[PATCH] struct seq_operations and struct file_operations constification
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46 #include "internal.h"
47
48 /*
49 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
50 * initializer cleaner
51 */
52 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
53 EXPORT_SYMBOL(node_online_map);
54 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
55 EXPORT_SYMBOL(node_possible_map);
56 unsigned long totalram_pages __read_mostly;
57 unsigned long totalreserve_pages __read_mostly;
58 long nr_swap_pages;
59 int percpu_pagelist_fraction;
60
61 static void __free_pages_ok(struct page *page, unsigned int order);
62
63 /*
64 * results with 256, 32 in the lowmem_reserve sysctl:
65 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
66 * 1G machine -> (16M dma, 784M normal, 224M high)
67 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
68 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
69 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
70 *
71 * TBD: should special case ZONE_DMA32 machines here - in those we normally
72 * don't need any ZONE_NORMAL reservation
73 */
74 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
75 256,
76 #ifdef CONFIG_ZONE_DMA32
77 256,
78 #endif
79 #ifdef CONFIG_HIGHMEM
80 32
81 #endif
82 };
83
84 EXPORT_SYMBOL(totalram_pages);
85
86 static char * const zone_names[MAX_NR_ZONES] = {
87 "DMA",
88 #ifdef CONFIG_ZONE_DMA32
89 "DMA32",
90 #endif
91 "Normal",
92 #ifdef CONFIG_HIGHMEM
93 "HighMem"
94 #endif
95 };
96
97 int min_free_kbytes = 1024;
98
99 unsigned long __meminitdata nr_kernel_pages;
100 unsigned long __meminitdata nr_all_pages;
101 static unsigned long __initdata dma_reserve;
102
103 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
104 /*
105 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
106 * ranges of memory (RAM) that may be registered with add_active_range().
107 * Ranges passed to add_active_range() will be merged if possible
108 * so the number of times add_active_range() can be called is
109 * related to the number of nodes and the number of holes
110 */
111 #ifdef CONFIG_MAX_ACTIVE_REGIONS
112 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
113 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
114 #else
115 #if MAX_NUMNODES >= 32
116 /* If there can be many nodes, allow up to 50 holes per node */
117 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
118 #else
119 /* By default, allow up to 256 distinct regions */
120 #define MAX_ACTIVE_REGIONS 256
121 #endif
122 #endif
123
124 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
125 int __initdata nr_nodemap_entries;
126 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
127 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
128 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
129 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
130 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
131 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
132 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
133
134 #ifdef CONFIG_DEBUG_VM
135 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
136 {
137 int ret = 0;
138 unsigned seq;
139 unsigned long pfn = page_to_pfn(page);
140
141 do {
142 seq = zone_span_seqbegin(zone);
143 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
144 ret = 1;
145 else if (pfn < zone->zone_start_pfn)
146 ret = 1;
147 } while (zone_span_seqretry(zone, seq));
148
149 return ret;
150 }
151
152 static int page_is_consistent(struct zone *zone, struct page *page)
153 {
154 #ifdef CONFIG_HOLES_IN_ZONE
155 if (!pfn_valid(page_to_pfn(page)))
156 return 0;
157 #endif
158 if (zone != page_zone(page))
159 return 0;
160
161 return 1;
162 }
163 /*
164 * Temporary debugging check for pages not lying within a given zone.
165 */
166 static int bad_range(struct zone *zone, struct page *page)
167 {
168 if (page_outside_zone_boundaries(zone, page))
169 return 1;
170 if (!page_is_consistent(zone, page))
171 return 1;
172
173 return 0;
174 }
175 #else
176 static inline int bad_range(struct zone *zone, struct page *page)
177 {
178 return 0;
179 }
180 #endif
181
182 static void bad_page(struct page *page)
183 {
184 printk(KERN_EMERG "Bad page state in process '%s'\n"
185 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
186 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
187 KERN_EMERG "Backtrace:\n",
188 current->comm, page, (int)(2*sizeof(unsigned long)),
189 (unsigned long)page->flags, page->mapping,
190 page_mapcount(page), page_count(page));
191 dump_stack();
192 page->flags &= ~(1 << PG_lru |
193 1 << PG_private |
194 1 << PG_locked |
195 1 << PG_active |
196 1 << PG_dirty |
197 1 << PG_reclaim |
198 1 << PG_slab |
199 1 << PG_swapcache |
200 1 << PG_writeback |
201 1 << PG_buddy );
202 set_page_count(page, 0);
203 reset_page_mapcount(page);
204 page->mapping = NULL;
205 add_taint(TAINT_BAD_PAGE);
206 }
207
208 /*
209 * Higher-order pages are called "compound pages". They are structured thusly:
210 *
211 * The first PAGE_SIZE page is called the "head page".
212 *
213 * The remaining PAGE_SIZE pages are called "tail pages".
214 *
215 * All pages have PG_compound set. All pages have their ->private pointing at
216 * the head page (even the head page has this).
217 *
218 * The first tail page's ->lru.next holds the address of the compound page's
219 * put_page() function. Its ->lru.prev holds the order of allocation.
220 * This usage means that zero-order pages may not be compound.
221 */
222
223 static void free_compound_page(struct page *page)
224 {
225 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
226 }
227
228 static void prep_compound_page(struct page *page, unsigned long order)
229 {
230 int i;
231 int nr_pages = 1 << order;
232
233 set_compound_page_dtor(page, free_compound_page);
234 page[1].lru.prev = (void *)order;
235 for (i = 0; i < nr_pages; i++) {
236 struct page *p = page + i;
237
238 __SetPageCompound(p);
239 set_page_private(p, (unsigned long)page);
240 }
241 }
242
243 static void destroy_compound_page(struct page *page, unsigned long order)
244 {
245 int i;
246 int nr_pages = 1 << order;
247
248 if (unlikely((unsigned long)page[1].lru.prev != order))
249 bad_page(page);
250
251 for (i = 0; i < nr_pages; i++) {
252 struct page *p = page + i;
253
254 if (unlikely(!PageCompound(p) |
255 (page_private(p) != (unsigned long)page)))
256 bad_page(page);
257 __ClearPageCompound(p);
258 }
259 }
260
261 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
262 {
263 int i;
264
265 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
266 /*
267 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
268 * and __GFP_HIGHMEM from hard or soft interrupt context.
269 */
270 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
271 for (i = 0; i < (1 << order); i++)
272 clear_highpage(page + i);
273 }
274
275 /*
276 * function for dealing with page's order in buddy system.
277 * zone->lock is already acquired when we use these.
278 * So, we don't need atomic page->flags operations here.
279 */
280 static inline unsigned long page_order(struct page *page)
281 {
282 return page_private(page);
283 }
284
285 static inline void set_page_order(struct page *page, int order)
286 {
287 set_page_private(page, order);
288 __SetPageBuddy(page);
289 }
290
291 static inline void rmv_page_order(struct page *page)
292 {
293 __ClearPageBuddy(page);
294 set_page_private(page, 0);
295 }
296
297 /*
298 * Locate the struct page for both the matching buddy in our
299 * pair (buddy1) and the combined O(n+1) page they form (page).
300 *
301 * 1) Any buddy B1 will have an order O twin B2 which satisfies
302 * the following equation:
303 * B2 = B1 ^ (1 << O)
304 * For example, if the starting buddy (buddy2) is #8 its order
305 * 1 buddy is #10:
306 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
307 *
308 * 2) Any buddy B will have an order O+1 parent P which
309 * satisfies the following equation:
310 * P = B & ~(1 << O)
311 *
312 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
313 */
314 static inline struct page *
315 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
316 {
317 unsigned long buddy_idx = page_idx ^ (1 << order);
318
319 return page + (buddy_idx - page_idx);
320 }
321
322 static inline unsigned long
323 __find_combined_index(unsigned long page_idx, unsigned int order)
324 {
325 return (page_idx & ~(1 << order));
326 }
327
328 /*
329 * This function checks whether a page is free && is the buddy
330 * we can do coalesce a page and its buddy if
331 * (a) the buddy is not in a hole &&
332 * (b) the buddy is in the buddy system &&
333 * (c) a page and its buddy have the same order &&
334 * (d) a page and its buddy are in the same zone.
335 *
336 * For recording whether a page is in the buddy system, we use PG_buddy.
337 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
338 *
339 * For recording page's order, we use page_private(page).
340 */
341 static inline int page_is_buddy(struct page *page, struct page *buddy,
342 int order)
343 {
344 #ifdef CONFIG_HOLES_IN_ZONE
345 if (!pfn_valid(page_to_pfn(buddy)))
346 return 0;
347 #endif
348
349 if (page_zone_id(page) != page_zone_id(buddy))
350 return 0;
351
352 if (PageBuddy(buddy) && page_order(buddy) == order) {
353 BUG_ON(page_count(buddy) != 0);
354 return 1;
355 }
356 return 0;
357 }
358
359 /*
360 * Freeing function for a buddy system allocator.
361 *
362 * The concept of a buddy system is to maintain direct-mapped table
363 * (containing bit values) for memory blocks of various "orders".
364 * The bottom level table contains the map for the smallest allocatable
365 * units of memory (here, pages), and each level above it describes
366 * pairs of units from the levels below, hence, "buddies".
367 * At a high level, all that happens here is marking the table entry
368 * at the bottom level available, and propagating the changes upward
369 * as necessary, plus some accounting needed to play nicely with other
370 * parts of the VM system.
371 * At each level, we keep a list of pages, which are heads of continuous
372 * free pages of length of (1 << order) and marked with PG_buddy. Page's
373 * order is recorded in page_private(page) field.
374 * So when we are allocating or freeing one, we can derive the state of the
375 * other. That is, if we allocate a small block, and both were
376 * free, the remainder of the region must be split into blocks.
377 * If a block is freed, and its buddy is also free, then this
378 * triggers coalescing into a block of larger size.
379 *
380 * -- wli
381 */
382
383 static inline void __free_one_page(struct page *page,
384 struct zone *zone, unsigned int order)
385 {
386 unsigned long page_idx;
387 int order_size = 1 << order;
388
389 if (unlikely(PageCompound(page)))
390 destroy_compound_page(page, order);
391
392 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
393
394 VM_BUG_ON(page_idx & (order_size - 1));
395 VM_BUG_ON(bad_range(zone, page));
396
397 zone->free_pages += order_size;
398 while (order < MAX_ORDER-1) {
399 unsigned long combined_idx;
400 struct free_area *area;
401 struct page *buddy;
402
403 buddy = __page_find_buddy(page, page_idx, order);
404 if (!page_is_buddy(page, buddy, order))
405 break; /* Move the buddy up one level. */
406
407 list_del(&buddy->lru);
408 area = zone->free_area + order;
409 area->nr_free--;
410 rmv_page_order(buddy);
411 combined_idx = __find_combined_index(page_idx, order);
412 page = page + (combined_idx - page_idx);
413 page_idx = combined_idx;
414 order++;
415 }
416 set_page_order(page, order);
417 list_add(&page->lru, &zone->free_area[order].free_list);
418 zone->free_area[order].nr_free++;
419 }
420
421 static inline int free_pages_check(struct page *page)
422 {
423 if (unlikely(page_mapcount(page) |
424 (page->mapping != NULL) |
425 (page_count(page) != 0) |
426 (page->flags & (
427 1 << PG_lru |
428 1 << PG_private |
429 1 << PG_locked |
430 1 << PG_active |
431 1 << PG_reclaim |
432 1 << PG_slab |
433 1 << PG_swapcache |
434 1 << PG_writeback |
435 1 << PG_reserved |
436 1 << PG_buddy ))))
437 bad_page(page);
438 if (PageDirty(page))
439 __ClearPageDirty(page);
440 /*
441 * For now, we report if PG_reserved was found set, but do not
442 * clear it, and do not free the page. But we shall soon need
443 * to do more, for when the ZERO_PAGE count wraps negative.
444 */
445 return PageReserved(page);
446 }
447
448 /*
449 * Frees a list of pages.
450 * Assumes all pages on list are in same zone, and of same order.
451 * count is the number of pages to free.
452 *
453 * If the zone was previously in an "all pages pinned" state then look to
454 * see if this freeing clears that state.
455 *
456 * And clear the zone's pages_scanned counter, to hold off the "all pages are
457 * pinned" detection logic.
458 */
459 static void free_pages_bulk(struct zone *zone, int count,
460 struct list_head *list, int order)
461 {
462 spin_lock(&zone->lock);
463 zone->all_unreclaimable = 0;
464 zone->pages_scanned = 0;
465 while (count--) {
466 struct page *page;
467
468 VM_BUG_ON(list_empty(list));
469 page = list_entry(list->prev, struct page, lru);
470 /* have to delete it as __free_one_page list manipulates */
471 list_del(&page->lru);
472 __free_one_page(page, zone, order);
473 }
474 spin_unlock(&zone->lock);
475 }
476
477 static void free_one_page(struct zone *zone, struct page *page, int order)
478 {
479 spin_lock(&zone->lock);
480 zone->all_unreclaimable = 0;
481 zone->pages_scanned = 0;
482 __free_one_page(page, zone, order);
483 spin_unlock(&zone->lock);
484 }
485
486 static void __free_pages_ok(struct page *page, unsigned int order)
487 {
488 unsigned long flags;
489 int i;
490 int reserved = 0;
491
492 for (i = 0 ; i < (1 << order) ; ++i)
493 reserved += free_pages_check(page + i);
494 if (reserved)
495 return;
496
497 if (!PageHighMem(page))
498 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
499 arch_free_page(page, order);
500 kernel_map_pages(page, 1 << order, 0);
501
502 local_irq_save(flags);
503 __count_vm_events(PGFREE, 1 << order);
504 free_one_page(page_zone(page), page, order);
505 local_irq_restore(flags);
506 }
507
508 /*
509 * permit the bootmem allocator to evade page validation on high-order frees
510 */
511 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
512 {
513 if (order == 0) {
514 __ClearPageReserved(page);
515 set_page_count(page, 0);
516 set_page_refcounted(page);
517 __free_page(page);
518 } else {
519 int loop;
520
521 prefetchw(page);
522 for (loop = 0; loop < BITS_PER_LONG; loop++) {
523 struct page *p = &page[loop];
524
525 if (loop + 1 < BITS_PER_LONG)
526 prefetchw(p + 1);
527 __ClearPageReserved(p);
528 set_page_count(p, 0);
529 }
530
531 set_page_refcounted(page);
532 __free_pages(page, order);
533 }
534 }
535
536
537 /*
538 * The order of subdivision here is critical for the IO subsystem.
539 * Please do not alter this order without good reasons and regression
540 * testing. Specifically, as large blocks of memory are subdivided,
541 * the order in which smaller blocks are delivered depends on the order
542 * they're subdivided in this function. This is the primary factor
543 * influencing the order in which pages are delivered to the IO
544 * subsystem according to empirical testing, and this is also justified
545 * by considering the behavior of a buddy system containing a single
546 * large block of memory acted on by a series of small allocations.
547 * This behavior is a critical factor in sglist merging's success.
548 *
549 * -- wli
550 */
551 static inline void expand(struct zone *zone, struct page *page,
552 int low, int high, struct free_area *area)
553 {
554 unsigned long size = 1 << high;
555
556 while (high > low) {
557 area--;
558 high--;
559 size >>= 1;
560 VM_BUG_ON(bad_range(zone, &page[size]));
561 list_add(&page[size].lru, &area->free_list);
562 area->nr_free++;
563 set_page_order(&page[size], high);
564 }
565 }
566
567 /*
568 * This page is about to be returned from the page allocator
569 */
570 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
571 {
572 if (unlikely(page_mapcount(page) |
573 (page->mapping != NULL) |
574 (page_count(page) != 0) |
575 (page->flags & (
576 1 << PG_lru |
577 1 << PG_private |
578 1 << PG_locked |
579 1 << PG_active |
580 1 << PG_dirty |
581 1 << PG_reclaim |
582 1 << PG_slab |
583 1 << PG_swapcache |
584 1 << PG_writeback |
585 1 << PG_reserved |
586 1 << PG_buddy ))))
587 bad_page(page);
588
589 /*
590 * For now, we report if PG_reserved was found set, but do not
591 * clear it, and do not allocate the page: as a safety net.
592 */
593 if (PageReserved(page))
594 return 1;
595
596 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
597 1 << PG_referenced | 1 << PG_arch_1 |
598 1 << PG_checked | 1 << PG_mappedtodisk);
599 set_page_private(page, 0);
600 set_page_refcounted(page);
601
602 arch_alloc_page(page, order);
603 kernel_map_pages(page, 1 << order, 1);
604
605 if (gfp_flags & __GFP_ZERO)
606 prep_zero_page(page, order, gfp_flags);
607
608 if (order && (gfp_flags & __GFP_COMP))
609 prep_compound_page(page, order);
610
611 return 0;
612 }
613
614 /*
615 * Do the hard work of removing an element from the buddy allocator.
616 * Call me with the zone->lock already held.
617 */
618 static struct page *__rmqueue(struct zone *zone, unsigned int order)
619 {
620 struct free_area * area;
621 unsigned int current_order;
622 struct page *page;
623
624 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
625 area = zone->free_area + current_order;
626 if (list_empty(&area->free_list))
627 continue;
628
629 page = list_entry(area->free_list.next, struct page, lru);
630 list_del(&page->lru);
631 rmv_page_order(page);
632 area->nr_free--;
633 zone->free_pages -= 1UL << order;
634 expand(zone, page, order, current_order, area);
635 return page;
636 }
637
638 return NULL;
639 }
640
641 /*
642 * Obtain a specified number of elements from the buddy allocator, all under
643 * a single hold of the lock, for efficiency. Add them to the supplied list.
644 * Returns the number of new pages which were placed at *list.
645 */
646 static int rmqueue_bulk(struct zone *zone, unsigned int order,
647 unsigned long count, struct list_head *list)
648 {
649 int i;
650
651 spin_lock(&zone->lock);
652 for (i = 0; i < count; ++i) {
653 struct page *page = __rmqueue(zone, order);
654 if (unlikely(page == NULL))
655 break;
656 list_add_tail(&page->lru, list);
657 }
658 spin_unlock(&zone->lock);
659 return i;
660 }
661
662 #ifdef CONFIG_NUMA
663 /*
664 * Called from the slab reaper to drain pagesets on a particular node that
665 * belongs to the currently executing processor.
666 * Note that this function must be called with the thread pinned to
667 * a single processor.
668 */
669 void drain_node_pages(int nodeid)
670 {
671 int i;
672 enum zone_type z;
673 unsigned long flags;
674
675 for (z = 0; z < MAX_NR_ZONES; z++) {
676 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
677 struct per_cpu_pageset *pset;
678
679 if (!populated_zone(zone))
680 continue;
681
682 pset = zone_pcp(zone, smp_processor_id());
683 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
684 struct per_cpu_pages *pcp;
685
686 pcp = &pset->pcp[i];
687 if (pcp->count) {
688 int to_drain;
689
690 local_irq_save(flags);
691 if (pcp->count >= pcp->batch)
692 to_drain = pcp->batch;
693 else
694 to_drain = pcp->count;
695 free_pages_bulk(zone, to_drain, &pcp->list, 0);
696 pcp->count -= to_drain;
697 local_irq_restore(flags);
698 }
699 }
700 }
701 }
702 #endif
703
704 static void __drain_pages(unsigned int cpu)
705 {
706 unsigned long flags;
707 struct zone *zone;
708 int i;
709
710 for_each_zone(zone) {
711 struct per_cpu_pageset *pset;
712
713 pset = zone_pcp(zone, cpu);
714 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
715 struct per_cpu_pages *pcp;
716
717 pcp = &pset->pcp[i];
718 local_irq_save(flags);
719 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
720 pcp->count = 0;
721 local_irq_restore(flags);
722 }
723 }
724 }
725
726 #ifdef CONFIG_PM
727
728 void mark_free_pages(struct zone *zone)
729 {
730 unsigned long pfn, max_zone_pfn;
731 unsigned long flags;
732 int order;
733 struct list_head *curr;
734
735 if (!zone->spanned_pages)
736 return;
737
738 spin_lock_irqsave(&zone->lock, flags);
739
740 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
741 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
742 if (pfn_valid(pfn)) {
743 struct page *page = pfn_to_page(pfn);
744
745 if (!PageNosave(page))
746 ClearPageNosaveFree(page);
747 }
748
749 for (order = MAX_ORDER - 1; order >= 0; --order)
750 list_for_each(curr, &zone->free_area[order].free_list) {
751 unsigned long i;
752
753 pfn = page_to_pfn(list_entry(curr, struct page, lru));
754 for (i = 0; i < (1UL << order); i++)
755 SetPageNosaveFree(pfn_to_page(pfn + i));
756 }
757
758 spin_unlock_irqrestore(&zone->lock, flags);
759 }
760
761 /*
762 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
763 */
764 void drain_local_pages(void)
765 {
766 unsigned long flags;
767
768 local_irq_save(flags);
769 __drain_pages(smp_processor_id());
770 local_irq_restore(flags);
771 }
772 #endif /* CONFIG_PM */
773
774 /*
775 * Free a 0-order page
776 */
777 static void fastcall free_hot_cold_page(struct page *page, int cold)
778 {
779 struct zone *zone = page_zone(page);
780 struct per_cpu_pages *pcp;
781 unsigned long flags;
782
783 if (PageAnon(page))
784 page->mapping = NULL;
785 if (free_pages_check(page))
786 return;
787
788 if (!PageHighMem(page))
789 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
790 arch_free_page(page, 0);
791 kernel_map_pages(page, 1, 0);
792
793 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
794 local_irq_save(flags);
795 __count_vm_event(PGFREE);
796 list_add(&page->lru, &pcp->list);
797 pcp->count++;
798 if (pcp->count >= pcp->high) {
799 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
800 pcp->count -= pcp->batch;
801 }
802 local_irq_restore(flags);
803 put_cpu();
804 }
805
806 void fastcall free_hot_page(struct page *page)
807 {
808 free_hot_cold_page(page, 0);
809 }
810
811 void fastcall free_cold_page(struct page *page)
812 {
813 free_hot_cold_page(page, 1);
814 }
815
816 /*
817 * split_page takes a non-compound higher-order page, and splits it into
818 * n (1<<order) sub-pages: page[0..n]
819 * Each sub-page must be freed individually.
820 *
821 * Note: this is probably too low level an operation for use in drivers.
822 * Please consult with lkml before using this in your driver.
823 */
824 void split_page(struct page *page, unsigned int order)
825 {
826 int i;
827
828 VM_BUG_ON(PageCompound(page));
829 VM_BUG_ON(!page_count(page));
830 for (i = 1; i < (1 << order); i++)
831 set_page_refcounted(page + i);
832 }
833
834 /*
835 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
836 * we cheat by calling it from here, in the order > 0 path. Saves a branch
837 * or two.
838 */
839 static struct page *buffered_rmqueue(struct zonelist *zonelist,
840 struct zone *zone, int order, gfp_t gfp_flags)
841 {
842 unsigned long flags;
843 struct page *page;
844 int cold = !!(gfp_flags & __GFP_COLD);
845 int cpu;
846
847 again:
848 cpu = get_cpu();
849 if (likely(order == 0)) {
850 struct per_cpu_pages *pcp;
851
852 pcp = &zone_pcp(zone, cpu)->pcp[cold];
853 local_irq_save(flags);
854 if (!pcp->count) {
855 pcp->count = rmqueue_bulk(zone, 0,
856 pcp->batch, &pcp->list);
857 if (unlikely(!pcp->count))
858 goto failed;
859 }
860 page = list_entry(pcp->list.next, struct page, lru);
861 list_del(&page->lru);
862 pcp->count--;
863 } else {
864 spin_lock_irqsave(&zone->lock, flags);
865 page = __rmqueue(zone, order);
866 spin_unlock(&zone->lock);
867 if (!page)
868 goto failed;
869 }
870
871 __count_zone_vm_events(PGALLOC, zone, 1 << order);
872 zone_statistics(zonelist, zone);
873 local_irq_restore(flags);
874 put_cpu();
875
876 VM_BUG_ON(bad_range(zone, page));
877 if (prep_new_page(page, order, gfp_flags))
878 goto again;
879 return page;
880
881 failed:
882 local_irq_restore(flags);
883 put_cpu();
884 return NULL;
885 }
886
887 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
888 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
889 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
890 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
891 #define ALLOC_HARDER 0x10 /* try to alloc harder */
892 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
893 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
894
895 /*
896 * Return 1 if free pages are above 'mark'. This takes into account the order
897 * of the allocation.
898 */
899 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
900 int classzone_idx, int alloc_flags)
901 {
902 /* free_pages my go negative - that's OK */
903 unsigned long min = mark;
904 long free_pages = z->free_pages - (1 << order) + 1;
905 int o;
906
907 if (alloc_flags & ALLOC_HIGH)
908 min -= min / 2;
909 if (alloc_flags & ALLOC_HARDER)
910 min -= min / 4;
911
912 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
913 return 0;
914 for (o = 0; o < order; o++) {
915 /* At the next order, this order's pages become unavailable */
916 free_pages -= z->free_area[o].nr_free << o;
917
918 /* Require fewer higher order pages to be free */
919 min >>= 1;
920
921 if (free_pages <= min)
922 return 0;
923 }
924 return 1;
925 }
926
927 #ifdef CONFIG_NUMA
928 /*
929 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
930 * skip over zones that are not allowed by the cpuset, or that have
931 * been recently (in last second) found to be nearly full. See further
932 * comments in mmzone.h. Reduces cache footprint of zonelist scans
933 * that have to skip over alot of full or unallowed zones.
934 *
935 * If the zonelist cache is present in the passed in zonelist, then
936 * returns a pointer to the allowed node mask (either the current
937 * tasks mems_allowed, or node_online_map.)
938 *
939 * If the zonelist cache is not available for this zonelist, does
940 * nothing and returns NULL.
941 *
942 * If the fullzones BITMAP in the zonelist cache is stale (more than
943 * a second since last zap'd) then we zap it out (clear its bits.)
944 *
945 * We hold off even calling zlc_setup, until after we've checked the
946 * first zone in the zonelist, on the theory that most allocations will
947 * be satisfied from that first zone, so best to examine that zone as
948 * quickly as we can.
949 */
950 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
951 {
952 struct zonelist_cache *zlc; /* cached zonelist speedup info */
953 nodemask_t *allowednodes; /* zonelist_cache approximation */
954
955 zlc = zonelist->zlcache_ptr;
956 if (!zlc)
957 return NULL;
958
959 if (jiffies - zlc->last_full_zap > 1 * HZ) {
960 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
961 zlc->last_full_zap = jiffies;
962 }
963
964 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
965 &cpuset_current_mems_allowed :
966 &node_online_map;
967 return allowednodes;
968 }
969
970 /*
971 * Given 'z' scanning a zonelist, run a couple of quick checks to see
972 * if it is worth looking at further for free memory:
973 * 1) Check that the zone isn't thought to be full (doesn't have its
974 * bit set in the zonelist_cache fullzones BITMAP).
975 * 2) Check that the zones node (obtained from the zonelist_cache
976 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
977 * Return true (non-zero) if zone is worth looking at further, or
978 * else return false (zero) if it is not.
979 *
980 * This check -ignores- the distinction between various watermarks,
981 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
982 * found to be full for any variation of these watermarks, it will
983 * be considered full for up to one second by all requests, unless
984 * we are so low on memory on all allowed nodes that we are forced
985 * into the second scan of the zonelist.
986 *
987 * In the second scan we ignore this zonelist cache and exactly
988 * apply the watermarks to all zones, even it is slower to do so.
989 * We are low on memory in the second scan, and should leave no stone
990 * unturned looking for a free page.
991 */
992 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
993 nodemask_t *allowednodes)
994 {
995 struct zonelist_cache *zlc; /* cached zonelist speedup info */
996 int i; /* index of *z in zonelist zones */
997 int n; /* node that zone *z is on */
998
999 zlc = zonelist->zlcache_ptr;
1000 if (!zlc)
1001 return 1;
1002
1003 i = z - zonelist->zones;
1004 n = zlc->z_to_n[i];
1005
1006 /* This zone is worth trying if it is allowed but not full */
1007 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1008 }
1009
1010 /*
1011 * Given 'z' scanning a zonelist, set the corresponding bit in
1012 * zlc->fullzones, so that subsequent attempts to allocate a page
1013 * from that zone don't waste time re-examining it.
1014 */
1015 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1016 {
1017 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1018 int i; /* index of *z in zonelist zones */
1019
1020 zlc = zonelist->zlcache_ptr;
1021 if (!zlc)
1022 return;
1023
1024 i = z - zonelist->zones;
1025
1026 set_bit(i, zlc->fullzones);
1027 }
1028
1029 #else /* CONFIG_NUMA */
1030
1031 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1032 {
1033 return NULL;
1034 }
1035
1036 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1037 nodemask_t *allowednodes)
1038 {
1039 return 1;
1040 }
1041
1042 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1043 {
1044 }
1045 #endif /* CONFIG_NUMA */
1046
1047 /*
1048 * get_page_from_freelist goes through the zonelist trying to allocate
1049 * a page.
1050 */
1051 static struct page *
1052 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1053 struct zonelist *zonelist, int alloc_flags)
1054 {
1055 struct zone **z;
1056 struct page *page = NULL;
1057 int classzone_idx = zone_idx(zonelist->zones[0]);
1058 struct zone *zone;
1059 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1060 int zlc_active = 0; /* set if using zonelist_cache */
1061 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1062
1063 zonelist_scan:
1064 /*
1065 * Scan zonelist, looking for a zone with enough free.
1066 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1067 */
1068 z = zonelist->zones;
1069
1070 do {
1071 if (NUMA_BUILD && zlc_active &&
1072 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1073 continue;
1074 zone = *z;
1075 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1076 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1077 break;
1078 if ((alloc_flags & ALLOC_CPUSET) &&
1079 !cpuset_zone_allowed(zone, gfp_mask))
1080 goto try_next_zone;
1081
1082 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1083 unsigned long mark;
1084 if (alloc_flags & ALLOC_WMARK_MIN)
1085 mark = zone->pages_min;
1086 else if (alloc_flags & ALLOC_WMARK_LOW)
1087 mark = zone->pages_low;
1088 else
1089 mark = zone->pages_high;
1090 if (!zone_watermark_ok(zone, order, mark,
1091 classzone_idx, alloc_flags)) {
1092 if (!zone_reclaim_mode ||
1093 !zone_reclaim(zone, gfp_mask, order))
1094 goto this_zone_full;
1095 }
1096 }
1097
1098 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1099 if (page)
1100 break;
1101 this_zone_full:
1102 if (NUMA_BUILD)
1103 zlc_mark_zone_full(zonelist, z);
1104 try_next_zone:
1105 if (NUMA_BUILD && !did_zlc_setup) {
1106 /* we do zlc_setup after the first zone is tried */
1107 allowednodes = zlc_setup(zonelist, alloc_flags);
1108 zlc_active = 1;
1109 did_zlc_setup = 1;
1110 }
1111 } while (*(++z) != NULL);
1112
1113 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1114 /* Disable zlc cache for second zonelist scan */
1115 zlc_active = 0;
1116 goto zonelist_scan;
1117 }
1118 return page;
1119 }
1120
1121 /*
1122 * This is the 'heart' of the zoned buddy allocator.
1123 */
1124 struct page * fastcall
1125 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1126 struct zonelist *zonelist)
1127 {
1128 const gfp_t wait = gfp_mask & __GFP_WAIT;
1129 struct zone **z;
1130 struct page *page;
1131 struct reclaim_state reclaim_state;
1132 struct task_struct *p = current;
1133 int do_retry;
1134 int alloc_flags;
1135 int did_some_progress;
1136
1137 might_sleep_if(wait);
1138
1139 restart:
1140 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1141
1142 if (unlikely(*z == NULL)) {
1143 /* Should this ever happen?? */
1144 return NULL;
1145 }
1146
1147 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1148 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1149 if (page)
1150 goto got_pg;
1151
1152 /*
1153 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1154 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1155 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1156 * using a larger set of nodes after it has established that the
1157 * allowed per node queues are empty and that nodes are
1158 * over allocated.
1159 */
1160 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1161 goto nopage;
1162
1163 for (z = zonelist->zones; *z; z++)
1164 wakeup_kswapd(*z, order);
1165
1166 /*
1167 * OK, we're below the kswapd watermark and have kicked background
1168 * reclaim. Now things get more complex, so set up alloc_flags according
1169 * to how we want to proceed.
1170 *
1171 * The caller may dip into page reserves a bit more if the caller
1172 * cannot run direct reclaim, or if the caller has realtime scheduling
1173 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1174 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1175 */
1176 alloc_flags = ALLOC_WMARK_MIN;
1177 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1178 alloc_flags |= ALLOC_HARDER;
1179 if (gfp_mask & __GFP_HIGH)
1180 alloc_flags |= ALLOC_HIGH;
1181 if (wait)
1182 alloc_flags |= ALLOC_CPUSET;
1183
1184 /*
1185 * Go through the zonelist again. Let __GFP_HIGH and allocations
1186 * coming from realtime tasks go deeper into reserves.
1187 *
1188 * This is the last chance, in general, before the goto nopage.
1189 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1190 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1191 */
1192 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1193 if (page)
1194 goto got_pg;
1195
1196 /* This allocation should allow future memory freeing. */
1197
1198 rebalance:
1199 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1200 && !in_interrupt()) {
1201 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1202 nofail_alloc:
1203 /* go through the zonelist yet again, ignoring mins */
1204 page = get_page_from_freelist(gfp_mask, order,
1205 zonelist, ALLOC_NO_WATERMARKS);
1206 if (page)
1207 goto got_pg;
1208 if (gfp_mask & __GFP_NOFAIL) {
1209 congestion_wait(WRITE, HZ/50);
1210 goto nofail_alloc;
1211 }
1212 }
1213 goto nopage;
1214 }
1215
1216 /* Atomic allocations - we can't balance anything */
1217 if (!wait)
1218 goto nopage;
1219
1220 cond_resched();
1221
1222 /* We now go into synchronous reclaim */
1223 cpuset_memory_pressure_bump();
1224 p->flags |= PF_MEMALLOC;
1225 reclaim_state.reclaimed_slab = 0;
1226 p->reclaim_state = &reclaim_state;
1227
1228 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1229
1230 p->reclaim_state = NULL;
1231 p->flags &= ~PF_MEMALLOC;
1232
1233 cond_resched();
1234
1235 if (likely(did_some_progress)) {
1236 page = get_page_from_freelist(gfp_mask, order,
1237 zonelist, alloc_flags);
1238 if (page)
1239 goto got_pg;
1240 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1241 /*
1242 * Go through the zonelist yet one more time, keep
1243 * very high watermark here, this is only to catch
1244 * a parallel oom killing, we must fail if we're still
1245 * under heavy pressure.
1246 */
1247 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1248 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1249 if (page)
1250 goto got_pg;
1251
1252 out_of_memory(zonelist, gfp_mask, order);
1253 goto restart;
1254 }
1255
1256 /*
1257 * Don't let big-order allocations loop unless the caller explicitly
1258 * requests that. Wait for some write requests to complete then retry.
1259 *
1260 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1261 * <= 3, but that may not be true in other implementations.
1262 */
1263 do_retry = 0;
1264 if (!(gfp_mask & __GFP_NORETRY)) {
1265 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1266 do_retry = 1;
1267 if (gfp_mask & __GFP_NOFAIL)
1268 do_retry = 1;
1269 }
1270 if (do_retry) {
1271 congestion_wait(WRITE, HZ/50);
1272 goto rebalance;
1273 }
1274
1275 nopage:
1276 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1277 printk(KERN_WARNING "%s: page allocation failure."
1278 " order:%d, mode:0x%x\n",
1279 p->comm, order, gfp_mask);
1280 dump_stack();
1281 show_mem();
1282 }
1283 got_pg:
1284 return page;
1285 }
1286
1287 EXPORT_SYMBOL(__alloc_pages);
1288
1289 /*
1290 * Common helper functions.
1291 */
1292 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1293 {
1294 struct page * page;
1295 page = alloc_pages(gfp_mask, order);
1296 if (!page)
1297 return 0;
1298 return (unsigned long) page_address(page);
1299 }
1300
1301 EXPORT_SYMBOL(__get_free_pages);
1302
1303 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1304 {
1305 struct page * page;
1306
1307 /*
1308 * get_zeroed_page() returns a 32-bit address, which cannot represent
1309 * a highmem page
1310 */
1311 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1312
1313 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1314 if (page)
1315 return (unsigned long) page_address(page);
1316 return 0;
1317 }
1318
1319 EXPORT_SYMBOL(get_zeroed_page);
1320
1321 void __pagevec_free(struct pagevec *pvec)
1322 {
1323 int i = pagevec_count(pvec);
1324
1325 while (--i >= 0)
1326 free_hot_cold_page(pvec->pages[i], pvec->cold);
1327 }
1328
1329 fastcall void __free_pages(struct page *page, unsigned int order)
1330 {
1331 if (put_page_testzero(page)) {
1332 if (order == 0)
1333 free_hot_page(page);
1334 else
1335 __free_pages_ok(page, order);
1336 }
1337 }
1338
1339 EXPORT_SYMBOL(__free_pages);
1340
1341 fastcall void free_pages(unsigned long addr, unsigned int order)
1342 {
1343 if (addr != 0) {
1344 VM_BUG_ON(!virt_addr_valid((void *)addr));
1345 __free_pages(virt_to_page((void *)addr), order);
1346 }
1347 }
1348
1349 EXPORT_SYMBOL(free_pages);
1350
1351 /*
1352 * Total amount of free (allocatable) RAM:
1353 */
1354 unsigned int nr_free_pages(void)
1355 {
1356 unsigned int sum = 0;
1357 struct zone *zone;
1358
1359 for_each_zone(zone)
1360 sum += zone->free_pages;
1361
1362 return sum;
1363 }
1364
1365 EXPORT_SYMBOL(nr_free_pages);
1366
1367 #ifdef CONFIG_NUMA
1368 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1369 {
1370 unsigned int sum = 0;
1371 enum zone_type i;
1372
1373 for (i = 0; i < MAX_NR_ZONES; i++)
1374 sum += pgdat->node_zones[i].free_pages;
1375
1376 return sum;
1377 }
1378 #endif
1379
1380 static unsigned int nr_free_zone_pages(int offset)
1381 {
1382 /* Just pick one node, since fallback list is circular */
1383 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1384 unsigned int sum = 0;
1385
1386 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1387 struct zone **zonep = zonelist->zones;
1388 struct zone *zone;
1389
1390 for (zone = *zonep++; zone; zone = *zonep++) {
1391 unsigned long size = zone->present_pages;
1392 unsigned long high = zone->pages_high;
1393 if (size > high)
1394 sum += size - high;
1395 }
1396
1397 return sum;
1398 }
1399
1400 /*
1401 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1402 */
1403 unsigned int nr_free_buffer_pages(void)
1404 {
1405 return nr_free_zone_pages(gfp_zone(GFP_USER));
1406 }
1407
1408 /*
1409 * Amount of free RAM allocatable within all zones
1410 */
1411 unsigned int nr_free_pagecache_pages(void)
1412 {
1413 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1414 }
1415
1416 static inline void show_node(struct zone *zone)
1417 {
1418 if (NUMA_BUILD)
1419 printk("Node %d ", zone_to_nid(zone));
1420 }
1421
1422 void si_meminfo(struct sysinfo *val)
1423 {
1424 val->totalram = totalram_pages;
1425 val->sharedram = 0;
1426 val->freeram = nr_free_pages();
1427 val->bufferram = nr_blockdev_pages();
1428 val->totalhigh = totalhigh_pages;
1429 val->freehigh = nr_free_highpages();
1430 val->mem_unit = PAGE_SIZE;
1431 }
1432
1433 EXPORT_SYMBOL(si_meminfo);
1434
1435 #ifdef CONFIG_NUMA
1436 void si_meminfo_node(struct sysinfo *val, int nid)
1437 {
1438 pg_data_t *pgdat = NODE_DATA(nid);
1439
1440 val->totalram = pgdat->node_present_pages;
1441 val->freeram = nr_free_pages_pgdat(pgdat);
1442 #ifdef CONFIG_HIGHMEM
1443 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1444 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1445 #else
1446 val->totalhigh = 0;
1447 val->freehigh = 0;
1448 #endif
1449 val->mem_unit = PAGE_SIZE;
1450 }
1451 #endif
1452
1453 #define K(x) ((x) << (PAGE_SHIFT-10))
1454
1455 /*
1456 * Show free area list (used inside shift_scroll-lock stuff)
1457 * We also calculate the percentage fragmentation. We do this by counting the
1458 * memory on each free list with the exception of the first item on the list.
1459 */
1460 void show_free_areas(void)
1461 {
1462 int cpu;
1463 unsigned long active;
1464 unsigned long inactive;
1465 unsigned long free;
1466 struct zone *zone;
1467
1468 for_each_zone(zone) {
1469 if (!populated_zone(zone))
1470 continue;
1471
1472 show_node(zone);
1473 printk("%s per-cpu:\n", zone->name);
1474
1475 for_each_online_cpu(cpu) {
1476 struct per_cpu_pageset *pageset;
1477
1478 pageset = zone_pcp(zone, cpu);
1479
1480 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1481 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1482 cpu, pageset->pcp[0].high,
1483 pageset->pcp[0].batch, pageset->pcp[0].count,
1484 pageset->pcp[1].high, pageset->pcp[1].batch,
1485 pageset->pcp[1].count);
1486 }
1487 }
1488
1489 get_zone_counts(&active, &inactive, &free);
1490
1491 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1492 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1493 active,
1494 inactive,
1495 global_page_state(NR_FILE_DIRTY),
1496 global_page_state(NR_WRITEBACK),
1497 global_page_state(NR_UNSTABLE_NFS),
1498 nr_free_pages(),
1499 global_page_state(NR_SLAB_RECLAIMABLE) +
1500 global_page_state(NR_SLAB_UNRECLAIMABLE),
1501 global_page_state(NR_FILE_MAPPED),
1502 global_page_state(NR_PAGETABLE));
1503
1504 for_each_zone(zone) {
1505 int i;
1506
1507 if (!populated_zone(zone))
1508 continue;
1509
1510 show_node(zone);
1511 printk("%s"
1512 " free:%lukB"
1513 " min:%lukB"
1514 " low:%lukB"
1515 " high:%lukB"
1516 " active:%lukB"
1517 " inactive:%lukB"
1518 " present:%lukB"
1519 " pages_scanned:%lu"
1520 " all_unreclaimable? %s"
1521 "\n",
1522 zone->name,
1523 K(zone->free_pages),
1524 K(zone->pages_min),
1525 K(zone->pages_low),
1526 K(zone->pages_high),
1527 K(zone->nr_active),
1528 K(zone->nr_inactive),
1529 K(zone->present_pages),
1530 zone->pages_scanned,
1531 (zone->all_unreclaimable ? "yes" : "no")
1532 );
1533 printk("lowmem_reserve[]:");
1534 for (i = 0; i < MAX_NR_ZONES; i++)
1535 printk(" %lu", zone->lowmem_reserve[i]);
1536 printk("\n");
1537 }
1538
1539 for_each_zone(zone) {
1540 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1541
1542 if (!populated_zone(zone))
1543 continue;
1544
1545 show_node(zone);
1546 printk("%s: ", zone->name);
1547
1548 spin_lock_irqsave(&zone->lock, flags);
1549 for (order = 0; order < MAX_ORDER; order++) {
1550 nr[order] = zone->free_area[order].nr_free;
1551 total += nr[order] << order;
1552 }
1553 spin_unlock_irqrestore(&zone->lock, flags);
1554 for (order = 0; order < MAX_ORDER; order++)
1555 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1556 printk("= %lukB\n", K(total));
1557 }
1558
1559 show_swap_cache_info();
1560 }
1561
1562 /*
1563 * Builds allocation fallback zone lists.
1564 *
1565 * Add all populated zones of a node to the zonelist.
1566 */
1567 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1568 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1569 {
1570 struct zone *zone;
1571
1572 BUG_ON(zone_type >= MAX_NR_ZONES);
1573 zone_type++;
1574
1575 do {
1576 zone_type--;
1577 zone = pgdat->node_zones + zone_type;
1578 if (populated_zone(zone)) {
1579 zonelist->zones[nr_zones++] = zone;
1580 check_highest_zone(zone_type);
1581 }
1582
1583 } while (zone_type);
1584 return nr_zones;
1585 }
1586
1587 #ifdef CONFIG_NUMA
1588 #define MAX_NODE_LOAD (num_online_nodes())
1589 static int __meminitdata node_load[MAX_NUMNODES];
1590 /**
1591 * find_next_best_node - find the next node that should appear in a given node's fallback list
1592 * @node: node whose fallback list we're appending
1593 * @used_node_mask: nodemask_t of already used nodes
1594 *
1595 * We use a number of factors to determine which is the next node that should
1596 * appear on a given node's fallback list. The node should not have appeared
1597 * already in @node's fallback list, and it should be the next closest node
1598 * according to the distance array (which contains arbitrary distance values
1599 * from each node to each node in the system), and should also prefer nodes
1600 * with no CPUs, since presumably they'll have very little allocation pressure
1601 * on them otherwise.
1602 * It returns -1 if no node is found.
1603 */
1604 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1605 {
1606 int n, val;
1607 int min_val = INT_MAX;
1608 int best_node = -1;
1609
1610 /* Use the local node if we haven't already */
1611 if (!node_isset(node, *used_node_mask)) {
1612 node_set(node, *used_node_mask);
1613 return node;
1614 }
1615
1616 for_each_online_node(n) {
1617 cpumask_t tmp;
1618
1619 /* Don't want a node to appear more than once */
1620 if (node_isset(n, *used_node_mask))
1621 continue;
1622
1623 /* Use the distance array to find the distance */
1624 val = node_distance(node, n);
1625
1626 /* Penalize nodes under us ("prefer the next node") */
1627 val += (n < node);
1628
1629 /* Give preference to headless and unused nodes */
1630 tmp = node_to_cpumask(n);
1631 if (!cpus_empty(tmp))
1632 val += PENALTY_FOR_NODE_WITH_CPUS;
1633
1634 /* Slight preference for less loaded node */
1635 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1636 val += node_load[n];
1637
1638 if (val < min_val) {
1639 min_val = val;
1640 best_node = n;
1641 }
1642 }
1643
1644 if (best_node >= 0)
1645 node_set(best_node, *used_node_mask);
1646
1647 return best_node;
1648 }
1649
1650 static void __meminit build_zonelists(pg_data_t *pgdat)
1651 {
1652 int j, node, local_node;
1653 enum zone_type i;
1654 int prev_node, load;
1655 struct zonelist *zonelist;
1656 nodemask_t used_mask;
1657
1658 /* initialize zonelists */
1659 for (i = 0; i < MAX_NR_ZONES; i++) {
1660 zonelist = pgdat->node_zonelists + i;
1661 zonelist->zones[0] = NULL;
1662 }
1663
1664 /* NUMA-aware ordering of nodes */
1665 local_node = pgdat->node_id;
1666 load = num_online_nodes();
1667 prev_node = local_node;
1668 nodes_clear(used_mask);
1669 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1670 int distance = node_distance(local_node, node);
1671
1672 /*
1673 * If another node is sufficiently far away then it is better
1674 * to reclaim pages in a zone before going off node.
1675 */
1676 if (distance > RECLAIM_DISTANCE)
1677 zone_reclaim_mode = 1;
1678
1679 /*
1680 * We don't want to pressure a particular node.
1681 * So adding penalty to the first node in same
1682 * distance group to make it round-robin.
1683 */
1684
1685 if (distance != node_distance(local_node, prev_node))
1686 node_load[node] += load;
1687 prev_node = node;
1688 load--;
1689 for (i = 0; i < MAX_NR_ZONES; i++) {
1690 zonelist = pgdat->node_zonelists + i;
1691 for (j = 0; zonelist->zones[j] != NULL; j++);
1692
1693 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1694 zonelist->zones[j] = NULL;
1695 }
1696 }
1697 }
1698
1699 /* Construct the zonelist performance cache - see further mmzone.h */
1700 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1701 {
1702 int i;
1703
1704 for (i = 0; i < MAX_NR_ZONES; i++) {
1705 struct zonelist *zonelist;
1706 struct zonelist_cache *zlc;
1707 struct zone **z;
1708
1709 zonelist = pgdat->node_zonelists + i;
1710 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 for (z = zonelist->zones; *z; z++)
1713 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1714 }
1715 }
1716
1717 #else /* CONFIG_NUMA */
1718
1719 static void __meminit build_zonelists(pg_data_t *pgdat)
1720 {
1721 int node, local_node;
1722 enum zone_type i,j;
1723
1724 local_node = pgdat->node_id;
1725 for (i = 0; i < MAX_NR_ZONES; i++) {
1726 struct zonelist *zonelist;
1727
1728 zonelist = pgdat->node_zonelists + i;
1729
1730 j = build_zonelists_node(pgdat, zonelist, 0, i);
1731 /*
1732 * Now we build the zonelist so that it contains the zones
1733 * of all the other nodes.
1734 * We don't want to pressure a particular node, so when
1735 * building the zones for node N, we make sure that the
1736 * zones coming right after the local ones are those from
1737 * node N+1 (modulo N)
1738 */
1739 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1740 if (!node_online(node))
1741 continue;
1742 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1743 }
1744 for (node = 0; node < local_node; node++) {
1745 if (!node_online(node))
1746 continue;
1747 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1748 }
1749
1750 zonelist->zones[j] = NULL;
1751 }
1752 }
1753
1754 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1755 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1756 {
1757 int i;
1758
1759 for (i = 0; i < MAX_NR_ZONES; i++)
1760 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1761 }
1762
1763 #endif /* CONFIG_NUMA */
1764
1765 /* return values int ....just for stop_machine_run() */
1766 static int __meminit __build_all_zonelists(void *dummy)
1767 {
1768 int nid;
1769
1770 for_each_online_node(nid) {
1771 build_zonelists(NODE_DATA(nid));
1772 build_zonelist_cache(NODE_DATA(nid));
1773 }
1774 return 0;
1775 }
1776
1777 void __meminit build_all_zonelists(void)
1778 {
1779 if (system_state == SYSTEM_BOOTING) {
1780 __build_all_zonelists(NULL);
1781 cpuset_init_current_mems_allowed();
1782 } else {
1783 /* we have to stop all cpus to guaranntee there is no user
1784 of zonelist */
1785 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1786 /* cpuset refresh routine should be here */
1787 }
1788 vm_total_pages = nr_free_pagecache_pages();
1789 printk("Built %i zonelists. Total pages: %ld\n",
1790 num_online_nodes(), vm_total_pages);
1791 }
1792
1793 /*
1794 * Helper functions to size the waitqueue hash table.
1795 * Essentially these want to choose hash table sizes sufficiently
1796 * large so that collisions trying to wait on pages are rare.
1797 * But in fact, the number of active page waitqueues on typical
1798 * systems is ridiculously low, less than 200. So this is even
1799 * conservative, even though it seems large.
1800 *
1801 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1802 * waitqueues, i.e. the size of the waitq table given the number of pages.
1803 */
1804 #define PAGES_PER_WAITQUEUE 256
1805
1806 #ifndef CONFIG_MEMORY_HOTPLUG
1807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1808 {
1809 unsigned long size = 1;
1810
1811 pages /= PAGES_PER_WAITQUEUE;
1812
1813 while (size < pages)
1814 size <<= 1;
1815
1816 /*
1817 * Once we have dozens or even hundreds of threads sleeping
1818 * on IO we've got bigger problems than wait queue collision.
1819 * Limit the size of the wait table to a reasonable size.
1820 */
1821 size = min(size, 4096UL);
1822
1823 return max(size, 4UL);
1824 }
1825 #else
1826 /*
1827 * A zone's size might be changed by hot-add, so it is not possible to determine
1828 * a suitable size for its wait_table. So we use the maximum size now.
1829 *
1830 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1831 *
1832 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1833 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1834 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1835 *
1836 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1837 * or more by the traditional way. (See above). It equals:
1838 *
1839 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1840 * ia64(16K page size) : = ( 8G + 4M)byte.
1841 * powerpc (64K page size) : = (32G +16M)byte.
1842 */
1843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1844 {
1845 return 4096UL;
1846 }
1847 #endif
1848
1849 /*
1850 * This is an integer logarithm so that shifts can be used later
1851 * to extract the more random high bits from the multiplicative
1852 * hash function before the remainder is taken.
1853 */
1854 static inline unsigned long wait_table_bits(unsigned long size)
1855 {
1856 return ffz(~size);
1857 }
1858
1859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1860
1861 /*
1862 * Initially all pages are reserved - free ones are freed
1863 * up by free_all_bootmem() once the early boot process is
1864 * done. Non-atomic initialization, single-pass.
1865 */
1866 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1867 unsigned long start_pfn)
1868 {
1869 struct page *page;
1870 unsigned long end_pfn = start_pfn + size;
1871 unsigned long pfn;
1872
1873 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1874 if (!early_pfn_valid(pfn))
1875 continue;
1876 if (!early_pfn_in_nid(pfn, nid))
1877 continue;
1878 page = pfn_to_page(pfn);
1879 set_page_links(page, zone, nid, pfn);
1880 init_page_count(page);
1881 reset_page_mapcount(page);
1882 SetPageReserved(page);
1883 INIT_LIST_HEAD(&page->lru);
1884 #ifdef WANT_PAGE_VIRTUAL
1885 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1886 if (!is_highmem_idx(zone))
1887 set_page_address(page, __va(pfn << PAGE_SHIFT));
1888 #endif
1889 }
1890 }
1891
1892 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1893 unsigned long size)
1894 {
1895 int order;
1896 for (order = 0; order < MAX_ORDER ; order++) {
1897 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1898 zone->free_area[order].nr_free = 0;
1899 }
1900 }
1901
1902 #ifndef __HAVE_ARCH_MEMMAP_INIT
1903 #define memmap_init(size, nid, zone, start_pfn) \
1904 memmap_init_zone((size), (nid), (zone), (start_pfn))
1905 #endif
1906
1907 static int __cpuinit zone_batchsize(struct zone *zone)
1908 {
1909 int batch;
1910
1911 /*
1912 * The per-cpu-pages pools are set to around 1000th of the
1913 * size of the zone. But no more than 1/2 of a meg.
1914 *
1915 * OK, so we don't know how big the cache is. So guess.
1916 */
1917 batch = zone->present_pages / 1024;
1918 if (batch * PAGE_SIZE > 512 * 1024)
1919 batch = (512 * 1024) / PAGE_SIZE;
1920 batch /= 4; /* We effectively *= 4 below */
1921 if (batch < 1)
1922 batch = 1;
1923
1924 /*
1925 * Clamp the batch to a 2^n - 1 value. Having a power
1926 * of 2 value was found to be more likely to have
1927 * suboptimal cache aliasing properties in some cases.
1928 *
1929 * For example if 2 tasks are alternately allocating
1930 * batches of pages, one task can end up with a lot
1931 * of pages of one half of the possible page colors
1932 * and the other with pages of the other colors.
1933 */
1934 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1935
1936 return batch;
1937 }
1938
1939 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1940 {
1941 struct per_cpu_pages *pcp;
1942
1943 memset(p, 0, sizeof(*p));
1944
1945 pcp = &p->pcp[0]; /* hot */
1946 pcp->count = 0;
1947 pcp->high = 6 * batch;
1948 pcp->batch = max(1UL, 1 * batch);
1949 INIT_LIST_HEAD(&pcp->list);
1950
1951 pcp = &p->pcp[1]; /* cold*/
1952 pcp->count = 0;
1953 pcp->high = 2 * batch;
1954 pcp->batch = max(1UL, batch/2);
1955 INIT_LIST_HEAD(&pcp->list);
1956 }
1957
1958 /*
1959 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1960 * to the value high for the pageset p.
1961 */
1962
1963 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1964 unsigned long high)
1965 {
1966 struct per_cpu_pages *pcp;
1967
1968 pcp = &p->pcp[0]; /* hot list */
1969 pcp->high = high;
1970 pcp->batch = max(1UL, high/4);
1971 if ((high/4) > (PAGE_SHIFT * 8))
1972 pcp->batch = PAGE_SHIFT * 8;
1973 }
1974
1975
1976 #ifdef CONFIG_NUMA
1977 /*
1978 * Boot pageset table. One per cpu which is going to be used for all
1979 * zones and all nodes. The parameters will be set in such a way
1980 * that an item put on a list will immediately be handed over to
1981 * the buddy list. This is safe since pageset manipulation is done
1982 * with interrupts disabled.
1983 *
1984 * Some NUMA counter updates may also be caught by the boot pagesets.
1985 *
1986 * The boot_pagesets must be kept even after bootup is complete for
1987 * unused processors and/or zones. They do play a role for bootstrapping
1988 * hotplugged processors.
1989 *
1990 * zoneinfo_show() and maybe other functions do
1991 * not check if the processor is online before following the pageset pointer.
1992 * Other parts of the kernel may not check if the zone is available.
1993 */
1994 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1995
1996 /*
1997 * Dynamically allocate memory for the
1998 * per cpu pageset array in struct zone.
1999 */
2000 static int __cpuinit process_zones(int cpu)
2001 {
2002 struct zone *zone, *dzone;
2003
2004 for_each_zone(zone) {
2005
2006 if (!populated_zone(zone))
2007 continue;
2008
2009 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2010 GFP_KERNEL, cpu_to_node(cpu));
2011 if (!zone_pcp(zone, cpu))
2012 goto bad;
2013
2014 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2015
2016 if (percpu_pagelist_fraction)
2017 setup_pagelist_highmark(zone_pcp(zone, cpu),
2018 (zone->present_pages / percpu_pagelist_fraction));
2019 }
2020
2021 return 0;
2022 bad:
2023 for_each_zone(dzone) {
2024 if (dzone == zone)
2025 break;
2026 kfree(zone_pcp(dzone, cpu));
2027 zone_pcp(dzone, cpu) = NULL;
2028 }
2029 return -ENOMEM;
2030 }
2031
2032 static inline void free_zone_pagesets(int cpu)
2033 {
2034 struct zone *zone;
2035
2036 for_each_zone(zone) {
2037 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2038
2039 /* Free per_cpu_pageset if it is slab allocated */
2040 if (pset != &boot_pageset[cpu])
2041 kfree(pset);
2042 zone_pcp(zone, cpu) = NULL;
2043 }
2044 }
2045
2046 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2047 unsigned long action,
2048 void *hcpu)
2049 {
2050 int cpu = (long)hcpu;
2051 int ret = NOTIFY_OK;
2052
2053 switch (action) {
2054 case CPU_UP_PREPARE:
2055 if (process_zones(cpu))
2056 ret = NOTIFY_BAD;
2057 break;
2058 case CPU_UP_CANCELED:
2059 case CPU_DEAD:
2060 free_zone_pagesets(cpu);
2061 break;
2062 default:
2063 break;
2064 }
2065 return ret;
2066 }
2067
2068 static struct notifier_block __cpuinitdata pageset_notifier =
2069 { &pageset_cpuup_callback, NULL, 0 };
2070
2071 void __init setup_per_cpu_pageset(void)
2072 {
2073 int err;
2074
2075 /* Initialize per_cpu_pageset for cpu 0.
2076 * A cpuup callback will do this for every cpu
2077 * as it comes online
2078 */
2079 err = process_zones(smp_processor_id());
2080 BUG_ON(err);
2081 register_cpu_notifier(&pageset_notifier);
2082 }
2083
2084 #endif
2085
2086 static __meminit
2087 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2088 {
2089 int i;
2090 struct pglist_data *pgdat = zone->zone_pgdat;
2091 size_t alloc_size;
2092
2093 /*
2094 * The per-page waitqueue mechanism uses hashed waitqueues
2095 * per zone.
2096 */
2097 zone->wait_table_hash_nr_entries =
2098 wait_table_hash_nr_entries(zone_size_pages);
2099 zone->wait_table_bits =
2100 wait_table_bits(zone->wait_table_hash_nr_entries);
2101 alloc_size = zone->wait_table_hash_nr_entries
2102 * sizeof(wait_queue_head_t);
2103
2104 if (system_state == SYSTEM_BOOTING) {
2105 zone->wait_table = (wait_queue_head_t *)
2106 alloc_bootmem_node(pgdat, alloc_size);
2107 } else {
2108 /*
2109 * This case means that a zone whose size was 0 gets new memory
2110 * via memory hot-add.
2111 * But it may be the case that a new node was hot-added. In
2112 * this case vmalloc() will not be able to use this new node's
2113 * memory - this wait_table must be initialized to use this new
2114 * node itself as well.
2115 * To use this new node's memory, further consideration will be
2116 * necessary.
2117 */
2118 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2119 }
2120 if (!zone->wait_table)
2121 return -ENOMEM;
2122
2123 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2124 init_waitqueue_head(zone->wait_table + i);
2125
2126 return 0;
2127 }
2128
2129 static __meminit void zone_pcp_init(struct zone *zone)
2130 {
2131 int cpu;
2132 unsigned long batch = zone_batchsize(zone);
2133
2134 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2135 #ifdef CONFIG_NUMA
2136 /* Early boot. Slab allocator not functional yet */
2137 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2138 setup_pageset(&boot_pageset[cpu],0);
2139 #else
2140 setup_pageset(zone_pcp(zone,cpu), batch);
2141 #endif
2142 }
2143 if (zone->present_pages)
2144 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2145 zone->name, zone->present_pages, batch);
2146 }
2147
2148 __meminit int init_currently_empty_zone(struct zone *zone,
2149 unsigned long zone_start_pfn,
2150 unsigned long size)
2151 {
2152 struct pglist_data *pgdat = zone->zone_pgdat;
2153 int ret;
2154 ret = zone_wait_table_init(zone, size);
2155 if (ret)
2156 return ret;
2157 pgdat->nr_zones = zone_idx(zone) + 1;
2158
2159 zone->zone_start_pfn = zone_start_pfn;
2160
2161 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2162
2163 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2164
2165 return 0;
2166 }
2167
2168 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2169 /*
2170 * Basic iterator support. Return the first range of PFNs for a node
2171 * Note: nid == MAX_NUMNODES returns first region regardless of node
2172 */
2173 static int __init first_active_region_index_in_nid(int nid)
2174 {
2175 int i;
2176
2177 for (i = 0; i < nr_nodemap_entries; i++)
2178 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2179 return i;
2180
2181 return -1;
2182 }
2183
2184 /*
2185 * Basic iterator support. Return the next active range of PFNs for a node
2186 * Note: nid == MAX_NUMNODES returns next region regardles of node
2187 */
2188 static int __init next_active_region_index_in_nid(int index, int nid)
2189 {
2190 for (index = index + 1; index < nr_nodemap_entries; index++)
2191 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2192 return index;
2193
2194 return -1;
2195 }
2196
2197 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2198 /*
2199 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2200 * Architectures may implement their own version but if add_active_range()
2201 * was used and there are no special requirements, this is a convenient
2202 * alternative
2203 */
2204 int __init early_pfn_to_nid(unsigned long pfn)
2205 {
2206 int i;
2207
2208 for (i = 0; i < nr_nodemap_entries; i++) {
2209 unsigned long start_pfn = early_node_map[i].start_pfn;
2210 unsigned long end_pfn = early_node_map[i].end_pfn;
2211
2212 if (start_pfn <= pfn && pfn < end_pfn)
2213 return early_node_map[i].nid;
2214 }
2215
2216 return 0;
2217 }
2218 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2219
2220 /* Basic iterator support to walk early_node_map[] */
2221 #define for_each_active_range_index_in_nid(i, nid) \
2222 for (i = first_active_region_index_in_nid(nid); i != -1; \
2223 i = next_active_region_index_in_nid(i, nid))
2224
2225 /**
2226 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2227 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2228 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2229 *
2230 * If an architecture guarantees that all ranges registered with
2231 * add_active_ranges() contain no holes and may be freed, this
2232 * this function may be used instead of calling free_bootmem() manually.
2233 */
2234 void __init free_bootmem_with_active_regions(int nid,
2235 unsigned long max_low_pfn)
2236 {
2237 int i;
2238
2239 for_each_active_range_index_in_nid(i, nid) {
2240 unsigned long size_pages = 0;
2241 unsigned long end_pfn = early_node_map[i].end_pfn;
2242
2243 if (early_node_map[i].start_pfn >= max_low_pfn)
2244 continue;
2245
2246 if (end_pfn > max_low_pfn)
2247 end_pfn = max_low_pfn;
2248
2249 size_pages = end_pfn - early_node_map[i].start_pfn;
2250 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2251 PFN_PHYS(early_node_map[i].start_pfn),
2252 size_pages << PAGE_SHIFT);
2253 }
2254 }
2255
2256 /**
2257 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2258 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2259 *
2260 * If an architecture guarantees that all ranges registered with
2261 * add_active_ranges() contain no holes and may be freed, this
2262 * function may be used instead of calling memory_present() manually.
2263 */
2264 void __init sparse_memory_present_with_active_regions(int nid)
2265 {
2266 int i;
2267
2268 for_each_active_range_index_in_nid(i, nid)
2269 memory_present(early_node_map[i].nid,
2270 early_node_map[i].start_pfn,
2271 early_node_map[i].end_pfn);
2272 }
2273
2274 /**
2275 * push_node_boundaries - Push node boundaries to at least the requested boundary
2276 * @nid: The nid of the node to push the boundary for
2277 * @start_pfn: The start pfn of the node
2278 * @end_pfn: The end pfn of the node
2279 *
2280 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2281 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2282 * be hotplugged even though no physical memory exists. This function allows
2283 * an arch to push out the node boundaries so mem_map is allocated that can
2284 * be used later.
2285 */
2286 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2287 void __init push_node_boundaries(unsigned int nid,
2288 unsigned long start_pfn, unsigned long end_pfn)
2289 {
2290 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2291 nid, start_pfn, end_pfn);
2292
2293 /* Initialise the boundary for this node if necessary */
2294 if (node_boundary_end_pfn[nid] == 0)
2295 node_boundary_start_pfn[nid] = -1UL;
2296
2297 /* Update the boundaries */
2298 if (node_boundary_start_pfn[nid] > start_pfn)
2299 node_boundary_start_pfn[nid] = start_pfn;
2300 if (node_boundary_end_pfn[nid] < end_pfn)
2301 node_boundary_end_pfn[nid] = end_pfn;
2302 }
2303
2304 /* If necessary, push the node boundary out for reserve hotadd */
2305 static void __init account_node_boundary(unsigned int nid,
2306 unsigned long *start_pfn, unsigned long *end_pfn)
2307 {
2308 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2309 nid, *start_pfn, *end_pfn);
2310
2311 /* Return if boundary information has not been provided */
2312 if (node_boundary_end_pfn[nid] == 0)
2313 return;
2314
2315 /* Check the boundaries and update if necessary */
2316 if (node_boundary_start_pfn[nid] < *start_pfn)
2317 *start_pfn = node_boundary_start_pfn[nid];
2318 if (node_boundary_end_pfn[nid] > *end_pfn)
2319 *end_pfn = node_boundary_end_pfn[nid];
2320 }
2321 #else
2322 void __init push_node_boundaries(unsigned int nid,
2323 unsigned long start_pfn, unsigned long end_pfn) {}
2324
2325 static void __init account_node_boundary(unsigned int nid,
2326 unsigned long *start_pfn, unsigned long *end_pfn) {}
2327 #endif
2328
2329
2330 /**
2331 * get_pfn_range_for_nid - Return the start and end page frames for a node
2332 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2333 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2334 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2335 *
2336 * It returns the start and end page frame of a node based on information
2337 * provided by an arch calling add_active_range(). If called for a node
2338 * with no available memory, a warning is printed and the start and end
2339 * PFNs will be 0.
2340 */
2341 void __init get_pfn_range_for_nid(unsigned int nid,
2342 unsigned long *start_pfn, unsigned long *end_pfn)
2343 {
2344 int i;
2345 *start_pfn = -1UL;
2346 *end_pfn = 0;
2347
2348 for_each_active_range_index_in_nid(i, nid) {
2349 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2350 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2351 }
2352
2353 if (*start_pfn == -1UL) {
2354 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2355 *start_pfn = 0;
2356 }
2357
2358 /* Push the node boundaries out if requested */
2359 account_node_boundary(nid, start_pfn, end_pfn);
2360 }
2361
2362 /*
2363 * Return the number of pages a zone spans in a node, including holes
2364 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2365 */
2366 unsigned long __init zone_spanned_pages_in_node(int nid,
2367 unsigned long zone_type,
2368 unsigned long *ignored)
2369 {
2370 unsigned long node_start_pfn, node_end_pfn;
2371 unsigned long zone_start_pfn, zone_end_pfn;
2372
2373 /* Get the start and end of the node and zone */
2374 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2375 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2376 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2377
2378 /* Check that this node has pages within the zone's required range */
2379 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2380 return 0;
2381
2382 /* Move the zone boundaries inside the node if necessary */
2383 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2384 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2385
2386 /* Return the spanned pages */
2387 return zone_end_pfn - zone_start_pfn;
2388 }
2389
2390 /*
2391 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2392 * then all holes in the requested range will be accounted for.
2393 */
2394 unsigned long __init __absent_pages_in_range(int nid,
2395 unsigned long range_start_pfn,
2396 unsigned long range_end_pfn)
2397 {
2398 int i = 0;
2399 unsigned long prev_end_pfn = 0, hole_pages = 0;
2400 unsigned long start_pfn;
2401
2402 /* Find the end_pfn of the first active range of pfns in the node */
2403 i = first_active_region_index_in_nid(nid);
2404 if (i == -1)
2405 return 0;
2406
2407 /* Account for ranges before physical memory on this node */
2408 if (early_node_map[i].start_pfn > range_start_pfn)
2409 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2410
2411 prev_end_pfn = early_node_map[i].start_pfn;
2412
2413 /* Find all holes for the zone within the node */
2414 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2415
2416 /* No need to continue if prev_end_pfn is outside the zone */
2417 if (prev_end_pfn >= range_end_pfn)
2418 break;
2419
2420 /* Make sure the end of the zone is not within the hole */
2421 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2422 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2423
2424 /* Update the hole size cound and move on */
2425 if (start_pfn > range_start_pfn) {
2426 BUG_ON(prev_end_pfn > start_pfn);
2427 hole_pages += start_pfn - prev_end_pfn;
2428 }
2429 prev_end_pfn = early_node_map[i].end_pfn;
2430 }
2431
2432 /* Account for ranges past physical memory on this node */
2433 if (range_end_pfn > prev_end_pfn)
2434 hole_pages += range_end_pfn -
2435 max(range_start_pfn, prev_end_pfn);
2436
2437 return hole_pages;
2438 }
2439
2440 /**
2441 * absent_pages_in_range - Return number of page frames in holes within a range
2442 * @start_pfn: The start PFN to start searching for holes
2443 * @end_pfn: The end PFN to stop searching for holes
2444 *
2445 * It returns the number of pages frames in memory holes within a range.
2446 */
2447 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2448 unsigned long end_pfn)
2449 {
2450 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2451 }
2452
2453 /* Return the number of page frames in holes in a zone on a node */
2454 unsigned long __init zone_absent_pages_in_node(int nid,
2455 unsigned long zone_type,
2456 unsigned long *ignored)
2457 {
2458 unsigned long node_start_pfn, node_end_pfn;
2459 unsigned long zone_start_pfn, zone_end_pfn;
2460
2461 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2462 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2463 node_start_pfn);
2464 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2465 node_end_pfn);
2466
2467 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2468 }
2469
2470 #else
2471 static inline unsigned long zone_spanned_pages_in_node(int nid,
2472 unsigned long zone_type,
2473 unsigned long *zones_size)
2474 {
2475 return zones_size[zone_type];
2476 }
2477
2478 static inline unsigned long zone_absent_pages_in_node(int nid,
2479 unsigned long zone_type,
2480 unsigned long *zholes_size)
2481 {
2482 if (!zholes_size)
2483 return 0;
2484
2485 return zholes_size[zone_type];
2486 }
2487
2488 #endif
2489
2490 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2491 unsigned long *zones_size, unsigned long *zholes_size)
2492 {
2493 unsigned long realtotalpages, totalpages = 0;
2494 enum zone_type i;
2495
2496 for (i = 0; i < MAX_NR_ZONES; i++)
2497 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2498 zones_size);
2499 pgdat->node_spanned_pages = totalpages;
2500
2501 realtotalpages = totalpages;
2502 for (i = 0; i < MAX_NR_ZONES; i++)
2503 realtotalpages -=
2504 zone_absent_pages_in_node(pgdat->node_id, i,
2505 zholes_size);
2506 pgdat->node_present_pages = realtotalpages;
2507 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2508 realtotalpages);
2509 }
2510
2511 /*
2512 * Set up the zone data structures:
2513 * - mark all pages reserved
2514 * - mark all memory queues empty
2515 * - clear the memory bitmaps
2516 */
2517 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2518 unsigned long *zones_size, unsigned long *zholes_size)
2519 {
2520 enum zone_type j;
2521 int nid = pgdat->node_id;
2522 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2523 int ret;
2524
2525 pgdat_resize_init(pgdat);
2526 pgdat->nr_zones = 0;
2527 init_waitqueue_head(&pgdat->kswapd_wait);
2528 pgdat->kswapd_max_order = 0;
2529
2530 for (j = 0; j < MAX_NR_ZONES; j++) {
2531 struct zone *zone = pgdat->node_zones + j;
2532 unsigned long size, realsize, memmap_pages;
2533
2534 size = zone_spanned_pages_in_node(nid, j, zones_size);
2535 realsize = size - zone_absent_pages_in_node(nid, j,
2536 zholes_size);
2537
2538 /*
2539 * Adjust realsize so that it accounts for how much memory
2540 * is used by this zone for memmap. This affects the watermark
2541 * and per-cpu initialisations
2542 */
2543 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2544 if (realsize >= memmap_pages) {
2545 realsize -= memmap_pages;
2546 printk(KERN_DEBUG
2547 " %s zone: %lu pages used for memmap\n",
2548 zone_names[j], memmap_pages);
2549 } else
2550 printk(KERN_WARNING
2551 " %s zone: %lu pages exceeds realsize %lu\n",
2552 zone_names[j], memmap_pages, realsize);
2553
2554 /* Account for reserved DMA pages */
2555 if (j == ZONE_DMA && realsize > dma_reserve) {
2556 realsize -= dma_reserve;
2557 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2558 dma_reserve);
2559 }
2560
2561 if (!is_highmem_idx(j))
2562 nr_kernel_pages += realsize;
2563 nr_all_pages += realsize;
2564
2565 zone->spanned_pages = size;
2566 zone->present_pages = realsize;
2567 #ifdef CONFIG_NUMA
2568 zone->node = nid;
2569 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2570 / 100;
2571 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2572 #endif
2573 zone->name = zone_names[j];
2574 spin_lock_init(&zone->lock);
2575 spin_lock_init(&zone->lru_lock);
2576 zone_seqlock_init(zone);
2577 zone->zone_pgdat = pgdat;
2578 zone->free_pages = 0;
2579
2580 zone->prev_priority = DEF_PRIORITY;
2581
2582 zone_pcp_init(zone);
2583 INIT_LIST_HEAD(&zone->active_list);
2584 INIT_LIST_HEAD(&zone->inactive_list);
2585 zone->nr_scan_active = 0;
2586 zone->nr_scan_inactive = 0;
2587 zone->nr_active = 0;
2588 zone->nr_inactive = 0;
2589 zap_zone_vm_stats(zone);
2590 atomic_set(&zone->reclaim_in_progress, 0);
2591 if (!size)
2592 continue;
2593
2594 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2595 BUG_ON(ret);
2596 zone_start_pfn += size;
2597 }
2598 }
2599
2600 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2601 {
2602 /* Skip empty nodes */
2603 if (!pgdat->node_spanned_pages)
2604 return;
2605
2606 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2607 /* ia64 gets its own node_mem_map, before this, without bootmem */
2608 if (!pgdat->node_mem_map) {
2609 unsigned long size, start, end;
2610 struct page *map;
2611
2612 /*
2613 * The zone's endpoints aren't required to be MAX_ORDER
2614 * aligned but the node_mem_map endpoints must be in order
2615 * for the buddy allocator to function correctly.
2616 */
2617 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2618 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2619 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2620 size = (end - start) * sizeof(struct page);
2621 map = alloc_remap(pgdat->node_id, size);
2622 if (!map)
2623 map = alloc_bootmem_node(pgdat, size);
2624 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2625 }
2626 #ifdef CONFIG_FLATMEM
2627 /*
2628 * With no DISCONTIG, the global mem_map is just set as node 0's
2629 */
2630 if (pgdat == NODE_DATA(0)) {
2631 mem_map = NODE_DATA(0)->node_mem_map;
2632 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2633 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2634 mem_map -= pgdat->node_start_pfn;
2635 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2636 }
2637 #endif
2638 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2639 }
2640
2641 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2642 unsigned long *zones_size, unsigned long node_start_pfn,
2643 unsigned long *zholes_size)
2644 {
2645 pgdat->node_id = nid;
2646 pgdat->node_start_pfn = node_start_pfn;
2647 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2648
2649 alloc_node_mem_map(pgdat);
2650
2651 free_area_init_core(pgdat, zones_size, zholes_size);
2652 }
2653
2654 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2655 /**
2656 * add_active_range - Register a range of PFNs backed by physical memory
2657 * @nid: The node ID the range resides on
2658 * @start_pfn: The start PFN of the available physical memory
2659 * @end_pfn: The end PFN of the available physical memory
2660 *
2661 * These ranges are stored in an early_node_map[] and later used by
2662 * free_area_init_nodes() to calculate zone sizes and holes. If the
2663 * range spans a memory hole, it is up to the architecture to ensure
2664 * the memory is not freed by the bootmem allocator. If possible
2665 * the range being registered will be merged with existing ranges.
2666 */
2667 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2668 unsigned long end_pfn)
2669 {
2670 int i;
2671
2672 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2673 "%d entries of %d used\n",
2674 nid, start_pfn, end_pfn,
2675 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2676
2677 /* Merge with existing active regions if possible */
2678 for (i = 0; i < nr_nodemap_entries; i++) {
2679 if (early_node_map[i].nid != nid)
2680 continue;
2681
2682 /* Skip if an existing region covers this new one */
2683 if (start_pfn >= early_node_map[i].start_pfn &&
2684 end_pfn <= early_node_map[i].end_pfn)
2685 return;
2686
2687 /* Merge forward if suitable */
2688 if (start_pfn <= early_node_map[i].end_pfn &&
2689 end_pfn > early_node_map[i].end_pfn) {
2690 early_node_map[i].end_pfn = end_pfn;
2691 return;
2692 }
2693
2694 /* Merge backward if suitable */
2695 if (start_pfn < early_node_map[i].end_pfn &&
2696 end_pfn >= early_node_map[i].start_pfn) {
2697 early_node_map[i].start_pfn = start_pfn;
2698 return;
2699 }
2700 }
2701
2702 /* Check that early_node_map is large enough */
2703 if (i >= MAX_ACTIVE_REGIONS) {
2704 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2705 MAX_ACTIVE_REGIONS);
2706 return;
2707 }
2708
2709 early_node_map[i].nid = nid;
2710 early_node_map[i].start_pfn = start_pfn;
2711 early_node_map[i].end_pfn = end_pfn;
2712 nr_nodemap_entries = i + 1;
2713 }
2714
2715 /**
2716 * shrink_active_range - Shrink an existing registered range of PFNs
2717 * @nid: The node id the range is on that should be shrunk
2718 * @old_end_pfn: The old end PFN of the range
2719 * @new_end_pfn: The new PFN of the range
2720 *
2721 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2722 * The map is kept at the end physical page range that has already been
2723 * registered with add_active_range(). This function allows an arch to shrink
2724 * an existing registered range.
2725 */
2726 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2727 unsigned long new_end_pfn)
2728 {
2729 int i;
2730
2731 /* Find the old active region end and shrink */
2732 for_each_active_range_index_in_nid(i, nid)
2733 if (early_node_map[i].end_pfn == old_end_pfn) {
2734 early_node_map[i].end_pfn = new_end_pfn;
2735 break;
2736 }
2737 }
2738
2739 /**
2740 * remove_all_active_ranges - Remove all currently registered regions
2741 *
2742 * During discovery, it may be found that a table like SRAT is invalid
2743 * and an alternative discovery method must be used. This function removes
2744 * all currently registered regions.
2745 */
2746 void __init remove_all_active_ranges(void)
2747 {
2748 memset(early_node_map, 0, sizeof(early_node_map));
2749 nr_nodemap_entries = 0;
2750 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2751 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2752 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2753 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2754 }
2755
2756 /* Compare two active node_active_regions */
2757 static int __init cmp_node_active_region(const void *a, const void *b)
2758 {
2759 struct node_active_region *arange = (struct node_active_region *)a;
2760 struct node_active_region *brange = (struct node_active_region *)b;
2761
2762 /* Done this way to avoid overflows */
2763 if (arange->start_pfn > brange->start_pfn)
2764 return 1;
2765 if (arange->start_pfn < brange->start_pfn)
2766 return -1;
2767
2768 return 0;
2769 }
2770
2771 /* sort the node_map by start_pfn */
2772 static void __init sort_node_map(void)
2773 {
2774 sort(early_node_map, (size_t)nr_nodemap_entries,
2775 sizeof(struct node_active_region),
2776 cmp_node_active_region, NULL);
2777 }
2778
2779 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2780 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2781 {
2782 int i;
2783
2784 /* Regions in the early_node_map can be in any order */
2785 sort_node_map();
2786
2787 /* Assuming a sorted map, the first range found has the starting pfn */
2788 for_each_active_range_index_in_nid(i, nid)
2789 return early_node_map[i].start_pfn;
2790
2791 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2792 return 0;
2793 }
2794
2795 /**
2796 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2797 *
2798 * It returns the minimum PFN based on information provided via
2799 * add_active_range().
2800 */
2801 unsigned long __init find_min_pfn_with_active_regions(void)
2802 {
2803 return find_min_pfn_for_node(MAX_NUMNODES);
2804 }
2805
2806 /**
2807 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2808 *
2809 * It returns the maximum PFN based on information provided via
2810 * add_active_range().
2811 */
2812 unsigned long __init find_max_pfn_with_active_regions(void)
2813 {
2814 int i;
2815 unsigned long max_pfn = 0;
2816
2817 for (i = 0; i < nr_nodemap_entries; i++)
2818 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2819
2820 return max_pfn;
2821 }
2822
2823 /**
2824 * free_area_init_nodes - Initialise all pg_data_t and zone data
2825 * @max_zone_pfn: an array of max PFNs for each zone
2826 *
2827 * This will call free_area_init_node() for each active node in the system.
2828 * Using the page ranges provided by add_active_range(), the size of each
2829 * zone in each node and their holes is calculated. If the maximum PFN
2830 * between two adjacent zones match, it is assumed that the zone is empty.
2831 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2832 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2833 * starts where the previous one ended. For example, ZONE_DMA32 starts
2834 * at arch_max_dma_pfn.
2835 */
2836 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2837 {
2838 unsigned long nid;
2839 enum zone_type i;
2840
2841 /* Record where the zone boundaries are */
2842 memset(arch_zone_lowest_possible_pfn, 0,
2843 sizeof(arch_zone_lowest_possible_pfn));
2844 memset(arch_zone_highest_possible_pfn, 0,
2845 sizeof(arch_zone_highest_possible_pfn));
2846 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2847 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2848 for (i = 1; i < MAX_NR_ZONES; i++) {
2849 arch_zone_lowest_possible_pfn[i] =
2850 arch_zone_highest_possible_pfn[i-1];
2851 arch_zone_highest_possible_pfn[i] =
2852 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2853 }
2854
2855 /* Print out the zone ranges */
2856 printk("Zone PFN ranges:\n");
2857 for (i = 0; i < MAX_NR_ZONES; i++)
2858 printk(" %-8s %8lu -> %8lu\n",
2859 zone_names[i],
2860 arch_zone_lowest_possible_pfn[i],
2861 arch_zone_highest_possible_pfn[i]);
2862
2863 /* Print out the early_node_map[] */
2864 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2865 for (i = 0; i < nr_nodemap_entries; i++)
2866 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2867 early_node_map[i].start_pfn,
2868 early_node_map[i].end_pfn);
2869
2870 /* Initialise every node */
2871 for_each_online_node(nid) {
2872 pg_data_t *pgdat = NODE_DATA(nid);
2873 free_area_init_node(nid, pgdat, NULL,
2874 find_min_pfn_for_node(nid), NULL);
2875 }
2876 }
2877 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2878
2879 /**
2880 * set_dma_reserve - set the specified number of pages reserved in the first zone
2881 * @new_dma_reserve: The number of pages to mark reserved
2882 *
2883 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2884 * In the DMA zone, a significant percentage may be consumed by kernel image
2885 * and other unfreeable allocations which can skew the watermarks badly. This
2886 * function may optionally be used to account for unfreeable pages in the
2887 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2888 * smaller per-cpu batchsize.
2889 */
2890 void __init set_dma_reserve(unsigned long new_dma_reserve)
2891 {
2892 dma_reserve = new_dma_reserve;
2893 }
2894
2895 #ifndef CONFIG_NEED_MULTIPLE_NODES
2896 static bootmem_data_t contig_bootmem_data;
2897 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2898
2899 EXPORT_SYMBOL(contig_page_data);
2900 #endif
2901
2902 void __init free_area_init(unsigned long *zones_size)
2903 {
2904 free_area_init_node(0, NODE_DATA(0), zones_size,
2905 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2906 }
2907
2908 static int page_alloc_cpu_notify(struct notifier_block *self,
2909 unsigned long action, void *hcpu)
2910 {
2911 int cpu = (unsigned long)hcpu;
2912
2913 if (action == CPU_DEAD) {
2914 local_irq_disable();
2915 __drain_pages(cpu);
2916 vm_events_fold_cpu(cpu);
2917 local_irq_enable();
2918 refresh_cpu_vm_stats(cpu);
2919 }
2920 return NOTIFY_OK;
2921 }
2922
2923 void __init page_alloc_init(void)
2924 {
2925 hotcpu_notifier(page_alloc_cpu_notify, 0);
2926 }
2927
2928 /*
2929 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2930 * or min_free_kbytes changes.
2931 */
2932 static void calculate_totalreserve_pages(void)
2933 {
2934 struct pglist_data *pgdat;
2935 unsigned long reserve_pages = 0;
2936 enum zone_type i, j;
2937
2938 for_each_online_pgdat(pgdat) {
2939 for (i = 0; i < MAX_NR_ZONES; i++) {
2940 struct zone *zone = pgdat->node_zones + i;
2941 unsigned long max = 0;
2942
2943 /* Find valid and maximum lowmem_reserve in the zone */
2944 for (j = i; j < MAX_NR_ZONES; j++) {
2945 if (zone->lowmem_reserve[j] > max)
2946 max = zone->lowmem_reserve[j];
2947 }
2948
2949 /* we treat pages_high as reserved pages. */
2950 max += zone->pages_high;
2951
2952 if (max > zone->present_pages)
2953 max = zone->present_pages;
2954 reserve_pages += max;
2955 }
2956 }
2957 totalreserve_pages = reserve_pages;
2958 }
2959
2960 /*
2961 * setup_per_zone_lowmem_reserve - called whenever
2962 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2963 * has a correct pages reserved value, so an adequate number of
2964 * pages are left in the zone after a successful __alloc_pages().
2965 */
2966 static void setup_per_zone_lowmem_reserve(void)
2967 {
2968 struct pglist_data *pgdat;
2969 enum zone_type j, idx;
2970
2971 for_each_online_pgdat(pgdat) {
2972 for (j = 0; j < MAX_NR_ZONES; j++) {
2973 struct zone *zone = pgdat->node_zones + j;
2974 unsigned long present_pages = zone->present_pages;
2975
2976 zone->lowmem_reserve[j] = 0;
2977
2978 idx = j;
2979 while (idx) {
2980 struct zone *lower_zone;
2981
2982 idx--;
2983
2984 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2985 sysctl_lowmem_reserve_ratio[idx] = 1;
2986
2987 lower_zone = pgdat->node_zones + idx;
2988 lower_zone->lowmem_reserve[j] = present_pages /
2989 sysctl_lowmem_reserve_ratio[idx];
2990 present_pages += lower_zone->present_pages;
2991 }
2992 }
2993 }
2994
2995 /* update totalreserve_pages */
2996 calculate_totalreserve_pages();
2997 }
2998
2999 /**
3000 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3001 *
3002 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3003 * with respect to min_free_kbytes.
3004 */
3005 void setup_per_zone_pages_min(void)
3006 {
3007 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3008 unsigned long lowmem_pages = 0;
3009 struct zone *zone;
3010 unsigned long flags;
3011
3012 /* Calculate total number of !ZONE_HIGHMEM pages */
3013 for_each_zone(zone) {
3014 if (!is_highmem(zone))
3015 lowmem_pages += zone->present_pages;
3016 }
3017
3018 for_each_zone(zone) {
3019 u64 tmp;
3020
3021 spin_lock_irqsave(&zone->lru_lock, flags);
3022 tmp = (u64)pages_min * zone->present_pages;
3023 do_div(tmp, lowmem_pages);
3024 if (is_highmem(zone)) {
3025 /*
3026 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3027 * need highmem pages, so cap pages_min to a small
3028 * value here.
3029 *
3030 * The (pages_high-pages_low) and (pages_low-pages_min)
3031 * deltas controls asynch page reclaim, and so should
3032 * not be capped for highmem.
3033 */
3034 int min_pages;
3035
3036 min_pages = zone->present_pages / 1024;
3037 if (min_pages < SWAP_CLUSTER_MAX)
3038 min_pages = SWAP_CLUSTER_MAX;
3039 if (min_pages > 128)
3040 min_pages = 128;
3041 zone->pages_min = min_pages;
3042 } else {
3043 /*
3044 * If it's a lowmem zone, reserve a number of pages
3045 * proportionate to the zone's size.
3046 */
3047 zone->pages_min = tmp;
3048 }
3049
3050 zone->pages_low = zone->pages_min + (tmp >> 2);
3051 zone->pages_high = zone->pages_min + (tmp >> 1);
3052 spin_unlock_irqrestore(&zone->lru_lock, flags);
3053 }
3054
3055 /* update totalreserve_pages */
3056 calculate_totalreserve_pages();
3057 }
3058
3059 /*
3060 * Initialise min_free_kbytes.
3061 *
3062 * For small machines we want it small (128k min). For large machines
3063 * we want it large (64MB max). But it is not linear, because network
3064 * bandwidth does not increase linearly with machine size. We use
3065 *
3066 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3067 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3068 *
3069 * which yields
3070 *
3071 * 16MB: 512k
3072 * 32MB: 724k
3073 * 64MB: 1024k
3074 * 128MB: 1448k
3075 * 256MB: 2048k
3076 * 512MB: 2896k
3077 * 1024MB: 4096k
3078 * 2048MB: 5792k
3079 * 4096MB: 8192k
3080 * 8192MB: 11584k
3081 * 16384MB: 16384k
3082 */
3083 static int __init init_per_zone_pages_min(void)
3084 {
3085 unsigned long lowmem_kbytes;
3086
3087 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3088
3089 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3090 if (min_free_kbytes < 128)
3091 min_free_kbytes = 128;
3092 if (min_free_kbytes > 65536)
3093 min_free_kbytes = 65536;
3094 setup_per_zone_pages_min();
3095 setup_per_zone_lowmem_reserve();
3096 return 0;
3097 }
3098 module_init(init_per_zone_pages_min)
3099
3100 /*
3101 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3102 * that we can call two helper functions whenever min_free_kbytes
3103 * changes.
3104 */
3105 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3106 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3107 {
3108 proc_dointvec(table, write, file, buffer, length, ppos);
3109 setup_per_zone_pages_min();
3110 return 0;
3111 }
3112
3113 #ifdef CONFIG_NUMA
3114 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3115 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3116 {
3117 struct zone *zone;
3118 int rc;
3119
3120 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3121 if (rc)
3122 return rc;
3123
3124 for_each_zone(zone)
3125 zone->min_unmapped_pages = (zone->present_pages *
3126 sysctl_min_unmapped_ratio) / 100;
3127 return 0;
3128 }
3129
3130 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3131 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3132 {
3133 struct zone *zone;
3134 int rc;
3135
3136 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3137 if (rc)
3138 return rc;
3139
3140 for_each_zone(zone)
3141 zone->min_slab_pages = (zone->present_pages *
3142 sysctl_min_slab_ratio) / 100;
3143 return 0;
3144 }
3145 #endif
3146
3147 /*
3148 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3149 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3150 * whenever sysctl_lowmem_reserve_ratio changes.
3151 *
3152 * The reserve ratio obviously has absolutely no relation with the
3153 * pages_min watermarks. The lowmem reserve ratio can only make sense
3154 * if in function of the boot time zone sizes.
3155 */
3156 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3157 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3158 {
3159 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3160 setup_per_zone_lowmem_reserve();
3161 return 0;
3162 }
3163
3164 /*
3165 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3166 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3167 * can have before it gets flushed back to buddy allocator.
3168 */
3169
3170 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3171 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3172 {
3173 struct zone *zone;
3174 unsigned int cpu;
3175 int ret;
3176
3177 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3178 if (!write || (ret == -EINVAL))
3179 return ret;
3180 for_each_zone(zone) {
3181 for_each_online_cpu(cpu) {
3182 unsigned long high;
3183 high = zone->present_pages / percpu_pagelist_fraction;
3184 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3185 }
3186 }
3187 return 0;
3188 }
3189
3190 int hashdist = HASHDIST_DEFAULT;
3191
3192 #ifdef CONFIG_NUMA
3193 static int __init set_hashdist(char *str)
3194 {
3195 if (!str)
3196 return 0;
3197 hashdist = simple_strtoul(str, &str, 0);
3198 return 1;
3199 }
3200 __setup("hashdist=", set_hashdist);
3201 #endif
3202
3203 /*
3204 * allocate a large system hash table from bootmem
3205 * - it is assumed that the hash table must contain an exact power-of-2
3206 * quantity of entries
3207 * - limit is the number of hash buckets, not the total allocation size
3208 */
3209 void *__init alloc_large_system_hash(const char *tablename,
3210 unsigned long bucketsize,
3211 unsigned long numentries,
3212 int scale,
3213 int flags,
3214 unsigned int *_hash_shift,
3215 unsigned int *_hash_mask,
3216 unsigned long limit)
3217 {
3218 unsigned long long max = limit;
3219 unsigned long log2qty, size;
3220 void *table = NULL;
3221
3222 /* allow the kernel cmdline to have a say */
3223 if (!numentries) {
3224 /* round applicable memory size up to nearest megabyte */
3225 numentries = nr_kernel_pages;
3226 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3227 numentries >>= 20 - PAGE_SHIFT;
3228 numentries <<= 20 - PAGE_SHIFT;
3229
3230 /* limit to 1 bucket per 2^scale bytes of low memory */
3231 if (scale > PAGE_SHIFT)
3232 numentries >>= (scale - PAGE_SHIFT);
3233 else
3234 numentries <<= (PAGE_SHIFT - scale);
3235 }
3236 numentries = roundup_pow_of_two(numentries);
3237
3238 /* limit allocation size to 1/16 total memory by default */
3239 if (max == 0) {
3240 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3241 do_div(max, bucketsize);
3242 }
3243
3244 if (numentries > max)
3245 numentries = max;
3246
3247 log2qty = long_log2(numentries);
3248
3249 do {
3250 size = bucketsize << log2qty;
3251 if (flags & HASH_EARLY)
3252 table = alloc_bootmem(size);
3253 else if (hashdist)
3254 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3255 else {
3256 unsigned long order;
3257 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3258 ;
3259 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3260 }
3261 } while (!table && size > PAGE_SIZE && --log2qty);
3262
3263 if (!table)
3264 panic("Failed to allocate %s hash table\n", tablename);
3265
3266 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3267 tablename,
3268 (1U << log2qty),
3269 long_log2(size) - PAGE_SHIFT,
3270 size);
3271
3272 if (_hash_shift)
3273 *_hash_shift = log2qty;
3274 if (_hash_mask)
3275 *_hash_mask = (1 << log2qty) - 1;
3276
3277 return table;
3278 }
3279
3280 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3281 struct page *pfn_to_page(unsigned long pfn)
3282 {
3283 return __pfn_to_page(pfn);
3284 }
3285 unsigned long page_to_pfn(struct page *page)
3286 {
3287 return __page_to_pfn(page);
3288 }
3289 EXPORT_SYMBOL(pfn_to_page);
3290 EXPORT_SYMBOL(page_to_pfn);
3291 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3292
3293 #if MAX_NUMNODES > 1
3294 /*
3295 * Find the highest possible node id.
3296 */
3297 int highest_possible_node_id(void)
3298 {
3299 unsigned int node;
3300 unsigned int highest = 0;
3301
3302 for_each_node_mask(node, node_possible_map)
3303 highest = node;
3304 return highest;
3305 }
3306 EXPORT_SYMBOL(highest_possible_node_id);
3307 #endif
This page took 0.098418 seconds and 5 git commands to generate.