Merge branch 'cleanup/__iomem' into next/cleanup
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
567 combined_idx = buddy_idx & page_idx;
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
583 struct page *higher_page, *higher_buddy;
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 higher_buddy = page + (buddy_idx - combined_idx);
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596 out:
597 zone->free_area[order].nr_free++;
598 }
599
600 /*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605 static inline void free_page_mlock(struct page *page)
606 {
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609 }
610
611 static inline int free_pages_check(struct page *page)
612 {
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
615 (atomic_read(&page->_count) != 0) |
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
618 bad_page(page);
619 return 1;
620 }
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
624 }
625
626 /*
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
639 {
640 int migratetype = 0;
641 int batch_free = 0;
642 int to_free = count;
643
644 spin_lock(&zone->lock);
645 zone->all_unreclaimable = 0;
646 zone->pages_scanned = 0;
647
648 while (to_free) {
649 struct page *page;
650 struct list_head *list;
651
652 /*
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
658 */
659 do {
660 batch_free++;
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
665
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
677 } while (--to_free && --batch_free && !list_empty(list));
678 }
679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
680 spin_unlock(&zone->lock);
681 }
682
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
685 {
686 spin_lock(&zone->lock);
687 zone->all_unreclaimable = 0;
688 zone->pages_scanned = 0;
689
690 __free_one_page(page, zone, order, migratetype);
691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
692 spin_unlock(&zone->lock);
693 }
694
695 static bool free_pages_prepare(struct page *page, unsigned int order)
696 {
697 int i;
698 int bad = 0;
699
700 trace_mm_page_free(page, order);
701 kmemcheck_free_shadow(page, order);
702
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
707 if (bad)
708 return false;
709
710 if (!PageHighMem(page)) {
711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
715 arch_free_page(page, order);
716 kernel_map_pages(page, 1 << order, 0);
717
718 return true;
719 }
720
721 static void __free_pages_ok(struct page *page, unsigned int order)
722 {
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
729 local_irq_save(flags);
730 if (unlikely(wasMlocked))
731 free_page_mlock(page);
732 __count_vm_events(PGFREE, 1 << order);
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
735 local_irq_restore(flags);
736 }
737
738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
739 {
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
742
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
751 }
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
755 }
756
757 #ifdef CONFIG_CMA
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init init_cma_reserved_pageblock(struct page *page)
760 {
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773 }
774 #endif
775
776 /*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
790 static inline void expand(struct zone *zone, struct page *page,
791 int low, int high, struct free_area *area,
792 int migratetype)
793 {
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
800 VM_BUG_ON(bad_range(zone, &page[size]));
801
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817 #endif
818 list_add(&page[size].lru, &area->free_list[migratetype]);
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
822 }
823
824 /*
825 * This page is about to be returned from the page allocator
826 */
827 static inline int check_new_page(struct page *page)
828 {
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
831 (atomic_read(&page->_count) != 0) |
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
834 bad_page(page);
835 return 1;
836 }
837 return 0;
838 }
839
840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841 {
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
849
850 set_page_private(page, 0);
851 set_page_refcounted(page);
852
853 arch_alloc_page(page, order);
854 kernel_map_pages(page, 1 << order, 1);
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
862 return 0;
863 }
864
865 /*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
869 static inline
870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 int migratetype)
872 {
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893 }
894
895
896 /*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
900 static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903 #ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906 #else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908 #endif
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
911 };
912
913 /*
914 * Move the free pages in a range to the free lists of the requested type.
915 * Note that start_page and end_pages are not aligned on a pageblock
916 * boundary. If alignment is required, use move_freepages_block()
917 */
918 static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
921 {
922 struct page *page;
923 unsigned long order;
924 int pages_moved = 0;
925
926 #ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
932 * grouping pages by mobility
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935 #endif
936
937 for (page = start_page; page <= end_page;) {
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
954 page += 1 << order;
955 pages_moved += 1 << order;
956 }
957
958 return pages_moved;
959 }
960
961 int move_freepages_block(struct zone *zone, struct page *page,
962 int migratetype)
963 {
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
969 start_page = pfn_to_page(start_pfn);
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980 }
981
982 static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984 {
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991 }
992
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page *
995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 {
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
1005 for (i = 0;; i++) {
1006 migratetype = fallbacks[start_migratetype][i];
1007
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
1010 break;
1011
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
1021 * If breaking a large block of pages, move all free
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
1024 * aggressive about taking ownership of free pages
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
1031 */
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
1046 migratetype = start_migratetype;
1047 }
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
1052
1053 /* Take ownership for orders >= pageblock_order */
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
1056 change_pageblock_range(page, current_order,
1057 start_migratetype);
1058
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
1066 return page;
1067 }
1068 }
1069
1070 return NULL;
1071 }
1072
1073 /*
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
1077 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1079 {
1080 struct page *page;
1081
1082 retry_reserve:
1083 page = __rmqueue_smallest(zone, order, migratetype);
1084
1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1086 page = __rmqueue_fallback(zone, order, migratetype);
1087
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1100 return page;
1101 }
1102
1103 /*
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
1108 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1109 unsigned long count, struct list_head *list,
1110 int migratetype, int cold)
1111 {
1112 int mt = migratetype, i;
1113
1114 spin_lock(&zone->lock);
1115 for (i = 0; i < count; ++i) {
1116 struct page *page = __rmqueue(zone, order, migratetype);
1117 if (unlikely(page == NULL))
1118 break;
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
1139 list = &page->lru;
1140 }
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1144 }
1145
1146 #ifdef CONFIG_NUMA
1147 /*
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1154 */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 unsigned long flags;
1158 int to_drain;
1159
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
1169 local_irq_restore(flags);
1170 }
1171 #endif
1172
1173 /*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 unsigned long flags;
1183 struct zone *zone;
1184
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1188
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1191
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 }
1200
1201 /*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204 void drain_local_pages(void *arg)
1205 {
1206 drain_pages(smp_processor_id());
1207 }
1208
1209 /*
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1217 */
1218 void drain_all_pages(void)
1219 {
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252
1253 #ifdef CONFIG_HIBERNATION
1254
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1274 }
1275
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1279
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1283 }
1284 }
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288
1289 /*
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1292 */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1299 int wasMlocked = __TestClearPageMlocked(page);
1300
1301 if (!free_pages_prepare(page, 0))
1302 return;
1303
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1306 local_irq_save(flags);
1307 if (unlikely(wasMlocked))
1308 free_page_mlock(page);
1309 __count_vm_event(PGFREE);
1310
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 if (cold)
1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 else
1330 list_add(&page->lru, &pcp->lists[migratetype]);
1331 pcp->count++;
1332 if (pcp->count >= pcp->high) {
1333 free_pcppages_bulk(zone, pcp->batch, pcp);
1334 pcp->count -= pcp->batch;
1335 }
1336
1337 out:
1338 local_irq_restore(flags);
1339 }
1340
1341 /*
1342 * Free a list of 0-order pages
1343 */
1344 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 {
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
1349 trace_mm_page_free_batched(page, cold);
1350 free_hot_cold_page(page, cold);
1351 }
1352 }
1353
1354 /*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362 void split_page(struct page *page, unsigned int order)
1363 {
1364 int i;
1365
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
1368
1369 #ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376 #endif
1377
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
1380 }
1381
1382 /*
1383 * Similar to split_page except the page is already free. As this is only
1384 * being used for migration, the migratetype of the block also changes.
1385 * As this is called with interrupts disabled, the caller is responsible
1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387 * are enabled.
1388 *
1389 * Note: this is probably too low level an operation for use in drivers.
1390 * Please consult with lkml before using this in your driver.
1391 */
1392 int split_free_page(struct page *page)
1393 {
1394 unsigned int order;
1395 unsigned long watermark;
1396 struct zone *zone;
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
1401 order = page_order(page);
1402
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413
1414 /* Split into individual pages */
1415 set_page_refcounted(page);
1416 split_page(page, order);
1417
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
1426 }
1427
1428 return 1 << order;
1429 }
1430
1431 /*
1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1434 * or two.
1435 */
1436 static inline
1437 struct page *buffered_rmqueue(struct zone *preferred_zone,
1438 struct zone *zone, int order, gfp_t gfp_flags,
1439 int migratetype)
1440 {
1441 unsigned long flags;
1442 struct page *page;
1443 int cold = !!(gfp_flags & __GFP_COLD);
1444
1445 again:
1446 if (likely(order == 0)) {
1447 struct per_cpu_pages *pcp;
1448 struct list_head *list;
1449
1450 local_irq_save(flags);
1451 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 list = &pcp->lists[migratetype];
1453 if (list_empty(list)) {
1454 pcp->count += rmqueue_bulk(zone, 0,
1455 pcp->batch, list,
1456 migratetype, cold);
1457 if (unlikely(list_empty(list)))
1458 goto failed;
1459 }
1460
1461 if (cold)
1462 page = list_entry(list->prev, struct page, lru);
1463 else
1464 page = list_entry(list->next, struct page, lru);
1465
1466 list_del(&page->lru);
1467 pcp->count--;
1468 } else {
1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 /*
1471 * __GFP_NOFAIL is not to be used in new code.
1472 *
1473 * All __GFP_NOFAIL callers should be fixed so that they
1474 * properly detect and handle allocation failures.
1475 *
1476 * We most definitely don't want callers attempting to
1477 * allocate greater than order-1 page units with
1478 * __GFP_NOFAIL.
1479 */
1480 WARN_ON_ONCE(order > 1);
1481 }
1482 spin_lock_irqsave(&zone->lock, flags);
1483 page = __rmqueue(zone, order, migratetype);
1484 spin_unlock(&zone->lock);
1485 if (!page)
1486 goto failed;
1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1488 }
1489
1490 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1491 zone_statistics(preferred_zone, zone, gfp_flags);
1492 local_irq_restore(flags);
1493
1494 VM_BUG_ON(bad_range(zone, page));
1495 if (prep_new_page(page, order, gfp_flags))
1496 goto again;
1497 return page;
1498
1499 failed:
1500 local_irq_restore(flags);
1501 return NULL;
1502 }
1503
1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505 #define ALLOC_WMARK_MIN WMARK_MIN
1506 #define ALLOC_WMARK_LOW WMARK_LOW
1507 #define ALLOC_WMARK_HIGH WMARK_HIGH
1508 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1509
1510 /* Mask to get the watermark bits */
1511 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1512
1513 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1514 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1515 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1516
1517 #ifdef CONFIG_FAIL_PAGE_ALLOC
1518
1519 static struct {
1520 struct fault_attr attr;
1521
1522 u32 ignore_gfp_highmem;
1523 u32 ignore_gfp_wait;
1524 u32 min_order;
1525 } fail_page_alloc = {
1526 .attr = FAULT_ATTR_INITIALIZER,
1527 .ignore_gfp_wait = 1,
1528 .ignore_gfp_highmem = 1,
1529 .min_order = 1,
1530 };
1531
1532 static int __init setup_fail_page_alloc(char *str)
1533 {
1534 return setup_fault_attr(&fail_page_alloc.attr, str);
1535 }
1536 __setup("fail_page_alloc=", setup_fail_page_alloc);
1537
1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1539 {
1540 if (order < fail_page_alloc.min_order)
1541 return false;
1542 if (gfp_mask & __GFP_NOFAIL)
1543 return false;
1544 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1545 return false;
1546 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1547 return false;
1548
1549 return should_fail(&fail_page_alloc.attr, 1 << order);
1550 }
1551
1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1553
1554 static int __init fail_page_alloc_debugfs(void)
1555 {
1556 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1557 struct dentry *dir;
1558
1559 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1560 &fail_page_alloc.attr);
1561 if (IS_ERR(dir))
1562 return PTR_ERR(dir);
1563
1564 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1565 &fail_page_alloc.ignore_gfp_wait))
1566 goto fail;
1567 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1568 &fail_page_alloc.ignore_gfp_highmem))
1569 goto fail;
1570 if (!debugfs_create_u32("min-order", mode, dir,
1571 &fail_page_alloc.min_order))
1572 goto fail;
1573
1574 return 0;
1575 fail:
1576 debugfs_remove_recursive(dir);
1577
1578 return -ENOMEM;
1579 }
1580
1581 late_initcall(fail_page_alloc_debugfs);
1582
1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1584
1585 #else /* CONFIG_FAIL_PAGE_ALLOC */
1586
1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1588 {
1589 return false;
1590 }
1591
1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1593
1594 /*
1595 * Return true if free pages are above 'mark'. This takes into account the order
1596 * of the allocation.
1597 */
1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1599 int classzone_idx, int alloc_flags, long free_pages)
1600 {
1601 /* free_pages my go negative - that's OK */
1602 long min = mark;
1603 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1604 int o;
1605
1606 free_pages -= (1 << order) - 1;
1607 if (alloc_flags & ALLOC_HIGH)
1608 min -= min / 2;
1609 if (alloc_flags & ALLOC_HARDER)
1610 min -= min / 4;
1611
1612 if (free_pages <= min + lowmem_reserve)
1613 return false;
1614 for (o = 0; o < order; o++) {
1615 /* At the next order, this order's pages become unavailable */
1616 free_pages -= z->free_area[o].nr_free << o;
1617
1618 /* Require fewer higher order pages to be free */
1619 min >>= 1;
1620
1621 if (free_pages <= min)
1622 return false;
1623 }
1624 return true;
1625 }
1626
1627 #ifdef CONFIG_MEMORY_ISOLATION
1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1629 {
1630 if (unlikely(zone->nr_pageblock_isolate))
1631 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1632 return 0;
1633 }
1634 #else
1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1636 {
1637 return 0;
1638 }
1639 #endif
1640
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 int classzone_idx, int alloc_flags)
1643 {
1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 zone_page_state(z, NR_FREE_PAGES));
1646 }
1647
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags)
1650 {
1651 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652
1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655
1656 /*
1657 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1658 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1659 * sleep although it could do so. But this is more desirable for memory
1660 * hotplug than sleeping which can cause a livelock in the direct
1661 * reclaim path.
1662 */
1663 free_pages -= nr_zone_isolate_freepages(z);
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 free_pages);
1666 }
1667
1668 #ifdef CONFIG_NUMA
1669 /*
1670 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1671 * skip over zones that are not allowed by the cpuset, or that have
1672 * been recently (in last second) found to be nearly full. See further
1673 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1674 * that have to skip over a lot of full or unallowed zones.
1675 *
1676 * If the zonelist cache is present in the passed in zonelist, then
1677 * returns a pointer to the allowed node mask (either the current
1678 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1679 *
1680 * If the zonelist cache is not available for this zonelist, does
1681 * nothing and returns NULL.
1682 *
1683 * If the fullzones BITMAP in the zonelist cache is stale (more than
1684 * a second since last zap'd) then we zap it out (clear its bits.)
1685 *
1686 * We hold off even calling zlc_setup, until after we've checked the
1687 * first zone in the zonelist, on the theory that most allocations will
1688 * be satisfied from that first zone, so best to examine that zone as
1689 * quickly as we can.
1690 */
1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1692 {
1693 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1694 nodemask_t *allowednodes; /* zonelist_cache approximation */
1695
1696 zlc = zonelist->zlcache_ptr;
1697 if (!zlc)
1698 return NULL;
1699
1700 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1702 zlc->last_full_zap = jiffies;
1703 }
1704
1705 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1706 &cpuset_current_mems_allowed :
1707 &node_states[N_HIGH_MEMORY];
1708 return allowednodes;
1709 }
1710
1711 /*
1712 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1713 * if it is worth looking at further for free memory:
1714 * 1) Check that the zone isn't thought to be full (doesn't have its
1715 * bit set in the zonelist_cache fullzones BITMAP).
1716 * 2) Check that the zones node (obtained from the zonelist_cache
1717 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1718 * Return true (non-zero) if zone is worth looking at further, or
1719 * else return false (zero) if it is not.
1720 *
1721 * This check -ignores- the distinction between various watermarks,
1722 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1723 * found to be full for any variation of these watermarks, it will
1724 * be considered full for up to one second by all requests, unless
1725 * we are so low on memory on all allowed nodes that we are forced
1726 * into the second scan of the zonelist.
1727 *
1728 * In the second scan we ignore this zonelist cache and exactly
1729 * apply the watermarks to all zones, even it is slower to do so.
1730 * We are low on memory in the second scan, and should leave no stone
1731 * unturned looking for a free page.
1732 */
1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1734 nodemask_t *allowednodes)
1735 {
1736 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1737 int i; /* index of *z in zonelist zones */
1738 int n; /* node that zone *z is on */
1739
1740 zlc = zonelist->zlcache_ptr;
1741 if (!zlc)
1742 return 1;
1743
1744 i = z - zonelist->_zonerefs;
1745 n = zlc->z_to_n[i];
1746
1747 /* This zone is worth trying if it is allowed but not full */
1748 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1749 }
1750
1751 /*
1752 * Given 'z' scanning a zonelist, set the corresponding bit in
1753 * zlc->fullzones, so that subsequent attempts to allocate a page
1754 * from that zone don't waste time re-examining it.
1755 */
1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1757 {
1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1759 int i; /* index of *z in zonelist zones */
1760
1761 zlc = zonelist->zlcache_ptr;
1762 if (!zlc)
1763 return;
1764
1765 i = z - zonelist->_zonerefs;
1766
1767 set_bit(i, zlc->fullzones);
1768 }
1769
1770 /*
1771 * clear all zones full, called after direct reclaim makes progress so that
1772 * a zone that was recently full is not skipped over for up to a second
1773 */
1774 static void zlc_clear_zones_full(struct zonelist *zonelist)
1775 {
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
1782 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1783 }
1784
1785 #else /* CONFIG_NUMA */
1786
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 return NULL;
1790 }
1791
1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1793 nodemask_t *allowednodes)
1794 {
1795 return 1;
1796 }
1797
1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1799 {
1800 }
1801
1802 static void zlc_clear_zones_full(struct zonelist *zonelist)
1803 {
1804 }
1805 #endif /* CONFIG_NUMA */
1806
1807 /*
1808 * get_page_from_freelist goes through the zonelist trying to allocate
1809 * a page.
1810 */
1811 static struct page *
1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1813 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1814 struct zone *preferred_zone, int migratetype)
1815 {
1816 struct zoneref *z;
1817 struct page *page = NULL;
1818 int classzone_idx;
1819 struct zone *zone;
1820 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1821 int zlc_active = 0; /* set if using zonelist_cache */
1822 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1823
1824 classzone_idx = zone_idx(preferred_zone);
1825 zonelist_scan:
1826 /*
1827 * Scan zonelist, looking for a zone with enough free.
1828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1829 */
1830 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1831 high_zoneidx, nodemask) {
1832 if (NUMA_BUILD && zlc_active &&
1833 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1834 continue;
1835 if ((alloc_flags & ALLOC_CPUSET) &&
1836 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1837 continue;
1838 /*
1839 * When allocating a page cache page for writing, we
1840 * want to get it from a zone that is within its dirty
1841 * limit, such that no single zone holds more than its
1842 * proportional share of globally allowed dirty pages.
1843 * The dirty limits take into account the zone's
1844 * lowmem reserves and high watermark so that kswapd
1845 * should be able to balance it without having to
1846 * write pages from its LRU list.
1847 *
1848 * This may look like it could increase pressure on
1849 * lower zones by failing allocations in higher zones
1850 * before they are full. But the pages that do spill
1851 * over are limited as the lower zones are protected
1852 * by this very same mechanism. It should not become
1853 * a practical burden to them.
1854 *
1855 * XXX: For now, allow allocations to potentially
1856 * exceed the per-zone dirty limit in the slowpath
1857 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1858 * which is important when on a NUMA setup the allowed
1859 * zones are together not big enough to reach the
1860 * global limit. The proper fix for these situations
1861 * will require awareness of zones in the
1862 * dirty-throttling and the flusher threads.
1863 */
1864 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1865 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1866 goto this_zone_full;
1867
1868 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1869 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1870 unsigned long mark;
1871 int ret;
1872
1873 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1874 if (zone_watermark_ok(zone, order, mark,
1875 classzone_idx, alloc_flags))
1876 goto try_this_zone;
1877
1878 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1879 /*
1880 * we do zlc_setup if there are multiple nodes
1881 * and before considering the first zone allowed
1882 * by the cpuset.
1883 */
1884 allowednodes = zlc_setup(zonelist, alloc_flags);
1885 zlc_active = 1;
1886 did_zlc_setup = 1;
1887 }
1888
1889 if (zone_reclaim_mode == 0)
1890 goto this_zone_full;
1891
1892 /*
1893 * As we may have just activated ZLC, check if the first
1894 * eligible zone has failed zone_reclaim recently.
1895 */
1896 if (NUMA_BUILD && zlc_active &&
1897 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1898 continue;
1899
1900 ret = zone_reclaim(zone, gfp_mask, order);
1901 switch (ret) {
1902 case ZONE_RECLAIM_NOSCAN:
1903 /* did not scan */
1904 continue;
1905 case ZONE_RECLAIM_FULL:
1906 /* scanned but unreclaimable */
1907 continue;
1908 default:
1909 /* did we reclaim enough */
1910 if (!zone_watermark_ok(zone, order, mark,
1911 classzone_idx, alloc_flags))
1912 goto this_zone_full;
1913 }
1914 }
1915
1916 try_this_zone:
1917 page = buffered_rmqueue(preferred_zone, zone, order,
1918 gfp_mask, migratetype);
1919 if (page)
1920 break;
1921 this_zone_full:
1922 if (NUMA_BUILD)
1923 zlc_mark_zone_full(zonelist, z);
1924 }
1925
1926 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1927 /* Disable zlc cache for second zonelist scan */
1928 zlc_active = 0;
1929 goto zonelist_scan;
1930 }
1931
1932 if (page)
1933 /*
1934 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1935 * necessary to allocate the page. The expectation is
1936 * that the caller is taking steps that will free more
1937 * memory. The caller should avoid the page being used
1938 * for !PFMEMALLOC purposes.
1939 */
1940 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1941
1942 return page;
1943 }
1944
1945 /*
1946 * Large machines with many possible nodes should not always dump per-node
1947 * meminfo in irq context.
1948 */
1949 static inline bool should_suppress_show_mem(void)
1950 {
1951 bool ret = false;
1952
1953 #if NODES_SHIFT > 8
1954 ret = in_interrupt();
1955 #endif
1956 return ret;
1957 }
1958
1959 static DEFINE_RATELIMIT_STATE(nopage_rs,
1960 DEFAULT_RATELIMIT_INTERVAL,
1961 DEFAULT_RATELIMIT_BURST);
1962
1963 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1964 {
1965 unsigned int filter = SHOW_MEM_FILTER_NODES;
1966
1967 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1968 debug_guardpage_minorder() > 0)
1969 return;
1970
1971 /*
1972 * This documents exceptions given to allocations in certain
1973 * contexts that are allowed to allocate outside current's set
1974 * of allowed nodes.
1975 */
1976 if (!(gfp_mask & __GFP_NOMEMALLOC))
1977 if (test_thread_flag(TIF_MEMDIE) ||
1978 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1979 filter &= ~SHOW_MEM_FILTER_NODES;
1980 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1981 filter &= ~SHOW_MEM_FILTER_NODES;
1982
1983 if (fmt) {
1984 struct va_format vaf;
1985 va_list args;
1986
1987 va_start(args, fmt);
1988
1989 vaf.fmt = fmt;
1990 vaf.va = &args;
1991
1992 pr_warn("%pV", &vaf);
1993
1994 va_end(args);
1995 }
1996
1997 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1998 current->comm, order, gfp_mask);
1999
2000 dump_stack();
2001 if (!should_suppress_show_mem())
2002 show_mem(filter);
2003 }
2004
2005 static inline int
2006 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2007 unsigned long did_some_progress,
2008 unsigned long pages_reclaimed)
2009 {
2010 /* Do not loop if specifically requested */
2011 if (gfp_mask & __GFP_NORETRY)
2012 return 0;
2013
2014 /* Always retry if specifically requested */
2015 if (gfp_mask & __GFP_NOFAIL)
2016 return 1;
2017
2018 /*
2019 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2020 * making forward progress without invoking OOM. Suspend also disables
2021 * storage devices so kswapd will not help. Bail if we are suspending.
2022 */
2023 if (!did_some_progress && pm_suspended_storage())
2024 return 0;
2025
2026 /*
2027 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2028 * means __GFP_NOFAIL, but that may not be true in other
2029 * implementations.
2030 */
2031 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2032 return 1;
2033
2034 /*
2035 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2036 * specified, then we retry until we no longer reclaim any pages
2037 * (above), or we've reclaimed an order of pages at least as
2038 * large as the allocation's order. In both cases, if the
2039 * allocation still fails, we stop retrying.
2040 */
2041 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2042 return 1;
2043
2044 return 0;
2045 }
2046
2047 static inline struct page *
2048 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2049 struct zonelist *zonelist, enum zone_type high_zoneidx,
2050 nodemask_t *nodemask, struct zone *preferred_zone,
2051 int migratetype)
2052 {
2053 struct page *page;
2054
2055 /* Acquire the OOM killer lock for the zones in zonelist */
2056 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2057 schedule_timeout_uninterruptible(1);
2058 return NULL;
2059 }
2060
2061 /*
2062 * Go through the zonelist yet one more time, keep very high watermark
2063 * here, this is only to catch a parallel oom killing, we must fail if
2064 * we're still under heavy pressure.
2065 */
2066 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2067 order, zonelist, high_zoneidx,
2068 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2069 preferred_zone, migratetype);
2070 if (page)
2071 goto out;
2072
2073 if (!(gfp_mask & __GFP_NOFAIL)) {
2074 /* The OOM killer will not help higher order allocs */
2075 if (order > PAGE_ALLOC_COSTLY_ORDER)
2076 goto out;
2077 /* The OOM killer does not needlessly kill tasks for lowmem */
2078 if (high_zoneidx < ZONE_NORMAL)
2079 goto out;
2080 /*
2081 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2082 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2083 * The caller should handle page allocation failure by itself if
2084 * it specifies __GFP_THISNODE.
2085 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2086 */
2087 if (gfp_mask & __GFP_THISNODE)
2088 goto out;
2089 }
2090 /* Exhausted what can be done so it's blamo time */
2091 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2092
2093 out:
2094 clear_zonelist_oom(zonelist, gfp_mask);
2095 return page;
2096 }
2097
2098 #ifdef CONFIG_COMPACTION
2099 /* Try memory compaction for high-order allocations before reclaim */
2100 static struct page *
2101 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2102 struct zonelist *zonelist, enum zone_type high_zoneidx,
2103 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2104 int migratetype, bool sync_migration,
2105 bool *contended_compaction, bool *deferred_compaction,
2106 unsigned long *did_some_progress)
2107 {
2108 struct page *page;
2109
2110 if (!order)
2111 return NULL;
2112
2113 if (compaction_deferred(preferred_zone, order)) {
2114 *deferred_compaction = true;
2115 return NULL;
2116 }
2117
2118 current->flags |= PF_MEMALLOC;
2119 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2120 nodemask, sync_migration,
2121 contended_compaction);
2122 current->flags &= ~PF_MEMALLOC;
2123 if (*did_some_progress != COMPACT_SKIPPED) {
2124
2125 /* Page migration frees to the PCP lists but we want merging */
2126 drain_pages(get_cpu());
2127 put_cpu();
2128
2129 page = get_page_from_freelist(gfp_mask, nodemask,
2130 order, zonelist, high_zoneidx,
2131 alloc_flags & ~ALLOC_NO_WATERMARKS,
2132 preferred_zone, migratetype);
2133 if (page) {
2134 preferred_zone->compact_considered = 0;
2135 preferred_zone->compact_defer_shift = 0;
2136 if (order >= preferred_zone->compact_order_failed)
2137 preferred_zone->compact_order_failed = order + 1;
2138 count_vm_event(COMPACTSUCCESS);
2139 return page;
2140 }
2141
2142 /*
2143 * It's bad if compaction run occurs and fails.
2144 * The most likely reason is that pages exist,
2145 * but not enough to satisfy watermarks.
2146 */
2147 count_vm_event(COMPACTFAIL);
2148
2149 /*
2150 * As async compaction considers a subset of pageblocks, only
2151 * defer if the failure was a sync compaction failure.
2152 */
2153 if (sync_migration)
2154 defer_compaction(preferred_zone, order);
2155
2156 cond_resched();
2157 }
2158
2159 return NULL;
2160 }
2161 #else
2162 static inline struct page *
2163 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2166 int migratetype, bool sync_migration,
2167 bool *contended_compaction, bool *deferred_compaction,
2168 unsigned long *did_some_progress)
2169 {
2170 return NULL;
2171 }
2172 #endif /* CONFIG_COMPACTION */
2173
2174 /* Perform direct synchronous page reclaim */
2175 static int
2176 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2177 nodemask_t *nodemask)
2178 {
2179 struct reclaim_state reclaim_state;
2180 int progress;
2181
2182 cond_resched();
2183
2184 /* We now go into synchronous reclaim */
2185 cpuset_memory_pressure_bump();
2186 current->flags |= PF_MEMALLOC;
2187 lockdep_set_current_reclaim_state(gfp_mask);
2188 reclaim_state.reclaimed_slab = 0;
2189 current->reclaim_state = &reclaim_state;
2190
2191 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2192
2193 current->reclaim_state = NULL;
2194 lockdep_clear_current_reclaim_state();
2195 current->flags &= ~PF_MEMALLOC;
2196
2197 cond_resched();
2198
2199 return progress;
2200 }
2201
2202 /* The really slow allocator path where we enter direct reclaim */
2203 static inline struct page *
2204 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2207 int migratetype, unsigned long *did_some_progress)
2208 {
2209 struct page *page = NULL;
2210 bool drained = false;
2211
2212 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2213 nodemask);
2214 if (unlikely(!(*did_some_progress)))
2215 return NULL;
2216
2217 /* After successful reclaim, reconsider all zones for allocation */
2218 if (NUMA_BUILD)
2219 zlc_clear_zones_full(zonelist);
2220
2221 retry:
2222 page = get_page_from_freelist(gfp_mask, nodemask, order,
2223 zonelist, high_zoneidx,
2224 alloc_flags & ~ALLOC_NO_WATERMARKS,
2225 preferred_zone, migratetype);
2226
2227 /*
2228 * If an allocation failed after direct reclaim, it could be because
2229 * pages are pinned on the per-cpu lists. Drain them and try again
2230 */
2231 if (!page && !drained) {
2232 drain_all_pages();
2233 drained = true;
2234 goto retry;
2235 }
2236
2237 return page;
2238 }
2239
2240 /*
2241 * This is called in the allocator slow-path if the allocation request is of
2242 * sufficient urgency to ignore watermarks and take other desperate measures
2243 */
2244 static inline struct page *
2245 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2246 struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 nodemask_t *nodemask, struct zone *preferred_zone,
2248 int migratetype)
2249 {
2250 struct page *page;
2251
2252 do {
2253 page = get_page_from_freelist(gfp_mask, nodemask, order,
2254 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2255 preferred_zone, migratetype);
2256
2257 if (!page && gfp_mask & __GFP_NOFAIL)
2258 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2259 } while (!page && (gfp_mask & __GFP_NOFAIL));
2260
2261 return page;
2262 }
2263
2264 static inline
2265 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2266 enum zone_type high_zoneidx,
2267 enum zone_type classzone_idx)
2268 {
2269 struct zoneref *z;
2270 struct zone *zone;
2271
2272 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2273 wakeup_kswapd(zone, order, classzone_idx);
2274 }
2275
2276 static inline int
2277 gfp_to_alloc_flags(gfp_t gfp_mask)
2278 {
2279 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2280 const gfp_t wait = gfp_mask & __GFP_WAIT;
2281
2282 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2283 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2284
2285 /*
2286 * The caller may dip into page reserves a bit more if the caller
2287 * cannot run direct reclaim, or if the caller has realtime scheduling
2288 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2289 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2290 */
2291 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2292
2293 if (!wait) {
2294 /*
2295 * Not worth trying to allocate harder for
2296 * __GFP_NOMEMALLOC even if it can't schedule.
2297 */
2298 if (!(gfp_mask & __GFP_NOMEMALLOC))
2299 alloc_flags |= ALLOC_HARDER;
2300 /*
2301 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2302 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2303 */
2304 alloc_flags &= ~ALLOC_CPUSET;
2305 } else if (unlikely(rt_task(current)) && !in_interrupt())
2306 alloc_flags |= ALLOC_HARDER;
2307
2308 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2309 if (gfp_mask & __GFP_MEMALLOC)
2310 alloc_flags |= ALLOC_NO_WATERMARKS;
2311 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2312 alloc_flags |= ALLOC_NO_WATERMARKS;
2313 else if (!in_interrupt() &&
2314 ((current->flags & PF_MEMALLOC) ||
2315 unlikely(test_thread_flag(TIF_MEMDIE))))
2316 alloc_flags |= ALLOC_NO_WATERMARKS;
2317 }
2318
2319 return alloc_flags;
2320 }
2321
2322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2323 {
2324 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2325 }
2326
2327 static inline struct page *
2328 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2329 struct zonelist *zonelist, enum zone_type high_zoneidx,
2330 nodemask_t *nodemask, struct zone *preferred_zone,
2331 int migratetype)
2332 {
2333 const gfp_t wait = gfp_mask & __GFP_WAIT;
2334 struct page *page = NULL;
2335 int alloc_flags;
2336 unsigned long pages_reclaimed = 0;
2337 unsigned long did_some_progress;
2338 bool sync_migration = false;
2339 bool deferred_compaction = false;
2340 bool contended_compaction = false;
2341
2342 /*
2343 * In the slowpath, we sanity check order to avoid ever trying to
2344 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2345 * be using allocators in order of preference for an area that is
2346 * too large.
2347 */
2348 if (order >= MAX_ORDER) {
2349 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2350 return NULL;
2351 }
2352
2353 /*
2354 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2355 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2356 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2357 * using a larger set of nodes after it has established that the
2358 * allowed per node queues are empty and that nodes are
2359 * over allocated.
2360 */
2361 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2362 goto nopage;
2363
2364 restart:
2365 if (!(gfp_mask & __GFP_NO_KSWAPD))
2366 wake_all_kswapd(order, zonelist, high_zoneidx,
2367 zone_idx(preferred_zone));
2368
2369 /*
2370 * OK, we're below the kswapd watermark and have kicked background
2371 * reclaim. Now things get more complex, so set up alloc_flags according
2372 * to how we want to proceed.
2373 */
2374 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2375
2376 /*
2377 * Find the true preferred zone if the allocation is unconstrained by
2378 * cpusets.
2379 */
2380 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2381 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2382 &preferred_zone);
2383
2384 rebalance:
2385 /* This is the last chance, in general, before the goto nopage. */
2386 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2387 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2388 preferred_zone, migratetype);
2389 if (page)
2390 goto got_pg;
2391
2392 /* Allocate without watermarks if the context allows */
2393 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2394 /*
2395 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2396 * the allocation is high priority and these type of
2397 * allocations are system rather than user orientated
2398 */
2399 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2400
2401 page = __alloc_pages_high_priority(gfp_mask, order,
2402 zonelist, high_zoneidx, nodemask,
2403 preferred_zone, migratetype);
2404 if (page) {
2405 goto got_pg;
2406 }
2407 }
2408
2409 /* Atomic allocations - we can't balance anything */
2410 if (!wait)
2411 goto nopage;
2412
2413 /* Avoid recursion of direct reclaim */
2414 if (current->flags & PF_MEMALLOC)
2415 goto nopage;
2416
2417 /* Avoid allocations with no watermarks from looping endlessly */
2418 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2419 goto nopage;
2420
2421 /*
2422 * Try direct compaction. The first pass is asynchronous. Subsequent
2423 * attempts after direct reclaim are synchronous
2424 */
2425 page = __alloc_pages_direct_compact(gfp_mask, order,
2426 zonelist, high_zoneidx,
2427 nodemask,
2428 alloc_flags, preferred_zone,
2429 migratetype, sync_migration,
2430 &contended_compaction,
2431 &deferred_compaction,
2432 &did_some_progress);
2433 if (page)
2434 goto got_pg;
2435 sync_migration = true;
2436
2437 /*
2438 * If compaction is deferred for high-order allocations, it is because
2439 * sync compaction recently failed. In this is the case and the caller
2440 * requested a movable allocation that does not heavily disrupt the
2441 * system then fail the allocation instead of entering direct reclaim.
2442 */
2443 if ((deferred_compaction || contended_compaction) &&
2444 (gfp_mask & __GFP_NO_KSWAPD))
2445 goto nopage;
2446
2447 /* Try direct reclaim and then allocating */
2448 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2449 zonelist, high_zoneidx,
2450 nodemask,
2451 alloc_flags, preferred_zone,
2452 migratetype, &did_some_progress);
2453 if (page)
2454 goto got_pg;
2455
2456 /*
2457 * If we failed to make any progress reclaiming, then we are
2458 * running out of options and have to consider going OOM
2459 */
2460 if (!did_some_progress) {
2461 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2462 if (oom_killer_disabled)
2463 goto nopage;
2464 /* Coredumps can quickly deplete all memory reserves */
2465 if ((current->flags & PF_DUMPCORE) &&
2466 !(gfp_mask & __GFP_NOFAIL))
2467 goto nopage;
2468 page = __alloc_pages_may_oom(gfp_mask, order,
2469 zonelist, high_zoneidx,
2470 nodemask, preferred_zone,
2471 migratetype);
2472 if (page)
2473 goto got_pg;
2474
2475 if (!(gfp_mask & __GFP_NOFAIL)) {
2476 /*
2477 * The oom killer is not called for high-order
2478 * allocations that may fail, so if no progress
2479 * is being made, there are no other options and
2480 * retrying is unlikely to help.
2481 */
2482 if (order > PAGE_ALLOC_COSTLY_ORDER)
2483 goto nopage;
2484 /*
2485 * The oom killer is not called for lowmem
2486 * allocations to prevent needlessly killing
2487 * innocent tasks.
2488 */
2489 if (high_zoneidx < ZONE_NORMAL)
2490 goto nopage;
2491 }
2492
2493 goto restart;
2494 }
2495 }
2496
2497 /* Check if we should retry the allocation */
2498 pages_reclaimed += did_some_progress;
2499 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2500 pages_reclaimed)) {
2501 /* Wait for some write requests to complete then retry */
2502 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2503 goto rebalance;
2504 } else {
2505 /*
2506 * High-order allocations do not necessarily loop after
2507 * direct reclaim and reclaim/compaction depends on compaction
2508 * being called after reclaim so call directly if necessary
2509 */
2510 page = __alloc_pages_direct_compact(gfp_mask, order,
2511 zonelist, high_zoneidx,
2512 nodemask,
2513 alloc_flags, preferred_zone,
2514 migratetype, sync_migration,
2515 &contended_compaction,
2516 &deferred_compaction,
2517 &did_some_progress);
2518 if (page)
2519 goto got_pg;
2520 }
2521
2522 nopage:
2523 warn_alloc_failed(gfp_mask, order, NULL);
2524 return page;
2525 got_pg:
2526 if (kmemcheck_enabled)
2527 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2528
2529 return page;
2530 }
2531
2532 /*
2533 * This is the 'heart' of the zoned buddy allocator.
2534 */
2535 struct page *
2536 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2537 struct zonelist *zonelist, nodemask_t *nodemask)
2538 {
2539 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2540 struct zone *preferred_zone;
2541 struct page *page = NULL;
2542 int migratetype = allocflags_to_migratetype(gfp_mask);
2543 unsigned int cpuset_mems_cookie;
2544
2545 gfp_mask &= gfp_allowed_mask;
2546
2547 lockdep_trace_alloc(gfp_mask);
2548
2549 might_sleep_if(gfp_mask & __GFP_WAIT);
2550
2551 if (should_fail_alloc_page(gfp_mask, order))
2552 return NULL;
2553
2554 /*
2555 * Check the zones suitable for the gfp_mask contain at least one
2556 * valid zone. It's possible to have an empty zonelist as a result
2557 * of GFP_THISNODE and a memoryless node
2558 */
2559 if (unlikely(!zonelist->_zonerefs->zone))
2560 return NULL;
2561
2562 retry_cpuset:
2563 cpuset_mems_cookie = get_mems_allowed();
2564
2565 /* The preferred zone is used for statistics later */
2566 first_zones_zonelist(zonelist, high_zoneidx,
2567 nodemask ? : &cpuset_current_mems_allowed,
2568 &preferred_zone);
2569 if (!preferred_zone)
2570 goto out;
2571
2572 /* First allocation attempt */
2573 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2574 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2575 preferred_zone, migratetype);
2576 if (unlikely(!page))
2577 page = __alloc_pages_slowpath(gfp_mask, order,
2578 zonelist, high_zoneidx, nodemask,
2579 preferred_zone, migratetype);
2580
2581 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2582
2583 out:
2584 /*
2585 * When updating a task's mems_allowed, it is possible to race with
2586 * parallel threads in such a way that an allocation can fail while
2587 * the mask is being updated. If a page allocation is about to fail,
2588 * check if the cpuset changed during allocation and if so, retry.
2589 */
2590 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2591 goto retry_cpuset;
2592
2593 return page;
2594 }
2595 EXPORT_SYMBOL(__alloc_pages_nodemask);
2596
2597 /*
2598 * Common helper functions.
2599 */
2600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2601 {
2602 struct page *page;
2603
2604 /*
2605 * __get_free_pages() returns a 32-bit address, which cannot represent
2606 * a highmem page
2607 */
2608 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2609
2610 page = alloc_pages(gfp_mask, order);
2611 if (!page)
2612 return 0;
2613 return (unsigned long) page_address(page);
2614 }
2615 EXPORT_SYMBOL(__get_free_pages);
2616
2617 unsigned long get_zeroed_page(gfp_t gfp_mask)
2618 {
2619 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2620 }
2621 EXPORT_SYMBOL(get_zeroed_page);
2622
2623 void __free_pages(struct page *page, unsigned int order)
2624 {
2625 if (put_page_testzero(page)) {
2626 if (order == 0)
2627 free_hot_cold_page(page, 0);
2628 else
2629 __free_pages_ok(page, order);
2630 }
2631 }
2632
2633 EXPORT_SYMBOL(__free_pages);
2634
2635 void free_pages(unsigned long addr, unsigned int order)
2636 {
2637 if (addr != 0) {
2638 VM_BUG_ON(!virt_addr_valid((void *)addr));
2639 __free_pages(virt_to_page((void *)addr), order);
2640 }
2641 }
2642
2643 EXPORT_SYMBOL(free_pages);
2644
2645 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2646 {
2647 if (addr) {
2648 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2649 unsigned long used = addr + PAGE_ALIGN(size);
2650
2651 split_page(virt_to_page((void *)addr), order);
2652 while (used < alloc_end) {
2653 free_page(used);
2654 used += PAGE_SIZE;
2655 }
2656 }
2657 return (void *)addr;
2658 }
2659
2660 /**
2661 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2662 * @size: the number of bytes to allocate
2663 * @gfp_mask: GFP flags for the allocation
2664 *
2665 * This function is similar to alloc_pages(), except that it allocates the
2666 * minimum number of pages to satisfy the request. alloc_pages() can only
2667 * allocate memory in power-of-two pages.
2668 *
2669 * This function is also limited by MAX_ORDER.
2670 *
2671 * Memory allocated by this function must be released by free_pages_exact().
2672 */
2673 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2674 {
2675 unsigned int order = get_order(size);
2676 unsigned long addr;
2677
2678 addr = __get_free_pages(gfp_mask, order);
2679 return make_alloc_exact(addr, order, size);
2680 }
2681 EXPORT_SYMBOL(alloc_pages_exact);
2682
2683 /**
2684 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2685 * pages on a node.
2686 * @nid: the preferred node ID where memory should be allocated
2687 * @size: the number of bytes to allocate
2688 * @gfp_mask: GFP flags for the allocation
2689 *
2690 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2691 * back.
2692 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2693 * but is not exact.
2694 */
2695 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2696 {
2697 unsigned order = get_order(size);
2698 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2699 if (!p)
2700 return NULL;
2701 return make_alloc_exact((unsigned long)page_address(p), order, size);
2702 }
2703 EXPORT_SYMBOL(alloc_pages_exact_nid);
2704
2705 /**
2706 * free_pages_exact - release memory allocated via alloc_pages_exact()
2707 * @virt: the value returned by alloc_pages_exact.
2708 * @size: size of allocation, same value as passed to alloc_pages_exact().
2709 *
2710 * Release the memory allocated by a previous call to alloc_pages_exact.
2711 */
2712 void free_pages_exact(void *virt, size_t size)
2713 {
2714 unsigned long addr = (unsigned long)virt;
2715 unsigned long end = addr + PAGE_ALIGN(size);
2716
2717 while (addr < end) {
2718 free_page(addr);
2719 addr += PAGE_SIZE;
2720 }
2721 }
2722 EXPORT_SYMBOL(free_pages_exact);
2723
2724 static unsigned int nr_free_zone_pages(int offset)
2725 {
2726 struct zoneref *z;
2727 struct zone *zone;
2728
2729 /* Just pick one node, since fallback list is circular */
2730 unsigned int sum = 0;
2731
2732 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2733
2734 for_each_zone_zonelist(zone, z, zonelist, offset) {
2735 unsigned long size = zone->present_pages;
2736 unsigned long high = high_wmark_pages(zone);
2737 if (size > high)
2738 sum += size - high;
2739 }
2740
2741 return sum;
2742 }
2743
2744 /*
2745 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2746 */
2747 unsigned int nr_free_buffer_pages(void)
2748 {
2749 return nr_free_zone_pages(gfp_zone(GFP_USER));
2750 }
2751 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2752
2753 /*
2754 * Amount of free RAM allocatable within all zones
2755 */
2756 unsigned int nr_free_pagecache_pages(void)
2757 {
2758 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2759 }
2760
2761 static inline void show_node(struct zone *zone)
2762 {
2763 if (NUMA_BUILD)
2764 printk("Node %d ", zone_to_nid(zone));
2765 }
2766
2767 void si_meminfo(struct sysinfo *val)
2768 {
2769 val->totalram = totalram_pages;
2770 val->sharedram = 0;
2771 val->freeram = global_page_state(NR_FREE_PAGES);
2772 val->bufferram = nr_blockdev_pages();
2773 val->totalhigh = totalhigh_pages;
2774 val->freehigh = nr_free_highpages();
2775 val->mem_unit = PAGE_SIZE;
2776 }
2777
2778 EXPORT_SYMBOL(si_meminfo);
2779
2780 #ifdef CONFIG_NUMA
2781 void si_meminfo_node(struct sysinfo *val, int nid)
2782 {
2783 pg_data_t *pgdat = NODE_DATA(nid);
2784
2785 val->totalram = pgdat->node_present_pages;
2786 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2787 #ifdef CONFIG_HIGHMEM
2788 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2789 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2790 NR_FREE_PAGES);
2791 #else
2792 val->totalhigh = 0;
2793 val->freehigh = 0;
2794 #endif
2795 val->mem_unit = PAGE_SIZE;
2796 }
2797 #endif
2798
2799 /*
2800 * Determine whether the node should be displayed or not, depending on whether
2801 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2802 */
2803 bool skip_free_areas_node(unsigned int flags, int nid)
2804 {
2805 bool ret = false;
2806 unsigned int cpuset_mems_cookie;
2807
2808 if (!(flags & SHOW_MEM_FILTER_NODES))
2809 goto out;
2810
2811 do {
2812 cpuset_mems_cookie = get_mems_allowed();
2813 ret = !node_isset(nid, cpuset_current_mems_allowed);
2814 } while (!put_mems_allowed(cpuset_mems_cookie));
2815 out:
2816 return ret;
2817 }
2818
2819 #define K(x) ((x) << (PAGE_SHIFT-10))
2820
2821 /*
2822 * Show free area list (used inside shift_scroll-lock stuff)
2823 * We also calculate the percentage fragmentation. We do this by counting the
2824 * memory on each free list with the exception of the first item on the list.
2825 * Suppresses nodes that are not allowed by current's cpuset if
2826 * SHOW_MEM_FILTER_NODES is passed.
2827 */
2828 void show_free_areas(unsigned int filter)
2829 {
2830 int cpu;
2831 struct zone *zone;
2832
2833 for_each_populated_zone(zone) {
2834 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2835 continue;
2836 show_node(zone);
2837 printk("%s per-cpu:\n", zone->name);
2838
2839 for_each_online_cpu(cpu) {
2840 struct per_cpu_pageset *pageset;
2841
2842 pageset = per_cpu_ptr(zone->pageset, cpu);
2843
2844 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2845 cpu, pageset->pcp.high,
2846 pageset->pcp.batch, pageset->pcp.count);
2847 }
2848 }
2849
2850 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2851 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2852 " unevictable:%lu"
2853 " dirty:%lu writeback:%lu unstable:%lu\n"
2854 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2855 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2856 global_page_state(NR_ACTIVE_ANON),
2857 global_page_state(NR_INACTIVE_ANON),
2858 global_page_state(NR_ISOLATED_ANON),
2859 global_page_state(NR_ACTIVE_FILE),
2860 global_page_state(NR_INACTIVE_FILE),
2861 global_page_state(NR_ISOLATED_FILE),
2862 global_page_state(NR_UNEVICTABLE),
2863 global_page_state(NR_FILE_DIRTY),
2864 global_page_state(NR_WRITEBACK),
2865 global_page_state(NR_UNSTABLE_NFS),
2866 global_page_state(NR_FREE_PAGES),
2867 global_page_state(NR_SLAB_RECLAIMABLE),
2868 global_page_state(NR_SLAB_UNRECLAIMABLE),
2869 global_page_state(NR_FILE_MAPPED),
2870 global_page_state(NR_SHMEM),
2871 global_page_state(NR_PAGETABLE),
2872 global_page_state(NR_BOUNCE));
2873
2874 for_each_populated_zone(zone) {
2875 int i;
2876
2877 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2878 continue;
2879 show_node(zone);
2880 printk("%s"
2881 " free:%lukB"
2882 " min:%lukB"
2883 " low:%lukB"
2884 " high:%lukB"
2885 " active_anon:%lukB"
2886 " inactive_anon:%lukB"
2887 " active_file:%lukB"
2888 " inactive_file:%lukB"
2889 " unevictable:%lukB"
2890 " isolated(anon):%lukB"
2891 " isolated(file):%lukB"
2892 " present:%lukB"
2893 " mlocked:%lukB"
2894 " dirty:%lukB"
2895 " writeback:%lukB"
2896 " mapped:%lukB"
2897 " shmem:%lukB"
2898 " slab_reclaimable:%lukB"
2899 " slab_unreclaimable:%lukB"
2900 " kernel_stack:%lukB"
2901 " pagetables:%lukB"
2902 " unstable:%lukB"
2903 " bounce:%lukB"
2904 " writeback_tmp:%lukB"
2905 " pages_scanned:%lu"
2906 " all_unreclaimable? %s"
2907 "\n",
2908 zone->name,
2909 K(zone_page_state(zone, NR_FREE_PAGES)),
2910 K(min_wmark_pages(zone)),
2911 K(low_wmark_pages(zone)),
2912 K(high_wmark_pages(zone)),
2913 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2914 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2915 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2916 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2917 K(zone_page_state(zone, NR_UNEVICTABLE)),
2918 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2919 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2920 K(zone->present_pages),
2921 K(zone_page_state(zone, NR_MLOCK)),
2922 K(zone_page_state(zone, NR_FILE_DIRTY)),
2923 K(zone_page_state(zone, NR_WRITEBACK)),
2924 K(zone_page_state(zone, NR_FILE_MAPPED)),
2925 K(zone_page_state(zone, NR_SHMEM)),
2926 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2927 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2928 zone_page_state(zone, NR_KERNEL_STACK) *
2929 THREAD_SIZE / 1024,
2930 K(zone_page_state(zone, NR_PAGETABLE)),
2931 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2932 K(zone_page_state(zone, NR_BOUNCE)),
2933 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2934 zone->pages_scanned,
2935 (zone->all_unreclaimable ? "yes" : "no")
2936 );
2937 printk("lowmem_reserve[]:");
2938 for (i = 0; i < MAX_NR_ZONES; i++)
2939 printk(" %lu", zone->lowmem_reserve[i]);
2940 printk("\n");
2941 }
2942
2943 for_each_populated_zone(zone) {
2944 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2945
2946 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2947 continue;
2948 show_node(zone);
2949 printk("%s: ", zone->name);
2950
2951 spin_lock_irqsave(&zone->lock, flags);
2952 for (order = 0; order < MAX_ORDER; order++) {
2953 nr[order] = zone->free_area[order].nr_free;
2954 total += nr[order] << order;
2955 }
2956 spin_unlock_irqrestore(&zone->lock, flags);
2957 for (order = 0; order < MAX_ORDER; order++)
2958 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2959 printk("= %lukB\n", K(total));
2960 }
2961
2962 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2963
2964 show_swap_cache_info();
2965 }
2966
2967 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2968 {
2969 zoneref->zone = zone;
2970 zoneref->zone_idx = zone_idx(zone);
2971 }
2972
2973 /*
2974 * Builds allocation fallback zone lists.
2975 *
2976 * Add all populated zones of a node to the zonelist.
2977 */
2978 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2979 int nr_zones, enum zone_type zone_type)
2980 {
2981 struct zone *zone;
2982
2983 BUG_ON(zone_type >= MAX_NR_ZONES);
2984 zone_type++;
2985
2986 do {
2987 zone_type--;
2988 zone = pgdat->node_zones + zone_type;
2989 if (populated_zone(zone)) {
2990 zoneref_set_zone(zone,
2991 &zonelist->_zonerefs[nr_zones++]);
2992 check_highest_zone(zone_type);
2993 }
2994
2995 } while (zone_type);
2996 return nr_zones;
2997 }
2998
2999
3000 /*
3001 * zonelist_order:
3002 * 0 = automatic detection of better ordering.
3003 * 1 = order by ([node] distance, -zonetype)
3004 * 2 = order by (-zonetype, [node] distance)
3005 *
3006 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3007 * the same zonelist. So only NUMA can configure this param.
3008 */
3009 #define ZONELIST_ORDER_DEFAULT 0
3010 #define ZONELIST_ORDER_NODE 1
3011 #define ZONELIST_ORDER_ZONE 2
3012
3013 /* zonelist order in the kernel.
3014 * set_zonelist_order() will set this to NODE or ZONE.
3015 */
3016 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3017 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3018
3019
3020 #ifdef CONFIG_NUMA
3021 /* The value user specified ....changed by config */
3022 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3023 /* string for sysctl */
3024 #define NUMA_ZONELIST_ORDER_LEN 16
3025 char numa_zonelist_order[16] = "default";
3026
3027 /*
3028 * interface for configure zonelist ordering.
3029 * command line option "numa_zonelist_order"
3030 * = "[dD]efault - default, automatic configuration.
3031 * = "[nN]ode - order by node locality, then by zone within node
3032 * = "[zZ]one - order by zone, then by locality within zone
3033 */
3034
3035 static int __parse_numa_zonelist_order(char *s)
3036 {
3037 if (*s == 'd' || *s == 'D') {
3038 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3039 } else if (*s == 'n' || *s == 'N') {
3040 user_zonelist_order = ZONELIST_ORDER_NODE;
3041 } else if (*s == 'z' || *s == 'Z') {
3042 user_zonelist_order = ZONELIST_ORDER_ZONE;
3043 } else {
3044 printk(KERN_WARNING
3045 "Ignoring invalid numa_zonelist_order value: "
3046 "%s\n", s);
3047 return -EINVAL;
3048 }
3049 return 0;
3050 }
3051
3052 static __init int setup_numa_zonelist_order(char *s)
3053 {
3054 int ret;
3055
3056 if (!s)
3057 return 0;
3058
3059 ret = __parse_numa_zonelist_order(s);
3060 if (ret == 0)
3061 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3062
3063 return ret;
3064 }
3065 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3066
3067 /*
3068 * sysctl handler for numa_zonelist_order
3069 */
3070 int numa_zonelist_order_handler(ctl_table *table, int write,
3071 void __user *buffer, size_t *length,
3072 loff_t *ppos)
3073 {
3074 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3075 int ret;
3076 static DEFINE_MUTEX(zl_order_mutex);
3077
3078 mutex_lock(&zl_order_mutex);
3079 if (write)
3080 strcpy(saved_string, (char*)table->data);
3081 ret = proc_dostring(table, write, buffer, length, ppos);
3082 if (ret)
3083 goto out;
3084 if (write) {
3085 int oldval = user_zonelist_order;
3086 if (__parse_numa_zonelist_order((char*)table->data)) {
3087 /*
3088 * bogus value. restore saved string
3089 */
3090 strncpy((char*)table->data, saved_string,
3091 NUMA_ZONELIST_ORDER_LEN);
3092 user_zonelist_order = oldval;
3093 } else if (oldval != user_zonelist_order) {
3094 mutex_lock(&zonelists_mutex);
3095 build_all_zonelists(NULL, NULL);
3096 mutex_unlock(&zonelists_mutex);
3097 }
3098 }
3099 out:
3100 mutex_unlock(&zl_order_mutex);
3101 return ret;
3102 }
3103
3104
3105 #define MAX_NODE_LOAD (nr_online_nodes)
3106 static int node_load[MAX_NUMNODES];
3107
3108 /**
3109 * find_next_best_node - find the next node that should appear in a given node's fallback list
3110 * @node: node whose fallback list we're appending
3111 * @used_node_mask: nodemask_t of already used nodes
3112 *
3113 * We use a number of factors to determine which is the next node that should
3114 * appear on a given node's fallback list. The node should not have appeared
3115 * already in @node's fallback list, and it should be the next closest node
3116 * according to the distance array (which contains arbitrary distance values
3117 * from each node to each node in the system), and should also prefer nodes
3118 * with no CPUs, since presumably they'll have very little allocation pressure
3119 * on them otherwise.
3120 * It returns -1 if no node is found.
3121 */
3122 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3123 {
3124 int n, val;
3125 int min_val = INT_MAX;
3126 int best_node = -1;
3127 const struct cpumask *tmp = cpumask_of_node(0);
3128
3129 /* Use the local node if we haven't already */
3130 if (!node_isset(node, *used_node_mask)) {
3131 node_set(node, *used_node_mask);
3132 return node;
3133 }
3134
3135 for_each_node_state(n, N_HIGH_MEMORY) {
3136
3137 /* Don't want a node to appear more than once */
3138 if (node_isset(n, *used_node_mask))
3139 continue;
3140
3141 /* Use the distance array to find the distance */
3142 val = node_distance(node, n);
3143
3144 /* Penalize nodes under us ("prefer the next node") */
3145 val += (n < node);
3146
3147 /* Give preference to headless and unused nodes */
3148 tmp = cpumask_of_node(n);
3149 if (!cpumask_empty(tmp))
3150 val += PENALTY_FOR_NODE_WITH_CPUS;
3151
3152 /* Slight preference for less loaded node */
3153 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3154 val += node_load[n];
3155
3156 if (val < min_val) {
3157 min_val = val;
3158 best_node = n;
3159 }
3160 }
3161
3162 if (best_node >= 0)
3163 node_set(best_node, *used_node_mask);
3164
3165 return best_node;
3166 }
3167
3168
3169 /*
3170 * Build zonelists ordered by node and zones within node.
3171 * This results in maximum locality--normal zone overflows into local
3172 * DMA zone, if any--but risks exhausting DMA zone.
3173 */
3174 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3175 {
3176 int j;
3177 struct zonelist *zonelist;
3178
3179 zonelist = &pgdat->node_zonelists[0];
3180 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3181 ;
3182 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3183 MAX_NR_ZONES - 1);
3184 zonelist->_zonerefs[j].zone = NULL;
3185 zonelist->_zonerefs[j].zone_idx = 0;
3186 }
3187
3188 /*
3189 * Build gfp_thisnode zonelists
3190 */
3191 static void build_thisnode_zonelists(pg_data_t *pgdat)
3192 {
3193 int j;
3194 struct zonelist *zonelist;
3195
3196 zonelist = &pgdat->node_zonelists[1];
3197 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3198 zonelist->_zonerefs[j].zone = NULL;
3199 zonelist->_zonerefs[j].zone_idx = 0;
3200 }
3201
3202 /*
3203 * Build zonelists ordered by zone and nodes within zones.
3204 * This results in conserving DMA zone[s] until all Normal memory is
3205 * exhausted, but results in overflowing to remote node while memory
3206 * may still exist in local DMA zone.
3207 */
3208 static int node_order[MAX_NUMNODES];
3209
3210 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3211 {
3212 int pos, j, node;
3213 int zone_type; /* needs to be signed */
3214 struct zone *z;
3215 struct zonelist *zonelist;
3216
3217 zonelist = &pgdat->node_zonelists[0];
3218 pos = 0;
3219 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3220 for (j = 0; j < nr_nodes; j++) {
3221 node = node_order[j];
3222 z = &NODE_DATA(node)->node_zones[zone_type];
3223 if (populated_zone(z)) {
3224 zoneref_set_zone(z,
3225 &zonelist->_zonerefs[pos++]);
3226 check_highest_zone(zone_type);
3227 }
3228 }
3229 }
3230 zonelist->_zonerefs[pos].zone = NULL;
3231 zonelist->_zonerefs[pos].zone_idx = 0;
3232 }
3233
3234 static int default_zonelist_order(void)
3235 {
3236 int nid, zone_type;
3237 unsigned long low_kmem_size,total_size;
3238 struct zone *z;
3239 int average_size;
3240 /*
3241 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3242 * If they are really small and used heavily, the system can fall
3243 * into OOM very easily.
3244 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3245 */
3246 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3247 low_kmem_size = 0;
3248 total_size = 0;
3249 for_each_online_node(nid) {
3250 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3251 z = &NODE_DATA(nid)->node_zones[zone_type];
3252 if (populated_zone(z)) {
3253 if (zone_type < ZONE_NORMAL)
3254 low_kmem_size += z->present_pages;
3255 total_size += z->present_pages;
3256 } else if (zone_type == ZONE_NORMAL) {
3257 /*
3258 * If any node has only lowmem, then node order
3259 * is preferred to allow kernel allocations
3260 * locally; otherwise, they can easily infringe
3261 * on other nodes when there is an abundance of
3262 * lowmem available to allocate from.
3263 */
3264 return ZONELIST_ORDER_NODE;
3265 }
3266 }
3267 }
3268 if (!low_kmem_size || /* there are no DMA area. */
3269 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3270 return ZONELIST_ORDER_NODE;
3271 /*
3272 * look into each node's config.
3273 * If there is a node whose DMA/DMA32 memory is very big area on
3274 * local memory, NODE_ORDER may be suitable.
3275 */
3276 average_size = total_size /
3277 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3278 for_each_online_node(nid) {
3279 low_kmem_size = 0;
3280 total_size = 0;
3281 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3282 z = &NODE_DATA(nid)->node_zones[zone_type];
3283 if (populated_zone(z)) {
3284 if (zone_type < ZONE_NORMAL)
3285 low_kmem_size += z->present_pages;
3286 total_size += z->present_pages;
3287 }
3288 }
3289 if (low_kmem_size &&
3290 total_size > average_size && /* ignore small node */
3291 low_kmem_size > total_size * 70/100)
3292 return ZONELIST_ORDER_NODE;
3293 }
3294 return ZONELIST_ORDER_ZONE;
3295 }
3296
3297 static void set_zonelist_order(void)
3298 {
3299 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3300 current_zonelist_order = default_zonelist_order();
3301 else
3302 current_zonelist_order = user_zonelist_order;
3303 }
3304
3305 static void build_zonelists(pg_data_t *pgdat)
3306 {
3307 int j, node, load;
3308 enum zone_type i;
3309 nodemask_t used_mask;
3310 int local_node, prev_node;
3311 struct zonelist *zonelist;
3312 int order = current_zonelist_order;
3313
3314 /* initialize zonelists */
3315 for (i = 0; i < MAX_ZONELISTS; i++) {
3316 zonelist = pgdat->node_zonelists + i;
3317 zonelist->_zonerefs[0].zone = NULL;
3318 zonelist->_zonerefs[0].zone_idx = 0;
3319 }
3320
3321 /* NUMA-aware ordering of nodes */
3322 local_node = pgdat->node_id;
3323 load = nr_online_nodes;
3324 prev_node = local_node;
3325 nodes_clear(used_mask);
3326
3327 memset(node_order, 0, sizeof(node_order));
3328 j = 0;
3329
3330 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3331 int distance = node_distance(local_node, node);
3332
3333 /*
3334 * If another node is sufficiently far away then it is better
3335 * to reclaim pages in a zone before going off node.
3336 */
3337 if (distance > RECLAIM_DISTANCE)
3338 zone_reclaim_mode = 1;
3339
3340 /*
3341 * We don't want to pressure a particular node.
3342 * So adding penalty to the first node in same
3343 * distance group to make it round-robin.
3344 */
3345 if (distance != node_distance(local_node, prev_node))
3346 node_load[node] = load;
3347
3348 prev_node = node;
3349 load--;
3350 if (order == ZONELIST_ORDER_NODE)
3351 build_zonelists_in_node_order(pgdat, node);
3352 else
3353 node_order[j++] = node; /* remember order */
3354 }
3355
3356 if (order == ZONELIST_ORDER_ZONE) {
3357 /* calculate node order -- i.e., DMA last! */
3358 build_zonelists_in_zone_order(pgdat, j);
3359 }
3360
3361 build_thisnode_zonelists(pgdat);
3362 }
3363
3364 /* Construct the zonelist performance cache - see further mmzone.h */
3365 static void build_zonelist_cache(pg_data_t *pgdat)
3366 {
3367 struct zonelist *zonelist;
3368 struct zonelist_cache *zlc;
3369 struct zoneref *z;
3370
3371 zonelist = &pgdat->node_zonelists[0];
3372 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3373 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3374 for (z = zonelist->_zonerefs; z->zone; z++)
3375 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3376 }
3377
3378 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3379 /*
3380 * Return node id of node used for "local" allocations.
3381 * I.e., first node id of first zone in arg node's generic zonelist.
3382 * Used for initializing percpu 'numa_mem', which is used primarily
3383 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3384 */
3385 int local_memory_node(int node)
3386 {
3387 struct zone *zone;
3388
3389 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3390 gfp_zone(GFP_KERNEL),
3391 NULL,
3392 &zone);
3393 return zone->node;
3394 }
3395 #endif
3396
3397 #else /* CONFIG_NUMA */
3398
3399 static void set_zonelist_order(void)
3400 {
3401 current_zonelist_order = ZONELIST_ORDER_ZONE;
3402 }
3403
3404 static void build_zonelists(pg_data_t *pgdat)
3405 {
3406 int node, local_node;
3407 enum zone_type j;
3408 struct zonelist *zonelist;
3409
3410 local_node = pgdat->node_id;
3411
3412 zonelist = &pgdat->node_zonelists[0];
3413 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3414
3415 /*
3416 * Now we build the zonelist so that it contains the zones
3417 * of all the other nodes.
3418 * We don't want to pressure a particular node, so when
3419 * building the zones for node N, we make sure that the
3420 * zones coming right after the local ones are those from
3421 * node N+1 (modulo N)
3422 */
3423 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3424 if (!node_online(node))
3425 continue;
3426 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3427 MAX_NR_ZONES - 1);
3428 }
3429 for (node = 0; node < local_node; node++) {
3430 if (!node_online(node))
3431 continue;
3432 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3433 MAX_NR_ZONES - 1);
3434 }
3435
3436 zonelist->_zonerefs[j].zone = NULL;
3437 zonelist->_zonerefs[j].zone_idx = 0;
3438 }
3439
3440 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3441 static void build_zonelist_cache(pg_data_t *pgdat)
3442 {
3443 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3444 }
3445
3446 #endif /* CONFIG_NUMA */
3447
3448 /*
3449 * Boot pageset table. One per cpu which is going to be used for all
3450 * zones and all nodes. The parameters will be set in such a way
3451 * that an item put on a list will immediately be handed over to
3452 * the buddy list. This is safe since pageset manipulation is done
3453 * with interrupts disabled.
3454 *
3455 * The boot_pagesets must be kept even after bootup is complete for
3456 * unused processors and/or zones. They do play a role for bootstrapping
3457 * hotplugged processors.
3458 *
3459 * zoneinfo_show() and maybe other functions do
3460 * not check if the processor is online before following the pageset pointer.
3461 * Other parts of the kernel may not check if the zone is available.
3462 */
3463 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3464 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3465 static void setup_zone_pageset(struct zone *zone);
3466
3467 /*
3468 * Global mutex to protect against size modification of zonelists
3469 * as well as to serialize pageset setup for the new populated zone.
3470 */
3471 DEFINE_MUTEX(zonelists_mutex);
3472
3473 /* return values int ....just for stop_machine() */
3474 static int __build_all_zonelists(void *data)
3475 {
3476 int nid;
3477 int cpu;
3478 pg_data_t *self = data;
3479
3480 #ifdef CONFIG_NUMA
3481 memset(node_load, 0, sizeof(node_load));
3482 #endif
3483
3484 if (self && !node_online(self->node_id)) {
3485 build_zonelists(self);
3486 build_zonelist_cache(self);
3487 }
3488
3489 for_each_online_node(nid) {
3490 pg_data_t *pgdat = NODE_DATA(nid);
3491
3492 build_zonelists(pgdat);
3493 build_zonelist_cache(pgdat);
3494 }
3495
3496 /*
3497 * Initialize the boot_pagesets that are going to be used
3498 * for bootstrapping processors. The real pagesets for
3499 * each zone will be allocated later when the per cpu
3500 * allocator is available.
3501 *
3502 * boot_pagesets are used also for bootstrapping offline
3503 * cpus if the system is already booted because the pagesets
3504 * are needed to initialize allocators on a specific cpu too.
3505 * F.e. the percpu allocator needs the page allocator which
3506 * needs the percpu allocator in order to allocate its pagesets
3507 * (a chicken-egg dilemma).
3508 */
3509 for_each_possible_cpu(cpu) {
3510 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3511
3512 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3513 /*
3514 * We now know the "local memory node" for each node--
3515 * i.e., the node of the first zone in the generic zonelist.
3516 * Set up numa_mem percpu variable for on-line cpus. During
3517 * boot, only the boot cpu should be on-line; we'll init the
3518 * secondary cpus' numa_mem as they come on-line. During
3519 * node/memory hotplug, we'll fixup all on-line cpus.
3520 */
3521 if (cpu_online(cpu))
3522 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3523 #endif
3524 }
3525
3526 return 0;
3527 }
3528
3529 /*
3530 * Called with zonelists_mutex held always
3531 * unless system_state == SYSTEM_BOOTING.
3532 */
3533 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3534 {
3535 set_zonelist_order();
3536
3537 if (system_state == SYSTEM_BOOTING) {
3538 __build_all_zonelists(NULL);
3539 mminit_verify_zonelist();
3540 cpuset_init_current_mems_allowed();
3541 } else {
3542 /* we have to stop all cpus to guarantee there is no user
3543 of zonelist */
3544 #ifdef CONFIG_MEMORY_HOTPLUG
3545 if (zone)
3546 setup_zone_pageset(zone);
3547 #endif
3548 stop_machine(__build_all_zonelists, pgdat, NULL);
3549 /* cpuset refresh routine should be here */
3550 }
3551 vm_total_pages = nr_free_pagecache_pages();
3552 /*
3553 * Disable grouping by mobility if the number of pages in the
3554 * system is too low to allow the mechanism to work. It would be
3555 * more accurate, but expensive to check per-zone. This check is
3556 * made on memory-hotadd so a system can start with mobility
3557 * disabled and enable it later
3558 */
3559 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3560 page_group_by_mobility_disabled = 1;
3561 else
3562 page_group_by_mobility_disabled = 0;
3563
3564 printk("Built %i zonelists in %s order, mobility grouping %s. "
3565 "Total pages: %ld\n",
3566 nr_online_nodes,
3567 zonelist_order_name[current_zonelist_order],
3568 page_group_by_mobility_disabled ? "off" : "on",
3569 vm_total_pages);
3570 #ifdef CONFIG_NUMA
3571 printk("Policy zone: %s\n", zone_names[policy_zone]);
3572 #endif
3573 }
3574
3575 /*
3576 * Helper functions to size the waitqueue hash table.
3577 * Essentially these want to choose hash table sizes sufficiently
3578 * large so that collisions trying to wait on pages are rare.
3579 * But in fact, the number of active page waitqueues on typical
3580 * systems is ridiculously low, less than 200. So this is even
3581 * conservative, even though it seems large.
3582 *
3583 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3584 * waitqueues, i.e. the size of the waitq table given the number of pages.
3585 */
3586 #define PAGES_PER_WAITQUEUE 256
3587
3588 #ifndef CONFIG_MEMORY_HOTPLUG
3589 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3590 {
3591 unsigned long size = 1;
3592
3593 pages /= PAGES_PER_WAITQUEUE;
3594
3595 while (size < pages)
3596 size <<= 1;
3597
3598 /*
3599 * Once we have dozens or even hundreds of threads sleeping
3600 * on IO we've got bigger problems than wait queue collision.
3601 * Limit the size of the wait table to a reasonable size.
3602 */
3603 size = min(size, 4096UL);
3604
3605 return max(size, 4UL);
3606 }
3607 #else
3608 /*
3609 * A zone's size might be changed by hot-add, so it is not possible to determine
3610 * a suitable size for its wait_table. So we use the maximum size now.
3611 *
3612 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3613 *
3614 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3615 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3616 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3617 *
3618 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3619 * or more by the traditional way. (See above). It equals:
3620 *
3621 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3622 * ia64(16K page size) : = ( 8G + 4M)byte.
3623 * powerpc (64K page size) : = (32G +16M)byte.
3624 */
3625 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3626 {
3627 return 4096UL;
3628 }
3629 #endif
3630
3631 /*
3632 * This is an integer logarithm so that shifts can be used later
3633 * to extract the more random high bits from the multiplicative
3634 * hash function before the remainder is taken.
3635 */
3636 static inline unsigned long wait_table_bits(unsigned long size)
3637 {
3638 return ffz(~size);
3639 }
3640
3641 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3642
3643 /*
3644 * Check if a pageblock contains reserved pages
3645 */
3646 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3647 {
3648 unsigned long pfn;
3649
3650 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3651 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3652 return 1;
3653 }
3654 return 0;
3655 }
3656
3657 /*
3658 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3659 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3660 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3661 * higher will lead to a bigger reserve which will get freed as contiguous
3662 * blocks as reclaim kicks in
3663 */
3664 static void setup_zone_migrate_reserve(struct zone *zone)
3665 {
3666 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3667 struct page *page;
3668 unsigned long block_migratetype;
3669 int reserve;
3670
3671 /*
3672 * Get the start pfn, end pfn and the number of blocks to reserve
3673 * We have to be careful to be aligned to pageblock_nr_pages to
3674 * make sure that we always check pfn_valid for the first page in
3675 * the block.
3676 */
3677 start_pfn = zone->zone_start_pfn;
3678 end_pfn = start_pfn + zone->spanned_pages;
3679 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3680 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3681 pageblock_order;
3682
3683 /*
3684 * Reserve blocks are generally in place to help high-order atomic
3685 * allocations that are short-lived. A min_free_kbytes value that
3686 * would result in more than 2 reserve blocks for atomic allocations
3687 * is assumed to be in place to help anti-fragmentation for the
3688 * future allocation of hugepages at runtime.
3689 */
3690 reserve = min(2, reserve);
3691
3692 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3693 if (!pfn_valid(pfn))
3694 continue;
3695 page = pfn_to_page(pfn);
3696
3697 /* Watch out for overlapping nodes */
3698 if (page_to_nid(page) != zone_to_nid(zone))
3699 continue;
3700
3701 block_migratetype = get_pageblock_migratetype(page);
3702
3703 /* Only test what is necessary when the reserves are not met */
3704 if (reserve > 0) {
3705 /*
3706 * Blocks with reserved pages will never free, skip
3707 * them.
3708 */
3709 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3710 if (pageblock_is_reserved(pfn, block_end_pfn))
3711 continue;
3712
3713 /* If this block is reserved, account for it */
3714 if (block_migratetype == MIGRATE_RESERVE) {
3715 reserve--;
3716 continue;
3717 }
3718
3719 /* Suitable for reserving if this block is movable */
3720 if (block_migratetype == MIGRATE_MOVABLE) {
3721 set_pageblock_migratetype(page,
3722 MIGRATE_RESERVE);
3723 move_freepages_block(zone, page,
3724 MIGRATE_RESERVE);
3725 reserve--;
3726 continue;
3727 }
3728 }
3729
3730 /*
3731 * If the reserve is met and this is a previous reserved block,
3732 * take it back
3733 */
3734 if (block_migratetype == MIGRATE_RESERVE) {
3735 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3736 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3737 }
3738 }
3739 }
3740
3741 /*
3742 * Initially all pages are reserved - free ones are freed
3743 * up by free_all_bootmem() once the early boot process is
3744 * done. Non-atomic initialization, single-pass.
3745 */
3746 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3747 unsigned long start_pfn, enum memmap_context context)
3748 {
3749 struct page *page;
3750 unsigned long end_pfn = start_pfn + size;
3751 unsigned long pfn;
3752 struct zone *z;
3753
3754 if (highest_memmap_pfn < end_pfn - 1)
3755 highest_memmap_pfn = end_pfn - 1;
3756
3757 z = &NODE_DATA(nid)->node_zones[zone];
3758 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3759 /*
3760 * There can be holes in boot-time mem_map[]s
3761 * handed to this function. They do not
3762 * exist on hotplugged memory.
3763 */
3764 if (context == MEMMAP_EARLY) {
3765 if (!early_pfn_valid(pfn))
3766 continue;
3767 if (!early_pfn_in_nid(pfn, nid))
3768 continue;
3769 }
3770 page = pfn_to_page(pfn);
3771 set_page_links(page, zone, nid, pfn);
3772 mminit_verify_page_links(page, zone, nid, pfn);
3773 init_page_count(page);
3774 reset_page_mapcount(page);
3775 SetPageReserved(page);
3776 /*
3777 * Mark the block movable so that blocks are reserved for
3778 * movable at startup. This will force kernel allocations
3779 * to reserve their blocks rather than leaking throughout
3780 * the address space during boot when many long-lived
3781 * kernel allocations are made. Later some blocks near
3782 * the start are marked MIGRATE_RESERVE by
3783 * setup_zone_migrate_reserve()
3784 *
3785 * bitmap is created for zone's valid pfn range. but memmap
3786 * can be created for invalid pages (for alignment)
3787 * check here not to call set_pageblock_migratetype() against
3788 * pfn out of zone.
3789 */
3790 if ((z->zone_start_pfn <= pfn)
3791 && (pfn < z->zone_start_pfn + z->spanned_pages)
3792 && !(pfn & (pageblock_nr_pages - 1)))
3793 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3794
3795 INIT_LIST_HEAD(&page->lru);
3796 #ifdef WANT_PAGE_VIRTUAL
3797 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3798 if (!is_highmem_idx(zone))
3799 set_page_address(page, __va(pfn << PAGE_SHIFT));
3800 #endif
3801 }
3802 }
3803
3804 static void __meminit zone_init_free_lists(struct zone *zone)
3805 {
3806 int order, t;
3807 for_each_migratetype_order(order, t) {
3808 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3809 zone->free_area[order].nr_free = 0;
3810 }
3811 }
3812
3813 #ifndef __HAVE_ARCH_MEMMAP_INIT
3814 #define memmap_init(size, nid, zone, start_pfn) \
3815 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3816 #endif
3817
3818 static int __meminit zone_batchsize(struct zone *zone)
3819 {
3820 #ifdef CONFIG_MMU
3821 int batch;
3822
3823 /*
3824 * The per-cpu-pages pools are set to around 1000th of the
3825 * size of the zone. But no more than 1/2 of a meg.
3826 *
3827 * OK, so we don't know how big the cache is. So guess.
3828 */
3829 batch = zone->present_pages / 1024;
3830 if (batch * PAGE_SIZE > 512 * 1024)
3831 batch = (512 * 1024) / PAGE_SIZE;
3832 batch /= 4; /* We effectively *= 4 below */
3833 if (batch < 1)
3834 batch = 1;
3835
3836 /*
3837 * Clamp the batch to a 2^n - 1 value. Having a power
3838 * of 2 value was found to be more likely to have
3839 * suboptimal cache aliasing properties in some cases.
3840 *
3841 * For example if 2 tasks are alternately allocating
3842 * batches of pages, one task can end up with a lot
3843 * of pages of one half of the possible page colors
3844 * and the other with pages of the other colors.
3845 */
3846 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3847
3848 return batch;
3849
3850 #else
3851 /* The deferral and batching of frees should be suppressed under NOMMU
3852 * conditions.
3853 *
3854 * The problem is that NOMMU needs to be able to allocate large chunks
3855 * of contiguous memory as there's no hardware page translation to
3856 * assemble apparent contiguous memory from discontiguous pages.
3857 *
3858 * Queueing large contiguous runs of pages for batching, however,
3859 * causes the pages to actually be freed in smaller chunks. As there
3860 * can be a significant delay between the individual batches being
3861 * recycled, this leads to the once large chunks of space being
3862 * fragmented and becoming unavailable for high-order allocations.
3863 */
3864 return 0;
3865 #endif
3866 }
3867
3868 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3869 {
3870 struct per_cpu_pages *pcp;
3871 int migratetype;
3872
3873 memset(p, 0, sizeof(*p));
3874
3875 pcp = &p->pcp;
3876 pcp->count = 0;
3877 pcp->high = 6 * batch;
3878 pcp->batch = max(1UL, 1 * batch);
3879 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3880 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3881 }
3882
3883 /*
3884 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3885 * to the value high for the pageset p.
3886 */
3887
3888 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3889 unsigned long high)
3890 {
3891 struct per_cpu_pages *pcp;
3892
3893 pcp = &p->pcp;
3894 pcp->high = high;
3895 pcp->batch = max(1UL, high/4);
3896 if ((high/4) > (PAGE_SHIFT * 8))
3897 pcp->batch = PAGE_SHIFT * 8;
3898 }
3899
3900 static void __meminit setup_zone_pageset(struct zone *zone)
3901 {
3902 int cpu;
3903
3904 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3905
3906 for_each_possible_cpu(cpu) {
3907 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3908
3909 setup_pageset(pcp, zone_batchsize(zone));
3910
3911 if (percpu_pagelist_fraction)
3912 setup_pagelist_highmark(pcp,
3913 (zone->present_pages /
3914 percpu_pagelist_fraction));
3915 }
3916 }
3917
3918 /*
3919 * Allocate per cpu pagesets and initialize them.
3920 * Before this call only boot pagesets were available.
3921 */
3922 void __init setup_per_cpu_pageset(void)
3923 {
3924 struct zone *zone;
3925
3926 for_each_populated_zone(zone)
3927 setup_zone_pageset(zone);
3928 }
3929
3930 static noinline __init_refok
3931 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3932 {
3933 int i;
3934 struct pglist_data *pgdat = zone->zone_pgdat;
3935 size_t alloc_size;
3936
3937 /*
3938 * The per-page waitqueue mechanism uses hashed waitqueues
3939 * per zone.
3940 */
3941 zone->wait_table_hash_nr_entries =
3942 wait_table_hash_nr_entries(zone_size_pages);
3943 zone->wait_table_bits =
3944 wait_table_bits(zone->wait_table_hash_nr_entries);
3945 alloc_size = zone->wait_table_hash_nr_entries
3946 * sizeof(wait_queue_head_t);
3947
3948 if (!slab_is_available()) {
3949 zone->wait_table = (wait_queue_head_t *)
3950 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3951 } else {
3952 /*
3953 * This case means that a zone whose size was 0 gets new memory
3954 * via memory hot-add.
3955 * But it may be the case that a new node was hot-added. In
3956 * this case vmalloc() will not be able to use this new node's
3957 * memory - this wait_table must be initialized to use this new
3958 * node itself as well.
3959 * To use this new node's memory, further consideration will be
3960 * necessary.
3961 */
3962 zone->wait_table = vmalloc(alloc_size);
3963 }
3964 if (!zone->wait_table)
3965 return -ENOMEM;
3966
3967 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3968 init_waitqueue_head(zone->wait_table + i);
3969
3970 return 0;
3971 }
3972
3973 static __meminit void zone_pcp_init(struct zone *zone)
3974 {
3975 /*
3976 * per cpu subsystem is not up at this point. The following code
3977 * relies on the ability of the linker to provide the
3978 * offset of a (static) per cpu variable into the per cpu area.
3979 */
3980 zone->pageset = &boot_pageset;
3981
3982 if (zone->present_pages)
3983 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3984 zone->name, zone->present_pages,
3985 zone_batchsize(zone));
3986 }
3987
3988 int __meminit init_currently_empty_zone(struct zone *zone,
3989 unsigned long zone_start_pfn,
3990 unsigned long size,
3991 enum memmap_context context)
3992 {
3993 struct pglist_data *pgdat = zone->zone_pgdat;
3994 int ret;
3995 ret = zone_wait_table_init(zone, size);
3996 if (ret)
3997 return ret;
3998 pgdat->nr_zones = zone_idx(zone) + 1;
3999
4000 zone->zone_start_pfn = zone_start_pfn;
4001
4002 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4003 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4004 pgdat->node_id,
4005 (unsigned long)zone_idx(zone),
4006 zone_start_pfn, (zone_start_pfn + size));
4007
4008 zone_init_free_lists(zone);
4009
4010 return 0;
4011 }
4012
4013 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4014 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4015 /*
4016 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4017 * Architectures may implement their own version but if add_active_range()
4018 * was used and there are no special requirements, this is a convenient
4019 * alternative
4020 */
4021 int __meminit __early_pfn_to_nid(unsigned long pfn)
4022 {
4023 unsigned long start_pfn, end_pfn;
4024 int i, nid;
4025
4026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4027 if (start_pfn <= pfn && pfn < end_pfn)
4028 return nid;
4029 /* This is a memory hole */
4030 return -1;
4031 }
4032 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4033
4034 int __meminit early_pfn_to_nid(unsigned long pfn)
4035 {
4036 int nid;
4037
4038 nid = __early_pfn_to_nid(pfn);
4039 if (nid >= 0)
4040 return nid;
4041 /* just returns 0 */
4042 return 0;
4043 }
4044
4045 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4046 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4047 {
4048 int nid;
4049
4050 nid = __early_pfn_to_nid(pfn);
4051 if (nid >= 0 && nid != node)
4052 return false;
4053 return true;
4054 }
4055 #endif
4056
4057 /**
4058 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4059 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4060 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4061 *
4062 * If an architecture guarantees that all ranges registered with
4063 * add_active_ranges() contain no holes and may be freed, this
4064 * this function may be used instead of calling free_bootmem() manually.
4065 */
4066 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4067 {
4068 unsigned long start_pfn, end_pfn;
4069 int i, this_nid;
4070
4071 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4072 start_pfn = min(start_pfn, max_low_pfn);
4073 end_pfn = min(end_pfn, max_low_pfn);
4074
4075 if (start_pfn < end_pfn)
4076 free_bootmem_node(NODE_DATA(this_nid),
4077 PFN_PHYS(start_pfn),
4078 (end_pfn - start_pfn) << PAGE_SHIFT);
4079 }
4080 }
4081
4082 /**
4083 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4084 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4085 *
4086 * If an architecture guarantees that all ranges registered with
4087 * add_active_ranges() contain no holes and may be freed, this
4088 * function may be used instead of calling memory_present() manually.
4089 */
4090 void __init sparse_memory_present_with_active_regions(int nid)
4091 {
4092 unsigned long start_pfn, end_pfn;
4093 int i, this_nid;
4094
4095 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4096 memory_present(this_nid, start_pfn, end_pfn);
4097 }
4098
4099 /**
4100 * get_pfn_range_for_nid - Return the start and end page frames for a node
4101 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4102 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4103 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4104 *
4105 * It returns the start and end page frame of a node based on information
4106 * provided by an arch calling add_active_range(). If called for a node
4107 * with no available memory, a warning is printed and the start and end
4108 * PFNs will be 0.
4109 */
4110 void __meminit get_pfn_range_for_nid(unsigned int nid,
4111 unsigned long *start_pfn, unsigned long *end_pfn)
4112 {
4113 unsigned long this_start_pfn, this_end_pfn;
4114 int i;
4115
4116 *start_pfn = -1UL;
4117 *end_pfn = 0;
4118
4119 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4120 *start_pfn = min(*start_pfn, this_start_pfn);
4121 *end_pfn = max(*end_pfn, this_end_pfn);
4122 }
4123
4124 if (*start_pfn == -1UL)
4125 *start_pfn = 0;
4126 }
4127
4128 /*
4129 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4130 * assumption is made that zones within a node are ordered in monotonic
4131 * increasing memory addresses so that the "highest" populated zone is used
4132 */
4133 static void __init find_usable_zone_for_movable(void)
4134 {
4135 int zone_index;
4136 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4137 if (zone_index == ZONE_MOVABLE)
4138 continue;
4139
4140 if (arch_zone_highest_possible_pfn[zone_index] >
4141 arch_zone_lowest_possible_pfn[zone_index])
4142 break;
4143 }
4144
4145 VM_BUG_ON(zone_index == -1);
4146 movable_zone = zone_index;
4147 }
4148
4149 /*
4150 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4151 * because it is sized independent of architecture. Unlike the other zones,
4152 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4153 * in each node depending on the size of each node and how evenly kernelcore
4154 * is distributed. This helper function adjusts the zone ranges
4155 * provided by the architecture for a given node by using the end of the
4156 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4157 * zones within a node are in order of monotonic increases memory addresses
4158 */
4159 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4160 unsigned long zone_type,
4161 unsigned long node_start_pfn,
4162 unsigned long node_end_pfn,
4163 unsigned long *zone_start_pfn,
4164 unsigned long *zone_end_pfn)
4165 {
4166 /* Only adjust if ZONE_MOVABLE is on this node */
4167 if (zone_movable_pfn[nid]) {
4168 /* Size ZONE_MOVABLE */
4169 if (zone_type == ZONE_MOVABLE) {
4170 *zone_start_pfn = zone_movable_pfn[nid];
4171 *zone_end_pfn = min(node_end_pfn,
4172 arch_zone_highest_possible_pfn[movable_zone]);
4173
4174 /* Adjust for ZONE_MOVABLE starting within this range */
4175 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4176 *zone_end_pfn > zone_movable_pfn[nid]) {
4177 *zone_end_pfn = zone_movable_pfn[nid];
4178
4179 /* Check if this whole range is within ZONE_MOVABLE */
4180 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4181 *zone_start_pfn = *zone_end_pfn;
4182 }
4183 }
4184
4185 /*
4186 * Return the number of pages a zone spans in a node, including holes
4187 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4188 */
4189 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4190 unsigned long zone_type,
4191 unsigned long *ignored)
4192 {
4193 unsigned long node_start_pfn, node_end_pfn;
4194 unsigned long zone_start_pfn, zone_end_pfn;
4195
4196 /* Get the start and end of the node and zone */
4197 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4198 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4199 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4200 adjust_zone_range_for_zone_movable(nid, zone_type,
4201 node_start_pfn, node_end_pfn,
4202 &zone_start_pfn, &zone_end_pfn);
4203
4204 /* Check that this node has pages within the zone's required range */
4205 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4206 return 0;
4207
4208 /* Move the zone boundaries inside the node if necessary */
4209 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4210 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4211
4212 /* Return the spanned pages */
4213 return zone_end_pfn - zone_start_pfn;
4214 }
4215
4216 /*
4217 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4218 * then all holes in the requested range will be accounted for.
4219 */
4220 unsigned long __meminit __absent_pages_in_range(int nid,
4221 unsigned long range_start_pfn,
4222 unsigned long range_end_pfn)
4223 {
4224 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4225 unsigned long start_pfn, end_pfn;
4226 int i;
4227
4228 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4229 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4230 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4231 nr_absent -= end_pfn - start_pfn;
4232 }
4233 return nr_absent;
4234 }
4235
4236 /**
4237 * absent_pages_in_range - Return number of page frames in holes within a range
4238 * @start_pfn: The start PFN to start searching for holes
4239 * @end_pfn: The end PFN to stop searching for holes
4240 *
4241 * It returns the number of pages frames in memory holes within a range.
4242 */
4243 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4244 unsigned long end_pfn)
4245 {
4246 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4247 }
4248
4249 /* Return the number of page frames in holes in a zone on a node */
4250 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4251 unsigned long zone_type,
4252 unsigned long *ignored)
4253 {
4254 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4255 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4256 unsigned long node_start_pfn, node_end_pfn;
4257 unsigned long zone_start_pfn, zone_end_pfn;
4258
4259 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4260 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4261 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4262
4263 adjust_zone_range_for_zone_movable(nid, zone_type,
4264 node_start_pfn, node_end_pfn,
4265 &zone_start_pfn, &zone_end_pfn);
4266 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4267 }
4268
4269 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4270 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4271 unsigned long zone_type,
4272 unsigned long *zones_size)
4273 {
4274 return zones_size[zone_type];
4275 }
4276
4277 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4278 unsigned long zone_type,
4279 unsigned long *zholes_size)
4280 {
4281 if (!zholes_size)
4282 return 0;
4283
4284 return zholes_size[zone_type];
4285 }
4286
4287 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4288
4289 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4290 unsigned long *zones_size, unsigned long *zholes_size)
4291 {
4292 unsigned long realtotalpages, totalpages = 0;
4293 enum zone_type i;
4294
4295 for (i = 0; i < MAX_NR_ZONES; i++)
4296 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4297 zones_size);
4298 pgdat->node_spanned_pages = totalpages;
4299
4300 realtotalpages = totalpages;
4301 for (i = 0; i < MAX_NR_ZONES; i++)
4302 realtotalpages -=
4303 zone_absent_pages_in_node(pgdat->node_id, i,
4304 zholes_size);
4305 pgdat->node_present_pages = realtotalpages;
4306 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4307 realtotalpages);
4308 }
4309
4310 #ifndef CONFIG_SPARSEMEM
4311 /*
4312 * Calculate the size of the zone->blockflags rounded to an unsigned long
4313 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4314 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4315 * round what is now in bits to nearest long in bits, then return it in
4316 * bytes.
4317 */
4318 static unsigned long __init usemap_size(unsigned long zonesize)
4319 {
4320 unsigned long usemapsize;
4321
4322 usemapsize = roundup(zonesize, pageblock_nr_pages);
4323 usemapsize = usemapsize >> pageblock_order;
4324 usemapsize *= NR_PAGEBLOCK_BITS;
4325 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4326
4327 return usemapsize / 8;
4328 }
4329
4330 static void __init setup_usemap(struct pglist_data *pgdat,
4331 struct zone *zone, unsigned long zonesize)
4332 {
4333 unsigned long usemapsize = usemap_size(zonesize);
4334 zone->pageblock_flags = NULL;
4335 if (usemapsize)
4336 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4337 usemapsize);
4338 }
4339 #else
4340 static inline void setup_usemap(struct pglist_data *pgdat,
4341 struct zone *zone, unsigned long zonesize) {}
4342 #endif /* CONFIG_SPARSEMEM */
4343
4344 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4345
4346 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4347 void __init set_pageblock_order(void)
4348 {
4349 unsigned int order;
4350
4351 /* Check that pageblock_nr_pages has not already been setup */
4352 if (pageblock_order)
4353 return;
4354
4355 if (HPAGE_SHIFT > PAGE_SHIFT)
4356 order = HUGETLB_PAGE_ORDER;
4357 else
4358 order = MAX_ORDER - 1;
4359
4360 /*
4361 * Assume the largest contiguous order of interest is a huge page.
4362 * This value may be variable depending on boot parameters on IA64 and
4363 * powerpc.
4364 */
4365 pageblock_order = order;
4366 }
4367 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4368
4369 /*
4370 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4371 * is unused as pageblock_order is set at compile-time. See
4372 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4373 * the kernel config
4374 */
4375 void __init set_pageblock_order(void)
4376 {
4377 }
4378
4379 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4380
4381 /*
4382 * Set up the zone data structures:
4383 * - mark all pages reserved
4384 * - mark all memory queues empty
4385 * - clear the memory bitmaps
4386 *
4387 * NOTE: pgdat should get zeroed by caller.
4388 */
4389 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4390 unsigned long *zones_size, unsigned long *zholes_size)
4391 {
4392 enum zone_type j;
4393 int nid = pgdat->node_id;
4394 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4395 int ret;
4396
4397 pgdat_resize_init(pgdat);
4398 init_waitqueue_head(&pgdat->kswapd_wait);
4399 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4400 pgdat_page_cgroup_init(pgdat);
4401
4402 for (j = 0; j < MAX_NR_ZONES; j++) {
4403 struct zone *zone = pgdat->node_zones + j;
4404 unsigned long size, realsize, memmap_pages;
4405
4406 size = zone_spanned_pages_in_node(nid, j, zones_size);
4407 realsize = size - zone_absent_pages_in_node(nid, j,
4408 zholes_size);
4409
4410 /*
4411 * Adjust realsize so that it accounts for how much memory
4412 * is used by this zone for memmap. This affects the watermark
4413 * and per-cpu initialisations
4414 */
4415 memmap_pages =
4416 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4417 if (realsize >= memmap_pages) {
4418 realsize -= memmap_pages;
4419 if (memmap_pages)
4420 printk(KERN_DEBUG
4421 " %s zone: %lu pages used for memmap\n",
4422 zone_names[j], memmap_pages);
4423 } else
4424 printk(KERN_WARNING
4425 " %s zone: %lu pages exceeds realsize %lu\n",
4426 zone_names[j], memmap_pages, realsize);
4427
4428 /* Account for reserved pages */
4429 if (j == 0 && realsize > dma_reserve) {
4430 realsize -= dma_reserve;
4431 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4432 zone_names[0], dma_reserve);
4433 }
4434
4435 if (!is_highmem_idx(j))
4436 nr_kernel_pages += realsize;
4437 nr_all_pages += realsize;
4438
4439 zone->spanned_pages = size;
4440 zone->present_pages = realsize;
4441 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4442 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4443 zone->spanned_pages;
4444 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4445 #endif
4446 #ifdef CONFIG_NUMA
4447 zone->node = nid;
4448 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4449 / 100;
4450 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4451 #endif
4452 zone->name = zone_names[j];
4453 spin_lock_init(&zone->lock);
4454 spin_lock_init(&zone->lru_lock);
4455 zone_seqlock_init(zone);
4456 zone->zone_pgdat = pgdat;
4457
4458 zone_pcp_init(zone);
4459 lruvec_init(&zone->lruvec, zone);
4460 if (!size)
4461 continue;
4462
4463 set_pageblock_order();
4464 setup_usemap(pgdat, zone, size);
4465 ret = init_currently_empty_zone(zone, zone_start_pfn,
4466 size, MEMMAP_EARLY);
4467 BUG_ON(ret);
4468 memmap_init(size, nid, j, zone_start_pfn);
4469 zone_start_pfn += size;
4470 }
4471 }
4472
4473 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4474 {
4475 /* Skip empty nodes */
4476 if (!pgdat->node_spanned_pages)
4477 return;
4478
4479 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4480 /* ia64 gets its own node_mem_map, before this, without bootmem */
4481 if (!pgdat->node_mem_map) {
4482 unsigned long size, start, end;
4483 struct page *map;
4484
4485 /*
4486 * The zone's endpoints aren't required to be MAX_ORDER
4487 * aligned but the node_mem_map endpoints must be in order
4488 * for the buddy allocator to function correctly.
4489 */
4490 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4491 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4492 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4493 size = (end - start) * sizeof(struct page);
4494 map = alloc_remap(pgdat->node_id, size);
4495 if (!map)
4496 map = alloc_bootmem_node_nopanic(pgdat, size);
4497 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4498 }
4499 #ifndef CONFIG_NEED_MULTIPLE_NODES
4500 /*
4501 * With no DISCONTIG, the global mem_map is just set as node 0's
4502 */
4503 if (pgdat == NODE_DATA(0)) {
4504 mem_map = NODE_DATA(0)->node_mem_map;
4505 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4506 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4507 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4508 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4509 }
4510 #endif
4511 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4512 }
4513
4514 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4515 unsigned long node_start_pfn, unsigned long *zholes_size)
4516 {
4517 pg_data_t *pgdat = NODE_DATA(nid);
4518
4519 /* pg_data_t should be reset to zero when it's allocated */
4520 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4521
4522 pgdat->node_id = nid;
4523 pgdat->node_start_pfn = node_start_pfn;
4524 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4525
4526 alloc_node_mem_map(pgdat);
4527 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4528 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4529 nid, (unsigned long)pgdat,
4530 (unsigned long)pgdat->node_mem_map);
4531 #endif
4532
4533 free_area_init_core(pgdat, zones_size, zholes_size);
4534 }
4535
4536 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4537
4538 #if MAX_NUMNODES > 1
4539 /*
4540 * Figure out the number of possible node ids.
4541 */
4542 static void __init setup_nr_node_ids(void)
4543 {
4544 unsigned int node;
4545 unsigned int highest = 0;
4546
4547 for_each_node_mask(node, node_possible_map)
4548 highest = node;
4549 nr_node_ids = highest + 1;
4550 }
4551 #else
4552 static inline void setup_nr_node_ids(void)
4553 {
4554 }
4555 #endif
4556
4557 /**
4558 * node_map_pfn_alignment - determine the maximum internode alignment
4559 *
4560 * This function should be called after node map is populated and sorted.
4561 * It calculates the maximum power of two alignment which can distinguish
4562 * all the nodes.
4563 *
4564 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4565 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4566 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4567 * shifted, 1GiB is enough and this function will indicate so.
4568 *
4569 * This is used to test whether pfn -> nid mapping of the chosen memory
4570 * model has fine enough granularity to avoid incorrect mapping for the
4571 * populated node map.
4572 *
4573 * Returns the determined alignment in pfn's. 0 if there is no alignment
4574 * requirement (single node).
4575 */
4576 unsigned long __init node_map_pfn_alignment(void)
4577 {
4578 unsigned long accl_mask = 0, last_end = 0;
4579 unsigned long start, end, mask;
4580 int last_nid = -1;
4581 int i, nid;
4582
4583 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4584 if (!start || last_nid < 0 || last_nid == nid) {
4585 last_nid = nid;
4586 last_end = end;
4587 continue;
4588 }
4589
4590 /*
4591 * Start with a mask granular enough to pin-point to the
4592 * start pfn and tick off bits one-by-one until it becomes
4593 * too coarse to separate the current node from the last.
4594 */
4595 mask = ~((1 << __ffs(start)) - 1);
4596 while (mask && last_end <= (start & (mask << 1)))
4597 mask <<= 1;
4598
4599 /* accumulate all internode masks */
4600 accl_mask |= mask;
4601 }
4602
4603 /* convert mask to number of pages */
4604 return ~accl_mask + 1;
4605 }
4606
4607 /* Find the lowest pfn for a node */
4608 static unsigned long __init find_min_pfn_for_node(int nid)
4609 {
4610 unsigned long min_pfn = ULONG_MAX;
4611 unsigned long start_pfn;
4612 int i;
4613
4614 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4615 min_pfn = min(min_pfn, start_pfn);
4616
4617 if (min_pfn == ULONG_MAX) {
4618 printk(KERN_WARNING
4619 "Could not find start_pfn for node %d\n", nid);
4620 return 0;
4621 }
4622
4623 return min_pfn;
4624 }
4625
4626 /**
4627 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4628 *
4629 * It returns the minimum PFN based on information provided via
4630 * add_active_range().
4631 */
4632 unsigned long __init find_min_pfn_with_active_regions(void)
4633 {
4634 return find_min_pfn_for_node(MAX_NUMNODES);
4635 }
4636
4637 /*
4638 * early_calculate_totalpages()
4639 * Sum pages in active regions for movable zone.
4640 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4641 */
4642 static unsigned long __init early_calculate_totalpages(void)
4643 {
4644 unsigned long totalpages = 0;
4645 unsigned long start_pfn, end_pfn;
4646 int i, nid;
4647
4648 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4649 unsigned long pages = end_pfn - start_pfn;
4650
4651 totalpages += pages;
4652 if (pages)
4653 node_set_state(nid, N_HIGH_MEMORY);
4654 }
4655 return totalpages;
4656 }
4657
4658 /*
4659 * Find the PFN the Movable zone begins in each node. Kernel memory
4660 * is spread evenly between nodes as long as the nodes have enough
4661 * memory. When they don't, some nodes will have more kernelcore than
4662 * others
4663 */
4664 static void __init find_zone_movable_pfns_for_nodes(void)
4665 {
4666 int i, nid;
4667 unsigned long usable_startpfn;
4668 unsigned long kernelcore_node, kernelcore_remaining;
4669 /* save the state before borrow the nodemask */
4670 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4671 unsigned long totalpages = early_calculate_totalpages();
4672 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4673
4674 /*
4675 * If movablecore was specified, calculate what size of
4676 * kernelcore that corresponds so that memory usable for
4677 * any allocation type is evenly spread. If both kernelcore
4678 * and movablecore are specified, then the value of kernelcore
4679 * will be used for required_kernelcore if it's greater than
4680 * what movablecore would have allowed.
4681 */
4682 if (required_movablecore) {
4683 unsigned long corepages;
4684
4685 /*
4686 * Round-up so that ZONE_MOVABLE is at least as large as what
4687 * was requested by the user
4688 */
4689 required_movablecore =
4690 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4691 corepages = totalpages - required_movablecore;
4692
4693 required_kernelcore = max(required_kernelcore, corepages);
4694 }
4695
4696 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4697 if (!required_kernelcore)
4698 goto out;
4699
4700 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4701 find_usable_zone_for_movable();
4702 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4703
4704 restart:
4705 /* Spread kernelcore memory as evenly as possible throughout nodes */
4706 kernelcore_node = required_kernelcore / usable_nodes;
4707 for_each_node_state(nid, N_HIGH_MEMORY) {
4708 unsigned long start_pfn, end_pfn;
4709
4710 /*
4711 * Recalculate kernelcore_node if the division per node
4712 * now exceeds what is necessary to satisfy the requested
4713 * amount of memory for the kernel
4714 */
4715 if (required_kernelcore < kernelcore_node)
4716 kernelcore_node = required_kernelcore / usable_nodes;
4717
4718 /*
4719 * As the map is walked, we track how much memory is usable
4720 * by the kernel using kernelcore_remaining. When it is
4721 * 0, the rest of the node is usable by ZONE_MOVABLE
4722 */
4723 kernelcore_remaining = kernelcore_node;
4724
4725 /* Go through each range of PFNs within this node */
4726 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4727 unsigned long size_pages;
4728
4729 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4730 if (start_pfn >= end_pfn)
4731 continue;
4732
4733 /* Account for what is only usable for kernelcore */
4734 if (start_pfn < usable_startpfn) {
4735 unsigned long kernel_pages;
4736 kernel_pages = min(end_pfn, usable_startpfn)
4737 - start_pfn;
4738
4739 kernelcore_remaining -= min(kernel_pages,
4740 kernelcore_remaining);
4741 required_kernelcore -= min(kernel_pages,
4742 required_kernelcore);
4743
4744 /* Continue if range is now fully accounted */
4745 if (end_pfn <= usable_startpfn) {
4746
4747 /*
4748 * Push zone_movable_pfn to the end so
4749 * that if we have to rebalance
4750 * kernelcore across nodes, we will
4751 * not double account here
4752 */
4753 zone_movable_pfn[nid] = end_pfn;
4754 continue;
4755 }
4756 start_pfn = usable_startpfn;
4757 }
4758
4759 /*
4760 * The usable PFN range for ZONE_MOVABLE is from
4761 * start_pfn->end_pfn. Calculate size_pages as the
4762 * number of pages used as kernelcore
4763 */
4764 size_pages = end_pfn - start_pfn;
4765 if (size_pages > kernelcore_remaining)
4766 size_pages = kernelcore_remaining;
4767 zone_movable_pfn[nid] = start_pfn + size_pages;
4768
4769 /*
4770 * Some kernelcore has been met, update counts and
4771 * break if the kernelcore for this node has been
4772 * satisified
4773 */
4774 required_kernelcore -= min(required_kernelcore,
4775 size_pages);
4776 kernelcore_remaining -= size_pages;
4777 if (!kernelcore_remaining)
4778 break;
4779 }
4780 }
4781
4782 /*
4783 * If there is still required_kernelcore, we do another pass with one
4784 * less node in the count. This will push zone_movable_pfn[nid] further
4785 * along on the nodes that still have memory until kernelcore is
4786 * satisified
4787 */
4788 usable_nodes--;
4789 if (usable_nodes && required_kernelcore > usable_nodes)
4790 goto restart;
4791
4792 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4793 for (nid = 0; nid < MAX_NUMNODES; nid++)
4794 zone_movable_pfn[nid] =
4795 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4796
4797 out:
4798 /* restore the node_state */
4799 node_states[N_HIGH_MEMORY] = saved_node_state;
4800 }
4801
4802 /* Any regular memory on that node ? */
4803 static void __init check_for_regular_memory(pg_data_t *pgdat)
4804 {
4805 #ifdef CONFIG_HIGHMEM
4806 enum zone_type zone_type;
4807
4808 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4809 struct zone *zone = &pgdat->node_zones[zone_type];
4810 if (zone->present_pages) {
4811 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4812 break;
4813 }
4814 }
4815 #endif
4816 }
4817
4818 /**
4819 * free_area_init_nodes - Initialise all pg_data_t and zone data
4820 * @max_zone_pfn: an array of max PFNs for each zone
4821 *
4822 * This will call free_area_init_node() for each active node in the system.
4823 * Using the page ranges provided by add_active_range(), the size of each
4824 * zone in each node and their holes is calculated. If the maximum PFN
4825 * between two adjacent zones match, it is assumed that the zone is empty.
4826 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4827 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4828 * starts where the previous one ended. For example, ZONE_DMA32 starts
4829 * at arch_max_dma_pfn.
4830 */
4831 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4832 {
4833 unsigned long start_pfn, end_pfn;
4834 int i, nid;
4835
4836 /* Record where the zone boundaries are */
4837 memset(arch_zone_lowest_possible_pfn, 0,
4838 sizeof(arch_zone_lowest_possible_pfn));
4839 memset(arch_zone_highest_possible_pfn, 0,
4840 sizeof(arch_zone_highest_possible_pfn));
4841 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4842 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4843 for (i = 1; i < MAX_NR_ZONES; i++) {
4844 if (i == ZONE_MOVABLE)
4845 continue;
4846 arch_zone_lowest_possible_pfn[i] =
4847 arch_zone_highest_possible_pfn[i-1];
4848 arch_zone_highest_possible_pfn[i] =
4849 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4850 }
4851 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4852 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4853
4854 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4855 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4856 find_zone_movable_pfns_for_nodes();
4857
4858 /* Print out the zone ranges */
4859 printk("Zone ranges:\n");
4860 for (i = 0; i < MAX_NR_ZONES; i++) {
4861 if (i == ZONE_MOVABLE)
4862 continue;
4863 printk(KERN_CONT " %-8s ", zone_names[i]);
4864 if (arch_zone_lowest_possible_pfn[i] ==
4865 arch_zone_highest_possible_pfn[i])
4866 printk(KERN_CONT "empty\n");
4867 else
4868 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4869 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4870 (arch_zone_highest_possible_pfn[i]
4871 << PAGE_SHIFT) - 1);
4872 }
4873
4874 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4875 printk("Movable zone start for each node\n");
4876 for (i = 0; i < MAX_NUMNODES; i++) {
4877 if (zone_movable_pfn[i])
4878 printk(" Node %d: %#010lx\n", i,
4879 zone_movable_pfn[i] << PAGE_SHIFT);
4880 }
4881
4882 /* Print out the early_node_map[] */
4883 printk("Early memory node ranges\n");
4884 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4885 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4886 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4887
4888 /* Initialise every node */
4889 mminit_verify_pageflags_layout();
4890 setup_nr_node_ids();
4891 for_each_online_node(nid) {
4892 pg_data_t *pgdat = NODE_DATA(nid);
4893 free_area_init_node(nid, NULL,
4894 find_min_pfn_for_node(nid), NULL);
4895
4896 /* Any memory on that node */
4897 if (pgdat->node_present_pages)
4898 node_set_state(nid, N_HIGH_MEMORY);
4899 check_for_regular_memory(pgdat);
4900 }
4901 }
4902
4903 static int __init cmdline_parse_core(char *p, unsigned long *core)
4904 {
4905 unsigned long long coremem;
4906 if (!p)
4907 return -EINVAL;
4908
4909 coremem = memparse(p, &p);
4910 *core = coremem >> PAGE_SHIFT;
4911
4912 /* Paranoid check that UL is enough for the coremem value */
4913 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4914
4915 return 0;
4916 }
4917
4918 /*
4919 * kernelcore=size sets the amount of memory for use for allocations that
4920 * cannot be reclaimed or migrated.
4921 */
4922 static int __init cmdline_parse_kernelcore(char *p)
4923 {
4924 return cmdline_parse_core(p, &required_kernelcore);
4925 }
4926
4927 /*
4928 * movablecore=size sets the amount of memory for use for allocations that
4929 * can be reclaimed or migrated.
4930 */
4931 static int __init cmdline_parse_movablecore(char *p)
4932 {
4933 return cmdline_parse_core(p, &required_movablecore);
4934 }
4935
4936 early_param("kernelcore", cmdline_parse_kernelcore);
4937 early_param("movablecore", cmdline_parse_movablecore);
4938
4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4940
4941 /**
4942 * set_dma_reserve - set the specified number of pages reserved in the first zone
4943 * @new_dma_reserve: The number of pages to mark reserved
4944 *
4945 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4946 * In the DMA zone, a significant percentage may be consumed by kernel image
4947 * and other unfreeable allocations which can skew the watermarks badly. This
4948 * function may optionally be used to account for unfreeable pages in the
4949 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4950 * smaller per-cpu batchsize.
4951 */
4952 void __init set_dma_reserve(unsigned long new_dma_reserve)
4953 {
4954 dma_reserve = new_dma_reserve;
4955 }
4956
4957 void __init free_area_init(unsigned long *zones_size)
4958 {
4959 free_area_init_node(0, zones_size,
4960 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4961 }
4962
4963 static int page_alloc_cpu_notify(struct notifier_block *self,
4964 unsigned long action, void *hcpu)
4965 {
4966 int cpu = (unsigned long)hcpu;
4967
4968 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4969 lru_add_drain_cpu(cpu);
4970 drain_pages(cpu);
4971
4972 /*
4973 * Spill the event counters of the dead processor
4974 * into the current processors event counters.
4975 * This artificially elevates the count of the current
4976 * processor.
4977 */
4978 vm_events_fold_cpu(cpu);
4979
4980 /*
4981 * Zero the differential counters of the dead processor
4982 * so that the vm statistics are consistent.
4983 *
4984 * This is only okay since the processor is dead and cannot
4985 * race with what we are doing.
4986 */
4987 refresh_cpu_vm_stats(cpu);
4988 }
4989 return NOTIFY_OK;
4990 }
4991
4992 void __init page_alloc_init(void)
4993 {
4994 hotcpu_notifier(page_alloc_cpu_notify, 0);
4995 }
4996
4997 /*
4998 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4999 * or min_free_kbytes changes.
5000 */
5001 static void calculate_totalreserve_pages(void)
5002 {
5003 struct pglist_data *pgdat;
5004 unsigned long reserve_pages = 0;
5005 enum zone_type i, j;
5006
5007 for_each_online_pgdat(pgdat) {
5008 for (i = 0; i < MAX_NR_ZONES; i++) {
5009 struct zone *zone = pgdat->node_zones + i;
5010 unsigned long max = 0;
5011
5012 /* Find valid and maximum lowmem_reserve in the zone */
5013 for (j = i; j < MAX_NR_ZONES; j++) {
5014 if (zone->lowmem_reserve[j] > max)
5015 max = zone->lowmem_reserve[j];
5016 }
5017
5018 /* we treat the high watermark as reserved pages. */
5019 max += high_wmark_pages(zone);
5020
5021 if (max > zone->present_pages)
5022 max = zone->present_pages;
5023 reserve_pages += max;
5024 /*
5025 * Lowmem reserves are not available to
5026 * GFP_HIGHUSER page cache allocations and
5027 * kswapd tries to balance zones to their high
5028 * watermark. As a result, neither should be
5029 * regarded as dirtyable memory, to prevent a
5030 * situation where reclaim has to clean pages
5031 * in order to balance the zones.
5032 */
5033 zone->dirty_balance_reserve = max;
5034 }
5035 }
5036 dirty_balance_reserve = reserve_pages;
5037 totalreserve_pages = reserve_pages;
5038 }
5039
5040 /*
5041 * setup_per_zone_lowmem_reserve - called whenever
5042 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5043 * has a correct pages reserved value, so an adequate number of
5044 * pages are left in the zone after a successful __alloc_pages().
5045 */
5046 static void setup_per_zone_lowmem_reserve(void)
5047 {
5048 struct pglist_data *pgdat;
5049 enum zone_type j, idx;
5050
5051 for_each_online_pgdat(pgdat) {
5052 for (j = 0; j < MAX_NR_ZONES; j++) {
5053 struct zone *zone = pgdat->node_zones + j;
5054 unsigned long present_pages = zone->present_pages;
5055
5056 zone->lowmem_reserve[j] = 0;
5057
5058 idx = j;
5059 while (idx) {
5060 struct zone *lower_zone;
5061
5062 idx--;
5063
5064 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5065 sysctl_lowmem_reserve_ratio[idx] = 1;
5066
5067 lower_zone = pgdat->node_zones + idx;
5068 lower_zone->lowmem_reserve[j] = present_pages /
5069 sysctl_lowmem_reserve_ratio[idx];
5070 present_pages += lower_zone->present_pages;
5071 }
5072 }
5073 }
5074
5075 /* update totalreserve_pages */
5076 calculate_totalreserve_pages();
5077 }
5078
5079 static void __setup_per_zone_wmarks(void)
5080 {
5081 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5082 unsigned long lowmem_pages = 0;
5083 struct zone *zone;
5084 unsigned long flags;
5085
5086 /* Calculate total number of !ZONE_HIGHMEM pages */
5087 for_each_zone(zone) {
5088 if (!is_highmem(zone))
5089 lowmem_pages += zone->present_pages;
5090 }
5091
5092 for_each_zone(zone) {
5093 u64 tmp;
5094
5095 spin_lock_irqsave(&zone->lock, flags);
5096 tmp = (u64)pages_min * zone->present_pages;
5097 do_div(tmp, lowmem_pages);
5098 if (is_highmem(zone)) {
5099 /*
5100 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5101 * need highmem pages, so cap pages_min to a small
5102 * value here.
5103 *
5104 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5105 * deltas controls asynch page reclaim, and so should
5106 * not be capped for highmem.
5107 */
5108 int min_pages;
5109
5110 min_pages = zone->present_pages / 1024;
5111 if (min_pages < SWAP_CLUSTER_MAX)
5112 min_pages = SWAP_CLUSTER_MAX;
5113 if (min_pages > 128)
5114 min_pages = 128;
5115 zone->watermark[WMARK_MIN] = min_pages;
5116 } else {
5117 /*
5118 * If it's a lowmem zone, reserve a number of pages
5119 * proportionate to the zone's size.
5120 */
5121 zone->watermark[WMARK_MIN] = tmp;
5122 }
5123
5124 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5125 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5126
5127 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5128 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5129 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5130
5131 setup_zone_migrate_reserve(zone);
5132 spin_unlock_irqrestore(&zone->lock, flags);
5133 }
5134
5135 /* update totalreserve_pages */
5136 calculate_totalreserve_pages();
5137 }
5138
5139 /**
5140 * setup_per_zone_wmarks - called when min_free_kbytes changes
5141 * or when memory is hot-{added|removed}
5142 *
5143 * Ensures that the watermark[min,low,high] values for each zone are set
5144 * correctly with respect to min_free_kbytes.
5145 */
5146 void setup_per_zone_wmarks(void)
5147 {
5148 mutex_lock(&zonelists_mutex);
5149 __setup_per_zone_wmarks();
5150 mutex_unlock(&zonelists_mutex);
5151 }
5152
5153 /*
5154 * The inactive anon list should be small enough that the VM never has to
5155 * do too much work, but large enough that each inactive page has a chance
5156 * to be referenced again before it is swapped out.
5157 *
5158 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5159 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5160 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5161 * the anonymous pages are kept on the inactive list.
5162 *
5163 * total target max
5164 * memory ratio inactive anon
5165 * -------------------------------------
5166 * 10MB 1 5MB
5167 * 100MB 1 50MB
5168 * 1GB 3 250MB
5169 * 10GB 10 0.9GB
5170 * 100GB 31 3GB
5171 * 1TB 101 10GB
5172 * 10TB 320 32GB
5173 */
5174 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5175 {
5176 unsigned int gb, ratio;
5177
5178 /* Zone size in gigabytes */
5179 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5180 if (gb)
5181 ratio = int_sqrt(10 * gb);
5182 else
5183 ratio = 1;
5184
5185 zone->inactive_ratio = ratio;
5186 }
5187
5188 static void __meminit setup_per_zone_inactive_ratio(void)
5189 {
5190 struct zone *zone;
5191
5192 for_each_zone(zone)
5193 calculate_zone_inactive_ratio(zone);
5194 }
5195
5196 /*
5197 * Initialise min_free_kbytes.
5198 *
5199 * For small machines we want it small (128k min). For large machines
5200 * we want it large (64MB max). But it is not linear, because network
5201 * bandwidth does not increase linearly with machine size. We use
5202 *
5203 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5204 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5205 *
5206 * which yields
5207 *
5208 * 16MB: 512k
5209 * 32MB: 724k
5210 * 64MB: 1024k
5211 * 128MB: 1448k
5212 * 256MB: 2048k
5213 * 512MB: 2896k
5214 * 1024MB: 4096k
5215 * 2048MB: 5792k
5216 * 4096MB: 8192k
5217 * 8192MB: 11584k
5218 * 16384MB: 16384k
5219 */
5220 int __meminit init_per_zone_wmark_min(void)
5221 {
5222 unsigned long lowmem_kbytes;
5223
5224 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5225
5226 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5227 if (min_free_kbytes < 128)
5228 min_free_kbytes = 128;
5229 if (min_free_kbytes > 65536)
5230 min_free_kbytes = 65536;
5231 setup_per_zone_wmarks();
5232 refresh_zone_stat_thresholds();
5233 setup_per_zone_lowmem_reserve();
5234 setup_per_zone_inactive_ratio();
5235 return 0;
5236 }
5237 module_init(init_per_zone_wmark_min)
5238
5239 /*
5240 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5241 * that we can call two helper functions whenever min_free_kbytes
5242 * changes.
5243 */
5244 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5245 void __user *buffer, size_t *length, loff_t *ppos)
5246 {
5247 proc_dointvec(table, write, buffer, length, ppos);
5248 if (write)
5249 setup_per_zone_wmarks();
5250 return 0;
5251 }
5252
5253 #ifdef CONFIG_NUMA
5254 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5255 void __user *buffer, size_t *length, loff_t *ppos)
5256 {
5257 struct zone *zone;
5258 int rc;
5259
5260 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5261 if (rc)
5262 return rc;
5263
5264 for_each_zone(zone)
5265 zone->min_unmapped_pages = (zone->present_pages *
5266 sysctl_min_unmapped_ratio) / 100;
5267 return 0;
5268 }
5269
5270 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5271 void __user *buffer, size_t *length, loff_t *ppos)
5272 {
5273 struct zone *zone;
5274 int rc;
5275
5276 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5277 if (rc)
5278 return rc;
5279
5280 for_each_zone(zone)
5281 zone->min_slab_pages = (zone->present_pages *
5282 sysctl_min_slab_ratio) / 100;
5283 return 0;
5284 }
5285 #endif
5286
5287 /*
5288 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5289 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5290 * whenever sysctl_lowmem_reserve_ratio changes.
5291 *
5292 * The reserve ratio obviously has absolutely no relation with the
5293 * minimum watermarks. The lowmem reserve ratio can only make sense
5294 * if in function of the boot time zone sizes.
5295 */
5296 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5297 void __user *buffer, size_t *length, loff_t *ppos)
5298 {
5299 proc_dointvec_minmax(table, write, buffer, length, ppos);
5300 setup_per_zone_lowmem_reserve();
5301 return 0;
5302 }
5303
5304 /*
5305 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5306 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5307 * can have before it gets flushed back to buddy allocator.
5308 */
5309
5310 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5311 void __user *buffer, size_t *length, loff_t *ppos)
5312 {
5313 struct zone *zone;
5314 unsigned int cpu;
5315 int ret;
5316
5317 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5318 if (!write || (ret < 0))
5319 return ret;
5320 for_each_populated_zone(zone) {
5321 for_each_possible_cpu(cpu) {
5322 unsigned long high;
5323 high = zone->present_pages / percpu_pagelist_fraction;
5324 setup_pagelist_highmark(
5325 per_cpu_ptr(zone->pageset, cpu), high);
5326 }
5327 }
5328 return 0;
5329 }
5330
5331 int hashdist = HASHDIST_DEFAULT;
5332
5333 #ifdef CONFIG_NUMA
5334 static int __init set_hashdist(char *str)
5335 {
5336 if (!str)
5337 return 0;
5338 hashdist = simple_strtoul(str, &str, 0);
5339 return 1;
5340 }
5341 __setup("hashdist=", set_hashdist);
5342 #endif
5343
5344 /*
5345 * allocate a large system hash table from bootmem
5346 * - it is assumed that the hash table must contain an exact power-of-2
5347 * quantity of entries
5348 * - limit is the number of hash buckets, not the total allocation size
5349 */
5350 void *__init alloc_large_system_hash(const char *tablename,
5351 unsigned long bucketsize,
5352 unsigned long numentries,
5353 int scale,
5354 int flags,
5355 unsigned int *_hash_shift,
5356 unsigned int *_hash_mask,
5357 unsigned long low_limit,
5358 unsigned long high_limit)
5359 {
5360 unsigned long long max = high_limit;
5361 unsigned long log2qty, size;
5362 void *table = NULL;
5363
5364 /* allow the kernel cmdline to have a say */
5365 if (!numentries) {
5366 /* round applicable memory size up to nearest megabyte */
5367 numentries = nr_kernel_pages;
5368 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5369 numentries >>= 20 - PAGE_SHIFT;
5370 numentries <<= 20 - PAGE_SHIFT;
5371
5372 /* limit to 1 bucket per 2^scale bytes of low memory */
5373 if (scale > PAGE_SHIFT)
5374 numentries >>= (scale - PAGE_SHIFT);
5375 else
5376 numentries <<= (PAGE_SHIFT - scale);
5377
5378 /* Make sure we've got at least a 0-order allocation.. */
5379 if (unlikely(flags & HASH_SMALL)) {
5380 /* Makes no sense without HASH_EARLY */
5381 WARN_ON(!(flags & HASH_EARLY));
5382 if (!(numentries >> *_hash_shift)) {
5383 numentries = 1UL << *_hash_shift;
5384 BUG_ON(!numentries);
5385 }
5386 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5387 numentries = PAGE_SIZE / bucketsize;
5388 }
5389 numentries = roundup_pow_of_two(numentries);
5390
5391 /* limit allocation size to 1/16 total memory by default */
5392 if (max == 0) {
5393 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5394 do_div(max, bucketsize);
5395 }
5396 max = min(max, 0x80000000ULL);
5397
5398 if (numentries < low_limit)
5399 numentries = low_limit;
5400 if (numentries > max)
5401 numentries = max;
5402
5403 log2qty = ilog2(numentries);
5404
5405 do {
5406 size = bucketsize << log2qty;
5407 if (flags & HASH_EARLY)
5408 table = alloc_bootmem_nopanic(size);
5409 else if (hashdist)
5410 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5411 else {
5412 /*
5413 * If bucketsize is not a power-of-two, we may free
5414 * some pages at the end of hash table which
5415 * alloc_pages_exact() automatically does
5416 */
5417 if (get_order(size) < MAX_ORDER) {
5418 table = alloc_pages_exact(size, GFP_ATOMIC);
5419 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5420 }
5421 }
5422 } while (!table && size > PAGE_SIZE && --log2qty);
5423
5424 if (!table)
5425 panic("Failed to allocate %s hash table\n", tablename);
5426
5427 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5428 tablename,
5429 (1UL << log2qty),
5430 ilog2(size) - PAGE_SHIFT,
5431 size);
5432
5433 if (_hash_shift)
5434 *_hash_shift = log2qty;
5435 if (_hash_mask)
5436 *_hash_mask = (1 << log2qty) - 1;
5437
5438 return table;
5439 }
5440
5441 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5442 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5443 unsigned long pfn)
5444 {
5445 #ifdef CONFIG_SPARSEMEM
5446 return __pfn_to_section(pfn)->pageblock_flags;
5447 #else
5448 return zone->pageblock_flags;
5449 #endif /* CONFIG_SPARSEMEM */
5450 }
5451
5452 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5453 {
5454 #ifdef CONFIG_SPARSEMEM
5455 pfn &= (PAGES_PER_SECTION-1);
5456 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5457 #else
5458 pfn = pfn - zone->zone_start_pfn;
5459 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5460 #endif /* CONFIG_SPARSEMEM */
5461 }
5462
5463 /**
5464 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5465 * @page: The page within the block of interest
5466 * @start_bitidx: The first bit of interest to retrieve
5467 * @end_bitidx: The last bit of interest
5468 * returns pageblock_bits flags
5469 */
5470 unsigned long get_pageblock_flags_group(struct page *page,
5471 int start_bitidx, int end_bitidx)
5472 {
5473 struct zone *zone;
5474 unsigned long *bitmap;
5475 unsigned long pfn, bitidx;
5476 unsigned long flags = 0;
5477 unsigned long value = 1;
5478
5479 zone = page_zone(page);
5480 pfn = page_to_pfn(page);
5481 bitmap = get_pageblock_bitmap(zone, pfn);
5482 bitidx = pfn_to_bitidx(zone, pfn);
5483
5484 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5485 if (test_bit(bitidx + start_bitidx, bitmap))
5486 flags |= value;
5487
5488 return flags;
5489 }
5490
5491 /**
5492 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5493 * @page: The page within the block of interest
5494 * @start_bitidx: The first bit of interest
5495 * @end_bitidx: The last bit of interest
5496 * @flags: The flags to set
5497 */
5498 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5499 int start_bitidx, int end_bitidx)
5500 {
5501 struct zone *zone;
5502 unsigned long *bitmap;
5503 unsigned long pfn, bitidx;
5504 unsigned long value = 1;
5505
5506 zone = page_zone(page);
5507 pfn = page_to_pfn(page);
5508 bitmap = get_pageblock_bitmap(zone, pfn);
5509 bitidx = pfn_to_bitidx(zone, pfn);
5510 VM_BUG_ON(pfn < zone->zone_start_pfn);
5511 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5512
5513 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5514 if (flags & value)
5515 __set_bit(bitidx + start_bitidx, bitmap);
5516 else
5517 __clear_bit(bitidx + start_bitidx, bitmap);
5518 }
5519
5520 /*
5521 * This function checks whether pageblock includes unmovable pages or not.
5522 * If @count is not zero, it is okay to include less @count unmovable pages
5523 *
5524 * PageLRU check wihtout isolation or lru_lock could race so that
5525 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5526 * expect this function should be exact.
5527 */
5528 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5529 {
5530 unsigned long pfn, iter, found;
5531 int mt;
5532
5533 /*
5534 * For avoiding noise data, lru_add_drain_all() should be called
5535 * If ZONE_MOVABLE, the zone never contains unmovable pages
5536 */
5537 if (zone_idx(zone) == ZONE_MOVABLE)
5538 return false;
5539 mt = get_pageblock_migratetype(page);
5540 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5541 return false;
5542
5543 pfn = page_to_pfn(page);
5544 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5545 unsigned long check = pfn + iter;
5546
5547 if (!pfn_valid_within(check))
5548 continue;
5549
5550 page = pfn_to_page(check);
5551 /*
5552 * We can't use page_count without pin a page
5553 * because another CPU can free compound page.
5554 * This check already skips compound tails of THP
5555 * because their page->_count is zero at all time.
5556 */
5557 if (!atomic_read(&page->_count)) {
5558 if (PageBuddy(page))
5559 iter += (1 << page_order(page)) - 1;
5560 continue;
5561 }
5562
5563 if (!PageLRU(page))
5564 found++;
5565 /*
5566 * If there are RECLAIMABLE pages, we need to check it.
5567 * But now, memory offline itself doesn't call shrink_slab()
5568 * and it still to be fixed.
5569 */
5570 /*
5571 * If the page is not RAM, page_count()should be 0.
5572 * we don't need more check. This is an _used_ not-movable page.
5573 *
5574 * The problematic thing here is PG_reserved pages. PG_reserved
5575 * is set to both of a memory hole page and a _used_ kernel
5576 * page at boot.
5577 */
5578 if (found > count)
5579 return true;
5580 }
5581 return false;
5582 }
5583
5584 bool is_pageblock_removable_nolock(struct page *page)
5585 {
5586 struct zone *zone;
5587 unsigned long pfn;
5588
5589 /*
5590 * We have to be careful here because we are iterating over memory
5591 * sections which are not zone aware so we might end up outside of
5592 * the zone but still within the section.
5593 * We have to take care about the node as well. If the node is offline
5594 * its NODE_DATA will be NULL - see page_zone.
5595 */
5596 if (!node_online(page_to_nid(page)))
5597 return false;
5598
5599 zone = page_zone(page);
5600 pfn = page_to_pfn(page);
5601 if (zone->zone_start_pfn > pfn ||
5602 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5603 return false;
5604
5605 return !has_unmovable_pages(zone, page, 0);
5606 }
5607
5608 #ifdef CONFIG_CMA
5609
5610 static unsigned long pfn_max_align_down(unsigned long pfn)
5611 {
5612 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5613 pageblock_nr_pages) - 1);
5614 }
5615
5616 static unsigned long pfn_max_align_up(unsigned long pfn)
5617 {
5618 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5619 pageblock_nr_pages));
5620 }
5621
5622 static struct page *
5623 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5624 int **resultp)
5625 {
5626 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5627
5628 if (PageHighMem(page))
5629 gfp_mask |= __GFP_HIGHMEM;
5630
5631 return alloc_page(gfp_mask);
5632 }
5633
5634 /* [start, end) must belong to a single zone. */
5635 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5636 {
5637 /* This function is based on compact_zone() from compaction.c. */
5638
5639 unsigned long pfn = start;
5640 unsigned int tries = 0;
5641 int ret = 0;
5642
5643 struct compact_control cc = {
5644 .nr_migratepages = 0,
5645 .order = -1,
5646 .zone = page_zone(pfn_to_page(start)),
5647 .sync = true,
5648 };
5649 INIT_LIST_HEAD(&cc.migratepages);
5650
5651 migrate_prep_local();
5652
5653 while (pfn < end || !list_empty(&cc.migratepages)) {
5654 if (fatal_signal_pending(current)) {
5655 ret = -EINTR;
5656 break;
5657 }
5658
5659 if (list_empty(&cc.migratepages)) {
5660 cc.nr_migratepages = 0;
5661 pfn = isolate_migratepages_range(cc.zone, &cc,
5662 pfn, end);
5663 if (!pfn) {
5664 ret = -EINTR;
5665 break;
5666 }
5667 tries = 0;
5668 } else if (++tries == 5) {
5669 ret = ret < 0 ? ret : -EBUSY;
5670 break;
5671 }
5672
5673 ret = migrate_pages(&cc.migratepages,
5674 __alloc_contig_migrate_alloc,
5675 0, false, MIGRATE_SYNC);
5676 }
5677
5678 putback_lru_pages(&cc.migratepages);
5679 return ret > 0 ? 0 : ret;
5680 }
5681
5682 /*
5683 * Update zone's cma pages counter used for watermark level calculation.
5684 */
5685 static inline void __update_cma_watermarks(struct zone *zone, int count)
5686 {
5687 unsigned long flags;
5688 spin_lock_irqsave(&zone->lock, flags);
5689 zone->min_cma_pages += count;
5690 spin_unlock_irqrestore(&zone->lock, flags);
5691 setup_per_zone_wmarks();
5692 }
5693
5694 /*
5695 * Trigger memory pressure bump to reclaim some pages in order to be able to
5696 * allocate 'count' pages in single page units. Does similar work as
5697 *__alloc_pages_slowpath() function.
5698 */
5699 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5700 {
5701 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5702 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5703 int did_some_progress = 0;
5704 int order = 1;
5705
5706 /*
5707 * Increase level of watermarks to force kswapd do his job
5708 * to stabilise at new watermark level.
5709 */
5710 __update_cma_watermarks(zone, count);
5711
5712 /* Obey watermarks as if the page was being allocated */
5713 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5714 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5715
5716 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5717 NULL);
5718 if (!did_some_progress) {
5719 /* Exhausted what can be done so it's blamo time */
5720 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5721 }
5722 }
5723
5724 /* Restore original watermark levels. */
5725 __update_cma_watermarks(zone, -count);
5726
5727 return count;
5728 }
5729
5730 /**
5731 * alloc_contig_range() -- tries to allocate given range of pages
5732 * @start: start PFN to allocate
5733 * @end: one-past-the-last PFN to allocate
5734 * @migratetype: migratetype of the underlaying pageblocks (either
5735 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5736 * in range must have the same migratetype and it must
5737 * be either of the two.
5738 *
5739 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5740 * aligned, however it's the caller's responsibility to guarantee that
5741 * we are the only thread that changes migrate type of pageblocks the
5742 * pages fall in.
5743 *
5744 * The PFN range must belong to a single zone.
5745 *
5746 * Returns zero on success or negative error code. On success all
5747 * pages which PFN is in [start, end) are allocated for the caller and
5748 * need to be freed with free_contig_range().
5749 */
5750 int alloc_contig_range(unsigned long start, unsigned long end,
5751 unsigned migratetype)
5752 {
5753 struct zone *zone = page_zone(pfn_to_page(start));
5754 unsigned long outer_start, outer_end;
5755 int ret = 0, order;
5756
5757 /*
5758 * What we do here is we mark all pageblocks in range as
5759 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5760 * have different sizes, and due to the way page allocator
5761 * work, we align the range to biggest of the two pages so
5762 * that page allocator won't try to merge buddies from
5763 * different pageblocks and change MIGRATE_ISOLATE to some
5764 * other migration type.
5765 *
5766 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5767 * migrate the pages from an unaligned range (ie. pages that
5768 * we are interested in). This will put all the pages in
5769 * range back to page allocator as MIGRATE_ISOLATE.
5770 *
5771 * When this is done, we take the pages in range from page
5772 * allocator removing them from the buddy system. This way
5773 * page allocator will never consider using them.
5774 *
5775 * This lets us mark the pageblocks back as
5776 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5777 * aligned range but not in the unaligned, original range are
5778 * put back to page allocator so that buddy can use them.
5779 */
5780
5781 ret = start_isolate_page_range(pfn_max_align_down(start),
5782 pfn_max_align_up(end), migratetype);
5783 if (ret)
5784 goto done;
5785
5786 ret = __alloc_contig_migrate_range(start, end);
5787 if (ret)
5788 goto done;
5789
5790 /*
5791 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5792 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5793 * more, all pages in [start, end) are free in page allocator.
5794 * What we are going to do is to allocate all pages from
5795 * [start, end) (that is remove them from page allocator).
5796 *
5797 * The only problem is that pages at the beginning and at the
5798 * end of interesting range may be not aligned with pages that
5799 * page allocator holds, ie. they can be part of higher order
5800 * pages. Because of this, we reserve the bigger range and
5801 * once this is done free the pages we are not interested in.
5802 *
5803 * We don't have to hold zone->lock here because the pages are
5804 * isolated thus they won't get removed from buddy.
5805 */
5806
5807 lru_add_drain_all();
5808 drain_all_pages();
5809
5810 order = 0;
5811 outer_start = start;
5812 while (!PageBuddy(pfn_to_page(outer_start))) {
5813 if (++order >= MAX_ORDER) {
5814 ret = -EBUSY;
5815 goto done;
5816 }
5817 outer_start &= ~0UL << order;
5818 }
5819
5820 /* Make sure the range is really isolated. */
5821 if (test_pages_isolated(outer_start, end)) {
5822 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5823 outer_start, end);
5824 ret = -EBUSY;
5825 goto done;
5826 }
5827
5828 /*
5829 * Reclaim enough pages to make sure that contiguous allocation
5830 * will not starve the system.
5831 */
5832 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5833
5834 /* Grab isolated pages from freelists. */
5835 outer_end = isolate_freepages_range(outer_start, end);
5836 if (!outer_end) {
5837 ret = -EBUSY;
5838 goto done;
5839 }
5840
5841 /* Free head and tail (if any) */
5842 if (start != outer_start)
5843 free_contig_range(outer_start, start - outer_start);
5844 if (end != outer_end)
5845 free_contig_range(end, outer_end - end);
5846
5847 done:
5848 undo_isolate_page_range(pfn_max_align_down(start),
5849 pfn_max_align_up(end), migratetype);
5850 return ret;
5851 }
5852
5853 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5854 {
5855 for (; nr_pages--; ++pfn)
5856 __free_page(pfn_to_page(pfn));
5857 }
5858 #endif
5859
5860 #ifdef CONFIG_MEMORY_HOTPLUG
5861 static int __meminit __zone_pcp_update(void *data)
5862 {
5863 struct zone *zone = data;
5864 int cpu;
5865 unsigned long batch = zone_batchsize(zone), flags;
5866
5867 for_each_possible_cpu(cpu) {
5868 struct per_cpu_pageset *pset;
5869 struct per_cpu_pages *pcp;
5870
5871 pset = per_cpu_ptr(zone->pageset, cpu);
5872 pcp = &pset->pcp;
5873
5874 local_irq_save(flags);
5875 if (pcp->count > 0)
5876 free_pcppages_bulk(zone, pcp->count, pcp);
5877 setup_pageset(pset, batch);
5878 local_irq_restore(flags);
5879 }
5880 return 0;
5881 }
5882
5883 void __meminit zone_pcp_update(struct zone *zone)
5884 {
5885 stop_machine(__zone_pcp_update, zone, NULL);
5886 }
5887 #endif
5888
5889 #ifdef CONFIG_MEMORY_HOTREMOVE
5890 void zone_pcp_reset(struct zone *zone)
5891 {
5892 unsigned long flags;
5893
5894 /* avoid races with drain_pages() */
5895 local_irq_save(flags);
5896 if (zone->pageset != &boot_pageset) {
5897 free_percpu(zone->pageset);
5898 zone->pageset = &boot_pageset;
5899 }
5900 local_irq_restore(flags);
5901 }
5902
5903 /*
5904 * All pages in the range must be isolated before calling this.
5905 */
5906 void
5907 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5908 {
5909 struct page *page;
5910 struct zone *zone;
5911 int order, i;
5912 unsigned long pfn;
5913 unsigned long flags;
5914 /* find the first valid pfn */
5915 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5916 if (pfn_valid(pfn))
5917 break;
5918 if (pfn == end_pfn)
5919 return;
5920 zone = page_zone(pfn_to_page(pfn));
5921 spin_lock_irqsave(&zone->lock, flags);
5922 pfn = start_pfn;
5923 while (pfn < end_pfn) {
5924 if (!pfn_valid(pfn)) {
5925 pfn++;
5926 continue;
5927 }
5928 page = pfn_to_page(pfn);
5929 BUG_ON(page_count(page));
5930 BUG_ON(!PageBuddy(page));
5931 order = page_order(page);
5932 #ifdef CONFIG_DEBUG_VM
5933 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5934 pfn, 1 << order, end_pfn);
5935 #endif
5936 list_del(&page->lru);
5937 rmv_page_order(page);
5938 zone->free_area[order].nr_free--;
5939 __mod_zone_page_state(zone, NR_FREE_PAGES,
5940 - (1UL << order));
5941 for (i = 0; i < (1 << order); i++)
5942 SetPageReserved((page+i));
5943 pfn += (1 << order);
5944 }
5945 spin_unlock_irqrestore(&zone->lock, flags);
5946 }
5947 #endif
5948
5949 #ifdef CONFIG_MEMORY_FAILURE
5950 bool is_free_buddy_page(struct page *page)
5951 {
5952 struct zone *zone = page_zone(page);
5953 unsigned long pfn = page_to_pfn(page);
5954 unsigned long flags;
5955 int order;
5956
5957 spin_lock_irqsave(&zone->lock, flags);
5958 for (order = 0; order < MAX_ORDER; order++) {
5959 struct page *page_head = page - (pfn & ((1 << order) - 1));
5960
5961 if (PageBuddy(page_head) && page_order(page_head) >= order)
5962 break;
5963 }
5964 spin_unlock_irqrestore(&zone->lock, flags);
5965
5966 return order < MAX_ORDER;
5967 }
5968 #endif
5969
5970 static const struct trace_print_flags pageflag_names[] = {
5971 {1UL << PG_locked, "locked" },
5972 {1UL << PG_error, "error" },
5973 {1UL << PG_referenced, "referenced" },
5974 {1UL << PG_uptodate, "uptodate" },
5975 {1UL << PG_dirty, "dirty" },
5976 {1UL << PG_lru, "lru" },
5977 {1UL << PG_active, "active" },
5978 {1UL << PG_slab, "slab" },
5979 {1UL << PG_owner_priv_1, "owner_priv_1" },
5980 {1UL << PG_arch_1, "arch_1" },
5981 {1UL << PG_reserved, "reserved" },
5982 {1UL << PG_private, "private" },
5983 {1UL << PG_private_2, "private_2" },
5984 {1UL << PG_writeback, "writeback" },
5985 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5986 {1UL << PG_head, "head" },
5987 {1UL << PG_tail, "tail" },
5988 #else
5989 {1UL << PG_compound, "compound" },
5990 #endif
5991 {1UL << PG_swapcache, "swapcache" },
5992 {1UL << PG_mappedtodisk, "mappedtodisk" },
5993 {1UL << PG_reclaim, "reclaim" },
5994 {1UL << PG_swapbacked, "swapbacked" },
5995 {1UL << PG_unevictable, "unevictable" },
5996 #ifdef CONFIG_MMU
5997 {1UL << PG_mlocked, "mlocked" },
5998 #endif
5999 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6000 {1UL << PG_uncached, "uncached" },
6001 #endif
6002 #ifdef CONFIG_MEMORY_FAILURE
6003 {1UL << PG_hwpoison, "hwpoison" },
6004 #endif
6005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6006 {1UL << PG_compound_lock, "compound_lock" },
6007 #endif
6008 };
6009
6010 static void dump_page_flags(unsigned long flags)
6011 {
6012 const char *delim = "";
6013 unsigned long mask;
6014 int i;
6015
6016 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6017
6018 printk(KERN_ALERT "page flags: %#lx(", flags);
6019
6020 /* remove zone id */
6021 flags &= (1UL << NR_PAGEFLAGS) - 1;
6022
6023 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6024
6025 mask = pageflag_names[i].mask;
6026 if ((flags & mask) != mask)
6027 continue;
6028
6029 flags &= ~mask;
6030 printk("%s%s", delim, pageflag_names[i].name);
6031 delim = "|";
6032 }
6033
6034 /* check for left over flags */
6035 if (flags)
6036 printk("%s%#lx", delim, flags);
6037
6038 printk(")\n");
6039 }
6040
6041 void dump_page(struct page *page)
6042 {
6043 printk(KERN_ALERT
6044 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6045 page, atomic_read(&page->_count), page_mapcount(page),
6046 page->mapping, page->index);
6047 dump_page_flags(page->flags);
6048 mem_cgroup_print_bad_page(page);
6049 }
This page took 0.162309 seconds and 5 git commands to generate.