mm, page_owner: dump page owner info from dump_page()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252
253 static unsigned long __meminitdata nr_kernel_pages;
254 static unsigned long __meminitdata nr_all_pages;
255 static unsigned long __meminitdata dma_reserve;
256
257 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __initdata required_kernelcore;
261 static unsigned long __initdata required_movablecore;
262 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
263 static bool mirrored_kernelcore;
264
265 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266 int movable_zone;
267 EXPORT_SYMBOL(movable_zone);
268 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
269
270 #if MAX_NUMNODES > 1
271 int nr_node_ids __read_mostly = MAX_NUMNODES;
272 int nr_online_nodes __read_mostly = 1;
273 EXPORT_SYMBOL(nr_node_ids);
274 EXPORT_SYMBOL(nr_online_nodes);
275 #endif
276
277 int page_group_by_mobility_disabled __read_mostly;
278
279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280 static inline void reset_deferred_meminit(pg_data_t *pgdat)
281 {
282 pgdat->first_deferred_pfn = ULONG_MAX;
283 }
284
285 /* Returns true if the struct page for the pfn is uninitialised */
286 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
287 {
288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
289 return true;
290
291 return false;
292 }
293
294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295 {
296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 return true;
298
299 return false;
300 }
301
302 /*
303 * Returns false when the remaining initialisation should be deferred until
304 * later in the boot cycle when it can be parallelised.
305 */
306 static inline bool update_defer_init(pg_data_t *pgdat,
307 unsigned long pfn, unsigned long zone_end,
308 unsigned long *nr_initialised)
309 {
310 /* Always populate low zones for address-contrained allocations */
311 if (zone_end < pgdat_end_pfn(pgdat))
312 return true;
313
314 /* Initialise at least 2G of the highest zone */
315 (*nr_initialised)++;
316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 pgdat->first_deferred_pfn = pfn;
319 return false;
320 }
321
322 return true;
323 }
324 #else
325 static inline void reset_deferred_meminit(pg_data_t *pgdat)
326 {
327 }
328
329 static inline bool early_page_uninitialised(unsigned long pfn)
330 {
331 return false;
332 }
333
334 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335 {
336 return false;
337 }
338
339 static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342 {
343 return true;
344 }
345 #endif
346
347
348 void set_pageblock_migratetype(struct page *page, int migratetype)
349 {
350 if (unlikely(page_group_by_mobility_disabled &&
351 migratetype < MIGRATE_PCPTYPES))
352 migratetype = MIGRATE_UNMOVABLE;
353
354 set_pageblock_flags_group(page, (unsigned long)migratetype,
355 PB_migrate, PB_migrate_end);
356 }
357
358 #ifdef CONFIG_DEBUG_VM
359 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
360 {
361 int ret = 0;
362 unsigned seq;
363 unsigned long pfn = page_to_pfn(page);
364 unsigned long sp, start_pfn;
365
366 do {
367 seq = zone_span_seqbegin(zone);
368 start_pfn = zone->zone_start_pfn;
369 sp = zone->spanned_pages;
370 if (!zone_spans_pfn(zone, pfn))
371 ret = 1;
372 } while (zone_span_seqretry(zone, seq));
373
374 if (ret)
375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 pfn, zone_to_nid(zone), zone->name,
377 start_pfn, start_pfn + sp);
378
379 return ret;
380 }
381
382 static int page_is_consistent(struct zone *zone, struct page *page)
383 {
384 if (!pfn_valid_within(page_to_pfn(page)))
385 return 0;
386 if (zone != page_zone(page))
387 return 0;
388
389 return 1;
390 }
391 /*
392 * Temporary debugging check for pages not lying within a given zone.
393 */
394 static int bad_range(struct zone *zone, struct page *page)
395 {
396 if (page_outside_zone_boundaries(zone, page))
397 return 1;
398 if (!page_is_consistent(zone, page))
399 return 1;
400
401 return 0;
402 }
403 #else
404 static inline int bad_range(struct zone *zone, struct page *page)
405 {
406 return 0;
407 }
408 #endif
409
410 static void bad_page(struct page *page, const char *reason,
411 unsigned long bad_flags)
412 {
413 static unsigned long resume;
414 static unsigned long nr_shown;
415 static unsigned long nr_unshown;
416
417 /* Don't complain about poisoned pages */
418 if (PageHWPoison(page)) {
419 page_mapcount_reset(page); /* remove PageBuddy */
420 return;
421 }
422
423 /*
424 * Allow a burst of 60 reports, then keep quiet for that minute;
425 * or allow a steady drip of one report per second.
426 */
427 if (nr_shown == 60) {
428 if (time_before(jiffies, resume)) {
429 nr_unshown++;
430 goto out;
431 }
432 if (nr_unshown) {
433 printk(KERN_ALERT
434 "BUG: Bad page state: %lu messages suppressed\n",
435 nr_unshown);
436 nr_unshown = 0;
437 }
438 nr_shown = 0;
439 }
440 if (nr_shown++ == 0)
441 resume = jiffies + 60 * HZ;
442
443 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
444 current->comm, page_to_pfn(page));
445 dump_page_badflags(page, reason, bad_flags);
446 dump_page_owner(page);
447
448 print_modules();
449 dump_stack();
450 out:
451 /* Leave bad fields for debug, except PageBuddy could make trouble */
452 page_mapcount_reset(page); /* remove PageBuddy */
453 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
454 }
455
456 /*
457 * Higher-order pages are called "compound pages". They are structured thusly:
458 *
459 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
460 *
461 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
462 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
463 *
464 * The first tail page's ->compound_dtor holds the offset in array of compound
465 * page destructors. See compound_page_dtors.
466 *
467 * The first tail page's ->compound_order holds the order of allocation.
468 * This usage means that zero-order pages may not be compound.
469 */
470
471 void free_compound_page(struct page *page)
472 {
473 __free_pages_ok(page, compound_order(page));
474 }
475
476 void prep_compound_page(struct page *page, unsigned int order)
477 {
478 int i;
479 int nr_pages = 1 << order;
480
481 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
482 set_compound_order(page, order);
483 __SetPageHead(page);
484 for (i = 1; i < nr_pages; i++) {
485 struct page *p = page + i;
486 set_page_count(p, 0);
487 p->mapping = TAIL_MAPPING;
488 set_compound_head(p, page);
489 }
490 atomic_set(compound_mapcount_ptr(page), -1);
491 }
492
493 #ifdef CONFIG_DEBUG_PAGEALLOC
494 unsigned int _debug_guardpage_minorder;
495 bool _debug_pagealloc_enabled __read_mostly
496 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
497 bool _debug_guardpage_enabled __read_mostly;
498
499 static int __init early_debug_pagealloc(char *buf)
500 {
501 if (!buf)
502 return -EINVAL;
503
504 if (strcmp(buf, "on") == 0)
505 _debug_pagealloc_enabled = true;
506
507 if (strcmp(buf, "off") == 0)
508 _debug_pagealloc_enabled = false;
509
510 return 0;
511 }
512 early_param("debug_pagealloc", early_debug_pagealloc);
513
514 static bool need_debug_guardpage(void)
515 {
516 /* If we don't use debug_pagealloc, we don't need guard page */
517 if (!debug_pagealloc_enabled())
518 return false;
519
520 return true;
521 }
522
523 static void init_debug_guardpage(void)
524 {
525 if (!debug_pagealloc_enabled())
526 return;
527
528 _debug_guardpage_enabled = true;
529 }
530
531 struct page_ext_operations debug_guardpage_ops = {
532 .need = need_debug_guardpage,
533 .init = init_debug_guardpage,
534 };
535
536 static int __init debug_guardpage_minorder_setup(char *buf)
537 {
538 unsigned long res;
539
540 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
541 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
542 return 0;
543 }
544 _debug_guardpage_minorder = res;
545 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
546 return 0;
547 }
548 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
549
550 static inline void set_page_guard(struct zone *zone, struct page *page,
551 unsigned int order, int migratetype)
552 {
553 struct page_ext *page_ext;
554
555 if (!debug_guardpage_enabled())
556 return;
557
558 page_ext = lookup_page_ext(page);
559 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
560
561 INIT_LIST_HEAD(&page->lru);
562 set_page_private(page, order);
563 /* Guard pages are not available for any usage */
564 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
565 }
566
567 static inline void clear_page_guard(struct zone *zone, struct page *page,
568 unsigned int order, int migratetype)
569 {
570 struct page_ext *page_ext;
571
572 if (!debug_guardpage_enabled())
573 return;
574
575 page_ext = lookup_page_ext(page);
576 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
577
578 set_page_private(page, 0);
579 if (!is_migrate_isolate(migratetype))
580 __mod_zone_freepage_state(zone, (1 << order), migratetype);
581 }
582 #else
583 struct page_ext_operations debug_guardpage_ops = { NULL, };
584 static inline void set_page_guard(struct zone *zone, struct page *page,
585 unsigned int order, int migratetype) {}
586 static inline void clear_page_guard(struct zone *zone, struct page *page,
587 unsigned int order, int migratetype) {}
588 #endif
589
590 static inline void set_page_order(struct page *page, unsigned int order)
591 {
592 set_page_private(page, order);
593 __SetPageBuddy(page);
594 }
595
596 static inline void rmv_page_order(struct page *page)
597 {
598 __ClearPageBuddy(page);
599 set_page_private(page, 0);
600 }
601
602 /*
603 * This function checks whether a page is free && is the buddy
604 * we can do coalesce a page and its buddy if
605 * (a) the buddy is not in a hole &&
606 * (b) the buddy is in the buddy system &&
607 * (c) a page and its buddy have the same order &&
608 * (d) a page and its buddy are in the same zone.
609 *
610 * For recording whether a page is in the buddy system, we set ->_mapcount
611 * PAGE_BUDDY_MAPCOUNT_VALUE.
612 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
613 * serialized by zone->lock.
614 *
615 * For recording page's order, we use page_private(page).
616 */
617 static inline int page_is_buddy(struct page *page, struct page *buddy,
618 unsigned int order)
619 {
620 if (!pfn_valid_within(page_to_pfn(buddy)))
621 return 0;
622
623 if (page_is_guard(buddy) && page_order(buddy) == order) {
624 if (page_zone_id(page) != page_zone_id(buddy))
625 return 0;
626
627 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
628
629 return 1;
630 }
631
632 if (PageBuddy(buddy) && page_order(buddy) == order) {
633 /*
634 * zone check is done late to avoid uselessly
635 * calculating zone/node ids for pages that could
636 * never merge.
637 */
638 if (page_zone_id(page) != page_zone_id(buddy))
639 return 0;
640
641 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
642
643 return 1;
644 }
645 return 0;
646 }
647
648 /*
649 * Freeing function for a buddy system allocator.
650 *
651 * The concept of a buddy system is to maintain direct-mapped table
652 * (containing bit values) for memory blocks of various "orders".
653 * The bottom level table contains the map for the smallest allocatable
654 * units of memory (here, pages), and each level above it describes
655 * pairs of units from the levels below, hence, "buddies".
656 * At a high level, all that happens here is marking the table entry
657 * at the bottom level available, and propagating the changes upward
658 * as necessary, plus some accounting needed to play nicely with other
659 * parts of the VM system.
660 * At each level, we keep a list of pages, which are heads of continuous
661 * free pages of length of (1 << order) and marked with _mapcount
662 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
663 * field.
664 * So when we are allocating or freeing one, we can derive the state of the
665 * other. That is, if we allocate a small block, and both were
666 * free, the remainder of the region must be split into blocks.
667 * If a block is freed, and its buddy is also free, then this
668 * triggers coalescing into a block of larger size.
669 *
670 * -- nyc
671 */
672
673 static inline void __free_one_page(struct page *page,
674 unsigned long pfn,
675 struct zone *zone, unsigned int order,
676 int migratetype)
677 {
678 unsigned long page_idx;
679 unsigned long combined_idx;
680 unsigned long uninitialized_var(buddy_idx);
681 struct page *buddy;
682 unsigned int max_order = MAX_ORDER;
683
684 VM_BUG_ON(!zone_is_initialized(zone));
685 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
686
687 VM_BUG_ON(migratetype == -1);
688 if (is_migrate_isolate(migratetype)) {
689 /*
690 * We restrict max order of merging to prevent merge
691 * between freepages on isolate pageblock and normal
692 * pageblock. Without this, pageblock isolation
693 * could cause incorrect freepage accounting.
694 */
695 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
696 } else {
697 __mod_zone_freepage_state(zone, 1 << order, migratetype);
698 }
699
700 page_idx = pfn & ((1 << max_order) - 1);
701
702 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
703 VM_BUG_ON_PAGE(bad_range(zone, page), page);
704
705 while (order < max_order - 1) {
706 buddy_idx = __find_buddy_index(page_idx, order);
707 buddy = page + (buddy_idx - page_idx);
708 if (!page_is_buddy(page, buddy, order))
709 break;
710 /*
711 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
712 * merge with it and move up one order.
713 */
714 if (page_is_guard(buddy)) {
715 clear_page_guard(zone, buddy, order, migratetype);
716 } else {
717 list_del(&buddy->lru);
718 zone->free_area[order].nr_free--;
719 rmv_page_order(buddy);
720 }
721 combined_idx = buddy_idx & page_idx;
722 page = page + (combined_idx - page_idx);
723 page_idx = combined_idx;
724 order++;
725 }
726 set_page_order(page, order);
727
728 /*
729 * If this is not the largest possible page, check if the buddy
730 * of the next-highest order is free. If it is, it's possible
731 * that pages are being freed that will coalesce soon. In case,
732 * that is happening, add the free page to the tail of the list
733 * so it's less likely to be used soon and more likely to be merged
734 * as a higher order page
735 */
736 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
737 struct page *higher_page, *higher_buddy;
738 combined_idx = buddy_idx & page_idx;
739 higher_page = page + (combined_idx - page_idx);
740 buddy_idx = __find_buddy_index(combined_idx, order + 1);
741 higher_buddy = higher_page + (buddy_idx - combined_idx);
742 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
743 list_add_tail(&page->lru,
744 &zone->free_area[order].free_list[migratetype]);
745 goto out;
746 }
747 }
748
749 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
750 out:
751 zone->free_area[order].nr_free++;
752 }
753
754 static inline int free_pages_check(struct page *page)
755 {
756 const char *bad_reason = NULL;
757 unsigned long bad_flags = 0;
758
759 if (unlikely(atomic_read(&page->_mapcount) != -1))
760 bad_reason = "nonzero mapcount";
761 if (unlikely(page->mapping != NULL))
762 bad_reason = "non-NULL mapping";
763 if (unlikely(atomic_read(&page->_count) != 0))
764 bad_reason = "nonzero _count";
765 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
766 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
767 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
768 }
769 #ifdef CONFIG_MEMCG
770 if (unlikely(page->mem_cgroup))
771 bad_reason = "page still charged to cgroup";
772 #endif
773 if (unlikely(bad_reason)) {
774 bad_page(page, bad_reason, bad_flags);
775 return 1;
776 }
777 page_cpupid_reset_last(page);
778 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
779 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
780 return 0;
781 }
782
783 /*
784 * Frees a number of pages from the PCP lists
785 * Assumes all pages on list are in same zone, and of same order.
786 * count is the number of pages to free.
787 *
788 * If the zone was previously in an "all pages pinned" state then look to
789 * see if this freeing clears that state.
790 *
791 * And clear the zone's pages_scanned counter, to hold off the "all pages are
792 * pinned" detection logic.
793 */
794 static void free_pcppages_bulk(struct zone *zone, int count,
795 struct per_cpu_pages *pcp)
796 {
797 int migratetype = 0;
798 int batch_free = 0;
799 int to_free = count;
800 unsigned long nr_scanned;
801
802 spin_lock(&zone->lock);
803 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
804 if (nr_scanned)
805 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
806
807 while (to_free) {
808 struct page *page;
809 struct list_head *list;
810
811 /*
812 * Remove pages from lists in a round-robin fashion. A
813 * batch_free count is maintained that is incremented when an
814 * empty list is encountered. This is so more pages are freed
815 * off fuller lists instead of spinning excessively around empty
816 * lists
817 */
818 do {
819 batch_free++;
820 if (++migratetype == MIGRATE_PCPTYPES)
821 migratetype = 0;
822 list = &pcp->lists[migratetype];
823 } while (list_empty(list));
824
825 /* This is the only non-empty list. Free them all. */
826 if (batch_free == MIGRATE_PCPTYPES)
827 batch_free = to_free;
828
829 do {
830 int mt; /* migratetype of the to-be-freed page */
831
832 page = list_last_entry(list, struct page, lru);
833 /* must delete as __free_one_page list manipulates */
834 list_del(&page->lru);
835
836 mt = get_pcppage_migratetype(page);
837 /* MIGRATE_ISOLATE page should not go to pcplists */
838 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
839 /* Pageblock could have been isolated meanwhile */
840 if (unlikely(has_isolate_pageblock(zone)))
841 mt = get_pageblock_migratetype(page);
842
843 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
844 trace_mm_page_pcpu_drain(page, 0, mt);
845 } while (--to_free && --batch_free && !list_empty(list));
846 }
847 spin_unlock(&zone->lock);
848 }
849
850 static void free_one_page(struct zone *zone,
851 struct page *page, unsigned long pfn,
852 unsigned int order,
853 int migratetype)
854 {
855 unsigned long nr_scanned;
856 spin_lock(&zone->lock);
857 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
858 if (nr_scanned)
859 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
860
861 if (unlikely(has_isolate_pageblock(zone) ||
862 is_migrate_isolate(migratetype))) {
863 migratetype = get_pfnblock_migratetype(page, pfn);
864 }
865 __free_one_page(page, pfn, zone, order, migratetype);
866 spin_unlock(&zone->lock);
867 }
868
869 static int free_tail_pages_check(struct page *head_page, struct page *page)
870 {
871 int ret = 1;
872
873 /*
874 * We rely page->lru.next never has bit 0 set, unless the page
875 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
876 */
877 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
878
879 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
880 ret = 0;
881 goto out;
882 }
883 switch (page - head_page) {
884 case 1:
885 /* the first tail page: ->mapping is compound_mapcount() */
886 if (unlikely(compound_mapcount(page))) {
887 bad_page(page, "nonzero compound_mapcount", 0);
888 goto out;
889 }
890 break;
891 case 2:
892 /*
893 * the second tail page: ->mapping is
894 * page_deferred_list().next -- ignore value.
895 */
896 break;
897 default:
898 if (page->mapping != TAIL_MAPPING) {
899 bad_page(page, "corrupted mapping in tail page", 0);
900 goto out;
901 }
902 break;
903 }
904 if (unlikely(!PageTail(page))) {
905 bad_page(page, "PageTail not set", 0);
906 goto out;
907 }
908 if (unlikely(compound_head(page) != head_page)) {
909 bad_page(page, "compound_head not consistent", 0);
910 goto out;
911 }
912 ret = 0;
913 out:
914 page->mapping = NULL;
915 clear_compound_head(page);
916 return ret;
917 }
918
919 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
920 unsigned long zone, int nid)
921 {
922 set_page_links(page, zone, nid, pfn);
923 init_page_count(page);
924 page_mapcount_reset(page);
925 page_cpupid_reset_last(page);
926
927 INIT_LIST_HEAD(&page->lru);
928 #ifdef WANT_PAGE_VIRTUAL
929 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
930 if (!is_highmem_idx(zone))
931 set_page_address(page, __va(pfn << PAGE_SHIFT));
932 #endif
933 }
934
935 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
936 int nid)
937 {
938 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
939 }
940
941 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
942 static void init_reserved_page(unsigned long pfn)
943 {
944 pg_data_t *pgdat;
945 int nid, zid;
946
947 if (!early_page_uninitialised(pfn))
948 return;
949
950 nid = early_pfn_to_nid(pfn);
951 pgdat = NODE_DATA(nid);
952
953 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
954 struct zone *zone = &pgdat->node_zones[zid];
955
956 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
957 break;
958 }
959 __init_single_pfn(pfn, zid, nid);
960 }
961 #else
962 static inline void init_reserved_page(unsigned long pfn)
963 {
964 }
965 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
966
967 /*
968 * Initialised pages do not have PageReserved set. This function is
969 * called for each range allocated by the bootmem allocator and
970 * marks the pages PageReserved. The remaining valid pages are later
971 * sent to the buddy page allocator.
972 */
973 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
974 {
975 unsigned long start_pfn = PFN_DOWN(start);
976 unsigned long end_pfn = PFN_UP(end);
977
978 for (; start_pfn < end_pfn; start_pfn++) {
979 if (pfn_valid(start_pfn)) {
980 struct page *page = pfn_to_page(start_pfn);
981
982 init_reserved_page(start_pfn);
983
984 /* Avoid false-positive PageTail() */
985 INIT_LIST_HEAD(&page->lru);
986
987 SetPageReserved(page);
988 }
989 }
990 }
991
992 static bool free_pages_prepare(struct page *page, unsigned int order)
993 {
994 bool compound = PageCompound(page);
995 int i, bad = 0;
996
997 VM_BUG_ON_PAGE(PageTail(page), page);
998 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
999
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
1002 kasan_free_pages(page, order);
1003
1004 if (PageAnon(page))
1005 page->mapping = NULL;
1006 bad += free_pages_check(page);
1007 for (i = 1; i < (1 << order); i++) {
1008 if (compound)
1009 bad += free_tail_pages_check(page, page + i);
1010 bad += free_pages_check(page + i);
1011 }
1012 if (bad)
1013 return false;
1014
1015 reset_page_owner(page, order);
1016
1017 if (!PageHighMem(page)) {
1018 debug_check_no_locks_freed(page_address(page),
1019 PAGE_SIZE << order);
1020 debug_check_no_obj_freed(page_address(page),
1021 PAGE_SIZE << order);
1022 }
1023 arch_free_page(page, order);
1024 kernel_map_pages(page, 1 << order, 0);
1025
1026 return true;
1027 }
1028
1029 static void __free_pages_ok(struct page *page, unsigned int order)
1030 {
1031 unsigned long flags;
1032 int migratetype;
1033 unsigned long pfn = page_to_pfn(page);
1034
1035 if (!free_pages_prepare(page, order))
1036 return;
1037
1038 migratetype = get_pfnblock_migratetype(page, pfn);
1039 local_irq_save(flags);
1040 __count_vm_events(PGFREE, 1 << order);
1041 free_one_page(page_zone(page), page, pfn, order, migratetype);
1042 local_irq_restore(flags);
1043 }
1044
1045 static void __init __free_pages_boot_core(struct page *page,
1046 unsigned long pfn, unsigned int order)
1047 {
1048 unsigned int nr_pages = 1 << order;
1049 struct page *p = page;
1050 unsigned int loop;
1051
1052 prefetchw(p);
1053 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1054 prefetchw(p + 1);
1055 __ClearPageReserved(p);
1056 set_page_count(p, 0);
1057 }
1058 __ClearPageReserved(p);
1059 set_page_count(p, 0);
1060
1061 page_zone(page)->managed_pages += nr_pages;
1062 set_page_refcounted(page);
1063 __free_pages(page, order);
1064 }
1065
1066 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1067 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1068
1069 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1070
1071 int __meminit early_pfn_to_nid(unsigned long pfn)
1072 {
1073 static DEFINE_SPINLOCK(early_pfn_lock);
1074 int nid;
1075
1076 spin_lock(&early_pfn_lock);
1077 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1078 if (nid < 0)
1079 nid = 0;
1080 spin_unlock(&early_pfn_lock);
1081
1082 return nid;
1083 }
1084 #endif
1085
1086 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1087 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1088 struct mminit_pfnnid_cache *state)
1089 {
1090 int nid;
1091
1092 nid = __early_pfn_to_nid(pfn, state);
1093 if (nid >= 0 && nid != node)
1094 return false;
1095 return true;
1096 }
1097
1098 /* Only safe to use early in boot when initialisation is single-threaded */
1099 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1100 {
1101 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1102 }
1103
1104 #else
1105
1106 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1107 {
1108 return true;
1109 }
1110 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1111 struct mminit_pfnnid_cache *state)
1112 {
1113 return true;
1114 }
1115 #endif
1116
1117
1118 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1119 unsigned int order)
1120 {
1121 if (early_page_uninitialised(pfn))
1122 return;
1123 return __free_pages_boot_core(page, pfn, order);
1124 }
1125
1126 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1127 static void __init deferred_free_range(struct page *page,
1128 unsigned long pfn, int nr_pages)
1129 {
1130 int i;
1131
1132 if (!page)
1133 return;
1134
1135 /* Free a large naturally-aligned chunk if possible */
1136 if (nr_pages == MAX_ORDER_NR_PAGES &&
1137 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1138 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1139 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1140 return;
1141 }
1142
1143 for (i = 0; i < nr_pages; i++, page++, pfn++)
1144 __free_pages_boot_core(page, pfn, 0);
1145 }
1146
1147 /* Completion tracking for deferred_init_memmap() threads */
1148 static atomic_t pgdat_init_n_undone __initdata;
1149 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1150
1151 static inline void __init pgdat_init_report_one_done(void)
1152 {
1153 if (atomic_dec_and_test(&pgdat_init_n_undone))
1154 complete(&pgdat_init_all_done_comp);
1155 }
1156
1157 /* Initialise remaining memory on a node */
1158 static int __init deferred_init_memmap(void *data)
1159 {
1160 pg_data_t *pgdat = data;
1161 int nid = pgdat->node_id;
1162 struct mminit_pfnnid_cache nid_init_state = { };
1163 unsigned long start = jiffies;
1164 unsigned long nr_pages = 0;
1165 unsigned long walk_start, walk_end;
1166 int i, zid;
1167 struct zone *zone;
1168 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1169 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1170
1171 if (first_init_pfn == ULONG_MAX) {
1172 pgdat_init_report_one_done();
1173 return 0;
1174 }
1175
1176 /* Bind memory initialisation thread to a local node if possible */
1177 if (!cpumask_empty(cpumask))
1178 set_cpus_allowed_ptr(current, cpumask);
1179
1180 /* Sanity check boundaries */
1181 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1182 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1183 pgdat->first_deferred_pfn = ULONG_MAX;
1184
1185 /* Only the highest zone is deferred so find it */
1186 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1187 zone = pgdat->node_zones + zid;
1188 if (first_init_pfn < zone_end_pfn(zone))
1189 break;
1190 }
1191
1192 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1193 unsigned long pfn, end_pfn;
1194 struct page *page = NULL;
1195 struct page *free_base_page = NULL;
1196 unsigned long free_base_pfn = 0;
1197 int nr_to_free = 0;
1198
1199 end_pfn = min(walk_end, zone_end_pfn(zone));
1200 pfn = first_init_pfn;
1201 if (pfn < walk_start)
1202 pfn = walk_start;
1203 if (pfn < zone->zone_start_pfn)
1204 pfn = zone->zone_start_pfn;
1205
1206 for (; pfn < end_pfn; pfn++) {
1207 if (!pfn_valid_within(pfn))
1208 goto free_range;
1209
1210 /*
1211 * Ensure pfn_valid is checked every
1212 * MAX_ORDER_NR_PAGES for memory holes
1213 */
1214 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1215 if (!pfn_valid(pfn)) {
1216 page = NULL;
1217 goto free_range;
1218 }
1219 }
1220
1221 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1222 page = NULL;
1223 goto free_range;
1224 }
1225
1226 /* Minimise pfn page lookups and scheduler checks */
1227 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1228 page++;
1229 } else {
1230 nr_pages += nr_to_free;
1231 deferred_free_range(free_base_page,
1232 free_base_pfn, nr_to_free);
1233 free_base_page = NULL;
1234 free_base_pfn = nr_to_free = 0;
1235
1236 page = pfn_to_page(pfn);
1237 cond_resched();
1238 }
1239
1240 if (page->flags) {
1241 VM_BUG_ON(page_zone(page) != zone);
1242 goto free_range;
1243 }
1244
1245 __init_single_page(page, pfn, zid, nid);
1246 if (!free_base_page) {
1247 free_base_page = page;
1248 free_base_pfn = pfn;
1249 nr_to_free = 0;
1250 }
1251 nr_to_free++;
1252
1253 /* Where possible, batch up pages for a single free */
1254 continue;
1255 free_range:
1256 /* Free the current block of pages to allocator */
1257 nr_pages += nr_to_free;
1258 deferred_free_range(free_base_page, free_base_pfn,
1259 nr_to_free);
1260 free_base_page = NULL;
1261 free_base_pfn = nr_to_free = 0;
1262 }
1263
1264 first_init_pfn = max(end_pfn, first_init_pfn);
1265 }
1266
1267 /* Sanity check that the next zone really is unpopulated */
1268 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1269
1270 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1271 jiffies_to_msecs(jiffies - start));
1272
1273 pgdat_init_report_one_done();
1274 return 0;
1275 }
1276
1277 void __init page_alloc_init_late(void)
1278 {
1279 int nid;
1280
1281 /* There will be num_node_state(N_MEMORY) threads */
1282 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1283 for_each_node_state(nid, N_MEMORY) {
1284 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1285 }
1286
1287 /* Block until all are initialised */
1288 wait_for_completion(&pgdat_init_all_done_comp);
1289
1290 /* Reinit limits that are based on free pages after the kernel is up */
1291 files_maxfiles_init();
1292 }
1293 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1294
1295 #ifdef CONFIG_CMA
1296 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1297 void __init init_cma_reserved_pageblock(struct page *page)
1298 {
1299 unsigned i = pageblock_nr_pages;
1300 struct page *p = page;
1301
1302 do {
1303 __ClearPageReserved(p);
1304 set_page_count(p, 0);
1305 } while (++p, --i);
1306
1307 set_pageblock_migratetype(page, MIGRATE_CMA);
1308
1309 if (pageblock_order >= MAX_ORDER) {
1310 i = pageblock_nr_pages;
1311 p = page;
1312 do {
1313 set_page_refcounted(p);
1314 __free_pages(p, MAX_ORDER - 1);
1315 p += MAX_ORDER_NR_PAGES;
1316 } while (i -= MAX_ORDER_NR_PAGES);
1317 } else {
1318 set_page_refcounted(page);
1319 __free_pages(page, pageblock_order);
1320 }
1321
1322 adjust_managed_page_count(page, pageblock_nr_pages);
1323 }
1324 #endif
1325
1326 /*
1327 * The order of subdivision here is critical for the IO subsystem.
1328 * Please do not alter this order without good reasons and regression
1329 * testing. Specifically, as large blocks of memory are subdivided,
1330 * the order in which smaller blocks are delivered depends on the order
1331 * they're subdivided in this function. This is the primary factor
1332 * influencing the order in which pages are delivered to the IO
1333 * subsystem according to empirical testing, and this is also justified
1334 * by considering the behavior of a buddy system containing a single
1335 * large block of memory acted on by a series of small allocations.
1336 * This behavior is a critical factor in sglist merging's success.
1337 *
1338 * -- nyc
1339 */
1340 static inline void expand(struct zone *zone, struct page *page,
1341 int low, int high, struct free_area *area,
1342 int migratetype)
1343 {
1344 unsigned long size = 1 << high;
1345
1346 while (high > low) {
1347 area--;
1348 high--;
1349 size >>= 1;
1350 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1351
1352 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1353 debug_guardpage_enabled() &&
1354 high < debug_guardpage_minorder()) {
1355 /*
1356 * Mark as guard pages (or page), that will allow to
1357 * merge back to allocator when buddy will be freed.
1358 * Corresponding page table entries will not be touched,
1359 * pages will stay not present in virtual address space
1360 */
1361 set_page_guard(zone, &page[size], high, migratetype);
1362 continue;
1363 }
1364 list_add(&page[size].lru, &area->free_list[migratetype]);
1365 area->nr_free++;
1366 set_page_order(&page[size], high);
1367 }
1368 }
1369
1370 /*
1371 * This page is about to be returned from the page allocator
1372 */
1373 static inline int check_new_page(struct page *page)
1374 {
1375 const char *bad_reason = NULL;
1376 unsigned long bad_flags = 0;
1377
1378 if (unlikely(atomic_read(&page->_mapcount) != -1))
1379 bad_reason = "nonzero mapcount";
1380 if (unlikely(page->mapping != NULL))
1381 bad_reason = "non-NULL mapping";
1382 if (unlikely(atomic_read(&page->_count) != 0))
1383 bad_reason = "nonzero _count";
1384 if (unlikely(page->flags & __PG_HWPOISON)) {
1385 bad_reason = "HWPoisoned (hardware-corrupted)";
1386 bad_flags = __PG_HWPOISON;
1387 }
1388 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1389 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1390 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1391 }
1392 #ifdef CONFIG_MEMCG
1393 if (unlikely(page->mem_cgroup))
1394 bad_reason = "page still charged to cgroup";
1395 #endif
1396 if (unlikely(bad_reason)) {
1397 bad_page(page, bad_reason, bad_flags);
1398 return 1;
1399 }
1400 return 0;
1401 }
1402
1403 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1404 int alloc_flags)
1405 {
1406 int i;
1407
1408 for (i = 0; i < (1 << order); i++) {
1409 struct page *p = page + i;
1410 if (unlikely(check_new_page(p)))
1411 return 1;
1412 }
1413
1414 set_page_private(page, 0);
1415 set_page_refcounted(page);
1416
1417 arch_alloc_page(page, order);
1418 kernel_map_pages(page, 1 << order, 1);
1419 kasan_alloc_pages(page, order);
1420
1421 if (gfp_flags & __GFP_ZERO)
1422 for (i = 0; i < (1 << order); i++)
1423 clear_highpage(page + i);
1424
1425 if (order && (gfp_flags & __GFP_COMP))
1426 prep_compound_page(page, order);
1427
1428 set_page_owner(page, order, gfp_flags);
1429
1430 /*
1431 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1432 * allocate the page. The expectation is that the caller is taking
1433 * steps that will free more memory. The caller should avoid the page
1434 * being used for !PFMEMALLOC purposes.
1435 */
1436 if (alloc_flags & ALLOC_NO_WATERMARKS)
1437 set_page_pfmemalloc(page);
1438 else
1439 clear_page_pfmemalloc(page);
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * Go through the free lists for the given migratetype and remove
1446 * the smallest available page from the freelists
1447 */
1448 static inline
1449 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1450 int migratetype)
1451 {
1452 unsigned int current_order;
1453 struct free_area *area;
1454 struct page *page;
1455
1456 /* Find a page of the appropriate size in the preferred list */
1457 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1458 area = &(zone->free_area[current_order]);
1459 page = list_first_entry_or_null(&area->free_list[migratetype],
1460 struct page, lru);
1461 if (!page)
1462 continue;
1463 list_del(&page->lru);
1464 rmv_page_order(page);
1465 area->nr_free--;
1466 expand(zone, page, order, current_order, area, migratetype);
1467 set_pcppage_migratetype(page, migratetype);
1468 return page;
1469 }
1470
1471 return NULL;
1472 }
1473
1474
1475 /*
1476 * This array describes the order lists are fallen back to when
1477 * the free lists for the desirable migrate type are depleted
1478 */
1479 static int fallbacks[MIGRATE_TYPES][4] = {
1480 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1481 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1482 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1483 #ifdef CONFIG_CMA
1484 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1485 #endif
1486 #ifdef CONFIG_MEMORY_ISOLATION
1487 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1488 #endif
1489 };
1490
1491 #ifdef CONFIG_CMA
1492 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1493 unsigned int order)
1494 {
1495 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1496 }
1497 #else
1498 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1499 unsigned int order) { return NULL; }
1500 #endif
1501
1502 /*
1503 * Move the free pages in a range to the free lists of the requested type.
1504 * Note that start_page and end_pages are not aligned on a pageblock
1505 * boundary. If alignment is required, use move_freepages_block()
1506 */
1507 int move_freepages(struct zone *zone,
1508 struct page *start_page, struct page *end_page,
1509 int migratetype)
1510 {
1511 struct page *page;
1512 unsigned int order;
1513 int pages_moved = 0;
1514
1515 #ifndef CONFIG_HOLES_IN_ZONE
1516 /*
1517 * page_zone is not safe to call in this context when
1518 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1519 * anyway as we check zone boundaries in move_freepages_block().
1520 * Remove at a later date when no bug reports exist related to
1521 * grouping pages by mobility
1522 */
1523 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1524 #endif
1525
1526 for (page = start_page; page <= end_page;) {
1527 /* Make sure we are not inadvertently changing nodes */
1528 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1529
1530 if (!pfn_valid_within(page_to_pfn(page))) {
1531 page++;
1532 continue;
1533 }
1534
1535 if (!PageBuddy(page)) {
1536 page++;
1537 continue;
1538 }
1539
1540 order = page_order(page);
1541 list_move(&page->lru,
1542 &zone->free_area[order].free_list[migratetype]);
1543 page += 1 << order;
1544 pages_moved += 1 << order;
1545 }
1546
1547 return pages_moved;
1548 }
1549
1550 int move_freepages_block(struct zone *zone, struct page *page,
1551 int migratetype)
1552 {
1553 unsigned long start_pfn, end_pfn;
1554 struct page *start_page, *end_page;
1555
1556 start_pfn = page_to_pfn(page);
1557 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1558 start_page = pfn_to_page(start_pfn);
1559 end_page = start_page + pageblock_nr_pages - 1;
1560 end_pfn = start_pfn + pageblock_nr_pages - 1;
1561
1562 /* Do not cross zone boundaries */
1563 if (!zone_spans_pfn(zone, start_pfn))
1564 start_page = page;
1565 if (!zone_spans_pfn(zone, end_pfn))
1566 return 0;
1567
1568 return move_freepages(zone, start_page, end_page, migratetype);
1569 }
1570
1571 static void change_pageblock_range(struct page *pageblock_page,
1572 int start_order, int migratetype)
1573 {
1574 int nr_pageblocks = 1 << (start_order - pageblock_order);
1575
1576 while (nr_pageblocks--) {
1577 set_pageblock_migratetype(pageblock_page, migratetype);
1578 pageblock_page += pageblock_nr_pages;
1579 }
1580 }
1581
1582 /*
1583 * When we are falling back to another migratetype during allocation, try to
1584 * steal extra free pages from the same pageblocks to satisfy further
1585 * allocations, instead of polluting multiple pageblocks.
1586 *
1587 * If we are stealing a relatively large buddy page, it is likely there will
1588 * be more free pages in the pageblock, so try to steal them all. For
1589 * reclaimable and unmovable allocations, we steal regardless of page size,
1590 * as fragmentation caused by those allocations polluting movable pageblocks
1591 * is worse than movable allocations stealing from unmovable and reclaimable
1592 * pageblocks.
1593 */
1594 static bool can_steal_fallback(unsigned int order, int start_mt)
1595 {
1596 /*
1597 * Leaving this order check is intended, although there is
1598 * relaxed order check in next check. The reason is that
1599 * we can actually steal whole pageblock if this condition met,
1600 * but, below check doesn't guarantee it and that is just heuristic
1601 * so could be changed anytime.
1602 */
1603 if (order >= pageblock_order)
1604 return true;
1605
1606 if (order >= pageblock_order / 2 ||
1607 start_mt == MIGRATE_RECLAIMABLE ||
1608 start_mt == MIGRATE_UNMOVABLE ||
1609 page_group_by_mobility_disabled)
1610 return true;
1611
1612 return false;
1613 }
1614
1615 /*
1616 * This function implements actual steal behaviour. If order is large enough,
1617 * we can steal whole pageblock. If not, we first move freepages in this
1618 * pageblock and check whether half of pages are moved or not. If half of
1619 * pages are moved, we can change migratetype of pageblock and permanently
1620 * use it's pages as requested migratetype in the future.
1621 */
1622 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1623 int start_type)
1624 {
1625 unsigned int current_order = page_order(page);
1626 int pages;
1627
1628 /* Take ownership for orders >= pageblock_order */
1629 if (current_order >= pageblock_order) {
1630 change_pageblock_range(page, current_order, start_type);
1631 return;
1632 }
1633
1634 pages = move_freepages_block(zone, page, start_type);
1635
1636 /* Claim the whole block if over half of it is free */
1637 if (pages >= (1 << (pageblock_order-1)) ||
1638 page_group_by_mobility_disabled)
1639 set_pageblock_migratetype(page, start_type);
1640 }
1641
1642 /*
1643 * Check whether there is a suitable fallback freepage with requested order.
1644 * If only_stealable is true, this function returns fallback_mt only if
1645 * we can steal other freepages all together. This would help to reduce
1646 * fragmentation due to mixed migratetype pages in one pageblock.
1647 */
1648 int find_suitable_fallback(struct free_area *area, unsigned int order,
1649 int migratetype, bool only_stealable, bool *can_steal)
1650 {
1651 int i;
1652 int fallback_mt;
1653
1654 if (area->nr_free == 0)
1655 return -1;
1656
1657 *can_steal = false;
1658 for (i = 0;; i++) {
1659 fallback_mt = fallbacks[migratetype][i];
1660 if (fallback_mt == MIGRATE_TYPES)
1661 break;
1662
1663 if (list_empty(&area->free_list[fallback_mt]))
1664 continue;
1665
1666 if (can_steal_fallback(order, migratetype))
1667 *can_steal = true;
1668
1669 if (!only_stealable)
1670 return fallback_mt;
1671
1672 if (*can_steal)
1673 return fallback_mt;
1674 }
1675
1676 return -1;
1677 }
1678
1679 /*
1680 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1681 * there are no empty page blocks that contain a page with a suitable order
1682 */
1683 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1684 unsigned int alloc_order)
1685 {
1686 int mt;
1687 unsigned long max_managed, flags;
1688
1689 /*
1690 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1691 * Check is race-prone but harmless.
1692 */
1693 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1694 if (zone->nr_reserved_highatomic >= max_managed)
1695 return;
1696
1697 spin_lock_irqsave(&zone->lock, flags);
1698
1699 /* Recheck the nr_reserved_highatomic limit under the lock */
1700 if (zone->nr_reserved_highatomic >= max_managed)
1701 goto out_unlock;
1702
1703 /* Yoink! */
1704 mt = get_pageblock_migratetype(page);
1705 if (mt != MIGRATE_HIGHATOMIC &&
1706 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1707 zone->nr_reserved_highatomic += pageblock_nr_pages;
1708 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1709 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1710 }
1711
1712 out_unlock:
1713 spin_unlock_irqrestore(&zone->lock, flags);
1714 }
1715
1716 /*
1717 * Used when an allocation is about to fail under memory pressure. This
1718 * potentially hurts the reliability of high-order allocations when under
1719 * intense memory pressure but failed atomic allocations should be easier
1720 * to recover from than an OOM.
1721 */
1722 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1723 {
1724 struct zonelist *zonelist = ac->zonelist;
1725 unsigned long flags;
1726 struct zoneref *z;
1727 struct zone *zone;
1728 struct page *page;
1729 int order;
1730
1731 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1732 ac->nodemask) {
1733 /* Preserve at least one pageblock */
1734 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1735 continue;
1736
1737 spin_lock_irqsave(&zone->lock, flags);
1738 for (order = 0; order < MAX_ORDER; order++) {
1739 struct free_area *area = &(zone->free_area[order]);
1740
1741 page = list_first_entry_or_null(
1742 &area->free_list[MIGRATE_HIGHATOMIC],
1743 struct page, lru);
1744 if (!page)
1745 continue;
1746
1747 /*
1748 * It should never happen but changes to locking could
1749 * inadvertently allow a per-cpu drain to add pages
1750 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1751 * and watch for underflows.
1752 */
1753 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1754 zone->nr_reserved_highatomic);
1755
1756 /*
1757 * Convert to ac->migratetype and avoid the normal
1758 * pageblock stealing heuristics. Minimally, the caller
1759 * is doing the work and needs the pages. More
1760 * importantly, if the block was always converted to
1761 * MIGRATE_UNMOVABLE or another type then the number
1762 * of pageblocks that cannot be completely freed
1763 * may increase.
1764 */
1765 set_pageblock_migratetype(page, ac->migratetype);
1766 move_freepages_block(zone, page, ac->migratetype);
1767 spin_unlock_irqrestore(&zone->lock, flags);
1768 return;
1769 }
1770 spin_unlock_irqrestore(&zone->lock, flags);
1771 }
1772 }
1773
1774 /* Remove an element from the buddy allocator from the fallback list */
1775 static inline struct page *
1776 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1777 {
1778 struct free_area *area;
1779 unsigned int current_order;
1780 struct page *page;
1781 int fallback_mt;
1782 bool can_steal;
1783
1784 /* Find the largest possible block of pages in the other list */
1785 for (current_order = MAX_ORDER-1;
1786 current_order >= order && current_order <= MAX_ORDER-1;
1787 --current_order) {
1788 area = &(zone->free_area[current_order]);
1789 fallback_mt = find_suitable_fallback(area, current_order,
1790 start_migratetype, false, &can_steal);
1791 if (fallback_mt == -1)
1792 continue;
1793
1794 page = list_first_entry(&area->free_list[fallback_mt],
1795 struct page, lru);
1796 if (can_steal)
1797 steal_suitable_fallback(zone, page, start_migratetype);
1798
1799 /* Remove the page from the freelists */
1800 area->nr_free--;
1801 list_del(&page->lru);
1802 rmv_page_order(page);
1803
1804 expand(zone, page, order, current_order, area,
1805 start_migratetype);
1806 /*
1807 * The pcppage_migratetype may differ from pageblock's
1808 * migratetype depending on the decisions in
1809 * find_suitable_fallback(). This is OK as long as it does not
1810 * differ for MIGRATE_CMA pageblocks. Those can be used as
1811 * fallback only via special __rmqueue_cma_fallback() function
1812 */
1813 set_pcppage_migratetype(page, start_migratetype);
1814
1815 trace_mm_page_alloc_extfrag(page, order, current_order,
1816 start_migratetype, fallback_mt);
1817
1818 return page;
1819 }
1820
1821 return NULL;
1822 }
1823
1824 /*
1825 * Do the hard work of removing an element from the buddy allocator.
1826 * Call me with the zone->lock already held.
1827 */
1828 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1829 int migratetype)
1830 {
1831 struct page *page;
1832
1833 page = __rmqueue_smallest(zone, order, migratetype);
1834 if (unlikely(!page)) {
1835 if (migratetype == MIGRATE_MOVABLE)
1836 page = __rmqueue_cma_fallback(zone, order);
1837
1838 if (!page)
1839 page = __rmqueue_fallback(zone, order, migratetype);
1840 }
1841
1842 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1843 return page;
1844 }
1845
1846 /*
1847 * Obtain a specified number of elements from the buddy allocator, all under
1848 * a single hold of the lock, for efficiency. Add them to the supplied list.
1849 * Returns the number of new pages which were placed at *list.
1850 */
1851 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1852 unsigned long count, struct list_head *list,
1853 int migratetype, bool cold)
1854 {
1855 int i;
1856
1857 spin_lock(&zone->lock);
1858 for (i = 0; i < count; ++i) {
1859 struct page *page = __rmqueue(zone, order, migratetype);
1860 if (unlikely(page == NULL))
1861 break;
1862
1863 /*
1864 * Split buddy pages returned by expand() are received here
1865 * in physical page order. The page is added to the callers and
1866 * list and the list head then moves forward. From the callers
1867 * perspective, the linked list is ordered by page number in
1868 * some conditions. This is useful for IO devices that can
1869 * merge IO requests if the physical pages are ordered
1870 * properly.
1871 */
1872 if (likely(!cold))
1873 list_add(&page->lru, list);
1874 else
1875 list_add_tail(&page->lru, list);
1876 list = &page->lru;
1877 if (is_migrate_cma(get_pcppage_migratetype(page)))
1878 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1879 -(1 << order));
1880 }
1881 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1882 spin_unlock(&zone->lock);
1883 return i;
1884 }
1885
1886 #ifdef CONFIG_NUMA
1887 /*
1888 * Called from the vmstat counter updater to drain pagesets of this
1889 * currently executing processor on remote nodes after they have
1890 * expired.
1891 *
1892 * Note that this function must be called with the thread pinned to
1893 * a single processor.
1894 */
1895 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1896 {
1897 unsigned long flags;
1898 int to_drain, batch;
1899
1900 local_irq_save(flags);
1901 batch = READ_ONCE(pcp->batch);
1902 to_drain = min(pcp->count, batch);
1903 if (to_drain > 0) {
1904 free_pcppages_bulk(zone, to_drain, pcp);
1905 pcp->count -= to_drain;
1906 }
1907 local_irq_restore(flags);
1908 }
1909 #endif
1910
1911 /*
1912 * Drain pcplists of the indicated processor and zone.
1913 *
1914 * The processor must either be the current processor and the
1915 * thread pinned to the current processor or a processor that
1916 * is not online.
1917 */
1918 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1919 {
1920 unsigned long flags;
1921 struct per_cpu_pageset *pset;
1922 struct per_cpu_pages *pcp;
1923
1924 local_irq_save(flags);
1925 pset = per_cpu_ptr(zone->pageset, cpu);
1926
1927 pcp = &pset->pcp;
1928 if (pcp->count) {
1929 free_pcppages_bulk(zone, pcp->count, pcp);
1930 pcp->count = 0;
1931 }
1932 local_irq_restore(flags);
1933 }
1934
1935 /*
1936 * Drain pcplists of all zones on the indicated processor.
1937 *
1938 * The processor must either be the current processor and the
1939 * thread pinned to the current processor or a processor that
1940 * is not online.
1941 */
1942 static void drain_pages(unsigned int cpu)
1943 {
1944 struct zone *zone;
1945
1946 for_each_populated_zone(zone) {
1947 drain_pages_zone(cpu, zone);
1948 }
1949 }
1950
1951 /*
1952 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1953 *
1954 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1955 * the single zone's pages.
1956 */
1957 void drain_local_pages(struct zone *zone)
1958 {
1959 int cpu = smp_processor_id();
1960
1961 if (zone)
1962 drain_pages_zone(cpu, zone);
1963 else
1964 drain_pages(cpu);
1965 }
1966
1967 /*
1968 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1969 *
1970 * When zone parameter is non-NULL, spill just the single zone's pages.
1971 *
1972 * Note that this code is protected against sending an IPI to an offline
1973 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1974 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1975 * nothing keeps CPUs from showing up after we populated the cpumask and
1976 * before the call to on_each_cpu_mask().
1977 */
1978 void drain_all_pages(struct zone *zone)
1979 {
1980 int cpu;
1981
1982 /*
1983 * Allocate in the BSS so we wont require allocation in
1984 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1985 */
1986 static cpumask_t cpus_with_pcps;
1987
1988 /*
1989 * We don't care about racing with CPU hotplug event
1990 * as offline notification will cause the notified
1991 * cpu to drain that CPU pcps and on_each_cpu_mask
1992 * disables preemption as part of its processing
1993 */
1994 for_each_online_cpu(cpu) {
1995 struct per_cpu_pageset *pcp;
1996 struct zone *z;
1997 bool has_pcps = false;
1998
1999 if (zone) {
2000 pcp = per_cpu_ptr(zone->pageset, cpu);
2001 if (pcp->pcp.count)
2002 has_pcps = true;
2003 } else {
2004 for_each_populated_zone(z) {
2005 pcp = per_cpu_ptr(z->pageset, cpu);
2006 if (pcp->pcp.count) {
2007 has_pcps = true;
2008 break;
2009 }
2010 }
2011 }
2012
2013 if (has_pcps)
2014 cpumask_set_cpu(cpu, &cpus_with_pcps);
2015 else
2016 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2017 }
2018 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2019 zone, 1);
2020 }
2021
2022 #ifdef CONFIG_HIBERNATION
2023
2024 void mark_free_pages(struct zone *zone)
2025 {
2026 unsigned long pfn, max_zone_pfn;
2027 unsigned long flags;
2028 unsigned int order, t;
2029 struct page *page;
2030
2031 if (zone_is_empty(zone))
2032 return;
2033
2034 spin_lock_irqsave(&zone->lock, flags);
2035
2036 max_zone_pfn = zone_end_pfn(zone);
2037 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2038 if (pfn_valid(pfn)) {
2039 page = pfn_to_page(pfn);
2040 if (!swsusp_page_is_forbidden(page))
2041 swsusp_unset_page_free(page);
2042 }
2043
2044 for_each_migratetype_order(order, t) {
2045 list_for_each_entry(page,
2046 &zone->free_area[order].free_list[t], lru) {
2047 unsigned long i;
2048
2049 pfn = page_to_pfn(page);
2050 for (i = 0; i < (1UL << order); i++)
2051 swsusp_set_page_free(pfn_to_page(pfn + i));
2052 }
2053 }
2054 spin_unlock_irqrestore(&zone->lock, flags);
2055 }
2056 #endif /* CONFIG_PM */
2057
2058 /*
2059 * Free a 0-order page
2060 * cold == true ? free a cold page : free a hot page
2061 */
2062 void free_hot_cold_page(struct page *page, bool cold)
2063 {
2064 struct zone *zone = page_zone(page);
2065 struct per_cpu_pages *pcp;
2066 unsigned long flags;
2067 unsigned long pfn = page_to_pfn(page);
2068 int migratetype;
2069
2070 if (!free_pages_prepare(page, 0))
2071 return;
2072
2073 migratetype = get_pfnblock_migratetype(page, pfn);
2074 set_pcppage_migratetype(page, migratetype);
2075 local_irq_save(flags);
2076 __count_vm_event(PGFREE);
2077
2078 /*
2079 * We only track unmovable, reclaimable and movable on pcp lists.
2080 * Free ISOLATE pages back to the allocator because they are being
2081 * offlined but treat RESERVE as movable pages so we can get those
2082 * areas back if necessary. Otherwise, we may have to free
2083 * excessively into the page allocator
2084 */
2085 if (migratetype >= MIGRATE_PCPTYPES) {
2086 if (unlikely(is_migrate_isolate(migratetype))) {
2087 free_one_page(zone, page, pfn, 0, migratetype);
2088 goto out;
2089 }
2090 migratetype = MIGRATE_MOVABLE;
2091 }
2092
2093 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2094 if (!cold)
2095 list_add(&page->lru, &pcp->lists[migratetype]);
2096 else
2097 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2098 pcp->count++;
2099 if (pcp->count >= pcp->high) {
2100 unsigned long batch = READ_ONCE(pcp->batch);
2101 free_pcppages_bulk(zone, batch, pcp);
2102 pcp->count -= batch;
2103 }
2104
2105 out:
2106 local_irq_restore(flags);
2107 }
2108
2109 /*
2110 * Free a list of 0-order pages
2111 */
2112 void free_hot_cold_page_list(struct list_head *list, bool cold)
2113 {
2114 struct page *page, *next;
2115
2116 list_for_each_entry_safe(page, next, list, lru) {
2117 trace_mm_page_free_batched(page, cold);
2118 free_hot_cold_page(page, cold);
2119 }
2120 }
2121
2122 /*
2123 * split_page takes a non-compound higher-order page, and splits it into
2124 * n (1<<order) sub-pages: page[0..n]
2125 * Each sub-page must be freed individually.
2126 *
2127 * Note: this is probably too low level an operation for use in drivers.
2128 * Please consult with lkml before using this in your driver.
2129 */
2130 void split_page(struct page *page, unsigned int order)
2131 {
2132 int i;
2133 gfp_t gfp_mask;
2134
2135 VM_BUG_ON_PAGE(PageCompound(page), page);
2136 VM_BUG_ON_PAGE(!page_count(page), page);
2137
2138 #ifdef CONFIG_KMEMCHECK
2139 /*
2140 * Split shadow pages too, because free(page[0]) would
2141 * otherwise free the whole shadow.
2142 */
2143 if (kmemcheck_page_is_tracked(page))
2144 split_page(virt_to_page(page[0].shadow), order);
2145 #endif
2146
2147 gfp_mask = get_page_owner_gfp(page);
2148 set_page_owner(page, 0, gfp_mask);
2149 for (i = 1; i < (1 << order); i++) {
2150 set_page_refcounted(page + i);
2151 set_page_owner(page + i, 0, gfp_mask);
2152 }
2153 }
2154 EXPORT_SYMBOL_GPL(split_page);
2155
2156 int __isolate_free_page(struct page *page, unsigned int order)
2157 {
2158 unsigned long watermark;
2159 struct zone *zone;
2160 int mt;
2161
2162 BUG_ON(!PageBuddy(page));
2163
2164 zone = page_zone(page);
2165 mt = get_pageblock_migratetype(page);
2166
2167 if (!is_migrate_isolate(mt)) {
2168 /* Obey watermarks as if the page was being allocated */
2169 watermark = low_wmark_pages(zone) + (1 << order);
2170 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2171 return 0;
2172
2173 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2174 }
2175
2176 /* Remove page from free list */
2177 list_del(&page->lru);
2178 zone->free_area[order].nr_free--;
2179 rmv_page_order(page);
2180
2181 set_page_owner(page, order, __GFP_MOVABLE);
2182
2183 /* Set the pageblock if the isolated page is at least a pageblock */
2184 if (order >= pageblock_order - 1) {
2185 struct page *endpage = page + (1 << order) - 1;
2186 for (; page < endpage; page += pageblock_nr_pages) {
2187 int mt = get_pageblock_migratetype(page);
2188 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2189 set_pageblock_migratetype(page,
2190 MIGRATE_MOVABLE);
2191 }
2192 }
2193
2194
2195 return 1UL << order;
2196 }
2197
2198 /*
2199 * Similar to split_page except the page is already free. As this is only
2200 * being used for migration, the migratetype of the block also changes.
2201 * As this is called with interrupts disabled, the caller is responsible
2202 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2203 * are enabled.
2204 *
2205 * Note: this is probably too low level an operation for use in drivers.
2206 * Please consult with lkml before using this in your driver.
2207 */
2208 int split_free_page(struct page *page)
2209 {
2210 unsigned int order;
2211 int nr_pages;
2212
2213 order = page_order(page);
2214
2215 nr_pages = __isolate_free_page(page, order);
2216 if (!nr_pages)
2217 return 0;
2218
2219 /* Split into individual pages */
2220 set_page_refcounted(page);
2221 split_page(page, order);
2222 return nr_pages;
2223 }
2224
2225 /*
2226 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2227 */
2228 static inline
2229 struct page *buffered_rmqueue(struct zone *preferred_zone,
2230 struct zone *zone, unsigned int order,
2231 gfp_t gfp_flags, int alloc_flags, int migratetype)
2232 {
2233 unsigned long flags;
2234 struct page *page;
2235 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2236
2237 if (likely(order == 0)) {
2238 struct per_cpu_pages *pcp;
2239 struct list_head *list;
2240
2241 local_irq_save(flags);
2242 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2243 list = &pcp->lists[migratetype];
2244 if (list_empty(list)) {
2245 pcp->count += rmqueue_bulk(zone, 0,
2246 pcp->batch, list,
2247 migratetype, cold);
2248 if (unlikely(list_empty(list)))
2249 goto failed;
2250 }
2251
2252 if (cold)
2253 page = list_last_entry(list, struct page, lru);
2254 else
2255 page = list_first_entry(list, struct page, lru);
2256
2257 list_del(&page->lru);
2258 pcp->count--;
2259 } else {
2260 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2261 /*
2262 * __GFP_NOFAIL is not to be used in new code.
2263 *
2264 * All __GFP_NOFAIL callers should be fixed so that they
2265 * properly detect and handle allocation failures.
2266 *
2267 * We most definitely don't want callers attempting to
2268 * allocate greater than order-1 page units with
2269 * __GFP_NOFAIL.
2270 */
2271 WARN_ON_ONCE(order > 1);
2272 }
2273 spin_lock_irqsave(&zone->lock, flags);
2274
2275 page = NULL;
2276 if (alloc_flags & ALLOC_HARDER) {
2277 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2278 if (page)
2279 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2280 }
2281 if (!page)
2282 page = __rmqueue(zone, order, migratetype);
2283 spin_unlock(&zone->lock);
2284 if (!page)
2285 goto failed;
2286 __mod_zone_freepage_state(zone, -(1 << order),
2287 get_pcppage_migratetype(page));
2288 }
2289
2290 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2291 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2292 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2293 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2294
2295 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2296 zone_statistics(preferred_zone, zone, gfp_flags);
2297 local_irq_restore(flags);
2298
2299 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2300 return page;
2301
2302 failed:
2303 local_irq_restore(flags);
2304 return NULL;
2305 }
2306
2307 #ifdef CONFIG_FAIL_PAGE_ALLOC
2308
2309 static struct {
2310 struct fault_attr attr;
2311
2312 bool ignore_gfp_highmem;
2313 bool ignore_gfp_reclaim;
2314 u32 min_order;
2315 } fail_page_alloc = {
2316 .attr = FAULT_ATTR_INITIALIZER,
2317 .ignore_gfp_reclaim = true,
2318 .ignore_gfp_highmem = true,
2319 .min_order = 1,
2320 };
2321
2322 static int __init setup_fail_page_alloc(char *str)
2323 {
2324 return setup_fault_attr(&fail_page_alloc.attr, str);
2325 }
2326 __setup("fail_page_alloc=", setup_fail_page_alloc);
2327
2328 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2329 {
2330 if (order < fail_page_alloc.min_order)
2331 return false;
2332 if (gfp_mask & __GFP_NOFAIL)
2333 return false;
2334 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2335 return false;
2336 if (fail_page_alloc.ignore_gfp_reclaim &&
2337 (gfp_mask & __GFP_DIRECT_RECLAIM))
2338 return false;
2339
2340 return should_fail(&fail_page_alloc.attr, 1 << order);
2341 }
2342
2343 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2344
2345 static int __init fail_page_alloc_debugfs(void)
2346 {
2347 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2348 struct dentry *dir;
2349
2350 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2351 &fail_page_alloc.attr);
2352 if (IS_ERR(dir))
2353 return PTR_ERR(dir);
2354
2355 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2356 &fail_page_alloc.ignore_gfp_reclaim))
2357 goto fail;
2358 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2359 &fail_page_alloc.ignore_gfp_highmem))
2360 goto fail;
2361 if (!debugfs_create_u32("min-order", mode, dir,
2362 &fail_page_alloc.min_order))
2363 goto fail;
2364
2365 return 0;
2366 fail:
2367 debugfs_remove_recursive(dir);
2368
2369 return -ENOMEM;
2370 }
2371
2372 late_initcall(fail_page_alloc_debugfs);
2373
2374 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2375
2376 #else /* CONFIG_FAIL_PAGE_ALLOC */
2377
2378 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2379 {
2380 return false;
2381 }
2382
2383 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2384
2385 /*
2386 * Return true if free base pages are above 'mark'. For high-order checks it
2387 * will return true of the order-0 watermark is reached and there is at least
2388 * one free page of a suitable size. Checking now avoids taking the zone lock
2389 * to check in the allocation paths if no pages are free.
2390 */
2391 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2392 unsigned long mark, int classzone_idx, int alloc_flags,
2393 long free_pages)
2394 {
2395 long min = mark;
2396 int o;
2397 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2398
2399 /* free_pages may go negative - that's OK */
2400 free_pages -= (1 << order) - 1;
2401
2402 if (alloc_flags & ALLOC_HIGH)
2403 min -= min / 2;
2404
2405 /*
2406 * If the caller does not have rights to ALLOC_HARDER then subtract
2407 * the high-atomic reserves. This will over-estimate the size of the
2408 * atomic reserve but it avoids a search.
2409 */
2410 if (likely(!alloc_harder))
2411 free_pages -= z->nr_reserved_highatomic;
2412 else
2413 min -= min / 4;
2414
2415 #ifdef CONFIG_CMA
2416 /* If allocation can't use CMA areas don't use free CMA pages */
2417 if (!(alloc_flags & ALLOC_CMA))
2418 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2419 #endif
2420
2421 /*
2422 * Check watermarks for an order-0 allocation request. If these
2423 * are not met, then a high-order request also cannot go ahead
2424 * even if a suitable page happened to be free.
2425 */
2426 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2427 return false;
2428
2429 /* If this is an order-0 request then the watermark is fine */
2430 if (!order)
2431 return true;
2432
2433 /* For a high-order request, check at least one suitable page is free */
2434 for (o = order; o < MAX_ORDER; o++) {
2435 struct free_area *area = &z->free_area[o];
2436 int mt;
2437
2438 if (!area->nr_free)
2439 continue;
2440
2441 if (alloc_harder)
2442 return true;
2443
2444 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2445 if (!list_empty(&area->free_list[mt]))
2446 return true;
2447 }
2448
2449 #ifdef CONFIG_CMA
2450 if ((alloc_flags & ALLOC_CMA) &&
2451 !list_empty(&area->free_list[MIGRATE_CMA])) {
2452 return true;
2453 }
2454 #endif
2455 }
2456 return false;
2457 }
2458
2459 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2460 int classzone_idx, int alloc_flags)
2461 {
2462 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2463 zone_page_state(z, NR_FREE_PAGES));
2464 }
2465
2466 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2467 unsigned long mark, int classzone_idx)
2468 {
2469 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2470
2471 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2472 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2473
2474 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2475 free_pages);
2476 }
2477
2478 #ifdef CONFIG_NUMA
2479 static bool zone_local(struct zone *local_zone, struct zone *zone)
2480 {
2481 return local_zone->node == zone->node;
2482 }
2483
2484 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2485 {
2486 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2487 RECLAIM_DISTANCE;
2488 }
2489 #else /* CONFIG_NUMA */
2490 static bool zone_local(struct zone *local_zone, struct zone *zone)
2491 {
2492 return true;
2493 }
2494
2495 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2496 {
2497 return true;
2498 }
2499 #endif /* CONFIG_NUMA */
2500
2501 static void reset_alloc_batches(struct zone *preferred_zone)
2502 {
2503 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2504
2505 do {
2506 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2507 high_wmark_pages(zone) - low_wmark_pages(zone) -
2508 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2509 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2510 } while (zone++ != preferred_zone);
2511 }
2512
2513 /*
2514 * get_page_from_freelist goes through the zonelist trying to allocate
2515 * a page.
2516 */
2517 static struct page *
2518 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2519 const struct alloc_context *ac)
2520 {
2521 struct zonelist *zonelist = ac->zonelist;
2522 struct zoneref *z;
2523 struct page *page = NULL;
2524 struct zone *zone;
2525 int nr_fair_skipped = 0;
2526 bool zonelist_rescan;
2527
2528 zonelist_scan:
2529 zonelist_rescan = false;
2530
2531 /*
2532 * Scan zonelist, looking for a zone with enough free.
2533 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2534 */
2535 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2536 ac->nodemask) {
2537 unsigned long mark;
2538
2539 if (cpusets_enabled() &&
2540 (alloc_flags & ALLOC_CPUSET) &&
2541 !cpuset_zone_allowed(zone, gfp_mask))
2542 continue;
2543 /*
2544 * Distribute pages in proportion to the individual
2545 * zone size to ensure fair page aging. The zone a
2546 * page was allocated in should have no effect on the
2547 * time the page has in memory before being reclaimed.
2548 */
2549 if (alloc_flags & ALLOC_FAIR) {
2550 if (!zone_local(ac->preferred_zone, zone))
2551 break;
2552 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2553 nr_fair_skipped++;
2554 continue;
2555 }
2556 }
2557 /*
2558 * When allocating a page cache page for writing, we
2559 * want to get it from a zone that is within its dirty
2560 * limit, such that no single zone holds more than its
2561 * proportional share of globally allowed dirty pages.
2562 * The dirty limits take into account the zone's
2563 * lowmem reserves and high watermark so that kswapd
2564 * should be able to balance it without having to
2565 * write pages from its LRU list.
2566 *
2567 * This may look like it could increase pressure on
2568 * lower zones by failing allocations in higher zones
2569 * before they are full. But the pages that do spill
2570 * over are limited as the lower zones are protected
2571 * by this very same mechanism. It should not become
2572 * a practical burden to them.
2573 *
2574 * XXX: For now, allow allocations to potentially
2575 * exceed the per-zone dirty limit in the slowpath
2576 * (spread_dirty_pages unset) before going into reclaim,
2577 * which is important when on a NUMA setup the allowed
2578 * zones are together not big enough to reach the
2579 * global limit. The proper fix for these situations
2580 * will require awareness of zones in the
2581 * dirty-throttling and the flusher threads.
2582 */
2583 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2584 continue;
2585
2586 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2587 if (!zone_watermark_ok(zone, order, mark,
2588 ac->classzone_idx, alloc_flags)) {
2589 int ret;
2590
2591 /* Checked here to keep the fast path fast */
2592 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2593 if (alloc_flags & ALLOC_NO_WATERMARKS)
2594 goto try_this_zone;
2595
2596 if (zone_reclaim_mode == 0 ||
2597 !zone_allows_reclaim(ac->preferred_zone, zone))
2598 continue;
2599
2600 ret = zone_reclaim(zone, gfp_mask, order);
2601 switch (ret) {
2602 case ZONE_RECLAIM_NOSCAN:
2603 /* did not scan */
2604 continue;
2605 case ZONE_RECLAIM_FULL:
2606 /* scanned but unreclaimable */
2607 continue;
2608 default:
2609 /* did we reclaim enough */
2610 if (zone_watermark_ok(zone, order, mark,
2611 ac->classzone_idx, alloc_flags))
2612 goto try_this_zone;
2613
2614 continue;
2615 }
2616 }
2617
2618 try_this_zone:
2619 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2620 gfp_mask, alloc_flags, ac->migratetype);
2621 if (page) {
2622 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2623 goto try_this_zone;
2624
2625 /*
2626 * If this is a high-order atomic allocation then check
2627 * if the pageblock should be reserved for the future
2628 */
2629 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2630 reserve_highatomic_pageblock(page, zone, order);
2631
2632 return page;
2633 }
2634 }
2635
2636 /*
2637 * The first pass makes sure allocations are spread fairly within the
2638 * local node. However, the local node might have free pages left
2639 * after the fairness batches are exhausted, and remote zones haven't
2640 * even been considered yet. Try once more without fairness, and
2641 * include remote zones now, before entering the slowpath and waking
2642 * kswapd: prefer spilling to a remote zone over swapping locally.
2643 */
2644 if (alloc_flags & ALLOC_FAIR) {
2645 alloc_flags &= ~ALLOC_FAIR;
2646 if (nr_fair_skipped) {
2647 zonelist_rescan = true;
2648 reset_alloc_batches(ac->preferred_zone);
2649 }
2650 if (nr_online_nodes > 1)
2651 zonelist_rescan = true;
2652 }
2653
2654 if (zonelist_rescan)
2655 goto zonelist_scan;
2656
2657 return NULL;
2658 }
2659
2660 /*
2661 * Large machines with many possible nodes should not always dump per-node
2662 * meminfo in irq context.
2663 */
2664 static inline bool should_suppress_show_mem(void)
2665 {
2666 bool ret = false;
2667
2668 #if NODES_SHIFT > 8
2669 ret = in_interrupt();
2670 #endif
2671 return ret;
2672 }
2673
2674 static DEFINE_RATELIMIT_STATE(nopage_rs,
2675 DEFAULT_RATELIMIT_INTERVAL,
2676 DEFAULT_RATELIMIT_BURST);
2677
2678 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2679 {
2680 unsigned int filter = SHOW_MEM_FILTER_NODES;
2681
2682 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2683 debug_guardpage_minorder() > 0)
2684 return;
2685
2686 /*
2687 * This documents exceptions given to allocations in certain
2688 * contexts that are allowed to allocate outside current's set
2689 * of allowed nodes.
2690 */
2691 if (!(gfp_mask & __GFP_NOMEMALLOC))
2692 if (test_thread_flag(TIF_MEMDIE) ||
2693 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2694 filter &= ~SHOW_MEM_FILTER_NODES;
2695 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2696 filter &= ~SHOW_MEM_FILTER_NODES;
2697
2698 if (fmt) {
2699 struct va_format vaf;
2700 va_list args;
2701
2702 va_start(args, fmt);
2703
2704 vaf.fmt = fmt;
2705 vaf.va = &args;
2706
2707 pr_warn("%pV", &vaf);
2708
2709 va_end(args);
2710 }
2711
2712 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2713 current->comm, order, gfp_mask, &gfp_mask);
2714 dump_stack();
2715 if (!should_suppress_show_mem())
2716 show_mem(filter);
2717 }
2718
2719 static inline struct page *
2720 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2721 const struct alloc_context *ac, unsigned long *did_some_progress)
2722 {
2723 struct oom_control oc = {
2724 .zonelist = ac->zonelist,
2725 .nodemask = ac->nodemask,
2726 .gfp_mask = gfp_mask,
2727 .order = order,
2728 };
2729 struct page *page;
2730
2731 *did_some_progress = 0;
2732
2733 /*
2734 * Acquire the oom lock. If that fails, somebody else is
2735 * making progress for us.
2736 */
2737 if (!mutex_trylock(&oom_lock)) {
2738 *did_some_progress = 1;
2739 schedule_timeout_uninterruptible(1);
2740 return NULL;
2741 }
2742
2743 /*
2744 * Go through the zonelist yet one more time, keep very high watermark
2745 * here, this is only to catch a parallel oom killing, we must fail if
2746 * we're still under heavy pressure.
2747 */
2748 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2749 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2750 if (page)
2751 goto out;
2752
2753 if (!(gfp_mask & __GFP_NOFAIL)) {
2754 /* Coredumps can quickly deplete all memory reserves */
2755 if (current->flags & PF_DUMPCORE)
2756 goto out;
2757 /* The OOM killer will not help higher order allocs */
2758 if (order > PAGE_ALLOC_COSTLY_ORDER)
2759 goto out;
2760 /* The OOM killer does not needlessly kill tasks for lowmem */
2761 if (ac->high_zoneidx < ZONE_NORMAL)
2762 goto out;
2763 /* The OOM killer does not compensate for IO-less reclaim */
2764 if (!(gfp_mask & __GFP_FS)) {
2765 /*
2766 * XXX: Page reclaim didn't yield anything,
2767 * and the OOM killer can't be invoked, but
2768 * keep looping as per tradition.
2769 */
2770 *did_some_progress = 1;
2771 goto out;
2772 }
2773 if (pm_suspended_storage())
2774 goto out;
2775 /* The OOM killer may not free memory on a specific node */
2776 if (gfp_mask & __GFP_THISNODE)
2777 goto out;
2778 }
2779 /* Exhausted what can be done so it's blamo time */
2780 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2781 *did_some_progress = 1;
2782
2783 if (gfp_mask & __GFP_NOFAIL) {
2784 page = get_page_from_freelist(gfp_mask, order,
2785 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2786 /*
2787 * fallback to ignore cpuset restriction if our nodes
2788 * are depleted
2789 */
2790 if (!page)
2791 page = get_page_from_freelist(gfp_mask, order,
2792 ALLOC_NO_WATERMARKS, ac);
2793 }
2794 }
2795 out:
2796 mutex_unlock(&oom_lock);
2797 return page;
2798 }
2799
2800 #ifdef CONFIG_COMPACTION
2801 /* Try memory compaction for high-order allocations before reclaim */
2802 static struct page *
2803 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2804 int alloc_flags, const struct alloc_context *ac,
2805 enum migrate_mode mode, int *contended_compaction,
2806 bool *deferred_compaction)
2807 {
2808 unsigned long compact_result;
2809 struct page *page;
2810
2811 if (!order)
2812 return NULL;
2813
2814 current->flags |= PF_MEMALLOC;
2815 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2816 mode, contended_compaction);
2817 current->flags &= ~PF_MEMALLOC;
2818
2819 switch (compact_result) {
2820 case COMPACT_DEFERRED:
2821 *deferred_compaction = true;
2822 /* fall-through */
2823 case COMPACT_SKIPPED:
2824 return NULL;
2825 default:
2826 break;
2827 }
2828
2829 /*
2830 * At least in one zone compaction wasn't deferred or skipped, so let's
2831 * count a compaction stall
2832 */
2833 count_vm_event(COMPACTSTALL);
2834
2835 page = get_page_from_freelist(gfp_mask, order,
2836 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2837
2838 if (page) {
2839 struct zone *zone = page_zone(page);
2840
2841 zone->compact_blockskip_flush = false;
2842 compaction_defer_reset(zone, order, true);
2843 count_vm_event(COMPACTSUCCESS);
2844 return page;
2845 }
2846
2847 /*
2848 * It's bad if compaction run occurs and fails. The most likely reason
2849 * is that pages exist, but not enough to satisfy watermarks.
2850 */
2851 count_vm_event(COMPACTFAIL);
2852
2853 cond_resched();
2854
2855 return NULL;
2856 }
2857 #else
2858 static inline struct page *
2859 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2860 int alloc_flags, const struct alloc_context *ac,
2861 enum migrate_mode mode, int *contended_compaction,
2862 bool *deferred_compaction)
2863 {
2864 return NULL;
2865 }
2866 #endif /* CONFIG_COMPACTION */
2867
2868 /* Perform direct synchronous page reclaim */
2869 static int
2870 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2871 const struct alloc_context *ac)
2872 {
2873 struct reclaim_state reclaim_state;
2874 int progress;
2875
2876 cond_resched();
2877
2878 /* We now go into synchronous reclaim */
2879 cpuset_memory_pressure_bump();
2880 current->flags |= PF_MEMALLOC;
2881 lockdep_set_current_reclaim_state(gfp_mask);
2882 reclaim_state.reclaimed_slab = 0;
2883 current->reclaim_state = &reclaim_state;
2884
2885 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2886 ac->nodemask);
2887
2888 current->reclaim_state = NULL;
2889 lockdep_clear_current_reclaim_state();
2890 current->flags &= ~PF_MEMALLOC;
2891
2892 cond_resched();
2893
2894 return progress;
2895 }
2896
2897 /* The really slow allocator path where we enter direct reclaim */
2898 static inline struct page *
2899 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2900 int alloc_flags, const struct alloc_context *ac,
2901 unsigned long *did_some_progress)
2902 {
2903 struct page *page = NULL;
2904 bool drained = false;
2905
2906 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2907 if (unlikely(!(*did_some_progress)))
2908 return NULL;
2909
2910 retry:
2911 page = get_page_from_freelist(gfp_mask, order,
2912 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2913
2914 /*
2915 * If an allocation failed after direct reclaim, it could be because
2916 * pages are pinned on the per-cpu lists or in high alloc reserves.
2917 * Shrink them them and try again
2918 */
2919 if (!page && !drained) {
2920 unreserve_highatomic_pageblock(ac);
2921 drain_all_pages(NULL);
2922 drained = true;
2923 goto retry;
2924 }
2925
2926 return page;
2927 }
2928
2929 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2930 {
2931 struct zoneref *z;
2932 struct zone *zone;
2933
2934 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2935 ac->high_zoneidx, ac->nodemask)
2936 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2937 }
2938
2939 static inline int
2940 gfp_to_alloc_flags(gfp_t gfp_mask)
2941 {
2942 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2943
2944 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2945 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2946
2947 /*
2948 * The caller may dip into page reserves a bit more if the caller
2949 * cannot run direct reclaim, or if the caller has realtime scheduling
2950 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2951 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2952 */
2953 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2954
2955 if (gfp_mask & __GFP_ATOMIC) {
2956 /*
2957 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2958 * if it can't schedule.
2959 */
2960 if (!(gfp_mask & __GFP_NOMEMALLOC))
2961 alloc_flags |= ALLOC_HARDER;
2962 /*
2963 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2964 * comment for __cpuset_node_allowed().
2965 */
2966 alloc_flags &= ~ALLOC_CPUSET;
2967 } else if (unlikely(rt_task(current)) && !in_interrupt())
2968 alloc_flags |= ALLOC_HARDER;
2969
2970 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2971 if (gfp_mask & __GFP_MEMALLOC)
2972 alloc_flags |= ALLOC_NO_WATERMARKS;
2973 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2974 alloc_flags |= ALLOC_NO_WATERMARKS;
2975 else if (!in_interrupt() &&
2976 ((current->flags & PF_MEMALLOC) ||
2977 unlikely(test_thread_flag(TIF_MEMDIE))))
2978 alloc_flags |= ALLOC_NO_WATERMARKS;
2979 }
2980 #ifdef CONFIG_CMA
2981 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2982 alloc_flags |= ALLOC_CMA;
2983 #endif
2984 return alloc_flags;
2985 }
2986
2987 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2988 {
2989 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2990 }
2991
2992 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2993 {
2994 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2995 }
2996
2997 static inline struct page *
2998 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2999 struct alloc_context *ac)
3000 {
3001 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3002 struct page *page = NULL;
3003 int alloc_flags;
3004 unsigned long pages_reclaimed = 0;
3005 unsigned long did_some_progress;
3006 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3007 bool deferred_compaction = false;
3008 int contended_compaction = COMPACT_CONTENDED_NONE;
3009
3010 /*
3011 * In the slowpath, we sanity check order to avoid ever trying to
3012 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3013 * be using allocators in order of preference for an area that is
3014 * too large.
3015 */
3016 if (order >= MAX_ORDER) {
3017 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3018 return NULL;
3019 }
3020
3021 /*
3022 * We also sanity check to catch abuse of atomic reserves being used by
3023 * callers that are not in atomic context.
3024 */
3025 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3026 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3027 gfp_mask &= ~__GFP_ATOMIC;
3028
3029 /*
3030 * If this allocation cannot block and it is for a specific node, then
3031 * fail early. There's no need to wakeup kswapd or retry for a
3032 * speculative node-specific allocation.
3033 */
3034 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3035 goto nopage;
3036
3037 retry:
3038 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3039 wake_all_kswapds(order, ac);
3040
3041 /*
3042 * OK, we're below the kswapd watermark and have kicked background
3043 * reclaim. Now things get more complex, so set up alloc_flags according
3044 * to how we want to proceed.
3045 */
3046 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3047
3048 /*
3049 * Find the true preferred zone if the allocation is unconstrained by
3050 * cpusets.
3051 */
3052 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3053 struct zoneref *preferred_zoneref;
3054 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3055 ac->high_zoneidx, NULL, &ac->preferred_zone);
3056 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3057 }
3058
3059 /* This is the last chance, in general, before the goto nopage. */
3060 page = get_page_from_freelist(gfp_mask, order,
3061 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3062 if (page)
3063 goto got_pg;
3064
3065 /* Allocate without watermarks if the context allows */
3066 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3067 /*
3068 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3069 * the allocation is high priority and these type of
3070 * allocations are system rather than user orientated
3071 */
3072 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3073 page = get_page_from_freelist(gfp_mask, order,
3074 ALLOC_NO_WATERMARKS, ac);
3075 if (page)
3076 goto got_pg;
3077 }
3078
3079 /* Caller is not willing to reclaim, we can't balance anything */
3080 if (!can_direct_reclaim) {
3081 /*
3082 * All existing users of the __GFP_NOFAIL are blockable, so warn
3083 * of any new users that actually allow this type of allocation
3084 * to fail.
3085 */
3086 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3087 goto nopage;
3088 }
3089
3090 /* Avoid recursion of direct reclaim */
3091 if (current->flags & PF_MEMALLOC) {
3092 /*
3093 * __GFP_NOFAIL request from this context is rather bizarre
3094 * because we cannot reclaim anything and only can loop waiting
3095 * for somebody to do a work for us.
3096 */
3097 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3098 cond_resched();
3099 goto retry;
3100 }
3101 goto nopage;
3102 }
3103
3104 /* Avoid allocations with no watermarks from looping endlessly */
3105 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3106 goto nopage;
3107
3108 /*
3109 * Try direct compaction. The first pass is asynchronous. Subsequent
3110 * attempts after direct reclaim are synchronous
3111 */
3112 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3113 migration_mode,
3114 &contended_compaction,
3115 &deferred_compaction);
3116 if (page)
3117 goto got_pg;
3118
3119 /* Checks for THP-specific high-order allocations */
3120 if (is_thp_gfp_mask(gfp_mask)) {
3121 /*
3122 * If compaction is deferred for high-order allocations, it is
3123 * because sync compaction recently failed. If this is the case
3124 * and the caller requested a THP allocation, we do not want
3125 * to heavily disrupt the system, so we fail the allocation
3126 * instead of entering direct reclaim.
3127 */
3128 if (deferred_compaction)
3129 goto nopage;
3130
3131 /*
3132 * In all zones where compaction was attempted (and not
3133 * deferred or skipped), lock contention has been detected.
3134 * For THP allocation we do not want to disrupt the others
3135 * so we fallback to base pages instead.
3136 */
3137 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3138 goto nopage;
3139
3140 /*
3141 * If compaction was aborted due to need_resched(), we do not
3142 * want to further increase allocation latency, unless it is
3143 * khugepaged trying to collapse.
3144 */
3145 if (contended_compaction == COMPACT_CONTENDED_SCHED
3146 && !(current->flags & PF_KTHREAD))
3147 goto nopage;
3148 }
3149
3150 /*
3151 * It can become very expensive to allocate transparent hugepages at
3152 * fault, so use asynchronous memory compaction for THP unless it is
3153 * khugepaged trying to collapse.
3154 */
3155 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3156 migration_mode = MIGRATE_SYNC_LIGHT;
3157
3158 /* Try direct reclaim and then allocating */
3159 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3160 &did_some_progress);
3161 if (page)
3162 goto got_pg;
3163
3164 /* Do not loop if specifically requested */
3165 if (gfp_mask & __GFP_NORETRY)
3166 goto noretry;
3167
3168 /* Keep reclaiming pages as long as there is reasonable progress */
3169 pages_reclaimed += did_some_progress;
3170 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3171 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3172 /* Wait for some write requests to complete then retry */
3173 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3174 goto retry;
3175 }
3176
3177 /* Reclaim has failed us, start killing things */
3178 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3179 if (page)
3180 goto got_pg;
3181
3182 /* Retry as long as the OOM killer is making progress */
3183 if (did_some_progress)
3184 goto retry;
3185
3186 noretry:
3187 /*
3188 * High-order allocations do not necessarily loop after
3189 * direct reclaim and reclaim/compaction depends on compaction
3190 * being called after reclaim so call directly if necessary
3191 */
3192 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3193 ac, migration_mode,
3194 &contended_compaction,
3195 &deferred_compaction);
3196 if (page)
3197 goto got_pg;
3198 nopage:
3199 warn_alloc_failed(gfp_mask, order, NULL);
3200 got_pg:
3201 return page;
3202 }
3203
3204 /*
3205 * This is the 'heart' of the zoned buddy allocator.
3206 */
3207 struct page *
3208 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3209 struct zonelist *zonelist, nodemask_t *nodemask)
3210 {
3211 struct zoneref *preferred_zoneref;
3212 struct page *page = NULL;
3213 unsigned int cpuset_mems_cookie;
3214 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3215 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3216 struct alloc_context ac = {
3217 .high_zoneidx = gfp_zone(gfp_mask),
3218 .nodemask = nodemask,
3219 .migratetype = gfpflags_to_migratetype(gfp_mask),
3220 };
3221
3222 gfp_mask &= gfp_allowed_mask;
3223
3224 lockdep_trace_alloc(gfp_mask);
3225
3226 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3227
3228 if (should_fail_alloc_page(gfp_mask, order))
3229 return NULL;
3230
3231 /*
3232 * Check the zones suitable for the gfp_mask contain at least one
3233 * valid zone. It's possible to have an empty zonelist as a result
3234 * of __GFP_THISNODE and a memoryless node
3235 */
3236 if (unlikely(!zonelist->_zonerefs->zone))
3237 return NULL;
3238
3239 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3240 alloc_flags |= ALLOC_CMA;
3241
3242 retry_cpuset:
3243 cpuset_mems_cookie = read_mems_allowed_begin();
3244
3245 /* We set it here, as __alloc_pages_slowpath might have changed it */
3246 ac.zonelist = zonelist;
3247
3248 /* Dirty zone balancing only done in the fast path */
3249 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3250
3251 /* The preferred zone is used for statistics later */
3252 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3253 ac.nodemask ? : &cpuset_current_mems_allowed,
3254 &ac.preferred_zone);
3255 if (!ac.preferred_zone)
3256 goto out;
3257 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3258
3259 /* First allocation attempt */
3260 alloc_mask = gfp_mask|__GFP_HARDWALL;
3261 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3262 if (unlikely(!page)) {
3263 /*
3264 * Runtime PM, block IO and its error handling path
3265 * can deadlock because I/O on the device might not
3266 * complete.
3267 */
3268 alloc_mask = memalloc_noio_flags(gfp_mask);
3269 ac.spread_dirty_pages = false;
3270
3271 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3272 }
3273
3274 if (kmemcheck_enabled && page)
3275 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3276
3277 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3278
3279 out:
3280 /*
3281 * When updating a task's mems_allowed, it is possible to race with
3282 * parallel threads in such a way that an allocation can fail while
3283 * the mask is being updated. If a page allocation is about to fail,
3284 * check if the cpuset changed during allocation and if so, retry.
3285 */
3286 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3287 goto retry_cpuset;
3288
3289 return page;
3290 }
3291 EXPORT_SYMBOL(__alloc_pages_nodemask);
3292
3293 /*
3294 * Common helper functions.
3295 */
3296 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3297 {
3298 struct page *page;
3299
3300 /*
3301 * __get_free_pages() returns a 32-bit address, which cannot represent
3302 * a highmem page
3303 */
3304 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3305
3306 page = alloc_pages(gfp_mask, order);
3307 if (!page)
3308 return 0;
3309 return (unsigned long) page_address(page);
3310 }
3311 EXPORT_SYMBOL(__get_free_pages);
3312
3313 unsigned long get_zeroed_page(gfp_t gfp_mask)
3314 {
3315 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3316 }
3317 EXPORT_SYMBOL(get_zeroed_page);
3318
3319 void __free_pages(struct page *page, unsigned int order)
3320 {
3321 if (put_page_testzero(page)) {
3322 if (order == 0)
3323 free_hot_cold_page(page, false);
3324 else
3325 __free_pages_ok(page, order);
3326 }
3327 }
3328
3329 EXPORT_SYMBOL(__free_pages);
3330
3331 void free_pages(unsigned long addr, unsigned int order)
3332 {
3333 if (addr != 0) {
3334 VM_BUG_ON(!virt_addr_valid((void *)addr));
3335 __free_pages(virt_to_page((void *)addr), order);
3336 }
3337 }
3338
3339 EXPORT_SYMBOL(free_pages);
3340
3341 /*
3342 * Page Fragment:
3343 * An arbitrary-length arbitrary-offset area of memory which resides
3344 * within a 0 or higher order page. Multiple fragments within that page
3345 * are individually refcounted, in the page's reference counter.
3346 *
3347 * The page_frag functions below provide a simple allocation framework for
3348 * page fragments. This is used by the network stack and network device
3349 * drivers to provide a backing region of memory for use as either an
3350 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3351 */
3352 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3353 gfp_t gfp_mask)
3354 {
3355 struct page *page = NULL;
3356 gfp_t gfp = gfp_mask;
3357
3358 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3359 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3360 __GFP_NOMEMALLOC;
3361 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3362 PAGE_FRAG_CACHE_MAX_ORDER);
3363 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3364 #endif
3365 if (unlikely(!page))
3366 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3367
3368 nc->va = page ? page_address(page) : NULL;
3369
3370 return page;
3371 }
3372
3373 void *__alloc_page_frag(struct page_frag_cache *nc,
3374 unsigned int fragsz, gfp_t gfp_mask)
3375 {
3376 unsigned int size = PAGE_SIZE;
3377 struct page *page;
3378 int offset;
3379
3380 if (unlikely(!nc->va)) {
3381 refill:
3382 page = __page_frag_refill(nc, gfp_mask);
3383 if (!page)
3384 return NULL;
3385
3386 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3387 /* if size can vary use size else just use PAGE_SIZE */
3388 size = nc->size;
3389 #endif
3390 /* Even if we own the page, we do not use atomic_set().
3391 * This would break get_page_unless_zero() users.
3392 */
3393 atomic_add(size - 1, &page->_count);
3394
3395 /* reset page count bias and offset to start of new frag */
3396 nc->pfmemalloc = page_is_pfmemalloc(page);
3397 nc->pagecnt_bias = size;
3398 nc->offset = size;
3399 }
3400
3401 offset = nc->offset - fragsz;
3402 if (unlikely(offset < 0)) {
3403 page = virt_to_page(nc->va);
3404
3405 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3406 goto refill;
3407
3408 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3409 /* if size can vary use size else just use PAGE_SIZE */
3410 size = nc->size;
3411 #endif
3412 /* OK, page count is 0, we can safely set it */
3413 atomic_set(&page->_count, size);
3414
3415 /* reset page count bias and offset to start of new frag */
3416 nc->pagecnt_bias = size;
3417 offset = size - fragsz;
3418 }
3419
3420 nc->pagecnt_bias--;
3421 nc->offset = offset;
3422
3423 return nc->va + offset;
3424 }
3425 EXPORT_SYMBOL(__alloc_page_frag);
3426
3427 /*
3428 * Frees a page fragment allocated out of either a compound or order 0 page.
3429 */
3430 void __free_page_frag(void *addr)
3431 {
3432 struct page *page = virt_to_head_page(addr);
3433
3434 if (unlikely(put_page_testzero(page)))
3435 __free_pages_ok(page, compound_order(page));
3436 }
3437 EXPORT_SYMBOL(__free_page_frag);
3438
3439 /*
3440 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3441 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3442 * equivalent to alloc_pages.
3443 *
3444 * It should be used when the caller would like to use kmalloc, but since the
3445 * allocation is large, it has to fall back to the page allocator.
3446 */
3447 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3448 {
3449 struct page *page;
3450
3451 page = alloc_pages(gfp_mask, order);
3452 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3453 __free_pages(page, order);
3454 page = NULL;
3455 }
3456 return page;
3457 }
3458
3459 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3460 {
3461 struct page *page;
3462
3463 page = alloc_pages_node(nid, gfp_mask, order);
3464 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3465 __free_pages(page, order);
3466 page = NULL;
3467 }
3468 return page;
3469 }
3470
3471 /*
3472 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3473 * alloc_kmem_pages.
3474 */
3475 void __free_kmem_pages(struct page *page, unsigned int order)
3476 {
3477 memcg_kmem_uncharge(page, order);
3478 __free_pages(page, order);
3479 }
3480
3481 void free_kmem_pages(unsigned long addr, unsigned int order)
3482 {
3483 if (addr != 0) {
3484 VM_BUG_ON(!virt_addr_valid((void *)addr));
3485 __free_kmem_pages(virt_to_page((void *)addr), order);
3486 }
3487 }
3488
3489 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3490 size_t size)
3491 {
3492 if (addr) {
3493 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3494 unsigned long used = addr + PAGE_ALIGN(size);
3495
3496 split_page(virt_to_page((void *)addr), order);
3497 while (used < alloc_end) {
3498 free_page(used);
3499 used += PAGE_SIZE;
3500 }
3501 }
3502 return (void *)addr;
3503 }
3504
3505 /**
3506 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3507 * @size: the number of bytes to allocate
3508 * @gfp_mask: GFP flags for the allocation
3509 *
3510 * This function is similar to alloc_pages(), except that it allocates the
3511 * minimum number of pages to satisfy the request. alloc_pages() can only
3512 * allocate memory in power-of-two pages.
3513 *
3514 * This function is also limited by MAX_ORDER.
3515 *
3516 * Memory allocated by this function must be released by free_pages_exact().
3517 */
3518 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3519 {
3520 unsigned int order = get_order(size);
3521 unsigned long addr;
3522
3523 addr = __get_free_pages(gfp_mask, order);
3524 return make_alloc_exact(addr, order, size);
3525 }
3526 EXPORT_SYMBOL(alloc_pages_exact);
3527
3528 /**
3529 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3530 * pages on a node.
3531 * @nid: the preferred node ID where memory should be allocated
3532 * @size: the number of bytes to allocate
3533 * @gfp_mask: GFP flags for the allocation
3534 *
3535 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3536 * back.
3537 */
3538 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3539 {
3540 unsigned int order = get_order(size);
3541 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3542 if (!p)
3543 return NULL;
3544 return make_alloc_exact((unsigned long)page_address(p), order, size);
3545 }
3546
3547 /**
3548 * free_pages_exact - release memory allocated via alloc_pages_exact()
3549 * @virt: the value returned by alloc_pages_exact.
3550 * @size: size of allocation, same value as passed to alloc_pages_exact().
3551 *
3552 * Release the memory allocated by a previous call to alloc_pages_exact.
3553 */
3554 void free_pages_exact(void *virt, size_t size)
3555 {
3556 unsigned long addr = (unsigned long)virt;
3557 unsigned long end = addr + PAGE_ALIGN(size);
3558
3559 while (addr < end) {
3560 free_page(addr);
3561 addr += PAGE_SIZE;
3562 }
3563 }
3564 EXPORT_SYMBOL(free_pages_exact);
3565
3566 /**
3567 * nr_free_zone_pages - count number of pages beyond high watermark
3568 * @offset: The zone index of the highest zone
3569 *
3570 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3571 * high watermark within all zones at or below a given zone index. For each
3572 * zone, the number of pages is calculated as:
3573 * managed_pages - high_pages
3574 */
3575 static unsigned long nr_free_zone_pages(int offset)
3576 {
3577 struct zoneref *z;
3578 struct zone *zone;
3579
3580 /* Just pick one node, since fallback list is circular */
3581 unsigned long sum = 0;
3582
3583 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3584
3585 for_each_zone_zonelist(zone, z, zonelist, offset) {
3586 unsigned long size = zone->managed_pages;
3587 unsigned long high = high_wmark_pages(zone);
3588 if (size > high)
3589 sum += size - high;
3590 }
3591
3592 return sum;
3593 }
3594
3595 /**
3596 * nr_free_buffer_pages - count number of pages beyond high watermark
3597 *
3598 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3599 * watermark within ZONE_DMA and ZONE_NORMAL.
3600 */
3601 unsigned long nr_free_buffer_pages(void)
3602 {
3603 return nr_free_zone_pages(gfp_zone(GFP_USER));
3604 }
3605 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3606
3607 /**
3608 * nr_free_pagecache_pages - count number of pages beyond high watermark
3609 *
3610 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3611 * high watermark within all zones.
3612 */
3613 unsigned long nr_free_pagecache_pages(void)
3614 {
3615 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3616 }
3617
3618 static inline void show_node(struct zone *zone)
3619 {
3620 if (IS_ENABLED(CONFIG_NUMA))
3621 printk("Node %d ", zone_to_nid(zone));
3622 }
3623
3624 void si_meminfo(struct sysinfo *val)
3625 {
3626 val->totalram = totalram_pages;
3627 val->sharedram = global_page_state(NR_SHMEM);
3628 val->freeram = global_page_state(NR_FREE_PAGES);
3629 val->bufferram = nr_blockdev_pages();
3630 val->totalhigh = totalhigh_pages;
3631 val->freehigh = nr_free_highpages();
3632 val->mem_unit = PAGE_SIZE;
3633 }
3634
3635 EXPORT_SYMBOL(si_meminfo);
3636
3637 #ifdef CONFIG_NUMA
3638 void si_meminfo_node(struct sysinfo *val, int nid)
3639 {
3640 int zone_type; /* needs to be signed */
3641 unsigned long managed_pages = 0;
3642 pg_data_t *pgdat = NODE_DATA(nid);
3643
3644 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3645 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3646 val->totalram = managed_pages;
3647 val->sharedram = node_page_state(nid, NR_SHMEM);
3648 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3649 #ifdef CONFIG_HIGHMEM
3650 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3651 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3652 NR_FREE_PAGES);
3653 #else
3654 val->totalhigh = 0;
3655 val->freehigh = 0;
3656 #endif
3657 val->mem_unit = PAGE_SIZE;
3658 }
3659 #endif
3660
3661 /*
3662 * Determine whether the node should be displayed or not, depending on whether
3663 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3664 */
3665 bool skip_free_areas_node(unsigned int flags, int nid)
3666 {
3667 bool ret = false;
3668 unsigned int cpuset_mems_cookie;
3669
3670 if (!(flags & SHOW_MEM_FILTER_NODES))
3671 goto out;
3672
3673 do {
3674 cpuset_mems_cookie = read_mems_allowed_begin();
3675 ret = !node_isset(nid, cpuset_current_mems_allowed);
3676 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3677 out:
3678 return ret;
3679 }
3680
3681 #define K(x) ((x) << (PAGE_SHIFT-10))
3682
3683 static void show_migration_types(unsigned char type)
3684 {
3685 static const char types[MIGRATE_TYPES] = {
3686 [MIGRATE_UNMOVABLE] = 'U',
3687 [MIGRATE_MOVABLE] = 'M',
3688 [MIGRATE_RECLAIMABLE] = 'E',
3689 [MIGRATE_HIGHATOMIC] = 'H',
3690 #ifdef CONFIG_CMA
3691 [MIGRATE_CMA] = 'C',
3692 #endif
3693 #ifdef CONFIG_MEMORY_ISOLATION
3694 [MIGRATE_ISOLATE] = 'I',
3695 #endif
3696 };
3697 char tmp[MIGRATE_TYPES + 1];
3698 char *p = tmp;
3699 int i;
3700
3701 for (i = 0; i < MIGRATE_TYPES; i++) {
3702 if (type & (1 << i))
3703 *p++ = types[i];
3704 }
3705
3706 *p = '\0';
3707 printk("(%s) ", tmp);
3708 }
3709
3710 /*
3711 * Show free area list (used inside shift_scroll-lock stuff)
3712 * We also calculate the percentage fragmentation. We do this by counting the
3713 * memory on each free list with the exception of the first item on the list.
3714 *
3715 * Bits in @filter:
3716 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3717 * cpuset.
3718 */
3719 void show_free_areas(unsigned int filter)
3720 {
3721 unsigned long free_pcp = 0;
3722 int cpu;
3723 struct zone *zone;
3724
3725 for_each_populated_zone(zone) {
3726 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3727 continue;
3728
3729 for_each_online_cpu(cpu)
3730 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3731 }
3732
3733 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3734 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3735 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3736 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3737 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3738 " free:%lu free_pcp:%lu free_cma:%lu\n",
3739 global_page_state(NR_ACTIVE_ANON),
3740 global_page_state(NR_INACTIVE_ANON),
3741 global_page_state(NR_ISOLATED_ANON),
3742 global_page_state(NR_ACTIVE_FILE),
3743 global_page_state(NR_INACTIVE_FILE),
3744 global_page_state(NR_ISOLATED_FILE),
3745 global_page_state(NR_UNEVICTABLE),
3746 global_page_state(NR_FILE_DIRTY),
3747 global_page_state(NR_WRITEBACK),
3748 global_page_state(NR_UNSTABLE_NFS),
3749 global_page_state(NR_SLAB_RECLAIMABLE),
3750 global_page_state(NR_SLAB_UNRECLAIMABLE),
3751 global_page_state(NR_FILE_MAPPED),
3752 global_page_state(NR_SHMEM),
3753 global_page_state(NR_PAGETABLE),
3754 global_page_state(NR_BOUNCE),
3755 global_page_state(NR_FREE_PAGES),
3756 free_pcp,
3757 global_page_state(NR_FREE_CMA_PAGES));
3758
3759 for_each_populated_zone(zone) {
3760 int i;
3761
3762 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3763 continue;
3764
3765 free_pcp = 0;
3766 for_each_online_cpu(cpu)
3767 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3768
3769 show_node(zone);
3770 printk("%s"
3771 " free:%lukB"
3772 " min:%lukB"
3773 " low:%lukB"
3774 " high:%lukB"
3775 " active_anon:%lukB"
3776 " inactive_anon:%lukB"
3777 " active_file:%lukB"
3778 " inactive_file:%lukB"
3779 " unevictable:%lukB"
3780 " isolated(anon):%lukB"
3781 " isolated(file):%lukB"
3782 " present:%lukB"
3783 " managed:%lukB"
3784 " mlocked:%lukB"
3785 " dirty:%lukB"
3786 " writeback:%lukB"
3787 " mapped:%lukB"
3788 " shmem:%lukB"
3789 " slab_reclaimable:%lukB"
3790 " slab_unreclaimable:%lukB"
3791 " kernel_stack:%lukB"
3792 " pagetables:%lukB"
3793 " unstable:%lukB"
3794 " bounce:%lukB"
3795 " free_pcp:%lukB"
3796 " local_pcp:%ukB"
3797 " free_cma:%lukB"
3798 " writeback_tmp:%lukB"
3799 " pages_scanned:%lu"
3800 " all_unreclaimable? %s"
3801 "\n",
3802 zone->name,
3803 K(zone_page_state(zone, NR_FREE_PAGES)),
3804 K(min_wmark_pages(zone)),
3805 K(low_wmark_pages(zone)),
3806 K(high_wmark_pages(zone)),
3807 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3808 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3809 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3810 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3811 K(zone_page_state(zone, NR_UNEVICTABLE)),
3812 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3813 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3814 K(zone->present_pages),
3815 K(zone->managed_pages),
3816 K(zone_page_state(zone, NR_MLOCK)),
3817 K(zone_page_state(zone, NR_FILE_DIRTY)),
3818 K(zone_page_state(zone, NR_WRITEBACK)),
3819 K(zone_page_state(zone, NR_FILE_MAPPED)),
3820 K(zone_page_state(zone, NR_SHMEM)),
3821 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3822 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3823 zone_page_state(zone, NR_KERNEL_STACK) *
3824 THREAD_SIZE / 1024,
3825 K(zone_page_state(zone, NR_PAGETABLE)),
3826 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3827 K(zone_page_state(zone, NR_BOUNCE)),
3828 K(free_pcp),
3829 K(this_cpu_read(zone->pageset->pcp.count)),
3830 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3831 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3832 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3833 (!zone_reclaimable(zone) ? "yes" : "no")
3834 );
3835 printk("lowmem_reserve[]:");
3836 for (i = 0; i < MAX_NR_ZONES; i++)
3837 printk(" %ld", zone->lowmem_reserve[i]);
3838 printk("\n");
3839 }
3840
3841 for_each_populated_zone(zone) {
3842 unsigned int order;
3843 unsigned long nr[MAX_ORDER], flags, total = 0;
3844 unsigned char types[MAX_ORDER];
3845
3846 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3847 continue;
3848 show_node(zone);
3849 printk("%s: ", zone->name);
3850
3851 spin_lock_irqsave(&zone->lock, flags);
3852 for (order = 0; order < MAX_ORDER; order++) {
3853 struct free_area *area = &zone->free_area[order];
3854 int type;
3855
3856 nr[order] = area->nr_free;
3857 total += nr[order] << order;
3858
3859 types[order] = 0;
3860 for (type = 0; type < MIGRATE_TYPES; type++) {
3861 if (!list_empty(&area->free_list[type]))
3862 types[order] |= 1 << type;
3863 }
3864 }
3865 spin_unlock_irqrestore(&zone->lock, flags);
3866 for (order = 0; order < MAX_ORDER; order++) {
3867 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3868 if (nr[order])
3869 show_migration_types(types[order]);
3870 }
3871 printk("= %lukB\n", K(total));
3872 }
3873
3874 hugetlb_show_meminfo();
3875
3876 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3877
3878 show_swap_cache_info();
3879 }
3880
3881 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3882 {
3883 zoneref->zone = zone;
3884 zoneref->zone_idx = zone_idx(zone);
3885 }
3886
3887 /*
3888 * Builds allocation fallback zone lists.
3889 *
3890 * Add all populated zones of a node to the zonelist.
3891 */
3892 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3893 int nr_zones)
3894 {
3895 struct zone *zone;
3896 enum zone_type zone_type = MAX_NR_ZONES;
3897
3898 do {
3899 zone_type--;
3900 zone = pgdat->node_zones + zone_type;
3901 if (populated_zone(zone)) {
3902 zoneref_set_zone(zone,
3903 &zonelist->_zonerefs[nr_zones++]);
3904 check_highest_zone(zone_type);
3905 }
3906 } while (zone_type);
3907
3908 return nr_zones;
3909 }
3910
3911
3912 /*
3913 * zonelist_order:
3914 * 0 = automatic detection of better ordering.
3915 * 1 = order by ([node] distance, -zonetype)
3916 * 2 = order by (-zonetype, [node] distance)
3917 *
3918 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3919 * the same zonelist. So only NUMA can configure this param.
3920 */
3921 #define ZONELIST_ORDER_DEFAULT 0
3922 #define ZONELIST_ORDER_NODE 1
3923 #define ZONELIST_ORDER_ZONE 2
3924
3925 /* zonelist order in the kernel.
3926 * set_zonelist_order() will set this to NODE or ZONE.
3927 */
3928 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3929 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3930
3931
3932 #ifdef CONFIG_NUMA
3933 /* The value user specified ....changed by config */
3934 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3935 /* string for sysctl */
3936 #define NUMA_ZONELIST_ORDER_LEN 16
3937 char numa_zonelist_order[16] = "default";
3938
3939 /*
3940 * interface for configure zonelist ordering.
3941 * command line option "numa_zonelist_order"
3942 * = "[dD]efault - default, automatic configuration.
3943 * = "[nN]ode - order by node locality, then by zone within node
3944 * = "[zZ]one - order by zone, then by locality within zone
3945 */
3946
3947 static int __parse_numa_zonelist_order(char *s)
3948 {
3949 if (*s == 'd' || *s == 'D') {
3950 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3951 } else if (*s == 'n' || *s == 'N') {
3952 user_zonelist_order = ZONELIST_ORDER_NODE;
3953 } else if (*s == 'z' || *s == 'Z') {
3954 user_zonelist_order = ZONELIST_ORDER_ZONE;
3955 } else {
3956 printk(KERN_WARNING
3957 "Ignoring invalid numa_zonelist_order value: "
3958 "%s\n", s);
3959 return -EINVAL;
3960 }
3961 return 0;
3962 }
3963
3964 static __init int setup_numa_zonelist_order(char *s)
3965 {
3966 int ret;
3967
3968 if (!s)
3969 return 0;
3970
3971 ret = __parse_numa_zonelist_order(s);
3972 if (ret == 0)
3973 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3974
3975 return ret;
3976 }
3977 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3978
3979 /*
3980 * sysctl handler for numa_zonelist_order
3981 */
3982 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3983 void __user *buffer, size_t *length,
3984 loff_t *ppos)
3985 {
3986 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3987 int ret;
3988 static DEFINE_MUTEX(zl_order_mutex);
3989
3990 mutex_lock(&zl_order_mutex);
3991 if (write) {
3992 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3993 ret = -EINVAL;
3994 goto out;
3995 }
3996 strcpy(saved_string, (char *)table->data);
3997 }
3998 ret = proc_dostring(table, write, buffer, length, ppos);
3999 if (ret)
4000 goto out;
4001 if (write) {
4002 int oldval = user_zonelist_order;
4003
4004 ret = __parse_numa_zonelist_order((char *)table->data);
4005 if (ret) {
4006 /*
4007 * bogus value. restore saved string
4008 */
4009 strncpy((char *)table->data, saved_string,
4010 NUMA_ZONELIST_ORDER_LEN);
4011 user_zonelist_order = oldval;
4012 } else if (oldval != user_zonelist_order) {
4013 mutex_lock(&zonelists_mutex);
4014 build_all_zonelists(NULL, NULL);
4015 mutex_unlock(&zonelists_mutex);
4016 }
4017 }
4018 out:
4019 mutex_unlock(&zl_order_mutex);
4020 return ret;
4021 }
4022
4023
4024 #define MAX_NODE_LOAD (nr_online_nodes)
4025 static int node_load[MAX_NUMNODES];
4026
4027 /**
4028 * find_next_best_node - find the next node that should appear in a given node's fallback list
4029 * @node: node whose fallback list we're appending
4030 * @used_node_mask: nodemask_t of already used nodes
4031 *
4032 * We use a number of factors to determine which is the next node that should
4033 * appear on a given node's fallback list. The node should not have appeared
4034 * already in @node's fallback list, and it should be the next closest node
4035 * according to the distance array (which contains arbitrary distance values
4036 * from each node to each node in the system), and should also prefer nodes
4037 * with no CPUs, since presumably they'll have very little allocation pressure
4038 * on them otherwise.
4039 * It returns -1 if no node is found.
4040 */
4041 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4042 {
4043 int n, val;
4044 int min_val = INT_MAX;
4045 int best_node = NUMA_NO_NODE;
4046 const struct cpumask *tmp = cpumask_of_node(0);
4047
4048 /* Use the local node if we haven't already */
4049 if (!node_isset(node, *used_node_mask)) {
4050 node_set(node, *used_node_mask);
4051 return node;
4052 }
4053
4054 for_each_node_state(n, N_MEMORY) {
4055
4056 /* Don't want a node to appear more than once */
4057 if (node_isset(n, *used_node_mask))
4058 continue;
4059
4060 /* Use the distance array to find the distance */
4061 val = node_distance(node, n);
4062
4063 /* Penalize nodes under us ("prefer the next node") */
4064 val += (n < node);
4065
4066 /* Give preference to headless and unused nodes */
4067 tmp = cpumask_of_node(n);
4068 if (!cpumask_empty(tmp))
4069 val += PENALTY_FOR_NODE_WITH_CPUS;
4070
4071 /* Slight preference for less loaded node */
4072 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4073 val += node_load[n];
4074
4075 if (val < min_val) {
4076 min_val = val;
4077 best_node = n;
4078 }
4079 }
4080
4081 if (best_node >= 0)
4082 node_set(best_node, *used_node_mask);
4083
4084 return best_node;
4085 }
4086
4087
4088 /*
4089 * Build zonelists ordered by node and zones within node.
4090 * This results in maximum locality--normal zone overflows into local
4091 * DMA zone, if any--but risks exhausting DMA zone.
4092 */
4093 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4094 {
4095 int j;
4096 struct zonelist *zonelist;
4097
4098 zonelist = &pgdat->node_zonelists[0];
4099 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4100 ;
4101 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4102 zonelist->_zonerefs[j].zone = NULL;
4103 zonelist->_zonerefs[j].zone_idx = 0;
4104 }
4105
4106 /*
4107 * Build gfp_thisnode zonelists
4108 */
4109 static void build_thisnode_zonelists(pg_data_t *pgdat)
4110 {
4111 int j;
4112 struct zonelist *zonelist;
4113
4114 zonelist = &pgdat->node_zonelists[1];
4115 j = build_zonelists_node(pgdat, zonelist, 0);
4116 zonelist->_zonerefs[j].zone = NULL;
4117 zonelist->_zonerefs[j].zone_idx = 0;
4118 }
4119
4120 /*
4121 * Build zonelists ordered by zone and nodes within zones.
4122 * This results in conserving DMA zone[s] until all Normal memory is
4123 * exhausted, but results in overflowing to remote node while memory
4124 * may still exist in local DMA zone.
4125 */
4126 static int node_order[MAX_NUMNODES];
4127
4128 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4129 {
4130 int pos, j, node;
4131 int zone_type; /* needs to be signed */
4132 struct zone *z;
4133 struct zonelist *zonelist;
4134
4135 zonelist = &pgdat->node_zonelists[0];
4136 pos = 0;
4137 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4138 for (j = 0; j < nr_nodes; j++) {
4139 node = node_order[j];
4140 z = &NODE_DATA(node)->node_zones[zone_type];
4141 if (populated_zone(z)) {
4142 zoneref_set_zone(z,
4143 &zonelist->_zonerefs[pos++]);
4144 check_highest_zone(zone_type);
4145 }
4146 }
4147 }
4148 zonelist->_zonerefs[pos].zone = NULL;
4149 zonelist->_zonerefs[pos].zone_idx = 0;
4150 }
4151
4152 #if defined(CONFIG_64BIT)
4153 /*
4154 * Devices that require DMA32/DMA are relatively rare and do not justify a
4155 * penalty to every machine in case the specialised case applies. Default
4156 * to Node-ordering on 64-bit NUMA machines
4157 */
4158 static int default_zonelist_order(void)
4159 {
4160 return ZONELIST_ORDER_NODE;
4161 }
4162 #else
4163 /*
4164 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4165 * by the kernel. If processes running on node 0 deplete the low memory zone
4166 * then reclaim will occur more frequency increasing stalls and potentially
4167 * be easier to OOM if a large percentage of the zone is under writeback or
4168 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4169 * Hence, default to zone ordering on 32-bit.
4170 */
4171 static int default_zonelist_order(void)
4172 {
4173 return ZONELIST_ORDER_ZONE;
4174 }
4175 #endif /* CONFIG_64BIT */
4176
4177 static void set_zonelist_order(void)
4178 {
4179 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4180 current_zonelist_order = default_zonelist_order();
4181 else
4182 current_zonelist_order = user_zonelist_order;
4183 }
4184
4185 static void build_zonelists(pg_data_t *pgdat)
4186 {
4187 int i, node, load;
4188 nodemask_t used_mask;
4189 int local_node, prev_node;
4190 struct zonelist *zonelist;
4191 unsigned int order = current_zonelist_order;
4192
4193 /* initialize zonelists */
4194 for (i = 0; i < MAX_ZONELISTS; i++) {
4195 zonelist = pgdat->node_zonelists + i;
4196 zonelist->_zonerefs[0].zone = NULL;
4197 zonelist->_zonerefs[0].zone_idx = 0;
4198 }
4199
4200 /* NUMA-aware ordering of nodes */
4201 local_node = pgdat->node_id;
4202 load = nr_online_nodes;
4203 prev_node = local_node;
4204 nodes_clear(used_mask);
4205
4206 memset(node_order, 0, sizeof(node_order));
4207 i = 0;
4208
4209 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4210 /*
4211 * We don't want to pressure a particular node.
4212 * So adding penalty to the first node in same
4213 * distance group to make it round-robin.
4214 */
4215 if (node_distance(local_node, node) !=
4216 node_distance(local_node, prev_node))
4217 node_load[node] = load;
4218
4219 prev_node = node;
4220 load--;
4221 if (order == ZONELIST_ORDER_NODE)
4222 build_zonelists_in_node_order(pgdat, node);
4223 else
4224 node_order[i++] = node; /* remember order */
4225 }
4226
4227 if (order == ZONELIST_ORDER_ZONE) {
4228 /* calculate node order -- i.e., DMA last! */
4229 build_zonelists_in_zone_order(pgdat, i);
4230 }
4231
4232 build_thisnode_zonelists(pgdat);
4233 }
4234
4235 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4236 /*
4237 * Return node id of node used for "local" allocations.
4238 * I.e., first node id of first zone in arg node's generic zonelist.
4239 * Used for initializing percpu 'numa_mem', which is used primarily
4240 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4241 */
4242 int local_memory_node(int node)
4243 {
4244 struct zone *zone;
4245
4246 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4247 gfp_zone(GFP_KERNEL),
4248 NULL,
4249 &zone);
4250 return zone->node;
4251 }
4252 #endif
4253
4254 #else /* CONFIG_NUMA */
4255
4256 static void set_zonelist_order(void)
4257 {
4258 current_zonelist_order = ZONELIST_ORDER_ZONE;
4259 }
4260
4261 static void build_zonelists(pg_data_t *pgdat)
4262 {
4263 int node, local_node;
4264 enum zone_type j;
4265 struct zonelist *zonelist;
4266
4267 local_node = pgdat->node_id;
4268
4269 zonelist = &pgdat->node_zonelists[0];
4270 j = build_zonelists_node(pgdat, zonelist, 0);
4271
4272 /*
4273 * Now we build the zonelist so that it contains the zones
4274 * of all the other nodes.
4275 * We don't want to pressure a particular node, so when
4276 * building the zones for node N, we make sure that the
4277 * zones coming right after the local ones are those from
4278 * node N+1 (modulo N)
4279 */
4280 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4281 if (!node_online(node))
4282 continue;
4283 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4284 }
4285 for (node = 0; node < local_node; node++) {
4286 if (!node_online(node))
4287 continue;
4288 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4289 }
4290
4291 zonelist->_zonerefs[j].zone = NULL;
4292 zonelist->_zonerefs[j].zone_idx = 0;
4293 }
4294
4295 #endif /* CONFIG_NUMA */
4296
4297 /*
4298 * Boot pageset table. One per cpu which is going to be used for all
4299 * zones and all nodes. The parameters will be set in such a way
4300 * that an item put on a list will immediately be handed over to
4301 * the buddy list. This is safe since pageset manipulation is done
4302 * with interrupts disabled.
4303 *
4304 * The boot_pagesets must be kept even after bootup is complete for
4305 * unused processors and/or zones. They do play a role for bootstrapping
4306 * hotplugged processors.
4307 *
4308 * zoneinfo_show() and maybe other functions do
4309 * not check if the processor is online before following the pageset pointer.
4310 * Other parts of the kernel may not check if the zone is available.
4311 */
4312 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4313 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4314 static void setup_zone_pageset(struct zone *zone);
4315
4316 /*
4317 * Global mutex to protect against size modification of zonelists
4318 * as well as to serialize pageset setup for the new populated zone.
4319 */
4320 DEFINE_MUTEX(zonelists_mutex);
4321
4322 /* return values int ....just for stop_machine() */
4323 static int __build_all_zonelists(void *data)
4324 {
4325 int nid;
4326 int cpu;
4327 pg_data_t *self = data;
4328
4329 #ifdef CONFIG_NUMA
4330 memset(node_load, 0, sizeof(node_load));
4331 #endif
4332
4333 if (self && !node_online(self->node_id)) {
4334 build_zonelists(self);
4335 }
4336
4337 for_each_online_node(nid) {
4338 pg_data_t *pgdat = NODE_DATA(nid);
4339
4340 build_zonelists(pgdat);
4341 }
4342
4343 /*
4344 * Initialize the boot_pagesets that are going to be used
4345 * for bootstrapping processors. The real pagesets for
4346 * each zone will be allocated later when the per cpu
4347 * allocator is available.
4348 *
4349 * boot_pagesets are used also for bootstrapping offline
4350 * cpus if the system is already booted because the pagesets
4351 * are needed to initialize allocators on a specific cpu too.
4352 * F.e. the percpu allocator needs the page allocator which
4353 * needs the percpu allocator in order to allocate its pagesets
4354 * (a chicken-egg dilemma).
4355 */
4356 for_each_possible_cpu(cpu) {
4357 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4358
4359 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4360 /*
4361 * We now know the "local memory node" for each node--
4362 * i.e., the node of the first zone in the generic zonelist.
4363 * Set up numa_mem percpu variable for on-line cpus. During
4364 * boot, only the boot cpu should be on-line; we'll init the
4365 * secondary cpus' numa_mem as they come on-line. During
4366 * node/memory hotplug, we'll fixup all on-line cpus.
4367 */
4368 if (cpu_online(cpu))
4369 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4370 #endif
4371 }
4372
4373 return 0;
4374 }
4375
4376 static noinline void __init
4377 build_all_zonelists_init(void)
4378 {
4379 __build_all_zonelists(NULL);
4380 mminit_verify_zonelist();
4381 cpuset_init_current_mems_allowed();
4382 }
4383
4384 /*
4385 * Called with zonelists_mutex held always
4386 * unless system_state == SYSTEM_BOOTING.
4387 *
4388 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4389 * [we're only called with non-NULL zone through __meminit paths] and
4390 * (2) call of __init annotated helper build_all_zonelists_init
4391 * [protected by SYSTEM_BOOTING].
4392 */
4393 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4394 {
4395 set_zonelist_order();
4396
4397 if (system_state == SYSTEM_BOOTING) {
4398 build_all_zonelists_init();
4399 } else {
4400 #ifdef CONFIG_MEMORY_HOTPLUG
4401 if (zone)
4402 setup_zone_pageset(zone);
4403 #endif
4404 /* we have to stop all cpus to guarantee there is no user
4405 of zonelist */
4406 stop_machine(__build_all_zonelists, pgdat, NULL);
4407 /* cpuset refresh routine should be here */
4408 }
4409 vm_total_pages = nr_free_pagecache_pages();
4410 /*
4411 * Disable grouping by mobility if the number of pages in the
4412 * system is too low to allow the mechanism to work. It would be
4413 * more accurate, but expensive to check per-zone. This check is
4414 * made on memory-hotadd so a system can start with mobility
4415 * disabled and enable it later
4416 */
4417 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4418 page_group_by_mobility_disabled = 1;
4419 else
4420 page_group_by_mobility_disabled = 0;
4421
4422 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4423 "Total pages: %ld\n",
4424 nr_online_nodes,
4425 zonelist_order_name[current_zonelist_order],
4426 page_group_by_mobility_disabled ? "off" : "on",
4427 vm_total_pages);
4428 #ifdef CONFIG_NUMA
4429 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4430 #endif
4431 }
4432
4433 /*
4434 * Helper functions to size the waitqueue hash table.
4435 * Essentially these want to choose hash table sizes sufficiently
4436 * large so that collisions trying to wait on pages are rare.
4437 * But in fact, the number of active page waitqueues on typical
4438 * systems is ridiculously low, less than 200. So this is even
4439 * conservative, even though it seems large.
4440 *
4441 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4442 * waitqueues, i.e. the size of the waitq table given the number of pages.
4443 */
4444 #define PAGES_PER_WAITQUEUE 256
4445
4446 #ifndef CONFIG_MEMORY_HOTPLUG
4447 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4448 {
4449 unsigned long size = 1;
4450
4451 pages /= PAGES_PER_WAITQUEUE;
4452
4453 while (size < pages)
4454 size <<= 1;
4455
4456 /*
4457 * Once we have dozens or even hundreds of threads sleeping
4458 * on IO we've got bigger problems than wait queue collision.
4459 * Limit the size of the wait table to a reasonable size.
4460 */
4461 size = min(size, 4096UL);
4462
4463 return max(size, 4UL);
4464 }
4465 #else
4466 /*
4467 * A zone's size might be changed by hot-add, so it is not possible to determine
4468 * a suitable size for its wait_table. So we use the maximum size now.
4469 *
4470 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4471 *
4472 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4473 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4474 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4475 *
4476 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4477 * or more by the traditional way. (See above). It equals:
4478 *
4479 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4480 * ia64(16K page size) : = ( 8G + 4M)byte.
4481 * powerpc (64K page size) : = (32G +16M)byte.
4482 */
4483 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4484 {
4485 return 4096UL;
4486 }
4487 #endif
4488
4489 /*
4490 * This is an integer logarithm so that shifts can be used later
4491 * to extract the more random high bits from the multiplicative
4492 * hash function before the remainder is taken.
4493 */
4494 static inline unsigned long wait_table_bits(unsigned long size)
4495 {
4496 return ffz(~size);
4497 }
4498
4499 /*
4500 * Initially all pages are reserved - free ones are freed
4501 * up by free_all_bootmem() once the early boot process is
4502 * done. Non-atomic initialization, single-pass.
4503 */
4504 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4505 unsigned long start_pfn, enum memmap_context context)
4506 {
4507 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4508 unsigned long end_pfn = start_pfn + size;
4509 pg_data_t *pgdat = NODE_DATA(nid);
4510 unsigned long pfn;
4511 unsigned long nr_initialised = 0;
4512 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4513 struct memblock_region *r = NULL, *tmp;
4514 #endif
4515
4516 if (highest_memmap_pfn < end_pfn - 1)
4517 highest_memmap_pfn = end_pfn - 1;
4518
4519 /*
4520 * Honor reservation requested by the driver for this ZONE_DEVICE
4521 * memory
4522 */
4523 if (altmap && start_pfn == altmap->base_pfn)
4524 start_pfn += altmap->reserve;
4525
4526 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4527 /*
4528 * There can be holes in boot-time mem_map[]s handed to this
4529 * function. They do not exist on hotplugged memory.
4530 */
4531 if (context != MEMMAP_EARLY)
4532 goto not_early;
4533
4534 if (!early_pfn_valid(pfn))
4535 continue;
4536 if (!early_pfn_in_nid(pfn, nid))
4537 continue;
4538 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4539 break;
4540
4541 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4542 /*
4543 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4544 * from zone_movable_pfn[nid] to end of each node should be
4545 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4546 */
4547 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4548 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4549 continue;
4550
4551 /*
4552 * Check given memblock attribute by firmware which can affect
4553 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4554 * mirrored, it's an overlapped memmap init. skip it.
4555 */
4556 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4557 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4558 for_each_memblock(memory, tmp)
4559 if (pfn < memblock_region_memory_end_pfn(tmp))
4560 break;
4561 r = tmp;
4562 }
4563 if (pfn >= memblock_region_memory_base_pfn(r) &&
4564 memblock_is_mirror(r)) {
4565 /* already initialized as NORMAL */
4566 pfn = memblock_region_memory_end_pfn(r);
4567 continue;
4568 }
4569 }
4570 #endif
4571
4572 not_early:
4573 /*
4574 * Mark the block movable so that blocks are reserved for
4575 * movable at startup. This will force kernel allocations
4576 * to reserve their blocks rather than leaking throughout
4577 * the address space during boot when many long-lived
4578 * kernel allocations are made.
4579 *
4580 * bitmap is created for zone's valid pfn range. but memmap
4581 * can be created for invalid pages (for alignment)
4582 * check here not to call set_pageblock_migratetype() against
4583 * pfn out of zone.
4584 */
4585 if (!(pfn & (pageblock_nr_pages - 1))) {
4586 struct page *page = pfn_to_page(pfn);
4587
4588 __init_single_page(page, pfn, zone, nid);
4589 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4590 } else {
4591 __init_single_pfn(pfn, zone, nid);
4592 }
4593 }
4594 }
4595
4596 static void __meminit zone_init_free_lists(struct zone *zone)
4597 {
4598 unsigned int order, t;
4599 for_each_migratetype_order(order, t) {
4600 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4601 zone->free_area[order].nr_free = 0;
4602 }
4603 }
4604
4605 #ifndef __HAVE_ARCH_MEMMAP_INIT
4606 #define memmap_init(size, nid, zone, start_pfn) \
4607 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4608 #endif
4609
4610 static int zone_batchsize(struct zone *zone)
4611 {
4612 #ifdef CONFIG_MMU
4613 int batch;
4614
4615 /*
4616 * The per-cpu-pages pools are set to around 1000th of the
4617 * size of the zone. But no more than 1/2 of a meg.
4618 *
4619 * OK, so we don't know how big the cache is. So guess.
4620 */
4621 batch = zone->managed_pages / 1024;
4622 if (batch * PAGE_SIZE > 512 * 1024)
4623 batch = (512 * 1024) / PAGE_SIZE;
4624 batch /= 4; /* We effectively *= 4 below */
4625 if (batch < 1)
4626 batch = 1;
4627
4628 /*
4629 * Clamp the batch to a 2^n - 1 value. Having a power
4630 * of 2 value was found to be more likely to have
4631 * suboptimal cache aliasing properties in some cases.
4632 *
4633 * For example if 2 tasks are alternately allocating
4634 * batches of pages, one task can end up with a lot
4635 * of pages of one half of the possible page colors
4636 * and the other with pages of the other colors.
4637 */
4638 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4639
4640 return batch;
4641
4642 #else
4643 /* The deferral and batching of frees should be suppressed under NOMMU
4644 * conditions.
4645 *
4646 * The problem is that NOMMU needs to be able to allocate large chunks
4647 * of contiguous memory as there's no hardware page translation to
4648 * assemble apparent contiguous memory from discontiguous pages.
4649 *
4650 * Queueing large contiguous runs of pages for batching, however,
4651 * causes the pages to actually be freed in smaller chunks. As there
4652 * can be a significant delay between the individual batches being
4653 * recycled, this leads to the once large chunks of space being
4654 * fragmented and becoming unavailable for high-order allocations.
4655 */
4656 return 0;
4657 #endif
4658 }
4659
4660 /*
4661 * pcp->high and pcp->batch values are related and dependent on one another:
4662 * ->batch must never be higher then ->high.
4663 * The following function updates them in a safe manner without read side
4664 * locking.
4665 *
4666 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4667 * those fields changing asynchronously (acording the the above rule).
4668 *
4669 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4670 * outside of boot time (or some other assurance that no concurrent updaters
4671 * exist).
4672 */
4673 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4674 unsigned long batch)
4675 {
4676 /* start with a fail safe value for batch */
4677 pcp->batch = 1;
4678 smp_wmb();
4679
4680 /* Update high, then batch, in order */
4681 pcp->high = high;
4682 smp_wmb();
4683
4684 pcp->batch = batch;
4685 }
4686
4687 /* a companion to pageset_set_high() */
4688 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4689 {
4690 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4691 }
4692
4693 static void pageset_init(struct per_cpu_pageset *p)
4694 {
4695 struct per_cpu_pages *pcp;
4696 int migratetype;
4697
4698 memset(p, 0, sizeof(*p));
4699
4700 pcp = &p->pcp;
4701 pcp->count = 0;
4702 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4703 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4704 }
4705
4706 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4707 {
4708 pageset_init(p);
4709 pageset_set_batch(p, batch);
4710 }
4711
4712 /*
4713 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4714 * to the value high for the pageset p.
4715 */
4716 static void pageset_set_high(struct per_cpu_pageset *p,
4717 unsigned long high)
4718 {
4719 unsigned long batch = max(1UL, high / 4);
4720 if ((high / 4) > (PAGE_SHIFT * 8))
4721 batch = PAGE_SHIFT * 8;
4722
4723 pageset_update(&p->pcp, high, batch);
4724 }
4725
4726 static void pageset_set_high_and_batch(struct zone *zone,
4727 struct per_cpu_pageset *pcp)
4728 {
4729 if (percpu_pagelist_fraction)
4730 pageset_set_high(pcp,
4731 (zone->managed_pages /
4732 percpu_pagelist_fraction));
4733 else
4734 pageset_set_batch(pcp, zone_batchsize(zone));
4735 }
4736
4737 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4738 {
4739 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4740
4741 pageset_init(pcp);
4742 pageset_set_high_and_batch(zone, pcp);
4743 }
4744
4745 static void __meminit setup_zone_pageset(struct zone *zone)
4746 {
4747 int cpu;
4748 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4749 for_each_possible_cpu(cpu)
4750 zone_pageset_init(zone, cpu);
4751 }
4752
4753 /*
4754 * Allocate per cpu pagesets and initialize them.
4755 * Before this call only boot pagesets were available.
4756 */
4757 void __init setup_per_cpu_pageset(void)
4758 {
4759 struct zone *zone;
4760
4761 for_each_populated_zone(zone)
4762 setup_zone_pageset(zone);
4763 }
4764
4765 static noinline __init_refok
4766 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4767 {
4768 int i;
4769 size_t alloc_size;
4770
4771 /*
4772 * The per-page waitqueue mechanism uses hashed waitqueues
4773 * per zone.
4774 */
4775 zone->wait_table_hash_nr_entries =
4776 wait_table_hash_nr_entries(zone_size_pages);
4777 zone->wait_table_bits =
4778 wait_table_bits(zone->wait_table_hash_nr_entries);
4779 alloc_size = zone->wait_table_hash_nr_entries
4780 * sizeof(wait_queue_head_t);
4781
4782 if (!slab_is_available()) {
4783 zone->wait_table = (wait_queue_head_t *)
4784 memblock_virt_alloc_node_nopanic(
4785 alloc_size, zone->zone_pgdat->node_id);
4786 } else {
4787 /*
4788 * This case means that a zone whose size was 0 gets new memory
4789 * via memory hot-add.
4790 * But it may be the case that a new node was hot-added. In
4791 * this case vmalloc() will not be able to use this new node's
4792 * memory - this wait_table must be initialized to use this new
4793 * node itself as well.
4794 * To use this new node's memory, further consideration will be
4795 * necessary.
4796 */
4797 zone->wait_table = vmalloc(alloc_size);
4798 }
4799 if (!zone->wait_table)
4800 return -ENOMEM;
4801
4802 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4803 init_waitqueue_head(zone->wait_table + i);
4804
4805 return 0;
4806 }
4807
4808 static __meminit void zone_pcp_init(struct zone *zone)
4809 {
4810 /*
4811 * per cpu subsystem is not up at this point. The following code
4812 * relies on the ability of the linker to provide the
4813 * offset of a (static) per cpu variable into the per cpu area.
4814 */
4815 zone->pageset = &boot_pageset;
4816
4817 if (populated_zone(zone))
4818 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4819 zone->name, zone->present_pages,
4820 zone_batchsize(zone));
4821 }
4822
4823 int __meminit init_currently_empty_zone(struct zone *zone,
4824 unsigned long zone_start_pfn,
4825 unsigned long size)
4826 {
4827 struct pglist_data *pgdat = zone->zone_pgdat;
4828 int ret;
4829 ret = zone_wait_table_init(zone, size);
4830 if (ret)
4831 return ret;
4832 pgdat->nr_zones = zone_idx(zone) + 1;
4833
4834 zone->zone_start_pfn = zone_start_pfn;
4835
4836 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4837 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4838 pgdat->node_id,
4839 (unsigned long)zone_idx(zone),
4840 zone_start_pfn, (zone_start_pfn + size));
4841
4842 zone_init_free_lists(zone);
4843
4844 return 0;
4845 }
4846
4847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4848 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4849
4850 /*
4851 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4852 */
4853 int __meminit __early_pfn_to_nid(unsigned long pfn,
4854 struct mminit_pfnnid_cache *state)
4855 {
4856 unsigned long start_pfn, end_pfn;
4857 int nid;
4858
4859 if (state->last_start <= pfn && pfn < state->last_end)
4860 return state->last_nid;
4861
4862 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4863 if (nid != -1) {
4864 state->last_start = start_pfn;
4865 state->last_end = end_pfn;
4866 state->last_nid = nid;
4867 }
4868
4869 return nid;
4870 }
4871 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4872
4873 /**
4874 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4875 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4876 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4877 *
4878 * If an architecture guarantees that all ranges registered contain no holes
4879 * and may be freed, this this function may be used instead of calling
4880 * memblock_free_early_nid() manually.
4881 */
4882 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4883 {
4884 unsigned long start_pfn, end_pfn;
4885 int i, this_nid;
4886
4887 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4888 start_pfn = min(start_pfn, max_low_pfn);
4889 end_pfn = min(end_pfn, max_low_pfn);
4890
4891 if (start_pfn < end_pfn)
4892 memblock_free_early_nid(PFN_PHYS(start_pfn),
4893 (end_pfn - start_pfn) << PAGE_SHIFT,
4894 this_nid);
4895 }
4896 }
4897
4898 /**
4899 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4900 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4901 *
4902 * If an architecture guarantees that all ranges registered contain no holes and may
4903 * be freed, this function may be used instead of calling memory_present() manually.
4904 */
4905 void __init sparse_memory_present_with_active_regions(int nid)
4906 {
4907 unsigned long start_pfn, end_pfn;
4908 int i, this_nid;
4909
4910 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4911 memory_present(this_nid, start_pfn, end_pfn);
4912 }
4913
4914 /**
4915 * get_pfn_range_for_nid - Return the start and end page frames for a node
4916 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4917 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4918 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4919 *
4920 * It returns the start and end page frame of a node based on information
4921 * provided by memblock_set_node(). If called for a node
4922 * with no available memory, a warning is printed and the start and end
4923 * PFNs will be 0.
4924 */
4925 void __meminit get_pfn_range_for_nid(unsigned int nid,
4926 unsigned long *start_pfn, unsigned long *end_pfn)
4927 {
4928 unsigned long this_start_pfn, this_end_pfn;
4929 int i;
4930
4931 *start_pfn = -1UL;
4932 *end_pfn = 0;
4933
4934 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4935 *start_pfn = min(*start_pfn, this_start_pfn);
4936 *end_pfn = max(*end_pfn, this_end_pfn);
4937 }
4938
4939 if (*start_pfn == -1UL)
4940 *start_pfn = 0;
4941 }
4942
4943 /*
4944 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4945 * assumption is made that zones within a node are ordered in monotonic
4946 * increasing memory addresses so that the "highest" populated zone is used
4947 */
4948 static void __init find_usable_zone_for_movable(void)
4949 {
4950 int zone_index;
4951 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4952 if (zone_index == ZONE_MOVABLE)
4953 continue;
4954
4955 if (arch_zone_highest_possible_pfn[zone_index] >
4956 arch_zone_lowest_possible_pfn[zone_index])
4957 break;
4958 }
4959
4960 VM_BUG_ON(zone_index == -1);
4961 movable_zone = zone_index;
4962 }
4963
4964 /*
4965 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4966 * because it is sized independent of architecture. Unlike the other zones,
4967 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4968 * in each node depending on the size of each node and how evenly kernelcore
4969 * is distributed. This helper function adjusts the zone ranges
4970 * provided by the architecture for a given node by using the end of the
4971 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4972 * zones within a node are in order of monotonic increases memory addresses
4973 */
4974 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4975 unsigned long zone_type,
4976 unsigned long node_start_pfn,
4977 unsigned long node_end_pfn,
4978 unsigned long *zone_start_pfn,
4979 unsigned long *zone_end_pfn)
4980 {
4981 /* Only adjust if ZONE_MOVABLE is on this node */
4982 if (zone_movable_pfn[nid]) {
4983 /* Size ZONE_MOVABLE */
4984 if (zone_type == ZONE_MOVABLE) {
4985 *zone_start_pfn = zone_movable_pfn[nid];
4986 *zone_end_pfn = min(node_end_pfn,
4987 arch_zone_highest_possible_pfn[movable_zone]);
4988
4989 /* Check if this whole range is within ZONE_MOVABLE */
4990 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4991 *zone_start_pfn = *zone_end_pfn;
4992 }
4993 }
4994
4995 /*
4996 * Return the number of pages a zone spans in a node, including holes
4997 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4998 */
4999 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5000 unsigned long zone_type,
5001 unsigned long node_start_pfn,
5002 unsigned long node_end_pfn,
5003 unsigned long *zone_start_pfn,
5004 unsigned long *zone_end_pfn,
5005 unsigned long *ignored)
5006 {
5007 /* When hotadd a new node from cpu_up(), the node should be empty */
5008 if (!node_start_pfn && !node_end_pfn)
5009 return 0;
5010
5011 /* Get the start and end of the zone */
5012 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5013 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5014 adjust_zone_range_for_zone_movable(nid, zone_type,
5015 node_start_pfn, node_end_pfn,
5016 zone_start_pfn, zone_end_pfn);
5017
5018 /* Check that this node has pages within the zone's required range */
5019 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5020 return 0;
5021
5022 /* Move the zone boundaries inside the node if necessary */
5023 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5024 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5025
5026 /* Return the spanned pages */
5027 return *zone_end_pfn - *zone_start_pfn;
5028 }
5029
5030 /*
5031 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5032 * then all holes in the requested range will be accounted for.
5033 */
5034 unsigned long __meminit __absent_pages_in_range(int nid,
5035 unsigned long range_start_pfn,
5036 unsigned long range_end_pfn)
5037 {
5038 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5039 unsigned long start_pfn, end_pfn;
5040 int i;
5041
5042 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5043 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5044 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5045 nr_absent -= end_pfn - start_pfn;
5046 }
5047 return nr_absent;
5048 }
5049
5050 /**
5051 * absent_pages_in_range - Return number of page frames in holes within a range
5052 * @start_pfn: The start PFN to start searching for holes
5053 * @end_pfn: The end PFN to stop searching for holes
5054 *
5055 * It returns the number of pages frames in memory holes within a range.
5056 */
5057 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5058 unsigned long end_pfn)
5059 {
5060 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5061 }
5062
5063 /* Return the number of page frames in holes in a zone on a node */
5064 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5065 unsigned long zone_type,
5066 unsigned long node_start_pfn,
5067 unsigned long node_end_pfn,
5068 unsigned long *ignored)
5069 {
5070 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5071 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5072 unsigned long zone_start_pfn, zone_end_pfn;
5073 unsigned long nr_absent;
5074
5075 /* When hotadd a new node from cpu_up(), the node should be empty */
5076 if (!node_start_pfn && !node_end_pfn)
5077 return 0;
5078
5079 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5080 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5081
5082 adjust_zone_range_for_zone_movable(nid, zone_type,
5083 node_start_pfn, node_end_pfn,
5084 &zone_start_pfn, &zone_end_pfn);
5085 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5086
5087 /*
5088 * ZONE_MOVABLE handling.
5089 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5090 * and vice versa.
5091 */
5092 if (zone_movable_pfn[nid]) {
5093 if (mirrored_kernelcore) {
5094 unsigned long start_pfn, end_pfn;
5095 struct memblock_region *r;
5096
5097 for_each_memblock(memory, r) {
5098 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5099 zone_start_pfn, zone_end_pfn);
5100 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5101 zone_start_pfn, zone_end_pfn);
5102
5103 if (zone_type == ZONE_MOVABLE &&
5104 memblock_is_mirror(r))
5105 nr_absent += end_pfn - start_pfn;
5106
5107 if (zone_type == ZONE_NORMAL &&
5108 !memblock_is_mirror(r))
5109 nr_absent += end_pfn - start_pfn;
5110 }
5111 } else {
5112 if (zone_type == ZONE_NORMAL)
5113 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5114 }
5115 }
5116
5117 return nr_absent;
5118 }
5119
5120 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5121 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5122 unsigned long zone_type,
5123 unsigned long node_start_pfn,
5124 unsigned long node_end_pfn,
5125 unsigned long *zone_start_pfn,
5126 unsigned long *zone_end_pfn,
5127 unsigned long *zones_size)
5128 {
5129 unsigned int zone;
5130
5131 *zone_start_pfn = node_start_pfn;
5132 for (zone = 0; zone < zone_type; zone++)
5133 *zone_start_pfn += zones_size[zone];
5134
5135 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5136
5137 return zones_size[zone_type];
5138 }
5139
5140 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5141 unsigned long zone_type,
5142 unsigned long node_start_pfn,
5143 unsigned long node_end_pfn,
5144 unsigned long *zholes_size)
5145 {
5146 if (!zholes_size)
5147 return 0;
5148
5149 return zholes_size[zone_type];
5150 }
5151
5152 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5153
5154 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5155 unsigned long node_start_pfn,
5156 unsigned long node_end_pfn,
5157 unsigned long *zones_size,
5158 unsigned long *zholes_size)
5159 {
5160 unsigned long realtotalpages = 0, totalpages = 0;
5161 enum zone_type i;
5162
5163 for (i = 0; i < MAX_NR_ZONES; i++) {
5164 struct zone *zone = pgdat->node_zones + i;
5165 unsigned long zone_start_pfn, zone_end_pfn;
5166 unsigned long size, real_size;
5167
5168 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5169 node_start_pfn,
5170 node_end_pfn,
5171 &zone_start_pfn,
5172 &zone_end_pfn,
5173 zones_size);
5174 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5175 node_start_pfn, node_end_pfn,
5176 zholes_size);
5177 if (size)
5178 zone->zone_start_pfn = zone_start_pfn;
5179 else
5180 zone->zone_start_pfn = 0;
5181 zone->spanned_pages = size;
5182 zone->present_pages = real_size;
5183
5184 totalpages += size;
5185 realtotalpages += real_size;
5186 }
5187
5188 pgdat->node_spanned_pages = totalpages;
5189 pgdat->node_present_pages = realtotalpages;
5190 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5191 realtotalpages);
5192 }
5193
5194 #ifndef CONFIG_SPARSEMEM
5195 /*
5196 * Calculate the size of the zone->blockflags rounded to an unsigned long
5197 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5198 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5199 * round what is now in bits to nearest long in bits, then return it in
5200 * bytes.
5201 */
5202 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5203 {
5204 unsigned long usemapsize;
5205
5206 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5207 usemapsize = roundup(zonesize, pageblock_nr_pages);
5208 usemapsize = usemapsize >> pageblock_order;
5209 usemapsize *= NR_PAGEBLOCK_BITS;
5210 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5211
5212 return usemapsize / 8;
5213 }
5214
5215 static void __init setup_usemap(struct pglist_data *pgdat,
5216 struct zone *zone,
5217 unsigned long zone_start_pfn,
5218 unsigned long zonesize)
5219 {
5220 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5221 zone->pageblock_flags = NULL;
5222 if (usemapsize)
5223 zone->pageblock_flags =
5224 memblock_virt_alloc_node_nopanic(usemapsize,
5225 pgdat->node_id);
5226 }
5227 #else
5228 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5229 unsigned long zone_start_pfn, unsigned long zonesize) {}
5230 #endif /* CONFIG_SPARSEMEM */
5231
5232 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5233
5234 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5235 void __paginginit set_pageblock_order(void)
5236 {
5237 unsigned int order;
5238
5239 /* Check that pageblock_nr_pages has not already been setup */
5240 if (pageblock_order)
5241 return;
5242
5243 if (HPAGE_SHIFT > PAGE_SHIFT)
5244 order = HUGETLB_PAGE_ORDER;
5245 else
5246 order = MAX_ORDER - 1;
5247
5248 /*
5249 * Assume the largest contiguous order of interest is a huge page.
5250 * This value may be variable depending on boot parameters on IA64 and
5251 * powerpc.
5252 */
5253 pageblock_order = order;
5254 }
5255 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5256
5257 /*
5258 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5259 * is unused as pageblock_order is set at compile-time. See
5260 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5261 * the kernel config
5262 */
5263 void __paginginit set_pageblock_order(void)
5264 {
5265 }
5266
5267 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5268
5269 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5270 unsigned long present_pages)
5271 {
5272 unsigned long pages = spanned_pages;
5273
5274 /*
5275 * Provide a more accurate estimation if there are holes within
5276 * the zone and SPARSEMEM is in use. If there are holes within the
5277 * zone, each populated memory region may cost us one or two extra
5278 * memmap pages due to alignment because memmap pages for each
5279 * populated regions may not naturally algined on page boundary.
5280 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5281 */
5282 if (spanned_pages > present_pages + (present_pages >> 4) &&
5283 IS_ENABLED(CONFIG_SPARSEMEM))
5284 pages = present_pages;
5285
5286 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5287 }
5288
5289 /*
5290 * Set up the zone data structures:
5291 * - mark all pages reserved
5292 * - mark all memory queues empty
5293 * - clear the memory bitmaps
5294 *
5295 * NOTE: pgdat should get zeroed by caller.
5296 */
5297 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5298 {
5299 enum zone_type j;
5300 int nid = pgdat->node_id;
5301 int ret;
5302
5303 pgdat_resize_init(pgdat);
5304 #ifdef CONFIG_NUMA_BALANCING
5305 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5306 pgdat->numabalancing_migrate_nr_pages = 0;
5307 pgdat->numabalancing_migrate_next_window = jiffies;
5308 #endif
5309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5310 spin_lock_init(&pgdat->split_queue_lock);
5311 INIT_LIST_HEAD(&pgdat->split_queue);
5312 pgdat->split_queue_len = 0;
5313 #endif
5314 init_waitqueue_head(&pgdat->kswapd_wait);
5315 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5316 pgdat_page_ext_init(pgdat);
5317
5318 for (j = 0; j < MAX_NR_ZONES; j++) {
5319 struct zone *zone = pgdat->node_zones + j;
5320 unsigned long size, realsize, freesize, memmap_pages;
5321 unsigned long zone_start_pfn = zone->zone_start_pfn;
5322
5323 size = zone->spanned_pages;
5324 realsize = freesize = zone->present_pages;
5325
5326 /*
5327 * Adjust freesize so that it accounts for how much memory
5328 * is used by this zone for memmap. This affects the watermark
5329 * and per-cpu initialisations
5330 */
5331 memmap_pages = calc_memmap_size(size, realsize);
5332 if (!is_highmem_idx(j)) {
5333 if (freesize >= memmap_pages) {
5334 freesize -= memmap_pages;
5335 if (memmap_pages)
5336 printk(KERN_DEBUG
5337 " %s zone: %lu pages used for memmap\n",
5338 zone_names[j], memmap_pages);
5339 } else
5340 printk(KERN_WARNING
5341 " %s zone: %lu pages exceeds freesize %lu\n",
5342 zone_names[j], memmap_pages, freesize);
5343 }
5344
5345 /* Account for reserved pages */
5346 if (j == 0 && freesize > dma_reserve) {
5347 freesize -= dma_reserve;
5348 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5349 zone_names[0], dma_reserve);
5350 }
5351
5352 if (!is_highmem_idx(j))
5353 nr_kernel_pages += freesize;
5354 /* Charge for highmem memmap if there are enough kernel pages */
5355 else if (nr_kernel_pages > memmap_pages * 2)
5356 nr_kernel_pages -= memmap_pages;
5357 nr_all_pages += freesize;
5358
5359 /*
5360 * Set an approximate value for lowmem here, it will be adjusted
5361 * when the bootmem allocator frees pages into the buddy system.
5362 * And all highmem pages will be managed by the buddy system.
5363 */
5364 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5365 #ifdef CONFIG_NUMA
5366 zone->node = nid;
5367 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5368 / 100;
5369 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5370 #endif
5371 zone->name = zone_names[j];
5372 spin_lock_init(&zone->lock);
5373 spin_lock_init(&zone->lru_lock);
5374 zone_seqlock_init(zone);
5375 zone->zone_pgdat = pgdat;
5376 zone_pcp_init(zone);
5377
5378 /* For bootup, initialized properly in watermark setup */
5379 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5380
5381 lruvec_init(&zone->lruvec);
5382 if (!size)
5383 continue;
5384
5385 set_pageblock_order();
5386 setup_usemap(pgdat, zone, zone_start_pfn, size);
5387 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5388 BUG_ON(ret);
5389 memmap_init(size, nid, j, zone_start_pfn);
5390 }
5391 }
5392
5393 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5394 {
5395 unsigned long __maybe_unused start = 0;
5396 unsigned long __maybe_unused offset = 0;
5397
5398 /* Skip empty nodes */
5399 if (!pgdat->node_spanned_pages)
5400 return;
5401
5402 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5403 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5404 offset = pgdat->node_start_pfn - start;
5405 /* ia64 gets its own node_mem_map, before this, without bootmem */
5406 if (!pgdat->node_mem_map) {
5407 unsigned long size, end;
5408 struct page *map;
5409
5410 /*
5411 * The zone's endpoints aren't required to be MAX_ORDER
5412 * aligned but the node_mem_map endpoints must be in order
5413 * for the buddy allocator to function correctly.
5414 */
5415 end = pgdat_end_pfn(pgdat);
5416 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5417 size = (end - start) * sizeof(struct page);
5418 map = alloc_remap(pgdat->node_id, size);
5419 if (!map)
5420 map = memblock_virt_alloc_node_nopanic(size,
5421 pgdat->node_id);
5422 pgdat->node_mem_map = map + offset;
5423 }
5424 #ifndef CONFIG_NEED_MULTIPLE_NODES
5425 /*
5426 * With no DISCONTIG, the global mem_map is just set as node 0's
5427 */
5428 if (pgdat == NODE_DATA(0)) {
5429 mem_map = NODE_DATA(0)->node_mem_map;
5430 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5431 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5432 mem_map -= offset;
5433 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5434 }
5435 #endif
5436 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5437 }
5438
5439 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5440 unsigned long node_start_pfn, unsigned long *zholes_size)
5441 {
5442 pg_data_t *pgdat = NODE_DATA(nid);
5443 unsigned long start_pfn = 0;
5444 unsigned long end_pfn = 0;
5445
5446 /* pg_data_t should be reset to zero when it's allocated */
5447 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5448
5449 reset_deferred_meminit(pgdat);
5450 pgdat->node_id = nid;
5451 pgdat->node_start_pfn = node_start_pfn;
5452 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5453 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5454 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5455 (u64)start_pfn << PAGE_SHIFT,
5456 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5457 #else
5458 start_pfn = node_start_pfn;
5459 #endif
5460 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5461 zones_size, zholes_size);
5462
5463 alloc_node_mem_map(pgdat);
5464 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5465 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5466 nid, (unsigned long)pgdat,
5467 (unsigned long)pgdat->node_mem_map);
5468 #endif
5469
5470 free_area_init_core(pgdat);
5471 }
5472
5473 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5474
5475 #if MAX_NUMNODES > 1
5476 /*
5477 * Figure out the number of possible node ids.
5478 */
5479 void __init setup_nr_node_ids(void)
5480 {
5481 unsigned int highest;
5482
5483 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5484 nr_node_ids = highest + 1;
5485 }
5486 #endif
5487
5488 /**
5489 * node_map_pfn_alignment - determine the maximum internode alignment
5490 *
5491 * This function should be called after node map is populated and sorted.
5492 * It calculates the maximum power of two alignment which can distinguish
5493 * all the nodes.
5494 *
5495 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5496 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5497 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5498 * shifted, 1GiB is enough and this function will indicate so.
5499 *
5500 * This is used to test whether pfn -> nid mapping of the chosen memory
5501 * model has fine enough granularity to avoid incorrect mapping for the
5502 * populated node map.
5503 *
5504 * Returns the determined alignment in pfn's. 0 if there is no alignment
5505 * requirement (single node).
5506 */
5507 unsigned long __init node_map_pfn_alignment(void)
5508 {
5509 unsigned long accl_mask = 0, last_end = 0;
5510 unsigned long start, end, mask;
5511 int last_nid = -1;
5512 int i, nid;
5513
5514 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5515 if (!start || last_nid < 0 || last_nid == nid) {
5516 last_nid = nid;
5517 last_end = end;
5518 continue;
5519 }
5520
5521 /*
5522 * Start with a mask granular enough to pin-point to the
5523 * start pfn and tick off bits one-by-one until it becomes
5524 * too coarse to separate the current node from the last.
5525 */
5526 mask = ~((1 << __ffs(start)) - 1);
5527 while (mask && last_end <= (start & (mask << 1)))
5528 mask <<= 1;
5529
5530 /* accumulate all internode masks */
5531 accl_mask |= mask;
5532 }
5533
5534 /* convert mask to number of pages */
5535 return ~accl_mask + 1;
5536 }
5537
5538 /* Find the lowest pfn for a node */
5539 static unsigned long __init find_min_pfn_for_node(int nid)
5540 {
5541 unsigned long min_pfn = ULONG_MAX;
5542 unsigned long start_pfn;
5543 int i;
5544
5545 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5546 min_pfn = min(min_pfn, start_pfn);
5547
5548 if (min_pfn == ULONG_MAX) {
5549 printk(KERN_WARNING
5550 "Could not find start_pfn for node %d\n", nid);
5551 return 0;
5552 }
5553
5554 return min_pfn;
5555 }
5556
5557 /**
5558 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5559 *
5560 * It returns the minimum PFN based on information provided via
5561 * memblock_set_node().
5562 */
5563 unsigned long __init find_min_pfn_with_active_regions(void)
5564 {
5565 return find_min_pfn_for_node(MAX_NUMNODES);
5566 }
5567
5568 /*
5569 * early_calculate_totalpages()
5570 * Sum pages in active regions for movable zone.
5571 * Populate N_MEMORY for calculating usable_nodes.
5572 */
5573 static unsigned long __init early_calculate_totalpages(void)
5574 {
5575 unsigned long totalpages = 0;
5576 unsigned long start_pfn, end_pfn;
5577 int i, nid;
5578
5579 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5580 unsigned long pages = end_pfn - start_pfn;
5581
5582 totalpages += pages;
5583 if (pages)
5584 node_set_state(nid, N_MEMORY);
5585 }
5586 return totalpages;
5587 }
5588
5589 /*
5590 * Find the PFN the Movable zone begins in each node. Kernel memory
5591 * is spread evenly between nodes as long as the nodes have enough
5592 * memory. When they don't, some nodes will have more kernelcore than
5593 * others
5594 */
5595 static void __init find_zone_movable_pfns_for_nodes(void)
5596 {
5597 int i, nid;
5598 unsigned long usable_startpfn;
5599 unsigned long kernelcore_node, kernelcore_remaining;
5600 /* save the state before borrow the nodemask */
5601 nodemask_t saved_node_state = node_states[N_MEMORY];
5602 unsigned long totalpages = early_calculate_totalpages();
5603 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5604 struct memblock_region *r;
5605
5606 /* Need to find movable_zone earlier when movable_node is specified. */
5607 find_usable_zone_for_movable();
5608
5609 /*
5610 * If movable_node is specified, ignore kernelcore and movablecore
5611 * options.
5612 */
5613 if (movable_node_is_enabled()) {
5614 for_each_memblock(memory, r) {
5615 if (!memblock_is_hotpluggable(r))
5616 continue;
5617
5618 nid = r->nid;
5619
5620 usable_startpfn = PFN_DOWN(r->base);
5621 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5622 min(usable_startpfn, zone_movable_pfn[nid]) :
5623 usable_startpfn;
5624 }
5625
5626 goto out2;
5627 }
5628
5629 /*
5630 * If kernelcore=mirror is specified, ignore movablecore option
5631 */
5632 if (mirrored_kernelcore) {
5633 bool mem_below_4gb_not_mirrored = false;
5634
5635 for_each_memblock(memory, r) {
5636 if (memblock_is_mirror(r))
5637 continue;
5638
5639 nid = r->nid;
5640
5641 usable_startpfn = memblock_region_memory_base_pfn(r);
5642
5643 if (usable_startpfn < 0x100000) {
5644 mem_below_4gb_not_mirrored = true;
5645 continue;
5646 }
5647
5648 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5649 min(usable_startpfn, zone_movable_pfn[nid]) :
5650 usable_startpfn;
5651 }
5652
5653 if (mem_below_4gb_not_mirrored)
5654 pr_warn("This configuration results in unmirrored kernel memory.");
5655
5656 goto out2;
5657 }
5658
5659 /*
5660 * If movablecore=nn[KMG] was specified, calculate what size of
5661 * kernelcore that corresponds so that memory usable for
5662 * any allocation type is evenly spread. If both kernelcore
5663 * and movablecore are specified, then the value of kernelcore
5664 * will be used for required_kernelcore if it's greater than
5665 * what movablecore would have allowed.
5666 */
5667 if (required_movablecore) {
5668 unsigned long corepages;
5669
5670 /*
5671 * Round-up so that ZONE_MOVABLE is at least as large as what
5672 * was requested by the user
5673 */
5674 required_movablecore =
5675 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5676 required_movablecore = min(totalpages, required_movablecore);
5677 corepages = totalpages - required_movablecore;
5678
5679 required_kernelcore = max(required_kernelcore, corepages);
5680 }
5681
5682 /*
5683 * If kernelcore was not specified or kernelcore size is larger
5684 * than totalpages, there is no ZONE_MOVABLE.
5685 */
5686 if (!required_kernelcore || required_kernelcore >= totalpages)
5687 goto out;
5688
5689 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5690 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5691
5692 restart:
5693 /* Spread kernelcore memory as evenly as possible throughout nodes */
5694 kernelcore_node = required_kernelcore / usable_nodes;
5695 for_each_node_state(nid, N_MEMORY) {
5696 unsigned long start_pfn, end_pfn;
5697
5698 /*
5699 * Recalculate kernelcore_node if the division per node
5700 * now exceeds what is necessary to satisfy the requested
5701 * amount of memory for the kernel
5702 */
5703 if (required_kernelcore < kernelcore_node)
5704 kernelcore_node = required_kernelcore / usable_nodes;
5705
5706 /*
5707 * As the map is walked, we track how much memory is usable
5708 * by the kernel using kernelcore_remaining. When it is
5709 * 0, the rest of the node is usable by ZONE_MOVABLE
5710 */
5711 kernelcore_remaining = kernelcore_node;
5712
5713 /* Go through each range of PFNs within this node */
5714 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5715 unsigned long size_pages;
5716
5717 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5718 if (start_pfn >= end_pfn)
5719 continue;
5720
5721 /* Account for what is only usable for kernelcore */
5722 if (start_pfn < usable_startpfn) {
5723 unsigned long kernel_pages;
5724 kernel_pages = min(end_pfn, usable_startpfn)
5725 - start_pfn;
5726
5727 kernelcore_remaining -= min(kernel_pages,
5728 kernelcore_remaining);
5729 required_kernelcore -= min(kernel_pages,
5730 required_kernelcore);
5731
5732 /* Continue if range is now fully accounted */
5733 if (end_pfn <= usable_startpfn) {
5734
5735 /*
5736 * Push zone_movable_pfn to the end so
5737 * that if we have to rebalance
5738 * kernelcore across nodes, we will
5739 * not double account here
5740 */
5741 zone_movable_pfn[nid] = end_pfn;
5742 continue;
5743 }
5744 start_pfn = usable_startpfn;
5745 }
5746
5747 /*
5748 * The usable PFN range for ZONE_MOVABLE is from
5749 * start_pfn->end_pfn. Calculate size_pages as the
5750 * number of pages used as kernelcore
5751 */
5752 size_pages = end_pfn - start_pfn;
5753 if (size_pages > kernelcore_remaining)
5754 size_pages = kernelcore_remaining;
5755 zone_movable_pfn[nid] = start_pfn + size_pages;
5756
5757 /*
5758 * Some kernelcore has been met, update counts and
5759 * break if the kernelcore for this node has been
5760 * satisfied
5761 */
5762 required_kernelcore -= min(required_kernelcore,
5763 size_pages);
5764 kernelcore_remaining -= size_pages;
5765 if (!kernelcore_remaining)
5766 break;
5767 }
5768 }
5769
5770 /*
5771 * If there is still required_kernelcore, we do another pass with one
5772 * less node in the count. This will push zone_movable_pfn[nid] further
5773 * along on the nodes that still have memory until kernelcore is
5774 * satisfied
5775 */
5776 usable_nodes--;
5777 if (usable_nodes && required_kernelcore > usable_nodes)
5778 goto restart;
5779
5780 out2:
5781 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5782 for (nid = 0; nid < MAX_NUMNODES; nid++)
5783 zone_movable_pfn[nid] =
5784 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5785
5786 out:
5787 /* restore the node_state */
5788 node_states[N_MEMORY] = saved_node_state;
5789 }
5790
5791 /* Any regular or high memory on that node ? */
5792 static void check_for_memory(pg_data_t *pgdat, int nid)
5793 {
5794 enum zone_type zone_type;
5795
5796 if (N_MEMORY == N_NORMAL_MEMORY)
5797 return;
5798
5799 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5800 struct zone *zone = &pgdat->node_zones[zone_type];
5801 if (populated_zone(zone)) {
5802 node_set_state(nid, N_HIGH_MEMORY);
5803 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5804 zone_type <= ZONE_NORMAL)
5805 node_set_state(nid, N_NORMAL_MEMORY);
5806 break;
5807 }
5808 }
5809 }
5810
5811 /**
5812 * free_area_init_nodes - Initialise all pg_data_t and zone data
5813 * @max_zone_pfn: an array of max PFNs for each zone
5814 *
5815 * This will call free_area_init_node() for each active node in the system.
5816 * Using the page ranges provided by memblock_set_node(), the size of each
5817 * zone in each node and their holes is calculated. If the maximum PFN
5818 * between two adjacent zones match, it is assumed that the zone is empty.
5819 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5820 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5821 * starts where the previous one ended. For example, ZONE_DMA32 starts
5822 * at arch_max_dma_pfn.
5823 */
5824 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5825 {
5826 unsigned long start_pfn, end_pfn;
5827 int i, nid;
5828
5829 /* Record where the zone boundaries are */
5830 memset(arch_zone_lowest_possible_pfn, 0,
5831 sizeof(arch_zone_lowest_possible_pfn));
5832 memset(arch_zone_highest_possible_pfn, 0,
5833 sizeof(arch_zone_highest_possible_pfn));
5834 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5835 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5836 for (i = 1; i < MAX_NR_ZONES; i++) {
5837 if (i == ZONE_MOVABLE)
5838 continue;
5839 arch_zone_lowest_possible_pfn[i] =
5840 arch_zone_highest_possible_pfn[i-1];
5841 arch_zone_highest_possible_pfn[i] =
5842 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5843 }
5844 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5845 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5846
5847 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5848 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5849 find_zone_movable_pfns_for_nodes();
5850
5851 /* Print out the zone ranges */
5852 pr_info("Zone ranges:\n");
5853 for (i = 0; i < MAX_NR_ZONES; i++) {
5854 if (i == ZONE_MOVABLE)
5855 continue;
5856 pr_info(" %-8s ", zone_names[i]);
5857 if (arch_zone_lowest_possible_pfn[i] ==
5858 arch_zone_highest_possible_pfn[i])
5859 pr_cont("empty\n");
5860 else
5861 pr_cont("[mem %#018Lx-%#018Lx]\n",
5862 (u64)arch_zone_lowest_possible_pfn[i]
5863 << PAGE_SHIFT,
5864 ((u64)arch_zone_highest_possible_pfn[i]
5865 << PAGE_SHIFT) - 1);
5866 }
5867
5868 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5869 pr_info("Movable zone start for each node\n");
5870 for (i = 0; i < MAX_NUMNODES; i++) {
5871 if (zone_movable_pfn[i])
5872 pr_info(" Node %d: %#018Lx\n", i,
5873 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5874 }
5875
5876 /* Print out the early node map */
5877 pr_info("Early memory node ranges\n");
5878 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5879 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5880 (u64)start_pfn << PAGE_SHIFT,
5881 ((u64)end_pfn << PAGE_SHIFT) - 1);
5882
5883 /* Initialise every node */
5884 mminit_verify_pageflags_layout();
5885 setup_nr_node_ids();
5886 for_each_online_node(nid) {
5887 pg_data_t *pgdat = NODE_DATA(nid);
5888 free_area_init_node(nid, NULL,
5889 find_min_pfn_for_node(nid), NULL);
5890
5891 /* Any memory on that node */
5892 if (pgdat->node_present_pages)
5893 node_set_state(nid, N_MEMORY);
5894 check_for_memory(pgdat, nid);
5895 }
5896 }
5897
5898 static int __init cmdline_parse_core(char *p, unsigned long *core)
5899 {
5900 unsigned long long coremem;
5901 if (!p)
5902 return -EINVAL;
5903
5904 coremem = memparse(p, &p);
5905 *core = coremem >> PAGE_SHIFT;
5906
5907 /* Paranoid check that UL is enough for the coremem value */
5908 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5909
5910 return 0;
5911 }
5912
5913 /*
5914 * kernelcore=size sets the amount of memory for use for allocations that
5915 * cannot be reclaimed or migrated.
5916 */
5917 static int __init cmdline_parse_kernelcore(char *p)
5918 {
5919 /* parse kernelcore=mirror */
5920 if (parse_option_str(p, "mirror")) {
5921 mirrored_kernelcore = true;
5922 return 0;
5923 }
5924
5925 return cmdline_parse_core(p, &required_kernelcore);
5926 }
5927
5928 /*
5929 * movablecore=size sets the amount of memory for use for allocations that
5930 * can be reclaimed or migrated.
5931 */
5932 static int __init cmdline_parse_movablecore(char *p)
5933 {
5934 return cmdline_parse_core(p, &required_movablecore);
5935 }
5936
5937 early_param("kernelcore", cmdline_parse_kernelcore);
5938 early_param("movablecore", cmdline_parse_movablecore);
5939
5940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5941
5942 void adjust_managed_page_count(struct page *page, long count)
5943 {
5944 spin_lock(&managed_page_count_lock);
5945 page_zone(page)->managed_pages += count;
5946 totalram_pages += count;
5947 #ifdef CONFIG_HIGHMEM
5948 if (PageHighMem(page))
5949 totalhigh_pages += count;
5950 #endif
5951 spin_unlock(&managed_page_count_lock);
5952 }
5953 EXPORT_SYMBOL(adjust_managed_page_count);
5954
5955 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5956 {
5957 void *pos;
5958 unsigned long pages = 0;
5959
5960 start = (void *)PAGE_ALIGN((unsigned long)start);
5961 end = (void *)((unsigned long)end & PAGE_MASK);
5962 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5963 if ((unsigned int)poison <= 0xFF)
5964 memset(pos, poison, PAGE_SIZE);
5965 free_reserved_page(virt_to_page(pos));
5966 }
5967
5968 if (pages && s)
5969 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5970 s, pages << (PAGE_SHIFT - 10), start, end);
5971
5972 return pages;
5973 }
5974 EXPORT_SYMBOL(free_reserved_area);
5975
5976 #ifdef CONFIG_HIGHMEM
5977 void free_highmem_page(struct page *page)
5978 {
5979 __free_reserved_page(page);
5980 totalram_pages++;
5981 page_zone(page)->managed_pages++;
5982 totalhigh_pages++;
5983 }
5984 #endif
5985
5986
5987 void __init mem_init_print_info(const char *str)
5988 {
5989 unsigned long physpages, codesize, datasize, rosize, bss_size;
5990 unsigned long init_code_size, init_data_size;
5991
5992 physpages = get_num_physpages();
5993 codesize = _etext - _stext;
5994 datasize = _edata - _sdata;
5995 rosize = __end_rodata - __start_rodata;
5996 bss_size = __bss_stop - __bss_start;
5997 init_data_size = __init_end - __init_begin;
5998 init_code_size = _einittext - _sinittext;
5999
6000 /*
6001 * Detect special cases and adjust section sizes accordingly:
6002 * 1) .init.* may be embedded into .data sections
6003 * 2) .init.text.* may be out of [__init_begin, __init_end],
6004 * please refer to arch/tile/kernel/vmlinux.lds.S.
6005 * 3) .rodata.* may be embedded into .text or .data sections.
6006 */
6007 #define adj_init_size(start, end, size, pos, adj) \
6008 do { \
6009 if (start <= pos && pos < end && size > adj) \
6010 size -= adj; \
6011 } while (0)
6012
6013 adj_init_size(__init_begin, __init_end, init_data_size,
6014 _sinittext, init_code_size);
6015 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6016 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6017 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6018 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6019
6020 #undef adj_init_size
6021
6022 pr_info("Memory: %luK/%luK available "
6023 "(%luK kernel code, %luK rwdata, %luK rodata, "
6024 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
6025 #ifdef CONFIG_HIGHMEM
6026 ", %luK highmem"
6027 #endif
6028 "%s%s)\n",
6029 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6030 codesize >> 10, datasize >> 10, rosize >> 10,
6031 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6032 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6033 totalcma_pages << (PAGE_SHIFT-10),
6034 #ifdef CONFIG_HIGHMEM
6035 totalhigh_pages << (PAGE_SHIFT-10),
6036 #endif
6037 str ? ", " : "", str ? str : "");
6038 }
6039
6040 /**
6041 * set_dma_reserve - set the specified number of pages reserved in the first zone
6042 * @new_dma_reserve: The number of pages to mark reserved
6043 *
6044 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6045 * In the DMA zone, a significant percentage may be consumed by kernel image
6046 * and other unfreeable allocations which can skew the watermarks badly. This
6047 * function may optionally be used to account for unfreeable pages in the
6048 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6049 * smaller per-cpu batchsize.
6050 */
6051 void __init set_dma_reserve(unsigned long new_dma_reserve)
6052 {
6053 dma_reserve = new_dma_reserve;
6054 }
6055
6056 void __init free_area_init(unsigned long *zones_size)
6057 {
6058 free_area_init_node(0, zones_size,
6059 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6060 }
6061
6062 static int page_alloc_cpu_notify(struct notifier_block *self,
6063 unsigned long action, void *hcpu)
6064 {
6065 int cpu = (unsigned long)hcpu;
6066
6067 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6068 lru_add_drain_cpu(cpu);
6069 drain_pages(cpu);
6070
6071 /*
6072 * Spill the event counters of the dead processor
6073 * into the current processors event counters.
6074 * This artificially elevates the count of the current
6075 * processor.
6076 */
6077 vm_events_fold_cpu(cpu);
6078
6079 /*
6080 * Zero the differential counters of the dead processor
6081 * so that the vm statistics are consistent.
6082 *
6083 * This is only okay since the processor is dead and cannot
6084 * race with what we are doing.
6085 */
6086 cpu_vm_stats_fold(cpu);
6087 }
6088 return NOTIFY_OK;
6089 }
6090
6091 void __init page_alloc_init(void)
6092 {
6093 hotcpu_notifier(page_alloc_cpu_notify, 0);
6094 }
6095
6096 /*
6097 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6098 * or min_free_kbytes changes.
6099 */
6100 static void calculate_totalreserve_pages(void)
6101 {
6102 struct pglist_data *pgdat;
6103 unsigned long reserve_pages = 0;
6104 enum zone_type i, j;
6105
6106 for_each_online_pgdat(pgdat) {
6107 for (i = 0; i < MAX_NR_ZONES; i++) {
6108 struct zone *zone = pgdat->node_zones + i;
6109 long max = 0;
6110
6111 /* Find valid and maximum lowmem_reserve in the zone */
6112 for (j = i; j < MAX_NR_ZONES; j++) {
6113 if (zone->lowmem_reserve[j] > max)
6114 max = zone->lowmem_reserve[j];
6115 }
6116
6117 /* we treat the high watermark as reserved pages. */
6118 max += high_wmark_pages(zone);
6119
6120 if (max > zone->managed_pages)
6121 max = zone->managed_pages;
6122
6123 zone->totalreserve_pages = max;
6124
6125 reserve_pages += max;
6126 }
6127 }
6128 totalreserve_pages = reserve_pages;
6129 }
6130
6131 /*
6132 * setup_per_zone_lowmem_reserve - called whenever
6133 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6134 * has a correct pages reserved value, so an adequate number of
6135 * pages are left in the zone after a successful __alloc_pages().
6136 */
6137 static void setup_per_zone_lowmem_reserve(void)
6138 {
6139 struct pglist_data *pgdat;
6140 enum zone_type j, idx;
6141
6142 for_each_online_pgdat(pgdat) {
6143 for (j = 0; j < MAX_NR_ZONES; j++) {
6144 struct zone *zone = pgdat->node_zones + j;
6145 unsigned long managed_pages = zone->managed_pages;
6146
6147 zone->lowmem_reserve[j] = 0;
6148
6149 idx = j;
6150 while (idx) {
6151 struct zone *lower_zone;
6152
6153 idx--;
6154
6155 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6156 sysctl_lowmem_reserve_ratio[idx] = 1;
6157
6158 lower_zone = pgdat->node_zones + idx;
6159 lower_zone->lowmem_reserve[j] = managed_pages /
6160 sysctl_lowmem_reserve_ratio[idx];
6161 managed_pages += lower_zone->managed_pages;
6162 }
6163 }
6164 }
6165
6166 /* update totalreserve_pages */
6167 calculate_totalreserve_pages();
6168 }
6169
6170 static void __setup_per_zone_wmarks(void)
6171 {
6172 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6173 unsigned long lowmem_pages = 0;
6174 struct zone *zone;
6175 unsigned long flags;
6176
6177 /* Calculate total number of !ZONE_HIGHMEM pages */
6178 for_each_zone(zone) {
6179 if (!is_highmem(zone))
6180 lowmem_pages += zone->managed_pages;
6181 }
6182
6183 for_each_zone(zone) {
6184 u64 tmp;
6185
6186 spin_lock_irqsave(&zone->lock, flags);
6187 tmp = (u64)pages_min * zone->managed_pages;
6188 do_div(tmp, lowmem_pages);
6189 if (is_highmem(zone)) {
6190 /*
6191 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6192 * need highmem pages, so cap pages_min to a small
6193 * value here.
6194 *
6195 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6196 * deltas control asynch page reclaim, and so should
6197 * not be capped for highmem.
6198 */
6199 unsigned long min_pages;
6200
6201 min_pages = zone->managed_pages / 1024;
6202 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6203 zone->watermark[WMARK_MIN] = min_pages;
6204 } else {
6205 /*
6206 * If it's a lowmem zone, reserve a number of pages
6207 * proportionate to the zone's size.
6208 */
6209 zone->watermark[WMARK_MIN] = tmp;
6210 }
6211
6212 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6213 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6214
6215 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6216 high_wmark_pages(zone) - low_wmark_pages(zone) -
6217 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6218
6219 spin_unlock_irqrestore(&zone->lock, flags);
6220 }
6221
6222 /* update totalreserve_pages */
6223 calculate_totalreserve_pages();
6224 }
6225
6226 /**
6227 * setup_per_zone_wmarks - called when min_free_kbytes changes
6228 * or when memory is hot-{added|removed}
6229 *
6230 * Ensures that the watermark[min,low,high] values for each zone are set
6231 * correctly with respect to min_free_kbytes.
6232 */
6233 void setup_per_zone_wmarks(void)
6234 {
6235 mutex_lock(&zonelists_mutex);
6236 __setup_per_zone_wmarks();
6237 mutex_unlock(&zonelists_mutex);
6238 }
6239
6240 /*
6241 * The inactive anon list should be small enough that the VM never has to
6242 * do too much work, but large enough that each inactive page has a chance
6243 * to be referenced again before it is swapped out.
6244 *
6245 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6246 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6247 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6248 * the anonymous pages are kept on the inactive list.
6249 *
6250 * total target max
6251 * memory ratio inactive anon
6252 * -------------------------------------
6253 * 10MB 1 5MB
6254 * 100MB 1 50MB
6255 * 1GB 3 250MB
6256 * 10GB 10 0.9GB
6257 * 100GB 31 3GB
6258 * 1TB 101 10GB
6259 * 10TB 320 32GB
6260 */
6261 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6262 {
6263 unsigned int gb, ratio;
6264
6265 /* Zone size in gigabytes */
6266 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6267 if (gb)
6268 ratio = int_sqrt(10 * gb);
6269 else
6270 ratio = 1;
6271
6272 zone->inactive_ratio = ratio;
6273 }
6274
6275 static void __meminit setup_per_zone_inactive_ratio(void)
6276 {
6277 struct zone *zone;
6278
6279 for_each_zone(zone)
6280 calculate_zone_inactive_ratio(zone);
6281 }
6282
6283 /*
6284 * Initialise min_free_kbytes.
6285 *
6286 * For small machines we want it small (128k min). For large machines
6287 * we want it large (64MB max). But it is not linear, because network
6288 * bandwidth does not increase linearly with machine size. We use
6289 *
6290 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6291 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6292 *
6293 * which yields
6294 *
6295 * 16MB: 512k
6296 * 32MB: 724k
6297 * 64MB: 1024k
6298 * 128MB: 1448k
6299 * 256MB: 2048k
6300 * 512MB: 2896k
6301 * 1024MB: 4096k
6302 * 2048MB: 5792k
6303 * 4096MB: 8192k
6304 * 8192MB: 11584k
6305 * 16384MB: 16384k
6306 */
6307 int __meminit init_per_zone_wmark_min(void)
6308 {
6309 unsigned long lowmem_kbytes;
6310 int new_min_free_kbytes;
6311
6312 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6313 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6314
6315 if (new_min_free_kbytes > user_min_free_kbytes) {
6316 min_free_kbytes = new_min_free_kbytes;
6317 if (min_free_kbytes < 128)
6318 min_free_kbytes = 128;
6319 if (min_free_kbytes > 65536)
6320 min_free_kbytes = 65536;
6321 } else {
6322 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6323 new_min_free_kbytes, user_min_free_kbytes);
6324 }
6325 setup_per_zone_wmarks();
6326 refresh_zone_stat_thresholds();
6327 setup_per_zone_lowmem_reserve();
6328 setup_per_zone_inactive_ratio();
6329 return 0;
6330 }
6331 module_init(init_per_zone_wmark_min)
6332
6333 /*
6334 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6335 * that we can call two helper functions whenever min_free_kbytes
6336 * changes.
6337 */
6338 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6339 void __user *buffer, size_t *length, loff_t *ppos)
6340 {
6341 int rc;
6342
6343 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6344 if (rc)
6345 return rc;
6346
6347 if (write) {
6348 user_min_free_kbytes = min_free_kbytes;
6349 setup_per_zone_wmarks();
6350 }
6351 return 0;
6352 }
6353
6354 #ifdef CONFIG_NUMA
6355 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6356 void __user *buffer, size_t *length, loff_t *ppos)
6357 {
6358 struct zone *zone;
6359 int rc;
6360
6361 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6362 if (rc)
6363 return rc;
6364
6365 for_each_zone(zone)
6366 zone->min_unmapped_pages = (zone->managed_pages *
6367 sysctl_min_unmapped_ratio) / 100;
6368 return 0;
6369 }
6370
6371 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6372 void __user *buffer, size_t *length, loff_t *ppos)
6373 {
6374 struct zone *zone;
6375 int rc;
6376
6377 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6378 if (rc)
6379 return rc;
6380
6381 for_each_zone(zone)
6382 zone->min_slab_pages = (zone->managed_pages *
6383 sysctl_min_slab_ratio) / 100;
6384 return 0;
6385 }
6386 #endif
6387
6388 /*
6389 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6390 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6391 * whenever sysctl_lowmem_reserve_ratio changes.
6392 *
6393 * The reserve ratio obviously has absolutely no relation with the
6394 * minimum watermarks. The lowmem reserve ratio can only make sense
6395 * if in function of the boot time zone sizes.
6396 */
6397 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6398 void __user *buffer, size_t *length, loff_t *ppos)
6399 {
6400 proc_dointvec_minmax(table, write, buffer, length, ppos);
6401 setup_per_zone_lowmem_reserve();
6402 return 0;
6403 }
6404
6405 /*
6406 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6407 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6408 * pagelist can have before it gets flushed back to buddy allocator.
6409 */
6410 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6411 void __user *buffer, size_t *length, loff_t *ppos)
6412 {
6413 struct zone *zone;
6414 int old_percpu_pagelist_fraction;
6415 int ret;
6416
6417 mutex_lock(&pcp_batch_high_lock);
6418 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6419
6420 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6421 if (!write || ret < 0)
6422 goto out;
6423
6424 /* Sanity checking to avoid pcp imbalance */
6425 if (percpu_pagelist_fraction &&
6426 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6427 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6428 ret = -EINVAL;
6429 goto out;
6430 }
6431
6432 /* No change? */
6433 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6434 goto out;
6435
6436 for_each_populated_zone(zone) {
6437 unsigned int cpu;
6438
6439 for_each_possible_cpu(cpu)
6440 pageset_set_high_and_batch(zone,
6441 per_cpu_ptr(zone->pageset, cpu));
6442 }
6443 out:
6444 mutex_unlock(&pcp_batch_high_lock);
6445 return ret;
6446 }
6447
6448 #ifdef CONFIG_NUMA
6449 int hashdist = HASHDIST_DEFAULT;
6450
6451 static int __init set_hashdist(char *str)
6452 {
6453 if (!str)
6454 return 0;
6455 hashdist = simple_strtoul(str, &str, 0);
6456 return 1;
6457 }
6458 __setup("hashdist=", set_hashdist);
6459 #endif
6460
6461 /*
6462 * allocate a large system hash table from bootmem
6463 * - it is assumed that the hash table must contain an exact power-of-2
6464 * quantity of entries
6465 * - limit is the number of hash buckets, not the total allocation size
6466 */
6467 void *__init alloc_large_system_hash(const char *tablename,
6468 unsigned long bucketsize,
6469 unsigned long numentries,
6470 int scale,
6471 int flags,
6472 unsigned int *_hash_shift,
6473 unsigned int *_hash_mask,
6474 unsigned long low_limit,
6475 unsigned long high_limit)
6476 {
6477 unsigned long long max = high_limit;
6478 unsigned long log2qty, size;
6479 void *table = NULL;
6480
6481 /* allow the kernel cmdline to have a say */
6482 if (!numentries) {
6483 /* round applicable memory size up to nearest megabyte */
6484 numentries = nr_kernel_pages;
6485
6486 /* It isn't necessary when PAGE_SIZE >= 1MB */
6487 if (PAGE_SHIFT < 20)
6488 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6489
6490 /* limit to 1 bucket per 2^scale bytes of low memory */
6491 if (scale > PAGE_SHIFT)
6492 numentries >>= (scale - PAGE_SHIFT);
6493 else
6494 numentries <<= (PAGE_SHIFT - scale);
6495
6496 /* Make sure we've got at least a 0-order allocation.. */
6497 if (unlikely(flags & HASH_SMALL)) {
6498 /* Makes no sense without HASH_EARLY */
6499 WARN_ON(!(flags & HASH_EARLY));
6500 if (!(numentries >> *_hash_shift)) {
6501 numentries = 1UL << *_hash_shift;
6502 BUG_ON(!numentries);
6503 }
6504 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6505 numentries = PAGE_SIZE / bucketsize;
6506 }
6507 numentries = roundup_pow_of_two(numentries);
6508
6509 /* limit allocation size to 1/16 total memory by default */
6510 if (max == 0) {
6511 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6512 do_div(max, bucketsize);
6513 }
6514 max = min(max, 0x80000000ULL);
6515
6516 if (numentries < low_limit)
6517 numentries = low_limit;
6518 if (numentries > max)
6519 numentries = max;
6520
6521 log2qty = ilog2(numentries);
6522
6523 do {
6524 size = bucketsize << log2qty;
6525 if (flags & HASH_EARLY)
6526 table = memblock_virt_alloc_nopanic(size, 0);
6527 else if (hashdist)
6528 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6529 else {
6530 /*
6531 * If bucketsize is not a power-of-two, we may free
6532 * some pages at the end of hash table which
6533 * alloc_pages_exact() automatically does
6534 */
6535 if (get_order(size) < MAX_ORDER) {
6536 table = alloc_pages_exact(size, GFP_ATOMIC);
6537 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6538 }
6539 }
6540 } while (!table && size > PAGE_SIZE && --log2qty);
6541
6542 if (!table)
6543 panic("Failed to allocate %s hash table\n", tablename);
6544
6545 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6546 tablename,
6547 (1UL << log2qty),
6548 ilog2(size) - PAGE_SHIFT,
6549 size);
6550
6551 if (_hash_shift)
6552 *_hash_shift = log2qty;
6553 if (_hash_mask)
6554 *_hash_mask = (1 << log2qty) - 1;
6555
6556 return table;
6557 }
6558
6559 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6560 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6561 unsigned long pfn)
6562 {
6563 #ifdef CONFIG_SPARSEMEM
6564 return __pfn_to_section(pfn)->pageblock_flags;
6565 #else
6566 return zone->pageblock_flags;
6567 #endif /* CONFIG_SPARSEMEM */
6568 }
6569
6570 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6571 {
6572 #ifdef CONFIG_SPARSEMEM
6573 pfn &= (PAGES_PER_SECTION-1);
6574 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6575 #else
6576 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6577 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6578 #endif /* CONFIG_SPARSEMEM */
6579 }
6580
6581 /**
6582 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6583 * @page: The page within the block of interest
6584 * @pfn: The target page frame number
6585 * @end_bitidx: The last bit of interest to retrieve
6586 * @mask: mask of bits that the caller is interested in
6587 *
6588 * Return: pageblock_bits flags
6589 */
6590 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6591 unsigned long end_bitidx,
6592 unsigned long mask)
6593 {
6594 struct zone *zone;
6595 unsigned long *bitmap;
6596 unsigned long bitidx, word_bitidx;
6597 unsigned long word;
6598
6599 zone = page_zone(page);
6600 bitmap = get_pageblock_bitmap(zone, pfn);
6601 bitidx = pfn_to_bitidx(zone, pfn);
6602 word_bitidx = bitidx / BITS_PER_LONG;
6603 bitidx &= (BITS_PER_LONG-1);
6604
6605 word = bitmap[word_bitidx];
6606 bitidx += end_bitidx;
6607 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6608 }
6609
6610 /**
6611 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6612 * @page: The page within the block of interest
6613 * @flags: The flags to set
6614 * @pfn: The target page frame number
6615 * @end_bitidx: The last bit of interest
6616 * @mask: mask of bits that the caller is interested in
6617 */
6618 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6619 unsigned long pfn,
6620 unsigned long end_bitidx,
6621 unsigned long mask)
6622 {
6623 struct zone *zone;
6624 unsigned long *bitmap;
6625 unsigned long bitidx, word_bitidx;
6626 unsigned long old_word, word;
6627
6628 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6629
6630 zone = page_zone(page);
6631 bitmap = get_pageblock_bitmap(zone, pfn);
6632 bitidx = pfn_to_bitidx(zone, pfn);
6633 word_bitidx = bitidx / BITS_PER_LONG;
6634 bitidx &= (BITS_PER_LONG-1);
6635
6636 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6637
6638 bitidx += end_bitidx;
6639 mask <<= (BITS_PER_LONG - bitidx - 1);
6640 flags <<= (BITS_PER_LONG - bitidx - 1);
6641
6642 word = READ_ONCE(bitmap[word_bitidx]);
6643 for (;;) {
6644 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6645 if (word == old_word)
6646 break;
6647 word = old_word;
6648 }
6649 }
6650
6651 /*
6652 * This function checks whether pageblock includes unmovable pages or not.
6653 * If @count is not zero, it is okay to include less @count unmovable pages
6654 *
6655 * PageLRU check without isolation or lru_lock could race so that
6656 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6657 * expect this function should be exact.
6658 */
6659 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6660 bool skip_hwpoisoned_pages)
6661 {
6662 unsigned long pfn, iter, found;
6663 int mt;
6664
6665 /*
6666 * For avoiding noise data, lru_add_drain_all() should be called
6667 * If ZONE_MOVABLE, the zone never contains unmovable pages
6668 */
6669 if (zone_idx(zone) == ZONE_MOVABLE)
6670 return false;
6671 mt = get_pageblock_migratetype(page);
6672 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6673 return false;
6674
6675 pfn = page_to_pfn(page);
6676 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6677 unsigned long check = pfn + iter;
6678
6679 if (!pfn_valid_within(check))
6680 continue;
6681
6682 page = pfn_to_page(check);
6683
6684 /*
6685 * Hugepages are not in LRU lists, but they're movable.
6686 * We need not scan over tail pages bacause we don't
6687 * handle each tail page individually in migration.
6688 */
6689 if (PageHuge(page)) {
6690 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6691 continue;
6692 }
6693
6694 /*
6695 * We can't use page_count without pin a page
6696 * because another CPU can free compound page.
6697 * This check already skips compound tails of THP
6698 * because their page->_count is zero at all time.
6699 */
6700 if (!atomic_read(&page->_count)) {
6701 if (PageBuddy(page))
6702 iter += (1 << page_order(page)) - 1;
6703 continue;
6704 }
6705
6706 /*
6707 * The HWPoisoned page may be not in buddy system, and
6708 * page_count() is not 0.
6709 */
6710 if (skip_hwpoisoned_pages && PageHWPoison(page))
6711 continue;
6712
6713 if (!PageLRU(page))
6714 found++;
6715 /*
6716 * If there are RECLAIMABLE pages, we need to check
6717 * it. But now, memory offline itself doesn't call
6718 * shrink_node_slabs() and it still to be fixed.
6719 */
6720 /*
6721 * If the page is not RAM, page_count()should be 0.
6722 * we don't need more check. This is an _used_ not-movable page.
6723 *
6724 * The problematic thing here is PG_reserved pages. PG_reserved
6725 * is set to both of a memory hole page and a _used_ kernel
6726 * page at boot.
6727 */
6728 if (found > count)
6729 return true;
6730 }
6731 return false;
6732 }
6733
6734 bool is_pageblock_removable_nolock(struct page *page)
6735 {
6736 struct zone *zone;
6737 unsigned long pfn;
6738
6739 /*
6740 * We have to be careful here because we are iterating over memory
6741 * sections which are not zone aware so we might end up outside of
6742 * the zone but still within the section.
6743 * We have to take care about the node as well. If the node is offline
6744 * its NODE_DATA will be NULL - see page_zone.
6745 */
6746 if (!node_online(page_to_nid(page)))
6747 return false;
6748
6749 zone = page_zone(page);
6750 pfn = page_to_pfn(page);
6751 if (!zone_spans_pfn(zone, pfn))
6752 return false;
6753
6754 return !has_unmovable_pages(zone, page, 0, true);
6755 }
6756
6757 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6758
6759 static unsigned long pfn_max_align_down(unsigned long pfn)
6760 {
6761 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6762 pageblock_nr_pages) - 1);
6763 }
6764
6765 static unsigned long pfn_max_align_up(unsigned long pfn)
6766 {
6767 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6768 pageblock_nr_pages));
6769 }
6770
6771 /* [start, end) must belong to a single zone. */
6772 static int __alloc_contig_migrate_range(struct compact_control *cc,
6773 unsigned long start, unsigned long end)
6774 {
6775 /* This function is based on compact_zone() from compaction.c. */
6776 unsigned long nr_reclaimed;
6777 unsigned long pfn = start;
6778 unsigned int tries = 0;
6779 int ret = 0;
6780
6781 migrate_prep();
6782
6783 while (pfn < end || !list_empty(&cc->migratepages)) {
6784 if (fatal_signal_pending(current)) {
6785 ret = -EINTR;
6786 break;
6787 }
6788
6789 if (list_empty(&cc->migratepages)) {
6790 cc->nr_migratepages = 0;
6791 pfn = isolate_migratepages_range(cc, pfn, end);
6792 if (!pfn) {
6793 ret = -EINTR;
6794 break;
6795 }
6796 tries = 0;
6797 } else if (++tries == 5) {
6798 ret = ret < 0 ? ret : -EBUSY;
6799 break;
6800 }
6801
6802 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6803 &cc->migratepages);
6804 cc->nr_migratepages -= nr_reclaimed;
6805
6806 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6807 NULL, 0, cc->mode, MR_CMA);
6808 }
6809 if (ret < 0) {
6810 putback_movable_pages(&cc->migratepages);
6811 return ret;
6812 }
6813 return 0;
6814 }
6815
6816 /**
6817 * alloc_contig_range() -- tries to allocate given range of pages
6818 * @start: start PFN to allocate
6819 * @end: one-past-the-last PFN to allocate
6820 * @migratetype: migratetype of the underlaying pageblocks (either
6821 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6822 * in range must have the same migratetype and it must
6823 * be either of the two.
6824 *
6825 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6826 * aligned, however it's the caller's responsibility to guarantee that
6827 * we are the only thread that changes migrate type of pageblocks the
6828 * pages fall in.
6829 *
6830 * The PFN range must belong to a single zone.
6831 *
6832 * Returns zero on success or negative error code. On success all
6833 * pages which PFN is in [start, end) are allocated for the caller and
6834 * need to be freed with free_contig_range().
6835 */
6836 int alloc_contig_range(unsigned long start, unsigned long end,
6837 unsigned migratetype)
6838 {
6839 unsigned long outer_start, outer_end;
6840 unsigned int order;
6841 int ret = 0;
6842
6843 struct compact_control cc = {
6844 .nr_migratepages = 0,
6845 .order = -1,
6846 .zone = page_zone(pfn_to_page(start)),
6847 .mode = MIGRATE_SYNC,
6848 .ignore_skip_hint = true,
6849 };
6850 INIT_LIST_HEAD(&cc.migratepages);
6851
6852 /*
6853 * What we do here is we mark all pageblocks in range as
6854 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6855 * have different sizes, and due to the way page allocator
6856 * work, we align the range to biggest of the two pages so
6857 * that page allocator won't try to merge buddies from
6858 * different pageblocks and change MIGRATE_ISOLATE to some
6859 * other migration type.
6860 *
6861 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6862 * migrate the pages from an unaligned range (ie. pages that
6863 * we are interested in). This will put all the pages in
6864 * range back to page allocator as MIGRATE_ISOLATE.
6865 *
6866 * When this is done, we take the pages in range from page
6867 * allocator removing them from the buddy system. This way
6868 * page allocator will never consider using them.
6869 *
6870 * This lets us mark the pageblocks back as
6871 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6872 * aligned range but not in the unaligned, original range are
6873 * put back to page allocator so that buddy can use them.
6874 */
6875
6876 ret = start_isolate_page_range(pfn_max_align_down(start),
6877 pfn_max_align_up(end), migratetype,
6878 false);
6879 if (ret)
6880 return ret;
6881
6882 /*
6883 * In case of -EBUSY, we'd like to know which page causes problem.
6884 * So, just fall through. We will check it in test_pages_isolated().
6885 */
6886 ret = __alloc_contig_migrate_range(&cc, start, end);
6887 if (ret && ret != -EBUSY)
6888 goto done;
6889
6890 /*
6891 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6892 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6893 * more, all pages in [start, end) are free in page allocator.
6894 * What we are going to do is to allocate all pages from
6895 * [start, end) (that is remove them from page allocator).
6896 *
6897 * The only problem is that pages at the beginning and at the
6898 * end of interesting range may be not aligned with pages that
6899 * page allocator holds, ie. they can be part of higher order
6900 * pages. Because of this, we reserve the bigger range and
6901 * once this is done free the pages we are not interested in.
6902 *
6903 * We don't have to hold zone->lock here because the pages are
6904 * isolated thus they won't get removed from buddy.
6905 */
6906
6907 lru_add_drain_all();
6908 drain_all_pages(cc.zone);
6909
6910 order = 0;
6911 outer_start = start;
6912 while (!PageBuddy(pfn_to_page(outer_start))) {
6913 if (++order >= MAX_ORDER) {
6914 outer_start = start;
6915 break;
6916 }
6917 outer_start &= ~0UL << order;
6918 }
6919
6920 if (outer_start != start) {
6921 order = page_order(pfn_to_page(outer_start));
6922
6923 /*
6924 * outer_start page could be small order buddy page and
6925 * it doesn't include start page. Adjust outer_start
6926 * in this case to report failed page properly
6927 * on tracepoint in test_pages_isolated()
6928 */
6929 if (outer_start + (1UL << order) <= start)
6930 outer_start = start;
6931 }
6932
6933 /* Make sure the range is really isolated. */
6934 if (test_pages_isolated(outer_start, end, false)) {
6935 pr_info("%s: [%lx, %lx) PFNs busy\n",
6936 __func__, outer_start, end);
6937 ret = -EBUSY;
6938 goto done;
6939 }
6940
6941 /* Grab isolated pages from freelists. */
6942 outer_end = isolate_freepages_range(&cc, outer_start, end);
6943 if (!outer_end) {
6944 ret = -EBUSY;
6945 goto done;
6946 }
6947
6948 /* Free head and tail (if any) */
6949 if (start != outer_start)
6950 free_contig_range(outer_start, start - outer_start);
6951 if (end != outer_end)
6952 free_contig_range(end, outer_end - end);
6953
6954 done:
6955 undo_isolate_page_range(pfn_max_align_down(start),
6956 pfn_max_align_up(end), migratetype);
6957 return ret;
6958 }
6959
6960 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6961 {
6962 unsigned int count = 0;
6963
6964 for (; nr_pages--; pfn++) {
6965 struct page *page = pfn_to_page(pfn);
6966
6967 count += page_count(page) != 1;
6968 __free_page(page);
6969 }
6970 WARN(count != 0, "%d pages are still in use!\n", count);
6971 }
6972 #endif
6973
6974 #ifdef CONFIG_MEMORY_HOTPLUG
6975 /*
6976 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6977 * page high values need to be recalulated.
6978 */
6979 void __meminit zone_pcp_update(struct zone *zone)
6980 {
6981 unsigned cpu;
6982 mutex_lock(&pcp_batch_high_lock);
6983 for_each_possible_cpu(cpu)
6984 pageset_set_high_and_batch(zone,
6985 per_cpu_ptr(zone->pageset, cpu));
6986 mutex_unlock(&pcp_batch_high_lock);
6987 }
6988 #endif
6989
6990 void zone_pcp_reset(struct zone *zone)
6991 {
6992 unsigned long flags;
6993 int cpu;
6994 struct per_cpu_pageset *pset;
6995
6996 /* avoid races with drain_pages() */
6997 local_irq_save(flags);
6998 if (zone->pageset != &boot_pageset) {
6999 for_each_online_cpu(cpu) {
7000 pset = per_cpu_ptr(zone->pageset, cpu);
7001 drain_zonestat(zone, pset);
7002 }
7003 free_percpu(zone->pageset);
7004 zone->pageset = &boot_pageset;
7005 }
7006 local_irq_restore(flags);
7007 }
7008
7009 #ifdef CONFIG_MEMORY_HOTREMOVE
7010 /*
7011 * All pages in the range must be isolated before calling this.
7012 */
7013 void
7014 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7015 {
7016 struct page *page;
7017 struct zone *zone;
7018 unsigned int order, i;
7019 unsigned long pfn;
7020 unsigned long flags;
7021 /* find the first valid pfn */
7022 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7023 if (pfn_valid(pfn))
7024 break;
7025 if (pfn == end_pfn)
7026 return;
7027 zone = page_zone(pfn_to_page(pfn));
7028 spin_lock_irqsave(&zone->lock, flags);
7029 pfn = start_pfn;
7030 while (pfn < end_pfn) {
7031 if (!pfn_valid(pfn)) {
7032 pfn++;
7033 continue;
7034 }
7035 page = pfn_to_page(pfn);
7036 /*
7037 * The HWPoisoned page may be not in buddy system, and
7038 * page_count() is not 0.
7039 */
7040 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7041 pfn++;
7042 SetPageReserved(page);
7043 continue;
7044 }
7045
7046 BUG_ON(page_count(page));
7047 BUG_ON(!PageBuddy(page));
7048 order = page_order(page);
7049 #ifdef CONFIG_DEBUG_VM
7050 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7051 pfn, 1 << order, end_pfn);
7052 #endif
7053 list_del(&page->lru);
7054 rmv_page_order(page);
7055 zone->free_area[order].nr_free--;
7056 for (i = 0; i < (1 << order); i++)
7057 SetPageReserved((page+i));
7058 pfn += (1 << order);
7059 }
7060 spin_unlock_irqrestore(&zone->lock, flags);
7061 }
7062 #endif
7063
7064 #ifdef CONFIG_MEMORY_FAILURE
7065 bool is_free_buddy_page(struct page *page)
7066 {
7067 struct zone *zone = page_zone(page);
7068 unsigned long pfn = page_to_pfn(page);
7069 unsigned long flags;
7070 unsigned int order;
7071
7072 spin_lock_irqsave(&zone->lock, flags);
7073 for (order = 0; order < MAX_ORDER; order++) {
7074 struct page *page_head = page - (pfn & ((1 << order) - 1));
7075
7076 if (PageBuddy(page_head) && page_order(page_head) >= order)
7077 break;
7078 }
7079 spin_unlock_irqrestore(&zone->lock, flags);
7080
7081 return order < MAX_ORDER;
7082 }
7083 #endif
This page took 0.186663 seconds and 5 git commands to generate.