Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 set_page_private(page, order);
460 __SetPageBuddy(page);
461 }
462
463 static inline void rmv_page_order(struct page *page)
464 {
465 __ClearPageBuddy(page);
466 set_page_private(page, 0);
467 }
468
469 /*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
485 */
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx, unsigned int order)
488 {
489 return page_idx ^ (1 << order);
490 }
491
492 /*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
495 * (a) the buddy is not in a hole &&
496 * (b) the buddy is in the buddy system &&
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
499 *
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
504 *
505 * For recording page's order, we use page_private(page).
506 */
507 static inline int page_is_buddy(struct page *page, struct page *buddy,
508 unsigned int order)
509 {
510 if (!pfn_valid_within(page_to_pfn(buddy)))
511 return 0;
512
513 if (page_is_guard(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
519 return 1;
520 }
521
522 if (PageBuddy(buddy) && page_order(buddy) == order) {
523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
533 return 1;
534 }
535 return 0;
536 }
537
538 /*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
554 * So when we are allocating or freeing one, we can derive the state of the
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
557 * If a block is freed, and its buddy is also free, then this
558 * triggers coalescing into a block of larger size.
559 *
560 * -- nyc
561 */
562
563 static inline void __free_one_page(struct page *page,
564 unsigned long pfn,
565 struct zone *zone, unsigned int order,
566 int migratetype)
567 {
568 unsigned long page_idx;
569 unsigned long combined_idx;
570 unsigned long uninitialized_var(buddy_idx);
571 struct page *buddy;
572
573 VM_BUG_ON(!zone_is_initialized(zone));
574
575 if (unlikely(PageCompound(page)))
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
578
579 VM_BUG_ON(migratetype == -1);
580
581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
582
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
585
586 while (order < MAX_ORDER-1) {
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
589 if (!page_is_buddy(page, buddy, order))
590 break;
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
605 combined_idx = buddy_idx & page_idx;
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
621 struct page *higher_page, *higher_buddy;
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
625 higher_buddy = higher_page + (buddy_idx - combined_idx);
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634 out:
635 zone->free_area[order].nr_free++;
636 }
637
638 static inline int free_pages_check(struct page *page)
639 {
640 const char *bad_reason = NULL;
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
657 return 1;
658 }
659 page_cpupid_reset_last(page);
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
663 }
664
665 /*
666 * Frees a number of pages from the PCP lists
667 * Assumes all pages on list are in same zone, and of same order.
668 * count is the number of pages to free.
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
676 static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
678 {
679 int migratetype = 0;
680 int batch_free = 0;
681 int to_free = count;
682 unsigned long nr_scanned;
683
684 spin_lock(&zone->lock);
685 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
686 if (nr_scanned)
687 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
688
689 while (to_free) {
690 struct page *page;
691 struct list_head *list;
692
693 /*
694 * Remove pages from lists in a round-robin fashion. A
695 * batch_free count is maintained that is incremented when an
696 * empty list is encountered. This is so more pages are freed
697 * off fuller lists instead of spinning excessively around empty
698 * lists
699 */
700 do {
701 batch_free++;
702 if (++migratetype == MIGRATE_PCPTYPES)
703 migratetype = 0;
704 list = &pcp->lists[migratetype];
705 } while (list_empty(list));
706
707 /* This is the only non-empty list. Free them all. */
708 if (batch_free == MIGRATE_PCPTYPES)
709 batch_free = to_free;
710
711 do {
712 int mt; /* migratetype of the to-be-freed page */
713
714 page = list_entry(list->prev, struct page, lru);
715 /* must delete as __free_one_page list manipulates */
716 list_del(&page->lru);
717 mt = get_freepage_migratetype(page);
718 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
719 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
720 trace_mm_page_pcpu_drain(page, 0, mt);
721 if (likely(!is_migrate_isolate_page(page))) {
722 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
723 if (is_migrate_cma(mt))
724 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
725 }
726 } while (--to_free && --batch_free && !list_empty(list));
727 }
728 spin_unlock(&zone->lock);
729 }
730
731 static void free_one_page(struct zone *zone,
732 struct page *page, unsigned long pfn,
733 unsigned int order,
734 int migratetype)
735 {
736 unsigned long nr_scanned;
737 spin_lock(&zone->lock);
738 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
739 if (nr_scanned)
740 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
741
742 __free_one_page(page, pfn, zone, order, migratetype);
743 if (unlikely(!is_migrate_isolate(migratetype)))
744 __mod_zone_freepage_state(zone, 1 << order, migratetype);
745 spin_unlock(&zone->lock);
746 }
747
748 static bool free_pages_prepare(struct page *page, unsigned int order)
749 {
750 int i;
751 int bad = 0;
752
753 trace_mm_page_free(page, order);
754 kmemcheck_free_shadow(page, order);
755
756 if (PageAnon(page))
757 page->mapping = NULL;
758 for (i = 0; i < (1 << order); i++)
759 bad += free_pages_check(page + i);
760 if (bad)
761 return false;
762
763 if (!PageHighMem(page)) {
764 debug_check_no_locks_freed(page_address(page),
765 PAGE_SIZE << order);
766 debug_check_no_obj_freed(page_address(page),
767 PAGE_SIZE << order);
768 }
769 arch_free_page(page, order);
770 kernel_map_pages(page, 1 << order, 0);
771
772 return true;
773 }
774
775 static void __free_pages_ok(struct page *page, unsigned int order)
776 {
777 unsigned long flags;
778 int migratetype;
779 unsigned long pfn = page_to_pfn(page);
780
781 if (!free_pages_prepare(page, order))
782 return;
783
784 migratetype = get_pfnblock_migratetype(page, pfn);
785 local_irq_save(flags);
786 __count_vm_events(PGFREE, 1 << order);
787 set_freepage_migratetype(page, migratetype);
788 free_one_page(page_zone(page), page, pfn, order, migratetype);
789 local_irq_restore(flags);
790 }
791
792 void __init __free_pages_bootmem(struct page *page, unsigned int order)
793 {
794 unsigned int nr_pages = 1 << order;
795 struct page *p = page;
796 unsigned int loop;
797
798 prefetchw(p);
799 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
800 prefetchw(p + 1);
801 __ClearPageReserved(p);
802 set_page_count(p, 0);
803 }
804 __ClearPageReserved(p);
805 set_page_count(p, 0);
806
807 page_zone(page)->managed_pages += nr_pages;
808 set_page_refcounted(page);
809 __free_pages(page, order);
810 }
811
812 #ifdef CONFIG_CMA
813 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
814 void __init init_cma_reserved_pageblock(struct page *page)
815 {
816 unsigned i = pageblock_nr_pages;
817 struct page *p = page;
818
819 do {
820 __ClearPageReserved(p);
821 set_page_count(p, 0);
822 } while (++p, --i);
823
824 set_pageblock_migratetype(page, MIGRATE_CMA);
825
826 if (pageblock_order >= MAX_ORDER) {
827 i = pageblock_nr_pages;
828 p = page;
829 do {
830 set_page_refcounted(p);
831 __free_pages(p, MAX_ORDER - 1);
832 p += MAX_ORDER_NR_PAGES;
833 } while (i -= MAX_ORDER_NR_PAGES);
834 } else {
835 set_page_refcounted(page);
836 __free_pages(page, pageblock_order);
837 }
838
839 adjust_managed_page_count(page, pageblock_nr_pages);
840 }
841 #endif
842
843 /*
844 * The order of subdivision here is critical for the IO subsystem.
845 * Please do not alter this order without good reasons and regression
846 * testing. Specifically, as large blocks of memory are subdivided,
847 * the order in which smaller blocks are delivered depends on the order
848 * they're subdivided in this function. This is the primary factor
849 * influencing the order in which pages are delivered to the IO
850 * subsystem according to empirical testing, and this is also justified
851 * by considering the behavior of a buddy system containing a single
852 * large block of memory acted on by a series of small allocations.
853 * This behavior is a critical factor in sglist merging's success.
854 *
855 * -- nyc
856 */
857 static inline void expand(struct zone *zone, struct page *page,
858 int low, int high, struct free_area *area,
859 int migratetype)
860 {
861 unsigned long size = 1 << high;
862
863 while (high > low) {
864 area--;
865 high--;
866 size >>= 1;
867 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
868
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 if (high < debug_guardpage_minorder()) {
871 /*
872 * Mark as guard pages (or page), that will allow to
873 * merge back to allocator when buddy will be freed.
874 * Corresponding page table entries will not be touched,
875 * pages will stay not present in virtual address space
876 */
877 INIT_LIST_HEAD(&page[size].lru);
878 set_page_guard_flag(&page[size]);
879 set_page_private(&page[size], high);
880 /* Guard pages are not available for any usage */
881 __mod_zone_freepage_state(zone, -(1 << high),
882 migratetype);
883 continue;
884 }
885 #endif
886 list_add(&page[size].lru, &area->free_list[migratetype]);
887 area->nr_free++;
888 set_page_order(&page[size], high);
889 }
890 }
891
892 /*
893 * This page is about to be returned from the page allocator
894 */
895 static inline int check_new_page(struct page *page)
896 {
897 const char *bad_reason = NULL;
898 unsigned long bad_flags = 0;
899
900 if (unlikely(page_mapcount(page)))
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
904 if (unlikely(atomic_read(&page->_count) != 0))
905 bad_reason = "nonzero _count";
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
909 }
910 if (unlikely(mem_cgroup_bad_page_check(page)))
911 bad_reason = "cgroup check failed";
912 if (unlikely(bad_reason)) {
913 bad_page(page, bad_reason, bad_flags);
914 return 1;
915 }
916 return 0;
917 }
918
919 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
920 {
921 int i;
922
923 for (i = 0; i < (1 << order); i++) {
924 struct page *p = page + i;
925 if (unlikely(check_new_page(p)))
926 return 1;
927 }
928
929 set_page_private(page, 0);
930 set_page_refcounted(page);
931
932 arch_alloc_page(page, order);
933 kernel_map_pages(page, 1 << order, 1);
934
935 if (gfp_flags & __GFP_ZERO)
936 prep_zero_page(page, order, gfp_flags);
937
938 if (order && (gfp_flags & __GFP_COMP))
939 prep_compound_page(page, order);
940
941 return 0;
942 }
943
944 /*
945 * Go through the free lists for the given migratetype and remove
946 * the smallest available page from the freelists
947 */
948 static inline
949 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
950 int migratetype)
951 {
952 unsigned int current_order;
953 struct free_area *area;
954 struct page *page;
955
956 /* Find a page of the appropriate size in the preferred list */
957 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
958 area = &(zone->free_area[current_order]);
959 if (list_empty(&area->free_list[migratetype]))
960 continue;
961
962 page = list_entry(area->free_list[migratetype].next,
963 struct page, lru);
964 list_del(&page->lru);
965 rmv_page_order(page);
966 area->nr_free--;
967 expand(zone, page, order, current_order, area, migratetype);
968 set_freepage_migratetype(page, migratetype);
969 return page;
970 }
971
972 return NULL;
973 }
974
975
976 /*
977 * This array describes the order lists are fallen back to when
978 * the free lists for the desirable migrate type are depleted
979 */
980 static int fallbacks[MIGRATE_TYPES][4] = {
981 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
982 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
983 #ifdef CONFIG_CMA
984 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
985 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
986 #else
987 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
988 #endif
989 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
990 #ifdef CONFIG_MEMORY_ISOLATION
991 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
992 #endif
993 };
994
995 /*
996 * Move the free pages in a range to the free lists of the requested type.
997 * Note that start_page and end_pages are not aligned on a pageblock
998 * boundary. If alignment is required, use move_freepages_block()
999 */
1000 int move_freepages(struct zone *zone,
1001 struct page *start_page, struct page *end_page,
1002 int migratetype)
1003 {
1004 struct page *page;
1005 unsigned long order;
1006 int pages_moved = 0;
1007
1008 #ifndef CONFIG_HOLES_IN_ZONE
1009 /*
1010 * page_zone is not safe to call in this context when
1011 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1012 * anyway as we check zone boundaries in move_freepages_block().
1013 * Remove at a later date when no bug reports exist related to
1014 * grouping pages by mobility
1015 */
1016 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1017 #endif
1018
1019 for (page = start_page; page <= end_page;) {
1020 /* Make sure we are not inadvertently changing nodes */
1021 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1022
1023 if (!pfn_valid_within(page_to_pfn(page))) {
1024 page++;
1025 continue;
1026 }
1027
1028 if (!PageBuddy(page)) {
1029 page++;
1030 continue;
1031 }
1032
1033 order = page_order(page);
1034 list_move(&page->lru,
1035 &zone->free_area[order].free_list[migratetype]);
1036 set_freepage_migratetype(page, migratetype);
1037 page += 1 << order;
1038 pages_moved += 1 << order;
1039 }
1040
1041 return pages_moved;
1042 }
1043
1044 int move_freepages_block(struct zone *zone, struct page *page,
1045 int migratetype)
1046 {
1047 unsigned long start_pfn, end_pfn;
1048 struct page *start_page, *end_page;
1049
1050 start_pfn = page_to_pfn(page);
1051 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1052 start_page = pfn_to_page(start_pfn);
1053 end_page = start_page + pageblock_nr_pages - 1;
1054 end_pfn = start_pfn + pageblock_nr_pages - 1;
1055
1056 /* Do not cross zone boundaries */
1057 if (!zone_spans_pfn(zone, start_pfn))
1058 start_page = page;
1059 if (!zone_spans_pfn(zone, end_pfn))
1060 return 0;
1061
1062 return move_freepages(zone, start_page, end_page, migratetype);
1063 }
1064
1065 static void change_pageblock_range(struct page *pageblock_page,
1066 int start_order, int migratetype)
1067 {
1068 int nr_pageblocks = 1 << (start_order - pageblock_order);
1069
1070 while (nr_pageblocks--) {
1071 set_pageblock_migratetype(pageblock_page, migratetype);
1072 pageblock_page += pageblock_nr_pages;
1073 }
1074 }
1075
1076 /*
1077 * If breaking a large block of pages, move all free pages to the preferred
1078 * allocation list. If falling back for a reclaimable kernel allocation, be
1079 * more aggressive about taking ownership of free pages.
1080 *
1081 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1082 * nor move CMA pages to different free lists. We don't want unmovable pages
1083 * to be allocated from MIGRATE_CMA areas.
1084 *
1085 * Returns the new migratetype of the pageblock (or the same old migratetype
1086 * if it was unchanged).
1087 */
1088 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1089 int start_type, int fallback_type)
1090 {
1091 int current_order = page_order(page);
1092
1093 /*
1094 * When borrowing from MIGRATE_CMA, we need to release the excess
1095 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1096 * is set to CMA so it is returned to the correct freelist in case
1097 * the page ends up being not actually allocated from the pcp lists.
1098 */
1099 if (is_migrate_cma(fallback_type))
1100 return fallback_type;
1101
1102 /* Take ownership for orders >= pageblock_order */
1103 if (current_order >= pageblock_order) {
1104 change_pageblock_range(page, current_order, start_type);
1105 return start_type;
1106 }
1107
1108 if (current_order >= pageblock_order / 2 ||
1109 start_type == MIGRATE_RECLAIMABLE ||
1110 page_group_by_mobility_disabled) {
1111 int pages;
1112
1113 pages = move_freepages_block(zone, page, start_type);
1114
1115 /* Claim the whole block if over half of it is free */
1116 if (pages >= (1 << (pageblock_order-1)) ||
1117 page_group_by_mobility_disabled) {
1118
1119 set_pageblock_migratetype(page, start_type);
1120 return start_type;
1121 }
1122
1123 }
1124
1125 return fallback_type;
1126 }
1127
1128 /* Remove an element from the buddy allocator from the fallback list */
1129 static inline struct page *
1130 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1131 {
1132 struct free_area *area;
1133 unsigned int current_order;
1134 struct page *page;
1135 int migratetype, new_type, i;
1136
1137 /* Find the largest possible block of pages in the other list */
1138 for (current_order = MAX_ORDER-1;
1139 current_order >= order && current_order <= MAX_ORDER-1;
1140 --current_order) {
1141 for (i = 0;; i++) {
1142 migratetype = fallbacks[start_migratetype][i];
1143
1144 /* MIGRATE_RESERVE handled later if necessary */
1145 if (migratetype == MIGRATE_RESERVE)
1146 break;
1147
1148 area = &(zone->free_area[current_order]);
1149 if (list_empty(&area->free_list[migratetype]))
1150 continue;
1151
1152 page = list_entry(area->free_list[migratetype].next,
1153 struct page, lru);
1154 area->nr_free--;
1155
1156 new_type = try_to_steal_freepages(zone, page,
1157 start_migratetype,
1158 migratetype);
1159
1160 /* Remove the page from the freelists */
1161 list_del(&page->lru);
1162 rmv_page_order(page);
1163
1164 expand(zone, page, order, current_order, area,
1165 new_type);
1166 /* The freepage_migratetype may differ from pageblock's
1167 * migratetype depending on the decisions in
1168 * try_to_steal_freepages. This is OK as long as it does
1169 * not differ for MIGRATE_CMA type.
1170 */
1171 set_freepage_migratetype(page, new_type);
1172
1173 trace_mm_page_alloc_extfrag(page, order, current_order,
1174 start_migratetype, migratetype, new_type);
1175
1176 return page;
1177 }
1178 }
1179
1180 return NULL;
1181 }
1182
1183 /*
1184 * Do the hard work of removing an element from the buddy allocator.
1185 * Call me with the zone->lock already held.
1186 */
1187 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1188 int migratetype)
1189 {
1190 struct page *page;
1191
1192 retry_reserve:
1193 page = __rmqueue_smallest(zone, order, migratetype);
1194
1195 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1196 page = __rmqueue_fallback(zone, order, migratetype);
1197
1198 /*
1199 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1200 * is used because __rmqueue_smallest is an inline function
1201 * and we want just one call site
1202 */
1203 if (!page) {
1204 migratetype = MIGRATE_RESERVE;
1205 goto retry_reserve;
1206 }
1207 }
1208
1209 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1210 return page;
1211 }
1212
1213 /*
1214 * Obtain a specified number of elements from the buddy allocator, all under
1215 * a single hold of the lock, for efficiency. Add them to the supplied list.
1216 * Returns the number of new pages which were placed at *list.
1217 */
1218 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1219 unsigned long count, struct list_head *list,
1220 int migratetype, bool cold)
1221 {
1222 int i;
1223
1224 spin_lock(&zone->lock);
1225 for (i = 0; i < count; ++i) {
1226 struct page *page = __rmqueue(zone, order, migratetype);
1227 if (unlikely(page == NULL))
1228 break;
1229
1230 /*
1231 * Split buddy pages returned by expand() are received here
1232 * in physical page order. The page is added to the callers and
1233 * list and the list head then moves forward. From the callers
1234 * perspective, the linked list is ordered by page number in
1235 * some conditions. This is useful for IO devices that can
1236 * merge IO requests if the physical pages are ordered
1237 * properly.
1238 */
1239 if (likely(!cold))
1240 list_add(&page->lru, list);
1241 else
1242 list_add_tail(&page->lru, list);
1243 list = &page->lru;
1244 if (is_migrate_cma(get_freepage_migratetype(page)))
1245 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1246 -(1 << order));
1247 }
1248 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1249 spin_unlock(&zone->lock);
1250 return i;
1251 }
1252
1253 #ifdef CONFIG_NUMA
1254 /*
1255 * Called from the vmstat counter updater to drain pagesets of this
1256 * currently executing processor on remote nodes after they have
1257 * expired.
1258 *
1259 * Note that this function must be called with the thread pinned to
1260 * a single processor.
1261 */
1262 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1263 {
1264 unsigned long flags;
1265 int to_drain, batch;
1266
1267 local_irq_save(flags);
1268 batch = ACCESS_ONCE(pcp->batch);
1269 to_drain = min(pcp->count, batch);
1270 if (to_drain > 0) {
1271 free_pcppages_bulk(zone, to_drain, pcp);
1272 pcp->count -= to_drain;
1273 }
1274 local_irq_restore(flags);
1275 }
1276 #endif
1277
1278 /*
1279 * Drain pages of the indicated processor.
1280 *
1281 * The processor must either be the current processor and the
1282 * thread pinned to the current processor or a processor that
1283 * is not online.
1284 */
1285 static void drain_pages(unsigned int cpu)
1286 {
1287 unsigned long flags;
1288 struct zone *zone;
1289
1290 for_each_populated_zone(zone) {
1291 struct per_cpu_pageset *pset;
1292 struct per_cpu_pages *pcp;
1293
1294 local_irq_save(flags);
1295 pset = per_cpu_ptr(zone->pageset, cpu);
1296
1297 pcp = &pset->pcp;
1298 if (pcp->count) {
1299 free_pcppages_bulk(zone, pcp->count, pcp);
1300 pcp->count = 0;
1301 }
1302 local_irq_restore(flags);
1303 }
1304 }
1305
1306 /*
1307 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1308 */
1309 void drain_local_pages(void *arg)
1310 {
1311 drain_pages(smp_processor_id());
1312 }
1313
1314 /*
1315 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1316 *
1317 * Note that this code is protected against sending an IPI to an offline
1318 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1319 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1320 * nothing keeps CPUs from showing up after we populated the cpumask and
1321 * before the call to on_each_cpu_mask().
1322 */
1323 void drain_all_pages(void)
1324 {
1325 int cpu;
1326 struct per_cpu_pageset *pcp;
1327 struct zone *zone;
1328
1329 /*
1330 * Allocate in the BSS so we wont require allocation in
1331 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1332 */
1333 static cpumask_t cpus_with_pcps;
1334
1335 /*
1336 * We don't care about racing with CPU hotplug event
1337 * as offline notification will cause the notified
1338 * cpu to drain that CPU pcps and on_each_cpu_mask
1339 * disables preemption as part of its processing
1340 */
1341 for_each_online_cpu(cpu) {
1342 bool has_pcps = false;
1343 for_each_populated_zone(zone) {
1344 pcp = per_cpu_ptr(zone->pageset, cpu);
1345 if (pcp->pcp.count) {
1346 has_pcps = true;
1347 break;
1348 }
1349 }
1350 if (has_pcps)
1351 cpumask_set_cpu(cpu, &cpus_with_pcps);
1352 else
1353 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1354 }
1355 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1356 }
1357
1358 #ifdef CONFIG_HIBERNATION
1359
1360 void mark_free_pages(struct zone *zone)
1361 {
1362 unsigned long pfn, max_zone_pfn;
1363 unsigned long flags;
1364 unsigned int order, t;
1365 struct list_head *curr;
1366
1367 if (zone_is_empty(zone))
1368 return;
1369
1370 spin_lock_irqsave(&zone->lock, flags);
1371
1372 max_zone_pfn = zone_end_pfn(zone);
1373 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1374 if (pfn_valid(pfn)) {
1375 struct page *page = pfn_to_page(pfn);
1376
1377 if (!swsusp_page_is_forbidden(page))
1378 swsusp_unset_page_free(page);
1379 }
1380
1381 for_each_migratetype_order(order, t) {
1382 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1383 unsigned long i;
1384
1385 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1386 for (i = 0; i < (1UL << order); i++)
1387 swsusp_set_page_free(pfn_to_page(pfn + i));
1388 }
1389 }
1390 spin_unlock_irqrestore(&zone->lock, flags);
1391 }
1392 #endif /* CONFIG_PM */
1393
1394 /*
1395 * Free a 0-order page
1396 * cold == true ? free a cold page : free a hot page
1397 */
1398 void free_hot_cold_page(struct page *page, bool cold)
1399 {
1400 struct zone *zone = page_zone(page);
1401 struct per_cpu_pages *pcp;
1402 unsigned long flags;
1403 unsigned long pfn = page_to_pfn(page);
1404 int migratetype;
1405
1406 if (!free_pages_prepare(page, 0))
1407 return;
1408
1409 migratetype = get_pfnblock_migratetype(page, pfn);
1410 set_freepage_migratetype(page, migratetype);
1411 local_irq_save(flags);
1412 __count_vm_event(PGFREE);
1413
1414 /*
1415 * We only track unmovable, reclaimable and movable on pcp lists.
1416 * Free ISOLATE pages back to the allocator because they are being
1417 * offlined but treat RESERVE as movable pages so we can get those
1418 * areas back if necessary. Otherwise, we may have to free
1419 * excessively into the page allocator
1420 */
1421 if (migratetype >= MIGRATE_PCPTYPES) {
1422 if (unlikely(is_migrate_isolate(migratetype))) {
1423 free_one_page(zone, page, pfn, 0, migratetype);
1424 goto out;
1425 }
1426 migratetype = MIGRATE_MOVABLE;
1427 }
1428
1429 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1430 if (!cold)
1431 list_add(&page->lru, &pcp->lists[migratetype]);
1432 else
1433 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1434 pcp->count++;
1435 if (pcp->count >= pcp->high) {
1436 unsigned long batch = ACCESS_ONCE(pcp->batch);
1437 free_pcppages_bulk(zone, batch, pcp);
1438 pcp->count -= batch;
1439 }
1440
1441 out:
1442 local_irq_restore(flags);
1443 }
1444
1445 /*
1446 * Free a list of 0-order pages
1447 */
1448 void free_hot_cold_page_list(struct list_head *list, bool cold)
1449 {
1450 struct page *page, *next;
1451
1452 list_for_each_entry_safe(page, next, list, lru) {
1453 trace_mm_page_free_batched(page, cold);
1454 free_hot_cold_page(page, cold);
1455 }
1456 }
1457
1458 /*
1459 * split_page takes a non-compound higher-order page, and splits it into
1460 * n (1<<order) sub-pages: page[0..n]
1461 * Each sub-page must be freed individually.
1462 *
1463 * Note: this is probably too low level an operation for use in drivers.
1464 * Please consult with lkml before using this in your driver.
1465 */
1466 void split_page(struct page *page, unsigned int order)
1467 {
1468 int i;
1469
1470 VM_BUG_ON_PAGE(PageCompound(page), page);
1471 VM_BUG_ON_PAGE(!page_count(page), page);
1472
1473 #ifdef CONFIG_KMEMCHECK
1474 /*
1475 * Split shadow pages too, because free(page[0]) would
1476 * otherwise free the whole shadow.
1477 */
1478 if (kmemcheck_page_is_tracked(page))
1479 split_page(virt_to_page(page[0].shadow), order);
1480 #endif
1481
1482 for (i = 1; i < (1 << order); i++)
1483 set_page_refcounted(page + i);
1484 }
1485 EXPORT_SYMBOL_GPL(split_page);
1486
1487 static int __isolate_free_page(struct page *page, unsigned int order)
1488 {
1489 unsigned long watermark;
1490 struct zone *zone;
1491 int mt;
1492
1493 BUG_ON(!PageBuddy(page));
1494
1495 zone = page_zone(page);
1496 mt = get_pageblock_migratetype(page);
1497
1498 if (!is_migrate_isolate(mt)) {
1499 /* Obey watermarks as if the page was being allocated */
1500 watermark = low_wmark_pages(zone) + (1 << order);
1501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1502 return 0;
1503
1504 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1505 }
1506
1507 /* Remove page from free list */
1508 list_del(&page->lru);
1509 zone->free_area[order].nr_free--;
1510 rmv_page_order(page);
1511
1512 /* Set the pageblock if the isolated page is at least a pageblock */
1513 if (order >= pageblock_order - 1) {
1514 struct page *endpage = page + (1 << order) - 1;
1515 for (; page < endpage; page += pageblock_nr_pages) {
1516 int mt = get_pageblock_migratetype(page);
1517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1518 set_pageblock_migratetype(page,
1519 MIGRATE_MOVABLE);
1520 }
1521 }
1522
1523 return 1UL << order;
1524 }
1525
1526 /*
1527 * Similar to split_page except the page is already free. As this is only
1528 * being used for migration, the migratetype of the block also changes.
1529 * As this is called with interrupts disabled, the caller is responsible
1530 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1531 * are enabled.
1532 *
1533 * Note: this is probably too low level an operation for use in drivers.
1534 * Please consult with lkml before using this in your driver.
1535 */
1536 int split_free_page(struct page *page)
1537 {
1538 unsigned int order;
1539 int nr_pages;
1540
1541 order = page_order(page);
1542
1543 nr_pages = __isolate_free_page(page, order);
1544 if (!nr_pages)
1545 return 0;
1546
1547 /* Split into individual pages */
1548 set_page_refcounted(page);
1549 split_page(page, order);
1550 return nr_pages;
1551 }
1552
1553 /*
1554 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1555 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1556 * or two.
1557 */
1558 static inline
1559 struct page *buffered_rmqueue(struct zone *preferred_zone,
1560 struct zone *zone, unsigned int order,
1561 gfp_t gfp_flags, int migratetype)
1562 {
1563 unsigned long flags;
1564 struct page *page;
1565 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1566
1567 again:
1568 if (likely(order == 0)) {
1569 struct per_cpu_pages *pcp;
1570 struct list_head *list;
1571
1572 local_irq_save(flags);
1573 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1574 list = &pcp->lists[migratetype];
1575 if (list_empty(list)) {
1576 pcp->count += rmqueue_bulk(zone, 0,
1577 pcp->batch, list,
1578 migratetype, cold);
1579 if (unlikely(list_empty(list)))
1580 goto failed;
1581 }
1582
1583 if (cold)
1584 page = list_entry(list->prev, struct page, lru);
1585 else
1586 page = list_entry(list->next, struct page, lru);
1587
1588 list_del(&page->lru);
1589 pcp->count--;
1590 } else {
1591 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1592 /*
1593 * __GFP_NOFAIL is not to be used in new code.
1594 *
1595 * All __GFP_NOFAIL callers should be fixed so that they
1596 * properly detect and handle allocation failures.
1597 *
1598 * We most definitely don't want callers attempting to
1599 * allocate greater than order-1 page units with
1600 * __GFP_NOFAIL.
1601 */
1602 WARN_ON_ONCE(order > 1);
1603 }
1604 spin_lock_irqsave(&zone->lock, flags);
1605 page = __rmqueue(zone, order, migratetype);
1606 spin_unlock(&zone->lock);
1607 if (!page)
1608 goto failed;
1609 __mod_zone_freepage_state(zone, -(1 << order),
1610 get_freepage_migratetype(page));
1611 }
1612
1613 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1614 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1615 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1616 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1617
1618 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1619 zone_statistics(preferred_zone, zone, gfp_flags);
1620 local_irq_restore(flags);
1621
1622 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1623 if (prep_new_page(page, order, gfp_flags))
1624 goto again;
1625 return page;
1626
1627 failed:
1628 local_irq_restore(flags);
1629 return NULL;
1630 }
1631
1632 #ifdef CONFIG_FAIL_PAGE_ALLOC
1633
1634 static struct {
1635 struct fault_attr attr;
1636
1637 u32 ignore_gfp_highmem;
1638 u32 ignore_gfp_wait;
1639 u32 min_order;
1640 } fail_page_alloc = {
1641 .attr = FAULT_ATTR_INITIALIZER,
1642 .ignore_gfp_wait = 1,
1643 .ignore_gfp_highmem = 1,
1644 .min_order = 1,
1645 };
1646
1647 static int __init setup_fail_page_alloc(char *str)
1648 {
1649 return setup_fault_attr(&fail_page_alloc.attr, str);
1650 }
1651 __setup("fail_page_alloc=", setup_fail_page_alloc);
1652
1653 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1654 {
1655 if (order < fail_page_alloc.min_order)
1656 return false;
1657 if (gfp_mask & __GFP_NOFAIL)
1658 return false;
1659 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1660 return false;
1661 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1662 return false;
1663
1664 return should_fail(&fail_page_alloc.attr, 1 << order);
1665 }
1666
1667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1668
1669 static int __init fail_page_alloc_debugfs(void)
1670 {
1671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1672 struct dentry *dir;
1673
1674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1675 &fail_page_alloc.attr);
1676 if (IS_ERR(dir))
1677 return PTR_ERR(dir);
1678
1679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1680 &fail_page_alloc.ignore_gfp_wait))
1681 goto fail;
1682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1683 &fail_page_alloc.ignore_gfp_highmem))
1684 goto fail;
1685 if (!debugfs_create_u32("min-order", mode, dir,
1686 &fail_page_alloc.min_order))
1687 goto fail;
1688
1689 return 0;
1690 fail:
1691 debugfs_remove_recursive(dir);
1692
1693 return -ENOMEM;
1694 }
1695
1696 late_initcall(fail_page_alloc_debugfs);
1697
1698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1699
1700 #else /* CONFIG_FAIL_PAGE_ALLOC */
1701
1702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1703 {
1704 return false;
1705 }
1706
1707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1708
1709 /*
1710 * Return true if free pages are above 'mark'. This takes into account the order
1711 * of the allocation.
1712 */
1713 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1714 unsigned long mark, int classzone_idx, int alloc_flags,
1715 long free_pages)
1716 {
1717 /* free_pages my go negative - that's OK */
1718 long min = mark;
1719 int o;
1720 long free_cma = 0;
1721
1722 free_pages -= (1 << order) - 1;
1723 if (alloc_flags & ALLOC_HIGH)
1724 min -= min / 2;
1725 if (alloc_flags & ALLOC_HARDER)
1726 min -= min / 4;
1727 #ifdef CONFIG_CMA
1728 /* If allocation can't use CMA areas don't use free CMA pages */
1729 if (!(alloc_flags & ALLOC_CMA))
1730 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1731 #endif
1732
1733 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1734 return false;
1735 for (o = 0; o < order; o++) {
1736 /* At the next order, this order's pages become unavailable */
1737 free_pages -= z->free_area[o].nr_free << o;
1738
1739 /* Require fewer higher order pages to be free */
1740 min >>= 1;
1741
1742 if (free_pages <= min)
1743 return false;
1744 }
1745 return true;
1746 }
1747
1748 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1749 int classzone_idx, int alloc_flags)
1750 {
1751 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1752 zone_page_state(z, NR_FREE_PAGES));
1753 }
1754
1755 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1756 unsigned long mark, int classzone_idx, int alloc_flags)
1757 {
1758 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1759
1760 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1761 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1762
1763 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1764 free_pages);
1765 }
1766
1767 #ifdef CONFIG_NUMA
1768 /*
1769 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1770 * skip over zones that are not allowed by the cpuset, or that have
1771 * been recently (in last second) found to be nearly full. See further
1772 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1773 * that have to skip over a lot of full or unallowed zones.
1774 *
1775 * If the zonelist cache is present in the passed zonelist, then
1776 * returns a pointer to the allowed node mask (either the current
1777 * tasks mems_allowed, or node_states[N_MEMORY].)
1778 *
1779 * If the zonelist cache is not available for this zonelist, does
1780 * nothing and returns NULL.
1781 *
1782 * If the fullzones BITMAP in the zonelist cache is stale (more than
1783 * a second since last zap'd) then we zap it out (clear its bits.)
1784 *
1785 * We hold off even calling zlc_setup, until after we've checked the
1786 * first zone in the zonelist, on the theory that most allocations will
1787 * be satisfied from that first zone, so best to examine that zone as
1788 * quickly as we can.
1789 */
1790 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1791 {
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793 nodemask_t *allowednodes; /* zonelist_cache approximation */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return NULL;
1798
1799 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1800 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1801 zlc->last_full_zap = jiffies;
1802 }
1803
1804 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1805 &cpuset_current_mems_allowed :
1806 &node_states[N_MEMORY];
1807 return allowednodes;
1808 }
1809
1810 /*
1811 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1812 * if it is worth looking at further for free memory:
1813 * 1) Check that the zone isn't thought to be full (doesn't have its
1814 * bit set in the zonelist_cache fullzones BITMAP).
1815 * 2) Check that the zones node (obtained from the zonelist_cache
1816 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1817 * Return true (non-zero) if zone is worth looking at further, or
1818 * else return false (zero) if it is not.
1819 *
1820 * This check -ignores- the distinction between various watermarks,
1821 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1822 * found to be full for any variation of these watermarks, it will
1823 * be considered full for up to one second by all requests, unless
1824 * we are so low on memory on all allowed nodes that we are forced
1825 * into the second scan of the zonelist.
1826 *
1827 * In the second scan we ignore this zonelist cache and exactly
1828 * apply the watermarks to all zones, even it is slower to do so.
1829 * We are low on memory in the second scan, and should leave no stone
1830 * unturned looking for a free page.
1831 */
1832 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1833 nodemask_t *allowednodes)
1834 {
1835 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1836 int i; /* index of *z in zonelist zones */
1837 int n; /* node that zone *z is on */
1838
1839 zlc = zonelist->zlcache_ptr;
1840 if (!zlc)
1841 return 1;
1842
1843 i = z - zonelist->_zonerefs;
1844 n = zlc->z_to_n[i];
1845
1846 /* This zone is worth trying if it is allowed but not full */
1847 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1848 }
1849
1850 /*
1851 * Given 'z' scanning a zonelist, set the corresponding bit in
1852 * zlc->fullzones, so that subsequent attempts to allocate a page
1853 * from that zone don't waste time re-examining it.
1854 */
1855 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1856 {
1857 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1858 int i; /* index of *z in zonelist zones */
1859
1860 zlc = zonelist->zlcache_ptr;
1861 if (!zlc)
1862 return;
1863
1864 i = z - zonelist->_zonerefs;
1865
1866 set_bit(i, zlc->fullzones);
1867 }
1868
1869 /*
1870 * clear all zones full, called after direct reclaim makes progress so that
1871 * a zone that was recently full is not skipped over for up to a second
1872 */
1873 static void zlc_clear_zones_full(struct zonelist *zonelist)
1874 {
1875 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1876
1877 zlc = zonelist->zlcache_ptr;
1878 if (!zlc)
1879 return;
1880
1881 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1882 }
1883
1884 static bool zone_local(struct zone *local_zone, struct zone *zone)
1885 {
1886 return local_zone->node == zone->node;
1887 }
1888
1889 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1890 {
1891 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1892 RECLAIM_DISTANCE;
1893 }
1894
1895 #else /* CONFIG_NUMA */
1896
1897 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1898 {
1899 return NULL;
1900 }
1901
1902 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1903 nodemask_t *allowednodes)
1904 {
1905 return 1;
1906 }
1907
1908 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1909 {
1910 }
1911
1912 static void zlc_clear_zones_full(struct zonelist *zonelist)
1913 {
1914 }
1915
1916 static bool zone_local(struct zone *local_zone, struct zone *zone)
1917 {
1918 return true;
1919 }
1920
1921 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1922 {
1923 return true;
1924 }
1925
1926 #endif /* CONFIG_NUMA */
1927
1928 static void reset_alloc_batches(struct zone *preferred_zone)
1929 {
1930 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1931
1932 do {
1933 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1934 high_wmark_pages(zone) - low_wmark_pages(zone) -
1935 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1936 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1937 } while (zone++ != preferred_zone);
1938 }
1939
1940 /*
1941 * get_page_from_freelist goes through the zonelist trying to allocate
1942 * a page.
1943 */
1944 static struct page *
1945 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1946 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1947 struct zone *preferred_zone, int classzone_idx, int migratetype)
1948 {
1949 struct zoneref *z;
1950 struct page *page = NULL;
1951 struct zone *zone;
1952 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1953 int zlc_active = 0; /* set if using zonelist_cache */
1954 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1955 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE);
1957 int nr_fair_skipped = 0;
1958 bool zonelist_rescan;
1959
1960 zonelist_scan:
1961 zonelist_rescan = false;
1962
1963 /*
1964 * Scan zonelist, looking for a zone with enough free.
1965 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1966 */
1967 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1968 high_zoneidx, nodemask) {
1969 unsigned long mark;
1970
1971 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1972 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1973 continue;
1974 if (cpusets_enabled() &&
1975 (alloc_flags & ALLOC_CPUSET) &&
1976 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1977 continue;
1978 /*
1979 * Distribute pages in proportion to the individual
1980 * zone size to ensure fair page aging. The zone a
1981 * page was allocated in should have no effect on the
1982 * time the page has in memory before being reclaimed.
1983 */
1984 if (alloc_flags & ALLOC_FAIR) {
1985 if (!zone_local(preferred_zone, zone))
1986 break;
1987 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1988 nr_fair_skipped++;
1989 continue;
1990 }
1991 }
1992 /*
1993 * When allocating a page cache page for writing, we
1994 * want to get it from a zone that is within its dirty
1995 * limit, such that no single zone holds more than its
1996 * proportional share of globally allowed dirty pages.
1997 * The dirty limits take into account the zone's
1998 * lowmem reserves and high watermark so that kswapd
1999 * should be able to balance it without having to
2000 * write pages from its LRU list.
2001 *
2002 * This may look like it could increase pressure on
2003 * lower zones by failing allocations in higher zones
2004 * before they are full. But the pages that do spill
2005 * over are limited as the lower zones are protected
2006 * by this very same mechanism. It should not become
2007 * a practical burden to them.
2008 *
2009 * XXX: For now, allow allocations to potentially
2010 * exceed the per-zone dirty limit in the slowpath
2011 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2012 * which is important when on a NUMA setup the allowed
2013 * zones are together not big enough to reach the
2014 * global limit. The proper fix for these situations
2015 * will require awareness of zones in the
2016 * dirty-throttling and the flusher threads.
2017 */
2018 if (consider_zone_dirty && !zone_dirty_ok(zone))
2019 continue;
2020
2021 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2022 if (!zone_watermark_ok(zone, order, mark,
2023 classzone_idx, alloc_flags)) {
2024 int ret;
2025
2026 /* Checked here to keep the fast path fast */
2027 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2028 if (alloc_flags & ALLOC_NO_WATERMARKS)
2029 goto try_this_zone;
2030
2031 if (IS_ENABLED(CONFIG_NUMA) &&
2032 !did_zlc_setup && nr_online_nodes > 1) {
2033 /*
2034 * we do zlc_setup if there are multiple nodes
2035 * and before considering the first zone allowed
2036 * by the cpuset.
2037 */
2038 allowednodes = zlc_setup(zonelist, alloc_flags);
2039 zlc_active = 1;
2040 did_zlc_setup = 1;
2041 }
2042
2043 if (zone_reclaim_mode == 0 ||
2044 !zone_allows_reclaim(preferred_zone, zone))
2045 goto this_zone_full;
2046
2047 /*
2048 * As we may have just activated ZLC, check if the first
2049 * eligible zone has failed zone_reclaim recently.
2050 */
2051 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2052 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2053 continue;
2054
2055 ret = zone_reclaim(zone, gfp_mask, order);
2056 switch (ret) {
2057 case ZONE_RECLAIM_NOSCAN:
2058 /* did not scan */
2059 continue;
2060 case ZONE_RECLAIM_FULL:
2061 /* scanned but unreclaimable */
2062 continue;
2063 default:
2064 /* did we reclaim enough */
2065 if (zone_watermark_ok(zone, order, mark,
2066 classzone_idx, alloc_flags))
2067 goto try_this_zone;
2068
2069 /*
2070 * Failed to reclaim enough to meet watermark.
2071 * Only mark the zone full if checking the min
2072 * watermark or if we failed to reclaim just
2073 * 1<<order pages or else the page allocator
2074 * fastpath will prematurely mark zones full
2075 * when the watermark is between the low and
2076 * min watermarks.
2077 */
2078 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2079 ret == ZONE_RECLAIM_SOME)
2080 goto this_zone_full;
2081
2082 continue;
2083 }
2084 }
2085
2086 try_this_zone:
2087 page = buffered_rmqueue(preferred_zone, zone, order,
2088 gfp_mask, migratetype);
2089 if (page)
2090 break;
2091 this_zone_full:
2092 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2093 zlc_mark_zone_full(zonelist, z);
2094 }
2095
2096 if (page) {
2097 /*
2098 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2099 * necessary to allocate the page. The expectation is
2100 * that the caller is taking steps that will free more
2101 * memory. The caller should avoid the page being used
2102 * for !PFMEMALLOC purposes.
2103 */
2104 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2105 return page;
2106 }
2107
2108 /*
2109 * The first pass makes sure allocations are spread fairly within the
2110 * local node. However, the local node might have free pages left
2111 * after the fairness batches are exhausted, and remote zones haven't
2112 * even been considered yet. Try once more without fairness, and
2113 * include remote zones now, before entering the slowpath and waking
2114 * kswapd: prefer spilling to a remote zone over swapping locally.
2115 */
2116 if (alloc_flags & ALLOC_FAIR) {
2117 alloc_flags &= ~ALLOC_FAIR;
2118 if (nr_fair_skipped) {
2119 zonelist_rescan = true;
2120 reset_alloc_batches(preferred_zone);
2121 }
2122 if (nr_online_nodes > 1)
2123 zonelist_rescan = true;
2124 }
2125
2126 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2127 /* Disable zlc cache for second zonelist scan */
2128 zlc_active = 0;
2129 zonelist_rescan = true;
2130 }
2131
2132 if (zonelist_rescan)
2133 goto zonelist_scan;
2134
2135 return NULL;
2136 }
2137
2138 /*
2139 * Large machines with many possible nodes should not always dump per-node
2140 * meminfo in irq context.
2141 */
2142 static inline bool should_suppress_show_mem(void)
2143 {
2144 bool ret = false;
2145
2146 #if NODES_SHIFT > 8
2147 ret = in_interrupt();
2148 #endif
2149 return ret;
2150 }
2151
2152 static DEFINE_RATELIMIT_STATE(nopage_rs,
2153 DEFAULT_RATELIMIT_INTERVAL,
2154 DEFAULT_RATELIMIT_BURST);
2155
2156 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2157 {
2158 unsigned int filter = SHOW_MEM_FILTER_NODES;
2159
2160 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2161 debug_guardpage_minorder() > 0)
2162 return;
2163
2164 /*
2165 * This documents exceptions given to allocations in certain
2166 * contexts that are allowed to allocate outside current's set
2167 * of allowed nodes.
2168 */
2169 if (!(gfp_mask & __GFP_NOMEMALLOC))
2170 if (test_thread_flag(TIF_MEMDIE) ||
2171 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2172 filter &= ~SHOW_MEM_FILTER_NODES;
2173 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2174 filter &= ~SHOW_MEM_FILTER_NODES;
2175
2176 if (fmt) {
2177 struct va_format vaf;
2178 va_list args;
2179
2180 va_start(args, fmt);
2181
2182 vaf.fmt = fmt;
2183 vaf.va = &args;
2184
2185 pr_warn("%pV", &vaf);
2186
2187 va_end(args);
2188 }
2189
2190 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2191 current->comm, order, gfp_mask);
2192
2193 dump_stack();
2194 if (!should_suppress_show_mem())
2195 show_mem(filter);
2196 }
2197
2198 static inline int
2199 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2200 unsigned long did_some_progress,
2201 unsigned long pages_reclaimed)
2202 {
2203 /* Do not loop if specifically requested */
2204 if (gfp_mask & __GFP_NORETRY)
2205 return 0;
2206
2207 /* Always retry if specifically requested */
2208 if (gfp_mask & __GFP_NOFAIL)
2209 return 1;
2210
2211 /*
2212 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2213 * making forward progress without invoking OOM. Suspend also disables
2214 * storage devices so kswapd will not help. Bail if we are suspending.
2215 */
2216 if (!did_some_progress && pm_suspended_storage())
2217 return 0;
2218
2219 /*
2220 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2221 * means __GFP_NOFAIL, but that may not be true in other
2222 * implementations.
2223 */
2224 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2225 return 1;
2226
2227 /*
2228 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2229 * specified, then we retry until we no longer reclaim any pages
2230 * (above), or we've reclaimed an order of pages at least as
2231 * large as the allocation's order. In both cases, if the
2232 * allocation still fails, we stop retrying.
2233 */
2234 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2235 return 1;
2236
2237 return 0;
2238 }
2239
2240 static inline struct page *
2241 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2242 struct zonelist *zonelist, enum zone_type high_zoneidx,
2243 nodemask_t *nodemask, struct zone *preferred_zone,
2244 int classzone_idx, int migratetype)
2245 {
2246 struct page *page;
2247
2248 /* Acquire the per-zone oom lock for each zone */
2249 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2250 schedule_timeout_uninterruptible(1);
2251 return NULL;
2252 }
2253
2254 /*
2255 * PM-freezer should be notified that there might be an OOM killer on
2256 * its way to kill and wake somebody up. This is too early and we might
2257 * end up not killing anything but false positives are acceptable.
2258 * See freeze_processes.
2259 */
2260 note_oom_kill();
2261
2262 /*
2263 * Go through the zonelist yet one more time, keep very high watermark
2264 * here, this is only to catch a parallel oom killing, we must fail if
2265 * we're still under heavy pressure.
2266 */
2267 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2268 order, zonelist, high_zoneidx,
2269 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2270 preferred_zone, classzone_idx, migratetype);
2271 if (page)
2272 goto out;
2273
2274 if (!(gfp_mask & __GFP_NOFAIL)) {
2275 /* The OOM killer will not help higher order allocs */
2276 if (order > PAGE_ALLOC_COSTLY_ORDER)
2277 goto out;
2278 /* The OOM killer does not needlessly kill tasks for lowmem */
2279 if (high_zoneidx < ZONE_NORMAL)
2280 goto out;
2281 /*
2282 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2283 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2284 * The caller should handle page allocation failure by itself if
2285 * it specifies __GFP_THISNODE.
2286 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2287 */
2288 if (gfp_mask & __GFP_THISNODE)
2289 goto out;
2290 }
2291 /* Exhausted what can be done so it's blamo time */
2292 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2293
2294 out:
2295 oom_zonelist_unlock(zonelist, gfp_mask);
2296 return page;
2297 }
2298
2299 #ifdef CONFIG_COMPACTION
2300 /* Try memory compaction for high-order allocations before reclaim */
2301 static struct page *
2302 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2303 struct zonelist *zonelist, enum zone_type high_zoneidx,
2304 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2305 int classzone_idx, int migratetype, enum migrate_mode mode,
2306 int *contended_compaction, bool *deferred_compaction)
2307 {
2308 struct zone *last_compact_zone = NULL;
2309 unsigned long compact_result;
2310 struct page *page;
2311
2312 if (!order)
2313 return NULL;
2314
2315 current->flags |= PF_MEMALLOC;
2316 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2317 nodemask, mode,
2318 contended_compaction,
2319 &last_compact_zone);
2320 current->flags &= ~PF_MEMALLOC;
2321
2322 switch (compact_result) {
2323 case COMPACT_DEFERRED:
2324 *deferred_compaction = true;
2325 /* fall-through */
2326 case COMPACT_SKIPPED:
2327 return NULL;
2328 default:
2329 break;
2330 }
2331
2332 /*
2333 * At least in one zone compaction wasn't deferred or skipped, so let's
2334 * count a compaction stall
2335 */
2336 count_vm_event(COMPACTSTALL);
2337
2338 /* Page migration frees to the PCP lists but we want merging */
2339 drain_pages(get_cpu());
2340 put_cpu();
2341
2342 page = get_page_from_freelist(gfp_mask, nodemask,
2343 order, zonelist, high_zoneidx,
2344 alloc_flags & ~ALLOC_NO_WATERMARKS,
2345 preferred_zone, classzone_idx, migratetype);
2346
2347 if (page) {
2348 struct zone *zone = page_zone(page);
2349
2350 zone->compact_blockskip_flush = false;
2351 compaction_defer_reset(zone, order, true);
2352 count_vm_event(COMPACTSUCCESS);
2353 return page;
2354 }
2355
2356 /*
2357 * last_compact_zone is where try_to_compact_pages thought allocation
2358 * should succeed, so it did not defer compaction. But here we know
2359 * that it didn't succeed, so we do the defer.
2360 */
2361 if (last_compact_zone && mode != MIGRATE_ASYNC)
2362 defer_compaction(last_compact_zone, order);
2363
2364 /*
2365 * It's bad if compaction run occurs and fails. The most likely reason
2366 * is that pages exist, but not enough to satisfy watermarks.
2367 */
2368 count_vm_event(COMPACTFAIL);
2369
2370 cond_resched();
2371
2372 return NULL;
2373 }
2374 #else
2375 static inline struct page *
2376 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2377 struct zonelist *zonelist, enum zone_type high_zoneidx,
2378 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2379 int classzone_idx, int migratetype, enum migrate_mode mode,
2380 int *contended_compaction, bool *deferred_compaction)
2381 {
2382 return NULL;
2383 }
2384 #endif /* CONFIG_COMPACTION */
2385
2386 /* Perform direct synchronous page reclaim */
2387 static int
2388 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2389 nodemask_t *nodemask)
2390 {
2391 struct reclaim_state reclaim_state;
2392 int progress;
2393
2394 cond_resched();
2395
2396 /* We now go into synchronous reclaim */
2397 cpuset_memory_pressure_bump();
2398 current->flags |= PF_MEMALLOC;
2399 lockdep_set_current_reclaim_state(gfp_mask);
2400 reclaim_state.reclaimed_slab = 0;
2401 current->reclaim_state = &reclaim_state;
2402
2403 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2404
2405 current->reclaim_state = NULL;
2406 lockdep_clear_current_reclaim_state();
2407 current->flags &= ~PF_MEMALLOC;
2408
2409 cond_resched();
2410
2411 return progress;
2412 }
2413
2414 /* The really slow allocator path where we enter direct reclaim */
2415 static inline struct page *
2416 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2417 struct zonelist *zonelist, enum zone_type high_zoneidx,
2418 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2419 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2420 {
2421 struct page *page = NULL;
2422 bool drained = false;
2423
2424 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2425 nodemask);
2426 if (unlikely(!(*did_some_progress)))
2427 return NULL;
2428
2429 /* After successful reclaim, reconsider all zones for allocation */
2430 if (IS_ENABLED(CONFIG_NUMA))
2431 zlc_clear_zones_full(zonelist);
2432
2433 retry:
2434 page = get_page_from_freelist(gfp_mask, nodemask, order,
2435 zonelist, high_zoneidx,
2436 alloc_flags & ~ALLOC_NO_WATERMARKS,
2437 preferred_zone, classzone_idx,
2438 migratetype);
2439
2440 /*
2441 * If an allocation failed after direct reclaim, it could be because
2442 * pages are pinned on the per-cpu lists. Drain them and try again
2443 */
2444 if (!page && !drained) {
2445 drain_all_pages();
2446 drained = true;
2447 goto retry;
2448 }
2449
2450 return page;
2451 }
2452
2453 /*
2454 * This is called in the allocator slow-path if the allocation request is of
2455 * sufficient urgency to ignore watermarks and take other desperate measures
2456 */
2457 static inline struct page *
2458 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2459 struct zonelist *zonelist, enum zone_type high_zoneidx,
2460 nodemask_t *nodemask, struct zone *preferred_zone,
2461 int classzone_idx, int migratetype)
2462 {
2463 struct page *page;
2464
2465 do {
2466 page = get_page_from_freelist(gfp_mask, nodemask, order,
2467 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2468 preferred_zone, classzone_idx, migratetype);
2469
2470 if (!page && gfp_mask & __GFP_NOFAIL)
2471 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2472 } while (!page && (gfp_mask & __GFP_NOFAIL));
2473
2474 return page;
2475 }
2476
2477 static void wake_all_kswapds(unsigned int order,
2478 struct zonelist *zonelist,
2479 enum zone_type high_zoneidx,
2480 struct zone *preferred_zone,
2481 nodemask_t *nodemask)
2482 {
2483 struct zoneref *z;
2484 struct zone *zone;
2485
2486 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2487 high_zoneidx, nodemask)
2488 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2489 }
2490
2491 static inline int
2492 gfp_to_alloc_flags(gfp_t gfp_mask)
2493 {
2494 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2495 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2496
2497 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2498 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2499
2500 /*
2501 * The caller may dip into page reserves a bit more if the caller
2502 * cannot run direct reclaim, or if the caller has realtime scheduling
2503 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2504 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2505 */
2506 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2507
2508 if (atomic) {
2509 /*
2510 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2511 * if it can't schedule.
2512 */
2513 if (!(gfp_mask & __GFP_NOMEMALLOC))
2514 alloc_flags |= ALLOC_HARDER;
2515 /*
2516 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2517 * comment for __cpuset_node_allowed_softwall().
2518 */
2519 alloc_flags &= ~ALLOC_CPUSET;
2520 } else if (unlikely(rt_task(current)) && !in_interrupt())
2521 alloc_flags |= ALLOC_HARDER;
2522
2523 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2524 if (gfp_mask & __GFP_MEMALLOC)
2525 alloc_flags |= ALLOC_NO_WATERMARKS;
2526 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2527 alloc_flags |= ALLOC_NO_WATERMARKS;
2528 else if (!in_interrupt() &&
2529 ((current->flags & PF_MEMALLOC) ||
2530 unlikely(test_thread_flag(TIF_MEMDIE))))
2531 alloc_flags |= ALLOC_NO_WATERMARKS;
2532 }
2533 #ifdef CONFIG_CMA
2534 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2535 alloc_flags |= ALLOC_CMA;
2536 #endif
2537 return alloc_flags;
2538 }
2539
2540 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2541 {
2542 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2543 }
2544
2545 static inline struct page *
2546 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2547 struct zonelist *zonelist, enum zone_type high_zoneidx,
2548 nodemask_t *nodemask, struct zone *preferred_zone,
2549 int classzone_idx, int migratetype)
2550 {
2551 const gfp_t wait = gfp_mask & __GFP_WAIT;
2552 struct page *page = NULL;
2553 int alloc_flags;
2554 unsigned long pages_reclaimed = 0;
2555 unsigned long did_some_progress;
2556 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2557 bool deferred_compaction = false;
2558 int contended_compaction = COMPACT_CONTENDED_NONE;
2559
2560 /*
2561 * In the slowpath, we sanity check order to avoid ever trying to
2562 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2563 * be using allocators in order of preference for an area that is
2564 * too large.
2565 */
2566 if (order >= MAX_ORDER) {
2567 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2568 return NULL;
2569 }
2570
2571 /*
2572 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2573 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2574 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2575 * using a larger set of nodes after it has established that the
2576 * allowed per node queues are empty and that nodes are
2577 * over allocated.
2578 */
2579 if (IS_ENABLED(CONFIG_NUMA) &&
2580 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2581 goto nopage;
2582
2583 restart:
2584 if (!(gfp_mask & __GFP_NO_KSWAPD))
2585 wake_all_kswapds(order, zonelist, high_zoneidx,
2586 preferred_zone, nodemask);
2587
2588 /*
2589 * OK, we're below the kswapd watermark and have kicked background
2590 * reclaim. Now things get more complex, so set up alloc_flags according
2591 * to how we want to proceed.
2592 */
2593 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2594
2595 /*
2596 * Find the true preferred zone if the allocation is unconstrained by
2597 * cpusets.
2598 */
2599 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2600 struct zoneref *preferred_zoneref;
2601 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2602 NULL, &preferred_zone);
2603 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2604 }
2605
2606 rebalance:
2607 /* This is the last chance, in general, before the goto nopage. */
2608 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2609 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2610 preferred_zone, classzone_idx, migratetype);
2611 if (page)
2612 goto got_pg;
2613
2614 /* Allocate without watermarks if the context allows */
2615 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2616 /*
2617 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2618 * the allocation is high priority and these type of
2619 * allocations are system rather than user orientated
2620 */
2621 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2622
2623 page = __alloc_pages_high_priority(gfp_mask, order,
2624 zonelist, high_zoneidx, nodemask,
2625 preferred_zone, classzone_idx, migratetype);
2626 if (page) {
2627 goto got_pg;
2628 }
2629 }
2630
2631 /* Atomic allocations - we can't balance anything */
2632 if (!wait) {
2633 /*
2634 * All existing users of the deprecated __GFP_NOFAIL are
2635 * blockable, so warn of any new users that actually allow this
2636 * type of allocation to fail.
2637 */
2638 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2639 goto nopage;
2640 }
2641
2642 /* Avoid recursion of direct reclaim */
2643 if (current->flags & PF_MEMALLOC)
2644 goto nopage;
2645
2646 /* Avoid allocations with no watermarks from looping endlessly */
2647 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2648 goto nopage;
2649
2650 /*
2651 * Try direct compaction. The first pass is asynchronous. Subsequent
2652 * attempts after direct reclaim are synchronous
2653 */
2654 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2655 high_zoneidx, nodemask, alloc_flags,
2656 preferred_zone,
2657 classzone_idx, migratetype,
2658 migration_mode, &contended_compaction,
2659 &deferred_compaction);
2660 if (page)
2661 goto got_pg;
2662
2663 /* Checks for THP-specific high-order allocations */
2664 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2665 /*
2666 * If compaction is deferred for high-order allocations, it is
2667 * because sync compaction recently failed. If this is the case
2668 * and the caller requested a THP allocation, we do not want
2669 * to heavily disrupt the system, so we fail the allocation
2670 * instead of entering direct reclaim.
2671 */
2672 if (deferred_compaction)
2673 goto nopage;
2674
2675 /*
2676 * In all zones where compaction was attempted (and not
2677 * deferred or skipped), lock contention has been detected.
2678 * For THP allocation we do not want to disrupt the others
2679 * so we fallback to base pages instead.
2680 */
2681 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2682 goto nopage;
2683
2684 /*
2685 * If compaction was aborted due to need_resched(), we do not
2686 * want to further increase allocation latency, unless it is
2687 * khugepaged trying to collapse.
2688 */
2689 if (contended_compaction == COMPACT_CONTENDED_SCHED
2690 && !(current->flags & PF_KTHREAD))
2691 goto nopage;
2692 }
2693
2694 /*
2695 * It can become very expensive to allocate transparent hugepages at
2696 * fault, so use asynchronous memory compaction for THP unless it is
2697 * khugepaged trying to collapse.
2698 */
2699 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2700 (current->flags & PF_KTHREAD))
2701 migration_mode = MIGRATE_SYNC_LIGHT;
2702
2703 /* Try direct reclaim and then allocating */
2704 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2705 zonelist, high_zoneidx,
2706 nodemask,
2707 alloc_flags, preferred_zone,
2708 classzone_idx, migratetype,
2709 &did_some_progress);
2710 if (page)
2711 goto got_pg;
2712
2713 /*
2714 * If we failed to make any progress reclaiming, then we are
2715 * running out of options and have to consider going OOM
2716 */
2717 if (!did_some_progress) {
2718 if (oom_gfp_allowed(gfp_mask)) {
2719 if (oom_killer_disabled)
2720 goto nopage;
2721 /* Coredumps can quickly deplete all memory reserves */
2722 if ((current->flags & PF_DUMPCORE) &&
2723 !(gfp_mask & __GFP_NOFAIL))
2724 goto nopage;
2725 page = __alloc_pages_may_oom(gfp_mask, order,
2726 zonelist, high_zoneidx,
2727 nodemask, preferred_zone,
2728 classzone_idx, migratetype);
2729 if (page)
2730 goto got_pg;
2731
2732 if (!(gfp_mask & __GFP_NOFAIL)) {
2733 /*
2734 * The oom killer is not called for high-order
2735 * allocations that may fail, so if no progress
2736 * is being made, there are no other options and
2737 * retrying is unlikely to help.
2738 */
2739 if (order > PAGE_ALLOC_COSTLY_ORDER)
2740 goto nopage;
2741 /*
2742 * The oom killer is not called for lowmem
2743 * allocations to prevent needlessly killing
2744 * innocent tasks.
2745 */
2746 if (high_zoneidx < ZONE_NORMAL)
2747 goto nopage;
2748 }
2749
2750 goto restart;
2751 }
2752 }
2753
2754 /* Check if we should retry the allocation */
2755 pages_reclaimed += did_some_progress;
2756 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2757 pages_reclaimed)) {
2758 /* Wait for some write requests to complete then retry */
2759 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2760 goto rebalance;
2761 } else {
2762 /*
2763 * High-order allocations do not necessarily loop after
2764 * direct reclaim and reclaim/compaction depends on compaction
2765 * being called after reclaim so call directly if necessary
2766 */
2767 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2768 high_zoneidx, nodemask, alloc_flags,
2769 preferred_zone,
2770 classzone_idx, migratetype,
2771 migration_mode, &contended_compaction,
2772 &deferred_compaction);
2773 if (page)
2774 goto got_pg;
2775 }
2776
2777 nopage:
2778 warn_alloc_failed(gfp_mask, order, NULL);
2779 return page;
2780 got_pg:
2781 if (kmemcheck_enabled)
2782 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2783
2784 return page;
2785 }
2786
2787 /*
2788 * This is the 'heart' of the zoned buddy allocator.
2789 */
2790 struct page *
2791 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2792 struct zonelist *zonelist, nodemask_t *nodemask)
2793 {
2794 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2795 struct zone *preferred_zone;
2796 struct zoneref *preferred_zoneref;
2797 struct page *page = NULL;
2798 int migratetype = gfpflags_to_migratetype(gfp_mask);
2799 unsigned int cpuset_mems_cookie;
2800 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2801 int classzone_idx;
2802
2803 gfp_mask &= gfp_allowed_mask;
2804
2805 lockdep_trace_alloc(gfp_mask);
2806
2807 might_sleep_if(gfp_mask & __GFP_WAIT);
2808
2809 if (should_fail_alloc_page(gfp_mask, order))
2810 return NULL;
2811
2812 /*
2813 * Check the zones suitable for the gfp_mask contain at least one
2814 * valid zone. It's possible to have an empty zonelist as a result
2815 * of GFP_THISNODE and a memoryless node
2816 */
2817 if (unlikely(!zonelist->_zonerefs->zone))
2818 return NULL;
2819
2820 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2821 alloc_flags |= ALLOC_CMA;
2822
2823 retry_cpuset:
2824 cpuset_mems_cookie = read_mems_allowed_begin();
2825
2826 /* The preferred zone is used for statistics later */
2827 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2828 nodemask ? : &cpuset_current_mems_allowed,
2829 &preferred_zone);
2830 if (!preferred_zone)
2831 goto out;
2832 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2833
2834 /* First allocation attempt */
2835 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2836 zonelist, high_zoneidx, alloc_flags,
2837 preferred_zone, classzone_idx, migratetype);
2838 if (unlikely(!page)) {
2839 /*
2840 * Runtime PM, block IO and its error handling path
2841 * can deadlock because I/O on the device might not
2842 * complete.
2843 */
2844 gfp_mask = memalloc_noio_flags(gfp_mask);
2845 page = __alloc_pages_slowpath(gfp_mask, order,
2846 zonelist, high_zoneidx, nodemask,
2847 preferred_zone, classzone_idx, migratetype);
2848 }
2849
2850 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2851
2852 out:
2853 /*
2854 * When updating a task's mems_allowed, it is possible to race with
2855 * parallel threads in such a way that an allocation can fail while
2856 * the mask is being updated. If a page allocation is about to fail,
2857 * check if the cpuset changed during allocation and if so, retry.
2858 */
2859 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2860 goto retry_cpuset;
2861
2862 return page;
2863 }
2864 EXPORT_SYMBOL(__alloc_pages_nodemask);
2865
2866 /*
2867 * Common helper functions.
2868 */
2869 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2870 {
2871 struct page *page;
2872
2873 /*
2874 * __get_free_pages() returns a 32-bit address, which cannot represent
2875 * a highmem page
2876 */
2877 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2878
2879 page = alloc_pages(gfp_mask, order);
2880 if (!page)
2881 return 0;
2882 return (unsigned long) page_address(page);
2883 }
2884 EXPORT_SYMBOL(__get_free_pages);
2885
2886 unsigned long get_zeroed_page(gfp_t gfp_mask)
2887 {
2888 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2889 }
2890 EXPORT_SYMBOL(get_zeroed_page);
2891
2892 void __free_pages(struct page *page, unsigned int order)
2893 {
2894 if (put_page_testzero(page)) {
2895 if (order == 0)
2896 free_hot_cold_page(page, false);
2897 else
2898 __free_pages_ok(page, order);
2899 }
2900 }
2901
2902 EXPORT_SYMBOL(__free_pages);
2903
2904 void free_pages(unsigned long addr, unsigned int order)
2905 {
2906 if (addr != 0) {
2907 VM_BUG_ON(!virt_addr_valid((void *)addr));
2908 __free_pages(virt_to_page((void *)addr), order);
2909 }
2910 }
2911
2912 EXPORT_SYMBOL(free_pages);
2913
2914 /*
2915 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2916 * of the current memory cgroup.
2917 *
2918 * It should be used when the caller would like to use kmalloc, but since the
2919 * allocation is large, it has to fall back to the page allocator.
2920 */
2921 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2922 {
2923 struct page *page;
2924 struct mem_cgroup *memcg = NULL;
2925
2926 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2927 return NULL;
2928 page = alloc_pages(gfp_mask, order);
2929 memcg_kmem_commit_charge(page, memcg, order);
2930 return page;
2931 }
2932
2933 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2934 {
2935 struct page *page;
2936 struct mem_cgroup *memcg = NULL;
2937
2938 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2939 return NULL;
2940 page = alloc_pages_node(nid, gfp_mask, order);
2941 memcg_kmem_commit_charge(page, memcg, order);
2942 return page;
2943 }
2944
2945 /*
2946 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2947 * alloc_kmem_pages.
2948 */
2949 void __free_kmem_pages(struct page *page, unsigned int order)
2950 {
2951 memcg_kmem_uncharge_pages(page, order);
2952 __free_pages(page, order);
2953 }
2954
2955 void free_kmem_pages(unsigned long addr, unsigned int order)
2956 {
2957 if (addr != 0) {
2958 VM_BUG_ON(!virt_addr_valid((void *)addr));
2959 __free_kmem_pages(virt_to_page((void *)addr), order);
2960 }
2961 }
2962
2963 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2964 {
2965 if (addr) {
2966 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2967 unsigned long used = addr + PAGE_ALIGN(size);
2968
2969 split_page(virt_to_page((void *)addr), order);
2970 while (used < alloc_end) {
2971 free_page(used);
2972 used += PAGE_SIZE;
2973 }
2974 }
2975 return (void *)addr;
2976 }
2977
2978 /**
2979 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2980 * @size: the number of bytes to allocate
2981 * @gfp_mask: GFP flags for the allocation
2982 *
2983 * This function is similar to alloc_pages(), except that it allocates the
2984 * minimum number of pages to satisfy the request. alloc_pages() can only
2985 * allocate memory in power-of-two pages.
2986 *
2987 * This function is also limited by MAX_ORDER.
2988 *
2989 * Memory allocated by this function must be released by free_pages_exact().
2990 */
2991 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2992 {
2993 unsigned int order = get_order(size);
2994 unsigned long addr;
2995
2996 addr = __get_free_pages(gfp_mask, order);
2997 return make_alloc_exact(addr, order, size);
2998 }
2999 EXPORT_SYMBOL(alloc_pages_exact);
3000
3001 /**
3002 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3003 * pages on a node.
3004 * @nid: the preferred node ID where memory should be allocated
3005 * @size: the number of bytes to allocate
3006 * @gfp_mask: GFP flags for the allocation
3007 *
3008 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3009 * back.
3010 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3011 * but is not exact.
3012 */
3013 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3014 {
3015 unsigned order = get_order(size);
3016 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3017 if (!p)
3018 return NULL;
3019 return make_alloc_exact((unsigned long)page_address(p), order, size);
3020 }
3021
3022 /**
3023 * free_pages_exact - release memory allocated via alloc_pages_exact()
3024 * @virt: the value returned by alloc_pages_exact.
3025 * @size: size of allocation, same value as passed to alloc_pages_exact().
3026 *
3027 * Release the memory allocated by a previous call to alloc_pages_exact.
3028 */
3029 void free_pages_exact(void *virt, size_t size)
3030 {
3031 unsigned long addr = (unsigned long)virt;
3032 unsigned long end = addr + PAGE_ALIGN(size);
3033
3034 while (addr < end) {
3035 free_page(addr);
3036 addr += PAGE_SIZE;
3037 }
3038 }
3039 EXPORT_SYMBOL(free_pages_exact);
3040
3041 /**
3042 * nr_free_zone_pages - count number of pages beyond high watermark
3043 * @offset: The zone index of the highest zone
3044 *
3045 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3046 * high watermark within all zones at or below a given zone index. For each
3047 * zone, the number of pages is calculated as:
3048 * managed_pages - high_pages
3049 */
3050 static unsigned long nr_free_zone_pages(int offset)
3051 {
3052 struct zoneref *z;
3053 struct zone *zone;
3054
3055 /* Just pick one node, since fallback list is circular */
3056 unsigned long sum = 0;
3057
3058 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3059
3060 for_each_zone_zonelist(zone, z, zonelist, offset) {
3061 unsigned long size = zone->managed_pages;
3062 unsigned long high = high_wmark_pages(zone);
3063 if (size > high)
3064 sum += size - high;
3065 }
3066
3067 return sum;
3068 }
3069
3070 /**
3071 * nr_free_buffer_pages - count number of pages beyond high watermark
3072 *
3073 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3074 * watermark within ZONE_DMA and ZONE_NORMAL.
3075 */
3076 unsigned long nr_free_buffer_pages(void)
3077 {
3078 return nr_free_zone_pages(gfp_zone(GFP_USER));
3079 }
3080 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3081
3082 /**
3083 * nr_free_pagecache_pages - count number of pages beyond high watermark
3084 *
3085 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3086 * high watermark within all zones.
3087 */
3088 unsigned long nr_free_pagecache_pages(void)
3089 {
3090 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3091 }
3092
3093 static inline void show_node(struct zone *zone)
3094 {
3095 if (IS_ENABLED(CONFIG_NUMA))
3096 printk("Node %d ", zone_to_nid(zone));
3097 }
3098
3099 void si_meminfo(struct sysinfo *val)
3100 {
3101 val->totalram = totalram_pages;
3102 val->sharedram = global_page_state(NR_SHMEM);
3103 val->freeram = global_page_state(NR_FREE_PAGES);
3104 val->bufferram = nr_blockdev_pages();
3105 val->totalhigh = totalhigh_pages;
3106 val->freehigh = nr_free_highpages();
3107 val->mem_unit = PAGE_SIZE;
3108 }
3109
3110 EXPORT_SYMBOL(si_meminfo);
3111
3112 #ifdef CONFIG_NUMA
3113 void si_meminfo_node(struct sysinfo *val, int nid)
3114 {
3115 int zone_type; /* needs to be signed */
3116 unsigned long managed_pages = 0;
3117 pg_data_t *pgdat = NODE_DATA(nid);
3118
3119 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3120 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3121 val->totalram = managed_pages;
3122 val->sharedram = node_page_state(nid, NR_SHMEM);
3123 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3124 #ifdef CONFIG_HIGHMEM
3125 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3126 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3127 NR_FREE_PAGES);
3128 #else
3129 val->totalhigh = 0;
3130 val->freehigh = 0;
3131 #endif
3132 val->mem_unit = PAGE_SIZE;
3133 }
3134 #endif
3135
3136 /*
3137 * Determine whether the node should be displayed or not, depending on whether
3138 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3139 */
3140 bool skip_free_areas_node(unsigned int flags, int nid)
3141 {
3142 bool ret = false;
3143 unsigned int cpuset_mems_cookie;
3144
3145 if (!(flags & SHOW_MEM_FILTER_NODES))
3146 goto out;
3147
3148 do {
3149 cpuset_mems_cookie = read_mems_allowed_begin();
3150 ret = !node_isset(nid, cpuset_current_mems_allowed);
3151 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3152 out:
3153 return ret;
3154 }
3155
3156 #define K(x) ((x) << (PAGE_SHIFT-10))
3157
3158 static void show_migration_types(unsigned char type)
3159 {
3160 static const char types[MIGRATE_TYPES] = {
3161 [MIGRATE_UNMOVABLE] = 'U',
3162 [MIGRATE_RECLAIMABLE] = 'E',
3163 [MIGRATE_MOVABLE] = 'M',
3164 [MIGRATE_RESERVE] = 'R',
3165 #ifdef CONFIG_CMA
3166 [MIGRATE_CMA] = 'C',
3167 #endif
3168 #ifdef CONFIG_MEMORY_ISOLATION
3169 [MIGRATE_ISOLATE] = 'I',
3170 #endif
3171 };
3172 char tmp[MIGRATE_TYPES + 1];
3173 char *p = tmp;
3174 int i;
3175
3176 for (i = 0; i < MIGRATE_TYPES; i++) {
3177 if (type & (1 << i))
3178 *p++ = types[i];
3179 }
3180
3181 *p = '\0';
3182 printk("(%s) ", tmp);
3183 }
3184
3185 /*
3186 * Show free area list (used inside shift_scroll-lock stuff)
3187 * We also calculate the percentage fragmentation. We do this by counting the
3188 * memory on each free list with the exception of the first item on the list.
3189 * Suppresses nodes that are not allowed by current's cpuset if
3190 * SHOW_MEM_FILTER_NODES is passed.
3191 */
3192 void show_free_areas(unsigned int filter)
3193 {
3194 int cpu;
3195 struct zone *zone;
3196
3197 for_each_populated_zone(zone) {
3198 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3199 continue;
3200 show_node(zone);
3201 printk("%s per-cpu:\n", zone->name);
3202
3203 for_each_online_cpu(cpu) {
3204 struct per_cpu_pageset *pageset;
3205
3206 pageset = per_cpu_ptr(zone->pageset, cpu);
3207
3208 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3209 cpu, pageset->pcp.high,
3210 pageset->pcp.batch, pageset->pcp.count);
3211 }
3212 }
3213
3214 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3215 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3216 " unevictable:%lu"
3217 " dirty:%lu writeback:%lu unstable:%lu\n"
3218 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3219 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3220 " free_cma:%lu\n",
3221 global_page_state(NR_ACTIVE_ANON),
3222 global_page_state(NR_INACTIVE_ANON),
3223 global_page_state(NR_ISOLATED_ANON),
3224 global_page_state(NR_ACTIVE_FILE),
3225 global_page_state(NR_INACTIVE_FILE),
3226 global_page_state(NR_ISOLATED_FILE),
3227 global_page_state(NR_UNEVICTABLE),
3228 global_page_state(NR_FILE_DIRTY),
3229 global_page_state(NR_WRITEBACK),
3230 global_page_state(NR_UNSTABLE_NFS),
3231 global_page_state(NR_FREE_PAGES),
3232 global_page_state(NR_SLAB_RECLAIMABLE),
3233 global_page_state(NR_SLAB_UNRECLAIMABLE),
3234 global_page_state(NR_FILE_MAPPED),
3235 global_page_state(NR_SHMEM),
3236 global_page_state(NR_PAGETABLE),
3237 global_page_state(NR_BOUNCE),
3238 global_page_state(NR_FREE_CMA_PAGES));
3239
3240 for_each_populated_zone(zone) {
3241 int i;
3242
3243 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3244 continue;
3245 show_node(zone);
3246 printk("%s"
3247 " free:%lukB"
3248 " min:%lukB"
3249 " low:%lukB"
3250 " high:%lukB"
3251 " active_anon:%lukB"
3252 " inactive_anon:%lukB"
3253 " active_file:%lukB"
3254 " inactive_file:%lukB"
3255 " unevictable:%lukB"
3256 " isolated(anon):%lukB"
3257 " isolated(file):%lukB"
3258 " present:%lukB"
3259 " managed:%lukB"
3260 " mlocked:%lukB"
3261 " dirty:%lukB"
3262 " writeback:%lukB"
3263 " mapped:%lukB"
3264 " shmem:%lukB"
3265 " slab_reclaimable:%lukB"
3266 " slab_unreclaimable:%lukB"
3267 " kernel_stack:%lukB"
3268 " pagetables:%lukB"
3269 " unstable:%lukB"
3270 " bounce:%lukB"
3271 " free_cma:%lukB"
3272 " writeback_tmp:%lukB"
3273 " pages_scanned:%lu"
3274 " all_unreclaimable? %s"
3275 "\n",
3276 zone->name,
3277 K(zone_page_state(zone, NR_FREE_PAGES)),
3278 K(min_wmark_pages(zone)),
3279 K(low_wmark_pages(zone)),
3280 K(high_wmark_pages(zone)),
3281 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3282 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3283 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3284 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3285 K(zone_page_state(zone, NR_UNEVICTABLE)),
3286 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3287 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3288 K(zone->present_pages),
3289 K(zone->managed_pages),
3290 K(zone_page_state(zone, NR_MLOCK)),
3291 K(zone_page_state(zone, NR_FILE_DIRTY)),
3292 K(zone_page_state(zone, NR_WRITEBACK)),
3293 K(zone_page_state(zone, NR_FILE_MAPPED)),
3294 K(zone_page_state(zone, NR_SHMEM)),
3295 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3296 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3297 zone_page_state(zone, NR_KERNEL_STACK) *
3298 THREAD_SIZE / 1024,
3299 K(zone_page_state(zone, NR_PAGETABLE)),
3300 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3301 K(zone_page_state(zone, NR_BOUNCE)),
3302 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3303 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3304 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3305 (!zone_reclaimable(zone) ? "yes" : "no")
3306 );
3307 printk("lowmem_reserve[]:");
3308 for (i = 0; i < MAX_NR_ZONES; i++)
3309 printk(" %ld", zone->lowmem_reserve[i]);
3310 printk("\n");
3311 }
3312
3313 for_each_populated_zone(zone) {
3314 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3315 unsigned char types[MAX_ORDER];
3316
3317 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3318 continue;
3319 show_node(zone);
3320 printk("%s: ", zone->name);
3321
3322 spin_lock_irqsave(&zone->lock, flags);
3323 for (order = 0; order < MAX_ORDER; order++) {
3324 struct free_area *area = &zone->free_area[order];
3325 int type;
3326
3327 nr[order] = area->nr_free;
3328 total += nr[order] << order;
3329
3330 types[order] = 0;
3331 for (type = 0; type < MIGRATE_TYPES; type++) {
3332 if (!list_empty(&area->free_list[type]))
3333 types[order] |= 1 << type;
3334 }
3335 }
3336 spin_unlock_irqrestore(&zone->lock, flags);
3337 for (order = 0; order < MAX_ORDER; order++) {
3338 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3339 if (nr[order])
3340 show_migration_types(types[order]);
3341 }
3342 printk("= %lukB\n", K(total));
3343 }
3344
3345 hugetlb_show_meminfo();
3346
3347 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3348
3349 show_swap_cache_info();
3350 }
3351
3352 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3353 {
3354 zoneref->zone = zone;
3355 zoneref->zone_idx = zone_idx(zone);
3356 }
3357
3358 /*
3359 * Builds allocation fallback zone lists.
3360 *
3361 * Add all populated zones of a node to the zonelist.
3362 */
3363 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3364 int nr_zones)
3365 {
3366 struct zone *zone;
3367 enum zone_type zone_type = MAX_NR_ZONES;
3368
3369 do {
3370 zone_type--;
3371 zone = pgdat->node_zones + zone_type;
3372 if (populated_zone(zone)) {
3373 zoneref_set_zone(zone,
3374 &zonelist->_zonerefs[nr_zones++]);
3375 check_highest_zone(zone_type);
3376 }
3377 } while (zone_type);
3378
3379 return nr_zones;
3380 }
3381
3382
3383 /*
3384 * zonelist_order:
3385 * 0 = automatic detection of better ordering.
3386 * 1 = order by ([node] distance, -zonetype)
3387 * 2 = order by (-zonetype, [node] distance)
3388 *
3389 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3390 * the same zonelist. So only NUMA can configure this param.
3391 */
3392 #define ZONELIST_ORDER_DEFAULT 0
3393 #define ZONELIST_ORDER_NODE 1
3394 #define ZONELIST_ORDER_ZONE 2
3395
3396 /* zonelist order in the kernel.
3397 * set_zonelist_order() will set this to NODE or ZONE.
3398 */
3399 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3400 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3401
3402
3403 #ifdef CONFIG_NUMA
3404 /* The value user specified ....changed by config */
3405 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3406 /* string for sysctl */
3407 #define NUMA_ZONELIST_ORDER_LEN 16
3408 char numa_zonelist_order[16] = "default";
3409
3410 /*
3411 * interface for configure zonelist ordering.
3412 * command line option "numa_zonelist_order"
3413 * = "[dD]efault - default, automatic configuration.
3414 * = "[nN]ode - order by node locality, then by zone within node
3415 * = "[zZ]one - order by zone, then by locality within zone
3416 */
3417
3418 static int __parse_numa_zonelist_order(char *s)
3419 {
3420 if (*s == 'd' || *s == 'D') {
3421 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3422 } else if (*s == 'n' || *s == 'N') {
3423 user_zonelist_order = ZONELIST_ORDER_NODE;
3424 } else if (*s == 'z' || *s == 'Z') {
3425 user_zonelist_order = ZONELIST_ORDER_ZONE;
3426 } else {
3427 printk(KERN_WARNING
3428 "Ignoring invalid numa_zonelist_order value: "
3429 "%s\n", s);
3430 return -EINVAL;
3431 }
3432 return 0;
3433 }
3434
3435 static __init int setup_numa_zonelist_order(char *s)
3436 {
3437 int ret;
3438
3439 if (!s)
3440 return 0;
3441
3442 ret = __parse_numa_zonelist_order(s);
3443 if (ret == 0)
3444 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3445
3446 return ret;
3447 }
3448 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3449
3450 /*
3451 * sysctl handler for numa_zonelist_order
3452 */
3453 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3454 void __user *buffer, size_t *length,
3455 loff_t *ppos)
3456 {
3457 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3458 int ret;
3459 static DEFINE_MUTEX(zl_order_mutex);
3460
3461 mutex_lock(&zl_order_mutex);
3462 if (write) {
3463 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3464 ret = -EINVAL;
3465 goto out;
3466 }
3467 strcpy(saved_string, (char *)table->data);
3468 }
3469 ret = proc_dostring(table, write, buffer, length, ppos);
3470 if (ret)
3471 goto out;
3472 if (write) {
3473 int oldval = user_zonelist_order;
3474
3475 ret = __parse_numa_zonelist_order((char *)table->data);
3476 if (ret) {
3477 /*
3478 * bogus value. restore saved string
3479 */
3480 strncpy((char *)table->data, saved_string,
3481 NUMA_ZONELIST_ORDER_LEN);
3482 user_zonelist_order = oldval;
3483 } else if (oldval != user_zonelist_order) {
3484 mutex_lock(&zonelists_mutex);
3485 build_all_zonelists(NULL, NULL);
3486 mutex_unlock(&zonelists_mutex);
3487 }
3488 }
3489 out:
3490 mutex_unlock(&zl_order_mutex);
3491 return ret;
3492 }
3493
3494
3495 #define MAX_NODE_LOAD (nr_online_nodes)
3496 static int node_load[MAX_NUMNODES];
3497
3498 /**
3499 * find_next_best_node - find the next node that should appear in a given node's fallback list
3500 * @node: node whose fallback list we're appending
3501 * @used_node_mask: nodemask_t of already used nodes
3502 *
3503 * We use a number of factors to determine which is the next node that should
3504 * appear on a given node's fallback list. The node should not have appeared
3505 * already in @node's fallback list, and it should be the next closest node
3506 * according to the distance array (which contains arbitrary distance values
3507 * from each node to each node in the system), and should also prefer nodes
3508 * with no CPUs, since presumably they'll have very little allocation pressure
3509 * on them otherwise.
3510 * It returns -1 if no node is found.
3511 */
3512 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3513 {
3514 int n, val;
3515 int min_val = INT_MAX;
3516 int best_node = NUMA_NO_NODE;
3517 const struct cpumask *tmp = cpumask_of_node(0);
3518
3519 /* Use the local node if we haven't already */
3520 if (!node_isset(node, *used_node_mask)) {
3521 node_set(node, *used_node_mask);
3522 return node;
3523 }
3524
3525 for_each_node_state(n, N_MEMORY) {
3526
3527 /* Don't want a node to appear more than once */
3528 if (node_isset(n, *used_node_mask))
3529 continue;
3530
3531 /* Use the distance array to find the distance */
3532 val = node_distance(node, n);
3533
3534 /* Penalize nodes under us ("prefer the next node") */
3535 val += (n < node);
3536
3537 /* Give preference to headless and unused nodes */
3538 tmp = cpumask_of_node(n);
3539 if (!cpumask_empty(tmp))
3540 val += PENALTY_FOR_NODE_WITH_CPUS;
3541
3542 /* Slight preference for less loaded node */
3543 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3544 val += node_load[n];
3545
3546 if (val < min_val) {
3547 min_val = val;
3548 best_node = n;
3549 }
3550 }
3551
3552 if (best_node >= 0)
3553 node_set(best_node, *used_node_mask);
3554
3555 return best_node;
3556 }
3557
3558
3559 /*
3560 * Build zonelists ordered by node and zones within node.
3561 * This results in maximum locality--normal zone overflows into local
3562 * DMA zone, if any--but risks exhausting DMA zone.
3563 */
3564 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3565 {
3566 int j;
3567 struct zonelist *zonelist;
3568
3569 zonelist = &pgdat->node_zonelists[0];
3570 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3571 ;
3572 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3573 zonelist->_zonerefs[j].zone = NULL;
3574 zonelist->_zonerefs[j].zone_idx = 0;
3575 }
3576
3577 /*
3578 * Build gfp_thisnode zonelists
3579 */
3580 static void build_thisnode_zonelists(pg_data_t *pgdat)
3581 {
3582 int j;
3583 struct zonelist *zonelist;
3584
3585 zonelist = &pgdat->node_zonelists[1];
3586 j = build_zonelists_node(pgdat, zonelist, 0);
3587 zonelist->_zonerefs[j].zone = NULL;
3588 zonelist->_zonerefs[j].zone_idx = 0;
3589 }
3590
3591 /*
3592 * Build zonelists ordered by zone and nodes within zones.
3593 * This results in conserving DMA zone[s] until all Normal memory is
3594 * exhausted, but results in overflowing to remote node while memory
3595 * may still exist in local DMA zone.
3596 */
3597 static int node_order[MAX_NUMNODES];
3598
3599 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3600 {
3601 int pos, j, node;
3602 int zone_type; /* needs to be signed */
3603 struct zone *z;
3604 struct zonelist *zonelist;
3605
3606 zonelist = &pgdat->node_zonelists[0];
3607 pos = 0;
3608 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3609 for (j = 0; j < nr_nodes; j++) {
3610 node = node_order[j];
3611 z = &NODE_DATA(node)->node_zones[zone_type];
3612 if (populated_zone(z)) {
3613 zoneref_set_zone(z,
3614 &zonelist->_zonerefs[pos++]);
3615 check_highest_zone(zone_type);
3616 }
3617 }
3618 }
3619 zonelist->_zonerefs[pos].zone = NULL;
3620 zonelist->_zonerefs[pos].zone_idx = 0;
3621 }
3622
3623 #if defined(CONFIG_64BIT)
3624 /*
3625 * Devices that require DMA32/DMA are relatively rare and do not justify a
3626 * penalty to every machine in case the specialised case applies. Default
3627 * to Node-ordering on 64-bit NUMA machines
3628 */
3629 static int default_zonelist_order(void)
3630 {
3631 return ZONELIST_ORDER_NODE;
3632 }
3633 #else
3634 /*
3635 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3636 * by the kernel. If processes running on node 0 deplete the low memory zone
3637 * then reclaim will occur more frequency increasing stalls and potentially
3638 * be easier to OOM if a large percentage of the zone is under writeback or
3639 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3640 * Hence, default to zone ordering on 32-bit.
3641 */
3642 static int default_zonelist_order(void)
3643 {
3644 return ZONELIST_ORDER_ZONE;
3645 }
3646 #endif /* CONFIG_64BIT */
3647
3648 static void set_zonelist_order(void)
3649 {
3650 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3651 current_zonelist_order = default_zonelist_order();
3652 else
3653 current_zonelist_order = user_zonelist_order;
3654 }
3655
3656 static void build_zonelists(pg_data_t *pgdat)
3657 {
3658 int j, node, load;
3659 enum zone_type i;
3660 nodemask_t used_mask;
3661 int local_node, prev_node;
3662 struct zonelist *zonelist;
3663 int order = current_zonelist_order;
3664
3665 /* initialize zonelists */
3666 for (i = 0; i < MAX_ZONELISTS; i++) {
3667 zonelist = pgdat->node_zonelists + i;
3668 zonelist->_zonerefs[0].zone = NULL;
3669 zonelist->_zonerefs[0].zone_idx = 0;
3670 }
3671
3672 /* NUMA-aware ordering of nodes */
3673 local_node = pgdat->node_id;
3674 load = nr_online_nodes;
3675 prev_node = local_node;
3676 nodes_clear(used_mask);
3677
3678 memset(node_order, 0, sizeof(node_order));
3679 j = 0;
3680
3681 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3682 /*
3683 * We don't want to pressure a particular node.
3684 * So adding penalty to the first node in same
3685 * distance group to make it round-robin.
3686 */
3687 if (node_distance(local_node, node) !=
3688 node_distance(local_node, prev_node))
3689 node_load[node] = load;
3690
3691 prev_node = node;
3692 load--;
3693 if (order == ZONELIST_ORDER_NODE)
3694 build_zonelists_in_node_order(pgdat, node);
3695 else
3696 node_order[j++] = node; /* remember order */
3697 }
3698
3699 if (order == ZONELIST_ORDER_ZONE) {
3700 /* calculate node order -- i.e., DMA last! */
3701 build_zonelists_in_zone_order(pgdat, j);
3702 }
3703
3704 build_thisnode_zonelists(pgdat);
3705 }
3706
3707 /* Construct the zonelist performance cache - see further mmzone.h */
3708 static void build_zonelist_cache(pg_data_t *pgdat)
3709 {
3710 struct zonelist *zonelist;
3711 struct zonelist_cache *zlc;
3712 struct zoneref *z;
3713
3714 zonelist = &pgdat->node_zonelists[0];
3715 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3716 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3717 for (z = zonelist->_zonerefs; z->zone; z++)
3718 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3719 }
3720
3721 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3722 /*
3723 * Return node id of node used for "local" allocations.
3724 * I.e., first node id of first zone in arg node's generic zonelist.
3725 * Used for initializing percpu 'numa_mem', which is used primarily
3726 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3727 */
3728 int local_memory_node(int node)
3729 {
3730 struct zone *zone;
3731
3732 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3733 gfp_zone(GFP_KERNEL),
3734 NULL,
3735 &zone);
3736 return zone->node;
3737 }
3738 #endif
3739
3740 #else /* CONFIG_NUMA */
3741
3742 static void set_zonelist_order(void)
3743 {
3744 current_zonelist_order = ZONELIST_ORDER_ZONE;
3745 }
3746
3747 static void build_zonelists(pg_data_t *pgdat)
3748 {
3749 int node, local_node;
3750 enum zone_type j;
3751 struct zonelist *zonelist;
3752
3753 local_node = pgdat->node_id;
3754
3755 zonelist = &pgdat->node_zonelists[0];
3756 j = build_zonelists_node(pgdat, zonelist, 0);
3757
3758 /*
3759 * Now we build the zonelist so that it contains the zones
3760 * of all the other nodes.
3761 * We don't want to pressure a particular node, so when
3762 * building the zones for node N, we make sure that the
3763 * zones coming right after the local ones are those from
3764 * node N+1 (modulo N)
3765 */
3766 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3767 if (!node_online(node))
3768 continue;
3769 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3770 }
3771 for (node = 0; node < local_node; node++) {
3772 if (!node_online(node))
3773 continue;
3774 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3775 }
3776
3777 zonelist->_zonerefs[j].zone = NULL;
3778 zonelist->_zonerefs[j].zone_idx = 0;
3779 }
3780
3781 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3782 static void build_zonelist_cache(pg_data_t *pgdat)
3783 {
3784 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3785 }
3786
3787 #endif /* CONFIG_NUMA */
3788
3789 /*
3790 * Boot pageset table. One per cpu which is going to be used for all
3791 * zones and all nodes. The parameters will be set in such a way
3792 * that an item put on a list will immediately be handed over to
3793 * the buddy list. This is safe since pageset manipulation is done
3794 * with interrupts disabled.
3795 *
3796 * The boot_pagesets must be kept even after bootup is complete for
3797 * unused processors and/or zones. They do play a role for bootstrapping
3798 * hotplugged processors.
3799 *
3800 * zoneinfo_show() and maybe other functions do
3801 * not check if the processor is online before following the pageset pointer.
3802 * Other parts of the kernel may not check if the zone is available.
3803 */
3804 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3805 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3806 static void setup_zone_pageset(struct zone *zone);
3807
3808 /*
3809 * Global mutex to protect against size modification of zonelists
3810 * as well as to serialize pageset setup for the new populated zone.
3811 */
3812 DEFINE_MUTEX(zonelists_mutex);
3813
3814 /* return values int ....just for stop_machine() */
3815 static int __build_all_zonelists(void *data)
3816 {
3817 int nid;
3818 int cpu;
3819 pg_data_t *self = data;
3820
3821 #ifdef CONFIG_NUMA
3822 memset(node_load, 0, sizeof(node_load));
3823 #endif
3824
3825 if (self && !node_online(self->node_id)) {
3826 build_zonelists(self);
3827 build_zonelist_cache(self);
3828 }
3829
3830 for_each_online_node(nid) {
3831 pg_data_t *pgdat = NODE_DATA(nid);
3832
3833 build_zonelists(pgdat);
3834 build_zonelist_cache(pgdat);
3835 }
3836
3837 /*
3838 * Initialize the boot_pagesets that are going to be used
3839 * for bootstrapping processors. The real pagesets for
3840 * each zone will be allocated later when the per cpu
3841 * allocator is available.
3842 *
3843 * boot_pagesets are used also for bootstrapping offline
3844 * cpus if the system is already booted because the pagesets
3845 * are needed to initialize allocators on a specific cpu too.
3846 * F.e. the percpu allocator needs the page allocator which
3847 * needs the percpu allocator in order to allocate its pagesets
3848 * (a chicken-egg dilemma).
3849 */
3850 for_each_possible_cpu(cpu) {
3851 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3852
3853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3854 /*
3855 * We now know the "local memory node" for each node--
3856 * i.e., the node of the first zone in the generic zonelist.
3857 * Set up numa_mem percpu variable for on-line cpus. During
3858 * boot, only the boot cpu should be on-line; we'll init the
3859 * secondary cpus' numa_mem as they come on-line. During
3860 * node/memory hotplug, we'll fixup all on-line cpus.
3861 */
3862 if (cpu_online(cpu))
3863 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3864 #endif
3865 }
3866
3867 return 0;
3868 }
3869
3870 /*
3871 * Called with zonelists_mutex held always
3872 * unless system_state == SYSTEM_BOOTING.
3873 */
3874 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3875 {
3876 set_zonelist_order();
3877
3878 if (system_state == SYSTEM_BOOTING) {
3879 __build_all_zonelists(NULL);
3880 mminit_verify_zonelist();
3881 cpuset_init_current_mems_allowed();
3882 } else {
3883 #ifdef CONFIG_MEMORY_HOTPLUG
3884 if (zone)
3885 setup_zone_pageset(zone);
3886 #endif
3887 /* we have to stop all cpus to guarantee there is no user
3888 of zonelist */
3889 stop_machine(__build_all_zonelists, pgdat, NULL);
3890 /* cpuset refresh routine should be here */
3891 }
3892 vm_total_pages = nr_free_pagecache_pages();
3893 /*
3894 * Disable grouping by mobility if the number of pages in the
3895 * system is too low to allow the mechanism to work. It would be
3896 * more accurate, but expensive to check per-zone. This check is
3897 * made on memory-hotadd so a system can start with mobility
3898 * disabled and enable it later
3899 */
3900 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3901 page_group_by_mobility_disabled = 1;
3902 else
3903 page_group_by_mobility_disabled = 0;
3904
3905 printk("Built %i zonelists in %s order, mobility grouping %s. "
3906 "Total pages: %ld\n",
3907 nr_online_nodes,
3908 zonelist_order_name[current_zonelist_order],
3909 page_group_by_mobility_disabled ? "off" : "on",
3910 vm_total_pages);
3911 #ifdef CONFIG_NUMA
3912 printk("Policy zone: %s\n", zone_names[policy_zone]);
3913 #endif
3914 }
3915
3916 /*
3917 * Helper functions to size the waitqueue hash table.
3918 * Essentially these want to choose hash table sizes sufficiently
3919 * large so that collisions trying to wait on pages are rare.
3920 * But in fact, the number of active page waitqueues on typical
3921 * systems is ridiculously low, less than 200. So this is even
3922 * conservative, even though it seems large.
3923 *
3924 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3925 * waitqueues, i.e. the size of the waitq table given the number of pages.
3926 */
3927 #define PAGES_PER_WAITQUEUE 256
3928
3929 #ifndef CONFIG_MEMORY_HOTPLUG
3930 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3931 {
3932 unsigned long size = 1;
3933
3934 pages /= PAGES_PER_WAITQUEUE;
3935
3936 while (size < pages)
3937 size <<= 1;
3938
3939 /*
3940 * Once we have dozens or even hundreds of threads sleeping
3941 * on IO we've got bigger problems than wait queue collision.
3942 * Limit the size of the wait table to a reasonable size.
3943 */
3944 size = min(size, 4096UL);
3945
3946 return max(size, 4UL);
3947 }
3948 #else
3949 /*
3950 * A zone's size might be changed by hot-add, so it is not possible to determine
3951 * a suitable size for its wait_table. So we use the maximum size now.
3952 *
3953 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3954 *
3955 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3956 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3957 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3958 *
3959 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3960 * or more by the traditional way. (See above). It equals:
3961 *
3962 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3963 * ia64(16K page size) : = ( 8G + 4M)byte.
3964 * powerpc (64K page size) : = (32G +16M)byte.
3965 */
3966 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3967 {
3968 return 4096UL;
3969 }
3970 #endif
3971
3972 /*
3973 * This is an integer logarithm so that shifts can be used later
3974 * to extract the more random high bits from the multiplicative
3975 * hash function before the remainder is taken.
3976 */
3977 static inline unsigned long wait_table_bits(unsigned long size)
3978 {
3979 return ffz(~size);
3980 }
3981
3982 /*
3983 * Check if a pageblock contains reserved pages
3984 */
3985 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3986 {
3987 unsigned long pfn;
3988
3989 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3990 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3991 return 1;
3992 }
3993 return 0;
3994 }
3995
3996 /*
3997 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3998 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3999 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4000 * higher will lead to a bigger reserve which will get freed as contiguous
4001 * blocks as reclaim kicks in
4002 */
4003 static void setup_zone_migrate_reserve(struct zone *zone)
4004 {
4005 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4006 struct page *page;
4007 unsigned long block_migratetype;
4008 int reserve;
4009 int old_reserve;
4010
4011 /*
4012 * Get the start pfn, end pfn and the number of blocks to reserve
4013 * We have to be careful to be aligned to pageblock_nr_pages to
4014 * make sure that we always check pfn_valid for the first page in
4015 * the block.
4016 */
4017 start_pfn = zone->zone_start_pfn;
4018 end_pfn = zone_end_pfn(zone);
4019 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4020 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4021 pageblock_order;
4022
4023 /*
4024 * Reserve blocks are generally in place to help high-order atomic
4025 * allocations that are short-lived. A min_free_kbytes value that
4026 * would result in more than 2 reserve blocks for atomic allocations
4027 * is assumed to be in place to help anti-fragmentation for the
4028 * future allocation of hugepages at runtime.
4029 */
4030 reserve = min(2, reserve);
4031 old_reserve = zone->nr_migrate_reserve_block;
4032
4033 /* When memory hot-add, we almost always need to do nothing */
4034 if (reserve == old_reserve)
4035 return;
4036 zone->nr_migrate_reserve_block = reserve;
4037
4038 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4039 if (!pfn_valid(pfn))
4040 continue;
4041 page = pfn_to_page(pfn);
4042
4043 /* Watch out for overlapping nodes */
4044 if (page_to_nid(page) != zone_to_nid(zone))
4045 continue;
4046
4047 block_migratetype = get_pageblock_migratetype(page);
4048
4049 /* Only test what is necessary when the reserves are not met */
4050 if (reserve > 0) {
4051 /*
4052 * Blocks with reserved pages will never free, skip
4053 * them.
4054 */
4055 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4056 if (pageblock_is_reserved(pfn, block_end_pfn))
4057 continue;
4058
4059 /* If this block is reserved, account for it */
4060 if (block_migratetype == MIGRATE_RESERVE) {
4061 reserve--;
4062 continue;
4063 }
4064
4065 /* Suitable for reserving if this block is movable */
4066 if (block_migratetype == MIGRATE_MOVABLE) {
4067 set_pageblock_migratetype(page,
4068 MIGRATE_RESERVE);
4069 move_freepages_block(zone, page,
4070 MIGRATE_RESERVE);
4071 reserve--;
4072 continue;
4073 }
4074 } else if (!old_reserve) {
4075 /*
4076 * At boot time we don't need to scan the whole zone
4077 * for turning off MIGRATE_RESERVE.
4078 */
4079 break;
4080 }
4081
4082 /*
4083 * If the reserve is met and this is a previous reserved block,
4084 * take it back
4085 */
4086 if (block_migratetype == MIGRATE_RESERVE) {
4087 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4088 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4089 }
4090 }
4091 }
4092
4093 /*
4094 * Initially all pages are reserved - free ones are freed
4095 * up by free_all_bootmem() once the early boot process is
4096 * done. Non-atomic initialization, single-pass.
4097 */
4098 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4099 unsigned long start_pfn, enum memmap_context context)
4100 {
4101 struct page *page;
4102 unsigned long end_pfn = start_pfn + size;
4103 unsigned long pfn;
4104 struct zone *z;
4105
4106 if (highest_memmap_pfn < end_pfn - 1)
4107 highest_memmap_pfn = end_pfn - 1;
4108
4109 z = &NODE_DATA(nid)->node_zones[zone];
4110 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4111 /*
4112 * There can be holes in boot-time mem_map[]s
4113 * handed to this function. They do not
4114 * exist on hotplugged memory.
4115 */
4116 if (context == MEMMAP_EARLY) {
4117 if (!early_pfn_valid(pfn))
4118 continue;
4119 if (!early_pfn_in_nid(pfn, nid))
4120 continue;
4121 }
4122 page = pfn_to_page(pfn);
4123 set_page_links(page, zone, nid, pfn);
4124 mminit_verify_page_links(page, zone, nid, pfn);
4125 init_page_count(page);
4126 page_mapcount_reset(page);
4127 page_cpupid_reset_last(page);
4128 SetPageReserved(page);
4129 /*
4130 * Mark the block movable so that blocks are reserved for
4131 * movable at startup. This will force kernel allocations
4132 * to reserve their blocks rather than leaking throughout
4133 * the address space during boot when many long-lived
4134 * kernel allocations are made. Later some blocks near
4135 * the start are marked MIGRATE_RESERVE by
4136 * setup_zone_migrate_reserve()
4137 *
4138 * bitmap is created for zone's valid pfn range. but memmap
4139 * can be created for invalid pages (for alignment)
4140 * check here not to call set_pageblock_migratetype() against
4141 * pfn out of zone.
4142 */
4143 if ((z->zone_start_pfn <= pfn)
4144 && (pfn < zone_end_pfn(z))
4145 && !(pfn & (pageblock_nr_pages - 1)))
4146 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4147
4148 INIT_LIST_HEAD(&page->lru);
4149 #ifdef WANT_PAGE_VIRTUAL
4150 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4151 if (!is_highmem_idx(zone))
4152 set_page_address(page, __va(pfn << PAGE_SHIFT));
4153 #endif
4154 }
4155 }
4156
4157 static void __meminit zone_init_free_lists(struct zone *zone)
4158 {
4159 unsigned int order, t;
4160 for_each_migratetype_order(order, t) {
4161 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4162 zone->free_area[order].nr_free = 0;
4163 }
4164 }
4165
4166 #ifndef __HAVE_ARCH_MEMMAP_INIT
4167 #define memmap_init(size, nid, zone, start_pfn) \
4168 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4169 #endif
4170
4171 static int zone_batchsize(struct zone *zone)
4172 {
4173 #ifdef CONFIG_MMU
4174 int batch;
4175
4176 /*
4177 * The per-cpu-pages pools are set to around 1000th of the
4178 * size of the zone. But no more than 1/2 of a meg.
4179 *
4180 * OK, so we don't know how big the cache is. So guess.
4181 */
4182 batch = zone->managed_pages / 1024;
4183 if (batch * PAGE_SIZE > 512 * 1024)
4184 batch = (512 * 1024) / PAGE_SIZE;
4185 batch /= 4; /* We effectively *= 4 below */
4186 if (batch < 1)
4187 batch = 1;
4188
4189 /*
4190 * Clamp the batch to a 2^n - 1 value. Having a power
4191 * of 2 value was found to be more likely to have
4192 * suboptimal cache aliasing properties in some cases.
4193 *
4194 * For example if 2 tasks are alternately allocating
4195 * batches of pages, one task can end up with a lot
4196 * of pages of one half of the possible page colors
4197 * and the other with pages of the other colors.
4198 */
4199 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4200
4201 return batch;
4202
4203 #else
4204 /* The deferral and batching of frees should be suppressed under NOMMU
4205 * conditions.
4206 *
4207 * The problem is that NOMMU needs to be able to allocate large chunks
4208 * of contiguous memory as there's no hardware page translation to
4209 * assemble apparent contiguous memory from discontiguous pages.
4210 *
4211 * Queueing large contiguous runs of pages for batching, however,
4212 * causes the pages to actually be freed in smaller chunks. As there
4213 * can be a significant delay between the individual batches being
4214 * recycled, this leads to the once large chunks of space being
4215 * fragmented and becoming unavailable for high-order allocations.
4216 */
4217 return 0;
4218 #endif
4219 }
4220
4221 /*
4222 * pcp->high and pcp->batch values are related and dependent on one another:
4223 * ->batch must never be higher then ->high.
4224 * The following function updates them in a safe manner without read side
4225 * locking.
4226 *
4227 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4228 * those fields changing asynchronously (acording the the above rule).
4229 *
4230 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4231 * outside of boot time (or some other assurance that no concurrent updaters
4232 * exist).
4233 */
4234 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4235 unsigned long batch)
4236 {
4237 /* start with a fail safe value for batch */
4238 pcp->batch = 1;
4239 smp_wmb();
4240
4241 /* Update high, then batch, in order */
4242 pcp->high = high;
4243 smp_wmb();
4244
4245 pcp->batch = batch;
4246 }
4247
4248 /* a companion to pageset_set_high() */
4249 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4250 {
4251 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4252 }
4253
4254 static void pageset_init(struct per_cpu_pageset *p)
4255 {
4256 struct per_cpu_pages *pcp;
4257 int migratetype;
4258
4259 memset(p, 0, sizeof(*p));
4260
4261 pcp = &p->pcp;
4262 pcp->count = 0;
4263 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4264 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4265 }
4266
4267 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4268 {
4269 pageset_init(p);
4270 pageset_set_batch(p, batch);
4271 }
4272
4273 /*
4274 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4275 * to the value high for the pageset p.
4276 */
4277 static void pageset_set_high(struct per_cpu_pageset *p,
4278 unsigned long high)
4279 {
4280 unsigned long batch = max(1UL, high / 4);
4281 if ((high / 4) > (PAGE_SHIFT * 8))
4282 batch = PAGE_SHIFT * 8;
4283
4284 pageset_update(&p->pcp, high, batch);
4285 }
4286
4287 static void pageset_set_high_and_batch(struct zone *zone,
4288 struct per_cpu_pageset *pcp)
4289 {
4290 if (percpu_pagelist_fraction)
4291 pageset_set_high(pcp,
4292 (zone->managed_pages /
4293 percpu_pagelist_fraction));
4294 else
4295 pageset_set_batch(pcp, zone_batchsize(zone));
4296 }
4297
4298 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4299 {
4300 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4301
4302 pageset_init(pcp);
4303 pageset_set_high_and_batch(zone, pcp);
4304 }
4305
4306 static void __meminit setup_zone_pageset(struct zone *zone)
4307 {
4308 int cpu;
4309 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4310 for_each_possible_cpu(cpu)
4311 zone_pageset_init(zone, cpu);
4312 }
4313
4314 /*
4315 * Allocate per cpu pagesets and initialize them.
4316 * Before this call only boot pagesets were available.
4317 */
4318 void __init setup_per_cpu_pageset(void)
4319 {
4320 struct zone *zone;
4321
4322 for_each_populated_zone(zone)
4323 setup_zone_pageset(zone);
4324 }
4325
4326 static noinline __init_refok
4327 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4328 {
4329 int i;
4330 size_t alloc_size;
4331
4332 /*
4333 * The per-page waitqueue mechanism uses hashed waitqueues
4334 * per zone.
4335 */
4336 zone->wait_table_hash_nr_entries =
4337 wait_table_hash_nr_entries(zone_size_pages);
4338 zone->wait_table_bits =
4339 wait_table_bits(zone->wait_table_hash_nr_entries);
4340 alloc_size = zone->wait_table_hash_nr_entries
4341 * sizeof(wait_queue_head_t);
4342
4343 if (!slab_is_available()) {
4344 zone->wait_table = (wait_queue_head_t *)
4345 memblock_virt_alloc_node_nopanic(
4346 alloc_size, zone->zone_pgdat->node_id);
4347 } else {
4348 /*
4349 * This case means that a zone whose size was 0 gets new memory
4350 * via memory hot-add.
4351 * But it may be the case that a new node was hot-added. In
4352 * this case vmalloc() will not be able to use this new node's
4353 * memory - this wait_table must be initialized to use this new
4354 * node itself as well.
4355 * To use this new node's memory, further consideration will be
4356 * necessary.
4357 */
4358 zone->wait_table = vmalloc(alloc_size);
4359 }
4360 if (!zone->wait_table)
4361 return -ENOMEM;
4362
4363 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4364 init_waitqueue_head(zone->wait_table + i);
4365
4366 return 0;
4367 }
4368
4369 static __meminit void zone_pcp_init(struct zone *zone)
4370 {
4371 /*
4372 * per cpu subsystem is not up at this point. The following code
4373 * relies on the ability of the linker to provide the
4374 * offset of a (static) per cpu variable into the per cpu area.
4375 */
4376 zone->pageset = &boot_pageset;
4377
4378 if (populated_zone(zone))
4379 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4380 zone->name, zone->present_pages,
4381 zone_batchsize(zone));
4382 }
4383
4384 int __meminit init_currently_empty_zone(struct zone *zone,
4385 unsigned long zone_start_pfn,
4386 unsigned long size,
4387 enum memmap_context context)
4388 {
4389 struct pglist_data *pgdat = zone->zone_pgdat;
4390 int ret;
4391 ret = zone_wait_table_init(zone, size);
4392 if (ret)
4393 return ret;
4394 pgdat->nr_zones = zone_idx(zone) + 1;
4395
4396 zone->zone_start_pfn = zone_start_pfn;
4397
4398 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4399 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4400 pgdat->node_id,
4401 (unsigned long)zone_idx(zone),
4402 zone_start_pfn, (zone_start_pfn + size));
4403
4404 zone_init_free_lists(zone);
4405
4406 return 0;
4407 }
4408
4409 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4410 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4411 /*
4412 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4413 */
4414 int __meminit __early_pfn_to_nid(unsigned long pfn)
4415 {
4416 unsigned long start_pfn, end_pfn;
4417 int nid;
4418 /*
4419 * NOTE: The following SMP-unsafe globals are only used early in boot
4420 * when the kernel is running single-threaded.
4421 */
4422 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4423 static int __meminitdata last_nid;
4424
4425 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4426 return last_nid;
4427
4428 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4429 if (nid != -1) {
4430 last_start_pfn = start_pfn;
4431 last_end_pfn = end_pfn;
4432 last_nid = nid;
4433 }
4434
4435 return nid;
4436 }
4437 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4438
4439 int __meminit early_pfn_to_nid(unsigned long pfn)
4440 {
4441 int nid;
4442
4443 nid = __early_pfn_to_nid(pfn);
4444 if (nid >= 0)
4445 return nid;
4446 /* just returns 0 */
4447 return 0;
4448 }
4449
4450 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4451 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4452 {
4453 int nid;
4454
4455 nid = __early_pfn_to_nid(pfn);
4456 if (nid >= 0 && nid != node)
4457 return false;
4458 return true;
4459 }
4460 #endif
4461
4462 /**
4463 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4464 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4465 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4466 *
4467 * If an architecture guarantees that all ranges registered contain no holes
4468 * and may be freed, this this function may be used instead of calling
4469 * memblock_free_early_nid() manually.
4470 */
4471 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4472 {
4473 unsigned long start_pfn, end_pfn;
4474 int i, this_nid;
4475
4476 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4477 start_pfn = min(start_pfn, max_low_pfn);
4478 end_pfn = min(end_pfn, max_low_pfn);
4479
4480 if (start_pfn < end_pfn)
4481 memblock_free_early_nid(PFN_PHYS(start_pfn),
4482 (end_pfn - start_pfn) << PAGE_SHIFT,
4483 this_nid);
4484 }
4485 }
4486
4487 /**
4488 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4489 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4490 *
4491 * If an architecture guarantees that all ranges registered contain no holes and may
4492 * be freed, this function may be used instead of calling memory_present() manually.
4493 */
4494 void __init sparse_memory_present_with_active_regions(int nid)
4495 {
4496 unsigned long start_pfn, end_pfn;
4497 int i, this_nid;
4498
4499 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4500 memory_present(this_nid, start_pfn, end_pfn);
4501 }
4502
4503 /**
4504 * get_pfn_range_for_nid - Return the start and end page frames for a node
4505 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4506 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4507 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4508 *
4509 * It returns the start and end page frame of a node based on information
4510 * provided by memblock_set_node(). If called for a node
4511 * with no available memory, a warning is printed and the start and end
4512 * PFNs will be 0.
4513 */
4514 void __meminit get_pfn_range_for_nid(unsigned int nid,
4515 unsigned long *start_pfn, unsigned long *end_pfn)
4516 {
4517 unsigned long this_start_pfn, this_end_pfn;
4518 int i;
4519
4520 *start_pfn = -1UL;
4521 *end_pfn = 0;
4522
4523 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4524 *start_pfn = min(*start_pfn, this_start_pfn);
4525 *end_pfn = max(*end_pfn, this_end_pfn);
4526 }
4527
4528 if (*start_pfn == -1UL)
4529 *start_pfn = 0;
4530 }
4531
4532 /*
4533 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4534 * assumption is made that zones within a node are ordered in monotonic
4535 * increasing memory addresses so that the "highest" populated zone is used
4536 */
4537 static void __init find_usable_zone_for_movable(void)
4538 {
4539 int zone_index;
4540 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4541 if (zone_index == ZONE_MOVABLE)
4542 continue;
4543
4544 if (arch_zone_highest_possible_pfn[zone_index] >
4545 arch_zone_lowest_possible_pfn[zone_index])
4546 break;
4547 }
4548
4549 VM_BUG_ON(zone_index == -1);
4550 movable_zone = zone_index;
4551 }
4552
4553 /*
4554 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4555 * because it is sized independent of architecture. Unlike the other zones,
4556 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4557 * in each node depending on the size of each node and how evenly kernelcore
4558 * is distributed. This helper function adjusts the zone ranges
4559 * provided by the architecture for a given node by using the end of the
4560 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4561 * zones within a node are in order of monotonic increases memory addresses
4562 */
4563 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4564 unsigned long zone_type,
4565 unsigned long node_start_pfn,
4566 unsigned long node_end_pfn,
4567 unsigned long *zone_start_pfn,
4568 unsigned long *zone_end_pfn)
4569 {
4570 /* Only adjust if ZONE_MOVABLE is on this node */
4571 if (zone_movable_pfn[nid]) {
4572 /* Size ZONE_MOVABLE */
4573 if (zone_type == ZONE_MOVABLE) {
4574 *zone_start_pfn = zone_movable_pfn[nid];
4575 *zone_end_pfn = min(node_end_pfn,
4576 arch_zone_highest_possible_pfn[movable_zone]);
4577
4578 /* Adjust for ZONE_MOVABLE starting within this range */
4579 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4580 *zone_end_pfn > zone_movable_pfn[nid]) {
4581 *zone_end_pfn = zone_movable_pfn[nid];
4582
4583 /* Check if this whole range is within ZONE_MOVABLE */
4584 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4585 *zone_start_pfn = *zone_end_pfn;
4586 }
4587 }
4588
4589 /*
4590 * Return the number of pages a zone spans in a node, including holes
4591 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4592 */
4593 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4594 unsigned long zone_type,
4595 unsigned long node_start_pfn,
4596 unsigned long node_end_pfn,
4597 unsigned long *ignored)
4598 {
4599 unsigned long zone_start_pfn, zone_end_pfn;
4600
4601 /* Get the start and end of the zone */
4602 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4603 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4604 adjust_zone_range_for_zone_movable(nid, zone_type,
4605 node_start_pfn, node_end_pfn,
4606 &zone_start_pfn, &zone_end_pfn);
4607
4608 /* Check that this node has pages within the zone's required range */
4609 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4610 return 0;
4611
4612 /* Move the zone boundaries inside the node if necessary */
4613 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4614 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4615
4616 /* Return the spanned pages */
4617 return zone_end_pfn - zone_start_pfn;
4618 }
4619
4620 /*
4621 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4622 * then all holes in the requested range will be accounted for.
4623 */
4624 unsigned long __meminit __absent_pages_in_range(int nid,
4625 unsigned long range_start_pfn,
4626 unsigned long range_end_pfn)
4627 {
4628 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4629 unsigned long start_pfn, end_pfn;
4630 int i;
4631
4632 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4633 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4634 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4635 nr_absent -= end_pfn - start_pfn;
4636 }
4637 return nr_absent;
4638 }
4639
4640 /**
4641 * absent_pages_in_range - Return number of page frames in holes within a range
4642 * @start_pfn: The start PFN to start searching for holes
4643 * @end_pfn: The end PFN to stop searching for holes
4644 *
4645 * It returns the number of pages frames in memory holes within a range.
4646 */
4647 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4648 unsigned long end_pfn)
4649 {
4650 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4651 }
4652
4653 /* Return the number of page frames in holes in a zone on a node */
4654 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4655 unsigned long zone_type,
4656 unsigned long node_start_pfn,
4657 unsigned long node_end_pfn,
4658 unsigned long *ignored)
4659 {
4660 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4661 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4662 unsigned long zone_start_pfn, zone_end_pfn;
4663
4664 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4665 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4666
4667 adjust_zone_range_for_zone_movable(nid, zone_type,
4668 node_start_pfn, node_end_pfn,
4669 &zone_start_pfn, &zone_end_pfn);
4670 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4671 }
4672
4673 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4674 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4675 unsigned long zone_type,
4676 unsigned long node_start_pfn,
4677 unsigned long node_end_pfn,
4678 unsigned long *zones_size)
4679 {
4680 return zones_size[zone_type];
4681 }
4682
4683 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4684 unsigned long zone_type,
4685 unsigned long node_start_pfn,
4686 unsigned long node_end_pfn,
4687 unsigned long *zholes_size)
4688 {
4689 if (!zholes_size)
4690 return 0;
4691
4692 return zholes_size[zone_type];
4693 }
4694
4695 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4696
4697 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4698 unsigned long node_start_pfn,
4699 unsigned long node_end_pfn,
4700 unsigned long *zones_size,
4701 unsigned long *zholes_size)
4702 {
4703 unsigned long realtotalpages, totalpages = 0;
4704 enum zone_type i;
4705
4706 for (i = 0; i < MAX_NR_ZONES; i++)
4707 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4708 node_start_pfn,
4709 node_end_pfn,
4710 zones_size);
4711 pgdat->node_spanned_pages = totalpages;
4712
4713 realtotalpages = totalpages;
4714 for (i = 0; i < MAX_NR_ZONES; i++)
4715 realtotalpages -=
4716 zone_absent_pages_in_node(pgdat->node_id, i,
4717 node_start_pfn, node_end_pfn,
4718 zholes_size);
4719 pgdat->node_present_pages = realtotalpages;
4720 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4721 realtotalpages);
4722 }
4723
4724 #ifndef CONFIG_SPARSEMEM
4725 /*
4726 * Calculate the size of the zone->blockflags rounded to an unsigned long
4727 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4728 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4729 * round what is now in bits to nearest long in bits, then return it in
4730 * bytes.
4731 */
4732 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4733 {
4734 unsigned long usemapsize;
4735
4736 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4737 usemapsize = roundup(zonesize, pageblock_nr_pages);
4738 usemapsize = usemapsize >> pageblock_order;
4739 usemapsize *= NR_PAGEBLOCK_BITS;
4740 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4741
4742 return usemapsize / 8;
4743 }
4744
4745 static void __init setup_usemap(struct pglist_data *pgdat,
4746 struct zone *zone,
4747 unsigned long zone_start_pfn,
4748 unsigned long zonesize)
4749 {
4750 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4751 zone->pageblock_flags = NULL;
4752 if (usemapsize)
4753 zone->pageblock_flags =
4754 memblock_virt_alloc_node_nopanic(usemapsize,
4755 pgdat->node_id);
4756 }
4757 #else
4758 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4759 unsigned long zone_start_pfn, unsigned long zonesize) {}
4760 #endif /* CONFIG_SPARSEMEM */
4761
4762 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4763
4764 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4765 void __paginginit set_pageblock_order(void)
4766 {
4767 unsigned int order;
4768
4769 /* Check that pageblock_nr_pages has not already been setup */
4770 if (pageblock_order)
4771 return;
4772
4773 if (HPAGE_SHIFT > PAGE_SHIFT)
4774 order = HUGETLB_PAGE_ORDER;
4775 else
4776 order = MAX_ORDER - 1;
4777
4778 /*
4779 * Assume the largest contiguous order of interest is a huge page.
4780 * This value may be variable depending on boot parameters on IA64 and
4781 * powerpc.
4782 */
4783 pageblock_order = order;
4784 }
4785 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4786
4787 /*
4788 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4789 * is unused as pageblock_order is set at compile-time. See
4790 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4791 * the kernel config
4792 */
4793 void __paginginit set_pageblock_order(void)
4794 {
4795 }
4796
4797 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4798
4799 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4800 unsigned long present_pages)
4801 {
4802 unsigned long pages = spanned_pages;
4803
4804 /*
4805 * Provide a more accurate estimation if there are holes within
4806 * the zone and SPARSEMEM is in use. If there are holes within the
4807 * zone, each populated memory region may cost us one or two extra
4808 * memmap pages due to alignment because memmap pages for each
4809 * populated regions may not naturally algined on page boundary.
4810 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4811 */
4812 if (spanned_pages > present_pages + (present_pages >> 4) &&
4813 IS_ENABLED(CONFIG_SPARSEMEM))
4814 pages = present_pages;
4815
4816 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4817 }
4818
4819 /*
4820 * Set up the zone data structures:
4821 * - mark all pages reserved
4822 * - mark all memory queues empty
4823 * - clear the memory bitmaps
4824 *
4825 * NOTE: pgdat should get zeroed by caller.
4826 */
4827 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4828 unsigned long node_start_pfn, unsigned long node_end_pfn,
4829 unsigned long *zones_size, unsigned long *zholes_size)
4830 {
4831 enum zone_type j;
4832 int nid = pgdat->node_id;
4833 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4834 int ret;
4835
4836 pgdat_resize_init(pgdat);
4837 #ifdef CONFIG_NUMA_BALANCING
4838 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4839 pgdat->numabalancing_migrate_nr_pages = 0;
4840 pgdat->numabalancing_migrate_next_window = jiffies;
4841 #endif
4842 init_waitqueue_head(&pgdat->kswapd_wait);
4843 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4844 pgdat_page_cgroup_init(pgdat);
4845
4846 for (j = 0; j < MAX_NR_ZONES; j++) {
4847 struct zone *zone = pgdat->node_zones + j;
4848 unsigned long size, realsize, freesize, memmap_pages;
4849
4850 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4851 node_end_pfn, zones_size);
4852 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4853 node_start_pfn,
4854 node_end_pfn,
4855 zholes_size);
4856
4857 /*
4858 * Adjust freesize so that it accounts for how much memory
4859 * is used by this zone for memmap. This affects the watermark
4860 * and per-cpu initialisations
4861 */
4862 memmap_pages = calc_memmap_size(size, realsize);
4863 if (freesize >= memmap_pages) {
4864 freesize -= memmap_pages;
4865 if (memmap_pages)
4866 printk(KERN_DEBUG
4867 " %s zone: %lu pages used for memmap\n",
4868 zone_names[j], memmap_pages);
4869 } else
4870 printk(KERN_WARNING
4871 " %s zone: %lu pages exceeds freesize %lu\n",
4872 zone_names[j], memmap_pages, freesize);
4873
4874 /* Account for reserved pages */
4875 if (j == 0 && freesize > dma_reserve) {
4876 freesize -= dma_reserve;
4877 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4878 zone_names[0], dma_reserve);
4879 }
4880
4881 if (!is_highmem_idx(j))
4882 nr_kernel_pages += freesize;
4883 /* Charge for highmem memmap if there are enough kernel pages */
4884 else if (nr_kernel_pages > memmap_pages * 2)
4885 nr_kernel_pages -= memmap_pages;
4886 nr_all_pages += freesize;
4887
4888 zone->spanned_pages = size;
4889 zone->present_pages = realsize;
4890 /*
4891 * Set an approximate value for lowmem here, it will be adjusted
4892 * when the bootmem allocator frees pages into the buddy system.
4893 * And all highmem pages will be managed by the buddy system.
4894 */
4895 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4896 #ifdef CONFIG_NUMA
4897 zone->node = nid;
4898 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4899 / 100;
4900 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4901 #endif
4902 zone->name = zone_names[j];
4903 spin_lock_init(&zone->lock);
4904 spin_lock_init(&zone->lru_lock);
4905 zone_seqlock_init(zone);
4906 zone->zone_pgdat = pgdat;
4907 zone_pcp_init(zone);
4908
4909 /* For bootup, initialized properly in watermark setup */
4910 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4911
4912 lruvec_init(&zone->lruvec);
4913 if (!size)
4914 continue;
4915
4916 set_pageblock_order();
4917 setup_usemap(pgdat, zone, zone_start_pfn, size);
4918 ret = init_currently_empty_zone(zone, zone_start_pfn,
4919 size, MEMMAP_EARLY);
4920 BUG_ON(ret);
4921 memmap_init(size, nid, j, zone_start_pfn);
4922 zone_start_pfn += size;
4923 }
4924 }
4925
4926 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4927 {
4928 /* Skip empty nodes */
4929 if (!pgdat->node_spanned_pages)
4930 return;
4931
4932 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4933 /* ia64 gets its own node_mem_map, before this, without bootmem */
4934 if (!pgdat->node_mem_map) {
4935 unsigned long size, start, end;
4936 struct page *map;
4937
4938 /*
4939 * The zone's endpoints aren't required to be MAX_ORDER
4940 * aligned but the node_mem_map endpoints must be in order
4941 * for the buddy allocator to function correctly.
4942 */
4943 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4944 end = pgdat_end_pfn(pgdat);
4945 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4946 size = (end - start) * sizeof(struct page);
4947 map = alloc_remap(pgdat->node_id, size);
4948 if (!map)
4949 map = memblock_virt_alloc_node_nopanic(size,
4950 pgdat->node_id);
4951 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4952 }
4953 #ifndef CONFIG_NEED_MULTIPLE_NODES
4954 /*
4955 * With no DISCONTIG, the global mem_map is just set as node 0's
4956 */
4957 if (pgdat == NODE_DATA(0)) {
4958 mem_map = NODE_DATA(0)->node_mem_map;
4959 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4960 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4961 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4962 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4963 }
4964 #endif
4965 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4966 }
4967
4968 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4969 unsigned long node_start_pfn, unsigned long *zholes_size)
4970 {
4971 pg_data_t *pgdat = NODE_DATA(nid);
4972 unsigned long start_pfn = 0;
4973 unsigned long end_pfn = 0;
4974
4975 /* pg_data_t should be reset to zero when it's allocated */
4976 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4977
4978 pgdat->node_id = nid;
4979 pgdat->node_start_pfn = node_start_pfn;
4980 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4981 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4982 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4983 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4984 #endif
4985 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4986 zones_size, zholes_size);
4987
4988 alloc_node_mem_map(pgdat);
4989 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4990 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4991 nid, (unsigned long)pgdat,
4992 (unsigned long)pgdat->node_mem_map);
4993 #endif
4994
4995 free_area_init_core(pgdat, start_pfn, end_pfn,
4996 zones_size, zholes_size);
4997 }
4998
4999 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5000
5001 #if MAX_NUMNODES > 1
5002 /*
5003 * Figure out the number of possible node ids.
5004 */
5005 void __init setup_nr_node_ids(void)
5006 {
5007 unsigned int node;
5008 unsigned int highest = 0;
5009
5010 for_each_node_mask(node, node_possible_map)
5011 highest = node;
5012 nr_node_ids = highest + 1;
5013 }
5014 #endif
5015
5016 /**
5017 * node_map_pfn_alignment - determine the maximum internode alignment
5018 *
5019 * This function should be called after node map is populated and sorted.
5020 * It calculates the maximum power of two alignment which can distinguish
5021 * all the nodes.
5022 *
5023 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5024 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5025 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5026 * shifted, 1GiB is enough and this function will indicate so.
5027 *
5028 * This is used to test whether pfn -> nid mapping of the chosen memory
5029 * model has fine enough granularity to avoid incorrect mapping for the
5030 * populated node map.
5031 *
5032 * Returns the determined alignment in pfn's. 0 if there is no alignment
5033 * requirement (single node).
5034 */
5035 unsigned long __init node_map_pfn_alignment(void)
5036 {
5037 unsigned long accl_mask = 0, last_end = 0;
5038 unsigned long start, end, mask;
5039 int last_nid = -1;
5040 int i, nid;
5041
5042 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5043 if (!start || last_nid < 0 || last_nid == nid) {
5044 last_nid = nid;
5045 last_end = end;
5046 continue;
5047 }
5048
5049 /*
5050 * Start with a mask granular enough to pin-point to the
5051 * start pfn and tick off bits one-by-one until it becomes
5052 * too coarse to separate the current node from the last.
5053 */
5054 mask = ~((1 << __ffs(start)) - 1);
5055 while (mask && last_end <= (start & (mask << 1)))
5056 mask <<= 1;
5057
5058 /* accumulate all internode masks */
5059 accl_mask |= mask;
5060 }
5061
5062 /* convert mask to number of pages */
5063 return ~accl_mask + 1;
5064 }
5065
5066 /* Find the lowest pfn for a node */
5067 static unsigned long __init find_min_pfn_for_node(int nid)
5068 {
5069 unsigned long min_pfn = ULONG_MAX;
5070 unsigned long start_pfn;
5071 int i;
5072
5073 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5074 min_pfn = min(min_pfn, start_pfn);
5075
5076 if (min_pfn == ULONG_MAX) {
5077 printk(KERN_WARNING
5078 "Could not find start_pfn for node %d\n", nid);
5079 return 0;
5080 }
5081
5082 return min_pfn;
5083 }
5084
5085 /**
5086 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5087 *
5088 * It returns the minimum PFN based on information provided via
5089 * memblock_set_node().
5090 */
5091 unsigned long __init find_min_pfn_with_active_regions(void)
5092 {
5093 return find_min_pfn_for_node(MAX_NUMNODES);
5094 }
5095
5096 /*
5097 * early_calculate_totalpages()
5098 * Sum pages in active regions for movable zone.
5099 * Populate N_MEMORY for calculating usable_nodes.
5100 */
5101 static unsigned long __init early_calculate_totalpages(void)
5102 {
5103 unsigned long totalpages = 0;
5104 unsigned long start_pfn, end_pfn;
5105 int i, nid;
5106
5107 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5108 unsigned long pages = end_pfn - start_pfn;
5109
5110 totalpages += pages;
5111 if (pages)
5112 node_set_state(nid, N_MEMORY);
5113 }
5114 return totalpages;
5115 }
5116
5117 /*
5118 * Find the PFN the Movable zone begins in each node. Kernel memory
5119 * is spread evenly between nodes as long as the nodes have enough
5120 * memory. When they don't, some nodes will have more kernelcore than
5121 * others
5122 */
5123 static void __init find_zone_movable_pfns_for_nodes(void)
5124 {
5125 int i, nid;
5126 unsigned long usable_startpfn;
5127 unsigned long kernelcore_node, kernelcore_remaining;
5128 /* save the state before borrow the nodemask */
5129 nodemask_t saved_node_state = node_states[N_MEMORY];
5130 unsigned long totalpages = early_calculate_totalpages();
5131 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5132 struct memblock_region *r;
5133
5134 /* Need to find movable_zone earlier when movable_node is specified. */
5135 find_usable_zone_for_movable();
5136
5137 /*
5138 * If movable_node is specified, ignore kernelcore and movablecore
5139 * options.
5140 */
5141 if (movable_node_is_enabled()) {
5142 for_each_memblock(memory, r) {
5143 if (!memblock_is_hotpluggable(r))
5144 continue;
5145
5146 nid = r->nid;
5147
5148 usable_startpfn = PFN_DOWN(r->base);
5149 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5150 min(usable_startpfn, zone_movable_pfn[nid]) :
5151 usable_startpfn;
5152 }
5153
5154 goto out2;
5155 }
5156
5157 /*
5158 * If movablecore=nn[KMG] was specified, calculate what size of
5159 * kernelcore that corresponds so that memory usable for
5160 * any allocation type is evenly spread. If both kernelcore
5161 * and movablecore are specified, then the value of kernelcore
5162 * will be used for required_kernelcore if it's greater than
5163 * what movablecore would have allowed.
5164 */
5165 if (required_movablecore) {
5166 unsigned long corepages;
5167
5168 /*
5169 * Round-up so that ZONE_MOVABLE is at least as large as what
5170 * was requested by the user
5171 */
5172 required_movablecore =
5173 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5174 corepages = totalpages - required_movablecore;
5175
5176 required_kernelcore = max(required_kernelcore, corepages);
5177 }
5178
5179 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5180 if (!required_kernelcore)
5181 goto out;
5182
5183 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5184 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5185
5186 restart:
5187 /* Spread kernelcore memory as evenly as possible throughout nodes */
5188 kernelcore_node = required_kernelcore / usable_nodes;
5189 for_each_node_state(nid, N_MEMORY) {
5190 unsigned long start_pfn, end_pfn;
5191
5192 /*
5193 * Recalculate kernelcore_node if the division per node
5194 * now exceeds what is necessary to satisfy the requested
5195 * amount of memory for the kernel
5196 */
5197 if (required_kernelcore < kernelcore_node)
5198 kernelcore_node = required_kernelcore / usable_nodes;
5199
5200 /*
5201 * As the map is walked, we track how much memory is usable
5202 * by the kernel using kernelcore_remaining. When it is
5203 * 0, the rest of the node is usable by ZONE_MOVABLE
5204 */
5205 kernelcore_remaining = kernelcore_node;
5206
5207 /* Go through each range of PFNs within this node */
5208 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5209 unsigned long size_pages;
5210
5211 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5212 if (start_pfn >= end_pfn)
5213 continue;
5214
5215 /* Account for what is only usable for kernelcore */
5216 if (start_pfn < usable_startpfn) {
5217 unsigned long kernel_pages;
5218 kernel_pages = min(end_pfn, usable_startpfn)
5219 - start_pfn;
5220
5221 kernelcore_remaining -= min(kernel_pages,
5222 kernelcore_remaining);
5223 required_kernelcore -= min(kernel_pages,
5224 required_kernelcore);
5225
5226 /* Continue if range is now fully accounted */
5227 if (end_pfn <= usable_startpfn) {
5228
5229 /*
5230 * Push zone_movable_pfn to the end so
5231 * that if we have to rebalance
5232 * kernelcore across nodes, we will
5233 * not double account here
5234 */
5235 zone_movable_pfn[nid] = end_pfn;
5236 continue;
5237 }
5238 start_pfn = usable_startpfn;
5239 }
5240
5241 /*
5242 * The usable PFN range for ZONE_MOVABLE is from
5243 * start_pfn->end_pfn. Calculate size_pages as the
5244 * number of pages used as kernelcore
5245 */
5246 size_pages = end_pfn - start_pfn;
5247 if (size_pages > kernelcore_remaining)
5248 size_pages = kernelcore_remaining;
5249 zone_movable_pfn[nid] = start_pfn + size_pages;
5250
5251 /*
5252 * Some kernelcore has been met, update counts and
5253 * break if the kernelcore for this node has been
5254 * satisfied
5255 */
5256 required_kernelcore -= min(required_kernelcore,
5257 size_pages);
5258 kernelcore_remaining -= size_pages;
5259 if (!kernelcore_remaining)
5260 break;
5261 }
5262 }
5263
5264 /*
5265 * If there is still required_kernelcore, we do another pass with one
5266 * less node in the count. This will push zone_movable_pfn[nid] further
5267 * along on the nodes that still have memory until kernelcore is
5268 * satisfied
5269 */
5270 usable_nodes--;
5271 if (usable_nodes && required_kernelcore > usable_nodes)
5272 goto restart;
5273
5274 out2:
5275 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5276 for (nid = 0; nid < MAX_NUMNODES; nid++)
5277 zone_movable_pfn[nid] =
5278 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5279
5280 out:
5281 /* restore the node_state */
5282 node_states[N_MEMORY] = saved_node_state;
5283 }
5284
5285 /* Any regular or high memory on that node ? */
5286 static void check_for_memory(pg_data_t *pgdat, int nid)
5287 {
5288 enum zone_type zone_type;
5289
5290 if (N_MEMORY == N_NORMAL_MEMORY)
5291 return;
5292
5293 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5294 struct zone *zone = &pgdat->node_zones[zone_type];
5295 if (populated_zone(zone)) {
5296 node_set_state(nid, N_HIGH_MEMORY);
5297 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5298 zone_type <= ZONE_NORMAL)
5299 node_set_state(nid, N_NORMAL_MEMORY);
5300 break;
5301 }
5302 }
5303 }
5304
5305 /**
5306 * free_area_init_nodes - Initialise all pg_data_t and zone data
5307 * @max_zone_pfn: an array of max PFNs for each zone
5308 *
5309 * This will call free_area_init_node() for each active node in the system.
5310 * Using the page ranges provided by memblock_set_node(), the size of each
5311 * zone in each node and their holes is calculated. If the maximum PFN
5312 * between two adjacent zones match, it is assumed that the zone is empty.
5313 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5314 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5315 * starts where the previous one ended. For example, ZONE_DMA32 starts
5316 * at arch_max_dma_pfn.
5317 */
5318 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5319 {
5320 unsigned long start_pfn, end_pfn;
5321 int i, nid;
5322
5323 /* Record where the zone boundaries are */
5324 memset(arch_zone_lowest_possible_pfn, 0,
5325 sizeof(arch_zone_lowest_possible_pfn));
5326 memset(arch_zone_highest_possible_pfn, 0,
5327 sizeof(arch_zone_highest_possible_pfn));
5328 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5329 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5330 for (i = 1; i < MAX_NR_ZONES; i++) {
5331 if (i == ZONE_MOVABLE)
5332 continue;
5333 arch_zone_lowest_possible_pfn[i] =
5334 arch_zone_highest_possible_pfn[i-1];
5335 arch_zone_highest_possible_pfn[i] =
5336 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5337 }
5338 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5339 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5340
5341 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5342 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5343 find_zone_movable_pfns_for_nodes();
5344
5345 /* Print out the zone ranges */
5346 printk("Zone ranges:\n");
5347 for (i = 0; i < MAX_NR_ZONES; i++) {
5348 if (i == ZONE_MOVABLE)
5349 continue;
5350 printk(KERN_CONT " %-8s ", zone_names[i]);
5351 if (arch_zone_lowest_possible_pfn[i] ==
5352 arch_zone_highest_possible_pfn[i])
5353 printk(KERN_CONT "empty\n");
5354 else
5355 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5356 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5357 (arch_zone_highest_possible_pfn[i]
5358 << PAGE_SHIFT) - 1);
5359 }
5360
5361 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5362 printk("Movable zone start for each node\n");
5363 for (i = 0; i < MAX_NUMNODES; i++) {
5364 if (zone_movable_pfn[i])
5365 printk(" Node %d: %#010lx\n", i,
5366 zone_movable_pfn[i] << PAGE_SHIFT);
5367 }
5368
5369 /* Print out the early node map */
5370 printk("Early memory node ranges\n");
5371 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5372 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5373 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5374
5375 /* Initialise every node */
5376 mminit_verify_pageflags_layout();
5377 setup_nr_node_ids();
5378 for_each_online_node(nid) {
5379 pg_data_t *pgdat = NODE_DATA(nid);
5380 free_area_init_node(nid, NULL,
5381 find_min_pfn_for_node(nid), NULL);
5382
5383 /* Any memory on that node */
5384 if (pgdat->node_present_pages)
5385 node_set_state(nid, N_MEMORY);
5386 check_for_memory(pgdat, nid);
5387 }
5388 }
5389
5390 static int __init cmdline_parse_core(char *p, unsigned long *core)
5391 {
5392 unsigned long long coremem;
5393 if (!p)
5394 return -EINVAL;
5395
5396 coremem = memparse(p, &p);
5397 *core = coremem >> PAGE_SHIFT;
5398
5399 /* Paranoid check that UL is enough for the coremem value */
5400 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5401
5402 return 0;
5403 }
5404
5405 /*
5406 * kernelcore=size sets the amount of memory for use for allocations that
5407 * cannot be reclaimed or migrated.
5408 */
5409 static int __init cmdline_parse_kernelcore(char *p)
5410 {
5411 return cmdline_parse_core(p, &required_kernelcore);
5412 }
5413
5414 /*
5415 * movablecore=size sets the amount of memory for use for allocations that
5416 * can be reclaimed or migrated.
5417 */
5418 static int __init cmdline_parse_movablecore(char *p)
5419 {
5420 return cmdline_parse_core(p, &required_movablecore);
5421 }
5422
5423 early_param("kernelcore", cmdline_parse_kernelcore);
5424 early_param("movablecore", cmdline_parse_movablecore);
5425
5426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5427
5428 void adjust_managed_page_count(struct page *page, long count)
5429 {
5430 spin_lock(&managed_page_count_lock);
5431 page_zone(page)->managed_pages += count;
5432 totalram_pages += count;
5433 #ifdef CONFIG_HIGHMEM
5434 if (PageHighMem(page))
5435 totalhigh_pages += count;
5436 #endif
5437 spin_unlock(&managed_page_count_lock);
5438 }
5439 EXPORT_SYMBOL(adjust_managed_page_count);
5440
5441 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5442 {
5443 void *pos;
5444 unsigned long pages = 0;
5445
5446 start = (void *)PAGE_ALIGN((unsigned long)start);
5447 end = (void *)((unsigned long)end & PAGE_MASK);
5448 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5449 if ((unsigned int)poison <= 0xFF)
5450 memset(pos, poison, PAGE_SIZE);
5451 free_reserved_page(virt_to_page(pos));
5452 }
5453
5454 if (pages && s)
5455 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5456 s, pages << (PAGE_SHIFT - 10), start, end);
5457
5458 return pages;
5459 }
5460 EXPORT_SYMBOL(free_reserved_area);
5461
5462 #ifdef CONFIG_HIGHMEM
5463 void free_highmem_page(struct page *page)
5464 {
5465 __free_reserved_page(page);
5466 totalram_pages++;
5467 page_zone(page)->managed_pages++;
5468 totalhigh_pages++;
5469 }
5470 #endif
5471
5472
5473 void __init mem_init_print_info(const char *str)
5474 {
5475 unsigned long physpages, codesize, datasize, rosize, bss_size;
5476 unsigned long init_code_size, init_data_size;
5477
5478 physpages = get_num_physpages();
5479 codesize = _etext - _stext;
5480 datasize = _edata - _sdata;
5481 rosize = __end_rodata - __start_rodata;
5482 bss_size = __bss_stop - __bss_start;
5483 init_data_size = __init_end - __init_begin;
5484 init_code_size = _einittext - _sinittext;
5485
5486 /*
5487 * Detect special cases and adjust section sizes accordingly:
5488 * 1) .init.* may be embedded into .data sections
5489 * 2) .init.text.* may be out of [__init_begin, __init_end],
5490 * please refer to arch/tile/kernel/vmlinux.lds.S.
5491 * 3) .rodata.* may be embedded into .text or .data sections.
5492 */
5493 #define adj_init_size(start, end, size, pos, adj) \
5494 do { \
5495 if (start <= pos && pos < end && size > adj) \
5496 size -= adj; \
5497 } while (0)
5498
5499 adj_init_size(__init_begin, __init_end, init_data_size,
5500 _sinittext, init_code_size);
5501 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5502 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5503 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5504 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5505
5506 #undef adj_init_size
5507
5508 printk("Memory: %luK/%luK available "
5509 "(%luK kernel code, %luK rwdata, %luK rodata, "
5510 "%luK init, %luK bss, %luK reserved"
5511 #ifdef CONFIG_HIGHMEM
5512 ", %luK highmem"
5513 #endif
5514 "%s%s)\n",
5515 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5516 codesize >> 10, datasize >> 10, rosize >> 10,
5517 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5518 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5519 #ifdef CONFIG_HIGHMEM
5520 totalhigh_pages << (PAGE_SHIFT-10),
5521 #endif
5522 str ? ", " : "", str ? str : "");
5523 }
5524
5525 /**
5526 * set_dma_reserve - set the specified number of pages reserved in the first zone
5527 * @new_dma_reserve: The number of pages to mark reserved
5528 *
5529 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5530 * In the DMA zone, a significant percentage may be consumed by kernel image
5531 * and other unfreeable allocations which can skew the watermarks badly. This
5532 * function may optionally be used to account for unfreeable pages in the
5533 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5534 * smaller per-cpu batchsize.
5535 */
5536 void __init set_dma_reserve(unsigned long new_dma_reserve)
5537 {
5538 dma_reserve = new_dma_reserve;
5539 }
5540
5541 void __init free_area_init(unsigned long *zones_size)
5542 {
5543 free_area_init_node(0, zones_size,
5544 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5545 }
5546
5547 static int page_alloc_cpu_notify(struct notifier_block *self,
5548 unsigned long action, void *hcpu)
5549 {
5550 int cpu = (unsigned long)hcpu;
5551
5552 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5553 lru_add_drain_cpu(cpu);
5554 drain_pages(cpu);
5555
5556 /*
5557 * Spill the event counters of the dead processor
5558 * into the current processors event counters.
5559 * This artificially elevates the count of the current
5560 * processor.
5561 */
5562 vm_events_fold_cpu(cpu);
5563
5564 /*
5565 * Zero the differential counters of the dead processor
5566 * so that the vm statistics are consistent.
5567 *
5568 * This is only okay since the processor is dead and cannot
5569 * race with what we are doing.
5570 */
5571 cpu_vm_stats_fold(cpu);
5572 }
5573 return NOTIFY_OK;
5574 }
5575
5576 void __init page_alloc_init(void)
5577 {
5578 hotcpu_notifier(page_alloc_cpu_notify, 0);
5579 }
5580
5581 /*
5582 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5583 * or min_free_kbytes changes.
5584 */
5585 static void calculate_totalreserve_pages(void)
5586 {
5587 struct pglist_data *pgdat;
5588 unsigned long reserve_pages = 0;
5589 enum zone_type i, j;
5590
5591 for_each_online_pgdat(pgdat) {
5592 for (i = 0; i < MAX_NR_ZONES; i++) {
5593 struct zone *zone = pgdat->node_zones + i;
5594 long max = 0;
5595
5596 /* Find valid and maximum lowmem_reserve in the zone */
5597 for (j = i; j < MAX_NR_ZONES; j++) {
5598 if (zone->lowmem_reserve[j] > max)
5599 max = zone->lowmem_reserve[j];
5600 }
5601
5602 /* we treat the high watermark as reserved pages. */
5603 max += high_wmark_pages(zone);
5604
5605 if (max > zone->managed_pages)
5606 max = zone->managed_pages;
5607 reserve_pages += max;
5608 /*
5609 * Lowmem reserves are not available to
5610 * GFP_HIGHUSER page cache allocations and
5611 * kswapd tries to balance zones to their high
5612 * watermark. As a result, neither should be
5613 * regarded as dirtyable memory, to prevent a
5614 * situation where reclaim has to clean pages
5615 * in order to balance the zones.
5616 */
5617 zone->dirty_balance_reserve = max;
5618 }
5619 }
5620 dirty_balance_reserve = reserve_pages;
5621 totalreserve_pages = reserve_pages;
5622 }
5623
5624 /*
5625 * setup_per_zone_lowmem_reserve - called whenever
5626 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5627 * has a correct pages reserved value, so an adequate number of
5628 * pages are left in the zone after a successful __alloc_pages().
5629 */
5630 static void setup_per_zone_lowmem_reserve(void)
5631 {
5632 struct pglist_data *pgdat;
5633 enum zone_type j, idx;
5634
5635 for_each_online_pgdat(pgdat) {
5636 for (j = 0; j < MAX_NR_ZONES; j++) {
5637 struct zone *zone = pgdat->node_zones + j;
5638 unsigned long managed_pages = zone->managed_pages;
5639
5640 zone->lowmem_reserve[j] = 0;
5641
5642 idx = j;
5643 while (idx) {
5644 struct zone *lower_zone;
5645
5646 idx--;
5647
5648 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5649 sysctl_lowmem_reserve_ratio[idx] = 1;
5650
5651 lower_zone = pgdat->node_zones + idx;
5652 lower_zone->lowmem_reserve[j] = managed_pages /
5653 sysctl_lowmem_reserve_ratio[idx];
5654 managed_pages += lower_zone->managed_pages;
5655 }
5656 }
5657 }
5658
5659 /* update totalreserve_pages */
5660 calculate_totalreserve_pages();
5661 }
5662
5663 static void __setup_per_zone_wmarks(void)
5664 {
5665 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5666 unsigned long lowmem_pages = 0;
5667 struct zone *zone;
5668 unsigned long flags;
5669
5670 /* Calculate total number of !ZONE_HIGHMEM pages */
5671 for_each_zone(zone) {
5672 if (!is_highmem(zone))
5673 lowmem_pages += zone->managed_pages;
5674 }
5675
5676 for_each_zone(zone) {
5677 u64 tmp;
5678
5679 spin_lock_irqsave(&zone->lock, flags);
5680 tmp = (u64)pages_min * zone->managed_pages;
5681 do_div(tmp, lowmem_pages);
5682 if (is_highmem(zone)) {
5683 /*
5684 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5685 * need highmem pages, so cap pages_min to a small
5686 * value here.
5687 *
5688 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5689 * deltas controls asynch page reclaim, and so should
5690 * not be capped for highmem.
5691 */
5692 unsigned long min_pages;
5693
5694 min_pages = zone->managed_pages / 1024;
5695 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5696 zone->watermark[WMARK_MIN] = min_pages;
5697 } else {
5698 /*
5699 * If it's a lowmem zone, reserve a number of pages
5700 * proportionate to the zone's size.
5701 */
5702 zone->watermark[WMARK_MIN] = tmp;
5703 }
5704
5705 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5706 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5707
5708 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5709 high_wmark_pages(zone) - low_wmark_pages(zone) -
5710 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5711
5712 setup_zone_migrate_reserve(zone);
5713 spin_unlock_irqrestore(&zone->lock, flags);
5714 }
5715
5716 /* update totalreserve_pages */
5717 calculate_totalreserve_pages();
5718 }
5719
5720 /**
5721 * setup_per_zone_wmarks - called when min_free_kbytes changes
5722 * or when memory is hot-{added|removed}
5723 *
5724 * Ensures that the watermark[min,low,high] values for each zone are set
5725 * correctly with respect to min_free_kbytes.
5726 */
5727 void setup_per_zone_wmarks(void)
5728 {
5729 mutex_lock(&zonelists_mutex);
5730 __setup_per_zone_wmarks();
5731 mutex_unlock(&zonelists_mutex);
5732 }
5733
5734 /*
5735 * The inactive anon list should be small enough that the VM never has to
5736 * do too much work, but large enough that each inactive page has a chance
5737 * to be referenced again before it is swapped out.
5738 *
5739 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5740 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5741 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5742 * the anonymous pages are kept on the inactive list.
5743 *
5744 * total target max
5745 * memory ratio inactive anon
5746 * -------------------------------------
5747 * 10MB 1 5MB
5748 * 100MB 1 50MB
5749 * 1GB 3 250MB
5750 * 10GB 10 0.9GB
5751 * 100GB 31 3GB
5752 * 1TB 101 10GB
5753 * 10TB 320 32GB
5754 */
5755 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5756 {
5757 unsigned int gb, ratio;
5758
5759 /* Zone size in gigabytes */
5760 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5761 if (gb)
5762 ratio = int_sqrt(10 * gb);
5763 else
5764 ratio = 1;
5765
5766 zone->inactive_ratio = ratio;
5767 }
5768
5769 static void __meminit setup_per_zone_inactive_ratio(void)
5770 {
5771 struct zone *zone;
5772
5773 for_each_zone(zone)
5774 calculate_zone_inactive_ratio(zone);
5775 }
5776
5777 /*
5778 * Initialise min_free_kbytes.
5779 *
5780 * For small machines we want it small (128k min). For large machines
5781 * we want it large (64MB max). But it is not linear, because network
5782 * bandwidth does not increase linearly with machine size. We use
5783 *
5784 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5785 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5786 *
5787 * which yields
5788 *
5789 * 16MB: 512k
5790 * 32MB: 724k
5791 * 64MB: 1024k
5792 * 128MB: 1448k
5793 * 256MB: 2048k
5794 * 512MB: 2896k
5795 * 1024MB: 4096k
5796 * 2048MB: 5792k
5797 * 4096MB: 8192k
5798 * 8192MB: 11584k
5799 * 16384MB: 16384k
5800 */
5801 int __meminit init_per_zone_wmark_min(void)
5802 {
5803 unsigned long lowmem_kbytes;
5804 int new_min_free_kbytes;
5805
5806 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5807 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5808
5809 if (new_min_free_kbytes > user_min_free_kbytes) {
5810 min_free_kbytes = new_min_free_kbytes;
5811 if (min_free_kbytes < 128)
5812 min_free_kbytes = 128;
5813 if (min_free_kbytes > 65536)
5814 min_free_kbytes = 65536;
5815 } else {
5816 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5817 new_min_free_kbytes, user_min_free_kbytes);
5818 }
5819 setup_per_zone_wmarks();
5820 refresh_zone_stat_thresholds();
5821 setup_per_zone_lowmem_reserve();
5822 setup_per_zone_inactive_ratio();
5823 return 0;
5824 }
5825 module_init(init_per_zone_wmark_min)
5826
5827 /*
5828 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5829 * that we can call two helper functions whenever min_free_kbytes
5830 * changes.
5831 */
5832 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5833 void __user *buffer, size_t *length, loff_t *ppos)
5834 {
5835 int rc;
5836
5837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5838 if (rc)
5839 return rc;
5840
5841 if (write) {
5842 user_min_free_kbytes = min_free_kbytes;
5843 setup_per_zone_wmarks();
5844 }
5845 return 0;
5846 }
5847
5848 #ifdef CONFIG_NUMA
5849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5850 void __user *buffer, size_t *length, loff_t *ppos)
5851 {
5852 struct zone *zone;
5853 int rc;
5854
5855 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5856 if (rc)
5857 return rc;
5858
5859 for_each_zone(zone)
5860 zone->min_unmapped_pages = (zone->managed_pages *
5861 sysctl_min_unmapped_ratio) / 100;
5862 return 0;
5863 }
5864
5865 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5866 void __user *buffer, size_t *length, loff_t *ppos)
5867 {
5868 struct zone *zone;
5869 int rc;
5870
5871 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5872 if (rc)
5873 return rc;
5874
5875 for_each_zone(zone)
5876 zone->min_slab_pages = (zone->managed_pages *
5877 sysctl_min_slab_ratio) / 100;
5878 return 0;
5879 }
5880 #endif
5881
5882 /*
5883 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5884 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5885 * whenever sysctl_lowmem_reserve_ratio changes.
5886 *
5887 * The reserve ratio obviously has absolutely no relation with the
5888 * minimum watermarks. The lowmem reserve ratio can only make sense
5889 * if in function of the boot time zone sizes.
5890 */
5891 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5892 void __user *buffer, size_t *length, loff_t *ppos)
5893 {
5894 proc_dointvec_minmax(table, write, buffer, length, ppos);
5895 setup_per_zone_lowmem_reserve();
5896 return 0;
5897 }
5898
5899 /*
5900 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5901 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5902 * pagelist can have before it gets flushed back to buddy allocator.
5903 */
5904 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5905 void __user *buffer, size_t *length, loff_t *ppos)
5906 {
5907 struct zone *zone;
5908 int old_percpu_pagelist_fraction;
5909 int ret;
5910
5911 mutex_lock(&pcp_batch_high_lock);
5912 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5913
5914 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5915 if (!write || ret < 0)
5916 goto out;
5917
5918 /* Sanity checking to avoid pcp imbalance */
5919 if (percpu_pagelist_fraction &&
5920 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5921 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5922 ret = -EINVAL;
5923 goto out;
5924 }
5925
5926 /* No change? */
5927 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5928 goto out;
5929
5930 for_each_populated_zone(zone) {
5931 unsigned int cpu;
5932
5933 for_each_possible_cpu(cpu)
5934 pageset_set_high_and_batch(zone,
5935 per_cpu_ptr(zone->pageset, cpu));
5936 }
5937 out:
5938 mutex_unlock(&pcp_batch_high_lock);
5939 return ret;
5940 }
5941
5942 int hashdist = HASHDIST_DEFAULT;
5943
5944 #ifdef CONFIG_NUMA
5945 static int __init set_hashdist(char *str)
5946 {
5947 if (!str)
5948 return 0;
5949 hashdist = simple_strtoul(str, &str, 0);
5950 return 1;
5951 }
5952 __setup("hashdist=", set_hashdist);
5953 #endif
5954
5955 /*
5956 * allocate a large system hash table from bootmem
5957 * - it is assumed that the hash table must contain an exact power-of-2
5958 * quantity of entries
5959 * - limit is the number of hash buckets, not the total allocation size
5960 */
5961 void *__init alloc_large_system_hash(const char *tablename,
5962 unsigned long bucketsize,
5963 unsigned long numentries,
5964 int scale,
5965 int flags,
5966 unsigned int *_hash_shift,
5967 unsigned int *_hash_mask,
5968 unsigned long low_limit,
5969 unsigned long high_limit)
5970 {
5971 unsigned long long max = high_limit;
5972 unsigned long log2qty, size;
5973 void *table = NULL;
5974
5975 /* allow the kernel cmdline to have a say */
5976 if (!numentries) {
5977 /* round applicable memory size up to nearest megabyte */
5978 numentries = nr_kernel_pages;
5979
5980 /* It isn't necessary when PAGE_SIZE >= 1MB */
5981 if (PAGE_SHIFT < 20)
5982 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5983
5984 /* limit to 1 bucket per 2^scale bytes of low memory */
5985 if (scale > PAGE_SHIFT)
5986 numentries >>= (scale - PAGE_SHIFT);
5987 else
5988 numentries <<= (PAGE_SHIFT - scale);
5989
5990 /* Make sure we've got at least a 0-order allocation.. */
5991 if (unlikely(flags & HASH_SMALL)) {
5992 /* Makes no sense without HASH_EARLY */
5993 WARN_ON(!(flags & HASH_EARLY));
5994 if (!(numentries >> *_hash_shift)) {
5995 numentries = 1UL << *_hash_shift;
5996 BUG_ON(!numentries);
5997 }
5998 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5999 numentries = PAGE_SIZE / bucketsize;
6000 }
6001 numentries = roundup_pow_of_two(numentries);
6002
6003 /* limit allocation size to 1/16 total memory by default */
6004 if (max == 0) {
6005 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6006 do_div(max, bucketsize);
6007 }
6008 max = min(max, 0x80000000ULL);
6009
6010 if (numentries < low_limit)
6011 numentries = low_limit;
6012 if (numentries > max)
6013 numentries = max;
6014
6015 log2qty = ilog2(numentries);
6016
6017 do {
6018 size = bucketsize << log2qty;
6019 if (flags & HASH_EARLY)
6020 table = memblock_virt_alloc_nopanic(size, 0);
6021 else if (hashdist)
6022 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6023 else {
6024 /*
6025 * If bucketsize is not a power-of-two, we may free
6026 * some pages at the end of hash table which
6027 * alloc_pages_exact() automatically does
6028 */
6029 if (get_order(size) < MAX_ORDER) {
6030 table = alloc_pages_exact(size, GFP_ATOMIC);
6031 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6032 }
6033 }
6034 } while (!table && size > PAGE_SIZE && --log2qty);
6035
6036 if (!table)
6037 panic("Failed to allocate %s hash table\n", tablename);
6038
6039 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6040 tablename,
6041 (1UL << log2qty),
6042 ilog2(size) - PAGE_SHIFT,
6043 size);
6044
6045 if (_hash_shift)
6046 *_hash_shift = log2qty;
6047 if (_hash_mask)
6048 *_hash_mask = (1 << log2qty) - 1;
6049
6050 return table;
6051 }
6052
6053 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6054 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6055 unsigned long pfn)
6056 {
6057 #ifdef CONFIG_SPARSEMEM
6058 return __pfn_to_section(pfn)->pageblock_flags;
6059 #else
6060 return zone->pageblock_flags;
6061 #endif /* CONFIG_SPARSEMEM */
6062 }
6063
6064 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6065 {
6066 #ifdef CONFIG_SPARSEMEM
6067 pfn &= (PAGES_PER_SECTION-1);
6068 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6069 #else
6070 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6071 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6072 #endif /* CONFIG_SPARSEMEM */
6073 }
6074
6075 /**
6076 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6077 * @page: The page within the block of interest
6078 * @pfn: The target page frame number
6079 * @end_bitidx: The last bit of interest to retrieve
6080 * @mask: mask of bits that the caller is interested in
6081 *
6082 * Return: pageblock_bits flags
6083 */
6084 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6085 unsigned long end_bitidx,
6086 unsigned long mask)
6087 {
6088 struct zone *zone;
6089 unsigned long *bitmap;
6090 unsigned long bitidx, word_bitidx;
6091 unsigned long word;
6092
6093 zone = page_zone(page);
6094 bitmap = get_pageblock_bitmap(zone, pfn);
6095 bitidx = pfn_to_bitidx(zone, pfn);
6096 word_bitidx = bitidx / BITS_PER_LONG;
6097 bitidx &= (BITS_PER_LONG-1);
6098
6099 word = bitmap[word_bitidx];
6100 bitidx += end_bitidx;
6101 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6102 }
6103
6104 /**
6105 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6106 * @page: The page within the block of interest
6107 * @flags: The flags to set
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest
6110 * @mask: mask of bits that the caller is interested in
6111 */
6112 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6113 unsigned long pfn,
6114 unsigned long end_bitidx,
6115 unsigned long mask)
6116 {
6117 struct zone *zone;
6118 unsigned long *bitmap;
6119 unsigned long bitidx, word_bitidx;
6120 unsigned long old_word, word;
6121
6122 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6123
6124 zone = page_zone(page);
6125 bitmap = get_pageblock_bitmap(zone, pfn);
6126 bitidx = pfn_to_bitidx(zone, pfn);
6127 word_bitidx = bitidx / BITS_PER_LONG;
6128 bitidx &= (BITS_PER_LONG-1);
6129
6130 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6131
6132 bitidx += end_bitidx;
6133 mask <<= (BITS_PER_LONG - bitidx - 1);
6134 flags <<= (BITS_PER_LONG - bitidx - 1);
6135
6136 word = ACCESS_ONCE(bitmap[word_bitidx]);
6137 for (;;) {
6138 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6139 if (word == old_word)
6140 break;
6141 word = old_word;
6142 }
6143 }
6144
6145 /*
6146 * This function checks whether pageblock includes unmovable pages or not.
6147 * If @count is not zero, it is okay to include less @count unmovable pages
6148 *
6149 * PageLRU check without isolation or lru_lock could race so that
6150 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6151 * expect this function should be exact.
6152 */
6153 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6154 bool skip_hwpoisoned_pages)
6155 {
6156 unsigned long pfn, iter, found;
6157 int mt;
6158
6159 /*
6160 * For avoiding noise data, lru_add_drain_all() should be called
6161 * If ZONE_MOVABLE, the zone never contains unmovable pages
6162 */
6163 if (zone_idx(zone) == ZONE_MOVABLE)
6164 return false;
6165 mt = get_pageblock_migratetype(page);
6166 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6167 return false;
6168
6169 pfn = page_to_pfn(page);
6170 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6171 unsigned long check = pfn + iter;
6172
6173 if (!pfn_valid_within(check))
6174 continue;
6175
6176 page = pfn_to_page(check);
6177
6178 /*
6179 * Hugepages are not in LRU lists, but they're movable.
6180 * We need not scan over tail pages bacause we don't
6181 * handle each tail page individually in migration.
6182 */
6183 if (PageHuge(page)) {
6184 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6185 continue;
6186 }
6187
6188 /*
6189 * We can't use page_count without pin a page
6190 * because another CPU can free compound page.
6191 * This check already skips compound tails of THP
6192 * because their page->_count is zero at all time.
6193 */
6194 if (!atomic_read(&page->_count)) {
6195 if (PageBuddy(page))
6196 iter += (1 << page_order(page)) - 1;
6197 continue;
6198 }
6199
6200 /*
6201 * The HWPoisoned page may be not in buddy system, and
6202 * page_count() is not 0.
6203 */
6204 if (skip_hwpoisoned_pages && PageHWPoison(page))
6205 continue;
6206
6207 if (!PageLRU(page))
6208 found++;
6209 /*
6210 * If there are RECLAIMABLE pages, we need to check it.
6211 * But now, memory offline itself doesn't call shrink_slab()
6212 * and it still to be fixed.
6213 */
6214 /*
6215 * If the page is not RAM, page_count()should be 0.
6216 * we don't need more check. This is an _used_ not-movable page.
6217 *
6218 * The problematic thing here is PG_reserved pages. PG_reserved
6219 * is set to both of a memory hole page and a _used_ kernel
6220 * page at boot.
6221 */
6222 if (found > count)
6223 return true;
6224 }
6225 return false;
6226 }
6227
6228 bool is_pageblock_removable_nolock(struct page *page)
6229 {
6230 struct zone *zone;
6231 unsigned long pfn;
6232
6233 /*
6234 * We have to be careful here because we are iterating over memory
6235 * sections which are not zone aware so we might end up outside of
6236 * the zone but still within the section.
6237 * We have to take care about the node as well. If the node is offline
6238 * its NODE_DATA will be NULL - see page_zone.
6239 */
6240 if (!node_online(page_to_nid(page)))
6241 return false;
6242
6243 zone = page_zone(page);
6244 pfn = page_to_pfn(page);
6245 if (!zone_spans_pfn(zone, pfn))
6246 return false;
6247
6248 return !has_unmovable_pages(zone, page, 0, true);
6249 }
6250
6251 #ifdef CONFIG_CMA
6252
6253 static unsigned long pfn_max_align_down(unsigned long pfn)
6254 {
6255 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6256 pageblock_nr_pages) - 1);
6257 }
6258
6259 static unsigned long pfn_max_align_up(unsigned long pfn)
6260 {
6261 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6262 pageblock_nr_pages));
6263 }
6264
6265 /* [start, end) must belong to a single zone. */
6266 static int __alloc_contig_migrate_range(struct compact_control *cc,
6267 unsigned long start, unsigned long end)
6268 {
6269 /* This function is based on compact_zone() from compaction.c. */
6270 unsigned long nr_reclaimed;
6271 unsigned long pfn = start;
6272 unsigned int tries = 0;
6273 int ret = 0;
6274
6275 migrate_prep();
6276
6277 while (pfn < end || !list_empty(&cc->migratepages)) {
6278 if (fatal_signal_pending(current)) {
6279 ret = -EINTR;
6280 break;
6281 }
6282
6283 if (list_empty(&cc->migratepages)) {
6284 cc->nr_migratepages = 0;
6285 pfn = isolate_migratepages_range(cc, pfn, end);
6286 if (!pfn) {
6287 ret = -EINTR;
6288 break;
6289 }
6290 tries = 0;
6291 } else if (++tries == 5) {
6292 ret = ret < 0 ? ret : -EBUSY;
6293 break;
6294 }
6295
6296 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6297 &cc->migratepages);
6298 cc->nr_migratepages -= nr_reclaimed;
6299
6300 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6301 NULL, 0, cc->mode, MR_CMA);
6302 }
6303 if (ret < 0) {
6304 putback_movable_pages(&cc->migratepages);
6305 return ret;
6306 }
6307 return 0;
6308 }
6309
6310 /**
6311 * alloc_contig_range() -- tries to allocate given range of pages
6312 * @start: start PFN to allocate
6313 * @end: one-past-the-last PFN to allocate
6314 * @migratetype: migratetype of the underlaying pageblocks (either
6315 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6316 * in range must have the same migratetype and it must
6317 * be either of the two.
6318 *
6319 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6320 * aligned, however it's the caller's responsibility to guarantee that
6321 * we are the only thread that changes migrate type of pageblocks the
6322 * pages fall in.
6323 *
6324 * The PFN range must belong to a single zone.
6325 *
6326 * Returns zero on success or negative error code. On success all
6327 * pages which PFN is in [start, end) are allocated for the caller and
6328 * need to be freed with free_contig_range().
6329 */
6330 int alloc_contig_range(unsigned long start, unsigned long end,
6331 unsigned migratetype)
6332 {
6333 unsigned long outer_start, outer_end;
6334 int ret = 0, order;
6335
6336 struct compact_control cc = {
6337 .nr_migratepages = 0,
6338 .order = -1,
6339 .zone = page_zone(pfn_to_page(start)),
6340 .mode = MIGRATE_SYNC,
6341 .ignore_skip_hint = true,
6342 };
6343 INIT_LIST_HEAD(&cc.migratepages);
6344
6345 /*
6346 * What we do here is we mark all pageblocks in range as
6347 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6348 * have different sizes, and due to the way page allocator
6349 * work, we align the range to biggest of the two pages so
6350 * that page allocator won't try to merge buddies from
6351 * different pageblocks and change MIGRATE_ISOLATE to some
6352 * other migration type.
6353 *
6354 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6355 * migrate the pages from an unaligned range (ie. pages that
6356 * we are interested in). This will put all the pages in
6357 * range back to page allocator as MIGRATE_ISOLATE.
6358 *
6359 * When this is done, we take the pages in range from page
6360 * allocator removing them from the buddy system. This way
6361 * page allocator will never consider using them.
6362 *
6363 * This lets us mark the pageblocks back as
6364 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6365 * aligned range but not in the unaligned, original range are
6366 * put back to page allocator so that buddy can use them.
6367 */
6368
6369 ret = start_isolate_page_range(pfn_max_align_down(start),
6370 pfn_max_align_up(end), migratetype,
6371 false);
6372 if (ret)
6373 return ret;
6374
6375 ret = __alloc_contig_migrate_range(&cc, start, end);
6376 if (ret)
6377 goto done;
6378
6379 /*
6380 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6381 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6382 * more, all pages in [start, end) are free in page allocator.
6383 * What we are going to do is to allocate all pages from
6384 * [start, end) (that is remove them from page allocator).
6385 *
6386 * The only problem is that pages at the beginning and at the
6387 * end of interesting range may be not aligned with pages that
6388 * page allocator holds, ie. they can be part of higher order
6389 * pages. Because of this, we reserve the bigger range and
6390 * once this is done free the pages we are not interested in.
6391 *
6392 * We don't have to hold zone->lock here because the pages are
6393 * isolated thus they won't get removed from buddy.
6394 */
6395
6396 lru_add_drain_all();
6397 drain_all_pages();
6398
6399 order = 0;
6400 outer_start = start;
6401 while (!PageBuddy(pfn_to_page(outer_start))) {
6402 if (++order >= MAX_ORDER) {
6403 ret = -EBUSY;
6404 goto done;
6405 }
6406 outer_start &= ~0UL << order;
6407 }
6408
6409 /* Make sure the range is really isolated. */
6410 if (test_pages_isolated(outer_start, end, false)) {
6411 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6412 outer_start, end);
6413 ret = -EBUSY;
6414 goto done;
6415 }
6416
6417
6418 /* Grab isolated pages from freelists. */
6419 outer_end = isolate_freepages_range(&cc, outer_start, end);
6420 if (!outer_end) {
6421 ret = -EBUSY;
6422 goto done;
6423 }
6424
6425 /* Free head and tail (if any) */
6426 if (start != outer_start)
6427 free_contig_range(outer_start, start - outer_start);
6428 if (end != outer_end)
6429 free_contig_range(end, outer_end - end);
6430
6431 done:
6432 undo_isolate_page_range(pfn_max_align_down(start),
6433 pfn_max_align_up(end), migratetype);
6434 return ret;
6435 }
6436
6437 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6438 {
6439 unsigned int count = 0;
6440
6441 for (; nr_pages--; pfn++) {
6442 struct page *page = pfn_to_page(pfn);
6443
6444 count += page_count(page) != 1;
6445 __free_page(page);
6446 }
6447 WARN(count != 0, "%d pages are still in use!\n", count);
6448 }
6449 #endif
6450
6451 #ifdef CONFIG_MEMORY_HOTPLUG
6452 /*
6453 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6454 * page high values need to be recalulated.
6455 */
6456 void __meminit zone_pcp_update(struct zone *zone)
6457 {
6458 unsigned cpu;
6459 mutex_lock(&pcp_batch_high_lock);
6460 for_each_possible_cpu(cpu)
6461 pageset_set_high_and_batch(zone,
6462 per_cpu_ptr(zone->pageset, cpu));
6463 mutex_unlock(&pcp_batch_high_lock);
6464 }
6465 #endif
6466
6467 void zone_pcp_reset(struct zone *zone)
6468 {
6469 unsigned long flags;
6470 int cpu;
6471 struct per_cpu_pageset *pset;
6472
6473 /* avoid races with drain_pages() */
6474 local_irq_save(flags);
6475 if (zone->pageset != &boot_pageset) {
6476 for_each_online_cpu(cpu) {
6477 pset = per_cpu_ptr(zone->pageset, cpu);
6478 drain_zonestat(zone, pset);
6479 }
6480 free_percpu(zone->pageset);
6481 zone->pageset = &boot_pageset;
6482 }
6483 local_irq_restore(flags);
6484 }
6485
6486 #ifdef CONFIG_MEMORY_HOTREMOVE
6487 /*
6488 * All pages in the range must be isolated before calling this.
6489 */
6490 void
6491 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6492 {
6493 struct page *page;
6494 struct zone *zone;
6495 unsigned int order, i;
6496 unsigned long pfn;
6497 unsigned long flags;
6498 /* find the first valid pfn */
6499 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6500 if (pfn_valid(pfn))
6501 break;
6502 if (pfn == end_pfn)
6503 return;
6504 zone = page_zone(pfn_to_page(pfn));
6505 spin_lock_irqsave(&zone->lock, flags);
6506 pfn = start_pfn;
6507 while (pfn < end_pfn) {
6508 if (!pfn_valid(pfn)) {
6509 pfn++;
6510 continue;
6511 }
6512 page = pfn_to_page(pfn);
6513 /*
6514 * The HWPoisoned page may be not in buddy system, and
6515 * page_count() is not 0.
6516 */
6517 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6518 pfn++;
6519 SetPageReserved(page);
6520 continue;
6521 }
6522
6523 BUG_ON(page_count(page));
6524 BUG_ON(!PageBuddy(page));
6525 order = page_order(page);
6526 #ifdef CONFIG_DEBUG_VM
6527 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6528 pfn, 1 << order, end_pfn);
6529 #endif
6530 list_del(&page->lru);
6531 rmv_page_order(page);
6532 zone->free_area[order].nr_free--;
6533 for (i = 0; i < (1 << order); i++)
6534 SetPageReserved((page+i));
6535 pfn += (1 << order);
6536 }
6537 spin_unlock_irqrestore(&zone->lock, flags);
6538 }
6539 #endif
6540
6541 #ifdef CONFIG_MEMORY_FAILURE
6542 bool is_free_buddy_page(struct page *page)
6543 {
6544 struct zone *zone = page_zone(page);
6545 unsigned long pfn = page_to_pfn(page);
6546 unsigned long flags;
6547 unsigned int order;
6548
6549 spin_lock_irqsave(&zone->lock, flags);
6550 for (order = 0; order < MAX_ORDER; order++) {
6551 struct page *page_head = page - (pfn & ((1 << order) - 1));
6552
6553 if (PageBuddy(page_head) && page_order(page_head) >= order)
6554 break;
6555 }
6556 spin_unlock_irqrestore(&zone->lock, flags);
6557
6558 return order < MAX_ORDER;
6559 }
6560 #endif
This page took 0.171048 seconds and 6 git commands to generate.