pg;
1482
1483 /*
1484 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1485 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1486 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1487 * using a larger set of nodes after it has established that the
1488 * allowed per node queues are empty and that nodes are
1489 * over allocated.
1490 */
1491 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1492 goto nopage;
1493
1494 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1495 wakeup_kswapd(zone, order);
1496
1497 /*
1498 * OK, we're below the kswapd watermark and have kicked background
1499 * reclaim. Now things get more complex, so set up alloc_flags according
1500 * to how we want to proceed.
1501 *
1502 * The caller may dip into page reserves a bit more if the caller
1503 * cannot run direct reclaim, or if the caller has realtime scheduling
1504 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1505 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1506 */
1507 alloc_flags = ALLOC_WMARK_MIN;
1508 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1509 alloc_flags |= ALLOC_HARDER;
1510 if (gfp_mask & __GFP_HIGH)
1511 alloc_flags |= ALLOC_HIGH;
1512 if (wait)
1513 alloc_flags |= ALLOC_CPUSET;
1514
1515 /*
1516 * Go through the zonelist again. Let __GFP_HIGH and allocations
1517 * coming from realtime tasks go deeper into reserves.
1518 *
1519 * This is the last chance, in general, before the goto nopage.
1520 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1521 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1522 */
1523 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1524 high_zoneidx, alloc_flags);
1525 if (page)
1526 goto got_pg;
1527
1528 /* This allocation should allow future memory freeing. */
1529
1530 rebalance:
1531 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1532 && !in_interrupt()) {
1533 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1534 nofail_alloc:
1535 /* go through the zonelist yet again, ignoring mins */
1536 page = get_page_from_freelist(gfp_mask, nodemask, order,
1537 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1538 if (page)
1539 goto got_pg;
1540 if (gfp_mask & __GFP_NOFAIL) {
1541 congestion_wait(WRITE, HZ/50);
1542 goto nofail_alloc;
1543 }
1544 }
1545 goto nopage;
1546 }
1547
1548 /* Atomic allocations - we can't balance anything */
1549 if (!wait)
1550 goto nopage;
1551
1552 cond_resched();
1553
1554 /* We now go into synchronous reclaim */
1555 cpuset_memory_pressure_bump();
1556 p->flags |= PF_MEMALLOC;
1557 reclaim_state.reclaimed_slab = 0;
1558 p->reclaim_state = &reclaim_state;
1559
1560 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1561
1562 p->reclaim_state = NULL;
1563 p->flags &= ~PF_MEMALLOC;
1564
1565 cond_resched();
1566
1567 if (order != 0)
1568 drain_all_pages();
1569
1570 if (likely(did_some_progress)) {
1571 page = get_page_from_freelist(gfp_mask, nodemask, order,
1572 zonelist, high_zoneidx, alloc_flags);
1573 if (page)
1574 goto got_pg;
1575 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1576 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1577 schedule_timeout_uninterruptible(1);
1578 goto restart;
1579 }
1580
1581 /*
1582 * Go through the zonelist yet one more time, keep
1583 * very high watermark here, this is only to catch
1584 * a parallel oom killing, we must fail if we're still
1585 * under heavy pressure.
1586 */
1587 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1588 order, zonelist, high_zoneidx,
1589 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1590 if (page) {
1591 clear_zonelist_oom(zonelist, gfp_mask);
1592 goto got_pg;
1593 }
1594
1595 /* The OOM killer will not help higher order allocs so fail */
1596 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1597 clear_zonelist_oom(zonelist, gfp_mask);
1598 goto nopage;
1599 }
1600
1601 out_of_memory(zonelist, gfp_mask, order);
1602 clear_zonelist_oom(zonelist, gfp_mask);
1603 goto restart;
1604 }
1605
1606 /*
1607 * Don't let big-order allocations loop unless the caller explicitly
1608 * requests that. Wait for some write requests to complete then retry.
1609 *
1610 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1611 * means __GFP_NOFAIL, but that may not be true in other
1612 * implementations.
1613 *
1614 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1615 * specified, then we retry until we no longer reclaim any pages
1616 * (above), or we've reclaimed an order of pages at least as
1617 * large as the allocation's order. In both cases, if the
1618 * allocation still fails, we stop retrying.
1619 */
1620 pages_reclaimed += did_some_progress;
1621 do_retry = 0;
1622 if (!(gfp_mask & __GFP_NORETRY)) {
1623 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1624 do_retry = 1;
1625 } else {
1626 if (gfp_mask & __GFP_REPEAT &&
1627 pages_reclaimed < (1 << order))
1628 do_retry = 1;
1629 }
1630 if (gfp_mask & __GFP_NOFAIL)
1631 do_retry = 1;
1632 }
1633 if (do_retry) {
1634 congestion_wait(WRITE, HZ/50);
1635 goto rebalance;
1636 }
1637
1638 nopage:
1639 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1640 printk(KERN_WARNING "%s: page allocation failure."
1641 " order:%d, mode:0x%x\n",
1642 p->comm, order, gfp_mask);
1643 dump_stack();
1644 show_mem();
1645 }
1646 got_pg:
1647 return page;
1648 }
1649 EXPORT_SYMBOL(__alloc_pages_internal);
1650
1651 /*
1652 * Common helper functions.
1653 */
1654 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1655 {
1656 struct page * page;
1657 page = alloc_pages(gfp_mask, order);
1658 if (!page)
1659 return 0;
1660 return (unsigned long) page_address(page);
1661 }
1662
1663 EXPORT_SYMBOL(__get_free_pages);
1664
1665 unsigned long get_zeroed_page(gfp_t gfp_mask)
1666 {
1667 struct page * page;
1668
1669 /*
1670 * get_zeroed_page() returns a 32-bit address, which cannot represent
1671 * a highmem page
1672 */
1673 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1674
1675 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1676 if (page)
1677 return (unsigned long) page_address(page);
1678 return 0;
1679 }
1680
1681 EXPORT_SYMBOL(get_zeroed_page);
1682
1683 void __pagevec_free(struct pagevec *pvec)
1684 {
1685 int i = pagevec_count(pvec);
1686
1687 while (--i >= 0)
1688 free_hot_cold_page(pvec->pages[i], pvec->cold);
1689 }
1690
1691 void __free_pages(struct page *page, unsigned int order)
1692 {
1693 if (put_page_testzero(page)) {
1694 if (order == 0)
1695 free_hot_page(page);
1696 else
1697 __free_pages_ok(page, order);
1698 }
1699 }
1700
1701 EXPORT_SYMBOL(__free_pages);
1702
1703 void free_pages(unsigned long addr, unsigned int order)
1704 {
1705 if (addr != 0) {
1706 VM_BUG_ON(!virt_addr_valid((void *)addr));
1707 __free_pages(virt_to_page((void *)addr), order);
1708 }
1709 }
1710
1711 EXPORT_SYMBOL(free_pages);
1712
1713 /**
1714 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1715 * @size: the number of bytes to allocate
1716 * @gfp_mask: GFP flags for the allocation
1717 *
1718 * This function is similar to alloc_pages(), except that it allocates the
1719 * minimum number of pages to satisfy the request. alloc_pages() can only
1720 * allocate memory in power-of-two pages.
1721 *
1722 * This function is also limited by MAX_ORDER.
1723 *
1724 * Memory allocated by this function must be released by free_pages_exact().
1725 */
1726 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1727 {
1728 unsigned int order = get_order(size);
1729 unsigned long addr;
1730
1731 addr = __get_free_pages(gfp_mask, order);
1732 if (addr) {
1733 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1734 unsigned long used = addr + PAGE_ALIGN(size);
1735
1736 split_page(virt_to_page(addr), order);
1737 while (used < alloc_end) {
1738 free_page(used);
1739 used += PAGE_SIZE;
1740 }
1741 }
1742
1743 return (void *)addr;
1744 }
1745 EXPORT_SYMBOL(alloc_pages_exact);
1746
1747 /**
1748 * free_pages_exact - release memory allocated via alloc_pages_exact()
1749 * @virt: the value returned by alloc_pages_exact.
1750 * @size: size of allocation, same value as passed to alloc_pages_exact().
1751 *
1752 * Release the memory allocated by a previous call to alloc_pages_exact.
1753 */
1754 void free_pages_exact(void *virt, size_t size)
1755 {
1756 unsigned long addr = (unsigned long)virt;
1757 unsigned long end = addr + PAGE_ALIGN(size);
1758
1759 while (addr < end) {
1760 free_page(addr);
1761 addr += PAGE_SIZE;
1762 }
1763 }
1764 EXPORT_SYMBOL(free_pages_exact);
1765
1766 static unsigned int nr_free_zone_pages(int offset)
1767 {
1768 struct zoneref *z;
1769 struct zone *zone;
1770
1771 /* Just pick one node, since fallback list is circular */
1772 unsigned int sum = 0;
1773
1774 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1775
1776 for_each_zone_zonelist(zone, z, zonelist, offset) {
1777 unsigned long size = zone->present_pages;
1778 unsigned long high = zone->pages_high;
1779 if (size > high)
1780 sum += size - high;
1781 }
1782
1783 return sum;
1784 }
1785
1786 /*
1787 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1788 */
1789 unsigned int nr_free_buffer_pages(void)
1790 {
1791 return nr_free_zone_pages(gfp_zone(GFP_USER));
1792 }
1793 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1794
1795 /*
1796 * Amount of free RAM allocatable within all zones
1797 */
1798 unsigned int nr_free_pagecache_pages(void)
1799 {
1800 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1801 }
1802
1803 static inline void show_node(struct zone *zone)
1804 {
1805 if (NUMA_BUILD)
1806 printk("Node %d ", zone_to_nid(zone));
1807 }
1808
1809 void si_meminfo(struct sysinfo *val)
1810 {
1811 val->totalram = totalram_pages;
1812 val->sharedram = 0;
1813 val->freeram = global_page_state(NR_FREE_PAGES);
1814 val->bufferram = nr_blockdev_pages();
1815 val->totalhigh = totalhigh_pages;
1816 val->freehigh = nr_free_highpages();
1817 val->mem_unit = PAGE_SIZE;
1818 }
1819
1820 EXPORT_SYMBOL(si_meminfo);
1821
1822 #ifdef CONFIG_NUMA
1823 void si_meminfo_node(struct sysinfo *val, int nid)
1824 {
1825 pg_data_t *pgdat = NODE_DATA(nid);
1826
1827 val->totalram = pgdat->node_present_pages;
1828 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1829 #ifdef CONFIG_HIGHMEM
1830 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1831 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1832 NR_FREE_PAGES);
1833 #else
1834 val->totalhigh = 0;
1835 val->freehigh = 0;
1836 #endif
1837 val->mem_unit = PAGE_SIZE;
1838 }
1839 #endif
1840
1841 #define K(x) ((x) << (PAGE_SHIFT-10))
1842
1843 /*
1844 * Show free area list (used inside shift_scroll-lock stuff)
1845 * We also calculate the percentage fragmentation. We do this by counting the
1846 * memory on each free list with the exception of the first item on the list.
1847 */
1848 void show_free_areas(void)
1849 {
1850 int cpu;
1851 struct zone *zone;
1852
1853 for_each_zone(zone) {
1854 if (!populated_zone(zone))
1855 continue;
1856
1857 show_node(zone);
1858 printk("%s per-cpu:\n", zone->name);
1859
1860 for_each_online_cpu(cpu) {
1861 struct per_cpu_pageset *pageset;
1862
1863 pageset = zone_pcp(zone, cpu);
1864
1865 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1866 cpu, pageset->pcp.high,
1867 pageset->pcp.batch, pageset->pcp.count);
1868 }
1869 }
1870
1871 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1872 " inactive_file:%lu"
1873 //TODO: check/adjust line lengths
1874 #ifdef CONFIG_UNEVICTABLE_LRU
1875 " unevictable:%lu"
1876 #endif
1877 " dirty:%lu writeback:%lu unstable:%lu\n"
1878 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1879 global_page_state(NR_ACTIVE_ANON),
1880 global_page_state(NR_ACTIVE_FILE),
1881 global_page_state(NR_INACTIVE_ANON),
1882 global_page_state(NR_INACTIVE_FILE),
1883 #ifdef CONFIG_UNEVICTABLE_LRU
1884 global_page_state(NR_UNEVICTABLE),
1885 #endif
1886 global_page_state(NR_FILE_DIRTY),
1887 global_page_state(NR_WRITEBACK),
1888 global_page_state(NR_UNSTABLE_NFS),
1889 global_page_state(NR_FREE_PAGES),
1890 global_page_state(NR_SLAB_RECLAIMABLE) +
1891 global_page_state(NR_SLAB_UNRECLAIMABLE),
1892 global_page_state(NR_FILE_MAPPED),
1893 global_page_state(NR_PAGETABLE),
1894 global_page_state(NR_BOUNCE));
1895
1896 for_each_zone(zone) {
1897 int i;
1898
1899 if (!populated_zone(zone))
1900 continue;
1901
1902 show_node(zone);
1903 printk("%s"
1904 " free:%lukB"
1905 " min:%lukB"
1906 " low:%lukB"
1907 " high:%lukB"
1908 " active_anon:%lukB"
1909 " inactive_anon:%lukB"
1910 " active_file:%lukB"
1911 " inactive_file:%lukB"
1912 #ifdef CONFIG_UNEVICTABLE_LRU
1913 " unevictable:%lukB"
1914 #endif
1915 " present:%lukB"
1916 " pages_scanned:%lu"
1917 " all_unreclaimable? %s"
1918 "\n",
1919 zone->name,
1920 K(zone_page_state(zone, NR_FREE_PAGES)),
1921 K(zone->pages_min),
1922 K(zone->pages_low),
1923 K(zone->pages_high),
1924 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1925 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1926 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1927 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1928 #ifdef CONFIG_UNEVICTABLE_LRU
1929 K(zone_page_state(zone, NR_UNEVICTABLE)),
1930 #endif
1931 K(zone->present_pages),
1932 zone->pages_scanned,
1933 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1934 );
1935 printk("lowmem_reserve[]:");
1936 for (i = 0; i < MAX_NR_ZONES; i++)
1937 printk(" %lu", zone->lowmem_reserve[i]);
1938 printk("\n");
1939 }
1940
1941 for_each_zone(zone) {
1942 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1943
1944 if (!populated_zone(zone))
1945 continue;
1946
1947 show_node(zone);
1948 printk("%s: ", zone->name);
1949
1950 spin_lock_irqsave(&zone->lock, flags);
1951 for (order = 0; order < MAX_ORDER; order++) {
1952 nr[order] = zone->free_area[order].nr_free;
1953 total += nr[order] << order;
1954 }
1955 spin_unlock_irqrestore(&zone->lock, flags);
1956 for (order = 0; order < MAX_ORDER; order++)
1957 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1958 printk("= %lukB\n", K(total));
1959 }
1960
1961 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1962
1963 show_swap_cache_info();
1964 }
1965
1966 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1967 {
1968 zoneref->zone = zone;
1969 zoneref->zone_idx = zone_idx(zone);
1970 }
1971
1972 /*
1973 * Builds allocation fallback zone lists.
1974 *
1975 * Add all populated zones of a node to the zonelist.
1976 */
1977 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1978 int nr_zones, enum zone_type zone_type)
1979 {
1980 struct zone *zone;
1981
1982 BUG_ON(zone_type >= MAX_NR_ZONES);
1983 zone_type++;
1984
1985 do {
1986 zone_type--;
1987 zone = pgdat->node_zones + zone_type;
1988 if (populated_zone(zone)) {
1989 zoneref_set_zone(zone,
1990 &zonelist->_zonerefs[nr_zones++]);
1991 check_highest_zone(zone_type);
1992 }
1993
1994 } while (zone_type);
1995 return nr_zones;
1996 }
1997
1998
1999 /*
2000 * zonelist_order:
2001 * 0 = automatic detection of better ordering.
2002 * 1 = order by ([node] distance, -zonetype)
2003 * 2 = order by (-zonetype, [node] distance)
2004 *
2005 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2006 * the same zonelist. So only NUMA can configure this param.
2007 */
2008 #define ZONELIST_ORDER_DEFAULT 0
2009 #define ZONELIST_ORDER_NODE 1
2010 #define ZONELIST_ORDER_ZONE 2
2011
2012 /* zonelist order in the kernel.
2013 * set_zonelist_order() will set this to NODE or ZONE.
2014 */
2015 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2016 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2017
2018
2019 #ifdef CONFIG_NUMA
2020 /* The value user specified ....changed by config */
2021 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2022 /* string for sysctl */
2023 #define NUMA_ZONELIST_ORDER_LEN 16
2024 char numa_zonelist_order[16] = "default";
2025
2026 /*
2027 * interface for configure zonelist ordering.
2028 * command line option "numa_zonelist_order"
2029 * = "[dD]efault - default, automatic configuration.
2030 * = "[nN]ode - order by node locality, then by zone within node
2031 * = "[zZ]one - order by zone, then by locality within zone
2032 */
2033
2034 static int __parse_numa_zonelist_order(char *s)
2035 {
2036 if (*s == 'd' || *s == 'D') {
2037 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2038 } else if (*s == 'n' || *s == 'N') {
2039 user_zonelist_order = ZONELIST_ORDER_NODE;
2040 } else if (*s == 'z' || *s == 'Z') {
2041 user_zonelist_order = ZONELIST_ORDER_ZONE;
2042 } else {
2043 printk(KERN_WARNING
2044 "Ignoring invalid numa_zonelist_order value: "
2045 "%s\n", s);
2046 return -EINVAL;
2047 }
2048 return 0;
2049 }
2050
2051 static __init int setup_numa_zonelist_order(char *s)
2052 {
2053 if (s)
2054 return __parse_numa_zonelist_order(s);
2055 return 0;
2056 }
2057 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2058
2059 /*
2060 * sysctl handler for numa_zonelist_order
2061 */
2062 int numa_zonelist_order_handler(ctl_table *table, int write,
2063 struct file *file, void __user *buffer, size_t *length,
2064 loff_t *ppos)
2065 {
2066 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2067 int ret;
2068
2069 if (write)
2070 strncpy(saved_string, (char*)table->data,
2071 NUMA_ZONELIST_ORDER_LEN);
2072 ret = proc_dostring(table, write, file, buffer, length, ppos);
2073 if (ret)
2074 return ret;
2075 if (write) {
2076 int oldval = user_zonelist_order;
2077 if (__parse_numa_zonelist_order((char*)table->data)) {
2078 /*
2079 * bogus value. restore saved string
2080 */
2081 strncpy((char*)table->data, saved_string,
2082 NUMA_ZONELIST_ORDER_LEN);
2083 user_zonelist_order = oldval;
2084 } else if (oldval != user_zonelist_order)
2085 build_all_zonelists();
2086 }
2087 return 0;
2088 }
2089
2090
2091 #define MAX_NODE_LOAD (num_online_nodes())
2092 static int node_load[MAX_NUMNODES];
2093
2094 /**
2095 * find_next_best_node - find the next node that should appear in a given node's fallback list
2096 * @node: node whose fallback list we're appending
2097 * @used_node_mask: nodemask_t of already used nodes
2098 *
2099 * We use a number of factors to determine which is the next node that should
2100 * appear on a given node's fallback list. The node should not have appeared
2101 * already in @node's fallback list, and it should be the next closest node
2102 * according to the distance array (which contains arbitrary distance values
2103 * from each node to each node in the system), and should also prefer nodes
2104 * with no CPUs, since presumably they'll have very little allocation pressure
2105 * on them otherwise.
2106 * It returns -1 if no node is found.
2107 */
2108 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2109 {
2110 int n, val;
2111 int min_val = INT_MAX;
2112 int best_node = -1;
2113 node_to_cpumask_ptr(tmp, 0);
2114
2115 /* Use the local node if we haven't already */
2116 if (!node_isset(node, *used_node_mask)) {
2117 node_set(node, *used_node_mask);
2118 return node;
2119 }
2120
2121 for_each_node_state(n, N_HIGH_MEMORY) {
2122
2123 /* Don't want a node to appear more than once */
2124 if (node_isset(n, *used_node_mask))
2125 continue;
2126
2127 /* Use the distance array to find the distance */
2128 val = node_distance(node, n);
2129
2130 /* Penalize nodes under us ("prefer the next node") */
2131 val += (n < node);
2132
2133 /* Give preference to headless and unused nodes */
2134 node_to_cpumask_ptr_next(tmp, n);
2135 if (!cpus_empty(*tmp))
2136 val += PENALTY_FOR_NODE_WITH_CPUS;
2137
2138 /* Slight preference for less loaded node */
2139 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2140 val += node_load[n];
2141
2142 if (val < min_val) {
2143 min_val = val;
2144 best_node = n;
2145 }
2146 }
2147
2148 if (best_node >= 0)
2149 node_set(best_node, *used_node_mask);
2150
2151 return best_node;
2152 }
2153
2154
2155 /*
2156 * Build zonelists ordered by node and zones within node.
2157 * This results in maximum locality--normal zone overflows into local
2158 * DMA zone, if any--but risks exhausting DMA zone.
2159 */
2160 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2161 {
2162 int j;
2163 struct zonelist *zonelist;
2164
2165 zonelist = &pgdat->node_zonelists[0];
2166 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2167 ;
2168 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2169 MAX_NR_ZONES - 1);
2170 zonelist->_zonerefs[j].zone = NULL;
2171 zonelist->_zonerefs[j].zone_idx = 0;
2172 }
2173
2174 /*
2175 * Build gfp_thisnode zonelists
2176 */
2177 static void build_thisnode_zonelists(pg_data_t *pgdat)
2178 {
2179 int j;
2180 struct zonelist *zonelist;
2181
2182 zonelist = &pgdat->node_zonelists[1];
2183 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2184 zonelist->_zonerefs[j].zone = NULL;
2185 zonelist->_zonerefs[j].zone_idx = 0;
2186 }
2187
2188 /*
2189 * Build zonelists ordered by zone and nodes within zones.
2190 * This results in conserving DMA zone[s] until all Normal memory is
2191 * exhausted, but results in overflowing to remote node while memory
2192 * may still exist in local DMA zone.
2193 */
2194 static int node_order[MAX_NUMNODES];
2195
2196 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2197 {
2198 int pos, j, node;
2199 int zone_type; /* needs to be signed */
2200 struct zone *z;
2201 struct zonelist *zonelist;
2202
2203 zonelist = &pgdat->node_zonelists[0];
2204 pos = 0;
2205 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2206 for (j = 0; j < nr_nodes; j++) {
2207 node = node_order[j];
2208 z = &NODE_DATA(node)->node_zones[zone_type];
2209 if (populated_zone(z)) {
2210 zoneref_set_zone(z,
2211 &zonelist->_zonerefs[pos++]);
2212 check_highest_zone(zone_type);
2213 }
2214 }
2215 }
2216 zonelist->_zonerefs[pos].zone = NULL;
2217 zonelist->_zonerefs[pos].zone_idx = 0;
2218 }
2219
2220 static int default_zonelist_order(void)
2221 {
2222 int nid, zone_type;
2223 unsigned long low_kmem_size,total_size;
2224 struct zone *z;
2225 int average_size;
2226 /*
2227 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2228 * If they are really small and used heavily, the system can fall
2229 * into OOM very easily.
2230 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2231 */
2232 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2233 low_kmem_size = 0;
2234 total_size = 0;
2235 for_each_online_node(nid) {
2236 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2237 z = &NODE_DATA(nid)->node_zones[zone_type];
2238 if (populated_zone(z)) {
2239 if (zone_type < ZONE_NORMAL)
2240 low_kmem_size += z->present_pages;
2241 total_size += z->present_pages;
2242 }
2243 }
2244 }
2245 if (!low_kmem_size || /* there are no DMA area. */
2246 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2247 return ZONELIST_ORDER_NODE;
2248 /*
2249 * look into each node's config.
2250 * If there is a node whose DMA/DMA32 memory is very big area on
2251 * local memory, NODE_ORDER may be suitable.
2252 */
2253 average_size = total_size /
2254 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2255 for_each_online_node(nid) {
2256 low_kmem_size = 0;
2257 total_size = 0;
2258 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2259 z = &NODE_DATA(nid)->node_zones[zone_type];
2260 if (populated_zone(z)) {
2261 if (zone_type < ZONE_NORMAL)
2262 low_kmem_size += z->present_pages;
2263 total_size += z->present_pages;
2264 }
2265 }
2266 if (low_kmem_size &&
2267 total_size > average_size && /* ignore small node */
2268 low_kmem_size > total_size * 70/100)
2269 return ZONELIST_ORDER_NODE;
2270 }
2271 return ZONELIST_ORDER_ZONE;
2272 }
2273
2274 static void set_zonelist_order(void)
2275 {
2276 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2277 current_zonelist_order = default_zonelist_order();
2278 else
2279 current_zonelist_order = user_zonelist_order;
2280 }
2281
2282 static void build_zonelists(pg_data_t *pgdat)
2283 {
2284 int j, node, load;
2285 enum zone_type i;
2286 nodemask_t used_mask;
2287 int local_node, prev_node;
2288 struct zonelist *zonelist;
2289 int order = current_zonelist_order;
2290
2291 /* initialize zonelists */
2292 for (i = 0; i < MAX_ZONELISTS; i++) {
2293 zonelist = pgdat->node_zonelists + i;
2294 zonelist->_zonerefs[0].zone = NULL;
2295 zonelist->_zonerefs[0].zone_idx = 0;
2296 }
2297
2298 /* NUMA-aware ordering of nodes */
2299 local_node = pgdat->node_id;
2300 load = num_online_nodes();
2301 prev_node = local_node;
2302 nodes_clear(used_mask);
2303
2304 memset(node_load, 0, sizeof(node_load));
2305 memset(node_order, 0, sizeof(node_order));
2306 j = 0;
2307
2308 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2309 int distance = node_distance(local_node, node);
2310
2311 /*
2312 * If another node is sufficiently far away then it is better
2313 * to reclaim pages in a zone before going off node.
2314 */
2315 if (distance > RECLAIM_DISTANCE)
2316 zone_reclaim_mode = 1;
2317
2318 /*
2319 * We don't want to pressure a particular node.
2320 * So adding penalty to the first node in same
2321 * distance group to make it round-robin.
2322 */
2323 if (distance != node_distance(local_node, prev_node))
2324 node_load[node] = load;
2325
2326 prev_node = node;
2327 load--;
2328 if (order == ZONELIST_ORDER_NODE)
2329 build_zonelists_in_node_order(pgdat, node);
2330 else
2331 node_order[j++] = node; /* remember order */
2332 }
2333
2334 if (order == ZONELIST_ORDER_ZONE) {
2335 /* calculate node order -- i.e., DMA last! */
2336 build_zonelists_in_zone_order(pgdat, j);
2337 }
2338
2339 build_thisnode_zonelists(pgdat);
2340 }
2341
2342 /* Construct the zonelist performance cache - see further mmzone.h */
2343 static void build_zonelist_cache(pg_data_t *pgdat)
2344 {
2345 struct zonelist *zonelist;
2346 struct zonelist_cache *zlc;
2347 struct zoneref *z;
2348
2349 zonelist = &pgdat->node_zonelists[0];
2350 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2351 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2352 for (z = zonelist->_zonerefs; z->zone; z++)
2353 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2354 }
2355
2356
2357 #else /* CONFIG_NUMA */
2358
2359 static void set_zonelist_order(void)
2360 {
2361 current_zonelist_order = ZONELIST_ORDER_ZONE;
2362 }
2363
2364 static void build_zonelists(pg_data_t *pgdat)
2365 {
2366 int node, local_node;
2367 enum zone_type j;
2368 struct zonelist *zonelist;
2369
2370 local_node = pgdat->node_id;
2371
2372 zonelist = &pgdat->node_zonelists[0];
2373 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2374
2375 /*
2376 * Now we build the zonelist so that it contains the zones
2377 * of all the other nodes.
2378 * We don't want to pressure a particular node, so when
2379 * building the zones for node N, we make sure that the
2380 * zones coming right after the local ones are those from
2381 * node N+1 (modulo N)
2382 */
2383 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2384 if (!node_online(node))
2385 continue;
2386 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2387 MAX_NR_ZONES - 1);
2388 }
2389 for (node = 0; node < local_node; node++) {
2390 if (!node_online(node))
2391 continue;
2392 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2393 MAX_NR_ZONES - 1);
2394 }
2395
2396 zonelist->_zonerefs[j].zone = NULL;
2397 zonelist->_zonerefs[j].zone_idx = 0;
2398 }
2399
2400 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2401 static void build_zonelist_cache(pg_data_t *pgdat)
2402 {
2403 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2404 }
2405
2406 #endif /* CONFIG_NUMA */
2407
2408 /* return values int ....just for stop_machine() */
2409 static int __build_all_zonelists(void *dummy)
2410 {
2411 int nid;
2412
2413 for_each_online_node(nid) {
2414 pg_data_t *pgdat = NODE_DATA(nid);
2415
2416 build_zonelists(pgdat);
2417 build_zonelist_cache(pgdat);
2418 }
2419 return 0;
2420 }
2421
2422 void build_all_zonelists(void)
2423 {
2424 set_zonelist_order();
2425
2426 if (system_state == SYSTEM_BOOTING) {
2427 __build_all_zonelists(NULL);
2428 mminit_verify_zonelist();
2429 cpuset_init_current_mems_allowed();
2430 } else {
2431 /* we have to stop all cpus to guarantee there is no user
2432 of zonelist */
2433 stop_machine(__build_all_zonelists, NULL, NULL);
2434 /* cpuset refresh routine should be here */
2435 }
2436 vm_total_pages = nr_free_pagecache_pages();
2437 /*
2438 * Disable grouping by mobility if the number of pages in the
2439 * system is too low to allow the mechanism to work. It would be
2440 * more accurate, but expensive to check per-zone. This check is
2441 * made on memory-hotadd so a system can start with mobility
2442 * disabled and enable it later
2443 */
2444 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2445 page_group_by_mobility_disabled = 1;
2446 else
2447 page_group_by_mobility_disabled = 0;
2448
2449 printk("Built %i zonelists in %s order, mobility grouping %s. "
2450 "Total pages: %ld\n",
2451 num_online_nodes(),
2452 zonelist_order_name[current_zonelist_order],
2453 page_group_by_mobility_disabled ? "off" : "on",
2454 vm_total_pages);
2455 #ifdef CONFIG_NUMA
2456 printk("Policy zone: %s\n", zone_names[policy_zone]);
2457 #endif
2458 }
2459
2460 /*
2461 * Helper functions to size the waitqueue hash table.
2462 * Essentially these want to choose hash table sizes sufficiently
2463 * large so that collisions trying to wait on pages are rare.
2464 * But in fact, the number of active page waitqueues on typical
2465 * systems is ridiculously low, less than 200. So this is even
2466 * conservative, even though it seems large.
2467 *
2468 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2469 * waitqueues, i.e. the size of the waitq table given the number of pages.
2470 */
2471 #define PAGES_PER_WAITQUEUE 256
2472
2473 #ifndef CONFIG_MEMORY_HOTPLUG
2474 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2475 {
2476 unsigned long size = 1;
2477
2478 pages /= PAGES_PER_WAITQUEUE;
2479
2480 while (size < pages)
2481 size <<= 1;
2482
2483 /*
2484 * Once we have dozens or even hundreds of threads sleeping
2485 * on IO we've got bigger problems than wait queue collision.
2486 * Limit the size of the wait table to a reasonable size.
2487 */
2488 size = min(size, 4096UL);
2489
2490 return max(size, 4UL);
2491 }
2492 #else
2493 /*
2494 * A zone's size might be changed by hot-add, so it is not possible to determine
2495 * a suitable size for its wait_table. So we use the maximum size now.
2496 *
2497 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2498 *
2499 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2500 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2501 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2502 *
2503 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2504 * or more by the traditional way. (See above). It equals:
2505 *
2506 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2507 * ia64(16K page size) : = ( 8G + 4M)byte.
2508 * powerpc (64K page size) : = (32G +16M)byte.
2509 */
2510 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2511 {
2512 return 4096UL;
2513 }
2514 #endif
2515
2516 /*
2517 * This is an integer logarithm so that shifts can be used later
2518 * to extract the more random high bits from the multiplicative
2519 * hash function before the remainder is taken.
2520 */
2521 static inline unsigned long wait_table_bits(unsigned long size)
2522 {
2523 return ffz(~size);
2524 }
2525
2526 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2527
2528 /*
2529 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2530 * of blocks reserved is based on zone->pages_min. The memory within the
2531 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2532 * higher will lead to a bigger reserve which will get freed as contiguous
2533 * blocks as reclaim kicks in
2534 */
2535 static void setup_zone_migrate_reserve(struct zone *zone)
2536 {
2537 unsigned long start_pfn, pfn, end_pfn;
2538 struct page *page;
2539 unsigned long reserve, block_migratetype;
2540
2541 /* Get the start pfn, end pfn and the number of blocks to reserve */
2542 start_pfn = zone->zone_start_pfn;
2543 end_pfn = start_pfn + zone->spanned_pages;
2544 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2545 pageblock_order;
2546
2547 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2548 if (!pfn_valid(pfn))
2549 continue;
2550 page = pfn_to_page(pfn);
2551
2552 /* Watch out for overlapping nodes */
2553 if (page_to_nid(page) != zone_to_nid(zone))
2554 continue;
2555
2556 /* Blocks with reserved pages will never free, skip them. */
2557 if (PageReserved(page))
2558 continue;
2559
2560 block_migratetype = get_pageblock_migratetype(page);
2561
2562 /* If this block is reserved, account for it */
2563 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2564 reserve--;
2565 continue;
2566 }
2567
2568 /* Suitable for reserving if this block is movable */
2569 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2570 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2571 move_freepages_block(zone, page, MIGRATE_RESERVE);
2572 reserve--;
2573 continue;
2574 }
2575
2576 /*
2577 * If the reserve is met and this is a previous reserved block,
2578 * take it back
2579 */
2580 if (block_migratetype == MIGRATE_RESERVE) {
2581 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2582 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2583 }
2584 }
2585 }
2586
2587 /*
2588 * Initially all pages are reserved - free ones are freed
2589 * up by free_all_bootmem() once the early boot process is
2590 * done. Non-atomic initialization, single-pass.
2591 */
2592 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2593 unsigned long start_pfn, enum memmap_context context)
2594 {
2595 struct page *page;
2596 unsigned long end_pfn = start_pfn + size;
2597 unsigned long pfn;
2598 struct zone *z;
2599
2600 z = &NODE_DATA(nid)->node_zones[zone];
2601 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2602 /*
2603 * There can be holes in boot-time mem_map[]s
2604 * handed to this function. They do not
2605 * exist on hotplugged memory.
2606 */
2607 if (context == MEMMAP_EARLY) {
2608 if (!early_pfn_valid(pfn))
2609 continue;
2610 if (!early_pfn_in_nid(pfn, nid))
2611 continue;
2612 }
2613 page = pfn_to_page(pfn);
2614 set_page_links(page, zone, nid, pfn);
2615 mminit_verify_page_links(page, zone, nid, pfn);
2616 init_page_count(page);
2617 reset_page_mapcount(page);
2618 SetPageReserved(page);
2619 /*
2620 * Mark the block movable so that blocks are reserved for
2621 * movable at startup. This will force kernel allocations
2622 * to reserve their blocks rather than leaking throughout
2623 * the address space during boot when many long-lived
2624 * kernel allocations are made. Later some blocks near
2625 * the start are marked MIGRATE_RESERVE by
2626 * setup_zone_migrate_reserve()
2627 *
2628 * bitmap is created for zone's valid pfn range. but memmap
2629 * can be created for invalid pages (for alignment)
2630 * check here not to call set_pageblock_migratetype() against
2631 * pfn out of zone.
2632 */
2633 if ((z->zone_start_pfn <= pfn)
2634 && (pfn < z->zone_start_pfn + z->spanned_pages)
2635 && !(pfn & (pageblock_nr_pages - 1)))
2636 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2637
2638 INIT_LIST_HEAD(&page->lru);
2639 #ifdef WANT_PAGE_VIRTUAL
2640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2641 if (!is_highmem_idx(zone))
2642 set_page_address(page, __va(pfn << PAGE_SHIFT));
2643 #endif
2644 }
2645 }
2646
2647 static void __meminit zone_init_free_lists(struct zone *zone)
2648 {
2649 int order, t;
2650 for_each_migratetype_order(order, t) {
2651 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2652 zone->free_area[order].nr_free = 0;
2653 }
2654 }
2655
2656 #ifndef __HAVE_ARCH_MEMMAP_INIT
2657 #define memmap_init(size, nid, zone, start_pfn) \
2658 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2659 #endif
2660
2661 static int zone_batchsize(struct zone *zone)
2662 {
2663 int batch;
2664
2665 /*
2666 * The per-cpu-pages pools are set to around 1000th of the
2667 * size of the zone. But no more than 1/2 of a meg.
2668 *
2669 * OK, so we don't know how big the cache is. So guess.
2670 */
2671 batch = zone->present_pages / 1024;
2672 if (batch * PAGE_SIZE > 512 * 1024)
2673 batch = (512 * 1024) / PAGE_SIZE;
2674 batch /= 4; /* We effectively *= 4 below */
2675 if (batch < 1)
2676 batch = 1;
2677
2678 /*
2679 * Clamp the batch to a 2^n - 1 value. Having a power
2680 * of 2 value was found to be more likely to have
2681 * suboptimal cache aliasing properties in some cases.
2682 *
2683 * For example if 2 tasks are alternately allocating
2684 * batches of pages, one task can end up with a lot
2685 * of pages of one half of the possible page colors
2686 * and the other with pages of the other colors.
2687 */
2688 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2689
2690 return batch;
2691 }
2692
2693 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2694 {
2695 struct per_cpu_pages *pcp;
2696
2697 memset(p, 0, sizeof(*p));
2698
2699 pcp = &p->pcp;
2700 pcp->count = 0;
2701 pcp->high = 6 * batch;
2702 pcp->batch = max(1UL, 1 * batch);
2703 INIT_LIST_HEAD(&pcp->list);
2704 }
2705
2706 /*
2707 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2708 * to the value high for the pageset p.
2709 */
2710
2711 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2712 unsigned long high)
2713 {
2714 struct per_cpu_pages *pcp;
2715
2716 pcp = &p->pcp;
2717 pcp->high = high;
2718 pcp->batch = max(1UL, high/4);
2719 if ((high/4) > (PAGE_SHIFT * 8))
2720 pcp->batch = PAGE_SHIFT * 8;
2721 }
2722
2723
2724 #ifdef CONFIG_NUMA
2725 /*
2726 * Boot pageset table. One per cpu which is going to be used for all
2727 * zones and all nodes. The parameters will be set in such a way
2728 * that an item put on a list will immediately be handed over to
2729 * the buddy list. This is safe since pageset manipulation is done
2730 * with interrupts disabled.
2731 *
2732 * Some NUMA counter updates may also be caught by the boot pagesets.
2733 *
2734 * The boot_pagesets must be kept even after bootup is complete for
2735 * unused processors and/or zones. They do play a role for bootstrapping
2736 * hotplugged processors.
2737 *
2738 * zoneinfo_show() and maybe other functions do
2739 * not check if the processor is online before following the pageset pointer.
2740 * Other parts of the kernel may not check if the zone is available.
2741 */
2742 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2743
2744 /*
2745 * Dynamically allocate memory for the
2746 * per cpu pageset array in struct zone.
2747 */
2748 static int __cpuinit process_zones(int cpu)
2749 {
2750 struct zone *zone, *dzone;
2751 int node = cpu_to_node(cpu);
2752
2753 node_set_state(node, N_CPU); /* this node has a cpu */
2754
2755 for_each_zone(zone) {
2756
2757 if (!populated_zone(zone))
2758 continue;
2759
2760 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2761 GFP_KERNEL, node);
2762 if (!zone_pcp(zone, cpu))
2763 goto bad;
2764
2765 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2766
2767 if (percpu_pagelist_fraction)
2768 setup_pagelist_highmark(zone_pcp(zone, cpu),
2769 (zone->present_pages / percpu_pagelist_fraction));
2770 }
2771
2772 return 0;
2773 bad:
2774 for_each_zone(dzone) {
2775 if (!populated_zone(dzone))
2776 continue;
2777 if (dzone == zone)
2778 break;
2779 kfree(zone_pcp(dzone, cpu));
2780 zone_pcp(dzone, cpu) = NULL;
2781 }
2782 return -ENOMEM;
2783 }
2784
2785 static inline void free_zone_pagesets(int cpu)
2786 {
2787 struct zone *zone;
2788
2789 for_each_zone(zone) {
2790 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2791
2792 /* Free per_cpu_pageset if it is slab allocated */
2793 if (pset != &boot_pageset[cpu])
2794 kfree(pset);
2795 zone_pcp(zone, cpu) = NULL;
2796 }
2797 }
2798
2799 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2800 unsigned long action,
2801 void *hcpu)
2802 {
2803 int cpu = (long)hcpu;
2804 int ret = NOTIFY_OK;
2805
2806 switch (action) {
2807 case CPU_UP_PREPARE:
2808 case CPU_UP_PREPARE_FROZEN:
2809 if (process_zones(cpu))
2810 ret = NOTIFY_BAD;
2811 break;
2812 case CPU_UP_CANCELED:
2813 case CPU_UP_CANCELED_FROZEN:
2814 case CPU_DEAD:
2815 case CPU_DEAD_FROZEN:
2816 free_zone_pagesets(cpu);
2817 break;
2818 default:
2819 break;
2820 }
2821 return ret;
2822 }
2823
2824 static struct notifier_block __cpuinitdata pageset_notifier =
2825 { &pageset_cpuup_callback, NULL, 0 };
2826
2827 void __init setup_per_cpu_pageset(void)
2828 {
2829 int err;
2830
2831 /* Initialize per_cpu_pageset for cpu 0.
2832 * A cpuup callback will do this for every cpu
2833 * as it comes online
2834 */
2835 err = process_zones(smp_processor_id());
2836 BUG_ON(err);
2837 register_cpu_notifier(&pageset_notifier);
2838 }
2839
2840 #endif
2841
2842 static noinline __init_refok
2843 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2844 {
2845 int i;
2846 struct pglist_data *pgdat = zone->zone_pgdat;
2847 size_t alloc_size;
2848
2849 /*
2850 * The per-page waitqueue mechanism uses hashed waitqueues
2851 * per zone.
2852 */
2853 zone->wait_table_hash_nr_entries =
2854 wait_table_hash_nr_entries(zone_size_pages);
2855 zone->wait_table_bits =
2856 wait_table_bits(zone->wait_table_hash_nr_entries);
2857 alloc_size = zone->wait_table_hash_nr_entries
2858 * sizeof(wait_queue_head_t);
2859
2860 if (!slab_is_available()) {
2861 zone->wait_table = (wait_queue_head_t *)
2862 alloc_bootmem_node(pgdat, alloc_size);
2863 } else {
2864 /*
2865 * This case means that a zone whose size was 0 gets new memory
2866 * via memory hot-add.
2867 * But it may be the case that a new node was hot-added. In
2868 * this case vmalloc() will not be able to use this new node's
2869 * memory - this wait_table must be initialized to use this new
2870 * node itself as well.
2871 * To use this new node's memory, further consideration will be
2872 * necessary.
2873 */
2874 zone->wait_table = vmalloc(alloc_size);
2875 }
2876 if (!zone->wait_table)
2877 return -ENOMEM;
2878
2879 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2880 init_waitqueue_head(zone->wait_table + i);
2881
2882 return 0;
2883 }
2884
2885 static __meminit void zone_pcp_init(struct zone *zone)
2886 {
2887 int cpu;
2888 unsigned long batch = zone_batchsize(zone);
2889
2890 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2891 #ifdef CONFIG_NUMA
2892 /* Early boot. Slab allocator not functional yet */
2893 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2894 setup_pageset(&boot_pageset[cpu],0);
2895 #else
2896 setup_pageset(zone_pcp(zone,cpu), batch);
2897 #endif
2898 }
2899 if (zone->present_pages)
2900 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2901 zone->name, zone->present_pages, batch);
2902 }
2903
2904 __meminit int init_currently_empty_zone(struct zone *zone,
2905 unsigned long zone_start_pfn,
2906 unsigned long size,
2907 enum memmap_context context)
2908 {
2909 struct pglist_data *pgdat = zone->zone_pgdat;
2910 int ret;
2911 ret = zone_wait_table_init(zone, size);
2912 if (ret)
2913 return ret;
2914 pgdat->nr_zones = zone_idx(zone) + 1;
2915
2916 zone->zone_start_pfn = zone_start_pfn;
2917
2918 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2919 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2920 pgdat->node_id,
2921 (unsigned long)zone_idx(zone),
2922 zone_start_pfn, (zone_start_pfn + size));
2923
2924 zone_init_free_lists(zone);
2925
2926 return 0;
2927 }
2928
2929 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2930 /*
2931 * Basic iterator support. Return the first range of PFNs for a node
2932 * Note: nid == MAX_NUMNODES returns first region regardless of node
2933 */
2934 static int __meminit first_active_region_index_in_nid(int nid)
2935 {
2936 int i;
2937
2938 for (i = 0; i < nr_nodemap_entries; i++)
2939 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2940 return i;
2941
2942 return -1;
2943 }
2944
2945 /*
2946 * Basic iterator support. Return the next active range of PFNs for a node
2947 * Note: nid == MAX_NUMNODES returns next region regardless of node
2948 */
2949 static int __meminit next_active_region_index_in_nid(int index, int nid)
2950 {
2951 for (index = index + 1; index < nr_nodemap_entries; index++)
2952 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2953 return index;
2954
2955 return -1;
2956 }
2957
2958 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2959 /*
2960 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2961 * Architectures may implement their own version but if add_active_range()
2962 * was used and there are no special requirements, this is a convenient
2963 * alternative
2964 */
2965 int __meminit early_pfn_to_nid(unsigned long pfn)
2966 {
2967 int i;
2968
2969 for (i = 0; i < nr_nodemap_entries; i++) {
2970 unsigned long start_pfn = early_node_map[i].start_pfn;
2971 unsigned long end_pfn = early_node_map[i].end_pfn;
2972
2973 if (start_pfn <= pfn && pfn < end_pfn)
2974 return early_node_map[i].nid;
2975 }
2976
2977 return 0;
2978 }
2979 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2980
2981 /* Basic iterator support to walk early_node_map[] */
2982 #define for_each_active_range_index_in_nid(i, nid) \
2983 for (i = first_active_region_index_in_nid(nid); i != -1; \
2984 i = next_active_region_index_in_nid(i, nid))
2985
2986 /**
2987 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2988 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2989 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2990 *
2991 * If an architecture guarantees that all ranges registered with
2992 * add_active_ranges() contain no holes and may be freed, this
2993 * this function may be used instead of calling free_bootmem() manually.
2994 */
2995 void __init free_bootmem_with_active_regions(int nid,
2996 unsigned long max_low_pfn)
2997 {
2998 int i;
2999
3000 for_each_active_range_index_in_nid(i, nid) {
3001 unsigned long size_pages = 0;
3002 unsigned long end_pfn = early_node_map[i].end_pfn;
3003
3004 if (early_node_map[i].start_pfn >= max_low_pfn)
3005 continue;
3006
3007 if (end_pfn > max_low_pfn)
3008 end_pfn = max_low_pfn;
3009
3010 size_pages = end_pfn - early_node_map[i].start_pfn;
3011 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3012 PFN_PHYS(early_node_map[i].start_pfn),
3013 size_pages << PAGE_SHIFT);
3014 }
3015 }
3016
3017 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3018 {
3019 int i;
3020 int ret;
3021
3022 for_each_active_range_index_in_nid(i, nid) {
3023 ret = work_fn(early_node_map[i].start_pfn,
3024 early_node_map[i].end_pfn, data);
3025 if (ret)
3026 break;
3027 }
3028 }
3029 /**
3030 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3031 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3032 *
3033 * If an architecture guarantees that all ranges registered with
3034 * add_active_ranges() contain no holes and may be freed, this
3035 * function may be used instead of calling memory_present() manually.
3036 */
3037 void __init sparse_memory_present_with_active_regions(int nid)
3038 {
3039 int i;
3040
3041 for_each_active_range_index_in_nid(i, nid)
3042 memory_present(early_node_map[i].nid,
3043 early_node_map[i].start_pfn,
3044 early_node_map[i].end_pfn);
3045 }
3046
3047 /**
3048 * push_node_boundaries - Push node boundaries to at least the requested boundary
3049 * @nid: The nid of the node to push the boundary for
3050 * @start_pfn: The start pfn of the node
3051 * @end_pfn: The end pfn of the node
3052 *
3053 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3054 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3055 * be hotplugged even though no physical memory exists. This function allows
3056 * an arch to push out the node boundaries so mem_map is allocated that can
3057 * be used later.
3058 */
3059 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3060 void __init push_node_boundaries(unsigned int nid,
3061 unsigned long start_pfn, unsigned long end_pfn)
3062 {
3063 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3064 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3065 nid, start_pfn, end_pfn);
3066
3067 /* Initialise the boundary for this node if necessary */
3068 if (node_boundary_end_pfn[nid] == 0)
3069 node_boundary_start_pfn[nid] = -1UL;
3070
3071 /* Update the boundaries */
3072 if (node_boundary_start_pfn[nid] > start_pfn)
3073 node_boundary_start_pfn[nid] = start_pfn;
3074 if (node_boundary_end_pfn[nid] < end_pfn)
3075 node_boundary_end_pfn[nid] = end_pfn;
3076 }
3077
3078 /* If necessary, push the node boundary out for reserve hotadd */
3079 static void __meminit account_node_boundary(unsigned int nid,
3080 unsigned long *start_pfn, unsigned long *end_pfn)
3081 {
3082 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3083 "Entering account_node_boundary(%u, %lu, %lu)\n",
3084 nid, *start_pfn, *end_pfn);
3085
3086 /* Return if boundary information has not been provided */
3087 if (node_boundary_end_pfn[nid] == 0)
3088 return;
3089
3090 /* Check the boundaries and update if necessary */
3091 if (node_boundary_start_pfn[nid] < *start_pfn)
3092 *start_pfn = node_boundary_start_pfn[nid];
3093 if (node_boundary_end_pfn[nid] > *end_pfn)
3094 *end_pfn = node_boundary_end_pfn[nid];
3095 }
3096 #else
3097 void __init push_node_boundaries(unsigned int nid,
3098 unsigned long start_pfn, unsigned long end_pfn) {}
3099
3100 static void __meminit account_node_boundary(unsigned int nid,
3101 unsigned long *start_pfn, unsigned long *end_pfn) {}
3102 #endif
3103
3104
3105 /**
3106 * get_pfn_range_for_nid - Return the start and end page frames for a node
3107 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3108 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3109 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3110 *
3111 * It returns the start and end page frame of a node based on information
3112 * provided by an arch calling add_active_range(). If called for a node
3113 * with no available memory, a warning is printed and the start and end
3114 * PFNs will be 0.
3115 */
3116 void __meminit get_pfn_range_for_nid(unsigned int nid,
3117 unsigned long *start_pfn, unsigned long *end_pfn)
3118 {
3119 int i;
3120 *start_pfn = -1UL;
3121 *end_pfn = 0;
3122
3123 for_each_active_range_index_in_nid(i, nid) {
3124 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3125 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3126 }
3127
3128 if (*start_pfn == -1UL)
3129 *start_pfn = 0;
3130
3131 /* Push the node boundaries out if requested */
3132 account_node_boundary(nid, start_pfn, end_pfn);
3133 }
3134
3135 /*
3136 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3137 * assumption is made that zones within a node are ordered in monotonic
3138 * increasing memory addresses so that the "highest" populated zone is used
3139 */
3140 static void __init find_usable_zone_for_movable(void)
3141 {
3142 int zone_index;
3143 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3144 if (zone_index == ZONE_MOVABLE)
3145 continue;
3146
3147 if (arch_zone_highest_possible_pfn[zone_index] >
3148 arch_zone_lowest_possible_pfn[zone_index])
3149 break;
3150 }
3151
3152 VM_BUG_ON(zone_index == -1);
3153 movable_zone = zone_index;
3154 }
3155
3156 /*
3157 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3158 * because it is sized independant of architecture. Unlike the other zones,
3159 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3160 * in each node depending on the size of each node and how evenly kernelcore
3161 * is distributed. This helper function adjusts the zone ranges
3162 * provided by the architecture for a given node by using the end of the
3163 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3164 * zones within a node are in order of monotonic increases memory addresses
3165 */
3166 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3167 unsigned long zone_type,
3168 unsigned long node_start_pfn,
3169 unsigned long node_end_pfn,
3170 unsigned long *zone_start_pfn,
3171 unsigned long *zone_end_pfn)
3172 {
3173 /* Only adjust if ZONE_MOVABLE is on this node */
3174 if (zone_movable_pfn[nid]) {
3175 /* Size ZONE_MOVABLE */
3176 if (zone_type == ZONE_MOVABLE) {
3177 *zone_start_pfn = zone_movable_pfn[nid];
3178 *zone_end_pfn = min(node_end_pfn,
3179 arch_zone_highest_possible_pfn[movable_zone]);
3180
3181 /* Adjust for ZONE_MOVABLE starting within this range */
3182 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3183 *zone_end_pfn > zone_movable_pfn[nid]) {
3184 *zone_end_pfn = zone_movable_pfn[nid];
3185
3186 /* Check if this whole range is within ZONE_MOVABLE */
3187 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3188 *zone_start_pfn = *zone_end_pfn;
3189 }
3190 }
3191
3192 /*
3193 * Return the number of pages a zone spans in a node, including holes
3194 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3195 */
3196 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3197 unsigned long zone_type,
3198 unsigned long *ignored)
3199 {
3200 unsigned long node_start_pfn, node_end_pfn;
3201 unsigned long zone_start_pfn, zone_end_pfn;
3202
3203 /* Get the start and end of the node and zone */
3204 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3205 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3206 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3207 adjust_zone_range_for_zone_movable(nid, zone_type,
3208 node_start_pfn, node_end_pfn,
3209 &zone_start_pfn, &zone_end_pfn);
3210
3211 /* Check that this node has pages within the zone's required range */
3212 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3213 return 0;
3214
3215 /* Move the zone boundaries inside the node if necessary */
3216 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3217 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3218
3219 /* Return the spanned pages */
3220 return zone_end_pfn - zone_start_pfn;
3221 }
3222
3223 /*
3224 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3225 * then all holes in the requested range will be accounted for.
3226 */
3227 static unsigned long __meminit __absent_pages_in_range(int nid,
3228 unsigned long range_start_pfn,
3229 unsigned long range_end_pfn)
3230 {
3231 int i = 0;
3232 unsigned long prev_end_pfn = 0, hole_pages = 0;
3233 unsigned long start_pfn;
3234
3235 /* Find the end_pfn of the first active range of pfns in the node */
3236 i = first_active_region_index_in_nid(nid);
3237 if (i == -1)
3238 return 0;
3239
3240 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3241
3242 /* Account for ranges before physical memory on this node */
3243 if (early_node_map[i].start_pfn > range_start_pfn)
3244 hole_pages = prev_end_pfn - range_start_pfn;
3245
3246 /* Find all holes for the zone within the node */
3247 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3248
3249 /* No need to continue if prev_end_pfn is outside the zone */
3250 if (prev_end_pfn >= range_end_pfn)
3251 break;
3252
3253 /* Make sure the end of the zone is not within the hole */
3254 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3255 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3256
3257 /* Update the hole size cound and move on */
3258 if (start_pfn > range_start_pfn) {
3259 BUG_ON(prev_end_pfn > start_pfn);
3260 hole_pages += start_pfn - prev_end_pfn;
3261 }
3262 prev_end_pfn = early_node_map[i].end_pfn;
3263 }
3264
3265 /* Account for ranges past physical memory on this node */
3266 if (range_end_pfn > prev_end_pfn)
3267 hole_pages += range_end_pfn -
3268 max(range_start_pfn, prev_end_pfn);
3269
3270 return hole_pages;
3271 }
3272
3273 /**
3274 * absent_pages_in_range - Return number of page frames in holes within a range
3275 * @start_pfn: The start PFN to start searching for holes
3276 * @end_pfn: The end PFN to stop searching for holes
3277 *
3278 * It returns the number of pages frames in memory holes within a range.
3279 */
3280 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3281 unsigned long end_pfn)
3282 {
3283 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3284 }
3285
3286 /* Return the number of page frames in holes in a zone on a node */
3287 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3288 unsigned long zone_type,
3289 unsigned long *ignored)
3290 {
3291 unsigned long node_start_pfn, node_end_pfn;
3292 unsigned long zone_start_pfn, zone_end_pfn;
3293
3294 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3295 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3296 node_start_pfn);
3297 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3298 node_end_pfn);
3299
3300 adjust_zone_range_for_zone_movable(nid, zone_type,
3301 node_start_pfn, node_end_pfn,
3302 &zone_start_pfn, &zone_end_pfn);
3303 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3304 }
3305
3306 #else
3307 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3308 unsigned long zone_type,
3309 unsigned long *zones_size)
3310 {
3311 return zones_size[zone_type];
3312 }
3313
3314 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3315 unsigned long zone_type,
3316 unsigned long *zholes_size)
3317 {
3318 if (!zholes_size)
3319 return 0;
3320
3321 return zholes_size[zone_type];
3322 }
3323
3324 #endif
3325
3326 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3327 unsigned long *zones_size, unsigned long *zholes_size)
3328 {
3329 unsigned long realtotalpages, totalpages = 0;
3330 enum zone_type i;
3331
3332 for (i = 0; i < MAX_NR_ZONES; i++)
3333 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3334 zones_size);
3335 pgdat->node_spanned_pages = totalpages;
3336
3337 realtotalpages = totalpages;
3338 for (i = 0; i < MAX_NR_ZONES; i++)
3339 realtotalpages -=
3340 zone_absent_pages_in_node(pgdat->node_id, i,
3341 zholes_size);
3342 pgdat->node_present_pages = realtotalpages;
3343 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3344 realtotalpages);
3345 }
3346
3347 #ifndef CONFIG_SPARSEMEM
3348 /*
3349 * Calculate the size of the zone->blockflags rounded to an unsigned long
3350 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3351 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3352 * round what is now in bits to nearest long in bits, then return it in
3353 * bytes.
3354 */
3355 static unsigned long __init usemap_size(unsigned long zonesize)
3356 {
3357 unsigned long usemapsize;
3358
3359 usemapsize = roundup(zonesize, pageblock_nr_pages);
3360 usemapsize = usemapsize >> pageblock_order;
3361 usemapsize *= NR_PAGEBLOCK_BITS;
3362 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3363
3364 return usemapsize / 8;
3365 }
3366
3367 static void __init setup_usemap(struct pglist_data *pgdat,
3368 struct zone *zone, unsigned long zonesize)
3369 {
3370 unsigned long usemapsize = usemap_size(zonesize);
3371 zone->pageblock_flags = NULL;
3372 if (usemapsize) {
3373 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3374 memset(zone->pageblock_flags, 0, usemapsize);
3375 }
3376 }
3377 #else
3378 static void inline setup_usemap(struct pglist_data *pgdat,
3379 struct zone *zone, unsigned long zonesize) {}
3380 #endif /* CONFIG_SPARSEMEM */
3381
3382 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3383
3384 /* Return a sensible default order for the pageblock size. */
3385 static inline int pageblock_default_order(void)
3386 {
3387 if (HPAGE_SHIFT > PAGE_SHIFT)
3388 return HUGETLB_PAGE_ORDER;
3389
3390 return MAX_ORDER-1;
3391 }
3392
3393 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3394 static inline void __init set_pageblock_order(unsigned int order)
3395 {
3396 /* Check that pageblock_nr_pages has not already been setup */
3397 if (pageblock_order)
3398 return;
3399
3400 /*
3401 * Assume the largest contiguous order of interest is a huge page.
3402 * This value may be variable depending on boot parameters on IA64
3403 */
3404 pageblock_order = order;
3405 }
3406 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3407
3408 /*
3409 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3410 * and pageblock_default_order() are unused as pageblock_order is set
3411 * at compile-time. See include/linux/pageblock-flags.h for the values of
3412 * pageblock_order based on the kernel config
3413 */
3414 static inline int pageblock_default_order(unsigned int order)
3415 {
3416 return MAX_ORDER-1;
3417 }
3418 #define set_pageblock_order(x) do {} while (0)
3419
3420 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3421
3422 /*
3423 * Set up the zone data structures:
3424 * - mark all pages reserved
3425 * - mark all memory queues empty
3426 * - clear the memory bitmaps
3427 */
3428 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3429 unsigned long *zones_size, unsigned long *zholes_size)
3430 {
3431 enum zone_type j;
3432 int nid = pgdat->node_id;
3433 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3434 int ret;
3435
3436 pgdat_resize_init(pgdat);
3437 pgdat->nr_zones = 0;
3438 init_waitqueue_head(&pgdat->kswapd_wait);
3439 pgdat->kswapd_max_order = 0;
3440
3441 for (j = 0; j < MAX_NR_ZONES; j++) {
3442 struct zone *zone = pgdat->node_zones + j;
3443 unsigned long size, realsize, memmap_pages;
3444 enum lru_list l;
3445
3446 size = zone_spanned_pages_in_node(nid, j, zones_size);
3447 realsize = size - zone_absent_pages_in_node(nid, j,
3448 zholes_size);
3449
3450 /*
3451 * Adjust realsize so that it accounts for how much memory
3452 * is used by this zone for memmap. This affects the watermark
3453 * and per-cpu initialisations
3454 */
3455 memmap_pages =
3456 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3457 if (realsize >= memmap_pages) {
3458 realsize -= memmap_pages;
3459 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3460 "%s zone: %lu pages used for memmap\n",
3461 zone_names[j], memmap_pages);
3462 } else
3463 printk(KERN_WARNING
3464 " %s zone: %lu pages exceeds realsize %lu\n",
3465 zone_names[j], memmap_pages, realsize);
3466
3467 /* Account for reserved pages */
3468 if (j == 0 && realsize > dma_reserve) {
3469 realsize -= dma_reserve;
3470 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3471 "%s zone: %lu pages reserved\n",
3472 zone_names[0], dma_reserve);
3473 }
3474
3475 if (!is_highmem_idx(j))
3476 nr_kernel_pages += realsize;
3477 nr_all_pages += realsize;
3478
3479 zone->spanned_pages = size;
3480 zone->present_pages = realsize;
3481 #ifdef CONFIG_NUMA
3482 zone->node = nid;
3483 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3484 / 100;
3485 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3486 #endif
3487 zone->name = zone_names[j];
3488 spin_lock_init(&zone->lock);
3489 spin_lock_init(&zone->lru_lock);
3490 zone_seqlock_init(zone);
3491 zone->zone_pgdat = pgdat;
3492
3493 zone->prev_priority = DEF_PRIORITY;
3494
3495 zone_pcp_init(zone);
3496 for_each_lru(l) {
3497 INIT_LIST_HEAD(&zone->lru[l].list);
3498 zone->lru[l].nr_scan = 0;
3499 }
3500 zone->recent_rotated[0] = 0;
3501 zone->recent_rotated[1] = 0;
3502 zone->recent_scanned[0] = 0;
3503 zone->recent_scanned[1] = 0;
3504 zap_zone_vm_stats(zone);
3505 zone->flags = 0;
3506 if (!size)
3507 continue;
3508
3509 set_pageblock_order(pageblock_default_order());
3510 setup_usemap(pgdat, zone, size);
3511 ret = init_currently_empty_zone(zone, zone_start_pfn,
3512 size, MEMMAP_EARLY);
3513 BUG_ON(ret);
3514 memmap_init(size, nid, j, zone_start_pfn);
3515 zone_start_pfn += size;
3516 }
3517 }
3518
3519 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3520 {
3521 /* Skip empty nodes */
3522 if (!pgdat->node_spanned_pages)
3523 return;
3524
3525 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3526 /* ia64 gets its own node_mem_map, before this, without bootmem */
3527 if (!pgdat->node_mem_map) {
3528 unsigned long size, start, end;
3529 struct page *map;
3530
3531 /*
3532 * The zone's endpoints aren't required to be MAX_ORDER
3533 * aligned but the node_mem_map endpoints must be in order
3534 * for the buddy allocator to function correctly.
3535 */
3536 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3537 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3538 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3539 size = (end - start) * sizeof(struct page);
3540 map = alloc_remap(pgdat->node_id, size);
3541 if (!map)
3542 map = alloc_bootmem_node(pgdat, size);
3543 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3544 }
3545 #ifndef CONFIG_NEED_MULTIPLE_NODES
3546 /*
3547 * With no DISCONTIG, the global mem_map is just set as node 0's
3548 */
3549 if (pgdat == NODE_DATA(0)) {
3550 mem_map = NODE_DATA(0)->node_mem_map;
3551 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3552 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3553 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3554 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3555 }
3556 #endif
3557 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3558 }
3559
3560 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3561 unsigned long node_start_pfn, unsigned long *zholes_size)
3562 {
3563 pg_data_t *pgdat = NODE_DATA(nid);
3564
3565 pgdat->node_id = nid;
3566 pgdat->node_start_pfn = node_start_pfn;
3567 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3568
3569 alloc_node_mem_map(pgdat);
3570 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3571 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3572 nid, (unsigned long)pgdat,
3573 (unsigned long)pgdat->node_mem_map);
3574 #endif
3575
3576 free_area_init_core(pgdat, zones_size, zholes_size);
3577 }
3578
3579 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3580
3581 #if MAX_NUMNODES > 1
3582 /*
3583 * Figure out the number of possible node ids.
3584 */
3585 static void __init setup_nr_node_ids(void)
3586 {
3587 unsigned int node;
3588 unsigned int highest = 0;
3589
3590 for_each_node_mask(node, node_possible_map)
3591 highest = node;
3592 nr_node_ids = highest + 1;
3593 }
3594 #else
3595 static inline void setup_nr_node_ids(void)
3596 {
3597 }
3598 #endif
3599
3600 /**
3601 * add_active_range - Register a range of PFNs backed by physical memory
3602 * @nid: The node ID the range resides on
3603 * @start_pfn: The start PFN of the available physical memory
3604 * @end_pfn: The end PFN of the available physical memory
3605 *
3606 * These ranges are stored in an early_node_map[] and later used by
3607 * free_area_init_nodes() to calculate zone sizes and holes. If the
3608 * range spans a memory hole, it is up to the architecture to ensure
3609 * the memory is not freed by the bootmem allocator. If possible
3610 * the range being registered will be merged with existing ranges.
3611 */
3612 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3613 unsigned long end_pfn)
3614 {
3615 int i;
3616
3617 mminit_dprintk(MMINIT_TRACE, "memory_register",
3618 "Entering add_active_range(%d, %#lx, %#lx) "
3619 "%d entries of %d used\n",
3620 nid, start_pfn, end_pfn,
3621 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3622
3623 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3624
3625 /* Merge with existing active regions if possible */
3626 for (i = 0; i < nr_nodemap_entries; i++) {
3627 if (early_node_map[i].nid != nid)
3628 continue;
3629
3630 /* Skip if an existing region covers this new one */
3631 if (start_pfn >= early_node_map[i].start_pfn &&
3632 end_pfn <= early_node_map[i].end_pfn)
3633 return;
3634
3635 /* Merge forward if suitable */
3636 if (start_pfn <= early_node_map[i].end_pfn &&
3637 end_pfn > early_node_map[i].end_pfn) {
3638 early_node_map[i].end_pfn = end_pfn;
3639 return;
3640 }
3641
3642 /* Merge backward if suitable */
3643 if (start_pfn < early_node_map[i].end_pfn &&
3644 end_pfn >= early_node_map[i].start_pfn) {
3645 early_node_map[i].start_pfn = start_pfn;
3646 return;
3647 }
3648 }
3649
3650 /* Check that early_node_map is large enough */
3651 if (i >= MAX_ACTIVE_REGIONS) {
3652 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3653 MAX_ACTIVE_REGIONS);
3654 return;
3655 }
3656
3657 early_node_map[i].nid = nid;
3658 early_node_map[i].start_pfn = start_pfn;
3659 early_node_map[i].end_pfn = end_pfn;
3660 nr_nodemap_entries = i + 1;
3661 }
3662
3663 /**
3664 * remove_active_range - Shrink an existing registered range of PFNs
3665 * @nid: The node id the range is on that should be shrunk
3666 * @start_pfn: The new PFN of the range
3667 * @end_pfn: The new PFN of the range
3668 *
3669 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3670 * The map is kept near the end physical page range that has already been
3671 * registered. This function allows an arch to shrink an existing registered
3672 * range.
3673 */
3674 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3675 unsigned long end_pfn)
3676 {
3677 int i, j;
3678 int removed = 0;
3679
3680 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3681 nid, start_pfn, end_pfn);
3682
3683 /* Find the old active region end and shrink */
3684 for_each_active_range_index_in_nid(i, nid) {
3685 if (early_node_map[i].start_pfn >= start_pfn &&
3686 early_node_map[i].end_pfn <= end_pfn) {
3687 /* clear it */
3688 early_node_map[i].start_pfn = 0;
3689 early_node_map[i].end_pfn = 0;
3690 removed = 1;
3691 continue;
3692 }
3693 if (early_node_map[i].start_pfn < start_pfn &&
3694 early_node_map[i].end_pfn > start_pfn) {
3695 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3696 early_node_map[i].end_pfn = start_pfn;
3697 if (temp_end_pfn > end_pfn)
3698 add_active_range(nid, end_pfn, temp_end_pfn);
3699 continue;
3700 }
3701 if (early_node_map[i].start_pfn >= start_pfn &&
3702 early_node_map[i].end_pfn > end_pfn &&
3703 early_node_map[i].start_pfn < end_pfn) {
3704 early_node_map[i].start_pfn = end_pfn;
3705 continue;
3706 }
3707 }
3708
3709 if (!removed)
3710 return;
3711
3712 /* remove the blank ones */
3713 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3714 if (early_node_map[i].nid != nid)
3715 continue;
3716 if (early_node_map[i].end_pfn)
3717 continue;
3718 /* we found it, get rid of it */
3719 for (j = i; j < nr_nodemap_entries - 1; j++)
3720 memcpy(&early_node_map[j], &early_node_map[j+1],
3721 sizeof(early_node_map[j]));
3722 j = nr_nodemap_entries - 1;
3723 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3724 nr_nodemap_entries--;
3725 }
3726 }
3727
3728 /**
3729 * remove_all_active_ranges - Remove all currently registered regions
3730 *
3731 * During discovery, it may be found that a table like SRAT is invalid
3732 * and an alternative discovery method must be used. This function removes
3733 * all currently registered regions.
3734 */
3735 void __init remove_all_active_ranges(void)
3736 {
3737 memset(early_node_map, 0, sizeof(early_node_map));
3738 nr_nodemap_entries = 0;
3739 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3740 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3741 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3742 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3743 }
3744
3745 /* Compare two active node_active_regions */
3746 static int __init cmp_node_active_region(const void *a, const void *b)
3747 {
3748 struct node_active_region *arange = (struct node_active_region *)a;
3749 struct node_active_region *brange = (struct node_active_region *)b;
3750
3751 /* Done this way to avoid overflows */
3752 if (arange->start_pfn > brange->start_pfn)
3753 return 1;
3754 if (arange->start_pfn < brange->start_pfn)
3755 return -1;
3756
3757 return 0;
3758 }
3759
3760 /* sort the node_map by start_pfn */
3761 static void __init sort_node_map(void)
3762 {
3763 sort(early_node_map, (size_t)nr_nodemap_entries,
3764 sizeof(struct node_active_region),
3765 cmp_node_active_region, NULL);
3766 }
3767
3768 /* Find the lowest pfn for a node */
3769 static unsigned long __init find_min_pfn_for_node(int nid)
3770 {
3771 int i;
3772 unsigned long min_pfn = ULONG_MAX;
3773
3774 /* Assuming a sorted map, the first range found has the starting pfn */
3775 for_each_active_range_index_in_nid(i, nid)
3776 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3777
3778 if (min_pfn == ULONG_MAX) {
3779 printk(KERN_WARNING
3780 "Could not find start_pfn for node %d\n", nid);
3781 return 0;
3782 }
3783
3784 return min_pfn;
3785 }
3786
3787 /**
3788 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3789 *
3790 * It returns the minimum PFN based on information provided via
3791 * add_active_range().
3792 */
3793 unsigned long __init find_min_pfn_with_active_regions(void)
3794 {
3795 return find_min_pfn_for_node(MAX_NUMNODES);
3796 }
3797
3798 /*
3799 * early_calculate_totalpages()
3800 * Sum pages in active regions for movable zone.
3801 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3802 */
3803 static unsigned long __init early_calculate_totalpages(void)
3804 {
3805 int i;
3806 unsigned long totalpages = 0;
3807
3808 for (i = 0; i < nr_nodemap_entries; i++) {
3809 unsigned long pages = early_node_map[i].end_pfn -
3810 early_node_map[i].start_pfn;
3811 totalpages += pages;
3812 if (pages)
3813 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3814 }
3815 return totalpages;
3816 }
3817
3818 /*
3819 * Find the PFN the Movable zone begins in each node. Kernel memory
3820 * is spread evenly between nodes as long as the nodes have enough
3821 * memory. When they don't, some nodes will have more kernelcore than
3822 * others
3823 */
3824 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3825 {
3826 int i, nid;
3827 unsigned long usable_startpfn;
3828 unsigned long kernelcore_node, kernelcore_remaining;
3829 unsigned long totalpages = early_calculate_totalpages();
3830 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3831
3832 /*
3833 * If movablecore was specified, calculate what size of
3834 * kernelcore that corresponds so that memory usable for
3835 * any allocation type is evenly spread. If both kernelcore
3836 * and movablecore are specified, then the value of kernelcore
3837 * will be used for required_kernelcore if it's greater than
3838 * what movablecore would have allowed.
3839 */
3840 if (required_movablecore) {
3841 unsigned long corepages;
3842
3843 /*
3844 * Round-up so that ZONE_MOVABLE is at least as large as what
3845 * was requested by the user
3846 */
3847 required_movablecore =
3848 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3849 corepages = totalpages - required_movablecore;
3850
3851 required_kernelcore = max(required_kernelcore, corepages);
3852 }
3853
3854 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3855 if (!required_kernelcore)
3856 return;
3857
3858 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3859 find_usable_zone_for_movable();
3860 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3861
3862 restart:
3863 /* Spread kernelcore memory as evenly as possible throughout nodes */
3864 kernelcore_node = required_kernelcore / usable_nodes;
3865 for_each_node_state(nid, N_HIGH_MEMORY) {
3866 /*
3867 * Recalculate kernelcore_node if the division per node
3868 * now exceeds what is necessary to satisfy the requested
3869 * amount of memory for the kernel
3870 */
3871 if (required_kernelcore < kernelcore_node)
3872 kernelcore_node = required_kernelcore / usable_nodes;
3873
3874 /*
3875 * As the map is walked, we track how much memory is usable
3876 * by the kernel using kernelcore_remaining. When it is
3877 * 0, the rest of the node is usable by ZONE_MOVABLE
3878 */
3879 kernelcore_remaining = kernelcore_node;
3880
3881 /* Go through each range of PFNs within this node */
3882 for_each_active_range_index_in_nid(i, nid) {
3883 unsigned long start_pfn, end_pfn;
3884 unsigned long size_pages;
3885
3886 start_pfn = max(early_node_map[i].start_pfn,
3887 zone_movable_pfn[nid]);
3888 end_pfn = early_node_map[i].end_pfn;
3889 if (start_pfn >= end_pfn)
3890 continue;
3891
3892 /* Account for what is only usable for kernelcore */
3893 if (start_pfn < usable_startpfn) {
3894 unsigned long kernel_pages;
3895 kernel_pages = min(end_pfn, usable_startpfn)
3896 - start_pfn;
3897
3898 kernelcore_remaining -= min(kernel_pages,
3899 kernelcore_remaining);
3900 required_kernelcore -= min(kernel_pages,
3901 required_kernelcore);
3902
3903 /* Continue if range is now fully accounted */
3904 if (end_pfn <= usable_startpfn) {
3905
3906 /*
3907 * Push zone_movable_pfn to the end so
3908 * that if we have to rebalance
3909 * kernelcore across nodes, we will
3910 * not double account here
3911 */
3912 zone_movable_pfn[nid] = end_pfn;
3913 continue;
3914 }
3915 start_pfn = usable_startpfn;
3916 }
3917
3918 /*
3919 * The usable PFN range for ZONE_MOVABLE is from
3920 * start_pfn->end_pfn. Calculate size_pages as the
3921 * number of pages used as kernelcore
3922 */
3923 size_pages = end_pfn - start_pfn;
3924 if (size_pages > kernelcore_remaining)
3925 size_pages = kernelcore_remaining;
3926 zone_movable_pfn[nid] = start_pfn + size_pages;
3927
3928 /*
3929 * Some kernelcore has been met, update counts and
3930 * break if the kernelcore for this node has been
3931 * satisified
3932 */
3933 required_kernelcore -= min(required_kernelcore,
3934 size_pages);
3935 kernelcore_remaining -= size_pages;
3936 if (!kernelcore_remaining)
3937 break;
3938 }
3939 }
3940
3941 /*
3942 * If there is still required_kernelcore, we do another pass with one
3943 * less node in the count. This will push zone_movable_pfn[nid] further
3944 * along on the nodes that still have memory until kernelcore is
3945 * satisified
3946 */
3947 usable_nodes--;
3948 if (usable_nodes && required_kernelcore > usable_nodes)
3949 goto restart;
3950
3951 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3952 for (nid = 0; nid < MAX_NUMNODES; nid++)
3953 zone_movable_pfn[nid] =
3954 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3955 }
3956
3957 /* Any regular memory on that node ? */
3958 static void check_for_regular_memory(pg_data_t *pgdat)
3959 {
3960 #ifdef CONFIG_HIGHMEM
3961 enum zone_type zone_type;
3962
3963 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3964 struct zone *zone = &pgdat->node_zones[zone_type];
3965 if (zone->present_pages)
3966 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3967 }
3968 #endif
3969 }
3970
3971 /**
3972 * free_area_init_nodes - Initialise all pg_data_t and zone data
3973 * @max_zone_pfn: an array of max PFNs for each zone
3974 *
3975 * This will call free_area_init_node() for each active node in the system.
3976 * Using the page ranges provided by add_active_range(), the size of each
3977 * zone in each node and their holes is calculated. If the maximum PFN
3978 * between two adjacent zones match, it is assumed that the zone is empty.
3979 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3980 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3981 * starts where the previous one ended. For example, ZONE_DMA32 starts
3982 * at arch_max_dma_pfn.
3983 */
3984 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3985 {
3986 unsigned long nid;
3987 int i;
3988
3989 /* Sort early_node_map as initialisation assumes it is sorted */
3990 sort_node_map();
3991
3992 /* Record where the zone boundaries are */
3993 memset(arch_zone_lowest_possible_pfn, 0,
3994 sizeof(arch_zone_lowest_possible_pfn));
3995 memset(arch_zone_highest_possible_pfn, 0,
3996 sizeof(arch_zone_highest_possible_pfn));
3997 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3998 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3999 for (i = 1; i < MAX_NR_ZONES; i++) {
4000 if (i == ZONE_MOVABLE)
4001 continue;
4002 arch_zone_lowest_possible_pfn[i] =
4003 arch_zone_highest_possible_pfn[i-1];
4004 arch_zone_highest_possible_pfn[i] =
4005 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4006 }
4007 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4008 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4009
4010 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4011 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4012 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4013
4014 /* Print out the zone ranges */
4015 printk("Zone PFN ranges:\n");
4016 for (i = 0; i < MAX_NR_ZONES; i++) {
4017 if (i == ZONE_MOVABLE)
4018 continue;
4019 printk(" %-8s %0#10lx -> %0#10lx\n",
4020 zone_names[i],
4021 arch_zone_lowest_possible_pfn[i],
4022 arch_zone_highest_possible_pfn[i]);
4023 }
4024
4025 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4026 printk("Movable zone start PFN for each node\n");
4027 for (i = 0; i < MAX_NUMNODES; i++) {
4028 if (zone_movable_pfn[i])
4029 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4030 }
4031
4032 /* Print out the early_node_map[] */
4033 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4034 for (i = 0; i < nr_nodemap_entries; i++)
4035 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4036 early_node_map[i].start_pfn,
4037 early_node_map[i].end_pfn);
4038
4039 /* Initialise every node */
4040 mminit_verify_pageflags_layout();
4041 setup_nr_node_ids();
4042 for_each_online_node(nid) {
4043 pg_data_t *pgdat = NODE_DATA(nid);
4044 free_area_init_node(nid, NULL,
4045 find_min_pfn_for_node(nid), NULL);
4046
4047 /* Any memory on that node */
4048 if (pgdat->node_present_pages)
4049 node_set_state(nid, N_HIGH_MEMORY);
4050 check_for_regular_memory(pgdat);
4051 }
4052 }
4053
4054 static int __init cmdline_parse_core(char *p, unsigned long *core)
4055 {
4056 unsigned long long coremem;
4057 if (!p)
4058 return -EINVAL;
4059
4060 coremem = memparse(p, &p);
4061 *core = coremem >> PAGE_SHIFT;
4062
4063 /* Paranoid check that UL is enough for the coremem value */
4064 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4065
4066 return 0;
4067 }
4068
4069 /*
4070 * kernelcore=size sets the amount of memory for use for allocations that
4071 * cannot be reclaimed or migrated.
4072 */
4073 static int __init cmdline_parse_kernelcore(char *p)
4074 {
4075 return cmdline_parse_core(p, &required_kernelcore);
4076 }
4077
4078 /*
4079 * movablecore=size sets the amount of memory for use for allocations that
4080 * can be reclaimed or migrated.
4081 */
4082 static int __init cmdline_parse_movablecore(char *p)
4083 {
4084 return cmdline_parse_core(p, &required_movablecore);
4085 }
4086
4087 early_param("kernelcore", cmdline_parse_kernelcore);
4088 early_param("movablecore", cmdline_parse_movablecore);
4089
4090 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4091
4092 /**
4093 * set_dma_reserve - set the specified number of pages reserved in the first zone
4094 * @new_dma_reserve: The number of pages to mark reserved
4095 *
4096 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4097 * In the DMA zone, a significant percentage may be consumed by kernel image
4098 * and other unfreeable allocations which can skew the watermarks badly. This
4099 * function may optionally be used to account for unfreeable pages in the
4100 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4101 * smaller per-cpu batchsize.
4102 */
4103 void __init set_dma_reserve(unsigned long new_dma_reserve)
4104 {
4105 dma_reserve = new_dma_reserve;
4106 }
4107
4108 #ifndef CONFIG_NEED_MULTIPLE_NODES
4109 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4110 EXPORT_SYMBOL(contig_page_data);
4111 #endif
4112
4113 void __init free_area_init(unsigned long *zones_size)
4114 {
4115 free_area_init_node(0, zones_size,
4116 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4117 }
4118
4119 static int page_alloc_cpu_notify(struct notifier_block *self,
4120 unsigned long action, void *hcpu)
4121 {
4122 int cpu = (unsigned long)hcpu;
4123
4124 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4125 drain_pages(cpu);
4126
4127 /*
4128 * Spill the event counters of the dead processor
4129 * into the current processors event counters.
4130 * This artificially elevates the count of the current
4131 * processor.
4132 */
4133 vm_events_fold_cpu(cpu);
4134
4135 /*
4136 * Zero the differential counters of the dead processor
4137 * so that the vm statistics are consistent.
4138 *
4139 * This is only okay since the processor is dead and cannot
4140 * race with what we are doing.
4141 */
4142 refresh_cpu_vm_stats(cpu);
4143 }
4144 return NOTIFY_OK;
4145 }
4146
4147 void __init page_alloc_init(void)
4148 {
4149 hotcpu_notifier(page_alloc_cpu_notify, 0);
4150 }
4151
4152 /*
4153 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4154 * or min_free_kbytes changes.
4155 */
4156 static void calculate_totalreserve_pages(void)
4157 {
4158 struct pglist_data *pgdat;
4159 unsigned long reserve_pages = 0;
4160 enum zone_type i, j;
4161
4162 for_each_online_pgdat(pgdat) {
4163 for (i = 0; i < MAX_NR_ZONES; i++) {
4164 struct zone *zone = pgdat->node_zones + i;
4165 unsigned long max = 0;
4166
4167 /* Find valid and maximum lowmem_reserve in the zone */
4168 for (j = i; j < MAX_NR_ZONES; j++) {
4169 if (zone->lowmem_reserve[j] > max)
4170 max = zone->lowmem_reserve[j];
4171 }
4172
4173 /* we treat pages_high as reserved pages. */
4174 max += zone->pages_high;
4175
4176 if (max > zone->present_pages)
4177 max = zone->present_pages;
4178 reserve_pages += max;
4179 }
4180 }
4181 totalreserve_pages = reserve_pages;
4182 }
4183
4184 /*
4185 * setup_per_zone_lowmem_reserve - called whenever
4186 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4187 * has a correct pages reserved value, so an adequate number of
4188 * pages are left in the zone after a successful __alloc_pages().
4189 */
4190 static void setup_per_zone_lowmem_reserve(void)
4191 {
4192 struct pglist_data *pgdat;
4193 enum zone_type j, idx;
4194
4195 for_each_online_pgdat(pgdat) {
4196 for (j = 0; j < MAX_NR_ZONES; j++) {
4197 struct zone *zone = pgdat->node_zones + j;
4198 unsigned long present_pages = zone->present_pages;
4199
4200 zone->lowmem_reserve[j] = 0;
4201
4202 idx = j;
4203 while (idx) {
4204 struct zone *lower_zone;
4205
4206 idx--;
4207
4208 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4209 sysctl_lowmem_reserve_ratio[idx] = 1;
4210
4211 lower_zone = pgdat->node_zones + idx;
4212 lower_zone->lowmem_reserve[j] = present_pages /
4213 sysctl_lowmem_reserve_ratio[idx];
4214 present_pages += lower_zone->present_pages;
4215 }
4216 }
4217 }
4218
4219 /* update totalreserve_pages */
4220 calculate_totalreserve_pages();
4221 }
4222
4223 /**
4224 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4225 *
4226 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4227 * with respect to min_free_kbytes.
4228 */
4229 void setup_per_zone_pages_min(void)
4230 {
4231 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4232 unsigned long lowmem_pages = 0;
4233 struct zone *zone;
4234 unsigned long flags;
4235
4236 /* Calculate total number of !ZONE_HIGHMEM pages */
4237 for_each_zone(zone) {
4238 if (!is_highmem(zone))
4239 lowmem_pages += zone->present_pages;
4240 }
4241
4242 for_each_zone(zone) {
4243 u64 tmp;
4244
4245 spin_lock_irqsave(&zone->lru_lock, flags);
4246 tmp = (u64)pages_min * zone->present_pages;
4247 do_div(tmp, lowmem_pages);
4248 if (is_highmem(zone)) {
4249 /*
4250 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4251 * need highmem pages, so cap pages_min to a small
4252 * value here.
4253 *
4254 * The (pages_high-pages_low) and (pages_low-pages_min)
4255 * deltas controls asynch page reclaim, and so should
4256 * not be capped for highmem.
4257 */
4258 int min_pages;
4259
4260 min_pages = zone->present_pages / 1024;
4261 if (min_pages < SWAP_CLUSTER_MAX)
4262 min_pages = SWAP_CLUSTER_MAX;
4263 if (min_pages > 128)
4264 min_pages = 128;
4265 zone->pages_min = min_pages;
4266 } else {
4267 /*
4268 * If it's a lowmem zone, reserve a number of pages
4269 * proportionate to the zone's size.
4270 */
4271 zone->pages_min = tmp;
4272 }
4273
4274 zone->pages_low = zone->pages_min + (tmp >> 2);
4275 zone->pages_high = zone->pages_min + (tmp >> 1);
4276 setup_zone_migrate_reserve(zone);
4277 spin_unlock_irqrestore(&zone->lru_lock, flags);
4278 }
4279
4280 /* update totalreserve_pages */
4281 calculate_totalreserve_pages();
4282 }
4283
4284 /**
4285 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4286 *
4287 * The inactive anon list should be small enough that the VM never has to
4288 * do too much work, but large enough that each inactive page has a chance
4289 * to be referenced again before it is swapped out.
4290 *
4291 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4292 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4293 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4294 * the anonymous pages are kept on the inactive list.
4295 *
4296 * total target max
4297 * memory ratio inactive anon
4298 * -------------------------------------
4299 * 10MB 1 5MB
4300 * 100MB 1 50MB
4301 * 1GB 3 250MB
4302 * 10GB 10 0.9GB
4303 * 100GB 31 3GB
4304 * 1TB 101 10GB
4305 * 10TB 320 32GB
4306 */
4307 void setup_per_zone_inactive_ratio(void)
4308 {
4309 struct zone *zone;
4310
4311 for_each_zone(zone) {
4312 unsigned int gb, ratio;
4313
4314 /* Zone size in gigabytes */
4315 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4316 ratio = int_sqrt(10 * gb);
4317 if (!ratio)
4318 ratio = 1;
4319
4320 zone->inactive_ratio = ratio;
4321 }
4322 }
4323
4324 /*
4325 * Initialise min_free_kbytes.
4326 *
4327 * For small machines we want it small (128k min). For large machines
4328 * we want it large (64MB max). But it is not linear, because network
4329 * bandwidth does not increase linearly with machine size. We use
4330 *
4331 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4332 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4333 *
4334 * which yields
4335 *
4336 * 16MB: 512k
4337 * 32MB: 724k
4338 * 64MB: 1024k
4339 * 128MB: 1448k
4340 * 256MB: 2048k
4341 * 512MB: 2896k
4342 * 1024MB: 4096k
4343 * 2048MB: 5792k
4344 * 4096MB: 8192k
4345 * 8192MB: 11584k
4346 * 16384MB: 16384k
4347 */
4348 static int __init init_per_zone_pages_min(void)
4349 {
4350 unsigned long lowmem_kbytes;
4351
4352 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4353
4354 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4355 if (min_free_kbytes < 128)
4356 min_free_kbytes = 128;
4357 if (min_free_kbytes > 65536)
4358 min_free_kbytes = 65536;
4359 setup_per_zone_pages_min();
4360 setup_per_zone_lowmem_reserve();
4361 setup_per_zone_inactive_ratio();
4362 return 0;
4363 }
4364 module_init(init_per_zone_pages_min)
4365
4366 /*
4367 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4368 * that we can call two helper functions whenever min_free_kbytes
4369 * changes.
4370 */
4371 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4372 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4373 {
4374 proc_dointvec(table, write, file, buffer, length, ppos);
4375 if (write)
4376 setup_per_zone_pages_min();
4377 return 0;
4378 }
4379
4380 #ifdef CONFIG_NUMA
4381 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4382 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4383 {
4384 struct zone *zone;
4385 int rc;
4386
4387 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4388 if (rc)
4389 return rc;
4390
4391 for_each_zone(zone)
4392 zone->min_unmapped_pages = (zone->present_pages *
4393 sysctl_min_unmapped_ratio) / 100;
4394 return 0;
4395 }
4396
4397 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4398 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4399 {
4400 struct zone *zone;
4401 int rc;
4402
4403 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4404 if (rc)
4405 return rc;
4406
4407 for_each_zone(zone)
4408 zone->min_slab_pages = (zone->present_pages *
4409 sysctl_min_slab_ratio) / 100;
4410 return 0;
4411 }
4412 #endif
4413
4414 /*
4415 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4416 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4417 * whenever sysctl_lowmem_reserve_ratio changes.
4418 *
4419 * The reserve ratio obviously has absolutely no relation with the
4420 * pages_min watermarks. The lowmem reserve ratio can only make sense
4421 * if in function of the boot time zone sizes.
4422 */
4423 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4424 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4425 {
4426 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4427 setup_per_zone_lowmem_reserve();
4428 return 0;
4429 }
4430
4431 /*
4432 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4433 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4434 * can have before it gets flushed back to buddy allocator.
4435 */
4436
4437 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4438 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4439 {
4440 struct zone *zone;
4441 unsigned int cpu;
4442 int ret;
4443
4444 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4445 if (!write || (ret == -EINVAL))
4446 return ret;
4447 for_each_zone(zone) {
4448 for_each_online_cpu(cpu) {
4449 unsigned long high;
4450 high = zone->present_pages / percpu_pagelist_fraction;
4451 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4452 }
4453 }
4454 return 0;
4455 }
4456
4457 int hashdist = HASHDIST_DEFAULT;
4458
4459 #ifdef CONFIG_NUMA
4460 static int __init set_hashdist(char *str)
4461 {
4462 if (!str)
4463 return 0;
4464 hashdist = simple_strtoul(str, &str, 0);
4465 return 1;
4466 }
4467 __setup("hashdist=", set_hashdist);
4468 #endif
4469
4470 /*
4471 * allocate a large system hash table from bootmem
4472 * - it is assumed that the hash table must contain an exact power-of-2
4473 * quantity of entries
4474 * - limit is the number of hash buckets, not the total allocation size
4475 */
4476 void *__init alloc_large_system_hash(const char *tablename,
4477 unsigned long bucketsize,
4478 unsigned long numentries,
4479 int scale,
4480 int flags,
4481 unsigned int *_hash_shift,
4482 unsigned int *_hash_mask,
4483 unsigned long limit)
4484 {
4485 unsigned long long max = limit;
4486 unsigned long log2qty, size;
4487 void *table = NULL;
4488
4489 /* allow the kernel cmdline to have a say */
4490 if (!numentries) {
4491 /* round applicable memory size up to nearest megabyte */
4492 numentries = nr_kernel_pages;
4493 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4494 numentries >>= 20 - PAGE_SHIFT;
4495 numentries <<= 20 - PAGE_SHIFT;
4496
4497 /* limit to 1 bucket per 2^scale bytes of low memory */
4498 if (scale > PAGE_SHIFT)
4499 numentries >>= (scale - PAGE_SHIFT);
4500 else
4501 numentries <<= (PAGE_SHIFT - scale);
4502
4503 /* Make sure we've got at least a 0-order allocation.. */
4504 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4505 numentries = PAGE_SIZE / bucketsize;
4506 }
4507 numentries = roundup_pow_of_two(numentries);
4508
4509 /* limit allocation size to 1/16 total memory by default */
4510 if (max == 0) {
4511 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4512 do_div(max, bucketsize);
4513 }
4514
4515 if (numentries > max)
4516 numentries = max;
4517
4518 log2qty = ilog2(numentries);
4519
4520 do {
4521 size = bucketsize << log2qty;
4522 if (flags & HASH_EARLY)
4523 table = alloc_bootmem_nopanic(size);
4524 else if (hashdist)
4525 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4526 else {
4527 unsigned long order = get_order(size);
4528 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4529 /*
4530 * If bucketsize is not a power-of-two, we may free
4531 * some pages at the end of hash table.
4532 */
4533 if (table) {
4534 unsigned long alloc_end = (unsigned long)table +
4535 (PAGE_SIZE << order);
4536 unsigned long used = (unsigned long)table +
4537 PAGE_ALIGN(size);
4538 split_page(virt_to_page(table), order);
4539 while (used < alloc_end) {
4540 free_page(used);
4541 used += PAGE_SIZE;
4542 }
4543 }
4544 }
4545 } while (!table && size > PAGE_SIZE && --log2qty);
4546
4547 if (!table)
4548 panic("Failed to allocate %s hash table\n", tablename);
4549
4550 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4551 tablename,
4552 (1U << log2qty),
4553 ilog2(size) - PAGE_SHIFT,
4554 size);
4555
4556 if (_hash_shift)
4557 *_hash_shift = log2qty;
4558 if (_hash_mask)
4559 *_hash_mask = (1 << log2qty) - 1;
4560
4561 return table;
4562 }
4563
4564 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4565 struct page *pfn_to_page(unsigned long pfn)
4566 {
4567 return __pfn_to_page(pfn);
4568 }
4569 unsigned long page_to_pfn(struct page *page)
4570 {
4571 return __page_to_pfn(page);
4572 }
4573 EXPORT_SYMBOL(pfn_to_page);
4574 EXPORT_SYMBOL(page_to_pfn);
4575 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4576
4577 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4578 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4579 unsigned long pfn)
4580 {
4581 #ifdef CONFIG_SPARSEMEM
4582 return __pfn_to_section(pfn)->pageblock_flags;
4583 #else
4584 return zone->pageblock_flags;
4585 #endif /* CONFIG_SPARSEMEM */
4586 }
4587
4588 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4589 {
4590 #ifdef CONFIG_SPARSEMEM
4591 pfn &= (PAGES_PER_SECTION-1);
4592 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4593 #else
4594 pfn = pfn - zone->zone_start_pfn;
4595 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4596 #endif /* CONFIG_SPARSEMEM */
4597 }
4598
4599 /**
4600 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4601 * @page: The page within the block of interest
4602 * @start_bitidx: The first bit of interest to retrieve
4603 * @end_bitidx: The last bit of interest
4604 * returns pageblock_bits flags
4605 */
4606 unsigned long get_pageblock_flags_group(struct page *page,
4607 int start_bitidx, int end_bitidx)
4608 {
4609 struct zone *zone;
4610 unsigned long *bitmap;
4611 unsigned long pfn, bitidx;
4612 unsigned long flags = 0;
4613 unsigned long value = 1;
4614
4615 zone = page_zone(page);
4616 pfn = page_to_pfn(page);
4617 bitmap = get_pageblock_bitmap(zone, pfn);
4618 bitidx = pfn_to_bitidx(zone, pfn);
4619
4620 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4621 if (test_bit(bitidx + start_bitidx, bitmap))
4622 flags |= value;
4623
4624 return flags;
4625 }
4626
4627 /**
4628 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4629 * @page: The page within the block of interest
4630 * @start_bitidx: The first bit of interest
4631 * @end_bitidx: The last bit of interest
4632 * @flags: The flags to set
4633 */
4634 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4635 int start_bitidx, int end_bitidx)
4636 {
4637 struct zone *zone;
4638 unsigned long *bitmap;
4639 unsigned long pfn, bitidx;
4640 unsigned long value = 1;
4641
4642 zone = page_zone(page);
4643 pfn = page_to_pfn(page);
4644 bitmap = get_pageblock_bitmap(zone, pfn);
4645 bitidx = pfn_to_bitidx(zone, pfn);
4646 VM_BUG_ON(pfn < zone->zone_start_pfn);
4647 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4648
4649 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4650 if (flags & value)
4651 __set_bit(bitidx + start_bitidx, bitmap);
4652 else
4653 __clear_bit(bitidx + start_bitidx, bitmap);
4654 }
4655
4656 /*
4657 * This is designed as sub function...plz see page_isolation.c also.
4658 * set/clear page block's type to be ISOLATE.
4659 * page allocater never alloc memory from ISOLATE block.
4660 */
4661
4662 int set_migratetype_isolate(struct page *page)
4663 {
4664 struct zone *zone;
4665 unsigned long flags;
4666 int ret = -EBUSY;
4667
4668 zone = page_zone(page);
4669 spin_lock_irqsave(&zone->lock, flags);
4670 /*
4671 * In future, more migrate types will be able to be isolation target.
4672 */
4673 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4674 goto out;
4675 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4676 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4677 ret = 0;
4678 out:
4679 spin_unlock_irqrestore(&zone->lock, flags);
4680 if (!ret)
4681 drain_all_pages();
4682 return ret;
4683 }
4684
4685 void unset_migratetype_isolate(struct page *page)
4686 {
4687 struct zone *zone;
4688 unsigned long flags;
4689 zone = page_zone(page);
4690 spin_lock_irqsave(&zone->lock, flags);
4691 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4692 goto out;
4693 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4694 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4695 out:
4696 spin_unlock_irqrestore(&zone->lock, flags);
4697 }
4698
4699 #ifdef CONFIG_MEMORY_HOTREMOVE
4700 /*
4701 * All pages in the range must be isolated before calling this.
4702 */
4703 void
4704 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4705 {
4706 struct page *page;
4707 struct zone *zone;
4708 int order, i;
4709 unsigned long pfn;
4710 unsigned long flags;
4711 /* find the first valid pfn */
4712 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4713 if (pfn_valid(pfn))
4714 break;
4715 if (pfn == end_pfn)
4716 return;
4717 zone = page_zone(pfn_to_page(pfn));
4718 spin_lock_irqsave(&zone->lock, flags);
4719 pfn = start_pfn;
4720 while (pfn < end_pfn) {
4721 if (!pfn_valid(pfn)) {
4722 pfn++;
4723 continue;
4724 }
4725 page = pfn_to_page(pfn);
4726 BUG_ON(page_count(page));
4727 BUG_ON(!PageBuddy(page));
4728 order = page_order(page);
4729 #ifdef CONFIG_DEBUG_VM
4730 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4731 pfn, 1 << order, end_pfn);
4732 #endif
4733 list_del(&page->lru);
4734 rmv_page_order(page);
4735 zone->free_area[order].nr_free--;
4736 __mod_zone_page_state(zone, NR_FREE_PAGES,
4737 - (1UL << order));
4738 for (i = 0; i < (1 << order); i++)
4739 SetPageReserved((page+i));
4740 pfn += (1 << order);
4741 }
4742 spin_unlock_irqrestore(&zone->lock, flags);
4743 }
4744 #endif
This page took 0.129939 seconds and 5 git commands to generate.