mm: compaction: capture a suitable high-order page immediately when it is made available
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
567 combined_idx = buddy_idx & page_idx;
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
583 struct page *higher_page, *higher_buddy;
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 higher_buddy = higher_page + (buddy_idx - combined_idx);
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596 out:
597 zone->free_area[order].nr_free++;
598 }
599
600 /*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605 static inline void free_page_mlock(struct page *page)
606 {
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609 }
610
611 static inline int free_pages_check(struct page *page)
612 {
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
615 (atomic_read(&page->_count) != 0) |
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
618 bad_page(page);
619 return 1;
620 }
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
624 }
625
626 /*
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
639 {
640 int migratetype = 0;
641 int batch_free = 0;
642 int to_free = count;
643
644 spin_lock(&zone->lock);
645 zone->all_unreclaimable = 0;
646 zone->pages_scanned = 0;
647
648 while (to_free) {
649 struct page *page;
650 struct list_head *list;
651
652 /*
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
658 */
659 do {
660 batch_free++;
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
665
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
677 } while (--to_free && --batch_free && !list_empty(list));
678 }
679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
680 spin_unlock(&zone->lock);
681 }
682
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
685 {
686 spin_lock(&zone->lock);
687 zone->all_unreclaimable = 0;
688 zone->pages_scanned = 0;
689
690 __free_one_page(page, zone, order, migratetype);
691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
692 spin_unlock(&zone->lock);
693 }
694
695 static bool free_pages_prepare(struct page *page, unsigned int order)
696 {
697 int i;
698 int bad = 0;
699
700 trace_mm_page_free(page, order);
701 kmemcheck_free_shadow(page, order);
702
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
707 if (bad)
708 return false;
709
710 if (!PageHighMem(page)) {
711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
715 arch_free_page(page, order);
716 kernel_map_pages(page, 1 << order, 0);
717
718 return true;
719 }
720
721 static void __free_pages_ok(struct page *page, unsigned int order)
722 {
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
729 local_irq_save(flags);
730 if (unlikely(wasMlocked))
731 free_page_mlock(page);
732 __count_vm_events(PGFREE, 1 << order);
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
735 local_irq_restore(flags);
736 }
737
738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
739 {
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
742
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
751 }
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
755 }
756
757 #ifdef CONFIG_CMA
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init init_cma_reserved_pageblock(struct page *page)
760 {
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773 }
774 #endif
775
776 /*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
790 static inline void expand(struct zone *zone, struct page *page,
791 int low, int high, struct free_area *area,
792 int migratetype)
793 {
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
800 VM_BUG_ON(bad_range(zone, &page[size]));
801
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817 #endif
818 list_add(&page[size].lru, &area->free_list[migratetype]);
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
822 }
823
824 /*
825 * This page is about to be returned from the page allocator
826 */
827 static inline int check_new_page(struct page *page)
828 {
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
831 (atomic_read(&page->_count) != 0) |
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
834 bad_page(page);
835 return 1;
836 }
837 return 0;
838 }
839
840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841 {
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
849
850 set_page_private(page, 0);
851 set_page_refcounted(page);
852
853 arch_alloc_page(page, order);
854 kernel_map_pages(page, 1 << order, 1);
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
862 return 0;
863 }
864
865 /*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
869 static inline
870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 int migratetype)
872 {
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893 }
894
895
896 /*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
900 static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903 #ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906 #else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908 #endif
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
911 };
912
913 /*
914 * Move the free pages in a range to the free lists of the requested type.
915 * Note that start_page and end_pages are not aligned on a pageblock
916 * boundary. If alignment is required, use move_freepages_block()
917 */
918 static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
921 {
922 struct page *page;
923 unsigned long order;
924 int pages_moved = 0;
925
926 #ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
932 * grouping pages by mobility
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935 #endif
936
937 for (page = start_page; page <= end_page;) {
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
954 page += 1 << order;
955 pages_moved += 1 << order;
956 }
957
958 return pages_moved;
959 }
960
961 int move_freepages_block(struct zone *zone, struct page *page,
962 int migratetype)
963 {
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
969 start_page = pfn_to_page(start_pfn);
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980 }
981
982 static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984 {
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991 }
992
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page *
995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 {
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
1005 for (i = 0;; i++) {
1006 migratetype = fallbacks[start_migratetype][i];
1007
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
1010 break;
1011
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
1021 * If breaking a large block of pages, move all free
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
1024 * aggressive about taking ownership of free pages
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
1031 */
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
1046 migratetype = start_migratetype;
1047 }
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
1052
1053 /* Take ownership for orders >= pageblock_order */
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
1056 change_pageblock_range(page, current_order,
1057 start_migratetype);
1058
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
1066 return page;
1067 }
1068 }
1069
1070 return NULL;
1071 }
1072
1073 /*
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
1077 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1079 {
1080 struct page *page;
1081
1082 retry_reserve:
1083 page = __rmqueue_smallest(zone, order, migratetype);
1084
1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1086 page = __rmqueue_fallback(zone, order, migratetype);
1087
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1100 return page;
1101 }
1102
1103 /*
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
1108 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1109 unsigned long count, struct list_head *list,
1110 int migratetype, int cold)
1111 {
1112 int mt = migratetype, i;
1113
1114 spin_lock(&zone->lock);
1115 for (i = 0; i < count; ++i) {
1116 struct page *page = __rmqueue(zone, order, migratetype);
1117 if (unlikely(page == NULL))
1118 break;
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
1139 list = &page->lru;
1140 }
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1144 }
1145
1146 #ifdef CONFIG_NUMA
1147 /*
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1154 */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 unsigned long flags;
1158 int to_drain;
1159
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
1169 local_irq_restore(flags);
1170 }
1171 #endif
1172
1173 /*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 unsigned long flags;
1183 struct zone *zone;
1184
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1188
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1191
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 }
1200
1201 /*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204 void drain_local_pages(void *arg)
1205 {
1206 drain_pages(smp_processor_id());
1207 }
1208
1209 /*
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1217 */
1218 void drain_all_pages(void)
1219 {
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252
1253 #ifdef CONFIG_HIBERNATION
1254
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1274 }
1275
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1279
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1283 }
1284 }
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288
1289 /*
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1292 */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1299 int wasMlocked = __TestClearPageMlocked(page);
1300
1301 if (!free_pages_prepare(page, 0))
1302 return;
1303
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1306 local_irq_save(flags);
1307 if (unlikely(wasMlocked))
1308 free_page_mlock(page);
1309 __count_vm_event(PGFREE);
1310
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 if (cold)
1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 else
1330 list_add(&page->lru, &pcp->lists[migratetype]);
1331 pcp->count++;
1332 if (pcp->count >= pcp->high) {
1333 free_pcppages_bulk(zone, pcp->batch, pcp);
1334 pcp->count -= pcp->batch;
1335 }
1336
1337 out:
1338 local_irq_restore(flags);
1339 }
1340
1341 /*
1342 * Free a list of 0-order pages
1343 */
1344 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 {
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
1349 trace_mm_page_free_batched(page, cold);
1350 free_hot_cold_page(page, cold);
1351 }
1352 }
1353
1354 /*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362 void split_page(struct page *page, unsigned int order)
1363 {
1364 int i;
1365
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
1368
1369 #ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376 #endif
1377
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
1380 }
1381
1382 /*
1383 * Similar to the split_page family of functions except that the page
1384 * required at the given order and being isolated now to prevent races
1385 * with parallel allocators
1386 */
1387 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1388 {
1389 unsigned int order;
1390 unsigned long watermark;
1391 struct zone *zone;
1392
1393 BUG_ON(!PageBuddy(page));
1394
1395 zone = page_zone(page);
1396 order = page_order(page);
1397
1398 /* Obey watermarks as if the page was being allocated */
1399 watermark = low_wmark_pages(zone) + (1 << order);
1400 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1401 return 0;
1402
1403 /* Remove page from free list */
1404 list_del(&page->lru);
1405 zone->free_area[order].nr_free--;
1406 rmv_page_order(page);
1407 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1408
1409 if (alloc_order != order)
1410 expand(zone, page, alloc_order, order,
1411 &zone->free_area[order], migratetype);
1412
1413 /* Set the pageblock if the captured page is at least a pageblock */
1414 if (order >= pageblock_order - 1) {
1415 struct page *endpage = page + (1 << order) - 1;
1416 for (; page < endpage; page += pageblock_nr_pages) {
1417 int mt = get_pageblock_migratetype(page);
1418 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1419 set_pageblock_migratetype(page,
1420 MIGRATE_MOVABLE);
1421 }
1422 }
1423
1424 return 1UL << order;
1425 }
1426
1427 /*
1428 * Similar to split_page except the page is already free. As this is only
1429 * being used for migration, the migratetype of the block also changes.
1430 * As this is called with interrupts disabled, the caller is responsible
1431 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1432 * are enabled.
1433 *
1434 * Note: this is probably too low level an operation for use in drivers.
1435 * Please consult with lkml before using this in your driver.
1436 */
1437 int split_free_page(struct page *page)
1438 {
1439 unsigned int order;
1440 int nr_pages;
1441
1442 BUG_ON(!PageBuddy(page));
1443 order = page_order(page);
1444
1445 nr_pages = capture_free_page(page, order, 0);
1446 if (!nr_pages)
1447 return 0;
1448
1449 /* Split into individual pages */
1450 set_page_refcounted(page);
1451 split_page(page, order);
1452 return nr_pages;
1453 }
1454
1455 /*
1456 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1457 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1458 * or two.
1459 */
1460 static inline
1461 struct page *buffered_rmqueue(struct zone *preferred_zone,
1462 struct zone *zone, int order, gfp_t gfp_flags,
1463 int migratetype)
1464 {
1465 unsigned long flags;
1466 struct page *page;
1467 int cold = !!(gfp_flags & __GFP_COLD);
1468
1469 again:
1470 if (likely(order == 0)) {
1471 struct per_cpu_pages *pcp;
1472 struct list_head *list;
1473
1474 local_irq_save(flags);
1475 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1476 list = &pcp->lists[migratetype];
1477 if (list_empty(list)) {
1478 pcp->count += rmqueue_bulk(zone, 0,
1479 pcp->batch, list,
1480 migratetype, cold);
1481 if (unlikely(list_empty(list)))
1482 goto failed;
1483 }
1484
1485 if (cold)
1486 page = list_entry(list->prev, struct page, lru);
1487 else
1488 page = list_entry(list->next, struct page, lru);
1489
1490 list_del(&page->lru);
1491 pcp->count--;
1492 } else {
1493 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1494 /*
1495 * __GFP_NOFAIL is not to be used in new code.
1496 *
1497 * All __GFP_NOFAIL callers should be fixed so that they
1498 * properly detect and handle allocation failures.
1499 *
1500 * We most definitely don't want callers attempting to
1501 * allocate greater than order-1 page units with
1502 * __GFP_NOFAIL.
1503 */
1504 WARN_ON_ONCE(order > 1);
1505 }
1506 spin_lock_irqsave(&zone->lock, flags);
1507 page = __rmqueue(zone, order, migratetype);
1508 spin_unlock(&zone->lock);
1509 if (!page)
1510 goto failed;
1511 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1512 }
1513
1514 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1515 zone_statistics(preferred_zone, zone, gfp_flags);
1516 local_irq_restore(flags);
1517
1518 VM_BUG_ON(bad_range(zone, page));
1519 if (prep_new_page(page, order, gfp_flags))
1520 goto again;
1521 return page;
1522
1523 failed:
1524 local_irq_restore(flags);
1525 return NULL;
1526 }
1527
1528 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1529 #define ALLOC_WMARK_MIN WMARK_MIN
1530 #define ALLOC_WMARK_LOW WMARK_LOW
1531 #define ALLOC_WMARK_HIGH WMARK_HIGH
1532 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1533
1534 /* Mask to get the watermark bits */
1535 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1536
1537 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1538 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1539 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1540
1541 #ifdef CONFIG_FAIL_PAGE_ALLOC
1542
1543 static struct {
1544 struct fault_attr attr;
1545
1546 u32 ignore_gfp_highmem;
1547 u32 ignore_gfp_wait;
1548 u32 min_order;
1549 } fail_page_alloc = {
1550 .attr = FAULT_ATTR_INITIALIZER,
1551 .ignore_gfp_wait = 1,
1552 .ignore_gfp_highmem = 1,
1553 .min_order = 1,
1554 };
1555
1556 static int __init setup_fail_page_alloc(char *str)
1557 {
1558 return setup_fault_attr(&fail_page_alloc.attr, str);
1559 }
1560 __setup("fail_page_alloc=", setup_fail_page_alloc);
1561
1562 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1563 {
1564 if (order < fail_page_alloc.min_order)
1565 return false;
1566 if (gfp_mask & __GFP_NOFAIL)
1567 return false;
1568 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1569 return false;
1570 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1571 return false;
1572
1573 return should_fail(&fail_page_alloc.attr, 1 << order);
1574 }
1575
1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1577
1578 static int __init fail_page_alloc_debugfs(void)
1579 {
1580 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1581 struct dentry *dir;
1582
1583 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1584 &fail_page_alloc.attr);
1585 if (IS_ERR(dir))
1586 return PTR_ERR(dir);
1587
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1589 &fail_page_alloc.ignore_gfp_wait))
1590 goto fail;
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1592 &fail_page_alloc.ignore_gfp_highmem))
1593 goto fail;
1594 if (!debugfs_create_u32("min-order", mode, dir,
1595 &fail_page_alloc.min_order))
1596 goto fail;
1597
1598 return 0;
1599 fail:
1600 debugfs_remove_recursive(dir);
1601
1602 return -ENOMEM;
1603 }
1604
1605 late_initcall(fail_page_alloc_debugfs);
1606
1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1608
1609 #else /* CONFIG_FAIL_PAGE_ALLOC */
1610
1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1612 {
1613 return false;
1614 }
1615
1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1617
1618 /*
1619 * Return true if free pages are above 'mark'. This takes into account the order
1620 * of the allocation.
1621 */
1622 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags, long free_pages)
1624 {
1625 /* free_pages my go negative - that's OK */
1626 long min = mark;
1627 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1628 int o;
1629
1630 free_pages -= (1 << order) - 1;
1631 if (alloc_flags & ALLOC_HIGH)
1632 min -= min / 2;
1633 if (alloc_flags & ALLOC_HARDER)
1634 min -= min / 4;
1635
1636 if (free_pages <= min + lowmem_reserve)
1637 return false;
1638 for (o = 0; o < order; o++) {
1639 /* At the next order, this order's pages become unavailable */
1640 free_pages -= z->free_area[o].nr_free << o;
1641
1642 /* Require fewer higher order pages to be free */
1643 min >>= 1;
1644
1645 if (free_pages <= min)
1646 return false;
1647 }
1648 return true;
1649 }
1650
1651 #ifdef CONFIG_MEMORY_ISOLATION
1652 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653 {
1654 if (unlikely(zone->nr_pageblock_isolate))
1655 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1656 return 0;
1657 }
1658 #else
1659 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660 {
1661 return 0;
1662 }
1663 #endif
1664
1665 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667 {
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 zone_page_state(z, NR_FREE_PAGES));
1670 }
1671
1672 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674 {
1675 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1676
1677 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1678 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1679
1680 /*
1681 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1682 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1683 * sleep although it could do so. But this is more desirable for memory
1684 * hotplug than sleeping which can cause a livelock in the direct
1685 * reclaim path.
1686 */
1687 free_pages -= nr_zone_isolate_freepages(z);
1688 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1689 free_pages);
1690 }
1691
1692 #ifdef CONFIG_NUMA
1693 /*
1694 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1695 * skip over zones that are not allowed by the cpuset, or that have
1696 * been recently (in last second) found to be nearly full. See further
1697 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1698 * that have to skip over a lot of full or unallowed zones.
1699 *
1700 * If the zonelist cache is present in the passed in zonelist, then
1701 * returns a pointer to the allowed node mask (either the current
1702 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1703 *
1704 * If the zonelist cache is not available for this zonelist, does
1705 * nothing and returns NULL.
1706 *
1707 * If the fullzones BITMAP in the zonelist cache is stale (more than
1708 * a second since last zap'd) then we zap it out (clear its bits.)
1709 *
1710 * We hold off even calling zlc_setup, until after we've checked the
1711 * first zone in the zonelist, on the theory that most allocations will
1712 * be satisfied from that first zone, so best to examine that zone as
1713 * quickly as we can.
1714 */
1715 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1716 {
1717 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1718 nodemask_t *allowednodes; /* zonelist_cache approximation */
1719
1720 zlc = zonelist->zlcache_ptr;
1721 if (!zlc)
1722 return NULL;
1723
1724 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1725 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1726 zlc->last_full_zap = jiffies;
1727 }
1728
1729 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1730 &cpuset_current_mems_allowed :
1731 &node_states[N_HIGH_MEMORY];
1732 return allowednodes;
1733 }
1734
1735 /*
1736 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1737 * if it is worth looking at further for free memory:
1738 * 1) Check that the zone isn't thought to be full (doesn't have its
1739 * bit set in the zonelist_cache fullzones BITMAP).
1740 * 2) Check that the zones node (obtained from the zonelist_cache
1741 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1742 * Return true (non-zero) if zone is worth looking at further, or
1743 * else return false (zero) if it is not.
1744 *
1745 * This check -ignores- the distinction between various watermarks,
1746 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1747 * found to be full for any variation of these watermarks, it will
1748 * be considered full for up to one second by all requests, unless
1749 * we are so low on memory on all allowed nodes that we are forced
1750 * into the second scan of the zonelist.
1751 *
1752 * In the second scan we ignore this zonelist cache and exactly
1753 * apply the watermarks to all zones, even it is slower to do so.
1754 * We are low on memory in the second scan, and should leave no stone
1755 * unturned looking for a free page.
1756 */
1757 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1758 nodemask_t *allowednodes)
1759 {
1760 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1761 int i; /* index of *z in zonelist zones */
1762 int n; /* node that zone *z is on */
1763
1764 zlc = zonelist->zlcache_ptr;
1765 if (!zlc)
1766 return 1;
1767
1768 i = z - zonelist->_zonerefs;
1769 n = zlc->z_to_n[i];
1770
1771 /* This zone is worth trying if it is allowed but not full */
1772 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1773 }
1774
1775 /*
1776 * Given 'z' scanning a zonelist, set the corresponding bit in
1777 * zlc->fullzones, so that subsequent attempts to allocate a page
1778 * from that zone don't waste time re-examining it.
1779 */
1780 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1781 {
1782 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1783 int i; /* index of *z in zonelist zones */
1784
1785 zlc = zonelist->zlcache_ptr;
1786 if (!zlc)
1787 return;
1788
1789 i = z - zonelist->_zonerefs;
1790
1791 set_bit(i, zlc->fullzones);
1792 }
1793
1794 /*
1795 * clear all zones full, called after direct reclaim makes progress so that
1796 * a zone that was recently full is not skipped over for up to a second
1797 */
1798 static void zlc_clear_zones_full(struct zonelist *zonelist)
1799 {
1800 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1801
1802 zlc = zonelist->zlcache_ptr;
1803 if (!zlc)
1804 return;
1805
1806 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1807 }
1808
1809 #else /* CONFIG_NUMA */
1810
1811 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1812 {
1813 return NULL;
1814 }
1815
1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1817 nodemask_t *allowednodes)
1818 {
1819 return 1;
1820 }
1821
1822 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1823 {
1824 }
1825
1826 static void zlc_clear_zones_full(struct zonelist *zonelist)
1827 {
1828 }
1829 #endif /* CONFIG_NUMA */
1830
1831 /*
1832 * get_page_from_freelist goes through the zonelist trying to allocate
1833 * a page.
1834 */
1835 static struct page *
1836 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1837 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1838 struct zone *preferred_zone, int migratetype)
1839 {
1840 struct zoneref *z;
1841 struct page *page = NULL;
1842 int classzone_idx;
1843 struct zone *zone;
1844 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1845 int zlc_active = 0; /* set if using zonelist_cache */
1846 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1847
1848 classzone_idx = zone_idx(preferred_zone);
1849 zonelist_scan:
1850 /*
1851 * Scan zonelist, looking for a zone with enough free.
1852 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1853 */
1854 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1855 high_zoneidx, nodemask) {
1856 if (NUMA_BUILD && zlc_active &&
1857 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1858 continue;
1859 if ((alloc_flags & ALLOC_CPUSET) &&
1860 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1861 continue;
1862 /*
1863 * When allocating a page cache page for writing, we
1864 * want to get it from a zone that is within its dirty
1865 * limit, such that no single zone holds more than its
1866 * proportional share of globally allowed dirty pages.
1867 * The dirty limits take into account the zone's
1868 * lowmem reserves and high watermark so that kswapd
1869 * should be able to balance it without having to
1870 * write pages from its LRU list.
1871 *
1872 * This may look like it could increase pressure on
1873 * lower zones by failing allocations in higher zones
1874 * before they are full. But the pages that do spill
1875 * over are limited as the lower zones are protected
1876 * by this very same mechanism. It should not become
1877 * a practical burden to them.
1878 *
1879 * XXX: For now, allow allocations to potentially
1880 * exceed the per-zone dirty limit in the slowpath
1881 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1882 * which is important when on a NUMA setup the allowed
1883 * zones are together not big enough to reach the
1884 * global limit. The proper fix for these situations
1885 * will require awareness of zones in the
1886 * dirty-throttling and the flusher threads.
1887 */
1888 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1889 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1890 goto this_zone_full;
1891
1892 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1893 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1894 unsigned long mark;
1895 int ret;
1896
1897 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1898 if (zone_watermark_ok(zone, order, mark,
1899 classzone_idx, alloc_flags))
1900 goto try_this_zone;
1901
1902 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1903 /*
1904 * we do zlc_setup if there are multiple nodes
1905 * and before considering the first zone allowed
1906 * by the cpuset.
1907 */
1908 allowednodes = zlc_setup(zonelist, alloc_flags);
1909 zlc_active = 1;
1910 did_zlc_setup = 1;
1911 }
1912
1913 if (zone_reclaim_mode == 0)
1914 goto this_zone_full;
1915
1916 /*
1917 * As we may have just activated ZLC, check if the first
1918 * eligible zone has failed zone_reclaim recently.
1919 */
1920 if (NUMA_BUILD && zlc_active &&
1921 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1922 continue;
1923
1924 ret = zone_reclaim(zone, gfp_mask, order);
1925 switch (ret) {
1926 case ZONE_RECLAIM_NOSCAN:
1927 /* did not scan */
1928 continue;
1929 case ZONE_RECLAIM_FULL:
1930 /* scanned but unreclaimable */
1931 continue;
1932 default:
1933 /* did we reclaim enough */
1934 if (!zone_watermark_ok(zone, order, mark,
1935 classzone_idx, alloc_flags))
1936 goto this_zone_full;
1937 }
1938 }
1939
1940 try_this_zone:
1941 page = buffered_rmqueue(preferred_zone, zone, order,
1942 gfp_mask, migratetype);
1943 if (page)
1944 break;
1945 this_zone_full:
1946 if (NUMA_BUILD)
1947 zlc_mark_zone_full(zonelist, z);
1948 }
1949
1950 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1951 /* Disable zlc cache for second zonelist scan */
1952 zlc_active = 0;
1953 goto zonelist_scan;
1954 }
1955
1956 if (page)
1957 /*
1958 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1959 * necessary to allocate the page. The expectation is
1960 * that the caller is taking steps that will free more
1961 * memory. The caller should avoid the page being used
1962 * for !PFMEMALLOC purposes.
1963 */
1964 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1965
1966 return page;
1967 }
1968
1969 /*
1970 * Large machines with many possible nodes should not always dump per-node
1971 * meminfo in irq context.
1972 */
1973 static inline bool should_suppress_show_mem(void)
1974 {
1975 bool ret = false;
1976
1977 #if NODES_SHIFT > 8
1978 ret = in_interrupt();
1979 #endif
1980 return ret;
1981 }
1982
1983 static DEFINE_RATELIMIT_STATE(nopage_rs,
1984 DEFAULT_RATELIMIT_INTERVAL,
1985 DEFAULT_RATELIMIT_BURST);
1986
1987 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1988 {
1989 unsigned int filter = SHOW_MEM_FILTER_NODES;
1990
1991 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1992 debug_guardpage_minorder() > 0)
1993 return;
1994
1995 /*
1996 * This documents exceptions given to allocations in certain
1997 * contexts that are allowed to allocate outside current's set
1998 * of allowed nodes.
1999 */
2000 if (!(gfp_mask & __GFP_NOMEMALLOC))
2001 if (test_thread_flag(TIF_MEMDIE) ||
2002 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2003 filter &= ~SHOW_MEM_FILTER_NODES;
2004 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2005 filter &= ~SHOW_MEM_FILTER_NODES;
2006
2007 if (fmt) {
2008 struct va_format vaf;
2009 va_list args;
2010
2011 va_start(args, fmt);
2012
2013 vaf.fmt = fmt;
2014 vaf.va = &args;
2015
2016 pr_warn("%pV", &vaf);
2017
2018 va_end(args);
2019 }
2020
2021 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2022 current->comm, order, gfp_mask);
2023
2024 dump_stack();
2025 if (!should_suppress_show_mem())
2026 show_mem(filter);
2027 }
2028
2029 static inline int
2030 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2031 unsigned long did_some_progress,
2032 unsigned long pages_reclaimed)
2033 {
2034 /* Do not loop if specifically requested */
2035 if (gfp_mask & __GFP_NORETRY)
2036 return 0;
2037
2038 /* Always retry if specifically requested */
2039 if (gfp_mask & __GFP_NOFAIL)
2040 return 1;
2041
2042 /*
2043 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2044 * making forward progress without invoking OOM. Suspend also disables
2045 * storage devices so kswapd will not help. Bail if we are suspending.
2046 */
2047 if (!did_some_progress && pm_suspended_storage())
2048 return 0;
2049
2050 /*
2051 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2052 * means __GFP_NOFAIL, but that may not be true in other
2053 * implementations.
2054 */
2055 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2056 return 1;
2057
2058 /*
2059 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2060 * specified, then we retry until we no longer reclaim any pages
2061 * (above), or we've reclaimed an order of pages at least as
2062 * large as the allocation's order. In both cases, if the
2063 * allocation still fails, we stop retrying.
2064 */
2065 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2066 return 1;
2067
2068 return 0;
2069 }
2070
2071 static inline struct page *
2072 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2073 struct zonelist *zonelist, enum zone_type high_zoneidx,
2074 nodemask_t *nodemask, struct zone *preferred_zone,
2075 int migratetype)
2076 {
2077 struct page *page;
2078
2079 /* Acquire the OOM killer lock for the zones in zonelist */
2080 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2081 schedule_timeout_uninterruptible(1);
2082 return NULL;
2083 }
2084
2085 /*
2086 * Go through the zonelist yet one more time, keep very high watermark
2087 * here, this is only to catch a parallel oom killing, we must fail if
2088 * we're still under heavy pressure.
2089 */
2090 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2091 order, zonelist, high_zoneidx,
2092 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2093 preferred_zone, migratetype);
2094 if (page)
2095 goto out;
2096
2097 if (!(gfp_mask & __GFP_NOFAIL)) {
2098 /* The OOM killer will not help higher order allocs */
2099 if (order > PAGE_ALLOC_COSTLY_ORDER)
2100 goto out;
2101 /* The OOM killer does not needlessly kill tasks for lowmem */
2102 if (high_zoneidx < ZONE_NORMAL)
2103 goto out;
2104 /*
2105 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2106 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2107 * The caller should handle page allocation failure by itself if
2108 * it specifies __GFP_THISNODE.
2109 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2110 */
2111 if (gfp_mask & __GFP_THISNODE)
2112 goto out;
2113 }
2114 /* Exhausted what can be done so it's blamo time */
2115 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2116
2117 out:
2118 clear_zonelist_oom(zonelist, gfp_mask);
2119 return page;
2120 }
2121
2122 #ifdef CONFIG_COMPACTION
2123 /* Try memory compaction for high-order allocations before reclaim */
2124 static struct page *
2125 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2126 struct zonelist *zonelist, enum zone_type high_zoneidx,
2127 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2128 int migratetype, bool sync_migration,
2129 bool *contended_compaction, bool *deferred_compaction,
2130 unsigned long *did_some_progress)
2131 {
2132 struct page *page = NULL;
2133
2134 if (!order)
2135 return NULL;
2136
2137 if (compaction_deferred(preferred_zone, order)) {
2138 *deferred_compaction = true;
2139 return NULL;
2140 }
2141
2142 current->flags |= PF_MEMALLOC;
2143 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2144 nodemask, sync_migration,
2145 contended_compaction, &page);
2146 current->flags &= ~PF_MEMALLOC;
2147
2148 /* If compaction captured a page, prep and use it */
2149 if (page) {
2150 prep_new_page(page, order, gfp_mask);
2151 goto got_page;
2152 }
2153
2154 if (*did_some_progress != COMPACT_SKIPPED) {
2155 /* Page migration frees to the PCP lists but we want merging */
2156 drain_pages(get_cpu());
2157 put_cpu();
2158
2159 page = get_page_from_freelist(gfp_mask, nodemask,
2160 order, zonelist, high_zoneidx,
2161 alloc_flags & ~ALLOC_NO_WATERMARKS,
2162 preferred_zone, migratetype);
2163 if (page) {
2164 got_page:
2165 preferred_zone->compact_considered = 0;
2166 preferred_zone->compact_defer_shift = 0;
2167 if (order >= preferred_zone->compact_order_failed)
2168 preferred_zone->compact_order_failed = order + 1;
2169 count_vm_event(COMPACTSUCCESS);
2170 return page;
2171 }
2172
2173 /*
2174 * It's bad if compaction run occurs and fails.
2175 * The most likely reason is that pages exist,
2176 * but not enough to satisfy watermarks.
2177 */
2178 count_vm_event(COMPACTFAIL);
2179
2180 /*
2181 * As async compaction considers a subset of pageblocks, only
2182 * defer if the failure was a sync compaction failure.
2183 */
2184 if (sync_migration)
2185 defer_compaction(preferred_zone, order);
2186
2187 cond_resched();
2188 }
2189
2190 return NULL;
2191 }
2192 #else
2193 static inline struct page *
2194 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2195 struct zonelist *zonelist, enum zone_type high_zoneidx,
2196 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2197 int migratetype, bool sync_migration,
2198 bool *contended_compaction, bool *deferred_compaction,
2199 unsigned long *did_some_progress)
2200 {
2201 return NULL;
2202 }
2203 #endif /* CONFIG_COMPACTION */
2204
2205 /* Perform direct synchronous page reclaim */
2206 static int
2207 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2208 nodemask_t *nodemask)
2209 {
2210 struct reclaim_state reclaim_state;
2211 int progress;
2212
2213 cond_resched();
2214
2215 /* We now go into synchronous reclaim */
2216 cpuset_memory_pressure_bump();
2217 current->flags |= PF_MEMALLOC;
2218 lockdep_set_current_reclaim_state(gfp_mask);
2219 reclaim_state.reclaimed_slab = 0;
2220 current->reclaim_state = &reclaim_state;
2221
2222 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2223
2224 current->reclaim_state = NULL;
2225 lockdep_clear_current_reclaim_state();
2226 current->flags &= ~PF_MEMALLOC;
2227
2228 cond_resched();
2229
2230 return progress;
2231 }
2232
2233 /* The really slow allocator path where we enter direct reclaim */
2234 static inline struct page *
2235 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2236 struct zonelist *zonelist, enum zone_type high_zoneidx,
2237 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2238 int migratetype, unsigned long *did_some_progress)
2239 {
2240 struct page *page = NULL;
2241 bool drained = false;
2242
2243 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2244 nodemask);
2245 if (unlikely(!(*did_some_progress)))
2246 return NULL;
2247
2248 /* After successful reclaim, reconsider all zones for allocation */
2249 if (NUMA_BUILD)
2250 zlc_clear_zones_full(zonelist);
2251
2252 retry:
2253 page = get_page_from_freelist(gfp_mask, nodemask, order,
2254 zonelist, high_zoneidx,
2255 alloc_flags & ~ALLOC_NO_WATERMARKS,
2256 preferred_zone, migratetype);
2257
2258 /*
2259 * If an allocation failed after direct reclaim, it could be because
2260 * pages are pinned on the per-cpu lists. Drain them and try again
2261 */
2262 if (!page && !drained) {
2263 drain_all_pages();
2264 drained = true;
2265 goto retry;
2266 }
2267
2268 return page;
2269 }
2270
2271 /*
2272 * This is called in the allocator slow-path if the allocation request is of
2273 * sufficient urgency to ignore watermarks and take other desperate measures
2274 */
2275 static inline struct page *
2276 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2277 struct zonelist *zonelist, enum zone_type high_zoneidx,
2278 nodemask_t *nodemask, struct zone *preferred_zone,
2279 int migratetype)
2280 {
2281 struct page *page;
2282
2283 do {
2284 page = get_page_from_freelist(gfp_mask, nodemask, order,
2285 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2286 preferred_zone, migratetype);
2287
2288 if (!page && gfp_mask & __GFP_NOFAIL)
2289 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2290 } while (!page && (gfp_mask & __GFP_NOFAIL));
2291
2292 return page;
2293 }
2294
2295 static inline
2296 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2297 enum zone_type high_zoneidx,
2298 enum zone_type classzone_idx)
2299 {
2300 struct zoneref *z;
2301 struct zone *zone;
2302
2303 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2304 wakeup_kswapd(zone, order, classzone_idx);
2305 }
2306
2307 static inline int
2308 gfp_to_alloc_flags(gfp_t gfp_mask)
2309 {
2310 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2311 const gfp_t wait = gfp_mask & __GFP_WAIT;
2312
2313 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2314 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2315
2316 /*
2317 * The caller may dip into page reserves a bit more if the caller
2318 * cannot run direct reclaim, or if the caller has realtime scheduling
2319 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2320 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2321 */
2322 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2323
2324 if (!wait) {
2325 /*
2326 * Not worth trying to allocate harder for
2327 * __GFP_NOMEMALLOC even if it can't schedule.
2328 */
2329 if (!(gfp_mask & __GFP_NOMEMALLOC))
2330 alloc_flags |= ALLOC_HARDER;
2331 /*
2332 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2333 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2334 */
2335 alloc_flags &= ~ALLOC_CPUSET;
2336 } else if (unlikely(rt_task(current)) && !in_interrupt())
2337 alloc_flags |= ALLOC_HARDER;
2338
2339 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2340 if (gfp_mask & __GFP_MEMALLOC)
2341 alloc_flags |= ALLOC_NO_WATERMARKS;
2342 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2343 alloc_flags |= ALLOC_NO_WATERMARKS;
2344 else if (!in_interrupt() &&
2345 ((current->flags & PF_MEMALLOC) ||
2346 unlikely(test_thread_flag(TIF_MEMDIE))))
2347 alloc_flags |= ALLOC_NO_WATERMARKS;
2348 }
2349
2350 return alloc_flags;
2351 }
2352
2353 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2354 {
2355 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2356 }
2357
2358 static inline struct page *
2359 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2360 struct zonelist *zonelist, enum zone_type high_zoneidx,
2361 nodemask_t *nodemask, struct zone *preferred_zone,
2362 int migratetype)
2363 {
2364 const gfp_t wait = gfp_mask & __GFP_WAIT;
2365 struct page *page = NULL;
2366 int alloc_flags;
2367 unsigned long pages_reclaimed = 0;
2368 unsigned long did_some_progress;
2369 bool sync_migration = false;
2370 bool deferred_compaction = false;
2371 bool contended_compaction = false;
2372
2373 /*
2374 * In the slowpath, we sanity check order to avoid ever trying to
2375 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2376 * be using allocators in order of preference for an area that is
2377 * too large.
2378 */
2379 if (order >= MAX_ORDER) {
2380 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2381 return NULL;
2382 }
2383
2384 /*
2385 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2386 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2387 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2388 * using a larger set of nodes after it has established that the
2389 * allowed per node queues are empty and that nodes are
2390 * over allocated.
2391 */
2392 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2393 goto nopage;
2394
2395 restart:
2396 wake_all_kswapd(order, zonelist, high_zoneidx,
2397 zone_idx(preferred_zone));
2398
2399 /*
2400 * OK, we're below the kswapd watermark and have kicked background
2401 * reclaim. Now things get more complex, so set up alloc_flags according
2402 * to how we want to proceed.
2403 */
2404 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2405
2406 /*
2407 * Find the true preferred zone if the allocation is unconstrained by
2408 * cpusets.
2409 */
2410 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2411 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2412 &preferred_zone);
2413
2414 rebalance:
2415 /* This is the last chance, in general, before the goto nopage. */
2416 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2417 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2418 preferred_zone, migratetype);
2419 if (page)
2420 goto got_pg;
2421
2422 /* Allocate without watermarks if the context allows */
2423 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2424 /*
2425 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2426 * the allocation is high priority and these type of
2427 * allocations are system rather than user orientated
2428 */
2429 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2430
2431 page = __alloc_pages_high_priority(gfp_mask, order,
2432 zonelist, high_zoneidx, nodemask,
2433 preferred_zone, migratetype);
2434 if (page) {
2435 goto got_pg;
2436 }
2437 }
2438
2439 /* Atomic allocations - we can't balance anything */
2440 if (!wait)
2441 goto nopage;
2442
2443 /* Avoid recursion of direct reclaim */
2444 if (current->flags & PF_MEMALLOC)
2445 goto nopage;
2446
2447 /* Avoid allocations with no watermarks from looping endlessly */
2448 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2449 goto nopage;
2450
2451 /*
2452 * Try direct compaction. The first pass is asynchronous. Subsequent
2453 * attempts after direct reclaim are synchronous
2454 */
2455 page = __alloc_pages_direct_compact(gfp_mask, order,
2456 zonelist, high_zoneidx,
2457 nodemask,
2458 alloc_flags, preferred_zone,
2459 migratetype, sync_migration,
2460 &contended_compaction,
2461 &deferred_compaction,
2462 &did_some_progress);
2463 if (page)
2464 goto got_pg;
2465 sync_migration = true;
2466
2467 /*
2468 * If compaction is deferred for high-order allocations, it is because
2469 * sync compaction recently failed. In this is the case and the caller
2470 * requested a movable allocation that does not heavily disrupt the
2471 * system then fail the allocation instead of entering direct reclaim.
2472 */
2473 if ((deferred_compaction || contended_compaction) &&
2474 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2475 goto nopage;
2476
2477 /* Try direct reclaim and then allocating */
2478 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2479 zonelist, high_zoneidx,
2480 nodemask,
2481 alloc_flags, preferred_zone,
2482 migratetype, &did_some_progress);
2483 if (page)
2484 goto got_pg;
2485
2486 /*
2487 * If we failed to make any progress reclaiming, then we are
2488 * running out of options and have to consider going OOM
2489 */
2490 if (!did_some_progress) {
2491 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2492 if (oom_killer_disabled)
2493 goto nopage;
2494 /* Coredumps can quickly deplete all memory reserves */
2495 if ((current->flags & PF_DUMPCORE) &&
2496 !(gfp_mask & __GFP_NOFAIL))
2497 goto nopage;
2498 page = __alloc_pages_may_oom(gfp_mask, order,
2499 zonelist, high_zoneidx,
2500 nodemask, preferred_zone,
2501 migratetype);
2502 if (page)
2503 goto got_pg;
2504
2505 if (!(gfp_mask & __GFP_NOFAIL)) {
2506 /*
2507 * The oom killer is not called for high-order
2508 * allocations that may fail, so if no progress
2509 * is being made, there are no other options and
2510 * retrying is unlikely to help.
2511 */
2512 if (order > PAGE_ALLOC_COSTLY_ORDER)
2513 goto nopage;
2514 /*
2515 * The oom killer is not called for lowmem
2516 * allocations to prevent needlessly killing
2517 * innocent tasks.
2518 */
2519 if (high_zoneidx < ZONE_NORMAL)
2520 goto nopage;
2521 }
2522
2523 goto restart;
2524 }
2525 }
2526
2527 /* Check if we should retry the allocation */
2528 pages_reclaimed += did_some_progress;
2529 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2530 pages_reclaimed)) {
2531 /* Wait for some write requests to complete then retry */
2532 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2533 goto rebalance;
2534 } else {
2535 /*
2536 * High-order allocations do not necessarily loop after
2537 * direct reclaim and reclaim/compaction depends on compaction
2538 * being called after reclaim so call directly if necessary
2539 */
2540 page = __alloc_pages_direct_compact(gfp_mask, order,
2541 zonelist, high_zoneidx,
2542 nodemask,
2543 alloc_flags, preferred_zone,
2544 migratetype, sync_migration,
2545 &contended_compaction,
2546 &deferred_compaction,
2547 &did_some_progress);
2548 if (page)
2549 goto got_pg;
2550 }
2551
2552 nopage:
2553 warn_alloc_failed(gfp_mask, order, NULL);
2554 return page;
2555 got_pg:
2556 if (kmemcheck_enabled)
2557 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2558
2559 return page;
2560 }
2561
2562 /*
2563 * This is the 'heart' of the zoned buddy allocator.
2564 */
2565 struct page *
2566 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2567 struct zonelist *zonelist, nodemask_t *nodemask)
2568 {
2569 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2570 struct zone *preferred_zone;
2571 struct page *page = NULL;
2572 int migratetype = allocflags_to_migratetype(gfp_mask);
2573 unsigned int cpuset_mems_cookie;
2574
2575 gfp_mask &= gfp_allowed_mask;
2576
2577 lockdep_trace_alloc(gfp_mask);
2578
2579 might_sleep_if(gfp_mask & __GFP_WAIT);
2580
2581 if (should_fail_alloc_page(gfp_mask, order))
2582 return NULL;
2583
2584 /*
2585 * Check the zones suitable for the gfp_mask contain at least one
2586 * valid zone. It's possible to have an empty zonelist as a result
2587 * of GFP_THISNODE and a memoryless node
2588 */
2589 if (unlikely(!zonelist->_zonerefs->zone))
2590 return NULL;
2591
2592 retry_cpuset:
2593 cpuset_mems_cookie = get_mems_allowed();
2594
2595 /* The preferred zone is used for statistics later */
2596 first_zones_zonelist(zonelist, high_zoneidx,
2597 nodemask ? : &cpuset_current_mems_allowed,
2598 &preferred_zone);
2599 if (!preferred_zone)
2600 goto out;
2601
2602 /* First allocation attempt */
2603 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2604 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2605 preferred_zone, migratetype);
2606 if (unlikely(!page))
2607 page = __alloc_pages_slowpath(gfp_mask, order,
2608 zonelist, high_zoneidx, nodemask,
2609 preferred_zone, migratetype);
2610
2611 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2612
2613 out:
2614 /*
2615 * When updating a task's mems_allowed, it is possible to race with
2616 * parallel threads in such a way that an allocation can fail while
2617 * the mask is being updated. If a page allocation is about to fail,
2618 * check if the cpuset changed during allocation and if so, retry.
2619 */
2620 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2621 goto retry_cpuset;
2622
2623 return page;
2624 }
2625 EXPORT_SYMBOL(__alloc_pages_nodemask);
2626
2627 /*
2628 * Common helper functions.
2629 */
2630 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2631 {
2632 struct page *page;
2633
2634 /*
2635 * __get_free_pages() returns a 32-bit address, which cannot represent
2636 * a highmem page
2637 */
2638 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2639
2640 page = alloc_pages(gfp_mask, order);
2641 if (!page)
2642 return 0;
2643 return (unsigned long) page_address(page);
2644 }
2645 EXPORT_SYMBOL(__get_free_pages);
2646
2647 unsigned long get_zeroed_page(gfp_t gfp_mask)
2648 {
2649 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2650 }
2651 EXPORT_SYMBOL(get_zeroed_page);
2652
2653 void __free_pages(struct page *page, unsigned int order)
2654 {
2655 if (put_page_testzero(page)) {
2656 if (order == 0)
2657 free_hot_cold_page(page, 0);
2658 else
2659 __free_pages_ok(page, order);
2660 }
2661 }
2662
2663 EXPORT_SYMBOL(__free_pages);
2664
2665 void free_pages(unsigned long addr, unsigned int order)
2666 {
2667 if (addr != 0) {
2668 VM_BUG_ON(!virt_addr_valid((void *)addr));
2669 __free_pages(virt_to_page((void *)addr), order);
2670 }
2671 }
2672
2673 EXPORT_SYMBOL(free_pages);
2674
2675 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2676 {
2677 if (addr) {
2678 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2679 unsigned long used = addr + PAGE_ALIGN(size);
2680
2681 split_page(virt_to_page((void *)addr), order);
2682 while (used < alloc_end) {
2683 free_page(used);
2684 used += PAGE_SIZE;
2685 }
2686 }
2687 return (void *)addr;
2688 }
2689
2690 /**
2691 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2692 * @size: the number of bytes to allocate
2693 * @gfp_mask: GFP flags for the allocation
2694 *
2695 * This function is similar to alloc_pages(), except that it allocates the
2696 * minimum number of pages to satisfy the request. alloc_pages() can only
2697 * allocate memory in power-of-two pages.
2698 *
2699 * This function is also limited by MAX_ORDER.
2700 *
2701 * Memory allocated by this function must be released by free_pages_exact().
2702 */
2703 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2704 {
2705 unsigned int order = get_order(size);
2706 unsigned long addr;
2707
2708 addr = __get_free_pages(gfp_mask, order);
2709 return make_alloc_exact(addr, order, size);
2710 }
2711 EXPORT_SYMBOL(alloc_pages_exact);
2712
2713 /**
2714 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2715 * pages on a node.
2716 * @nid: the preferred node ID where memory should be allocated
2717 * @size: the number of bytes to allocate
2718 * @gfp_mask: GFP flags for the allocation
2719 *
2720 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2721 * back.
2722 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2723 * but is not exact.
2724 */
2725 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2726 {
2727 unsigned order = get_order(size);
2728 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2729 if (!p)
2730 return NULL;
2731 return make_alloc_exact((unsigned long)page_address(p), order, size);
2732 }
2733 EXPORT_SYMBOL(alloc_pages_exact_nid);
2734
2735 /**
2736 * free_pages_exact - release memory allocated via alloc_pages_exact()
2737 * @virt: the value returned by alloc_pages_exact.
2738 * @size: size of allocation, same value as passed to alloc_pages_exact().
2739 *
2740 * Release the memory allocated by a previous call to alloc_pages_exact.
2741 */
2742 void free_pages_exact(void *virt, size_t size)
2743 {
2744 unsigned long addr = (unsigned long)virt;
2745 unsigned long end = addr + PAGE_ALIGN(size);
2746
2747 while (addr < end) {
2748 free_page(addr);
2749 addr += PAGE_SIZE;
2750 }
2751 }
2752 EXPORT_SYMBOL(free_pages_exact);
2753
2754 static unsigned int nr_free_zone_pages(int offset)
2755 {
2756 struct zoneref *z;
2757 struct zone *zone;
2758
2759 /* Just pick one node, since fallback list is circular */
2760 unsigned int sum = 0;
2761
2762 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2763
2764 for_each_zone_zonelist(zone, z, zonelist, offset) {
2765 unsigned long size = zone->present_pages;
2766 unsigned long high = high_wmark_pages(zone);
2767 if (size > high)
2768 sum += size - high;
2769 }
2770
2771 return sum;
2772 }
2773
2774 /*
2775 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2776 */
2777 unsigned int nr_free_buffer_pages(void)
2778 {
2779 return nr_free_zone_pages(gfp_zone(GFP_USER));
2780 }
2781 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2782
2783 /*
2784 * Amount of free RAM allocatable within all zones
2785 */
2786 unsigned int nr_free_pagecache_pages(void)
2787 {
2788 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2789 }
2790
2791 static inline void show_node(struct zone *zone)
2792 {
2793 if (NUMA_BUILD)
2794 printk("Node %d ", zone_to_nid(zone));
2795 }
2796
2797 void si_meminfo(struct sysinfo *val)
2798 {
2799 val->totalram = totalram_pages;
2800 val->sharedram = 0;
2801 val->freeram = global_page_state(NR_FREE_PAGES);
2802 val->bufferram = nr_blockdev_pages();
2803 val->totalhigh = totalhigh_pages;
2804 val->freehigh = nr_free_highpages();
2805 val->mem_unit = PAGE_SIZE;
2806 }
2807
2808 EXPORT_SYMBOL(si_meminfo);
2809
2810 #ifdef CONFIG_NUMA
2811 void si_meminfo_node(struct sysinfo *val, int nid)
2812 {
2813 pg_data_t *pgdat = NODE_DATA(nid);
2814
2815 val->totalram = pgdat->node_present_pages;
2816 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2817 #ifdef CONFIG_HIGHMEM
2818 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2819 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2820 NR_FREE_PAGES);
2821 #else
2822 val->totalhigh = 0;
2823 val->freehigh = 0;
2824 #endif
2825 val->mem_unit = PAGE_SIZE;
2826 }
2827 #endif
2828
2829 /*
2830 * Determine whether the node should be displayed or not, depending on whether
2831 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2832 */
2833 bool skip_free_areas_node(unsigned int flags, int nid)
2834 {
2835 bool ret = false;
2836 unsigned int cpuset_mems_cookie;
2837
2838 if (!(flags & SHOW_MEM_FILTER_NODES))
2839 goto out;
2840
2841 do {
2842 cpuset_mems_cookie = get_mems_allowed();
2843 ret = !node_isset(nid, cpuset_current_mems_allowed);
2844 } while (!put_mems_allowed(cpuset_mems_cookie));
2845 out:
2846 return ret;
2847 }
2848
2849 #define K(x) ((x) << (PAGE_SHIFT-10))
2850
2851 /*
2852 * Show free area list (used inside shift_scroll-lock stuff)
2853 * We also calculate the percentage fragmentation. We do this by counting the
2854 * memory on each free list with the exception of the first item on the list.
2855 * Suppresses nodes that are not allowed by current's cpuset if
2856 * SHOW_MEM_FILTER_NODES is passed.
2857 */
2858 void show_free_areas(unsigned int filter)
2859 {
2860 int cpu;
2861 struct zone *zone;
2862
2863 for_each_populated_zone(zone) {
2864 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2865 continue;
2866 show_node(zone);
2867 printk("%s per-cpu:\n", zone->name);
2868
2869 for_each_online_cpu(cpu) {
2870 struct per_cpu_pageset *pageset;
2871
2872 pageset = per_cpu_ptr(zone->pageset, cpu);
2873
2874 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2875 cpu, pageset->pcp.high,
2876 pageset->pcp.batch, pageset->pcp.count);
2877 }
2878 }
2879
2880 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2881 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2882 " unevictable:%lu"
2883 " dirty:%lu writeback:%lu unstable:%lu\n"
2884 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2885 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2886 global_page_state(NR_ACTIVE_ANON),
2887 global_page_state(NR_INACTIVE_ANON),
2888 global_page_state(NR_ISOLATED_ANON),
2889 global_page_state(NR_ACTIVE_FILE),
2890 global_page_state(NR_INACTIVE_FILE),
2891 global_page_state(NR_ISOLATED_FILE),
2892 global_page_state(NR_UNEVICTABLE),
2893 global_page_state(NR_FILE_DIRTY),
2894 global_page_state(NR_WRITEBACK),
2895 global_page_state(NR_UNSTABLE_NFS),
2896 global_page_state(NR_FREE_PAGES),
2897 global_page_state(NR_SLAB_RECLAIMABLE),
2898 global_page_state(NR_SLAB_UNRECLAIMABLE),
2899 global_page_state(NR_FILE_MAPPED),
2900 global_page_state(NR_SHMEM),
2901 global_page_state(NR_PAGETABLE),
2902 global_page_state(NR_BOUNCE));
2903
2904 for_each_populated_zone(zone) {
2905 int i;
2906
2907 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2908 continue;
2909 show_node(zone);
2910 printk("%s"
2911 " free:%lukB"
2912 " min:%lukB"
2913 " low:%lukB"
2914 " high:%lukB"
2915 " active_anon:%lukB"
2916 " inactive_anon:%lukB"
2917 " active_file:%lukB"
2918 " inactive_file:%lukB"
2919 " unevictable:%lukB"
2920 " isolated(anon):%lukB"
2921 " isolated(file):%lukB"
2922 " present:%lukB"
2923 " mlocked:%lukB"
2924 " dirty:%lukB"
2925 " writeback:%lukB"
2926 " mapped:%lukB"
2927 " shmem:%lukB"
2928 " slab_reclaimable:%lukB"
2929 " slab_unreclaimable:%lukB"
2930 " kernel_stack:%lukB"
2931 " pagetables:%lukB"
2932 " unstable:%lukB"
2933 " bounce:%lukB"
2934 " writeback_tmp:%lukB"
2935 " pages_scanned:%lu"
2936 " all_unreclaimable? %s"
2937 "\n",
2938 zone->name,
2939 K(zone_page_state(zone, NR_FREE_PAGES)),
2940 K(min_wmark_pages(zone)),
2941 K(low_wmark_pages(zone)),
2942 K(high_wmark_pages(zone)),
2943 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2944 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2945 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2946 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2947 K(zone_page_state(zone, NR_UNEVICTABLE)),
2948 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2949 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2950 K(zone->present_pages),
2951 K(zone_page_state(zone, NR_MLOCK)),
2952 K(zone_page_state(zone, NR_FILE_DIRTY)),
2953 K(zone_page_state(zone, NR_WRITEBACK)),
2954 K(zone_page_state(zone, NR_FILE_MAPPED)),
2955 K(zone_page_state(zone, NR_SHMEM)),
2956 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2957 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2958 zone_page_state(zone, NR_KERNEL_STACK) *
2959 THREAD_SIZE / 1024,
2960 K(zone_page_state(zone, NR_PAGETABLE)),
2961 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2962 K(zone_page_state(zone, NR_BOUNCE)),
2963 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2964 zone->pages_scanned,
2965 (zone->all_unreclaimable ? "yes" : "no")
2966 );
2967 printk("lowmem_reserve[]:");
2968 for (i = 0; i < MAX_NR_ZONES; i++)
2969 printk(" %lu", zone->lowmem_reserve[i]);
2970 printk("\n");
2971 }
2972
2973 for_each_populated_zone(zone) {
2974 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2975
2976 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2977 continue;
2978 show_node(zone);
2979 printk("%s: ", zone->name);
2980
2981 spin_lock_irqsave(&zone->lock, flags);
2982 for (order = 0; order < MAX_ORDER; order++) {
2983 nr[order] = zone->free_area[order].nr_free;
2984 total += nr[order] << order;
2985 }
2986 spin_unlock_irqrestore(&zone->lock, flags);
2987 for (order = 0; order < MAX_ORDER; order++)
2988 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2989 printk("= %lukB\n", K(total));
2990 }
2991
2992 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2993
2994 show_swap_cache_info();
2995 }
2996
2997 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2998 {
2999 zoneref->zone = zone;
3000 zoneref->zone_idx = zone_idx(zone);
3001 }
3002
3003 /*
3004 * Builds allocation fallback zone lists.
3005 *
3006 * Add all populated zones of a node to the zonelist.
3007 */
3008 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3009 int nr_zones, enum zone_type zone_type)
3010 {
3011 struct zone *zone;
3012
3013 BUG_ON(zone_type >= MAX_NR_ZONES);
3014 zone_type++;
3015
3016 do {
3017 zone_type--;
3018 zone = pgdat->node_zones + zone_type;
3019 if (populated_zone(zone)) {
3020 zoneref_set_zone(zone,
3021 &zonelist->_zonerefs[nr_zones++]);
3022 check_highest_zone(zone_type);
3023 }
3024
3025 } while (zone_type);
3026 return nr_zones;
3027 }
3028
3029
3030 /*
3031 * zonelist_order:
3032 * 0 = automatic detection of better ordering.
3033 * 1 = order by ([node] distance, -zonetype)
3034 * 2 = order by (-zonetype, [node] distance)
3035 *
3036 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3037 * the same zonelist. So only NUMA can configure this param.
3038 */
3039 #define ZONELIST_ORDER_DEFAULT 0
3040 #define ZONELIST_ORDER_NODE 1
3041 #define ZONELIST_ORDER_ZONE 2
3042
3043 /* zonelist order in the kernel.
3044 * set_zonelist_order() will set this to NODE or ZONE.
3045 */
3046 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3047 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3048
3049
3050 #ifdef CONFIG_NUMA
3051 /* The value user specified ....changed by config */
3052 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3053 /* string for sysctl */
3054 #define NUMA_ZONELIST_ORDER_LEN 16
3055 char numa_zonelist_order[16] = "default";
3056
3057 /*
3058 * interface for configure zonelist ordering.
3059 * command line option "numa_zonelist_order"
3060 * = "[dD]efault - default, automatic configuration.
3061 * = "[nN]ode - order by node locality, then by zone within node
3062 * = "[zZ]one - order by zone, then by locality within zone
3063 */
3064
3065 static int __parse_numa_zonelist_order(char *s)
3066 {
3067 if (*s == 'd' || *s == 'D') {
3068 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3069 } else if (*s == 'n' || *s == 'N') {
3070 user_zonelist_order = ZONELIST_ORDER_NODE;
3071 } else if (*s == 'z' || *s == 'Z') {
3072 user_zonelist_order = ZONELIST_ORDER_ZONE;
3073 } else {
3074 printk(KERN_WARNING
3075 "Ignoring invalid numa_zonelist_order value: "
3076 "%s\n", s);
3077 return -EINVAL;
3078 }
3079 return 0;
3080 }
3081
3082 static __init int setup_numa_zonelist_order(char *s)
3083 {
3084 int ret;
3085
3086 if (!s)
3087 return 0;
3088
3089 ret = __parse_numa_zonelist_order(s);
3090 if (ret == 0)
3091 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3092
3093 return ret;
3094 }
3095 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3096
3097 /*
3098 * sysctl handler for numa_zonelist_order
3099 */
3100 int numa_zonelist_order_handler(ctl_table *table, int write,
3101 void __user *buffer, size_t *length,
3102 loff_t *ppos)
3103 {
3104 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3105 int ret;
3106 static DEFINE_MUTEX(zl_order_mutex);
3107
3108 mutex_lock(&zl_order_mutex);
3109 if (write)
3110 strcpy(saved_string, (char*)table->data);
3111 ret = proc_dostring(table, write, buffer, length, ppos);
3112 if (ret)
3113 goto out;
3114 if (write) {
3115 int oldval = user_zonelist_order;
3116 if (__parse_numa_zonelist_order((char*)table->data)) {
3117 /*
3118 * bogus value. restore saved string
3119 */
3120 strncpy((char*)table->data, saved_string,
3121 NUMA_ZONELIST_ORDER_LEN);
3122 user_zonelist_order = oldval;
3123 } else if (oldval != user_zonelist_order) {
3124 mutex_lock(&zonelists_mutex);
3125 build_all_zonelists(NULL, NULL);
3126 mutex_unlock(&zonelists_mutex);
3127 }
3128 }
3129 out:
3130 mutex_unlock(&zl_order_mutex);
3131 return ret;
3132 }
3133
3134
3135 #define MAX_NODE_LOAD (nr_online_nodes)
3136 static int node_load[MAX_NUMNODES];
3137
3138 /**
3139 * find_next_best_node - find the next node that should appear in a given node's fallback list
3140 * @node: node whose fallback list we're appending
3141 * @used_node_mask: nodemask_t of already used nodes
3142 *
3143 * We use a number of factors to determine which is the next node that should
3144 * appear on a given node's fallback list. The node should not have appeared
3145 * already in @node's fallback list, and it should be the next closest node
3146 * according to the distance array (which contains arbitrary distance values
3147 * from each node to each node in the system), and should also prefer nodes
3148 * with no CPUs, since presumably they'll have very little allocation pressure
3149 * on them otherwise.
3150 * It returns -1 if no node is found.
3151 */
3152 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3153 {
3154 int n, val;
3155 int min_val = INT_MAX;
3156 int best_node = -1;
3157 const struct cpumask *tmp = cpumask_of_node(0);
3158
3159 /* Use the local node if we haven't already */
3160 if (!node_isset(node, *used_node_mask)) {
3161 node_set(node, *used_node_mask);
3162 return node;
3163 }
3164
3165 for_each_node_state(n, N_HIGH_MEMORY) {
3166
3167 /* Don't want a node to appear more than once */
3168 if (node_isset(n, *used_node_mask))
3169 continue;
3170
3171 /* Use the distance array to find the distance */
3172 val = node_distance(node, n);
3173
3174 /* Penalize nodes under us ("prefer the next node") */
3175 val += (n < node);
3176
3177 /* Give preference to headless and unused nodes */
3178 tmp = cpumask_of_node(n);
3179 if (!cpumask_empty(tmp))
3180 val += PENALTY_FOR_NODE_WITH_CPUS;
3181
3182 /* Slight preference for less loaded node */
3183 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3184 val += node_load[n];
3185
3186 if (val < min_val) {
3187 min_val = val;
3188 best_node = n;
3189 }
3190 }
3191
3192 if (best_node >= 0)
3193 node_set(best_node, *used_node_mask);
3194
3195 return best_node;
3196 }
3197
3198
3199 /*
3200 * Build zonelists ordered by node and zones within node.
3201 * This results in maximum locality--normal zone overflows into local
3202 * DMA zone, if any--but risks exhausting DMA zone.
3203 */
3204 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3205 {
3206 int j;
3207 struct zonelist *zonelist;
3208
3209 zonelist = &pgdat->node_zonelists[0];
3210 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3211 ;
3212 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3213 MAX_NR_ZONES - 1);
3214 zonelist->_zonerefs[j].zone = NULL;
3215 zonelist->_zonerefs[j].zone_idx = 0;
3216 }
3217
3218 /*
3219 * Build gfp_thisnode zonelists
3220 */
3221 static void build_thisnode_zonelists(pg_data_t *pgdat)
3222 {
3223 int j;
3224 struct zonelist *zonelist;
3225
3226 zonelist = &pgdat->node_zonelists[1];
3227 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3228 zonelist->_zonerefs[j].zone = NULL;
3229 zonelist->_zonerefs[j].zone_idx = 0;
3230 }
3231
3232 /*
3233 * Build zonelists ordered by zone and nodes within zones.
3234 * This results in conserving DMA zone[s] until all Normal memory is
3235 * exhausted, but results in overflowing to remote node while memory
3236 * may still exist in local DMA zone.
3237 */
3238 static int node_order[MAX_NUMNODES];
3239
3240 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3241 {
3242 int pos, j, node;
3243 int zone_type; /* needs to be signed */
3244 struct zone *z;
3245 struct zonelist *zonelist;
3246
3247 zonelist = &pgdat->node_zonelists[0];
3248 pos = 0;
3249 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3250 for (j = 0; j < nr_nodes; j++) {
3251 node = node_order[j];
3252 z = &NODE_DATA(node)->node_zones[zone_type];
3253 if (populated_zone(z)) {
3254 zoneref_set_zone(z,
3255 &zonelist->_zonerefs[pos++]);
3256 check_highest_zone(zone_type);
3257 }
3258 }
3259 }
3260 zonelist->_zonerefs[pos].zone = NULL;
3261 zonelist->_zonerefs[pos].zone_idx = 0;
3262 }
3263
3264 static int default_zonelist_order(void)
3265 {
3266 int nid, zone_type;
3267 unsigned long low_kmem_size,total_size;
3268 struct zone *z;
3269 int average_size;
3270 /*
3271 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3272 * If they are really small and used heavily, the system can fall
3273 * into OOM very easily.
3274 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3275 */
3276 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3277 low_kmem_size = 0;
3278 total_size = 0;
3279 for_each_online_node(nid) {
3280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3281 z = &NODE_DATA(nid)->node_zones[zone_type];
3282 if (populated_zone(z)) {
3283 if (zone_type < ZONE_NORMAL)
3284 low_kmem_size += z->present_pages;
3285 total_size += z->present_pages;
3286 } else if (zone_type == ZONE_NORMAL) {
3287 /*
3288 * If any node has only lowmem, then node order
3289 * is preferred to allow kernel allocations
3290 * locally; otherwise, they can easily infringe
3291 * on other nodes when there is an abundance of
3292 * lowmem available to allocate from.
3293 */
3294 return ZONELIST_ORDER_NODE;
3295 }
3296 }
3297 }
3298 if (!low_kmem_size || /* there are no DMA area. */
3299 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3300 return ZONELIST_ORDER_NODE;
3301 /*
3302 * look into each node's config.
3303 * If there is a node whose DMA/DMA32 memory is very big area on
3304 * local memory, NODE_ORDER may be suitable.
3305 */
3306 average_size = total_size /
3307 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3308 for_each_online_node(nid) {
3309 low_kmem_size = 0;
3310 total_size = 0;
3311 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3312 z = &NODE_DATA(nid)->node_zones[zone_type];
3313 if (populated_zone(z)) {
3314 if (zone_type < ZONE_NORMAL)
3315 low_kmem_size += z->present_pages;
3316 total_size += z->present_pages;
3317 }
3318 }
3319 if (low_kmem_size &&
3320 total_size > average_size && /* ignore small node */
3321 low_kmem_size > total_size * 70/100)
3322 return ZONELIST_ORDER_NODE;
3323 }
3324 return ZONELIST_ORDER_ZONE;
3325 }
3326
3327 static void set_zonelist_order(void)
3328 {
3329 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3330 current_zonelist_order = default_zonelist_order();
3331 else
3332 current_zonelist_order = user_zonelist_order;
3333 }
3334
3335 static void build_zonelists(pg_data_t *pgdat)
3336 {
3337 int j, node, load;
3338 enum zone_type i;
3339 nodemask_t used_mask;
3340 int local_node, prev_node;
3341 struct zonelist *zonelist;
3342 int order = current_zonelist_order;
3343
3344 /* initialize zonelists */
3345 for (i = 0; i < MAX_ZONELISTS; i++) {
3346 zonelist = pgdat->node_zonelists + i;
3347 zonelist->_zonerefs[0].zone = NULL;
3348 zonelist->_zonerefs[0].zone_idx = 0;
3349 }
3350
3351 /* NUMA-aware ordering of nodes */
3352 local_node = pgdat->node_id;
3353 load = nr_online_nodes;
3354 prev_node = local_node;
3355 nodes_clear(used_mask);
3356
3357 memset(node_order, 0, sizeof(node_order));
3358 j = 0;
3359
3360 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3361 int distance = node_distance(local_node, node);
3362
3363 /*
3364 * If another node is sufficiently far away then it is better
3365 * to reclaim pages in a zone before going off node.
3366 */
3367 if (distance > RECLAIM_DISTANCE)
3368 zone_reclaim_mode = 1;
3369
3370 /*
3371 * We don't want to pressure a particular node.
3372 * So adding penalty to the first node in same
3373 * distance group to make it round-robin.
3374 */
3375 if (distance != node_distance(local_node, prev_node))
3376 node_load[node] = load;
3377
3378 prev_node = node;
3379 load--;
3380 if (order == ZONELIST_ORDER_NODE)
3381 build_zonelists_in_node_order(pgdat, node);
3382 else
3383 node_order[j++] = node; /* remember order */
3384 }
3385
3386 if (order == ZONELIST_ORDER_ZONE) {
3387 /* calculate node order -- i.e., DMA last! */
3388 build_zonelists_in_zone_order(pgdat, j);
3389 }
3390
3391 build_thisnode_zonelists(pgdat);
3392 }
3393
3394 /* Construct the zonelist performance cache - see further mmzone.h */
3395 static void build_zonelist_cache(pg_data_t *pgdat)
3396 {
3397 struct zonelist *zonelist;
3398 struct zonelist_cache *zlc;
3399 struct zoneref *z;
3400
3401 zonelist = &pgdat->node_zonelists[0];
3402 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3403 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3404 for (z = zonelist->_zonerefs; z->zone; z++)
3405 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3406 }
3407
3408 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3409 /*
3410 * Return node id of node used for "local" allocations.
3411 * I.e., first node id of first zone in arg node's generic zonelist.
3412 * Used for initializing percpu 'numa_mem', which is used primarily
3413 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3414 */
3415 int local_memory_node(int node)
3416 {
3417 struct zone *zone;
3418
3419 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3420 gfp_zone(GFP_KERNEL),
3421 NULL,
3422 &zone);
3423 return zone->node;
3424 }
3425 #endif
3426
3427 #else /* CONFIG_NUMA */
3428
3429 static void set_zonelist_order(void)
3430 {
3431 current_zonelist_order = ZONELIST_ORDER_ZONE;
3432 }
3433
3434 static void build_zonelists(pg_data_t *pgdat)
3435 {
3436 int node, local_node;
3437 enum zone_type j;
3438 struct zonelist *zonelist;
3439
3440 local_node = pgdat->node_id;
3441
3442 zonelist = &pgdat->node_zonelists[0];
3443 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3444
3445 /*
3446 * Now we build the zonelist so that it contains the zones
3447 * of all the other nodes.
3448 * We don't want to pressure a particular node, so when
3449 * building the zones for node N, we make sure that the
3450 * zones coming right after the local ones are those from
3451 * node N+1 (modulo N)
3452 */
3453 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3454 if (!node_online(node))
3455 continue;
3456 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3457 MAX_NR_ZONES - 1);
3458 }
3459 for (node = 0; node < local_node; node++) {
3460 if (!node_online(node))
3461 continue;
3462 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3463 MAX_NR_ZONES - 1);
3464 }
3465
3466 zonelist->_zonerefs[j].zone = NULL;
3467 zonelist->_zonerefs[j].zone_idx = 0;
3468 }
3469
3470 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3471 static void build_zonelist_cache(pg_data_t *pgdat)
3472 {
3473 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3474 }
3475
3476 #endif /* CONFIG_NUMA */
3477
3478 /*
3479 * Boot pageset table. One per cpu which is going to be used for all
3480 * zones and all nodes. The parameters will be set in such a way
3481 * that an item put on a list will immediately be handed over to
3482 * the buddy list. This is safe since pageset manipulation is done
3483 * with interrupts disabled.
3484 *
3485 * The boot_pagesets must be kept even after bootup is complete for
3486 * unused processors and/or zones. They do play a role for bootstrapping
3487 * hotplugged processors.
3488 *
3489 * zoneinfo_show() and maybe other functions do
3490 * not check if the processor is online before following the pageset pointer.
3491 * Other parts of the kernel may not check if the zone is available.
3492 */
3493 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3494 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3495 static void setup_zone_pageset(struct zone *zone);
3496
3497 /*
3498 * Global mutex to protect against size modification of zonelists
3499 * as well as to serialize pageset setup for the new populated zone.
3500 */
3501 DEFINE_MUTEX(zonelists_mutex);
3502
3503 /* return values int ....just for stop_machine() */
3504 static int __build_all_zonelists(void *data)
3505 {
3506 int nid;
3507 int cpu;
3508 pg_data_t *self = data;
3509
3510 #ifdef CONFIG_NUMA
3511 memset(node_load, 0, sizeof(node_load));
3512 #endif
3513
3514 if (self && !node_online(self->node_id)) {
3515 build_zonelists(self);
3516 build_zonelist_cache(self);
3517 }
3518
3519 for_each_online_node(nid) {
3520 pg_data_t *pgdat = NODE_DATA(nid);
3521
3522 build_zonelists(pgdat);
3523 build_zonelist_cache(pgdat);
3524 }
3525
3526 /*
3527 * Initialize the boot_pagesets that are going to be used
3528 * for bootstrapping processors. The real pagesets for
3529 * each zone will be allocated later when the per cpu
3530 * allocator is available.
3531 *
3532 * boot_pagesets are used also for bootstrapping offline
3533 * cpus if the system is already booted because the pagesets
3534 * are needed to initialize allocators on a specific cpu too.
3535 * F.e. the percpu allocator needs the page allocator which
3536 * needs the percpu allocator in order to allocate its pagesets
3537 * (a chicken-egg dilemma).
3538 */
3539 for_each_possible_cpu(cpu) {
3540 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3541
3542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3543 /*
3544 * We now know the "local memory node" for each node--
3545 * i.e., the node of the first zone in the generic zonelist.
3546 * Set up numa_mem percpu variable for on-line cpus. During
3547 * boot, only the boot cpu should be on-line; we'll init the
3548 * secondary cpus' numa_mem as they come on-line. During
3549 * node/memory hotplug, we'll fixup all on-line cpus.
3550 */
3551 if (cpu_online(cpu))
3552 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3553 #endif
3554 }
3555
3556 return 0;
3557 }
3558
3559 /*
3560 * Called with zonelists_mutex held always
3561 * unless system_state == SYSTEM_BOOTING.
3562 */
3563 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3564 {
3565 set_zonelist_order();
3566
3567 if (system_state == SYSTEM_BOOTING) {
3568 __build_all_zonelists(NULL);
3569 mminit_verify_zonelist();
3570 cpuset_init_current_mems_allowed();
3571 } else {
3572 /* we have to stop all cpus to guarantee there is no user
3573 of zonelist */
3574 #ifdef CONFIG_MEMORY_HOTPLUG
3575 if (zone)
3576 setup_zone_pageset(zone);
3577 #endif
3578 stop_machine(__build_all_zonelists, pgdat, NULL);
3579 /* cpuset refresh routine should be here */
3580 }
3581 vm_total_pages = nr_free_pagecache_pages();
3582 /*
3583 * Disable grouping by mobility if the number of pages in the
3584 * system is too low to allow the mechanism to work. It would be
3585 * more accurate, but expensive to check per-zone. This check is
3586 * made on memory-hotadd so a system can start with mobility
3587 * disabled and enable it later
3588 */
3589 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3590 page_group_by_mobility_disabled = 1;
3591 else
3592 page_group_by_mobility_disabled = 0;
3593
3594 printk("Built %i zonelists in %s order, mobility grouping %s. "
3595 "Total pages: %ld\n",
3596 nr_online_nodes,
3597 zonelist_order_name[current_zonelist_order],
3598 page_group_by_mobility_disabled ? "off" : "on",
3599 vm_total_pages);
3600 #ifdef CONFIG_NUMA
3601 printk("Policy zone: %s\n", zone_names[policy_zone]);
3602 #endif
3603 }
3604
3605 /*
3606 * Helper functions to size the waitqueue hash table.
3607 * Essentially these want to choose hash table sizes sufficiently
3608 * large so that collisions trying to wait on pages are rare.
3609 * But in fact, the number of active page waitqueues on typical
3610 * systems is ridiculously low, less than 200. So this is even
3611 * conservative, even though it seems large.
3612 *
3613 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3614 * waitqueues, i.e. the size of the waitq table given the number of pages.
3615 */
3616 #define PAGES_PER_WAITQUEUE 256
3617
3618 #ifndef CONFIG_MEMORY_HOTPLUG
3619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3620 {
3621 unsigned long size = 1;
3622
3623 pages /= PAGES_PER_WAITQUEUE;
3624
3625 while (size < pages)
3626 size <<= 1;
3627
3628 /*
3629 * Once we have dozens or even hundreds of threads sleeping
3630 * on IO we've got bigger problems than wait queue collision.
3631 * Limit the size of the wait table to a reasonable size.
3632 */
3633 size = min(size, 4096UL);
3634
3635 return max(size, 4UL);
3636 }
3637 #else
3638 /*
3639 * A zone's size might be changed by hot-add, so it is not possible to determine
3640 * a suitable size for its wait_table. So we use the maximum size now.
3641 *
3642 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3643 *
3644 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3645 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3646 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3647 *
3648 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3649 * or more by the traditional way. (See above). It equals:
3650 *
3651 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3652 * ia64(16K page size) : = ( 8G + 4M)byte.
3653 * powerpc (64K page size) : = (32G +16M)byte.
3654 */
3655 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3656 {
3657 return 4096UL;
3658 }
3659 #endif
3660
3661 /*
3662 * This is an integer logarithm so that shifts can be used later
3663 * to extract the more random high bits from the multiplicative
3664 * hash function before the remainder is taken.
3665 */
3666 static inline unsigned long wait_table_bits(unsigned long size)
3667 {
3668 return ffz(~size);
3669 }
3670
3671 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3672
3673 /*
3674 * Check if a pageblock contains reserved pages
3675 */
3676 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3677 {
3678 unsigned long pfn;
3679
3680 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3681 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3682 return 1;
3683 }
3684 return 0;
3685 }
3686
3687 /*
3688 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3689 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3690 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3691 * higher will lead to a bigger reserve which will get freed as contiguous
3692 * blocks as reclaim kicks in
3693 */
3694 static void setup_zone_migrate_reserve(struct zone *zone)
3695 {
3696 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3697 struct page *page;
3698 unsigned long block_migratetype;
3699 int reserve;
3700
3701 /*
3702 * Get the start pfn, end pfn and the number of blocks to reserve
3703 * We have to be careful to be aligned to pageblock_nr_pages to
3704 * make sure that we always check pfn_valid for the first page in
3705 * the block.
3706 */
3707 start_pfn = zone->zone_start_pfn;
3708 end_pfn = start_pfn + zone->spanned_pages;
3709 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3710 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3711 pageblock_order;
3712
3713 /*
3714 * Reserve blocks are generally in place to help high-order atomic
3715 * allocations that are short-lived. A min_free_kbytes value that
3716 * would result in more than 2 reserve blocks for atomic allocations
3717 * is assumed to be in place to help anti-fragmentation for the
3718 * future allocation of hugepages at runtime.
3719 */
3720 reserve = min(2, reserve);
3721
3722 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3723 if (!pfn_valid(pfn))
3724 continue;
3725 page = pfn_to_page(pfn);
3726
3727 /* Watch out for overlapping nodes */
3728 if (page_to_nid(page) != zone_to_nid(zone))
3729 continue;
3730
3731 block_migratetype = get_pageblock_migratetype(page);
3732
3733 /* Only test what is necessary when the reserves are not met */
3734 if (reserve > 0) {
3735 /*
3736 * Blocks with reserved pages will never free, skip
3737 * them.
3738 */
3739 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3740 if (pageblock_is_reserved(pfn, block_end_pfn))
3741 continue;
3742
3743 /* If this block is reserved, account for it */
3744 if (block_migratetype == MIGRATE_RESERVE) {
3745 reserve--;
3746 continue;
3747 }
3748
3749 /* Suitable for reserving if this block is movable */
3750 if (block_migratetype == MIGRATE_MOVABLE) {
3751 set_pageblock_migratetype(page,
3752 MIGRATE_RESERVE);
3753 move_freepages_block(zone, page,
3754 MIGRATE_RESERVE);
3755 reserve--;
3756 continue;
3757 }
3758 }
3759
3760 /*
3761 * If the reserve is met and this is a previous reserved block,
3762 * take it back
3763 */
3764 if (block_migratetype == MIGRATE_RESERVE) {
3765 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3766 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3767 }
3768 }
3769 }
3770
3771 /*
3772 * Initially all pages are reserved - free ones are freed
3773 * up by free_all_bootmem() once the early boot process is
3774 * done. Non-atomic initialization, single-pass.
3775 */
3776 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3777 unsigned long start_pfn, enum memmap_context context)
3778 {
3779 struct page *page;
3780 unsigned long end_pfn = start_pfn + size;
3781 unsigned long pfn;
3782 struct zone *z;
3783
3784 if (highest_memmap_pfn < end_pfn - 1)
3785 highest_memmap_pfn = end_pfn - 1;
3786
3787 z = &NODE_DATA(nid)->node_zones[zone];
3788 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3789 /*
3790 * There can be holes in boot-time mem_map[]s
3791 * handed to this function. They do not
3792 * exist on hotplugged memory.
3793 */
3794 if (context == MEMMAP_EARLY) {
3795 if (!early_pfn_valid(pfn))
3796 continue;
3797 if (!early_pfn_in_nid(pfn, nid))
3798 continue;
3799 }
3800 page = pfn_to_page(pfn);
3801 set_page_links(page, zone, nid, pfn);
3802 mminit_verify_page_links(page, zone, nid, pfn);
3803 init_page_count(page);
3804 reset_page_mapcount(page);
3805 SetPageReserved(page);
3806 /*
3807 * Mark the block movable so that blocks are reserved for
3808 * movable at startup. This will force kernel allocations
3809 * to reserve their blocks rather than leaking throughout
3810 * the address space during boot when many long-lived
3811 * kernel allocations are made. Later some blocks near
3812 * the start are marked MIGRATE_RESERVE by
3813 * setup_zone_migrate_reserve()
3814 *
3815 * bitmap is created for zone's valid pfn range. but memmap
3816 * can be created for invalid pages (for alignment)
3817 * check here not to call set_pageblock_migratetype() against
3818 * pfn out of zone.
3819 */
3820 if ((z->zone_start_pfn <= pfn)
3821 && (pfn < z->zone_start_pfn + z->spanned_pages)
3822 && !(pfn & (pageblock_nr_pages - 1)))
3823 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3824
3825 INIT_LIST_HEAD(&page->lru);
3826 #ifdef WANT_PAGE_VIRTUAL
3827 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3828 if (!is_highmem_idx(zone))
3829 set_page_address(page, __va(pfn << PAGE_SHIFT));
3830 #endif
3831 }
3832 }
3833
3834 static void __meminit zone_init_free_lists(struct zone *zone)
3835 {
3836 int order, t;
3837 for_each_migratetype_order(order, t) {
3838 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3839 zone->free_area[order].nr_free = 0;
3840 }
3841 }
3842
3843 #ifndef __HAVE_ARCH_MEMMAP_INIT
3844 #define memmap_init(size, nid, zone, start_pfn) \
3845 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3846 #endif
3847
3848 static int __meminit zone_batchsize(struct zone *zone)
3849 {
3850 #ifdef CONFIG_MMU
3851 int batch;
3852
3853 /*
3854 * The per-cpu-pages pools are set to around 1000th of the
3855 * size of the zone. But no more than 1/2 of a meg.
3856 *
3857 * OK, so we don't know how big the cache is. So guess.
3858 */
3859 batch = zone->present_pages / 1024;
3860 if (batch * PAGE_SIZE > 512 * 1024)
3861 batch = (512 * 1024) / PAGE_SIZE;
3862 batch /= 4; /* We effectively *= 4 below */
3863 if (batch < 1)
3864 batch = 1;
3865
3866 /*
3867 * Clamp the batch to a 2^n - 1 value. Having a power
3868 * of 2 value was found to be more likely to have
3869 * suboptimal cache aliasing properties in some cases.
3870 *
3871 * For example if 2 tasks are alternately allocating
3872 * batches of pages, one task can end up with a lot
3873 * of pages of one half of the possible page colors
3874 * and the other with pages of the other colors.
3875 */
3876 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3877
3878 return batch;
3879
3880 #else
3881 /* The deferral and batching of frees should be suppressed under NOMMU
3882 * conditions.
3883 *
3884 * The problem is that NOMMU needs to be able to allocate large chunks
3885 * of contiguous memory as there's no hardware page translation to
3886 * assemble apparent contiguous memory from discontiguous pages.
3887 *
3888 * Queueing large contiguous runs of pages for batching, however,
3889 * causes the pages to actually be freed in smaller chunks. As there
3890 * can be a significant delay between the individual batches being
3891 * recycled, this leads to the once large chunks of space being
3892 * fragmented and becoming unavailable for high-order allocations.
3893 */
3894 return 0;
3895 #endif
3896 }
3897
3898 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3899 {
3900 struct per_cpu_pages *pcp;
3901 int migratetype;
3902
3903 memset(p, 0, sizeof(*p));
3904
3905 pcp = &p->pcp;
3906 pcp->count = 0;
3907 pcp->high = 6 * batch;
3908 pcp->batch = max(1UL, 1 * batch);
3909 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3910 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3911 }
3912
3913 /*
3914 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3915 * to the value high for the pageset p.
3916 */
3917
3918 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3919 unsigned long high)
3920 {
3921 struct per_cpu_pages *pcp;
3922
3923 pcp = &p->pcp;
3924 pcp->high = high;
3925 pcp->batch = max(1UL, high/4);
3926 if ((high/4) > (PAGE_SHIFT * 8))
3927 pcp->batch = PAGE_SHIFT * 8;
3928 }
3929
3930 static void __meminit setup_zone_pageset(struct zone *zone)
3931 {
3932 int cpu;
3933
3934 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3935
3936 for_each_possible_cpu(cpu) {
3937 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3938
3939 setup_pageset(pcp, zone_batchsize(zone));
3940
3941 if (percpu_pagelist_fraction)
3942 setup_pagelist_highmark(pcp,
3943 (zone->present_pages /
3944 percpu_pagelist_fraction));
3945 }
3946 }
3947
3948 /*
3949 * Allocate per cpu pagesets and initialize them.
3950 * Before this call only boot pagesets were available.
3951 */
3952 void __init setup_per_cpu_pageset(void)
3953 {
3954 struct zone *zone;
3955
3956 for_each_populated_zone(zone)
3957 setup_zone_pageset(zone);
3958 }
3959
3960 static noinline __init_refok
3961 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3962 {
3963 int i;
3964 struct pglist_data *pgdat = zone->zone_pgdat;
3965 size_t alloc_size;
3966
3967 /*
3968 * The per-page waitqueue mechanism uses hashed waitqueues
3969 * per zone.
3970 */
3971 zone->wait_table_hash_nr_entries =
3972 wait_table_hash_nr_entries(zone_size_pages);
3973 zone->wait_table_bits =
3974 wait_table_bits(zone->wait_table_hash_nr_entries);
3975 alloc_size = zone->wait_table_hash_nr_entries
3976 * sizeof(wait_queue_head_t);
3977
3978 if (!slab_is_available()) {
3979 zone->wait_table = (wait_queue_head_t *)
3980 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3981 } else {
3982 /*
3983 * This case means that a zone whose size was 0 gets new memory
3984 * via memory hot-add.
3985 * But it may be the case that a new node was hot-added. In
3986 * this case vmalloc() will not be able to use this new node's
3987 * memory - this wait_table must be initialized to use this new
3988 * node itself as well.
3989 * To use this new node's memory, further consideration will be
3990 * necessary.
3991 */
3992 zone->wait_table = vmalloc(alloc_size);
3993 }
3994 if (!zone->wait_table)
3995 return -ENOMEM;
3996
3997 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3998 init_waitqueue_head(zone->wait_table + i);
3999
4000 return 0;
4001 }
4002
4003 static __meminit void zone_pcp_init(struct zone *zone)
4004 {
4005 /*
4006 * per cpu subsystem is not up at this point. The following code
4007 * relies on the ability of the linker to provide the
4008 * offset of a (static) per cpu variable into the per cpu area.
4009 */
4010 zone->pageset = &boot_pageset;
4011
4012 if (zone->present_pages)
4013 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4014 zone->name, zone->present_pages,
4015 zone_batchsize(zone));
4016 }
4017
4018 int __meminit init_currently_empty_zone(struct zone *zone,
4019 unsigned long zone_start_pfn,
4020 unsigned long size,
4021 enum memmap_context context)
4022 {
4023 struct pglist_data *pgdat = zone->zone_pgdat;
4024 int ret;
4025 ret = zone_wait_table_init(zone, size);
4026 if (ret)
4027 return ret;
4028 pgdat->nr_zones = zone_idx(zone) + 1;
4029
4030 zone->zone_start_pfn = zone_start_pfn;
4031
4032 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4033 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4034 pgdat->node_id,
4035 (unsigned long)zone_idx(zone),
4036 zone_start_pfn, (zone_start_pfn + size));
4037
4038 zone_init_free_lists(zone);
4039
4040 return 0;
4041 }
4042
4043 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4044 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4045 /*
4046 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4047 * Architectures may implement their own version but if add_active_range()
4048 * was used and there are no special requirements, this is a convenient
4049 * alternative
4050 */
4051 int __meminit __early_pfn_to_nid(unsigned long pfn)
4052 {
4053 unsigned long start_pfn, end_pfn;
4054 int i, nid;
4055
4056 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4057 if (start_pfn <= pfn && pfn < end_pfn)
4058 return nid;
4059 /* This is a memory hole */
4060 return -1;
4061 }
4062 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4063
4064 int __meminit early_pfn_to_nid(unsigned long pfn)
4065 {
4066 int nid;
4067
4068 nid = __early_pfn_to_nid(pfn);
4069 if (nid >= 0)
4070 return nid;
4071 /* just returns 0 */
4072 return 0;
4073 }
4074
4075 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4076 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4077 {
4078 int nid;
4079
4080 nid = __early_pfn_to_nid(pfn);
4081 if (nid >= 0 && nid != node)
4082 return false;
4083 return true;
4084 }
4085 #endif
4086
4087 /**
4088 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4089 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4090 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4091 *
4092 * If an architecture guarantees that all ranges registered with
4093 * add_active_ranges() contain no holes and may be freed, this
4094 * this function may be used instead of calling free_bootmem() manually.
4095 */
4096 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4097 {
4098 unsigned long start_pfn, end_pfn;
4099 int i, this_nid;
4100
4101 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4102 start_pfn = min(start_pfn, max_low_pfn);
4103 end_pfn = min(end_pfn, max_low_pfn);
4104
4105 if (start_pfn < end_pfn)
4106 free_bootmem_node(NODE_DATA(this_nid),
4107 PFN_PHYS(start_pfn),
4108 (end_pfn - start_pfn) << PAGE_SHIFT);
4109 }
4110 }
4111
4112 /**
4113 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4114 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4115 *
4116 * If an architecture guarantees that all ranges registered with
4117 * add_active_ranges() contain no holes and may be freed, this
4118 * function may be used instead of calling memory_present() manually.
4119 */
4120 void __init sparse_memory_present_with_active_regions(int nid)
4121 {
4122 unsigned long start_pfn, end_pfn;
4123 int i, this_nid;
4124
4125 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4126 memory_present(this_nid, start_pfn, end_pfn);
4127 }
4128
4129 /**
4130 * get_pfn_range_for_nid - Return the start and end page frames for a node
4131 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4132 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4133 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4134 *
4135 * It returns the start and end page frame of a node based on information
4136 * provided by an arch calling add_active_range(). If called for a node
4137 * with no available memory, a warning is printed and the start and end
4138 * PFNs will be 0.
4139 */
4140 void __meminit get_pfn_range_for_nid(unsigned int nid,
4141 unsigned long *start_pfn, unsigned long *end_pfn)
4142 {
4143 unsigned long this_start_pfn, this_end_pfn;
4144 int i;
4145
4146 *start_pfn = -1UL;
4147 *end_pfn = 0;
4148
4149 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4150 *start_pfn = min(*start_pfn, this_start_pfn);
4151 *end_pfn = max(*end_pfn, this_end_pfn);
4152 }
4153
4154 if (*start_pfn == -1UL)
4155 *start_pfn = 0;
4156 }
4157
4158 /*
4159 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4160 * assumption is made that zones within a node are ordered in monotonic
4161 * increasing memory addresses so that the "highest" populated zone is used
4162 */
4163 static void __init find_usable_zone_for_movable(void)
4164 {
4165 int zone_index;
4166 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4167 if (zone_index == ZONE_MOVABLE)
4168 continue;
4169
4170 if (arch_zone_highest_possible_pfn[zone_index] >
4171 arch_zone_lowest_possible_pfn[zone_index])
4172 break;
4173 }
4174
4175 VM_BUG_ON(zone_index == -1);
4176 movable_zone = zone_index;
4177 }
4178
4179 /*
4180 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4181 * because it is sized independent of architecture. Unlike the other zones,
4182 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4183 * in each node depending on the size of each node and how evenly kernelcore
4184 * is distributed. This helper function adjusts the zone ranges
4185 * provided by the architecture for a given node by using the end of the
4186 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4187 * zones within a node are in order of monotonic increases memory addresses
4188 */
4189 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4190 unsigned long zone_type,
4191 unsigned long node_start_pfn,
4192 unsigned long node_end_pfn,
4193 unsigned long *zone_start_pfn,
4194 unsigned long *zone_end_pfn)
4195 {
4196 /* Only adjust if ZONE_MOVABLE is on this node */
4197 if (zone_movable_pfn[nid]) {
4198 /* Size ZONE_MOVABLE */
4199 if (zone_type == ZONE_MOVABLE) {
4200 *zone_start_pfn = zone_movable_pfn[nid];
4201 *zone_end_pfn = min(node_end_pfn,
4202 arch_zone_highest_possible_pfn[movable_zone]);
4203
4204 /* Adjust for ZONE_MOVABLE starting within this range */
4205 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4206 *zone_end_pfn > zone_movable_pfn[nid]) {
4207 *zone_end_pfn = zone_movable_pfn[nid];
4208
4209 /* Check if this whole range is within ZONE_MOVABLE */
4210 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4211 *zone_start_pfn = *zone_end_pfn;
4212 }
4213 }
4214
4215 /*
4216 * Return the number of pages a zone spans in a node, including holes
4217 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4218 */
4219 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4220 unsigned long zone_type,
4221 unsigned long *ignored)
4222 {
4223 unsigned long node_start_pfn, node_end_pfn;
4224 unsigned long zone_start_pfn, zone_end_pfn;
4225
4226 /* Get the start and end of the node and zone */
4227 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4228 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4229 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4230 adjust_zone_range_for_zone_movable(nid, zone_type,
4231 node_start_pfn, node_end_pfn,
4232 &zone_start_pfn, &zone_end_pfn);
4233
4234 /* Check that this node has pages within the zone's required range */
4235 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4236 return 0;
4237
4238 /* Move the zone boundaries inside the node if necessary */
4239 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4240 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4241
4242 /* Return the spanned pages */
4243 return zone_end_pfn - zone_start_pfn;
4244 }
4245
4246 /*
4247 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4248 * then all holes in the requested range will be accounted for.
4249 */
4250 unsigned long __meminit __absent_pages_in_range(int nid,
4251 unsigned long range_start_pfn,
4252 unsigned long range_end_pfn)
4253 {
4254 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4255 unsigned long start_pfn, end_pfn;
4256 int i;
4257
4258 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4259 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4260 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4261 nr_absent -= end_pfn - start_pfn;
4262 }
4263 return nr_absent;
4264 }
4265
4266 /**
4267 * absent_pages_in_range - Return number of page frames in holes within a range
4268 * @start_pfn: The start PFN to start searching for holes
4269 * @end_pfn: The end PFN to stop searching for holes
4270 *
4271 * It returns the number of pages frames in memory holes within a range.
4272 */
4273 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4274 unsigned long end_pfn)
4275 {
4276 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4277 }
4278
4279 /* Return the number of page frames in holes in a zone on a node */
4280 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4281 unsigned long zone_type,
4282 unsigned long *ignored)
4283 {
4284 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4285 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4286 unsigned long node_start_pfn, node_end_pfn;
4287 unsigned long zone_start_pfn, zone_end_pfn;
4288
4289 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4290 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4291 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4292
4293 adjust_zone_range_for_zone_movable(nid, zone_type,
4294 node_start_pfn, node_end_pfn,
4295 &zone_start_pfn, &zone_end_pfn);
4296 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4297 }
4298
4299 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4300 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4301 unsigned long zone_type,
4302 unsigned long *zones_size)
4303 {
4304 return zones_size[zone_type];
4305 }
4306
4307 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4308 unsigned long zone_type,
4309 unsigned long *zholes_size)
4310 {
4311 if (!zholes_size)
4312 return 0;
4313
4314 return zholes_size[zone_type];
4315 }
4316
4317 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4318
4319 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4320 unsigned long *zones_size, unsigned long *zholes_size)
4321 {
4322 unsigned long realtotalpages, totalpages = 0;
4323 enum zone_type i;
4324
4325 for (i = 0; i < MAX_NR_ZONES; i++)
4326 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4327 zones_size);
4328 pgdat->node_spanned_pages = totalpages;
4329
4330 realtotalpages = totalpages;
4331 for (i = 0; i < MAX_NR_ZONES; i++)
4332 realtotalpages -=
4333 zone_absent_pages_in_node(pgdat->node_id, i,
4334 zholes_size);
4335 pgdat->node_present_pages = realtotalpages;
4336 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4337 realtotalpages);
4338 }
4339
4340 #ifndef CONFIG_SPARSEMEM
4341 /*
4342 * Calculate the size of the zone->blockflags rounded to an unsigned long
4343 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4344 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4345 * round what is now in bits to nearest long in bits, then return it in
4346 * bytes.
4347 */
4348 static unsigned long __init usemap_size(unsigned long zonesize)
4349 {
4350 unsigned long usemapsize;
4351
4352 usemapsize = roundup(zonesize, pageblock_nr_pages);
4353 usemapsize = usemapsize >> pageblock_order;
4354 usemapsize *= NR_PAGEBLOCK_BITS;
4355 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4356
4357 return usemapsize / 8;
4358 }
4359
4360 static void __init setup_usemap(struct pglist_data *pgdat,
4361 struct zone *zone, unsigned long zonesize)
4362 {
4363 unsigned long usemapsize = usemap_size(zonesize);
4364 zone->pageblock_flags = NULL;
4365 if (usemapsize)
4366 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4367 usemapsize);
4368 }
4369 #else
4370 static inline void setup_usemap(struct pglist_data *pgdat,
4371 struct zone *zone, unsigned long zonesize) {}
4372 #endif /* CONFIG_SPARSEMEM */
4373
4374 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4375
4376 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4377 void __init set_pageblock_order(void)
4378 {
4379 unsigned int order;
4380
4381 /* Check that pageblock_nr_pages has not already been setup */
4382 if (pageblock_order)
4383 return;
4384
4385 if (HPAGE_SHIFT > PAGE_SHIFT)
4386 order = HUGETLB_PAGE_ORDER;
4387 else
4388 order = MAX_ORDER - 1;
4389
4390 /*
4391 * Assume the largest contiguous order of interest is a huge page.
4392 * This value may be variable depending on boot parameters on IA64 and
4393 * powerpc.
4394 */
4395 pageblock_order = order;
4396 }
4397 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4398
4399 /*
4400 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4401 * is unused as pageblock_order is set at compile-time. See
4402 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4403 * the kernel config
4404 */
4405 void __init set_pageblock_order(void)
4406 {
4407 }
4408
4409 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4410
4411 /*
4412 * Set up the zone data structures:
4413 * - mark all pages reserved
4414 * - mark all memory queues empty
4415 * - clear the memory bitmaps
4416 *
4417 * NOTE: pgdat should get zeroed by caller.
4418 */
4419 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4420 unsigned long *zones_size, unsigned long *zholes_size)
4421 {
4422 enum zone_type j;
4423 int nid = pgdat->node_id;
4424 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4425 int ret;
4426
4427 pgdat_resize_init(pgdat);
4428 init_waitqueue_head(&pgdat->kswapd_wait);
4429 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4430 pgdat_page_cgroup_init(pgdat);
4431
4432 for (j = 0; j < MAX_NR_ZONES; j++) {
4433 struct zone *zone = pgdat->node_zones + j;
4434 unsigned long size, realsize, memmap_pages;
4435
4436 size = zone_spanned_pages_in_node(nid, j, zones_size);
4437 realsize = size - zone_absent_pages_in_node(nid, j,
4438 zholes_size);
4439
4440 /*
4441 * Adjust realsize so that it accounts for how much memory
4442 * is used by this zone for memmap. This affects the watermark
4443 * and per-cpu initialisations
4444 */
4445 memmap_pages =
4446 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4447 if (realsize >= memmap_pages) {
4448 realsize -= memmap_pages;
4449 if (memmap_pages)
4450 printk(KERN_DEBUG
4451 " %s zone: %lu pages used for memmap\n",
4452 zone_names[j], memmap_pages);
4453 } else
4454 printk(KERN_WARNING
4455 " %s zone: %lu pages exceeds realsize %lu\n",
4456 zone_names[j], memmap_pages, realsize);
4457
4458 /* Account for reserved pages */
4459 if (j == 0 && realsize > dma_reserve) {
4460 realsize -= dma_reserve;
4461 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4462 zone_names[0], dma_reserve);
4463 }
4464
4465 if (!is_highmem_idx(j))
4466 nr_kernel_pages += realsize;
4467 nr_all_pages += realsize;
4468
4469 zone->spanned_pages = size;
4470 zone->present_pages = realsize;
4471 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4472 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4473 zone->spanned_pages;
4474 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4475 #endif
4476 #ifdef CONFIG_NUMA
4477 zone->node = nid;
4478 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4479 / 100;
4480 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4481 #endif
4482 zone->name = zone_names[j];
4483 spin_lock_init(&zone->lock);
4484 spin_lock_init(&zone->lru_lock);
4485 zone_seqlock_init(zone);
4486 zone->zone_pgdat = pgdat;
4487
4488 zone_pcp_init(zone);
4489 lruvec_init(&zone->lruvec, zone);
4490 if (!size)
4491 continue;
4492
4493 set_pageblock_order();
4494 setup_usemap(pgdat, zone, size);
4495 ret = init_currently_empty_zone(zone, zone_start_pfn,
4496 size, MEMMAP_EARLY);
4497 BUG_ON(ret);
4498 memmap_init(size, nid, j, zone_start_pfn);
4499 zone_start_pfn += size;
4500 }
4501 }
4502
4503 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4504 {
4505 /* Skip empty nodes */
4506 if (!pgdat->node_spanned_pages)
4507 return;
4508
4509 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4510 /* ia64 gets its own node_mem_map, before this, without bootmem */
4511 if (!pgdat->node_mem_map) {
4512 unsigned long size, start, end;
4513 struct page *map;
4514
4515 /*
4516 * The zone's endpoints aren't required to be MAX_ORDER
4517 * aligned but the node_mem_map endpoints must be in order
4518 * for the buddy allocator to function correctly.
4519 */
4520 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4521 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4522 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4523 size = (end - start) * sizeof(struct page);
4524 map = alloc_remap(pgdat->node_id, size);
4525 if (!map)
4526 map = alloc_bootmem_node_nopanic(pgdat, size);
4527 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4528 }
4529 #ifndef CONFIG_NEED_MULTIPLE_NODES
4530 /*
4531 * With no DISCONTIG, the global mem_map is just set as node 0's
4532 */
4533 if (pgdat == NODE_DATA(0)) {
4534 mem_map = NODE_DATA(0)->node_mem_map;
4535 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4536 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4537 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4538 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4539 }
4540 #endif
4541 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4542 }
4543
4544 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4545 unsigned long node_start_pfn, unsigned long *zholes_size)
4546 {
4547 pg_data_t *pgdat = NODE_DATA(nid);
4548
4549 /* pg_data_t should be reset to zero when it's allocated */
4550 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4551
4552 pgdat->node_id = nid;
4553 pgdat->node_start_pfn = node_start_pfn;
4554 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4555
4556 alloc_node_mem_map(pgdat);
4557 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4558 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4559 nid, (unsigned long)pgdat,
4560 (unsigned long)pgdat->node_mem_map);
4561 #endif
4562
4563 free_area_init_core(pgdat, zones_size, zholes_size);
4564 }
4565
4566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4567
4568 #if MAX_NUMNODES > 1
4569 /*
4570 * Figure out the number of possible node ids.
4571 */
4572 static void __init setup_nr_node_ids(void)
4573 {
4574 unsigned int node;
4575 unsigned int highest = 0;
4576
4577 for_each_node_mask(node, node_possible_map)
4578 highest = node;
4579 nr_node_ids = highest + 1;
4580 }
4581 #else
4582 static inline void setup_nr_node_ids(void)
4583 {
4584 }
4585 #endif
4586
4587 /**
4588 * node_map_pfn_alignment - determine the maximum internode alignment
4589 *
4590 * This function should be called after node map is populated and sorted.
4591 * It calculates the maximum power of two alignment which can distinguish
4592 * all the nodes.
4593 *
4594 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4595 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4596 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4597 * shifted, 1GiB is enough and this function will indicate so.
4598 *
4599 * This is used to test whether pfn -> nid mapping of the chosen memory
4600 * model has fine enough granularity to avoid incorrect mapping for the
4601 * populated node map.
4602 *
4603 * Returns the determined alignment in pfn's. 0 if there is no alignment
4604 * requirement (single node).
4605 */
4606 unsigned long __init node_map_pfn_alignment(void)
4607 {
4608 unsigned long accl_mask = 0, last_end = 0;
4609 unsigned long start, end, mask;
4610 int last_nid = -1;
4611 int i, nid;
4612
4613 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4614 if (!start || last_nid < 0 || last_nid == nid) {
4615 last_nid = nid;
4616 last_end = end;
4617 continue;
4618 }
4619
4620 /*
4621 * Start with a mask granular enough to pin-point to the
4622 * start pfn and tick off bits one-by-one until it becomes
4623 * too coarse to separate the current node from the last.
4624 */
4625 mask = ~((1 << __ffs(start)) - 1);
4626 while (mask && last_end <= (start & (mask << 1)))
4627 mask <<= 1;
4628
4629 /* accumulate all internode masks */
4630 accl_mask |= mask;
4631 }
4632
4633 /* convert mask to number of pages */
4634 return ~accl_mask + 1;
4635 }
4636
4637 /* Find the lowest pfn for a node */
4638 static unsigned long __init find_min_pfn_for_node(int nid)
4639 {
4640 unsigned long min_pfn = ULONG_MAX;
4641 unsigned long start_pfn;
4642 int i;
4643
4644 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4645 min_pfn = min(min_pfn, start_pfn);
4646
4647 if (min_pfn == ULONG_MAX) {
4648 printk(KERN_WARNING
4649 "Could not find start_pfn for node %d\n", nid);
4650 return 0;
4651 }
4652
4653 return min_pfn;
4654 }
4655
4656 /**
4657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4658 *
4659 * It returns the minimum PFN based on information provided via
4660 * add_active_range().
4661 */
4662 unsigned long __init find_min_pfn_with_active_regions(void)
4663 {
4664 return find_min_pfn_for_node(MAX_NUMNODES);
4665 }
4666
4667 /*
4668 * early_calculate_totalpages()
4669 * Sum pages in active regions for movable zone.
4670 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4671 */
4672 static unsigned long __init early_calculate_totalpages(void)
4673 {
4674 unsigned long totalpages = 0;
4675 unsigned long start_pfn, end_pfn;
4676 int i, nid;
4677
4678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4679 unsigned long pages = end_pfn - start_pfn;
4680
4681 totalpages += pages;
4682 if (pages)
4683 node_set_state(nid, N_HIGH_MEMORY);
4684 }
4685 return totalpages;
4686 }
4687
4688 /*
4689 * Find the PFN the Movable zone begins in each node. Kernel memory
4690 * is spread evenly between nodes as long as the nodes have enough
4691 * memory. When they don't, some nodes will have more kernelcore than
4692 * others
4693 */
4694 static void __init find_zone_movable_pfns_for_nodes(void)
4695 {
4696 int i, nid;
4697 unsigned long usable_startpfn;
4698 unsigned long kernelcore_node, kernelcore_remaining;
4699 /* save the state before borrow the nodemask */
4700 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4701 unsigned long totalpages = early_calculate_totalpages();
4702 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4703
4704 /*
4705 * If movablecore was specified, calculate what size of
4706 * kernelcore that corresponds so that memory usable for
4707 * any allocation type is evenly spread. If both kernelcore
4708 * and movablecore are specified, then the value of kernelcore
4709 * will be used for required_kernelcore if it's greater than
4710 * what movablecore would have allowed.
4711 */
4712 if (required_movablecore) {
4713 unsigned long corepages;
4714
4715 /*
4716 * Round-up so that ZONE_MOVABLE is at least as large as what
4717 * was requested by the user
4718 */
4719 required_movablecore =
4720 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4721 corepages = totalpages - required_movablecore;
4722
4723 required_kernelcore = max(required_kernelcore, corepages);
4724 }
4725
4726 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4727 if (!required_kernelcore)
4728 goto out;
4729
4730 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4731 find_usable_zone_for_movable();
4732 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4733
4734 restart:
4735 /* Spread kernelcore memory as evenly as possible throughout nodes */
4736 kernelcore_node = required_kernelcore / usable_nodes;
4737 for_each_node_state(nid, N_HIGH_MEMORY) {
4738 unsigned long start_pfn, end_pfn;
4739
4740 /*
4741 * Recalculate kernelcore_node if the division per node
4742 * now exceeds what is necessary to satisfy the requested
4743 * amount of memory for the kernel
4744 */
4745 if (required_kernelcore < kernelcore_node)
4746 kernelcore_node = required_kernelcore / usable_nodes;
4747
4748 /*
4749 * As the map is walked, we track how much memory is usable
4750 * by the kernel using kernelcore_remaining. When it is
4751 * 0, the rest of the node is usable by ZONE_MOVABLE
4752 */
4753 kernelcore_remaining = kernelcore_node;
4754
4755 /* Go through each range of PFNs within this node */
4756 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4757 unsigned long size_pages;
4758
4759 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4760 if (start_pfn >= end_pfn)
4761 continue;
4762
4763 /* Account for what is only usable for kernelcore */
4764 if (start_pfn < usable_startpfn) {
4765 unsigned long kernel_pages;
4766 kernel_pages = min(end_pfn, usable_startpfn)
4767 - start_pfn;
4768
4769 kernelcore_remaining -= min(kernel_pages,
4770 kernelcore_remaining);
4771 required_kernelcore -= min(kernel_pages,
4772 required_kernelcore);
4773
4774 /* Continue if range is now fully accounted */
4775 if (end_pfn <= usable_startpfn) {
4776
4777 /*
4778 * Push zone_movable_pfn to the end so
4779 * that if we have to rebalance
4780 * kernelcore across nodes, we will
4781 * not double account here
4782 */
4783 zone_movable_pfn[nid] = end_pfn;
4784 continue;
4785 }
4786 start_pfn = usable_startpfn;
4787 }
4788
4789 /*
4790 * The usable PFN range for ZONE_MOVABLE is from
4791 * start_pfn->end_pfn. Calculate size_pages as the
4792 * number of pages used as kernelcore
4793 */
4794 size_pages = end_pfn - start_pfn;
4795 if (size_pages > kernelcore_remaining)
4796 size_pages = kernelcore_remaining;
4797 zone_movable_pfn[nid] = start_pfn + size_pages;
4798
4799 /*
4800 * Some kernelcore has been met, update counts and
4801 * break if the kernelcore for this node has been
4802 * satisified
4803 */
4804 required_kernelcore -= min(required_kernelcore,
4805 size_pages);
4806 kernelcore_remaining -= size_pages;
4807 if (!kernelcore_remaining)
4808 break;
4809 }
4810 }
4811
4812 /*
4813 * If there is still required_kernelcore, we do another pass with one
4814 * less node in the count. This will push zone_movable_pfn[nid] further
4815 * along on the nodes that still have memory until kernelcore is
4816 * satisified
4817 */
4818 usable_nodes--;
4819 if (usable_nodes && required_kernelcore > usable_nodes)
4820 goto restart;
4821
4822 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4823 for (nid = 0; nid < MAX_NUMNODES; nid++)
4824 zone_movable_pfn[nid] =
4825 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4826
4827 out:
4828 /* restore the node_state */
4829 node_states[N_HIGH_MEMORY] = saved_node_state;
4830 }
4831
4832 /* Any regular memory on that node ? */
4833 static void __init check_for_regular_memory(pg_data_t *pgdat)
4834 {
4835 #ifdef CONFIG_HIGHMEM
4836 enum zone_type zone_type;
4837
4838 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4839 struct zone *zone = &pgdat->node_zones[zone_type];
4840 if (zone->present_pages) {
4841 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4842 break;
4843 }
4844 }
4845 #endif
4846 }
4847
4848 /**
4849 * free_area_init_nodes - Initialise all pg_data_t and zone data
4850 * @max_zone_pfn: an array of max PFNs for each zone
4851 *
4852 * This will call free_area_init_node() for each active node in the system.
4853 * Using the page ranges provided by add_active_range(), the size of each
4854 * zone in each node and their holes is calculated. If the maximum PFN
4855 * between two adjacent zones match, it is assumed that the zone is empty.
4856 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4857 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4858 * starts where the previous one ended. For example, ZONE_DMA32 starts
4859 * at arch_max_dma_pfn.
4860 */
4861 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4862 {
4863 unsigned long start_pfn, end_pfn;
4864 int i, nid;
4865
4866 /* Record where the zone boundaries are */
4867 memset(arch_zone_lowest_possible_pfn, 0,
4868 sizeof(arch_zone_lowest_possible_pfn));
4869 memset(arch_zone_highest_possible_pfn, 0,
4870 sizeof(arch_zone_highest_possible_pfn));
4871 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4872 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4873 for (i = 1; i < MAX_NR_ZONES; i++) {
4874 if (i == ZONE_MOVABLE)
4875 continue;
4876 arch_zone_lowest_possible_pfn[i] =
4877 arch_zone_highest_possible_pfn[i-1];
4878 arch_zone_highest_possible_pfn[i] =
4879 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4880 }
4881 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4882 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4883
4884 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4885 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4886 find_zone_movable_pfns_for_nodes();
4887
4888 /* Print out the zone ranges */
4889 printk("Zone ranges:\n");
4890 for (i = 0; i < MAX_NR_ZONES; i++) {
4891 if (i == ZONE_MOVABLE)
4892 continue;
4893 printk(KERN_CONT " %-8s ", zone_names[i]);
4894 if (arch_zone_lowest_possible_pfn[i] ==
4895 arch_zone_highest_possible_pfn[i])
4896 printk(KERN_CONT "empty\n");
4897 else
4898 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4899 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4900 (arch_zone_highest_possible_pfn[i]
4901 << PAGE_SHIFT) - 1);
4902 }
4903
4904 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4905 printk("Movable zone start for each node\n");
4906 for (i = 0; i < MAX_NUMNODES; i++) {
4907 if (zone_movable_pfn[i])
4908 printk(" Node %d: %#010lx\n", i,
4909 zone_movable_pfn[i] << PAGE_SHIFT);
4910 }
4911
4912 /* Print out the early_node_map[] */
4913 printk("Early memory node ranges\n");
4914 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4915 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4916 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4917
4918 /* Initialise every node */
4919 mminit_verify_pageflags_layout();
4920 setup_nr_node_ids();
4921 for_each_online_node(nid) {
4922 pg_data_t *pgdat = NODE_DATA(nid);
4923 free_area_init_node(nid, NULL,
4924 find_min_pfn_for_node(nid), NULL);
4925
4926 /* Any memory on that node */
4927 if (pgdat->node_present_pages)
4928 node_set_state(nid, N_HIGH_MEMORY);
4929 check_for_regular_memory(pgdat);
4930 }
4931 }
4932
4933 static int __init cmdline_parse_core(char *p, unsigned long *core)
4934 {
4935 unsigned long long coremem;
4936 if (!p)
4937 return -EINVAL;
4938
4939 coremem = memparse(p, &p);
4940 *core = coremem >> PAGE_SHIFT;
4941
4942 /* Paranoid check that UL is enough for the coremem value */
4943 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4944
4945 return 0;
4946 }
4947
4948 /*
4949 * kernelcore=size sets the amount of memory for use for allocations that
4950 * cannot be reclaimed or migrated.
4951 */
4952 static int __init cmdline_parse_kernelcore(char *p)
4953 {
4954 return cmdline_parse_core(p, &required_kernelcore);
4955 }
4956
4957 /*
4958 * movablecore=size sets the amount of memory for use for allocations that
4959 * can be reclaimed or migrated.
4960 */
4961 static int __init cmdline_parse_movablecore(char *p)
4962 {
4963 return cmdline_parse_core(p, &required_movablecore);
4964 }
4965
4966 early_param("kernelcore", cmdline_parse_kernelcore);
4967 early_param("movablecore", cmdline_parse_movablecore);
4968
4969 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4970
4971 /**
4972 * set_dma_reserve - set the specified number of pages reserved in the first zone
4973 * @new_dma_reserve: The number of pages to mark reserved
4974 *
4975 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4976 * In the DMA zone, a significant percentage may be consumed by kernel image
4977 * and other unfreeable allocations which can skew the watermarks badly. This
4978 * function may optionally be used to account for unfreeable pages in the
4979 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4980 * smaller per-cpu batchsize.
4981 */
4982 void __init set_dma_reserve(unsigned long new_dma_reserve)
4983 {
4984 dma_reserve = new_dma_reserve;
4985 }
4986
4987 void __init free_area_init(unsigned long *zones_size)
4988 {
4989 free_area_init_node(0, zones_size,
4990 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4991 }
4992
4993 static int page_alloc_cpu_notify(struct notifier_block *self,
4994 unsigned long action, void *hcpu)
4995 {
4996 int cpu = (unsigned long)hcpu;
4997
4998 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4999 lru_add_drain_cpu(cpu);
5000 drain_pages(cpu);
5001
5002 /*
5003 * Spill the event counters of the dead processor
5004 * into the current processors event counters.
5005 * This artificially elevates the count of the current
5006 * processor.
5007 */
5008 vm_events_fold_cpu(cpu);
5009
5010 /*
5011 * Zero the differential counters of the dead processor
5012 * so that the vm statistics are consistent.
5013 *
5014 * This is only okay since the processor is dead and cannot
5015 * race with what we are doing.
5016 */
5017 refresh_cpu_vm_stats(cpu);
5018 }
5019 return NOTIFY_OK;
5020 }
5021
5022 void __init page_alloc_init(void)
5023 {
5024 hotcpu_notifier(page_alloc_cpu_notify, 0);
5025 }
5026
5027 /*
5028 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5029 * or min_free_kbytes changes.
5030 */
5031 static void calculate_totalreserve_pages(void)
5032 {
5033 struct pglist_data *pgdat;
5034 unsigned long reserve_pages = 0;
5035 enum zone_type i, j;
5036
5037 for_each_online_pgdat(pgdat) {
5038 for (i = 0; i < MAX_NR_ZONES; i++) {
5039 struct zone *zone = pgdat->node_zones + i;
5040 unsigned long max = 0;
5041
5042 /* Find valid and maximum lowmem_reserve in the zone */
5043 for (j = i; j < MAX_NR_ZONES; j++) {
5044 if (zone->lowmem_reserve[j] > max)
5045 max = zone->lowmem_reserve[j];
5046 }
5047
5048 /* we treat the high watermark as reserved pages. */
5049 max += high_wmark_pages(zone);
5050
5051 if (max > zone->present_pages)
5052 max = zone->present_pages;
5053 reserve_pages += max;
5054 /*
5055 * Lowmem reserves are not available to
5056 * GFP_HIGHUSER page cache allocations and
5057 * kswapd tries to balance zones to their high
5058 * watermark. As a result, neither should be
5059 * regarded as dirtyable memory, to prevent a
5060 * situation where reclaim has to clean pages
5061 * in order to balance the zones.
5062 */
5063 zone->dirty_balance_reserve = max;
5064 }
5065 }
5066 dirty_balance_reserve = reserve_pages;
5067 totalreserve_pages = reserve_pages;
5068 }
5069
5070 /*
5071 * setup_per_zone_lowmem_reserve - called whenever
5072 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5073 * has a correct pages reserved value, so an adequate number of
5074 * pages are left in the zone after a successful __alloc_pages().
5075 */
5076 static void setup_per_zone_lowmem_reserve(void)
5077 {
5078 struct pglist_data *pgdat;
5079 enum zone_type j, idx;
5080
5081 for_each_online_pgdat(pgdat) {
5082 for (j = 0; j < MAX_NR_ZONES; j++) {
5083 struct zone *zone = pgdat->node_zones + j;
5084 unsigned long present_pages = zone->present_pages;
5085
5086 zone->lowmem_reserve[j] = 0;
5087
5088 idx = j;
5089 while (idx) {
5090 struct zone *lower_zone;
5091
5092 idx--;
5093
5094 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5095 sysctl_lowmem_reserve_ratio[idx] = 1;
5096
5097 lower_zone = pgdat->node_zones + idx;
5098 lower_zone->lowmem_reserve[j] = present_pages /
5099 sysctl_lowmem_reserve_ratio[idx];
5100 present_pages += lower_zone->present_pages;
5101 }
5102 }
5103 }
5104
5105 /* update totalreserve_pages */
5106 calculate_totalreserve_pages();
5107 }
5108
5109 static void __setup_per_zone_wmarks(void)
5110 {
5111 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5112 unsigned long lowmem_pages = 0;
5113 struct zone *zone;
5114 unsigned long flags;
5115
5116 /* Calculate total number of !ZONE_HIGHMEM pages */
5117 for_each_zone(zone) {
5118 if (!is_highmem(zone))
5119 lowmem_pages += zone->present_pages;
5120 }
5121
5122 for_each_zone(zone) {
5123 u64 tmp;
5124
5125 spin_lock_irqsave(&zone->lock, flags);
5126 tmp = (u64)pages_min * zone->present_pages;
5127 do_div(tmp, lowmem_pages);
5128 if (is_highmem(zone)) {
5129 /*
5130 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5131 * need highmem pages, so cap pages_min to a small
5132 * value here.
5133 *
5134 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5135 * deltas controls asynch page reclaim, and so should
5136 * not be capped for highmem.
5137 */
5138 int min_pages;
5139
5140 min_pages = zone->present_pages / 1024;
5141 if (min_pages < SWAP_CLUSTER_MAX)
5142 min_pages = SWAP_CLUSTER_MAX;
5143 if (min_pages > 128)
5144 min_pages = 128;
5145 zone->watermark[WMARK_MIN] = min_pages;
5146 } else {
5147 /*
5148 * If it's a lowmem zone, reserve a number of pages
5149 * proportionate to the zone's size.
5150 */
5151 zone->watermark[WMARK_MIN] = tmp;
5152 }
5153
5154 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5155 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5156
5157 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5158 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5159 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5160
5161 setup_zone_migrate_reserve(zone);
5162 spin_unlock_irqrestore(&zone->lock, flags);
5163 }
5164
5165 /* update totalreserve_pages */
5166 calculate_totalreserve_pages();
5167 }
5168
5169 /**
5170 * setup_per_zone_wmarks - called when min_free_kbytes changes
5171 * or when memory is hot-{added|removed}
5172 *
5173 * Ensures that the watermark[min,low,high] values for each zone are set
5174 * correctly with respect to min_free_kbytes.
5175 */
5176 void setup_per_zone_wmarks(void)
5177 {
5178 mutex_lock(&zonelists_mutex);
5179 __setup_per_zone_wmarks();
5180 mutex_unlock(&zonelists_mutex);
5181 }
5182
5183 /*
5184 * The inactive anon list should be small enough that the VM never has to
5185 * do too much work, but large enough that each inactive page has a chance
5186 * to be referenced again before it is swapped out.
5187 *
5188 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5189 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5190 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5191 * the anonymous pages are kept on the inactive list.
5192 *
5193 * total target max
5194 * memory ratio inactive anon
5195 * -------------------------------------
5196 * 10MB 1 5MB
5197 * 100MB 1 50MB
5198 * 1GB 3 250MB
5199 * 10GB 10 0.9GB
5200 * 100GB 31 3GB
5201 * 1TB 101 10GB
5202 * 10TB 320 32GB
5203 */
5204 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5205 {
5206 unsigned int gb, ratio;
5207
5208 /* Zone size in gigabytes */
5209 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5210 if (gb)
5211 ratio = int_sqrt(10 * gb);
5212 else
5213 ratio = 1;
5214
5215 zone->inactive_ratio = ratio;
5216 }
5217
5218 static void __meminit setup_per_zone_inactive_ratio(void)
5219 {
5220 struct zone *zone;
5221
5222 for_each_zone(zone)
5223 calculate_zone_inactive_ratio(zone);
5224 }
5225
5226 /*
5227 * Initialise min_free_kbytes.
5228 *
5229 * For small machines we want it small (128k min). For large machines
5230 * we want it large (64MB max). But it is not linear, because network
5231 * bandwidth does not increase linearly with machine size. We use
5232 *
5233 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5234 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5235 *
5236 * which yields
5237 *
5238 * 16MB: 512k
5239 * 32MB: 724k
5240 * 64MB: 1024k
5241 * 128MB: 1448k
5242 * 256MB: 2048k
5243 * 512MB: 2896k
5244 * 1024MB: 4096k
5245 * 2048MB: 5792k
5246 * 4096MB: 8192k
5247 * 8192MB: 11584k
5248 * 16384MB: 16384k
5249 */
5250 int __meminit init_per_zone_wmark_min(void)
5251 {
5252 unsigned long lowmem_kbytes;
5253
5254 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5255
5256 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5257 if (min_free_kbytes < 128)
5258 min_free_kbytes = 128;
5259 if (min_free_kbytes > 65536)
5260 min_free_kbytes = 65536;
5261 setup_per_zone_wmarks();
5262 refresh_zone_stat_thresholds();
5263 setup_per_zone_lowmem_reserve();
5264 setup_per_zone_inactive_ratio();
5265 return 0;
5266 }
5267 module_init(init_per_zone_wmark_min)
5268
5269 /*
5270 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5271 * that we can call two helper functions whenever min_free_kbytes
5272 * changes.
5273 */
5274 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5275 void __user *buffer, size_t *length, loff_t *ppos)
5276 {
5277 proc_dointvec(table, write, buffer, length, ppos);
5278 if (write)
5279 setup_per_zone_wmarks();
5280 return 0;
5281 }
5282
5283 #ifdef CONFIG_NUMA
5284 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5285 void __user *buffer, size_t *length, loff_t *ppos)
5286 {
5287 struct zone *zone;
5288 int rc;
5289
5290 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5291 if (rc)
5292 return rc;
5293
5294 for_each_zone(zone)
5295 zone->min_unmapped_pages = (zone->present_pages *
5296 sysctl_min_unmapped_ratio) / 100;
5297 return 0;
5298 }
5299
5300 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5301 void __user *buffer, size_t *length, loff_t *ppos)
5302 {
5303 struct zone *zone;
5304 int rc;
5305
5306 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5307 if (rc)
5308 return rc;
5309
5310 for_each_zone(zone)
5311 zone->min_slab_pages = (zone->present_pages *
5312 sysctl_min_slab_ratio) / 100;
5313 return 0;
5314 }
5315 #endif
5316
5317 /*
5318 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5319 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5320 * whenever sysctl_lowmem_reserve_ratio changes.
5321 *
5322 * The reserve ratio obviously has absolutely no relation with the
5323 * minimum watermarks. The lowmem reserve ratio can only make sense
5324 * if in function of the boot time zone sizes.
5325 */
5326 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5327 void __user *buffer, size_t *length, loff_t *ppos)
5328 {
5329 proc_dointvec_minmax(table, write, buffer, length, ppos);
5330 setup_per_zone_lowmem_reserve();
5331 return 0;
5332 }
5333
5334 /*
5335 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5336 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5337 * can have before it gets flushed back to buddy allocator.
5338 */
5339
5340 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5341 void __user *buffer, size_t *length, loff_t *ppos)
5342 {
5343 struct zone *zone;
5344 unsigned int cpu;
5345 int ret;
5346
5347 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5348 if (!write || (ret < 0))
5349 return ret;
5350 for_each_populated_zone(zone) {
5351 for_each_possible_cpu(cpu) {
5352 unsigned long high;
5353 high = zone->present_pages / percpu_pagelist_fraction;
5354 setup_pagelist_highmark(
5355 per_cpu_ptr(zone->pageset, cpu), high);
5356 }
5357 }
5358 return 0;
5359 }
5360
5361 int hashdist = HASHDIST_DEFAULT;
5362
5363 #ifdef CONFIG_NUMA
5364 static int __init set_hashdist(char *str)
5365 {
5366 if (!str)
5367 return 0;
5368 hashdist = simple_strtoul(str, &str, 0);
5369 return 1;
5370 }
5371 __setup("hashdist=", set_hashdist);
5372 #endif
5373
5374 /*
5375 * allocate a large system hash table from bootmem
5376 * - it is assumed that the hash table must contain an exact power-of-2
5377 * quantity of entries
5378 * - limit is the number of hash buckets, not the total allocation size
5379 */
5380 void *__init alloc_large_system_hash(const char *tablename,
5381 unsigned long bucketsize,
5382 unsigned long numentries,
5383 int scale,
5384 int flags,
5385 unsigned int *_hash_shift,
5386 unsigned int *_hash_mask,
5387 unsigned long low_limit,
5388 unsigned long high_limit)
5389 {
5390 unsigned long long max = high_limit;
5391 unsigned long log2qty, size;
5392 void *table = NULL;
5393
5394 /* allow the kernel cmdline to have a say */
5395 if (!numentries) {
5396 /* round applicable memory size up to nearest megabyte */
5397 numentries = nr_kernel_pages;
5398 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5399 numentries >>= 20 - PAGE_SHIFT;
5400 numentries <<= 20 - PAGE_SHIFT;
5401
5402 /* limit to 1 bucket per 2^scale bytes of low memory */
5403 if (scale > PAGE_SHIFT)
5404 numentries >>= (scale - PAGE_SHIFT);
5405 else
5406 numentries <<= (PAGE_SHIFT - scale);
5407
5408 /* Make sure we've got at least a 0-order allocation.. */
5409 if (unlikely(flags & HASH_SMALL)) {
5410 /* Makes no sense without HASH_EARLY */
5411 WARN_ON(!(flags & HASH_EARLY));
5412 if (!(numentries >> *_hash_shift)) {
5413 numentries = 1UL << *_hash_shift;
5414 BUG_ON(!numentries);
5415 }
5416 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5417 numentries = PAGE_SIZE / bucketsize;
5418 }
5419 numentries = roundup_pow_of_two(numentries);
5420
5421 /* limit allocation size to 1/16 total memory by default */
5422 if (max == 0) {
5423 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5424 do_div(max, bucketsize);
5425 }
5426 max = min(max, 0x80000000ULL);
5427
5428 if (numentries < low_limit)
5429 numentries = low_limit;
5430 if (numentries > max)
5431 numentries = max;
5432
5433 log2qty = ilog2(numentries);
5434
5435 do {
5436 size = bucketsize << log2qty;
5437 if (flags & HASH_EARLY)
5438 table = alloc_bootmem_nopanic(size);
5439 else if (hashdist)
5440 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5441 else {
5442 /*
5443 * If bucketsize is not a power-of-two, we may free
5444 * some pages at the end of hash table which
5445 * alloc_pages_exact() automatically does
5446 */
5447 if (get_order(size) < MAX_ORDER) {
5448 table = alloc_pages_exact(size, GFP_ATOMIC);
5449 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5450 }
5451 }
5452 } while (!table && size > PAGE_SIZE && --log2qty);
5453
5454 if (!table)
5455 panic("Failed to allocate %s hash table\n", tablename);
5456
5457 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5458 tablename,
5459 (1UL << log2qty),
5460 ilog2(size) - PAGE_SHIFT,
5461 size);
5462
5463 if (_hash_shift)
5464 *_hash_shift = log2qty;
5465 if (_hash_mask)
5466 *_hash_mask = (1 << log2qty) - 1;
5467
5468 return table;
5469 }
5470
5471 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5472 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5473 unsigned long pfn)
5474 {
5475 #ifdef CONFIG_SPARSEMEM
5476 return __pfn_to_section(pfn)->pageblock_flags;
5477 #else
5478 return zone->pageblock_flags;
5479 #endif /* CONFIG_SPARSEMEM */
5480 }
5481
5482 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5483 {
5484 #ifdef CONFIG_SPARSEMEM
5485 pfn &= (PAGES_PER_SECTION-1);
5486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5487 #else
5488 pfn = pfn - zone->zone_start_pfn;
5489 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5490 #endif /* CONFIG_SPARSEMEM */
5491 }
5492
5493 /**
5494 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5495 * @page: The page within the block of interest
5496 * @start_bitidx: The first bit of interest to retrieve
5497 * @end_bitidx: The last bit of interest
5498 * returns pageblock_bits flags
5499 */
5500 unsigned long get_pageblock_flags_group(struct page *page,
5501 int start_bitidx, int end_bitidx)
5502 {
5503 struct zone *zone;
5504 unsigned long *bitmap;
5505 unsigned long pfn, bitidx;
5506 unsigned long flags = 0;
5507 unsigned long value = 1;
5508
5509 zone = page_zone(page);
5510 pfn = page_to_pfn(page);
5511 bitmap = get_pageblock_bitmap(zone, pfn);
5512 bitidx = pfn_to_bitidx(zone, pfn);
5513
5514 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5515 if (test_bit(bitidx + start_bitidx, bitmap))
5516 flags |= value;
5517
5518 return flags;
5519 }
5520
5521 /**
5522 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5523 * @page: The page within the block of interest
5524 * @start_bitidx: The first bit of interest
5525 * @end_bitidx: The last bit of interest
5526 * @flags: The flags to set
5527 */
5528 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5529 int start_bitidx, int end_bitidx)
5530 {
5531 struct zone *zone;
5532 unsigned long *bitmap;
5533 unsigned long pfn, bitidx;
5534 unsigned long value = 1;
5535
5536 zone = page_zone(page);
5537 pfn = page_to_pfn(page);
5538 bitmap = get_pageblock_bitmap(zone, pfn);
5539 bitidx = pfn_to_bitidx(zone, pfn);
5540 VM_BUG_ON(pfn < zone->zone_start_pfn);
5541 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5542
5543 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5544 if (flags & value)
5545 __set_bit(bitidx + start_bitidx, bitmap);
5546 else
5547 __clear_bit(bitidx + start_bitidx, bitmap);
5548 }
5549
5550 /*
5551 * This function checks whether pageblock includes unmovable pages or not.
5552 * If @count is not zero, it is okay to include less @count unmovable pages
5553 *
5554 * PageLRU check wihtout isolation or lru_lock could race so that
5555 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5556 * expect this function should be exact.
5557 */
5558 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5559 {
5560 unsigned long pfn, iter, found;
5561 int mt;
5562
5563 /*
5564 * For avoiding noise data, lru_add_drain_all() should be called
5565 * If ZONE_MOVABLE, the zone never contains unmovable pages
5566 */
5567 if (zone_idx(zone) == ZONE_MOVABLE)
5568 return false;
5569 mt = get_pageblock_migratetype(page);
5570 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5571 return false;
5572
5573 pfn = page_to_pfn(page);
5574 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5575 unsigned long check = pfn + iter;
5576
5577 if (!pfn_valid_within(check))
5578 continue;
5579
5580 page = pfn_to_page(check);
5581 /*
5582 * We can't use page_count without pin a page
5583 * because another CPU can free compound page.
5584 * This check already skips compound tails of THP
5585 * because their page->_count is zero at all time.
5586 */
5587 if (!atomic_read(&page->_count)) {
5588 if (PageBuddy(page))
5589 iter += (1 << page_order(page)) - 1;
5590 continue;
5591 }
5592
5593 if (!PageLRU(page))
5594 found++;
5595 /*
5596 * If there are RECLAIMABLE pages, we need to check it.
5597 * But now, memory offline itself doesn't call shrink_slab()
5598 * and it still to be fixed.
5599 */
5600 /*
5601 * If the page is not RAM, page_count()should be 0.
5602 * we don't need more check. This is an _used_ not-movable page.
5603 *
5604 * The problematic thing here is PG_reserved pages. PG_reserved
5605 * is set to both of a memory hole page and a _used_ kernel
5606 * page at boot.
5607 */
5608 if (found > count)
5609 return true;
5610 }
5611 return false;
5612 }
5613
5614 bool is_pageblock_removable_nolock(struct page *page)
5615 {
5616 struct zone *zone;
5617 unsigned long pfn;
5618
5619 /*
5620 * We have to be careful here because we are iterating over memory
5621 * sections which are not zone aware so we might end up outside of
5622 * the zone but still within the section.
5623 * We have to take care about the node as well. If the node is offline
5624 * its NODE_DATA will be NULL - see page_zone.
5625 */
5626 if (!node_online(page_to_nid(page)))
5627 return false;
5628
5629 zone = page_zone(page);
5630 pfn = page_to_pfn(page);
5631 if (zone->zone_start_pfn > pfn ||
5632 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5633 return false;
5634
5635 return !has_unmovable_pages(zone, page, 0);
5636 }
5637
5638 #ifdef CONFIG_CMA
5639
5640 static unsigned long pfn_max_align_down(unsigned long pfn)
5641 {
5642 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5643 pageblock_nr_pages) - 1);
5644 }
5645
5646 static unsigned long pfn_max_align_up(unsigned long pfn)
5647 {
5648 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5649 pageblock_nr_pages));
5650 }
5651
5652 static struct page *
5653 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5654 int **resultp)
5655 {
5656 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5657
5658 if (PageHighMem(page))
5659 gfp_mask |= __GFP_HIGHMEM;
5660
5661 return alloc_page(gfp_mask);
5662 }
5663
5664 /* [start, end) must belong to a single zone. */
5665 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5666 {
5667 /* This function is based on compact_zone() from compaction.c. */
5668
5669 unsigned long pfn = start;
5670 unsigned int tries = 0;
5671 int ret = 0;
5672
5673 struct compact_control cc = {
5674 .nr_migratepages = 0,
5675 .order = -1,
5676 .zone = page_zone(pfn_to_page(start)),
5677 .sync = true,
5678 };
5679 INIT_LIST_HEAD(&cc.migratepages);
5680
5681 migrate_prep_local();
5682
5683 while (pfn < end || !list_empty(&cc.migratepages)) {
5684 if (fatal_signal_pending(current)) {
5685 ret = -EINTR;
5686 break;
5687 }
5688
5689 if (list_empty(&cc.migratepages)) {
5690 cc.nr_migratepages = 0;
5691 pfn = isolate_migratepages_range(cc.zone, &cc,
5692 pfn, end);
5693 if (!pfn) {
5694 ret = -EINTR;
5695 break;
5696 }
5697 tries = 0;
5698 } else if (++tries == 5) {
5699 ret = ret < 0 ? ret : -EBUSY;
5700 break;
5701 }
5702
5703 ret = migrate_pages(&cc.migratepages,
5704 __alloc_contig_migrate_alloc,
5705 0, false, MIGRATE_SYNC);
5706 }
5707
5708 putback_lru_pages(&cc.migratepages);
5709 return ret > 0 ? 0 : ret;
5710 }
5711
5712 /*
5713 * Update zone's cma pages counter used for watermark level calculation.
5714 */
5715 static inline void __update_cma_watermarks(struct zone *zone, int count)
5716 {
5717 unsigned long flags;
5718 spin_lock_irqsave(&zone->lock, flags);
5719 zone->min_cma_pages += count;
5720 spin_unlock_irqrestore(&zone->lock, flags);
5721 setup_per_zone_wmarks();
5722 }
5723
5724 /*
5725 * Trigger memory pressure bump to reclaim some pages in order to be able to
5726 * allocate 'count' pages in single page units. Does similar work as
5727 *__alloc_pages_slowpath() function.
5728 */
5729 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5730 {
5731 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5732 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5733 int did_some_progress = 0;
5734 int order = 1;
5735
5736 /*
5737 * Increase level of watermarks to force kswapd do his job
5738 * to stabilise at new watermark level.
5739 */
5740 __update_cma_watermarks(zone, count);
5741
5742 /* Obey watermarks as if the page was being allocated */
5743 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5744 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5745
5746 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5747 NULL);
5748 if (!did_some_progress) {
5749 /* Exhausted what can be done so it's blamo time */
5750 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5751 }
5752 }
5753
5754 /* Restore original watermark levels. */
5755 __update_cma_watermarks(zone, -count);
5756
5757 return count;
5758 }
5759
5760 /**
5761 * alloc_contig_range() -- tries to allocate given range of pages
5762 * @start: start PFN to allocate
5763 * @end: one-past-the-last PFN to allocate
5764 * @migratetype: migratetype of the underlaying pageblocks (either
5765 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5766 * in range must have the same migratetype and it must
5767 * be either of the two.
5768 *
5769 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5770 * aligned, however it's the caller's responsibility to guarantee that
5771 * we are the only thread that changes migrate type of pageblocks the
5772 * pages fall in.
5773 *
5774 * The PFN range must belong to a single zone.
5775 *
5776 * Returns zero on success or negative error code. On success all
5777 * pages which PFN is in [start, end) are allocated for the caller and
5778 * need to be freed with free_contig_range().
5779 */
5780 int alloc_contig_range(unsigned long start, unsigned long end,
5781 unsigned migratetype)
5782 {
5783 struct zone *zone = page_zone(pfn_to_page(start));
5784 unsigned long outer_start, outer_end;
5785 int ret = 0, order;
5786
5787 /*
5788 * What we do here is we mark all pageblocks in range as
5789 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5790 * have different sizes, and due to the way page allocator
5791 * work, we align the range to biggest of the two pages so
5792 * that page allocator won't try to merge buddies from
5793 * different pageblocks and change MIGRATE_ISOLATE to some
5794 * other migration type.
5795 *
5796 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5797 * migrate the pages from an unaligned range (ie. pages that
5798 * we are interested in). This will put all the pages in
5799 * range back to page allocator as MIGRATE_ISOLATE.
5800 *
5801 * When this is done, we take the pages in range from page
5802 * allocator removing them from the buddy system. This way
5803 * page allocator will never consider using them.
5804 *
5805 * This lets us mark the pageblocks back as
5806 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5807 * aligned range but not in the unaligned, original range are
5808 * put back to page allocator so that buddy can use them.
5809 */
5810
5811 ret = start_isolate_page_range(pfn_max_align_down(start),
5812 pfn_max_align_up(end), migratetype);
5813 if (ret)
5814 goto done;
5815
5816 ret = __alloc_contig_migrate_range(start, end);
5817 if (ret)
5818 goto done;
5819
5820 /*
5821 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5822 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5823 * more, all pages in [start, end) are free in page allocator.
5824 * What we are going to do is to allocate all pages from
5825 * [start, end) (that is remove them from page allocator).
5826 *
5827 * The only problem is that pages at the beginning and at the
5828 * end of interesting range may be not aligned with pages that
5829 * page allocator holds, ie. they can be part of higher order
5830 * pages. Because of this, we reserve the bigger range and
5831 * once this is done free the pages we are not interested in.
5832 *
5833 * We don't have to hold zone->lock here because the pages are
5834 * isolated thus they won't get removed from buddy.
5835 */
5836
5837 lru_add_drain_all();
5838 drain_all_pages();
5839
5840 order = 0;
5841 outer_start = start;
5842 while (!PageBuddy(pfn_to_page(outer_start))) {
5843 if (++order >= MAX_ORDER) {
5844 ret = -EBUSY;
5845 goto done;
5846 }
5847 outer_start &= ~0UL << order;
5848 }
5849
5850 /* Make sure the range is really isolated. */
5851 if (test_pages_isolated(outer_start, end)) {
5852 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5853 outer_start, end);
5854 ret = -EBUSY;
5855 goto done;
5856 }
5857
5858 /*
5859 * Reclaim enough pages to make sure that contiguous allocation
5860 * will not starve the system.
5861 */
5862 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5863
5864 /* Grab isolated pages from freelists. */
5865 outer_end = isolate_freepages_range(outer_start, end);
5866 if (!outer_end) {
5867 ret = -EBUSY;
5868 goto done;
5869 }
5870
5871 /* Free head and tail (if any) */
5872 if (start != outer_start)
5873 free_contig_range(outer_start, start - outer_start);
5874 if (end != outer_end)
5875 free_contig_range(end, outer_end - end);
5876
5877 done:
5878 undo_isolate_page_range(pfn_max_align_down(start),
5879 pfn_max_align_up(end), migratetype);
5880 return ret;
5881 }
5882
5883 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5884 {
5885 for (; nr_pages--; ++pfn)
5886 __free_page(pfn_to_page(pfn));
5887 }
5888 #endif
5889
5890 #ifdef CONFIG_MEMORY_HOTPLUG
5891 static int __meminit __zone_pcp_update(void *data)
5892 {
5893 struct zone *zone = data;
5894 int cpu;
5895 unsigned long batch = zone_batchsize(zone), flags;
5896
5897 for_each_possible_cpu(cpu) {
5898 struct per_cpu_pageset *pset;
5899 struct per_cpu_pages *pcp;
5900
5901 pset = per_cpu_ptr(zone->pageset, cpu);
5902 pcp = &pset->pcp;
5903
5904 local_irq_save(flags);
5905 if (pcp->count > 0)
5906 free_pcppages_bulk(zone, pcp->count, pcp);
5907 setup_pageset(pset, batch);
5908 local_irq_restore(flags);
5909 }
5910 return 0;
5911 }
5912
5913 void __meminit zone_pcp_update(struct zone *zone)
5914 {
5915 stop_machine(__zone_pcp_update, zone, NULL);
5916 }
5917 #endif
5918
5919 #ifdef CONFIG_MEMORY_HOTREMOVE
5920 void zone_pcp_reset(struct zone *zone)
5921 {
5922 unsigned long flags;
5923
5924 /* avoid races with drain_pages() */
5925 local_irq_save(flags);
5926 if (zone->pageset != &boot_pageset) {
5927 free_percpu(zone->pageset);
5928 zone->pageset = &boot_pageset;
5929 }
5930 local_irq_restore(flags);
5931 }
5932
5933 /*
5934 * All pages in the range must be isolated before calling this.
5935 */
5936 void
5937 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5938 {
5939 struct page *page;
5940 struct zone *zone;
5941 int order, i;
5942 unsigned long pfn;
5943 unsigned long flags;
5944 /* find the first valid pfn */
5945 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5946 if (pfn_valid(pfn))
5947 break;
5948 if (pfn == end_pfn)
5949 return;
5950 zone = page_zone(pfn_to_page(pfn));
5951 spin_lock_irqsave(&zone->lock, flags);
5952 pfn = start_pfn;
5953 while (pfn < end_pfn) {
5954 if (!pfn_valid(pfn)) {
5955 pfn++;
5956 continue;
5957 }
5958 page = pfn_to_page(pfn);
5959 BUG_ON(page_count(page));
5960 BUG_ON(!PageBuddy(page));
5961 order = page_order(page);
5962 #ifdef CONFIG_DEBUG_VM
5963 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5964 pfn, 1 << order, end_pfn);
5965 #endif
5966 list_del(&page->lru);
5967 rmv_page_order(page);
5968 zone->free_area[order].nr_free--;
5969 __mod_zone_page_state(zone, NR_FREE_PAGES,
5970 - (1UL << order));
5971 for (i = 0; i < (1 << order); i++)
5972 SetPageReserved((page+i));
5973 pfn += (1 << order);
5974 }
5975 spin_unlock_irqrestore(&zone->lock, flags);
5976 }
5977 #endif
5978
5979 #ifdef CONFIG_MEMORY_FAILURE
5980 bool is_free_buddy_page(struct page *page)
5981 {
5982 struct zone *zone = page_zone(page);
5983 unsigned long pfn = page_to_pfn(page);
5984 unsigned long flags;
5985 int order;
5986
5987 spin_lock_irqsave(&zone->lock, flags);
5988 for (order = 0; order < MAX_ORDER; order++) {
5989 struct page *page_head = page - (pfn & ((1 << order) - 1));
5990
5991 if (PageBuddy(page_head) && page_order(page_head) >= order)
5992 break;
5993 }
5994 spin_unlock_irqrestore(&zone->lock, flags);
5995
5996 return order < MAX_ORDER;
5997 }
5998 #endif
5999
6000 static const struct trace_print_flags pageflag_names[] = {
6001 {1UL << PG_locked, "locked" },
6002 {1UL << PG_error, "error" },
6003 {1UL << PG_referenced, "referenced" },
6004 {1UL << PG_uptodate, "uptodate" },
6005 {1UL << PG_dirty, "dirty" },
6006 {1UL << PG_lru, "lru" },
6007 {1UL << PG_active, "active" },
6008 {1UL << PG_slab, "slab" },
6009 {1UL << PG_owner_priv_1, "owner_priv_1" },
6010 {1UL << PG_arch_1, "arch_1" },
6011 {1UL << PG_reserved, "reserved" },
6012 {1UL << PG_private, "private" },
6013 {1UL << PG_private_2, "private_2" },
6014 {1UL << PG_writeback, "writeback" },
6015 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6016 {1UL << PG_head, "head" },
6017 {1UL << PG_tail, "tail" },
6018 #else
6019 {1UL << PG_compound, "compound" },
6020 #endif
6021 {1UL << PG_swapcache, "swapcache" },
6022 {1UL << PG_mappedtodisk, "mappedtodisk" },
6023 {1UL << PG_reclaim, "reclaim" },
6024 {1UL << PG_swapbacked, "swapbacked" },
6025 {1UL << PG_unevictable, "unevictable" },
6026 #ifdef CONFIG_MMU
6027 {1UL << PG_mlocked, "mlocked" },
6028 #endif
6029 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6030 {1UL << PG_uncached, "uncached" },
6031 #endif
6032 #ifdef CONFIG_MEMORY_FAILURE
6033 {1UL << PG_hwpoison, "hwpoison" },
6034 #endif
6035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6036 {1UL << PG_compound_lock, "compound_lock" },
6037 #endif
6038 };
6039
6040 static void dump_page_flags(unsigned long flags)
6041 {
6042 const char *delim = "";
6043 unsigned long mask;
6044 int i;
6045
6046 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6047
6048 printk(KERN_ALERT "page flags: %#lx(", flags);
6049
6050 /* remove zone id */
6051 flags &= (1UL << NR_PAGEFLAGS) - 1;
6052
6053 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6054
6055 mask = pageflag_names[i].mask;
6056 if ((flags & mask) != mask)
6057 continue;
6058
6059 flags &= ~mask;
6060 printk("%s%s", delim, pageflag_names[i].name);
6061 delim = "|";
6062 }
6063
6064 /* check for left over flags */
6065 if (flags)
6066 printk("%s%#lx", delim, flags);
6067
6068 printk(")\n");
6069 }
6070
6071 void dump_page(struct page *page)
6072 {
6073 printk(KERN_ALERT
6074 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6075 page, atomic_read(&page->_count), page_mapcount(page),
6076 page->mapping, page->index);
6077 dump_page_flags(page->flags);
6078 mem_cgroup_print_bad_page(page);
6079 }
This page took 0.147818 seconds and 6 git commands to generate.