Merge git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
56
57 /*
58 * Array of node states.
59 */
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
70 };
71 EXPORT_SYMBOL(node_states);
72
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81
82 static void __free_pages_ok(struct page *page, unsigned int order);
83
84 /*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 32,
104 #endif
105 32,
106 };
107
108 EXPORT_SYMBOL(totalram_pages);
109
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
122 };
123
124 int min_free_kbytes = 1024;
125
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170
171 int page_group_by_mobility_disabled __read_mostly;
172
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181 }
182
183 bool oom_killer_disabled __read_mostly;
184
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
191
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
201 }
202
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
209
210 return 1;
211 }
212 /*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
221
222 return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 return 0;
228 }
229 #endif
230
231 static void bad_page(struct page *page)
232 {
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
241 }
242
243 /*
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
246 */
247 if (nr_shown == 60) {
248 if (time_before(jiffies, resume)) {
249 nr_unshown++;
250 goto out;
251 }
252 if (nr_unshown) {
253 printk(KERN_ALERT
254 "BUG: Bad page state: %lu messages suppressed\n",
255 nr_unshown);
256 nr_unshown = 0;
257 }
258 nr_shown = 0;
259 }
260 if (nr_shown++ == 0)
261 resume = jiffies + 60 * HZ;
262
263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
264 current->comm, page_to_pfn(page));
265 printk(KERN_ALERT
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page, (void *)page->flags, page_count(page),
268 page_mapcount(page), page->mapping, page->index);
269
270 dump_stack();
271 out:
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page);
274 add_taint(TAINT_BAD_PAGE);
275 }
276
277 /*
278 * Higher-order pages are called "compound pages". They are structured thusly:
279 *
280 * The first PAGE_SIZE page is called the "head page".
281 *
282 * The remaining PAGE_SIZE pages are called "tail pages".
283 *
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
286 *
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
290 */
291
292 static void free_compound_page(struct page *page)
293 {
294 __free_pages_ok(page, compound_order(page));
295 }
296
297 void prep_compound_page(struct page *page, unsigned long order)
298 {
299 int i;
300 int nr_pages = 1 << order;
301
302 set_compound_page_dtor(page, free_compound_page);
303 set_compound_order(page, order);
304 __SetPageHead(page);
305 for (i = 1; i < nr_pages; i++) {
306 struct page *p = page + i;
307
308 __SetPageTail(p);
309 p->first_page = page;
310 }
311 }
312
313 static int destroy_compound_page(struct page *page, unsigned long order)
314 {
315 int i;
316 int nr_pages = 1 << order;
317 int bad = 0;
318
319 if (unlikely(compound_order(page) != order) ||
320 unlikely(!PageHead(page))) {
321 bad_page(page);
322 bad++;
323 }
324
325 __ClearPageHead(page);
326
327 for (i = 1; i < nr_pages; i++) {
328 struct page *p = page + i;
329
330 if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 bad_page(page);
332 bad++;
333 }
334 __ClearPageTail(p);
335 }
336
337 return bad;
338 }
339
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
341 {
342 int i;
343
344 /*
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
347 */
348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 for (i = 0; i < (1 << order); i++)
350 clear_highpage(page + i);
351 }
352
353 static inline void set_page_order(struct page *page, int order)
354 {
355 set_page_private(page, order);
356 __SetPageBuddy(page);
357 }
358
359 static inline void rmv_page_order(struct page *page)
360 {
361 __ClearPageBuddy(page);
362 set_page_private(page, 0);
363 }
364
365 /*
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
368 *
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
371 * B2 = B1 ^ (1 << O)
372 * For example, if the starting buddy (buddy2) is #8 its order
373 * 1 buddy is #10:
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
375 *
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
378 * P = B & ~(1 << O)
379 *
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
381 */
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
384 {
385 unsigned long buddy_idx = page_idx ^ (1 << order);
386
387 return page + (buddy_idx - page_idx);
388 }
389
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
392 {
393 return (page_idx & ~(1 << order));
394 }
395
396 /*
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
403 *
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
406 *
407 * For recording page's order, we use page_private(page).
408 */
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 int order)
411 {
412 if (!pfn_valid_within(page_to_pfn(buddy)))
413 return 0;
414
415 if (page_zone_id(page) != page_zone_id(buddy))
416 return 0;
417
418 if (PageBuddy(buddy) && page_order(buddy) == order) {
419 VM_BUG_ON(page_count(buddy) != 0);
420 return 1;
421 }
422 return 0;
423 }
424
425 /*
426 * Freeing function for a buddy system allocator.
427 *
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
445 *
446 * -- wli
447 */
448
449 static inline void __free_one_page(struct page *page,
450 struct zone *zone, unsigned int order,
451 int migratetype)
452 {
453 unsigned long page_idx;
454
455 if (unlikely(PageCompound(page)))
456 if (unlikely(destroy_compound_page(page, order)))
457 return;
458
459 VM_BUG_ON(migratetype == -1);
460
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
462
463 VM_BUG_ON(page_idx & ((1 << order) - 1));
464 VM_BUG_ON(bad_range(zone, page));
465
466 while (order < MAX_ORDER-1) {
467 unsigned long combined_idx;
468 struct page *buddy;
469
470 buddy = __page_find_buddy(page, page_idx, order);
471 if (!page_is_buddy(page, buddy, order))
472 break;
473
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy->lru);
476 zone->free_area[order].nr_free--;
477 rmv_page_order(buddy);
478 combined_idx = __find_combined_index(page_idx, order);
479 page = page + (combined_idx - page_idx);
480 page_idx = combined_idx;
481 order++;
482 }
483 set_page_order(page, order);
484 list_add(&page->lru,
485 &zone->free_area[order].free_list[migratetype]);
486 zone->free_area[order].nr_free++;
487 }
488
489 /*
490 * free_page_mlock() -- clean up attempts to free and mlocked() page.
491 * Page should not be on lru, so no need to fix that up.
492 * free_pages_check() will verify...
493 */
494 static inline void free_page_mlock(struct page *page)
495 {
496 __dec_zone_page_state(page, NR_MLOCK);
497 __count_vm_event(UNEVICTABLE_MLOCKFREED);
498 }
499
500 static inline int free_pages_check(struct page *page)
501 {
502 if (unlikely(page_mapcount(page) |
503 (page->mapping != NULL) |
504 (atomic_read(&page->_count) != 0) |
505 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
506 bad_page(page);
507 return 1;
508 }
509 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
510 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
511 return 0;
512 }
513
514 /*
515 * Frees a number of pages from the PCP lists
516 * Assumes all pages on list are in same zone, and of same order.
517 * count is the number of pages to free.
518 *
519 * If the zone was previously in an "all pages pinned" state then look to
520 * see if this freeing clears that state.
521 *
522 * And clear the zone's pages_scanned counter, to hold off the "all pages are
523 * pinned" detection logic.
524 */
525 static void free_pcppages_bulk(struct zone *zone, int count,
526 struct per_cpu_pages *pcp)
527 {
528 int migratetype = 0;
529 int batch_free = 0;
530
531 spin_lock(&zone->lock);
532 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
533 zone->pages_scanned = 0;
534
535 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
536 while (count) {
537 struct page *page;
538 struct list_head *list;
539
540 /*
541 * Remove pages from lists in a round-robin fashion. A
542 * batch_free count is maintained that is incremented when an
543 * empty list is encountered. This is so more pages are freed
544 * off fuller lists instead of spinning excessively around empty
545 * lists
546 */
547 do {
548 batch_free++;
549 if (++migratetype == MIGRATE_PCPTYPES)
550 migratetype = 0;
551 list = &pcp->lists[migratetype];
552 } while (list_empty(list));
553
554 do {
555 page = list_entry(list->prev, struct page, lru);
556 /* must delete as __free_one_page list manipulates */
557 list_del(&page->lru);
558 __free_one_page(page, zone, 0, migratetype);
559 trace_mm_page_pcpu_drain(page, 0, migratetype);
560 } while (--count && --batch_free && !list_empty(list));
561 }
562 spin_unlock(&zone->lock);
563 }
564
565 static void free_one_page(struct zone *zone, struct page *page, int order,
566 int migratetype)
567 {
568 spin_lock(&zone->lock);
569 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
570 zone->pages_scanned = 0;
571
572 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
573 __free_one_page(page, zone, order, migratetype);
574 spin_unlock(&zone->lock);
575 }
576
577 static void __free_pages_ok(struct page *page, unsigned int order)
578 {
579 unsigned long flags;
580 int i;
581 int bad = 0;
582 int wasMlocked = __TestClearPageMlocked(page);
583
584 kmemcheck_free_shadow(page, order);
585
586 for (i = 0 ; i < (1 << order) ; ++i)
587 bad += free_pages_check(page + i);
588 if (bad)
589 return;
590
591 if (!PageHighMem(page)) {
592 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
593 debug_check_no_obj_freed(page_address(page),
594 PAGE_SIZE << order);
595 }
596 arch_free_page(page, order);
597 kernel_map_pages(page, 1 << order, 0);
598
599 local_irq_save(flags);
600 if (unlikely(wasMlocked))
601 free_page_mlock(page);
602 __count_vm_events(PGFREE, 1 << order);
603 free_one_page(page_zone(page), page, order,
604 get_pageblock_migratetype(page));
605 local_irq_restore(flags);
606 }
607
608 /*
609 * permit the bootmem allocator to evade page validation on high-order frees
610 */
611 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
612 {
613 if (order == 0) {
614 __ClearPageReserved(page);
615 set_page_count(page, 0);
616 set_page_refcounted(page);
617 __free_page(page);
618 } else {
619 int loop;
620
621 prefetchw(page);
622 for (loop = 0; loop < BITS_PER_LONG; loop++) {
623 struct page *p = &page[loop];
624
625 if (loop + 1 < BITS_PER_LONG)
626 prefetchw(p + 1);
627 __ClearPageReserved(p);
628 set_page_count(p, 0);
629 }
630
631 set_page_refcounted(page);
632 __free_pages(page, order);
633 }
634 }
635
636
637 /*
638 * The order of subdivision here is critical for the IO subsystem.
639 * Please do not alter this order without good reasons and regression
640 * testing. Specifically, as large blocks of memory are subdivided,
641 * the order in which smaller blocks are delivered depends on the order
642 * they're subdivided in this function. This is the primary factor
643 * influencing the order in which pages are delivered to the IO
644 * subsystem according to empirical testing, and this is also justified
645 * by considering the behavior of a buddy system containing a single
646 * large block of memory acted on by a series of small allocations.
647 * This behavior is a critical factor in sglist merging's success.
648 *
649 * -- wli
650 */
651 static inline void expand(struct zone *zone, struct page *page,
652 int low, int high, struct free_area *area,
653 int migratetype)
654 {
655 unsigned long size = 1 << high;
656
657 while (high > low) {
658 area--;
659 high--;
660 size >>= 1;
661 VM_BUG_ON(bad_range(zone, &page[size]));
662 list_add(&page[size].lru, &area->free_list[migratetype]);
663 area->nr_free++;
664 set_page_order(&page[size], high);
665 }
666 }
667
668 /*
669 * This page is about to be returned from the page allocator
670 */
671 static inline int check_new_page(struct page *page)
672 {
673 if (unlikely(page_mapcount(page) |
674 (page->mapping != NULL) |
675 (atomic_read(&page->_count) != 0) |
676 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
677 bad_page(page);
678 return 1;
679 }
680 return 0;
681 }
682
683 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
684 {
685 int i;
686
687 for (i = 0; i < (1 << order); i++) {
688 struct page *p = page + i;
689 if (unlikely(check_new_page(p)))
690 return 1;
691 }
692
693 set_page_private(page, 0);
694 set_page_refcounted(page);
695
696 arch_alloc_page(page, order);
697 kernel_map_pages(page, 1 << order, 1);
698
699 if (gfp_flags & __GFP_ZERO)
700 prep_zero_page(page, order, gfp_flags);
701
702 if (order && (gfp_flags & __GFP_COMP))
703 prep_compound_page(page, order);
704
705 return 0;
706 }
707
708 /*
709 * Go through the free lists for the given migratetype and remove
710 * the smallest available page from the freelists
711 */
712 static inline
713 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
714 int migratetype)
715 {
716 unsigned int current_order;
717 struct free_area * area;
718 struct page *page;
719
720 /* Find a page of the appropriate size in the preferred list */
721 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
722 area = &(zone->free_area[current_order]);
723 if (list_empty(&area->free_list[migratetype]))
724 continue;
725
726 page = list_entry(area->free_list[migratetype].next,
727 struct page, lru);
728 list_del(&page->lru);
729 rmv_page_order(page);
730 area->nr_free--;
731 expand(zone, page, order, current_order, area, migratetype);
732 return page;
733 }
734
735 return NULL;
736 }
737
738
739 /*
740 * This array describes the order lists are fallen back to when
741 * the free lists for the desirable migrate type are depleted
742 */
743 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
744 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
745 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
746 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
747 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
748 };
749
750 /*
751 * Move the free pages in a range to the free lists of the requested type.
752 * Note that start_page and end_pages are not aligned on a pageblock
753 * boundary. If alignment is required, use move_freepages_block()
754 */
755 static int move_freepages(struct zone *zone,
756 struct page *start_page, struct page *end_page,
757 int migratetype)
758 {
759 struct page *page;
760 unsigned long order;
761 int pages_moved = 0;
762
763 #ifndef CONFIG_HOLES_IN_ZONE
764 /*
765 * page_zone is not safe to call in this context when
766 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
767 * anyway as we check zone boundaries in move_freepages_block().
768 * Remove at a later date when no bug reports exist related to
769 * grouping pages by mobility
770 */
771 BUG_ON(page_zone(start_page) != page_zone(end_page));
772 #endif
773
774 for (page = start_page; page <= end_page;) {
775 /* Make sure we are not inadvertently changing nodes */
776 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
777
778 if (!pfn_valid_within(page_to_pfn(page))) {
779 page++;
780 continue;
781 }
782
783 if (!PageBuddy(page)) {
784 page++;
785 continue;
786 }
787
788 order = page_order(page);
789 list_del(&page->lru);
790 list_add(&page->lru,
791 &zone->free_area[order].free_list[migratetype]);
792 page += 1 << order;
793 pages_moved += 1 << order;
794 }
795
796 return pages_moved;
797 }
798
799 static int move_freepages_block(struct zone *zone, struct page *page,
800 int migratetype)
801 {
802 unsigned long start_pfn, end_pfn;
803 struct page *start_page, *end_page;
804
805 start_pfn = page_to_pfn(page);
806 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
807 start_page = pfn_to_page(start_pfn);
808 end_page = start_page + pageblock_nr_pages - 1;
809 end_pfn = start_pfn + pageblock_nr_pages - 1;
810
811 /* Do not cross zone boundaries */
812 if (start_pfn < zone->zone_start_pfn)
813 start_page = page;
814 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
815 return 0;
816
817 return move_freepages(zone, start_page, end_page, migratetype);
818 }
819
820 static void change_pageblock_range(struct page *pageblock_page,
821 int start_order, int migratetype)
822 {
823 int nr_pageblocks = 1 << (start_order - pageblock_order);
824
825 while (nr_pageblocks--) {
826 set_pageblock_migratetype(pageblock_page, migratetype);
827 pageblock_page += pageblock_nr_pages;
828 }
829 }
830
831 /* Remove an element from the buddy allocator from the fallback list */
832 static inline struct page *
833 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
834 {
835 struct free_area * area;
836 int current_order;
837 struct page *page;
838 int migratetype, i;
839
840 /* Find the largest possible block of pages in the other list */
841 for (current_order = MAX_ORDER-1; current_order >= order;
842 --current_order) {
843 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
844 migratetype = fallbacks[start_migratetype][i];
845
846 /* MIGRATE_RESERVE handled later if necessary */
847 if (migratetype == MIGRATE_RESERVE)
848 continue;
849
850 area = &(zone->free_area[current_order]);
851 if (list_empty(&area->free_list[migratetype]))
852 continue;
853
854 page = list_entry(area->free_list[migratetype].next,
855 struct page, lru);
856 area->nr_free--;
857
858 /*
859 * If breaking a large block of pages, move all free
860 * pages to the preferred allocation list. If falling
861 * back for a reclaimable kernel allocation, be more
862 * agressive about taking ownership of free pages
863 */
864 if (unlikely(current_order >= (pageblock_order >> 1)) ||
865 start_migratetype == MIGRATE_RECLAIMABLE ||
866 page_group_by_mobility_disabled) {
867 unsigned long pages;
868 pages = move_freepages_block(zone, page,
869 start_migratetype);
870
871 /* Claim the whole block if over half of it is free */
872 if (pages >= (1 << (pageblock_order-1)) ||
873 page_group_by_mobility_disabled)
874 set_pageblock_migratetype(page,
875 start_migratetype);
876
877 migratetype = start_migratetype;
878 }
879
880 /* Remove the page from the freelists */
881 list_del(&page->lru);
882 rmv_page_order(page);
883
884 /* Take ownership for orders >= pageblock_order */
885 if (current_order >= pageblock_order)
886 change_pageblock_range(page, current_order,
887 start_migratetype);
888
889 expand(zone, page, order, current_order, area, migratetype);
890
891 trace_mm_page_alloc_extfrag(page, order, current_order,
892 start_migratetype, migratetype);
893
894 return page;
895 }
896 }
897
898 return NULL;
899 }
900
901 /*
902 * Do the hard work of removing an element from the buddy allocator.
903 * Call me with the zone->lock already held.
904 */
905 static struct page *__rmqueue(struct zone *zone, unsigned int order,
906 int migratetype)
907 {
908 struct page *page;
909
910 retry_reserve:
911 page = __rmqueue_smallest(zone, order, migratetype);
912
913 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
914 page = __rmqueue_fallback(zone, order, migratetype);
915
916 /*
917 * Use MIGRATE_RESERVE rather than fail an allocation. goto
918 * is used because __rmqueue_smallest is an inline function
919 * and we want just one call site
920 */
921 if (!page) {
922 migratetype = MIGRATE_RESERVE;
923 goto retry_reserve;
924 }
925 }
926
927 trace_mm_page_alloc_zone_locked(page, order, migratetype);
928 return page;
929 }
930
931 /*
932 * Obtain a specified number of elements from the buddy allocator, all under
933 * a single hold of the lock, for efficiency. Add them to the supplied list.
934 * Returns the number of new pages which were placed at *list.
935 */
936 static int rmqueue_bulk(struct zone *zone, unsigned int order,
937 unsigned long count, struct list_head *list,
938 int migratetype, int cold)
939 {
940 int i;
941
942 spin_lock(&zone->lock);
943 for (i = 0; i < count; ++i) {
944 struct page *page = __rmqueue(zone, order, migratetype);
945 if (unlikely(page == NULL))
946 break;
947
948 /*
949 * Split buddy pages returned by expand() are received here
950 * in physical page order. The page is added to the callers and
951 * list and the list head then moves forward. From the callers
952 * perspective, the linked list is ordered by page number in
953 * some conditions. This is useful for IO devices that can
954 * merge IO requests if the physical pages are ordered
955 * properly.
956 */
957 if (likely(cold == 0))
958 list_add(&page->lru, list);
959 else
960 list_add_tail(&page->lru, list);
961 set_page_private(page, migratetype);
962 list = &page->lru;
963 }
964 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
965 spin_unlock(&zone->lock);
966 return i;
967 }
968
969 #ifdef CONFIG_NUMA
970 /*
971 * Called from the vmstat counter updater to drain pagesets of this
972 * currently executing processor on remote nodes after they have
973 * expired.
974 *
975 * Note that this function must be called with the thread pinned to
976 * a single processor.
977 */
978 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
979 {
980 unsigned long flags;
981 int to_drain;
982
983 local_irq_save(flags);
984 if (pcp->count >= pcp->batch)
985 to_drain = pcp->batch;
986 else
987 to_drain = pcp->count;
988 free_pcppages_bulk(zone, to_drain, pcp);
989 pcp->count -= to_drain;
990 local_irq_restore(flags);
991 }
992 #endif
993
994 /*
995 * Drain pages of the indicated processor.
996 *
997 * The processor must either be the current processor and the
998 * thread pinned to the current processor or a processor that
999 * is not online.
1000 */
1001 static void drain_pages(unsigned int cpu)
1002 {
1003 unsigned long flags;
1004 struct zone *zone;
1005
1006 for_each_populated_zone(zone) {
1007 struct per_cpu_pageset *pset;
1008 struct per_cpu_pages *pcp;
1009
1010 pset = zone_pcp(zone, cpu);
1011
1012 pcp = &pset->pcp;
1013 local_irq_save(flags);
1014 free_pcppages_bulk(zone, pcp->count, pcp);
1015 pcp->count = 0;
1016 local_irq_restore(flags);
1017 }
1018 }
1019
1020 /*
1021 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1022 */
1023 void drain_local_pages(void *arg)
1024 {
1025 drain_pages(smp_processor_id());
1026 }
1027
1028 /*
1029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1030 */
1031 void drain_all_pages(void)
1032 {
1033 on_each_cpu(drain_local_pages, NULL, 1);
1034 }
1035
1036 #ifdef CONFIG_HIBERNATION
1037
1038 void mark_free_pages(struct zone *zone)
1039 {
1040 unsigned long pfn, max_zone_pfn;
1041 unsigned long flags;
1042 int order, t;
1043 struct list_head *curr;
1044
1045 if (!zone->spanned_pages)
1046 return;
1047
1048 spin_lock_irqsave(&zone->lock, flags);
1049
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) {
1053 struct page *page = pfn_to_page(pfn);
1054
1055 if (!swsusp_page_is_forbidden(page))
1056 swsusp_unset_page_free(page);
1057 }
1058
1059 for_each_migratetype_order(order, t) {
1060 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1061 unsigned long i;
1062
1063 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1064 for (i = 0; i < (1UL << order); i++)
1065 swsusp_set_page_free(pfn_to_page(pfn + i));
1066 }
1067 }
1068 spin_unlock_irqrestore(&zone->lock, flags);
1069 }
1070 #endif /* CONFIG_PM */
1071
1072 /*
1073 * Free a 0-order page
1074 */
1075 static void free_hot_cold_page(struct page *page, int cold)
1076 {
1077 struct zone *zone = page_zone(page);
1078 struct per_cpu_pages *pcp;
1079 unsigned long flags;
1080 int migratetype;
1081 int wasMlocked = __TestClearPageMlocked(page);
1082
1083 kmemcheck_free_shadow(page, 0);
1084
1085 if (PageAnon(page))
1086 page->mapping = NULL;
1087 if (free_pages_check(page))
1088 return;
1089
1090 if (!PageHighMem(page)) {
1091 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1092 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1093 }
1094 arch_free_page(page, 0);
1095 kernel_map_pages(page, 1, 0);
1096
1097 pcp = &zone_pcp(zone, get_cpu())->pcp;
1098 migratetype = get_pageblock_migratetype(page);
1099 set_page_private(page, migratetype);
1100 local_irq_save(flags);
1101 if (unlikely(wasMlocked))
1102 free_page_mlock(page);
1103 __count_vm_event(PGFREE);
1104
1105 /*
1106 * We only track unmovable, reclaimable and movable on pcp lists.
1107 * Free ISOLATE pages back to the allocator because they are being
1108 * offlined but treat RESERVE as movable pages so we can get those
1109 * areas back if necessary. Otherwise, we may have to free
1110 * excessively into the page allocator
1111 */
1112 if (migratetype >= MIGRATE_PCPTYPES) {
1113 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1114 free_one_page(zone, page, 0, migratetype);
1115 goto out;
1116 }
1117 migratetype = MIGRATE_MOVABLE;
1118 }
1119
1120 if (cold)
1121 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1122 else
1123 list_add(&page->lru, &pcp->lists[migratetype]);
1124 pcp->count++;
1125 if (pcp->count >= pcp->high) {
1126 free_pcppages_bulk(zone, pcp->batch, pcp);
1127 pcp->count -= pcp->batch;
1128 }
1129
1130 out:
1131 local_irq_restore(flags);
1132 put_cpu();
1133 }
1134
1135 void free_hot_page(struct page *page)
1136 {
1137 trace_mm_page_free_direct(page, 0);
1138 free_hot_cold_page(page, 0);
1139 }
1140
1141 /*
1142 * split_page takes a non-compound higher-order page, and splits it into
1143 * n (1<<order) sub-pages: page[0..n]
1144 * Each sub-page must be freed individually.
1145 *
1146 * Note: this is probably too low level an operation for use in drivers.
1147 * Please consult with lkml before using this in your driver.
1148 */
1149 void split_page(struct page *page, unsigned int order)
1150 {
1151 int i;
1152
1153 VM_BUG_ON(PageCompound(page));
1154 VM_BUG_ON(!page_count(page));
1155
1156 #ifdef CONFIG_KMEMCHECK
1157 /*
1158 * Split shadow pages too, because free(page[0]) would
1159 * otherwise free the whole shadow.
1160 */
1161 if (kmemcheck_page_is_tracked(page))
1162 split_page(virt_to_page(page[0].shadow), order);
1163 #endif
1164
1165 for (i = 1; i < (1 << order); i++)
1166 set_page_refcounted(page + i);
1167 }
1168
1169 /*
1170 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1171 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1172 * or two.
1173 */
1174 static inline
1175 struct page *buffered_rmqueue(struct zone *preferred_zone,
1176 struct zone *zone, int order, gfp_t gfp_flags,
1177 int migratetype)
1178 {
1179 unsigned long flags;
1180 struct page *page;
1181 int cold = !!(gfp_flags & __GFP_COLD);
1182 int cpu;
1183
1184 again:
1185 cpu = get_cpu();
1186 if (likely(order == 0)) {
1187 struct per_cpu_pages *pcp;
1188 struct list_head *list;
1189
1190 pcp = &zone_pcp(zone, cpu)->pcp;
1191 list = &pcp->lists[migratetype];
1192 local_irq_save(flags);
1193 if (list_empty(list)) {
1194 pcp->count += rmqueue_bulk(zone, 0,
1195 pcp->batch, list,
1196 migratetype, cold);
1197 if (unlikely(list_empty(list)))
1198 goto failed;
1199 }
1200
1201 if (cold)
1202 page = list_entry(list->prev, struct page, lru);
1203 else
1204 page = list_entry(list->next, struct page, lru);
1205
1206 list_del(&page->lru);
1207 pcp->count--;
1208 } else {
1209 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1210 /*
1211 * __GFP_NOFAIL is not to be used in new code.
1212 *
1213 * All __GFP_NOFAIL callers should be fixed so that they
1214 * properly detect and handle allocation failures.
1215 *
1216 * We most definitely don't want callers attempting to
1217 * allocate greater than order-1 page units with
1218 * __GFP_NOFAIL.
1219 */
1220 WARN_ON_ONCE(order > 1);
1221 }
1222 spin_lock_irqsave(&zone->lock, flags);
1223 page = __rmqueue(zone, order, migratetype);
1224 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1225 spin_unlock(&zone->lock);
1226 if (!page)
1227 goto failed;
1228 }
1229
1230 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1231 zone_statistics(preferred_zone, zone);
1232 local_irq_restore(flags);
1233 put_cpu();
1234
1235 VM_BUG_ON(bad_range(zone, page));
1236 if (prep_new_page(page, order, gfp_flags))
1237 goto again;
1238 return page;
1239
1240 failed:
1241 local_irq_restore(flags);
1242 put_cpu();
1243 return NULL;
1244 }
1245
1246 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1247 #define ALLOC_WMARK_MIN WMARK_MIN
1248 #define ALLOC_WMARK_LOW WMARK_LOW
1249 #define ALLOC_WMARK_HIGH WMARK_HIGH
1250 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1251
1252 /* Mask to get the watermark bits */
1253 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1254
1255 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1256 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1257 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1258
1259 #ifdef CONFIG_FAIL_PAGE_ALLOC
1260
1261 static struct fail_page_alloc_attr {
1262 struct fault_attr attr;
1263
1264 u32 ignore_gfp_highmem;
1265 u32 ignore_gfp_wait;
1266 u32 min_order;
1267
1268 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1269
1270 struct dentry *ignore_gfp_highmem_file;
1271 struct dentry *ignore_gfp_wait_file;
1272 struct dentry *min_order_file;
1273
1274 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1275
1276 } fail_page_alloc = {
1277 .attr = FAULT_ATTR_INITIALIZER,
1278 .ignore_gfp_wait = 1,
1279 .ignore_gfp_highmem = 1,
1280 .min_order = 1,
1281 };
1282
1283 static int __init setup_fail_page_alloc(char *str)
1284 {
1285 return setup_fault_attr(&fail_page_alloc.attr, str);
1286 }
1287 __setup("fail_page_alloc=", setup_fail_page_alloc);
1288
1289 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1290 {
1291 if (order < fail_page_alloc.min_order)
1292 return 0;
1293 if (gfp_mask & __GFP_NOFAIL)
1294 return 0;
1295 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1296 return 0;
1297 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1298 return 0;
1299
1300 return should_fail(&fail_page_alloc.attr, 1 << order);
1301 }
1302
1303 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1304
1305 static int __init fail_page_alloc_debugfs(void)
1306 {
1307 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1308 struct dentry *dir;
1309 int err;
1310
1311 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1312 "fail_page_alloc");
1313 if (err)
1314 return err;
1315 dir = fail_page_alloc.attr.dentries.dir;
1316
1317 fail_page_alloc.ignore_gfp_wait_file =
1318 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1319 &fail_page_alloc.ignore_gfp_wait);
1320
1321 fail_page_alloc.ignore_gfp_highmem_file =
1322 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1323 &fail_page_alloc.ignore_gfp_highmem);
1324 fail_page_alloc.min_order_file =
1325 debugfs_create_u32("min-order", mode, dir,
1326 &fail_page_alloc.min_order);
1327
1328 if (!fail_page_alloc.ignore_gfp_wait_file ||
1329 !fail_page_alloc.ignore_gfp_highmem_file ||
1330 !fail_page_alloc.min_order_file) {
1331 err = -ENOMEM;
1332 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1333 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1334 debugfs_remove(fail_page_alloc.min_order_file);
1335 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1336 }
1337
1338 return err;
1339 }
1340
1341 late_initcall(fail_page_alloc_debugfs);
1342
1343 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1344
1345 #else /* CONFIG_FAIL_PAGE_ALLOC */
1346
1347 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1348 {
1349 return 0;
1350 }
1351
1352 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1353
1354 /*
1355 * Return 1 if free pages are above 'mark'. This takes into account the order
1356 * of the allocation.
1357 */
1358 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1359 int classzone_idx, int alloc_flags)
1360 {
1361 /* free_pages my go negative - that's OK */
1362 long min = mark;
1363 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1364 int o;
1365
1366 if (alloc_flags & ALLOC_HIGH)
1367 min -= min / 2;
1368 if (alloc_flags & ALLOC_HARDER)
1369 min -= min / 4;
1370
1371 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1372 return 0;
1373 for (o = 0; o < order; o++) {
1374 /* At the next order, this order's pages become unavailable */
1375 free_pages -= z->free_area[o].nr_free << o;
1376
1377 /* Require fewer higher order pages to be free */
1378 min >>= 1;
1379
1380 if (free_pages <= min)
1381 return 0;
1382 }
1383 return 1;
1384 }
1385
1386 #ifdef CONFIG_NUMA
1387 /*
1388 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1389 * skip over zones that are not allowed by the cpuset, or that have
1390 * been recently (in last second) found to be nearly full. See further
1391 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1392 * that have to skip over a lot of full or unallowed zones.
1393 *
1394 * If the zonelist cache is present in the passed in zonelist, then
1395 * returns a pointer to the allowed node mask (either the current
1396 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1397 *
1398 * If the zonelist cache is not available for this zonelist, does
1399 * nothing and returns NULL.
1400 *
1401 * If the fullzones BITMAP in the zonelist cache is stale (more than
1402 * a second since last zap'd) then we zap it out (clear its bits.)
1403 *
1404 * We hold off even calling zlc_setup, until after we've checked the
1405 * first zone in the zonelist, on the theory that most allocations will
1406 * be satisfied from that first zone, so best to examine that zone as
1407 * quickly as we can.
1408 */
1409 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1410 {
1411 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1412 nodemask_t *allowednodes; /* zonelist_cache approximation */
1413
1414 zlc = zonelist->zlcache_ptr;
1415 if (!zlc)
1416 return NULL;
1417
1418 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1419 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1420 zlc->last_full_zap = jiffies;
1421 }
1422
1423 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1424 &cpuset_current_mems_allowed :
1425 &node_states[N_HIGH_MEMORY];
1426 return allowednodes;
1427 }
1428
1429 /*
1430 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1431 * if it is worth looking at further for free memory:
1432 * 1) Check that the zone isn't thought to be full (doesn't have its
1433 * bit set in the zonelist_cache fullzones BITMAP).
1434 * 2) Check that the zones node (obtained from the zonelist_cache
1435 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1436 * Return true (non-zero) if zone is worth looking at further, or
1437 * else return false (zero) if it is not.
1438 *
1439 * This check -ignores- the distinction between various watermarks,
1440 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1441 * found to be full for any variation of these watermarks, it will
1442 * be considered full for up to one second by all requests, unless
1443 * we are so low on memory on all allowed nodes that we are forced
1444 * into the second scan of the zonelist.
1445 *
1446 * In the second scan we ignore this zonelist cache and exactly
1447 * apply the watermarks to all zones, even it is slower to do so.
1448 * We are low on memory in the second scan, and should leave no stone
1449 * unturned looking for a free page.
1450 */
1451 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1452 nodemask_t *allowednodes)
1453 {
1454 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1455 int i; /* index of *z in zonelist zones */
1456 int n; /* node that zone *z is on */
1457
1458 zlc = zonelist->zlcache_ptr;
1459 if (!zlc)
1460 return 1;
1461
1462 i = z - zonelist->_zonerefs;
1463 n = zlc->z_to_n[i];
1464
1465 /* This zone is worth trying if it is allowed but not full */
1466 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1467 }
1468
1469 /*
1470 * Given 'z' scanning a zonelist, set the corresponding bit in
1471 * zlc->fullzones, so that subsequent attempts to allocate a page
1472 * from that zone don't waste time re-examining it.
1473 */
1474 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1475 {
1476 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1477 int i; /* index of *z in zonelist zones */
1478
1479 zlc = zonelist->zlcache_ptr;
1480 if (!zlc)
1481 return;
1482
1483 i = z - zonelist->_zonerefs;
1484
1485 set_bit(i, zlc->fullzones);
1486 }
1487
1488 #else /* CONFIG_NUMA */
1489
1490 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1491 {
1492 return NULL;
1493 }
1494
1495 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1496 nodemask_t *allowednodes)
1497 {
1498 return 1;
1499 }
1500
1501 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1502 {
1503 }
1504 #endif /* CONFIG_NUMA */
1505
1506 /*
1507 * get_page_from_freelist goes through the zonelist trying to allocate
1508 * a page.
1509 */
1510 static struct page *
1511 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1512 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1513 struct zone *preferred_zone, int migratetype)
1514 {
1515 struct zoneref *z;
1516 struct page *page = NULL;
1517 int classzone_idx;
1518 struct zone *zone;
1519 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1520 int zlc_active = 0; /* set if using zonelist_cache */
1521 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1522
1523 classzone_idx = zone_idx(preferred_zone);
1524 zonelist_scan:
1525 /*
1526 * Scan zonelist, looking for a zone with enough free.
1527 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1528 */
1529 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1530 high_zoneidx, nodemask) {
1531 if (NUMA_BUILD && zlc_active &&
1532 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1533 continue;
1534 if ((alloc_flags & ALLOC_CPUSET) &&
1535 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1536 goto try_next_zone;
1537
1538 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1539 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1540 unsigned long mark;
1541 int ret;
1542
1543 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1544 if (zone_watermark_ok(zone, order, mark,
1545 classzone_idx, alloc_flags))
1546 goto try_this_zone;
1547
1548 if (zone_reclaim_mode == 0)
1549 goto this_zone_full;
1550
1551 ret = zone_reclaim(zone, gfp_mask, order);
1552 switch (ret) {
1553 case ZONE_RECLAIM_NOSCAN:
1554 /* did not scan */
1555 goto try_next_zone;
1556 case ZONE_RECLAIM_FULL:
1557 /* scanned but unreclaimable */
1558 goto this_zone_full;
1559 default:
1560 /* did we reclaim enough */
1561 if (!zone_watermark_ok(zone, order, mark,
1562 classzone_idx, alloc_flags))
1563 goto this_zone_full;
1564 }
1565 }
1566
1567 try_this_zone:
1568 page = buffered_rmqueue(preferred_zone, zone, order,
1569 gfp_mask, migratetype);
1570 if (page)
1571 break;
1572 this_zone_full:
1573 if (NUMA_BUILD)
1574 zlc_mark_zone_full(zonelist, z);
1575 try_next_zone:
1576 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1577 /*
1578 * we do zlc_setup after the first zone is tried but only
1579 * if there are multiple nodes make it worthwhile
1580 */
1581 allowednodes = zlc_setup(zonelist, alloc_flags);
1582 zlc_active = 1;
1583 did_zlc_setup = 1;
1584 }
1585 }
1586
1587 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1588 /* Disable zlc cache for second zonelist scan */
1589 zlc_active = 0;
1590 goto zonelist_scan;
1591 }
1592 return page;
1593 }
1594
1595 static inline int
1596 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1597 unsigned long pages_reclaimed)
1598 {
1599 /* Do not loop if specifically requested */
1600 if (gfp_mask & __GFP_NORETRY)
1601 return 0;
1602
1603 /*
1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 * means __GFP_NOFAIL, but that may not be true in other
1606 * implementations.
1607 */
1608 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1609 return 1;
1610
1611 /*
1612 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1613 * specified, then we retry until we no longer reclaim any pages
1614 * (above), or we've reclaimed an order of pages at least as
1615 * large as the allocation's order. In both cases, if the
1616 * allocation still fails, we stop retrying.
1617 */
1618 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1619 return 1;
1620
1621 /*
1622 * Don't let big-order allocations loop unless the caller
1623 * explicitly requests that.
1624 */
1625 if (gfp_mask & __GFP_NOFAIL)
1626 return 1;
1627
1628 return 0;
1629 }
1630
1631 static inline struct page *
1632 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1633 struct zonelist *zonelist, enum zone_type high_zoneidx,
1634 nodemask_t *nodemask, struct zone *preferred_zone,
1635 int migratetype)
1636 {
1637 struct page *page;
1638
1639 /* Acquire the OOM killer lock for the zones in zonelist */
1640 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1641 schedule_timeout_uninterruptible(1);
1642 return NULL;
1643 }
1644
1645 /*
1646 * Go through the zonelist yet one more time, keep very high watermark
1647 * here, this is only to catch a parallel oom killing, we must fail if
1648 * we're still under heavy pressure.
1649 */
1650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1651 order, zonelist, high_zoneidx,
1652 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1653 preferred_zone, migratetype);
1654 if (page)
1655 goto out;
1656
1657 if (!(gfp_mask & __GFP_NOFAIL)) {
1658 /* The OOM killer will not help higher order allocs */
1659 if (order > PAGE_ALLOC_COSTLY_ORDER)
1660 goto out;
1661 /*
1662 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1663 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1664 * The caller should handle page allocation failure by itself if
1665 * it specifies __GFP_THISNODE.
1666 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1667 */
1668 if (gfp_mask & __GFP_THISNODE)
1669 goto out;
1670 }
1671 /* Exhausted what can be done so it's blamo time */
1672 out_of_memory(zonelist, gfp_mask, order, nodemask);
1673
1674 out:
1675 clear_zonelist_oom(zonelist, gfp_mask);
1676 return page;
1677 }
1678
1679 /* The really slow allocator path where we enter direct reclaim */
1680 static inline struct page *
1681 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1682 struct zonelist *zonelist, enum zone_type high_zoneidx,
1683 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1684 int migratetype, unsigned long *did_some_progress)
1685 {
1686 struct page *page = NULL;
1687 struct reclaim_state reclaim_state;
1688 struct task_struct *p = current;
1689
1690 cond_resched();
1691
1692 /* We now go into synchronous reclaim */
1693 cpuset_memory_pressure_bump();
1694 p->flags |= PF_MEMALLOC;
1695 lockdep_set_current_reclaim_state(gfp_mask);
1696 reclaim_state.reclaimed_slab = 0;
1697 p->reclaim_state = &reclaim_state;
1698
1699 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1700
1701 p->reclaim_state = NULL;
1702 lockdep_clear_current_reclaim_state();
1703 p->flags &= ~PF_MEMALLOC;
1704
1705 cond_resched();
1706
1707 if (order != 0)
1708 drain_all_pages();
1709
1710 if (likely(*did_some_progress))
1711 page = get_page_from_freelist(gfp_mask, nodemask, order,
1712 zonelist, high_zoneidx,
1713 alloc_flags, preferred_zone,
1714 migratetype);
1715 return page;
1716 }
1717
1718 /*
1719 * This is called in the allocator slow-path if the allocation request is of
1720 * sufficient urgency to ignore watermarks and take other desperate measures
1721 */
1722 static inline struct page *
1723 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1724 struct zonelist *zonelist, enum zone_type high_zoneidx,
1725 nodemask_t *nodemask, struct zone *preferred_zone,
1726 int migratetype)
1727 {
1728 struct page *page;
1729
1730 do {
1731 page = get_page_from_freelist(gfp_mask, nodemask, order,
1732 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1733 preferred_zone, migratetype);
1734
1735 if (!page && gfp_mask & __GFP_NOFAIL)
1736 congestion_wait(BLK_RW_ASYNC, HZ/50);
1737 } while (!page && (gfp_mask & __GFP_NOFAIL));
1738
1739 return page;
1740 }
1741
1742 static inline
1743 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1744 enum zone_type high_zoneidx)
1745 {
1746 struct zoneref *z;
1747 struct zone *zone;
1748
1749 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1750 wakeup_kswapd(zone, order);
1751 }
1752
1753 static inline int
1754 gfp_to_alloc_flags(gfp_t gfp_mask)
1755 {
1756 struct task_struct *p = current;
1757 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1758 const gfp_t wait = gfp_mask & __GFP_WAIT;
1759
1760 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1761 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1762
1763 /*
1764 * The caller may dip into page reserves a bit more if the caller
1765 * cannot run direct reclaim, or if the caller has realtime scheduling
1766 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1767 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1768 */
1769 alloc_flags |= (gfp_mask & __GFP_HIGH);
1770
1771 if (!wait) {
1772 alloc_flags |= ALLOC_HARDER;
1773 /*
1774 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1775 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1776 */
1777 alloc_flags &= ~ALLOC_CPUSET;
1778 } else if (unlikely(rt_task(p)) && !in_interrupt())
1779 alloc_flags |= ALLOC_HARDER;
1780
1781 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1782 if (!in_interrupt() &&
1783 ((p->flags & PF_MEMALLOC) ||
1784 unlikely(test_thread_flag(TIF_MEMDIE))))
1785 alloc_flags |= ALLOC_NO_WATERMARKS;
1786 }
1787
1788 return alloc_flags;
1789 }
1790
1791 static inline struct page *
1792 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1793 struct zonelist *zonelist, enum zone_type high_zoneidx,
1794 nodemask_t *nodemask, struct zone *preferred_zone,
1795 int migratetype)
1796 {
1797 const gfp_t wait = gfp_mask & __GFP_WAIT;
1798 struct page *page = NULL;
1799 int alloc_flags;
1800 unsigned long pages_reclaimed = 0;
1801 unsigned long did_some_progress;
1802 struct task_struct *p = current;
1803
1804 /*
1805 * In the slowpath, we sanity check order to avoid ever trying to
1806 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1807 * be using allocators in order of preference for an area that is
1808 * too large.
1809 */
1810 if (order >= MAX_ORDER) {
1811 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1812 return NULL;
1813 }
1814
1815 /*
1816 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1817 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1818 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1819 * using a larger set of nodes after it has established that the
1820 * allowed per node queues are empty and that nodes are
1821 * over allocated.
1822 */
1823 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1824 goto nopage;
1825
1826 restart:
1827 wake_all_kswapd(order, zonelist, high_zoneidx);
1828
1829 /*
1830 * OK, we're below the kswapd watermark and have kicked background
1831 * reclaim. Now things get more complex, so set up alloc_flags according
1832 * to how we want to proceed.
1833 */
1834 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1835
1836 /* This is the last chance, in general, before the goto nopage. */
1837 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1838 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1839 preferred_zone, migratetype);
1840 if (page)
1841 goto got_pg;
1842
1843 rebalance:
1844 /* Allocate without watermarks if the context allows */
1845 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1846 page = __alloc_pages_high_priority(gfp_mask, order,
1847 zonelist, high_zoneidx, nodemask,
1848 preferred_zone, migratetype);
1849 if (page)
1850 goto got_pg;
1851 }
1852
1853 /* Atomic allocations - we can't balance anything */
1854 if (!wait)
1855 goto nopage;
1856
1857 /* Avoid recursion of direct reclaim */
1858 if (p->flags & PF_MEMALLOC)
1859 goto nopage;
1860
1861 /* Avoid allocations with no watermarks from looping endlessly */
1862 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1863 goto nopage;
1864
1865 /* Try direct reclaim and then allocating */
1866 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1867 zonelist, high_zoneidx,
1868 nodemask,
1869 alloc_flags, preferred_zone,
1870 migratetype, &did_some_progress);
1871 if (page)
1872 goto got_pg;
1873
1874 /*
1875 * If we failed to make any progress reclaiming, then we are
1876 * running out of options and have to consider going OOM
1877 */
1878 if (!did_some_progress) {
1879 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1880 if (oom_killer_disabled)
1881 goto nopage;
1882 page = __alloc_pages_may_oom(gfp_mask, order,
1883 zonelist, high_zoneidx,
1884 nodemask, preferred_zone,
1885 migratetype);
1886 if (page)
1887 goto got_pg;
1888
1889 /*
1890 * The OOM killer does not trigger for high-order
1891 * ~__GFP_NOFAIL allocations so if no progress is being
1892 * made, there are no other options and retrying is
1893 * unlikely to help.
1894 */
1895 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1896 !(gfp_mask & __GFP_NOFAIL))
1897 goto nopage;
1898
1899 goto restart;
1900 }
1901 }
1902
1903 /* Check if we should retry the allocation */
1904 pages_reclaimed += did_some_progress;
1905 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1906 /* Wait for some write requests to complete then retry */
1907 congestion_wait(BLK_RW_ASYNC, HZ/50);
1908 goto rebalance;
1909 }
1910
1911 nopage:
1912 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1913 printk(KERN_WARNING "%s: page allocation failure."
1914 " order:%d, mode:0x%x\n",
1915 p->comm, order, gfp_mask);
1916 dump_stack();
1917 show_mem();
1918 }
1919 return page;
1920 got_pg:
1921 if (kmemcheck_enabled)
1922 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1923 return page;
1924
1925 }
1926
1927 /*
1928 * This is the 'heart' of the zoned buddy allocator.
1929 */
1930 struct page *
1931 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1932 struct zonelist *zonelist, nodemask_t *nodemask)
1933 {
1934 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1935 struct zone *preferred_zone;
1936 struct page *page;
1937 int migratetype = allocflags_to_migratetype(gfp_mask);
1938
1939 gfp_mask &= gfp_allowed_mask;
1940
1941 lockdep_trace_alloc(gfp_mask);
1942
1943 might_sleep_if(gfp_mask & __GFP_WAIT);
1944
1945 if (should_fail_alloc_page(gfp_mask, order))
1946 return NULL;
1947
1948 /*
1949 * Check the zones suitable for the gfp_mask contain at least one
1950 * valid zone. It's possible to have an empty zonelist as a result
1951 * of GFP_THISNODE and a memoryless node
1952 */
1953 if (unlikely(!zonelist->_zonerefs->zone))
1954 return NULL;
1955
1956 /* The preferred zone is used for statistics later */
1957 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1958 if (!preferred_zone)
1959 return NULL;
1960
1961 /* First allocation attempt */
1962 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1963 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1964 preferred_zone, migratetype);
1965 if (unlikely(!page))
1966 page = __alloc_pages_slowpath(gfp_mask, order,
1967 zonelist, high_zoneidx, nodemask,
1968 preferred_zone, migratetype);
1969
1970 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1971 return page;
1972 }
1973 EXPORT_SYMBOL(__alloc_pages_nodemask);
1974
1975 /*
1976 * Common helper functions.
1977 */
1978 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1979 {
1980 struct page *page;
1981
1982 /*
1983 * __get_free_pages() returns a 32-bit address, which cannot represent
1984 * a highmem page
1985 */
1986 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1987
1988 page = alloc_pages(gfp_mask, order);
1989 if (!page)
1990 return 0;
1991 return (unsigned long) page_address(page);
1992 }
1993 EXPORT_SYMBOL(__get_free_pages);
1994
1995 unsigned long get_zeroed_page(gfp_t gfp_mask)
1996 {
1997 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1998 }
1999 EXPORT_SYMBOL(get_zeroed_page);
2000
2001 void __pagevec_free(struct pagevec *pvec)
2002 {
2003 int i = pagevec_count(pvec);
2004
2005 while (--i >= 0) {
2006 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2007 free_hot_cold_page(pvec->pages[i], pvec->cold);
2008 }
2009 }
2010
2011 void __free_pages(struct page *page, unsigned int order)
2012 {
2013 if (put_page_testzero(page)) {
2014 trace_mm_page_free_direct(page, order);
2015 if (order == 0)
2016 free_hot_page(page);
2017 else
2018 __free_pages_ok(page, order);
2019 }
2020 }
2021
2022 EXPORT_SYMBOL(__free_pages);
2023
2024 void free_pages(unsigned long addr, unsigned int order)
2025 {
2026 if (addr != 0) {
2027 VM_BUG_ON(!virt_addr_valid((void *)addr));
2028 __free_pages(virt_to_page((void *)addr), order);
2029 }
2030 }
2031
2032 EXPORT_SYMBOL(free_pages);
2033
2034 /**
2035 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2036 * @size: the number of bytes to allocate
2037 * @gfp_mask: GFP flags for the allocation
2038 *
2039 * This function is similar to alloc_pages(), except that it allocates the
2040 * minimum number of pages to satisfy the request. alloc_pages() can only
2041 * allocate memory in power-of-two pages.
2042 *
2043 * This function is also limited by MAX_ORDER.
2044 *
2045 * Memory allocated by this function must be released by free_pages_exact().
2046 */
2047 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2048 {
2049 unsigned int order = get_order(size);
2050 unsigned long addr;
2051
2052 addr = __get_free_pages(gfp_mask, order);
2053 if (addr) {
2054 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2055 unsigned long used = addr + PAGE_ALIGN(size);
2056
2057 split_page(virt_to_page((void *)addr), order);
2058 while (used < alloc_end) {
2059 free_page(used);
2060 used += PAGE_SIZE;
2061 }
2062 }
2063
2064 return (void *)addr;
2065 }
2066 EXPORT_SYMBOL(alloc_pages_exact);
2067
2068 /**
2069 * free_pages_exact - release memory allocated via alloc_pages_exact()
2070 * @virt: the value returned by alloc_pages_exact.
2071 * @size: size of allocation, same value as passed to alloc_pages_exact().
2072 *
2073 * Release the memory allocated by a previous call to alloc_pages_exact.
2074 */
2075 void free_pages_exact(void *virt, size_t size)
2076 {
2077 unsigned long addr = (unsigned long)virt;
2078 unsigned long end = addr + PAGE_ALIGN(size);
2079
2080 while (addr < end) {
2081 free_page(addr);
2082 addr += PAGE_SIZE;
2083 }
2084 }
2085 EXPORT_SYMBOL(free_pages_exact);
2086
2087 static unsigned int nr_free_zone_pages(int offset)
2088 {
2089 struct zoneref *z;
2090 struct zone *zone;
2091
2092 /* Just pick one node, since fallback list is circular */
2093 unsigned int sum = 0;
2094
2095 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2096
2097 for_each_zone_zonelist(zone, z, zonelist, offset) {
2098 unsigned long size = zone->present_pages;
2099 unsigned long high = high_wmark_pages(zone);
2100 if (size > high)
2101 sum += size - high;
2102 }
2103
2104 return sum;
2105 }
2106
2107 /*
2108 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2109 */
2110 unsigned int nr_free_buffer_pages(void)
2111 {
2112 return nr_free_zone_pages(gfp_zone(GFP_USER));
2113 }
2114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2115
2116 /*
2117 * Amount of free RAM allocatable within all zones
2118 */
2119 unsigned int nr_free_pagecache_pages(void)
2120 {
2121 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2122 }
2123
2124 static inline void show_node(struct zone *zone)
2125 {
2126 if (NUMA_BUILD)
2127 printk("Node %d ", zone_to_nid(zone));
2128 }
2129
2130 void si_meminfo(struct sysinfo *val)
2131 {
2132 val->totalram = totalram_pages;
2133 val->sharedram = 0;
2134 val->freeram = global_page_state(NR_FREE_PAGES);
2135 val->bufferram = nr_blockdev_pages();
2136 val->totalhigh = totalhigh_pages;
2137 val->freehigh = nr_free_highpages();
2138 val->mem_unit = PAGE_SIZE;
2139 }
2140
2141 EXPORT_SYMBOL(si_meminfo);
2142
2143 #ifdef CONFIG_NUMA
2144 void si_meminfo_node(struct sysinfo *val, int nid)
2145 {
2146 pg_data_t *pgdat = NODE_DATA(nid);
2147
2148 val->totalram = pgdat->node_present_pages;
2149 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2150 #ifdef CONFIG_HIGHMEM
2151 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2152 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2153 NR_FREE_PAGES);
2154 #else
2155 val->totalhigh = 0;
2156 val->freehigh = 0;
2157 #endif
2158 val->mem_unit = PAGE_SIZE;
2159 }
2160 #endif
2161
2162 #define K(x) ((x) << (PAGE_SHIFT-10))
2163
2164 /*
2165 * Show free area list (used inside shift_scroll-lock stuff)
2166 * We also calculate the percentage fragmentation. We do this by counting the
2167 * memory on each free list with the exception of the first item on the list.
2168 */
2169 void show_free_areas(void)
2170 {
2171 int cpu;
2172 struct zone *zone;
2173
2174 for_each_populated_zone(zone) {
2175 show_node(zone);
2176 printk("%s per-cpu:\n", zone->name);
2177
2178 for_each_online_cpu(cpu) {
2179 struct per_cpu_pageset *pageset;
2180
2181 pageset = zone_pcp(zone, cpu);
2182
2183 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2184 cpu, pageset->pcp.high,
2185 pageset->pcp.batch, pageset->pcp.count);
2186 }
2187 }
2188
2189 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2190 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2191 " unevictable:%lu"
2192 " dirty:%lu writeback:%lu unstable:%lu\n"
2193 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2194 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2195 global_page_state(NR_ACTIVE_ANON),
2196 global_page_state(NR_INACTIVE_ANON),
2197 global_page_state(NR_ISOLATED_ANON),
2198 global_page_state(NR_ACTIVE_FILE),
2199 global_page_state(NR_INACTIVE_FILE),
2200 global_page_state(NR_ISOLATED_FILE),
2201 global_page_state(NR_UNEVICTABLE),
2202 global_page_state(NR_FILE_DIRTY),
2203 global_page_state(NR_WRITEBACK),
2204 global_page_state(NR_UNSTABLE_NFS),
2205 global_page_state(NR_FREE_PAGES),
2206 global_page_state(NR_SLAB_RECLAIMABLE),
2207 global_page_state(NR_SLAB_UNRECLAIMABLE),
2208 global_page_state(NR_FILE_MAPPED),
2209 global_page_state(NR_SHMEM),
2210 global_page_state(NR_PAGETABLE),
2211 global_page_state(NR_BOUNCE));
2212
2213 for_each_populated_zone(zone) {
2214 int i;
2215
2216 show_node(zone);
2217 printk("%s"
2218 " free:%lukB"
2219 " min:%lukB"
2220 " low:%lukB"
2221 " high:%lukB"
2222 " active_anon:%lukB"
2223 " inactive_anon:%lukB"
2224 " active_file:%lukB"
2225 " inactive_file:%lukB"
2226 " unevictable:%lukB"
2227 " isolated(anon):%lukB"
2228 " isolated(file):%lukB"
2229 " present:%lukB"
2230 " mlocked:%lukB"
2231 " dirty:%lukB"
2232 " writeback:%lukB"
2233 " mapped:%lukB"
2234 " shmem:%lukB"
2235 " slab_reclaimable:%lukB"
2236 " slab_unreclaimable:%lukB"
2237 " kernel_stack:%lukB"
2238 " pagetables:%lukB"
2239 " unstable:%lukB"
2240 " bounce:%lukB"
2241 " writeback_tmp:%lukB"
2242 " pages_scanned:%lu"
2243 " all_unreclaimable? %s"
2244 "\n",
2245 zone->name,
2246 K(zone_page_state(zone, NR_FREE_PAGES)),
2247 K(min_wmark_pages(zone)),
2248 K(low_wmark_pages(zone)),
2249 K(high_wmark_pages(zone)),
2250 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2251 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2252 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2253 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2254 K(zone_page_state(zone, NR_UNEVICTABLE)),
2255 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2256 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2257 K(zone->present_pages),
2258 K(zone_page_state(zone, NR_MLOCK)),
2259 K(zone_page_state(zone, NR_FILE_DIRTY)),
2260 K(zone_page_state(zone, NR_WRITEBACK)),
2261 K(zone_page_state(zone, NR_FILE_MAPPED)),
2262 K(zone_page_state(zone, NR_SHMEM)),
2263 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2264 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2265 zone_page_state(zone, NR_KERNEL_STACK) *
2266 THREAD_SIZE / 1024,
2267 K(zone_page_state(zone, NR_PAGETABLE)),
2268 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2269 K(zone_page_state(zone, NR_BOUNCE)),
2270 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2271 zone->pages_scanned,
2272 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2273 );
2274 printk("lowmem_reserve[]:");
2275 for (i = 0; i < MAX_NR_ZONES; i++)
2276 printk(" %lu", zone->lowmem_reserve[i]);
2277 printk("\n");
2278 }
2279
2280 for_each_populated_zone(zone) {
2281 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2282
2283 show_node(zone);
2284 printk("%s: ", zone->name);
2285
2286 spin_lock_irqsave(&zone->lock, flags);
2287 for (order = 0; order < MAX_ORDER; order++) {
2288 nr[order] = zone->free_area[order].nr_free;
2289 total += nr[order] << order;
2290 }
2291 spin_unlock_irqrestore(&zone->lock, flags);
2292 for (order = 0; order < MAX_ORDER; order++)
2293 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2294 printk("= %lukB\n", K(total));
2295 }
2296
2297 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2298
2299 show_swap_cache_info();
2300 }
2301
2302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2303 {
2304 zoneref->zone = zone;
2305 zoneref->zone_idx = zone_idx(zone);
2306 }
2307
2308 /*
2309 * Builds allocation fallback zone lists.
2310 *
2311 * Add all populated zones of a node to the zonelist.
2312 */
2313 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2314 int nr_zones, enum zone_type zone_type)
2315 {
2316 struct zone *zone;
2317
2318 BUG_ON(zone_type >= MAX_NR_ZONES);
2319 zone_type++;
2320
2321 do {
2322 zone_type--;
2323 zone = pgdat->node_zones + zone_type;
2324 if (populated_zone(zone)) {
2325 zoneref_set_zone(zone,
2326 &zonelist->_zonerefs[nr_zones++]);
2327 check_highest_zone(zone_type);
2328 }
2329
2330 } while (zone_type);
2331 return nr_zones;
2332 }
2333
2334
2335 /*
2336 * zonelist_order:
2337 * 0 = automatic detection of better ordering.
2338 * 1 = order by ([node] distance, -zonetype)
2339 * 2 = order by (-zonetype, [node] distance)
2340 *
2341 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2342 * the same zonelist. So only NUMA can configure this param.
2343 */
2344 #define ZONELIST_ORDER_DEFAULT 0
2345 #define ZONELIST_ORDER_NODE 1
2346 #define ZONELIST_ORDER_ZONE 2
2347
2348 /* zonelist order in the kernel.
2349 * set_zonelist_order() will set this to NODE or ZONE.
2350 */
2351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2353
2354
2355 #ifdef CONFIG_NUMA
2356 /* The value user specified ....changed by config */
2357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2358 /* string for sysctl */
2359 #define NUMA_ZONELIST_ORDER_LEN 16
2360 char numa_zonelist_order[16] = "default";
2361
2362 /*
2363 * interface for configure zonelist ordering.
2364 * command line option "numa_zonelist_order"
2365 * = "[dD]efault - default, automatic configuration.
2366 * = "[nN]ode - order by node locality, then by zone within node
2367 * = "[zZ]one - order by zone, then by locality within zone
2368 */
2369
2370 static int __parse_numa_zonelist_order(char *s)
2371 {
2372 if (*s == 'd' || *s == 'D') {
2373 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2374 } else if (*s == 'n' || *s == 'N') {
2375 user_zonelist_order = ZONELIST_ORDER_NODE;
2376 } else if (*s == 'z' || *s == 'Z') {
2377 user_zonelist_order = ZONELIST_ORDER_ZONE;
2378 } else {
2379 printk(KERN_WARNING
2380 "Ignoring invalid numa_zonelist_order value: "
2381 "%s\n", s);
2382 return -EINVAL;
2383 }
2384 return 0;
2385 }
2386
2387 static __init int setup_numa_zonelist_order(char *s)
2388 {
2389 if (s)
2390 return __parse_numa_zonelist_order(s);
2391 return 0;
2392 }
2393 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2394
2395 /*
2396 * sysctl handler for numa_zonelist_order
2397 */
2398 int numa_zonelist_order_handler(ctl_table *table, int write,
2399 void __user *buffer, size_t *length,
2400 loff_t *ppos)
2401 {
2402 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2403 int ret;
2404
2405 if (write)
2406 strncpy(saved_string, (char*)table->data,
2407 NUMA_ZONELIST_ORDER_LEN);
2408 ret = proc_dostring(table, write, buffer, length, ppos);
2409 if (ret)
2410 return ret;
2411 if (write) {
2412 int oldval = user_zonelist_order;
2413 if (__parse_numa_zonelist_order((char*)table->data)) {
2414 /*
2415 * bogus value. restore saved string
2416 */
2417 strncpy((char*)table->data, saved_string,
2418 NUMA_ZONELIST_ORDER_LEN);
2419 user_zonelist_order = oldval;
2420 } else if (oldval != user_zonelist_order)
2421 build_all_zonelists();
2422 }
2423 return 0;
2424 }
2425
2426
2427 #define MAX_NODE_LOAD (nr_online_nodes)
2428 static int node_load[MAX_NUMNODES];
2429
2430 /**
2431 * find_next_best_node - find the next node that should appear in a given node's fallback list
2432 * @node: node whose fallback list we're appending
2433 * @used_node_mask: nodemask_t of already used nodes
2434 *
2435 * We use a number of factors to determine which is the next node that should
2436 * appear on a given node's fallback list. The node should not have appeared
2437 * already in @node's fallback list, and it should be the next closest node
2438 * according to the distance array (which contains arbitrary distance values
2439 * from each node to each node in the system), and should also prefer nodes
2440 * with no CPUs, since presumably they'll have very little allocation pressure
2441 * on them otherwise.
2442 * It returns -1 if no node is found.
2443 */
2444 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2445 {
2446 int n, val;
2447 int min_val = INT_MAX;
2448 int best_node = -1;
2449 const struct cpumask *tmp = cpumask_of_node(0);
2450
2451 /* Use the local node if we haven't already */
2452 if (!node_isset(node, *used_node_mask)) {
2453 node_set(node, *used_node_mask);
2454 return node;
2455 }
2456
2457 for_each_node_state(n, N_HIGH_MEMORY) {
2458
2459 /* Don't want a node to appear more than once */
2460 if (node_isset(n, *used_node_mask))
2461 continue;
2462
2463 /* Use the distance array to find the distance */
2464 val = node_distance(node, n);
2465
2466 /* Penalize nodes under us ("prefer the next node") */
2467 val += (n < node);
2468
2469 /* Give preference to headless and unused nodes */
2470 tmp = cpumask_of_node(n);
2471 if (!cpumask_empty(tmp))
2472 val += PENALTY_FOR_NODE_WITH_CPUS;
2473
2474 /* Slight preference for less loaded node */
2475 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2476 val += node_load[n];
2477
2478 if (val < min_val) {
2479 min_val = val;
2480 best_node = n;
2481 }
2482 }
2483
2484 if (best_node >= 0)
2485 node_set(best_node, *used_node_mask);
2486
2487 return best_node;
2488 }
2489
2490
2491 /*
2492 * Build zonelists ordered by node and zones within node.
2493 * This results in maximum locality--normal zone overflows into local
2494 * DMA zone, if any--but risks exhausting DMA zone.
2495 */
2496 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2497 {
2498 int j;
2499 struct zonelist *zonelist;
2500
2501 zonelist = &pgdat->node_zonelists[0];
2502 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2503 ;
2504 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2505 MAX_NR_ZONES - 1);
2506 zonelist->_zonerefs[j].zone = NULL;
2507 zonelist->_zonerefs[j].zone_idx = 0;
2508 }
2509
2510 /*
2511 * Build gfp_thisnode zonelists
2512 */
2513 static void build_thisnode_zonelists(pg_data_t *pgdat)
2514 {
2515 int j;
2516 struct zonelist *zonelist;
2517
2518 zonelist = &pgdat->node_zonelists[1];
2519 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2520 zonelist->_zonerefs[j].zone = NULL;
2521 zonelist->_zonerefs[j].zone_idx = 0;
2522 }
2523
2524 /*
2525 * Build zonelists ordered by zone and nodes within zones.
2526 * This results in conserving DMA zone[s] until all Normal memory is
2527 * exhausted, but results in overflowing to remote node while memory
2528 * may still exist in local DMA zone.
2529 */
2530 static int node_order[MAX_NUMNODES];
2531
2532 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2533 {
2534 int pos, j, node;
2535 int zone_type; /* needs to be signed */
2536 struct zone *z;
2537 struct zonelist *zonelist;
2538
2539 zonelist = &pgdat->node_zonelists[0];
2540 pos = 0;
2541 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2542 for (j = 0; j < nr_nodes; j++) {
2543 node = node_order[j];
2544 z = &NODE_DATA(node)->node_zones[zone_type];
2545 if (populated_zone(z)) {
2546 zoneref_set_zone(z,
2547 &zonelist->_zonerefs[pos++]);
2548 check_highest_zone(zone_type);
2549 }
2550 }
2551 }
2552 zonelist->_zonerefs[pos].zone = NULL;
2553 zonelist->_zonerefs[pos].zone_idx = 0;
2554 }
2555
2556 static int default_zonelist_order(void)
2557 {
2558 int nid, zone_type;
2559 unsigned long low_kmem_size,total_size;
2560 struct zone *z;
2561 int average_size;
2562 /*
2563 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2564 * If they are really small and used heavily, the system can fall
2565 * into OOM very easily.
2566 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2567 */
2568 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2569 low_kmem_size = 0;
2570 total_size = 0;
2571 for_each_online_node(nid) {
2572 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2573 z = &NODE_DATA(nid)->node_zones[zone_type];
2574 if (populated_zone(z)) {
2575 if (zone_type < ZONE_NORMAL)
2576 low_kmem_size += z->present_pages;
2577 total_size += z->present_pages;
2578 }
2579 }
2580 }
2581 if (!low_kmem_size || /* there are no DMA area. */
2582 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2583 return ZONELIST_ORDER_NODE;
2584 /*
2585 * look into each node's config.
2586 * If there is a node whose DMA/DMA32 memory is very big area on
2587 * local memory, NODE_ORDER may be suitable.
2588 */
2589 average_size = total_size /
2590 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2591 for_each_online_node(nid) {
2592 low_kmem_size = 0;
2593 total_size = 0;
2594 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2595 z = &NODE_DATA(nid)->node_zones[zone_type];
2596 if (populated_zone(z)) {
2597 if (zone_type < ZONE_NORMAL)
2598 low_kmem_size += z->present_pages;
2599 total_size += z->present_pages;
2600 }
2601 }
2602 if (low_kmem_size &&
2603 total_size > average_size && /* ignore small node */
2604 low_kmem_size > total_size * 70/100)
2605 return ZONELIST_ORDER_NODE;
2606 }
2607 return ZONELIST_ORDER_ZONE;
2608 }
2609
2610 static void set_zonelist_order(void)
2611 {
2612 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2613 current_zonelist_order = default_zonelist_order();
2614 else
2615 current_zonelist_order = user_zonelist_order;
2616 }
2617
2618 static void build_zonelists(pg_data_t *pgdat)
2619 {
2620 int j, node, load;
2621 enum zone_type i;
2622 nodemask_t used_mask;
2623 int local_node, prev_node;
2624 struct zonelist *zonelist;
2625 int order = current_zonelist_order;
2626
2627 /* initialize zonelists */
2628 for (i = 0; i < MAX_ZONELISTS; i++) {
2629 zonelist = pgdat->node_zonelists + i;
2630 zonelist->_zonerefs[0].zone = NULL;
2631 zonelist->_zonerefs[0].zone_idx = 0;
2632 }
2633
2634 /* NUMA-aware ordering of nodes */
2635 local_node = pgdat->node_id;
2636 load = nr_online_nodes;
2637 prev_node = local_node;
2638 nodes_clear(used_mask);
2639
2640 memset(node_order, 0, sizeof(node_order));
2641 j = 0;
2642
2643 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2644 int distance = node_distance(local_node, node);
2645
2646 /*
2647 * If another node is sufficiently far away then it is better
2648 * to reclaim pages in a zone before going off node.
2649 */
2650 if (distance > RECLAIM_DISTANCE)
2651 zone_reclaim_mode = 1;
2652
2653 /*
2654 * We don't want to pressure a particular node.
2655 * So adding penalty to the first node in same
2656 * distance group to make it round-robin.
2657 */
2658 if (distance != node_distance(local_node, prev_node))
2659 node_load[node] = load;
2660
2661 prev_node = node;
2662 load--;
2663 if (order == ZONELIST_ORDER_NODE)
2664 build_zonelists_in_node_order(pgdat, node);
2665 else
2666 node_order[j++] = node; /* remember order */
2667 }
2668
2669 if (order == ZONELIST_ORDER_ZONE) {
2670 /* calculate node order -- i.e., DMA last! */
2671 build_zonelists_in_zone_order(pgdat, j);
2672 }
2673
2674 build_thisnode_zonelists(pgdat);
2675 }
2676
2677 /* Construct the zonelist performance cache - see further mmzone.h */
2678 static void build_zonelist_cache(pg_data_t *pgdat)
2679 {
2680 struct zonelist *zonelist;
2681 struct zonelist_cache *zlc;
2682 struct zoneref *z;
2683
2684 zonelist = &pgdat->node_zonelists[0];
2685 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2686 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2687 for (z = zonelist->_zonerefs; z->zone; z++)
2688 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2689 }
2690
2691
2692 #else /* CONFIG_NUMA */
2693
2694 static void set_zonelist_order(void)
2695 {
2696 current_zonelist_order = ZONELIST_ORDER_ZONE;
2697 }
2698
2699 static void build_zonelists(pg_data_t *pgdat)
2700 {
2701 int node, local_node;
2702 enum zone_type j;
2703 struct zonelist *zonelist;
2704
2705 local_node = pgdat->node_id;
2706
2707 zonelist = &pgdat->node_zonelists[0];
2708 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2709
2710 /*
2711 * Now we build the zonelist so that it contains the zones
2712 * of all the other nodes.
2713 * We don't want to pressure a particular node, so when
2714 * building the zones for node N, we make sure that the
2715 * zones coming right after the local ones are those from
2716 * node N+1 (modulo N)
2717 */
2718 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2719 if (!node_online(node))
2720 continue;
2721 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2722 MAX_NR_ZONES - 1);
2723 }
2724 for (node = 0; node < local_node; node++) {
2725 if (!node_online(node))
2726 continue;
2727 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2728 MAX_NR_ZONES - 1);
2729 }
2730
2731 zonelist->_zonerefs[j].zone = NULL;
2732 zonelist->_zonerefs[j].zone_idx = 0;
2733 }
2734
2735 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2736 static void build_zonelist_cache(pg_data_t *pgdat)
2737 {
2738 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2739 }
2740
2741 #endif /* CONFIG_NUMA */
2742
2743 /* return values int ....just for stop_machine() */
2744 static int __build_all_zonelists(void *dummy)
2745 {
2746 int nid;
2747
2748 #ifdef CONFIG_NUMA
2749 memset(node_load, 0, sizeof(node_load));
2750 #endif
2751 for_each_online_node(nid) {
2752 pg_data_t *pgdat = NODE_DATA(nid);
2753
2754 build_zonelists(pgdat);
2755 build_zonelist_cache(pgdat);
2756 }
2757 return 0;
2758 }
2759
2760 void build_all_zonelists(void)
2761 {
2762 set_zonelist_order();
2763
2764 if (system_state == SYSTEM_BOOTING) {
2765 __build_all_zonelists(NULL);
2766 mminit_verify_zonelist();
2767 cpuset_init_current_mems_allowed();
2768 } else {
2769 /* we have to stop all cpus to guarantee there is no user
2770 of zonelist */
2771 stop_machine(__build_all_zonelists, NULL, NULL);
2772 /* cpuset refresh routine should be here */
2773 }
2774 vm_total_pages = nr_free_pagecache_pages();
2775 /*
2776 * Disable grouping by mobility if the number of pages in the
2777 * system is too low to allow the mechanism to work. It would be
2778 * more accurate, but expensive to check per-zone. This check is
2779 * made on memory-hotadd so a system can start with mobility
2780 * disabled and enable it later
2781 */
2782 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2783 page_group_by_mobility_disabled = 1;
2784 else
2785 page_group_by_mobility_disabled = 0;
2786
2787 printk("Built %i zonelists in %s order, mobility grouping %s. "
2788 "Total pages: %ld\n",
2789 nr_online_nodes,
2790 zonelist_order_name[current_zonelist_order],
2791 page_group_by_mobility_disabled ? "off" : "on",
2792 vm_total_pages);
2793 #ifdef CONFIG_NUMA
2794 printk("Policy zone: %s\n", zone_names[policy_zone]);
2795 #endif
2796 }
2797
2798 /*
2799 * Helper functions to size the waitqueue hash table.
2800 * Essentially these want to choose hash table sizes sufficiently
2801 * large so that collisions trying to wait on pages are rare.
2802 * But in fact, the number of active page waitqueues on typical
2803 * systems is ridiculously low, less than 200. So this is even
2804 * conservative, even though it seems large.
2805 *
2806 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2807 * waitqueues, i.e. the size of the waitq table given the number of pages.
2808 */
2809 #define PAGES_PER_WAITQUEUE 256
2810
2811 #ifndef CONFIG_MEMORY_HOTPLUG
2812 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2813 {
2814 unsigned long size = 1;
2815
2816 pages /= PAGES_PER_WAITQUEUE;
2817
2818 while (size < pages)
2819 size <<= 1;
2820
2821 /*
2822 * Once we have dozens or even hundreds of threads sleeping
2823 * on IO we've got bigger problems than wait queue collision.
2824 * Limit the size of the wait table to a reasonable size.
2825 */
2826 size = min(size, 4096UL);
2827
2828 return max(size, 4UL);
2829 }
2830 #else
2831 /*
2832 * A zone's size might be changed by hot-add, so it is not possible to determine
2833 * a suitable size for its wait_table. So we use the maximum size now.
2834 *
2835 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2836 *
2837 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2838 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2839 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2840 *
2841 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2842 * or more by the traditional way. (See above). It equals:
2843 *
2844 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2845 * ia64(16K page size) : = ( 8G + 4M)byte.
2846 * powerpc (64K page size) : = (32G +16M)byte.
2847 */
2848 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2849 {
2850 return 4096UL;
2851 }
2852 #endif
2853
2854 /*
2855 * This is an integer logarithm so that shifts can be used later
2856 * to extract the more random high bits from the multiplicative
2857 * hash function before the remainder is taken.
2858 */
2859 static inline unsigned long wait_table_bits(unsigned long size)
2860 {
2861 return ffz(~size);
2862 }
2863
2864 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2865
2866 /*
2867 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2868 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2869 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2870 * higher will lead to a bigger reserve which will get freed as contiguous
2871 * blocks as reclaim kicks in
2872 */
2873 static void setup_zone_migrate_reserve(struct zone *zone)
2874 {
2875 unsigned long start_pfn, pfn, end_pfn;
2876 struct page *page;
2877 unsigned long block_migratetype;
2878 int reserve;
2879
2880 /* Get the start pfn, end pfn and the number of blocks to reserve */
2881 start_pfn = zone->zone_start_pfn;
2882 end_pfn = start_pfn + zone->spanned_pages;
2883 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2884 pageblock_order;
2885
2886 /*
2887 * Reserve blocks are generally in place to help high-order atomic
2888 * allocations that are short-lived. A min_free_kbytes value that
2889 * would result in more than 2 reserve blocks for atomic allocations
2890 * is assumed to be in place to help anti-fragmentation for the
2891 * future allocation of hugepages at runtime.
2892 */
2893 reserve = min(2, reserve);
2894
2895 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2896 if (!pfn_valid(pfn))
2897 continue;
2898 page = pfn_to_page(pfn);
2899
2900 /* Watch out for overlapping nodes */
2901 if (page_to_nid(page) != zone_to_nid(zone))
2902 continue;
2903
2904 /* Blocks with reserved pages will never free, skip them. */
2905 if (PageReserved(page))
2906 continue;
2907
2908 block_migratetype = get_pageblock_migratetype(page);
2909
2910 /* If this block is reserved, account for it */
2911 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2912 reserve--;
2913 continue;
2914 }
2915
2916 /* Suitable for reserving if this block is movable */
2917 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2918 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2919 move_freepages_block(zone, page, MIGRATE_RESERVE);
2920 reserve--;
2921 continue;
2922 }
2923
2924 /*
2925 * If the reserve is met and this is a previous reserved block,
2926 * take it back
2927 */
2928 if (block_migratetype == MIGRATE_RESERVE) {
2929 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2930 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2931 }
2932 }
2933 }
2934
2935 /*
2936 * Initially all pages are reserved - free ones are freed
2937 * up by free_all_bootmem() once the early boot process is
2938 * done. Non-atomic initialization, single-pass.
2939 */
2940 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2941 unsigned long start_pfn, enum memmap_context context)
2942 {
2943 struct page *page;
2944 unsigned long end_pfn = start_pfn + size;
2945 unsigned long pfn;
2946 struct zone *z;
2947
2948 if (highest_memmap_pfn < end_pfn - 1)
2949 highest_memmap_pfn = end_pfn - 1;
2950
2951 z = &NODE_DATA(nid)->node_zones[zone];
2952 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2953 /*
2954 * There can be holes in boot-time mem_map[]s
2955 * handed to this function. They do not
2956 * exist on hotplugged memory.
2957 */
2958 if (context == MEMMAP_EARLY) {
2959 if (!early_pfn_valid(pfn))
2960 continue;
2961 if (!early_pfn_in_nid(pfn, nid))
2962 continue;
2963 }
2964 page = pfn_to_page(pfn);
2965 set_page_links(page, zone, nid, pfn);
2966 mminit_verify_page_links(page, zone, nid, pfn);
2967 init_page_count(page);
2968 reset_page_mapcount(page);
2969 SetPageReserved(page);
2970 /*
2971 * Mark the block movable so that blocks are reserved for
2972 * movable at startup. This will force kernel allocations
2973 * to reserve their blocks rather than leaking throughout
2974 * the address space during boot when many long-lived
2975 * kernel allocations are made. Later some blocks near
2976 * the start are marked MIGRATE_RESERVE by
2977 * setup_zone_migrate_reserve()
2978 *
2979 * bitmap is created for zone's valid pfn range. but memmap
2980 * can be created for invalid pages (for alignment)
2981 * check here not to call set_pageblock_migratetype() against
2982 * pfn out of zone.
2983 */
2984 if ((z->zone_start_pfn <= pfn)
2985 && (pfn < z->zone_start_pfn + z->spanned_pages)
2986 && !(pfn & (pageblock_nr_pages - 1)))
2987 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2988
2989 INIT_LIST_HEAD(&page->lru);
2990 #ifdef WANT_PAGE_VIRTUAL
2991 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2992 if (!is_highmem_idx(zone))
2993 set_page_address(page, __va(pfn << PAGE_SHIFT));
2994 #endif
2995 }
2996 }
2997
2998 static void __meminit zone_init_free_lists(struct zone *zone)
2999 {
3000 int order, t;
3001 for_each_migratetype_order(order, t) {
3002 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3003 zone->free_area[order].nr_free = 0;
3004 }
3005 }
3006
3007 #ifndef __HAVE_ARCH_MEMMAP_INIT
3008 #define memmap_init(size, nid, zone, start_pfn) \
3009 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3010 #endif
3011
3012 static int zone_batchsize(struct zone *zone)
3013 {
3014 #ifdef CONFIG_MMU
3015 int batch;
3016
3017 /*
3018 * The per-cpu-pages pools are set to around 1000th of the
3019 * size of the zone. But no more than 1/2 of a meg.
3020 *
3021 * OK, so we don't know how big the cache is. So guess.
3022 */
3023 batch = zone->present_pages / 1024;
3024 if (batch * PAGE_SIZE > 512 * 1024)
3025 batch = (512 * 1024) / PAGE_SIZE;
3026 batch /= 4; /* We effectively *= 4 below */
3027 if (batch < 1)
3028 batch = 1;
3029
3030 /*
3031 * Clamp the batch to a 2^n - 1 value. Having a power
3032 * of 2 value was found to be more likely to have
3033 * suboptimal cache aliasing properties in some cases.
3034 *
3035 * For example if 2 tasks are alternately allocating
3036 * batches of pages, one task can end up with a lot
3037 * of pages of one half of the possible page colors
3038 * and the other with pages of the other colors.
3039 */
3040 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3041
3042 return batch;
3043
3044 #else
3045 /* The deferral and batching of frees should be suppressed under NOMMU
3046 * conditions.
3047 *
3048 * The problem is that NOMMU needs to be able to allocate large chunks
3049 * of contiguous memory as there's no hardware page translation to
3050 * assemble apparent contiguous memory from discontiguous pages.
3051 *
3052 * Queueing large contiguous runs of pages for batching, however,
3053 * causes the pages to actually be freed in smaller chunks. As there
3054 * can be a significant delay between the individual batches being
3055 * recycled, this leads to the once large chunks of space being
3056 * fragmented and becoming unavailable for high-order allocations.
3057 */
3058 return 0;
3059 #endif
3060 }
3061
3062 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3063 {
3064 struct per_cpu_pages *pcp;
3065 int migratetype;
3066
3067 memset(p, 0, sizeof(*p));
3068
3069 pcp = &p->pcp;
3070 pcp->count = 0;
3071 pcp->high = 6 * batch;
3072 pcp->batch = max(1UL, 1 * batch);
3073 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3074 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3075 }
3076
3077 /*
3078 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3079 * to the value high for the pageset p.
3080 */
3081
3082 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3083 unsigned long high)
3084 {
3085 struct per_cpu_pages *pcp;
3086
3087 pcp = &p->pcp;
3088 pcp->high = high;
3089 pcp->batch = max(1UL, high/4);
3090 if ((high/4) > (PAGE_SHIFT * 8))
3091 pcp->batch = PAGE_SHIFT * 8;
3092 }
3093
3094
3095 #ifdef CONFIG_NUMA
3096 /*
3097 * Boot pageset table. One per cpu which is going to be used for all
3098 * zones and all nodes. The parameters will be set in such a way
3099 * that an item put on a list will immediately be handed over to
3100 * the buddy list. This is safe since pageset manipulation is done
3101 * with interrupts disabled.
3102 *
3103 * Some NUMA counter updates may also be caught by the boot pagesets.
3104 *
3105 * The boot_pagesets must be kept even after bootup is complete for
3106 * unused processors and/or zones. They do play a role for bootstrapping
3107 * hotplugged processors.
3108 *
3109 * zoneinfo_show() and maybe other functions do
3110 * not check if the processor is online before following the pageset pointer.
3111 * Other parts of the kernel may not check if the zone is available.
3112 */
3113 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3114
3115 /*
3116 * Dynamically allocate memory for the
3117 * per cpu pageset array in struct zone.
3118 */
3119 static int __cpuinit process_zones(int cpu)
3120 {
3121 struct zone *zone, *dzone;
3122 int node = cpu_to_node(cpu);
3123
3124 node_set_state(node, N_CPU); /* this node has a cpu */
3125
3126 for_each_populated_zone(zone) {
3127 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3128 GFP_KERNEL, node);
3129 if (!zone_pcp(zone, cpu))
3130 goto bad;
3131
3132 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3133
3134 if (percpu_pagelist_fraction)
3135 setup_pagelist_highmark(zone_pcp(zone, cpu),
3136 (zone->present_pages / percpu_pagelist_fraction));
3137 }
3138
3139 return 0;
3140 bad:
3141 for_each_zone(dzone) {
3142 if (!populated_zone(dzone))
3143 continue;
3144 if (dzone == zone)
3145 break;
3146 kfree(zone_pcp(dzone, cpu));
3147 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3148 }
3149 return -ENOMEM;
3150 }
3151
3152 static inline void free_zone_pagesets(int cpu)
3153 {
3154 struct zone *zone;
3155
3156 for_each_zone(zone) {
3157 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3158
3159 /* Free per_cpu_pageset if it is slab allocated */
3160 if (pset != &boot_pageset[cpu])
3161 kfree(pset);
3162 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3163 }
3164 }
3165
3166 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3167 unsigned long action,
3168 void *hcpu)
3169 {
3170 int cpu = (long)hcpu;
3171 int ret = NOTIFY_OK;
3172
3173 switch (action) {
3174 case CPU_UP_PREPARE:
3175 case CPU_UP_PREPARE_FROZEN:
3176 if (process_zones(cpu))
3177 ret = NOTIFY_BAD;
3178 break;
3179 case CPU_UP_CANCELED:
3180 case CPU_UP_CANCELED_FROZEN:
3181 case CPU_DEAD:
3182 case CPU_DEAD_FROZEN:
3183 free_zone_pagesets(cpu);
3184 break;
3185 default:
3186 break;
3187 }
3188 return ret;
3189 }
3190
3191 static struct notifier_block __cpuinitdata pageset_notifier =
3192 { &pageset_cpuup_callback, NULL, 0 };
3193
3194 void __init setup_per_cpu_pageset(void)
3195 {
3196 int err;
3197
3198 /* Initialize per_cpu_pageset for cpu 0.
3199 * A cpuup callback will do this for every cpu
3200 * as it comes online
3201 */
3202 err = process_zones(smp_processor_id());
3203 BUG_ON(err);
3204 register_cpu_notifier(&pageset_notifier);
3205 }
3206
3207 #endif
3208
3209 static noinline __init_refok
3210 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3211 {
3212 int i;
3213 struct pglist_data *pgdat = zone->zone_pgdat;
3214 size_t alloc_size;
3215
3216 /*
3217 * The per-page waitqueue mechanism uses hashed waitqueues
3218 * per zone.
3219 */
3220 zone->wait_table_hash_nr_entries =
3221 wait_table_hash_nr_entries(zone_size_pages);
3222 zone->wait_table_bits =
3223 wait_table_bits(zone->wait_table_hash_nr_entries);
3224 alloc_size = zone->wait_table_hash_nr_entries
3225 * sizeof(wait_queue_head_t);
3226
3227 if (!slab_is_available()) {
3228 zone->wait_table = (wait_queue_head_t *)
3229 alloc_bootmem_node(pgdat, alloc_size);
3230 } else {
3231 /*
3232 * This case means that a zone whose size was 0 gets new memory
3233 * via memory hot-add.
3234 * But it may be the case that a new node was hot-added. In
3235 * this case vmalloc() will not be able to use this new node's
3236 * memory - this wait_table must be initialized to use this new
3237 * node itself as well.
3238 * To use this new node's memory, further consideration will be
3239 * necessary.
3240 */
3241 zone->wait_table = vmalloc(alloc_size);
3242 }
3243 if (!zone->wait_table)
3244 return -ENOMEM;
3245
3246 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3247 init_waitqueue_head(zone->wait_table + i);
3248
3249 return 0;
3250 }
3251
3252 static int __zone_pcp_update(void *data)
3253 {
3254 struct zone *zone = data;
3255 int cpu;
3256 unsigned long batch = zone_batchsize(zone), flags;
3257
3258 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3259 struct per_cpu_pageset *pset;
3260 struct per_cpu_pages *pcp;
3261
3262 pset = zone_pcp(zone, cpu);
3263 pcp = &pset->pcp;
3264
3265 local_irq_save(flags);
3266 free_pcppages_bulk(zone, pcp->count, pcp);
3267 setup_pageset(pset, batch);
3268 local_irq_restore(flags);
3269 }
3270 return 0;
3271 }
3272
3273 void zone_pcp_update(struct zone *zone)
3274 {
3275 stop_machine(__zone_pcp_update, zone, NULL);
3276 }
3277
3278 static __meminit void zone_pcp_init(struct zone *zone)
3279 {
3280 int cpu;
3281 unsigned long batch = zone_batchsize(zone);
3282
3283 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3284 #ifdef CONFIG_NUMA
3285 /* Early boot. Slab allocator not functional yet */
3286 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3287 setup_pageset(&boot_pageset[cpu],0);
3288 #else
3289 setup_pageset(zone_pcp(zone,cpu), batch);
3290 #endif
3291 }
3292 if (zone->present_pages)
3293 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3294 zone->name, zone->present_pages, batch);
3295 }
3296
3297 __meminit int init_currently_empty_zone(struct zone *zone,
3298 unsigned long zone_start_pfn,
3299 unsigned long size,
3300 enum memmap_context context)
3301 {
3302 struct pglist_data *pgdat = zone->zone_pgdat;
3303 int ret;
3304 ret = zone_wait_table_init(zone, size);
3305 if (ret)
3306 return ret;
3307 pgdat->nr_zones = zone_idx(zone) + 1;
3308
3309 zone->zone_start_pfn = zone_start_pfn;
3310
3311 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3312 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3313 pgdat->node_id,
3314 (unsigned long)zone_idx(zone),
3315 zone_start_pfn, (zone_start_pfn + size));
3316
3317 zone_init_free_lists(zone);
3318
3319 return 0;
3320 }
3321
3322 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3323 /*
3324 * Basic iterator support. Return the first range of PFNs for a node
3325 * Note: nid == MAX_NUMNODES returns first region regardless of node
3326 */
3327 static int __meminit first_active_region_index_in_nid(int nid)
3328 {
3329 int i;
3330
3331 for (i = 0; i < nr_nodemap_entries; i++)
3332 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3333 return i;
3334
3335 return -1;
3336 }
3337
3338 /*
3339 * Basic iterator support. Return the next active range of PFNs for a node
3340 * Note: nid == MAX_NUMNODES returns next region regardless of node
3341 */
3342 static int __meminit next_active_region_index_in_nid(int index, int nid)
3343 {
3344 for (index = index + 1; index < nr_nodemap_entries; index++)
3345 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3346 return index;
3347
3348 return -1;
3349 }
3350
3351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3352 /*
3353 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3354 * Architectures may implement their own version but if add_active_range()
3355 * was used and there are no special requirements, this is a convenient
3356 * alternative
3357 */
3358 int __meminit __early_pfn_to_nid(unsigned long pfn)
3359 {
3360 int i;
3361
3362 for (i = 0; i < nr_nodemap_entries; i++) {
3363 unsigned long start_pfn = early_node_map[i].start_pfn;
3364 unsigned long end_pfn = early_node_map[i].end_pfn;
3365
3366 if (start_pfn <= pfn && pfn < end_pfn)
3367 return early_node_map[i].nid;
3368 }
3369 /* This is a memory hole */
3370 return -1;
3371 }
3372 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3373
3374 int __meminit early_pfn_to_nid(unsigned long pfn)
3375 {
3376 int nid;
3377
3378 nid = __early_pfn_to_nid(pfn);
3379 if (nid >= 0)
3380 return nid;
3381 /* just returns 0 */
3382 return 0;
3383 }
3384
3385 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3386 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3387 {
3388 int nid;
3389
3390 nid = __early_pfn_to_nid(pfn);
3391 if (nid >= 0 && nid != node)
3392 return false;
3393 return true;
3394 }
3395 #endif
3396
3397 /* Basic iterator support to walk early_node_map[] */
3398 #define for_each_active_range_index_in_nid(i, nid) \
3399 for (i = first_active_region_index_in_nid(nid); i != -1; \
3400 i = next_active_region_index_in_nid(i, nid))
3401
3402 /**
3403 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3404 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3405 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3406 *
3407 * If an architecture guarantees that all ranges registered with
3408 * add_active_ranges() contain no holes and may be freed, this
3409 * this function may be used instead of calling free_bootmem() manually.
3410 */
3411 void __init free_bootmem_with_active_regions(int nid,
3412 unsigned long max_low_pfn)
3413 {
3414 int i;
3415
3416 for_each_active_range_index_in_nid(i, nid) {
3417 unsigned long size_pages = 0;
3418 unsigned long end_pfn = early_node_map[i].end_pfn;
3419
3420 if (early_node_map[i].start_pfn >= max_low_pfn)
3421 continue;
3422
3423 if (end_pfn > max_low_pfn)
3424 end_pfn = max_low_pfn;
3425
3426 size_pages = end_pfn - early_node_map[i].start_pfn;
3427 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3428 PFN_PHYS(early_node_map[i].start_pfn),
3429 size_pages << PAGE_SHIFT);
3430 }
3431 }
3432
3433 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3434 {
3435 int i;
3436 int ret;
3437
3438 for_each_active_range_index_in_nid(i, nid) {
3439 ret = work_fn(early_node_map[i].start_pfn,
3440 early_node_map[i].end_pfn, data);
3441 if (ret)
3442 break;
3443 }
3444 }
3445 /**
3446 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3447 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3448 *
3449 * If an architecture guarantees that all ranges registered with
3450 * add_active_ranges() contain no holes and may be freed, this
3451 * function may be used instead of calling memory_present() manually.
3452 */
3453 void __init sparse_memory_present_with_active_regions(int nid)
3454 {
3455 int i;
3456
3457 for_each_active_range_index_in_nid(i, nid)
3458 memory_present(early_node_map[i].nid,
3459 early_node_map[i].start_pfn,
3460 early_node_map[i].end_pfn);
3461 }
3462
3463 /**
3464 * get_pfn_range_for_nid - Return the start and end page frames for a node
3465 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3466 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3467 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3468 *
3469 * It returns the start and end page frame of a node based on information
3470 * provided by an arch calling add_active_range(). If called for a node
3471 * with no available memory, a warning is printed and the start and end
3472 * PFNs will be 0.
3473 */
3474 void __meminit get_pfn_range_for_nid(unsigned int nid,
3475 unsigned long *start_pfn, unsigned long *end_pfn)
3476 {
3477 int i;
3478 *start_pfn = -1UL;
3479 *end_pfn = 0;
3480
3481 for_each_active_range_index_in_nid(i, nid) {
3482 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3483 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3484 }
3485
3486 if (*start_pfn == -1UL)
3487 *start_pfn = 0;
3488 }
3489
3490 /*
3491 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3492 * assumption is made that zones within a node are ordered in monotonic
3493 * increasing memory addresses so that the "highest" populated zone is used
3494 */
3495 static void __init find_usable_zone_for_movable(void)
3496 {
3497 int zone_index;
3498 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3499 if (zone_index == ZONE_MOVABLE)
3500 continue;
3501
3502 if (arch_zone_highest_possible_pfn[zone_index] >
3503 arch_zone_lowest_possible_pfn[zone_index])
3504 break;
3505 }
3506
3507 VM_BUG_ON(zone_index == -1);
3508 movable_zone = zone_index;
3509 }
3510
3511 /*
3512 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3513 * because it is sized independant of architecture. Unlike the other zones,
3514 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3515 * in each node depending on the size of each node and how evenly kernelcore
3516 * is distributed. This helper function adjusts the zone ranges
3517 * provided by the architecture for a given node by using the end of the
3518 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3519 * zones within a node are in order of monotonic increases memory addresses
3520 */
3521 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3522 unsigned long zone_type,
3523 unsigned long node_start_pfn,
3524 unsigned long node_end_pfn,
3525 unsigned long *zone_start_pfn,
3526 unsigned long *zone_end_pfn)
3527 {
3528 /* Only adjust if ZONE_MOVABLE is on this node */
3529 if (zone_movable_pfn[nid]) {
3530 /* Size ZONE_MOVABLE */
3531 if (zone_type == ZONE_MOVABLE) {
3532 *zone_start_pfn = zone_movable_pfn[nid];
3533 *zone_end_pfn = min(node_end_pfn,
3534 arch_zone_highest_possible_pfn[movable_zone]);
3535
3536 /* Adjust for ZONE_MOVABLE starting within this range */
3537 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3538 *zone_end_pfn > zone_movable_pfn[nid]) {
3539 *zone_end_pfn = zone_movable_pfn[nid];
3540
3541 /* Check if this whole range is within ZONE_MOVABLE */
3542 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3543 *zone_start_pfn = *zone_end_pfn;
3544 }
3545 }
3546
3547 /*
3548 * Return the number of pages a zone spans in a node, including holes
3549 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3550 */
3551 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3552 unsigned long zone_type,
3553 unsigned long *ignored)
3554 {
3555 unsigned long node_start_pfn, node_end_pfn;
3556 unsigned long zone_start_pfn, zone_end_pfn;
3557
3558 /* Get the start and end of the node and zone */
3559 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3560 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3561 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3562 adjust_zone_range_for_zone_movable(nid, zone_type,
3563 node_start_pfn, node_end_pfn,
3564 &zone_start_pfn, &zone_end_pfn);
3565
3566 /* Check that this node has pages within the zone's required range */
3567 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3568 return 0;
3569
3570 /* Move the zone boundaries inside the node if necessary */
3571 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3572 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3573
3574 /* Return the spanned pages */
3575 return zone_end_pfn - zone_start_pfn;
3576 }
3577
3578 /*
3579 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3580 * then all holes in the requested range will be accounted for.
3581 */
3582 static unsigned long __meminit __absent_pages_in_range(int nid,
3583 unsigned long range_start_pfn,
3584 unsigned long range_end_pfn)
3585 {
3586 int i = 0;
3587 unsigned long prev_end_pfn = 0, hole_pages = 0;
3588 unsigned long start_pfn;
3589
3590 /* Find the end_pfn of the first active range of pfns in the node */
3591 i = first_active_region_index_in_nid(nid);
3592 if (i == -1)
3593 return 0;
3594
3595 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3596
3597 /* Account for ranges before physical memory on this node */
3598 if (early_node_map[i].start_pfn > range_start_pfn)
3599 hole_pages = prev_end_pfn - range_start_pfn;
3600
3601 /* Find all holes for the zone within the node */
3602 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3603
3604 /* No need to continue if prev_end_pfn is outside the zone */
3605 if (prev_end_pfn >= range_end_pfn)
3606 break;
3607
3608 /* Make sure the end of the zone is not within the hole */
3609 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3610 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3611
3612 /* Update the hole size cound and move on */
3613 if (start_pfn > range_start_pfn) {
3614 BUG_ON(prev_end_pfn > start_pfn);
3615 hole_pages += start_pfn - prev_end_pfn;
3616 }
3617 prev_end_pfn = early_node_map[i].end_pfn;
3618 }
3619
3620 /* Account for ranges past physical memory on this node */
3621 if (range_end_pfn > prev_end_pfn)
3622 hole_pages += range_end_pfn -
3623 max(range_start_pfn, prev_end_pfn);
3624
3625 return hole_pages;
3626 }
3627
3628 /**
3629 * absent_pages_in_range - Return number of page frames in holes within a range
3630 * @start_pfn: The start PFN to start searching for holes
3631 * @end_pfn: The end PFN to stop searching for holes
3632 *
3633 * It returns the number of pages frames in memory holes within a range.
3634 */
3635 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3636 unsigned long end_pfn)
3637 {
3638 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3639 }
3640
3641 /* Return the number of page frames in holes in a zone on a node */
3642 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3643 unsigned long zone_type,
3644 unsigned long *ignored)
3645 {
3646 unsigned long node_start_pfn, node_end_pfn;
3647 unsigned long zone_start_pfn, zone_end_pfn;
3648
3649 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3650 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3651 node_start_pfn);
3652 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3653 node_end_pfn);
3654
3655 adjust_zone_range_for_zone_movable(nid, zone_type,
3656 node_start_pfn, node_end_pfn,
3657 &zone_start_pfn, &zone_end_pfn);
3658 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3659 }
3660
3661 #else
3662 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3663 unsigned long zone_type,
3664 unsigned long *zones_size)
3665 {
3666 return zones_size[zone_type];
3667 }
3668
3669 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3670 unsigned long zone_type,
3671 unsigned long *zholes_size)
3672 {
3673 if (!zholes_size)
3674 return 0;
3675
3676 return zholes_size[zone_type];
3677 }
3678
3679 #endif
3680
3681 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3682 unsigned long *zones_size, unsigned long *zholes_size)
3683 {
3684 unsigned long realtotalpages, totalpages = 0;
3685 enum zone_type i;
3686
3687 for (i = 0; i < MAX_NR_ZONES; i++)
3688 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3689 zones_size);
3690 pgdat->node_spanned_pages = totalpages;
3691
3692 realtotalpages = totalpages;
3693 for (i = 0; i < MAX_NR_ZONES; i++)
3694 realtotalpages -=
3695 zone_absent_pages_in_node(pgdat->node_id, i,
3696 zholes_size);
3697 pgdat->node_present_pages = realtotalpages;
3698 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3699 realtotalpages);
3700 }
3701
3702 #ifndef CONFIG_SPARSEMEM
3703 /*
3704 * Calculate the size of the zone->blockflags rounded to an unsigned long
3705 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3706 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3707 * round what is now in bits to nearest long in bits, then return it in
3708 * bytes.
3709 */
3710 static unsigned long __init usemap_size(unsigned long zonesize)
3711 {
3712 unsigned long usemapsize;
3713
3714 usemapsize = roundup(zonesize, pageblock_nr_pages);
3715 usemapsize = usemapsize >> pageblock_order;
3716 usemapsize *= NR_PAGEBLOCK_BITS;
3717 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3718
3719 return usemapsize / 8;
3720 }
3721
3722 static void __init setup_usemap(struct pglist_data *pgdat,
3723 struct zone *zone, unsigned long zonesize)
3724 {
3725 unsigned long usemapsize = usemap_size(zonesize);
3726 zone->pageblock_flags = NULL;
3727 if (usemapsize)
3728 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3729 }
3730 #else
3731 static void inline setup_usemap(struct pglist_data *pgdat,
3732 struct zone *zone, unsigned long zonesize) {}
3733 #endif /* CONFIG_SPARSEMEM */
3734
3735 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3736
3737 /* Return a sensible default order for the pageblock size. */
3738 static inline int pageblock_default_order(void)
3739 {
3740 if (HPAGE_SHIFT > PAGE_SHIFT)
3741 return HUGETLB_PAGE_ORDER;
3742
3743 return MAX_ORDER-1;
3744 }
3745
3746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3747 static inline void __init set_pageblock_order(unsigned int order)
3748 {
3749 /* Check that pageblock_nr_pages has not already been setup */
3750 if (pageblock_order)
3751 return;
3752
3753 /*
3754 * Assume the largest contiguous order of interest is a huge page.
3755 * This value may be variable depending on boot parameters on IA64
3756 */
3757 pageblock_order = order;
3758 }
3759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3760
3761 /*
3762 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3763 * and pageblock_default_order() are unused as pageblock_order is set
3764 * at compile-time. See include/linux/pageblock-flags.h for the values of
3765 * pageblock_order based on the kernel config
3766 */
3767 static inline int pageblock_default_order(unsigned int order)
3768 {
3769 return MAX_ORDER-1;
3770 }
3771 #define set_pageblock_order(x) do {} while (0)
3772
3773 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3774
3775 /*
3776 * Set up the zone data structures:
3777 * - mark all pages reserved
3778 * - mark all memory queues empty
3779 * - clear the memory bitmaps
3780 */
3781 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3782 unsigned long *zones_size, unsigned long *zholes_size)
3783 {
3784 enum zone_type j;
3785 int nid = pgdat->node_id;
3786 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3787 int ret;
3788
3789 pgdat_resize_init(pgdat);
3790 pgdat->nr_zones = 0;
3791 init_waitqueue_head(&pgdat->kswapd_wait);
3792 pgdat->kswapd_max_order = 0;
3793 pgdat_page_cgroup_init(pgdat);
3794
3795 for (j = 0; j < MAX_NR_ZONES; j++) {
3796 struct zone *zone = pgdat->node_zones + j;
3797 unsigned long size, realsize, memmap_pages;
3798 enum lru_list l;
3799
3800 size = zone_spanned_pages_in_node(nid, j, zones_size);
3801 realsize = size - zone_absent_pages_in_node(nid, j,
3802 zholes_size);
3803
3804 /*
3805 * Adjust realsize so that it accounts for how much memory
3806 * is used by this zone for memmap. This affects the watermark
3807 * and per-cpu initialisations
3808 */
3809 memmap_pages =
3810 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3811 if (realsize >= memmap_pages) {
3812 realsize -= memmap_pages;
3813 if (memmap_pages)
3814 printk(KERN_DEBUG
3815 " %s zone: %lu pages used for memmap\n",
3816 zone_names[j], memmap_pages);
3817 } else
3818 printk(KERN_WARNING
3819 " %s zone: %lu pages exceeds realsize %lu\n",
3820 zone_names[j], memmap_pages, realsize);
3821
3822 /* Account for reserved pages */
3823 if (j == 0 && realsize > dma_reserve) {
3824 realsize -= dma_reserve;
3825 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3826 zone_names[0], dma_reserve);
3827 }
3828
3829 if (!is_highmem_idx(j))
3830 nr_kernel_pages += realsize;
3831 nr_all_pages += realsize;
3832
3833 zone->spanned_pages = size;
3834 zone->present_pages = realsize;
3835 #ifdef CONFIG_NUMA
3836 zone->node = nid;
3837 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3838 / 100;
3839 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3840 #endif
3841 zone->name = zone_names[j];
3842 spin_lock_init(&zone->lock);
3843 spin_lock_init(&zone->lru_lock);
3844 zone_seqlock_init(zone);
3845 zone->zone_pgdat = pgdat;
3846
3847 zone->prev_priority = DEF_PRIORITY;
3848
3849 zone_pcp_init(zone);
3850 for_each_lru(l) {
3851 INIT_LIST_HEAD(&zone->lru[l].list);
3852 zone->reclaim_stat.nr_saved_scan[l] = 0;
3853 }
3854 zone->reclaim_stat.recent_rotated[0] = 0;
3855 zone->reclaim_stat.recent_rotated[1] = 0;
3856 zone->reclaim_stat.recent_scanned[0] = 0;
3857 zone->reclaim_stat.recent_scanned[1] = 0;
3858 zap_zone_vm_stats(zone);
3859 zone->flags = 0;
3860 if (!size)
3861 continue;
3862
3863 set_pageblock_order(pageblock_default_order());
3864 setup_usemap(pgdat, zone, size);
3865 ret = init_currently_empty_zone(zone, zone_start_pfn,
3866 size, MEMMAP_EARLY);
3867 BUG_ON(ret);
3868 memmap_init(size, nid, j, zone_start_pfn);
3869 zone_start_pfn += size;
3870 }
3871 }
3872
3873 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3874 {
3875 /* Skip empty nodes */
3876 if (!pgdat->node_spanned_pages)
3877 return;
3878
3879 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3880 /* ia64 gets its own node_mem_map, before this, without bootmem */
3881 if (!pgdat->node_mem_map) {
3882 unsigned long size, start, end;
3883 struct page *map;
3884
3885 /*
3886 * The zone's endpoints aren't required to be MAX_ORDER
3887 * aligned but the node_mem_map endpoints must be in order
3888 * for the buddy allocator to function correctly.
3889 */
3890 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3891 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3892 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3893 size = (end - start) * sizeof(struct page);
3894 map = alloc_remap(pgdat->node_id, size);
3895 if (!map)
3896 map = alloc_bootmem_node(pgdat, size);
3897 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3898 }
3899 #ifndef CONFIG_NEED_MULTIPLE_NODES
3900 /*
3901 * With no DISCONTIG, the global mem_map is just set as node 0's
3902 */
3903 if (pgdat == NODE_DATA(0)) {
3904 mem_map = NODE_DATA(0)->node_mem_map;
3905 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3906 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3907 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3908 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3909 }
3910 #endif
3911 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3912 }
3913
3914 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3915 unsigned long node_start_pfn, unsigned long *zholes_size)
3916 {
3917 pg_data_t *pgdat = NODE_DATA(nid);
3918
3919 pgdat->node_id = nid;
3920 pgdat->node_start_pfn = node_start_pfn;
3921 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3922
3923 alloc_node_mem_map(pgdat);
3924 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3925 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3926 nid, (unsigned long)pgdat,
3927 (unsigned long)pgdat->node_mem_map);
3928 #endif
3929
3930 free_area_init_core(pgdat, zones_size, zholes_size);
3931 }
3932
3933 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3934
3935 #if MAX_NUMNODES > 1
3936 /*
3937 * Figure out the number of possible node ids.
3938 */
3939 static void __init setup_nr_node_ids(void)
3940 {
3941 unsigned int node;
3942 unsigned int highest = 0;
3943
3944 for_each_node_mask(node, node_possible_map)
3945 highest = node;
3946 nr_node_ids = highest + 1;
3947 }
3948 #else
3949 static inline void setup_nr_node_ids(void)
3950 {
3951 }
3952 #endif
3953
3954 /**
3955 * add_active_range - Register a range of PFNs backed by physical memory
3956 * @nid: The node ID the range resides on
3957 * @start_pfn: The start PFN of the available physical memory
3958 * @end_pfn: The end PFN of the available physical memory
3959 *
3960 * These ranges are stored in an early_node_map[] and later used by
3961 * free_area_init_nodes() to calculate zone sizes and holes. If the
3962 * range spans a memory hole, it is up to the architecture to ensure
3963 * the memory is not freed by the bootmem allocator. If possible
3964 * the range being registered will be merged with existing ranges.
3965 */
3966 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3967 unsigned long end_pfn)
3968 {
3969 int i;
3970
3971 mminit_dprintk(MMINIT_TRACE, "memory_register",
3972 "Entering add_active_range(%d, %#lx, %#lx) "
3973 "%d entries of %d used\n",
3974 nid, start_pfn, end_pfn,
3975 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3976
3977 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3978
3979 /* Merge with existing active regions if possible */
3980 for (i = 0; i < nr_nodemap_entries; i++) {
3981 if (early_node_map[i].nid != nid)
3982 continue;
3983
3984 /* Skip if an existing region covers this new one */
3985 if (start_pfn >= early_node_map[i].start_pfn &&
3986 end_pfn <= early_node_map[i].end_pfn)
3987 return;
3988
3989 /* Merge forward if suitable */
3990 if (start_pfn <= early_node_map[i].end_pfn &&
3991 end_pfn > early_node_map[i].end_pfn) {
3992 early_node_map[i].end_pfn = end_pfn;
3993 return;
3994 }
3995
3996 /* Merge backward if suitable */
3997 if (start_pfn < early_node_map[i].end_pfn &&
3998 end_pfn >= early_node_map[i].start_pfn) {
3999 early_node_map[i].start_pfn = start_pfn;
4000 return;
4001 }
4002 }
4003
4004 /* Check that early_node_map is large enough */
4005 if (i >= MAX_ACTIVE_REGIONS) {
4006 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4007 MAX_ACTIVE_REGIONS);
4008 return;
4009 }
4010
4011 early_node_map[i].nid = nid;
4012 early_node_map[i].start_pfn = start_pfn;
4013 early_node_map[i].end_pfn = end_pfn;
4014 nr_nodemap_entries = i + 1;
4015 }
4016
4017 /**
4018 * remove_active_range - Shrink an existing registered range of PFNs
4019 * @nid: The node id the range is on that should be shrunk
4020 * @start_pfn: The new PFN of the range
4021 * @end_pfn: The new PFN of the range
4022 *
4023 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4024 * The map is kept near the end physical page range that has already been
4025 * registered. This function allows an arch to shrink an existing registered
4026 * range.
4027 */
4028 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4029 unsigned long end_pfn)
4030 {
4031 int i, j;
4032 int removed = 0;
4033
4034 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4035 nid, start_pfn, end_pfn);
4036
4037 /* Find the old active region end and shrink */
4038 for_each_active_range_index_in_nid(i, nid) {
4039 if (early_node_map[i].start_pfn >= start_pfn &&
4040 early_node_map[i].end_pfn <= end_pfn) {
4041 /* clear it */
4042 early_node_map[i].start_pfn = 0;
4043 early_node_map[i].end_pfn = 0;
4044 removed = 1;
4045 continue;
4046 }
4047 if (early_node_map[i].start_pfn < start_pfn &&
4048 early_node_map[i].end_pfn > start_pfn) {
4049 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4050 early_node_map[i].end_pfn = start_pfn;
4051 if (temp_end_pfn > end_pfn)
4052 add_active_range(nid, end_pfn, temp_end_pfn);
4053 continue;
4054 }
4055 if (early_node_map[i].start_pfn >= start_pfn &&
4056 early_node_map[i].end_pfn > end_pfn &&
4057 early_node_map[i].start_pfn < end_pfn) {
4058 early_node_map[i].start_pfn = end_pfn;
4059 continue;
4060 }
4061 }
4062
4063 if (!removed)
4064 return;
4065
4066 /* remove the blank ones */
4067 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4068 if (early_node_map[i].nid != nid)
4069 continue;
4070 if (early_node_map[i].end_pfn)
4071 continue;
4072 /* we found it, get rid of it */
4073 for (j = i; j < nr_nodemap_entries - 1; j++)
4074 memcpy(&early_node_map[j], &early_node_map[j+1],
4075 sizeof(early_node_map[j]));
4076 j = nr_nodemap_entries - 1;
4077 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4078 nr_nodemap_entries--;
4079 }
4080 }
4081
4082 /**
4083 * remove_all_active_ranges - Remove all currently registered regions
4084 *
4085 * During discovery, it may be found that a table like SRAT is invalid
4086 * and an alternative discovery method must be used. This function removes
4087 * all currently registered regions.
4088 */
4089 void __init remove_all_active_ranges(void)
4090 {
4091 memset(early_node_map, 0, sizeof(early_node_map));
4092 nr_nodemap_entries = 0;
4093 }
4094
4095 /* Compare two active node_active_regions */
4096 static int __init cmp_node_active_region(const void *a, const void *b)
4097 {
4098 struct node_active_region *arange = (struct node_active_region *)a;
4099 struct node_active_region *brange = (struct node_active_region *)b;
4100
4101 /* Done this way to avoid overflows */
4102 if (arange->start_pfn > brange->start_pfn)
4103 return 1;
4104 if (arange->start_pfn < brange->start_pfn)
4105 return -1;
4106
4107 return 0;
4108 }
4109
4110 /* sort the node_map by start_pfn */
4111 static void __init sort_node_map(void)
4112 {
4113 sort(early_node_map, (size_t)nr_nodemap_entries,
4114 sizeof(struct node_active_region),
4115 cmp_node_active_region, NULL);
4116 }
4117
4118 /* Find the lowest pfn for a node */
4119 static unsigned long __init find_min_pfn_for_node(int nid)
4120 {
4121 int i;
4122 unsigned long min_pfn = ULONG_MAX;
4123
4124 /* Assuming a sorted map, the first range found has the starting pfn */
4125 for_each_active_range_index_in_nid(i, nid)
4126 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4127
4128 if (min_pfn == ULONG_MAX) {
4129 printk(KERN_WARNING
4130 "Could not find start_pfn for node %d\n", nid);
4131 return 0;
4132 }
4133
4134 return min_pfn;
4135 }
4136
4137 /**
4138 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4139 *
4140 * It returns the minimum PFN based on information provided via
4141 * add_active_range().
4142 */
4143 unsigned long __init find_min_pfn_with_active_regions(void)
4144 {
4145 return find_min_pfn_for_node(MAX_NUMNODES);
4146 }
4147
4148 /*
4149 * early_calculate_totalpages()
4150 * Sum pages in active regions for movable zone.
4151 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4152 */
4153 static unsigned long __init early_calculate_totalpages(void)
4154 {
4155 int i;
4156 unsigned long totalpages = 0;
4157
4158 for (i = 0; i < nr_nodemap_entries; i++) {
4159 unsigned long pages = early_node_map[i].end_pfn -
4160 early_node_map[i].start_pfn;
4161 totalpages += pages;
4162 if (pages)
4163 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4164 }
4165 return totalpages;
4166 }
4167
4168 /*
4169 * Find the PFN the Movable zone begins in each node. Kernel memory
4170 * is spread evenly between nodes as long as the nodes have enough
4171 * memory. When they don't, some nodes will have more kernelcore than
4172 * others
4173 */
4174 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4175 {
4176 int i, nid;
4177 unsigned long usable_startpfn;
4178 unsigned long kernelcore_node, kernelcore_remaining;
4179 /* save the state before borrow the nodemask */
4180 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4181 unsigned long totalpages = early_calculate_totalpages();
4182 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4183
4184 /*
4185 * If movablecore was specified, calculate what size of
4186 * kernelcore that corresponds so that memory usable for
4187 * any allocation type is evenly spread. If both kernelcore
4188 * and movablecore are specified, then the value of kernelcore
4189 * will be used for required_kernelcore if it's greater than
4190 * what movablecore would have allowed.
4191 */
4192 if (required_movablecore) {
4193 unsigned long corepages;
4194
4195 /*
4196 * Round-up so that ZONE_MOVABLE is at least as large as what
4197 * was requested by the user
4198 */
4199 required_movablecore =
4200 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4201 corepages = totalpages - required_movablecore;
4202
4203 required_kernelcore = max(required_kernelcore, corepages);
4204 }
4205
4206 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4207 if (!required_kernelcore)
4208 goto out;
4209
4210 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4211 find_usable_zone_for_movable();
4212 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4213
4214 restart:
4215 /* Spread kernelcore memory as evenly as possible throughout nodes */
4216 kernelcore_node = required_kernelcore / usable_nodes;
4217 for_each_node_state(nid, N_HIGH_MEMORY) {
4218 /*
4219 * Recalculate kernelcore_node if the division per node
4220 * now exceeds what is necessary to satisfy the requested
4221 * amount of memory for the kernel
4222 */
4223 if (required_kernelcore < kernelcore_node)
4224 kernelcore_node = required_kernelcore / usable_nodes;
4225
4226 /*
4227 * As the map is walked, we track how much memory is usable
4228 * by the kernel using kernelcore_remaining. When it is
4229 * 0, the rest of the node is usable by ZONE_MOVABLE
4230 */
4231 kernelcore_remaining = kernelcore_node;
4232
4233 /* Go through each range of PFNs within this node */
4234 for_each_active_range_index_in_nid(i, nid) {
4235 unsigned long start_pfn, end_pfn;
4236 unsigned long size_pages;
4237
4238 start_pfn = max(early_node_map[i].start_pfn,
4239 zone_movable_pfn[nid]);
4240 end_pfn = early_node_map[i].end_pfn;
4241 if (start_pfn >= end_pfn)
4242 continue;
4243
4244 /* Account for what is only usable for kernelcore */
4245 if (start_pfn < usable_startpfn) {
4246 unsigned long kernel_pages;
4247 kernel_pages = min(end_pfn, usable_startpfn)
4248 - start_pfn;
4249
4250 kernelcore_remaining -= min(kernel_pages,
4251 kernelcore_remaining);
4252 required_kernelcore -= min(kernel_pages,
4253 required_kernelcore);
4254
4255 /* Continue if range is now fully accounted */
4256 if (end_pfn <= usable_startpfn) {
4257
4258 /*
4259 * Push zone_movable_pfn to the end so
4260 * that if we have to rebalance
4261 * kernelcore across nodes, we will
4262 * not double account here
4263 */
4264 zone_movable_pfn[nid] = end_pfn;
4265 continue;
4266 }
4267 start_pfn = usable_startpfn;
4268 }
4269
4270 /*
4271 * The usable PFN range for ZONE_MOVABLE is from
4272 * start_pfn->end_pfn. Calculate size_pages as the
4273 * number of pages used as kernelcore
4274 */
4275 size_pages = end_pfn - start_pfn;
4276 if (size_pages > kernelcore_remaining)
4277 size_pages = kernelcore_remaining;
4278 zone_movable_pfn[nid] = start_pfn + size_pages;
4279
4280 /*
4281 * Some kernelcore has been met, update counts and
4282 * break if the kernelcore for this node has been
4283 * satisified
4284 */
4285 required_kernelcore -= min(required_kernelcore,
4286 size_pages);
4287 kernelcore_remaining -= size_pages;
4288 if (!kernelcore_remaining)
4289 break;
4290 }
4291 }
4292
4293 /*
4294 * If there is still required_kernelcore, we do another pass with one
4295 * less node in the count. This will push zone_movable_pfn[nid] further
4296 * along on the nodes that still have memory until kernelcore is
4297 * satisified
4298 */
4299 usable_nodes--;
4300 if (usable_nodes && required_kernelcore > usable_nodes)
4301 goto restart;
4302
4303 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4304 for (nid = 0; nid < MAX_NUMNODES; nid++)
4305 zone_movable_pfn[nid] =
4306 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4307
4308 out:
4309 /* restore the node_state */
4310 node_states[N_HIGH_MEMORY] = saved_node_state;
4311 }
4312
4313 /* Any regular memory on that node ? */
4314 static void check_for_regular_memory(pg_data_t *pgdat)
4315 {
4316 #ifdef CONFIG_HIGHMEM
4317 enum zone_type zone_type;
4318
4319 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4320 struct zone *zone = &pgdat->node_zones[zone_type];
4321 if (zone->present_pages)
4322 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4323 }
4324 #endif
4325 }
4326
4327 /**
4328 * free_area_init_nodes - Initialise all pg_data_t and zone data
4329 * @max_zone_pfn: an array of max PFNs for each zone
4330 *
4331 * This will call free_area_init_node() for each active node in the system.
4332 * Using the page ranges provided by add_active_range(), the size of each
4333 * zone in each node and their holes is calculated. If the maximum PFN
4334 * between two adjacent zones match, it is assumed that the zone is empty.
4335 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4336 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4337 * starts where the previous one ended. For example, ZONE_DMA32 starts
4338 * at arch_max_dma_pfn.
4339 */
4340 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4341 {
4342 unsigned long nid;
4343 int i;
4344
4345 /* Sort early_node_map as initialisation assumes it is sorted */
4346 sort_node_map();
4347
4348 /* Record where the zone boundaries are */
4349 memset(arch_zone_lowest_possible_pfn, 0,
4350 sizeof(arch_zone_lowest_possible_pfn));
4351 memset(arch_zone_highest_possible_pfn, 0,
4352 sizeof(arch_zone_highest_possible_pfn));
4353 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4354 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4355 for (i = 1; i < MAX_NR_ZONES; i++) {
4356 if (i == ZONE_MOVABLE)
4357 continue;
4358 arch_zone_lowest_possible_pfn[i] =
4359 arch_zone_highest_possible_pfn[i-1];
4360 arch_zone_highest_possible_pfn[i] =
4361 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4362 }
4363 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4364 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4365
4366 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4367 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4368 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4369
4370 /* Print out the zone ranges */
4371 printk("Zone PFN ranges:\n");
4372 for (i = 0; i < MAX_NR_ZONES; i++) {
4373 if (i == ZONE_MOVABLE)
4374 continue;
4375 printk(" %-8s %0#10lx -> %0#10lx\n",
4376 zone_names[i],
4377 arch_zone_lowest_possible_pfn[i],
4378 arch_zone_highest_possible_pfn[i]);
4379 }
4380
4381 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4382 printk("Movable zone start PFN for each node\n");
4383 for (i = 0; i < MAX_NUMNODES; i++) {
4384 if (zone_movable_pfn[i])
4385 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4386 }
4387
4388 /* Print out the early_node_map[] */
4389 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4390 for (i = 0; i < nr_nodemap_entries; i++)
4391 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4392 early_node_map[i].start_pfn,
4393 early_node_map[i].end_pfn);
4394
4395 /* Initialise every node */
4396 mminit_verify_pageflags_layout();
4397 setup_nr_node_ids();
4398 for_each_online_node(nid) {
4399 pg_data_t *pgdat = NODE_DATA(nid);
4400 free_area_init_node(nid, NULL,
4401 find_min_pfn_for_node(nid), NULL);
4402
4403 /* Any memory on that node */
4404 if (pgdat->node_present_pages)
4405 node_set_state(nid, N_HIGH_MEMORY);
4406 check_for_regular_memory(pgdat);
4407 }
4408 }
4409
4410 static int __init cmdline_parse_core(char *p, unsigned long *core)
4411 {
4412 unsigned long long coremem;
4413 if (!p)
4414 return -EINVAL;
4415
4416 coremem = memparse(p, &p);
4417 *core = coremem >> PAGE_SHIFT;
4418
4419 /* Paranoid check that UL is enough for the coremem value */
4420 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4421
4422 return 0;
4423 }
4424
4425 /*
4426 * kernelcore=size sets the amount of memory for use for allocations that
4427 * cannot be reclaimed or migrated.
4428 */
4429 static int __init cmdline_parse_kernelcore(char *p)
4430 {
4431 return cmdline_parse_core(p, &required_kernelcore);
4432 }
4433
4434 /*
4435 * movablecore=size sets the amount of memory for use for allocations that
4436 * can be reclaimed or migrated.
4437 */
4438 static int __init cmdline_parse_movablecore(char *p)
4439 {
4440 return cmdline_parse_core(p, &required_movablecore);
4441 }
4442
4443 early_param("kernelcore", cmdline_parse_kernelcore);
4444 early_param("movablecore", cmdline_parse_movablecore);
4445
4446 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4447
4448 /**
4449 * set_dma_reserve - set the specified number of pages reserved in the first zone
4450 * @new_dma_reserve: The number of pages to mark reserved
4451 *
4452 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4453 * In the DMA zone, a significant percentage may be consumed by kernel image
4454 * and other unfreeable allocations which can skew the watermarks badly. This
4455 * function may optionally be used to account for unfreeable pages in the
4456 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4457 * smaller per-cpu batchsize.
4458 */
4459 void __init set_dma_reserve(unsigned long new_dma_reserve)
4460 {
4461 dma_reserve = new_dma_reserve;
4462 }
4463
4464 #ifndef CONFIG_NEED_MULTIPLE_NODES
4465 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4466 EXPORT_SYMBOL(contig_page_data);
4467 #endif
4468
4469 void __init free_area_init(unsigned long *zones_size)
4470 {
4471 free_area_init_node(0, zones_size,
4472 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4473 }
4474
4475 static int page_alloc_cpu_notify(struct notifier_block *self,
4476 unsigned long action, void *hcpu)
4477 {
4478 int cpu = (unsigned long)hcpu;
4479
4480 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4481 drain_pages(cpu);
4482
4483 /*
4484 * Spill the event counters of the dead processor
4485 * into the current processors event counters.
4486 * This artificially elevates the count of the current
4487 * processor.
4488 */
4489 vm_events_fold_cpu(cpu);
4490
4491 /*
4492 * Zero the differential counters of the dead processor
4493 * so that the vm statistics are consistent.
4494 *
4495 * This is only okay since the processor is dead and cannot
4496 * race with what we are doing.
4497 */
4498 refresh_cpu_vm_stats(cpu);
4499 }
4500 return NOTIFY_OK;
4501 }
4502
4503 void __init page_alloc_init(void)
4504 {
4505 hotcpu_notifier(page_alloc_cpu_notify, 0);
4506 }
4507
4508 /*
4509 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4510 * or min_free_kbytes changes.
4511 */
4512 static void calculate_totalreserve_pages(void)
4513 {
4514 struct pglist_data *pgdat;
4515 unsigned long reserve_pages = 0;
4516 enum zone_type i, j;
4517
4518 for_each_online_pgdat(pgdat) {
4519 for (i = 0; i < MAX_NR_ZONES; i++) {
4520 struct zone *zone = pgdat->node_zones + i;
4521 unsigned long max = 0;
4522
4523 /* Find valid and maximum lowmem_reserve in the zone */
4524 for (j = i; j < MAX_NR_ZONES; j++) {
4525 if (zone->lowmem_reserve[j] > max)
4526 max = zone->lowmem_reserve[j];
4527 }
4528
4529 /* we treat the high watermark as reserved pages. */
4530 max += high_wmark_pages(zone);
4531
4532 if (max > zone->present_pages)
4533 max = zone->present_pages;
4534 reserve_pages += max;
4535 }
4536 }
4537 totalreserve_pages = reserve_pages;
4538 }
4539
4540 /*
4541 * setup_per_zone_lowmem_reserve - called whenever
4542 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4543 * has a correct pages reserved value, so an adequate number of
4544 * pages are left in the zone after a successful __alloc_pages().
4545 */
4546 static void setup_per_zone_lowmem_reserve(void)
4547 {
4548 struct pglist_data *pgdat;
4549 enum zone_type j, idx;
4550
4551 for_each_online_pgdat(pgdat) {
4552 for (j = 0; j < MAX_NR_ZONES; j++) {
4553 struct zone *zone = pgdat->node_zones + j;
4554 unsigned long present_pages = zone->present_pages;
4555
4556 zone->lowmem_reserve[j] = 0;
4557
4558 idx = j;
4559 while (idx) {
4560 struct zone *lower_zone;
4561
4562 idx--;
4563
4564 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4565 sysctl_lowmem_reserve_ratio[idx] = 1;
4566
4567 lower_zone = pgdat->node_zones + idx;
4568 lower_zone->lowmem_reserve[j] = present_pages /
4569 sysctl_lowmem_reserve_ratio[idx];
4570 present_pages += lower_zone->present_pages;
4571 }
4572 }
4573 }
4574
4575 /* update totalreserve_pages */
4576 calculate_totalreserve_pages();
4577 }
4578
4579 /**
4580 * setup_per_zone_wmarks - called when min_free_kbytes changes
4581 * or when memory is hot-{added|removed}
4582 *
4583 * Ensures that the watermark[min,low,high] values for each zone are set
4584 * correctly with respect to min_free_kbytes.
4585 */
4586 void setup_per_zone_wmarks(void)
4587 {
4588 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4589 unsigned long lowmem_pages = 0;
4590 struct zone *zone;
4591 unsigned long flags;
4592
4593 /* Calculate total number of !ZONE_HIGHMEM pages */
4594 for_each_zone(zone) {
4595 if (!is_highmem(zone))
4596 lowmem_pages += zone->present_pages;
4597 }
4598
4599 for_each_zone(zone) {
4600 u64 tmp;
4601
4602 spin_lock_irqsave(&zone->lock, flags);
4603 tmp = (u64)pages_min * zone->present_pages;
4604 do_div(tmp, lowmem_pages);
4605 if (is_highmem(zone)) {
4606 /*
4607 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4608 * need highmem pages, so cap pages_min to a small
4609 * value here.
4610 *
4611 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4612 * deltas controls asynch page reclaim, and so should
4613 * not be capped for highmem.
4614 */
4615 int min_pages;
4616
4617 min_pages = zone->present_pages / 1024;
4618 if (min_pages < SWAP_CLUSTER_MAX)
4619 min_pages = SWAP_CLUSTER_MAX;
4620 if (min_pages > 128)
4621 min_pages = 128;
4622 zone->watermark[WMARK_MIN] = min_pages;
4623 } else {
4624 /*
4625 * If it's a lowmem zone, reserve a number of pages
4626 * proportionate to the zone's size.
4627 */
4628 zone->watermark[WMARK_MIN] = tmp;
4629 }
4630
4631 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4632 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4633 setup_zone_migrate_reserve(zone);
4634 spin_unlock_irqrestore(&zone->lock, flags);
4635 }
4636
4637 /* update totalreserve_pages */
4638 calculate_totalreserve_pages();
4639 }
4640
4641 /*
4642 * The inactive anon list should be small enough that the VM never has to
4643 * do too much work, but large enough that each inactive page has a chance
4644 * to be referenced again before it is swapped out.
4645 *
4646 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4647 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4648 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4649 * the anonymous pages are kept on the inactive list.
4650 *
4651 * total target max
4652 * memory ratio inactive anon
4653 * -------------------------------------
4654 * 10MB 1 5MB
4655 * 100MB 1 50MB
4656 * 1GB 3 250MB
4657 * 10GB 10 0.9GB
4658 * 100GB 31 3GB
4659 * 1TB 101 10GB
4660 * 10TB 320 32GB
4661 */
4662 void calculate_zone_inactive_ratio(struct zone *zone)
4663 {
4664 unsigned int gb, ratio;
4665
4666 /* Zone size in gigabytes */
4667 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4668 if (gb)
4669 ratio = int_sqrt(10 * gb);
4670 else
4671 ratio = 1;
4672
4673 zone->inactive_ratio = ratio;
4674 }
4675
4676 static void __init setup_per_zone_inactive_ratio(void)
4677 {
4678 struct zone *zone;
4679
4680 for_each_zone(zone)
4681 calculate_zone_inactive_ratio(zone);
4682 }
4683
4684 /*
4685 * Initialise min_free_kbytes.
4686 *
4687 * For small machines we want it small (128k min). For large machines
4688 * we want it large (64MB max). But it is not linear, because network
4689 * bandwidth does not increase linearly with machine size. We use
4690 *
4691 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4692 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4693 *
4694 * which yields
4695 *
4696 * 16MB: 512k
4697 * 32MB: 724k
4698 * 64MB: 1024k
4699 * 128MB: 1448k
4700 * 256MB: 2048k
4701 * 512MB: 2896k
4702 * 1024MB: 4096k
4703 * 2048MB: 5792k
4704 * 4096MB: 8192k
4705 * 8192MB: 11584k
4706 * 16384MB: 16384k
4707 */
4708 static int __init init_per_zone_wmark_min(void)
4709 {
4710 unsigned long lowmem_kbytes;
4711
4712 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4713
4714 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4715 if (min_free_kbytes < 128)
4716 min_free_kbytes = 128;
4717 if (min_free_kbytes > 65536)
4718 min_free_kbytes = 65536;
4719 setup_per_zone_wmarks();
4720 setup_per_zone_lowmem_reserve();
4721 setup_per_zone_inactive_ratio();
4722 return 0;
4723 }
4724 module_init(init_per_zone_wmark_min)
4725
4726 /*
4727 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4728 * that we can call two helper functions whenever min_free_kbytes
4729 * changes.
4730 */
4731 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4732 void __user *buffer, size_t *length, loff_t *ppos)
4733 {
4734 proc_dointvec(table, write, buffer, length, ppos);
4735 if (write)
4736 setup_per_zone_wmarks();
4737 return 0;
4738 }
4739
4740 #ifdef CONFIG_NUMA
4741 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4742 void __user *buffer, size_t *length, loff_t *ppos)
4743 {
4744 struct zone *zone;
4745 int rc;
4746
4747 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4748 if (rc)
4749 return rc;
4750
4751 for_each_zone(zone)
4752 zone->min_unmapped_pages = (zone->present_pages *
4753 sysctl_min_unmapped_ratio) / 100;
4754 return 0;
4755 }
4756
4757 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4758 void __user *buffer, size_t *length, loff_t *ppos)
4759 {
4760 struct zone *zone;
4761 int rc;
4762
4763 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4764 if (rc)
4765 return rc;
4766
4767 for_each_zone(zone)
4768 zone->min_slab_pages = (zone->present_pages *
4769 sysctl_min_slab_ratio) / 100;
4770 return 0;
4771 }
4772 #endif
4773
4774 /*
4775 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4776 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4777 * whenever sysctl_lowmem_reserve_ratio changes.
4778 *
4779 * The reserve ratio obviously has absolutely no relation with the
4780 * minimum watermarks. The lowmem reserve ratio can only make sense
4781 * if in function of the boot time zone sizes.
4782 */
4783 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4784 void __user *buffer, size_t *length, loff_t *ppos)
4785 {
4786 proc_dointvec_minmax(table, write, buffer, length, ppos);
4787 setup_per_zone_lowmem_reserve();
4788 return 0;
4789 }
4790
4791 /*
4792 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4793 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4794 * can have before it gets flushed back to buddy allocator.
4795 */
4796
4797 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4798 void __user *buffer, size_t *length, loff_t *ppos)
4799 {
4800 struct zone *zone;
4801 unsigned int cpu;
4802 int ret;
4803
4804 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4805 if (!write || (ret == -EINVAL))
4806 return ret;
4807 for_each_populated_zone(zone) {
4808 for_each_online_cpu(cpu) {
4809 unsigned long high;
4810 high = zone->present_pages / percpu_pagelist_fraction;
4811 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4812 }
4813 }
4814 return 0;
4815 }
4816
4817 int hashdist = HASHDIST_DEFAULT;
4818
4819 #ifdef CONFIG_NUMA
4820 static int __init set_hashdist(char *str)
4821 {
4822 if (!str)
4823 return 0;
4824 hashdist = simple_strtoul(str, &str, 0);
4825 return 1;
4826 }
4827 __setup("hashdist=", set_hashdist);
4828 #endif
4829
4830 /*
4831 * allocate a large system hash table from bootmem
4832 * - it is assumed that the hash table must contain an exact power-of-2
4833 * quantity of entries
4834 * - limit is the number of hash buckets, not the total allocation size
4835 */
4836 void *__init alloc_large_system_hash(const char *tablename,
4837 unsigned long bucketsize,
4838 unsigned long numentries,
4839 int scale,
4840 int flags,
4841 unsigned int *_hash_shift,
4842 unsigned int *_hash_mask,
4843 unsigned long limit)
4844 {
4845 unsigned long long max = limit;
4846 unsigned long log2qty, size;
4847 void *table = NULL;
4848
4849 /* allow the kernel cmdline to have a say */
4850 if (!numentries) {
4851 /* round applicable memory size up to nearest megabyte */
4852 numentries = nr_kernel_pages;
4853 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4854 numentries >>= 20 - PAGE_SHIFT;
4855 numentries <<= 20 - PAGE_SHIFT;
4856
4857 /* limit to 1 bucket per 2^scale bytes of low memory */
4858 if (scale > PAGE_SHIFT)
4859 numentries >>= (scale - PAGE_SHIFT);
4860 else
4861 numentries <<= (PAGE_SHIFT - scale);
4862
4863 /* Make sure we've got at least a 0-order allocation.. */
4864 if (unlikely(flags & HASH_SMALL)) {
4865 /* Makes no sense without HASH_EARLY */
4866 WARN_ON(!(flags & HASH_EARLY));
4867 if (!(numentries >> *_hash_shift)) {
4868 numentries = 1UL << *_hash_shift;
4869 BUG_ON(!numentries);
4870 }
4871 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4872 numentries = PAGE_SIZE / bucketsize;
4873 }
4874 numentries = roundup_pow_of_two(numentries);
4875
4876 /* limit allocation size to 1/16 total memory by default */
4877 if (max == 0) {
4878 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4879 do_div(max, bucketsize);
4880 }
4881
4882 if (numentries > max)
4883 numentries = max;
4884
4885 log2qty = ilog2(numentries);
4886
4887 do {
4888 size = bucketsize << log2qty;
4889 if (flags & HASH_EARLY)
4890 table = alloc_bootmem_nopanic(size);
4891 else if (hashdist)
4892 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4893 else {
4894 /*
4895 * If bucketsize is not a power-of-two, we may free
4896 * some pages at the end of hash table which
4897 * alloc_pages_exact() automatically does
4898 */
4899 if (get_order(size) < MAX_ORDER) {
4900 table = alloc_pages_exact(size, GFP_ATOMIC);
4901 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4902 }
4903 }
4904 } while (!table && size > PAGE_SIZE && --log2qty);
4905
4906 if (!table)
4907 panic("Failed to allocate %s hash table\n", tablename);
4908
4909 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4910 tablename,
4911 (1U << log2qty),
4912 ilog2(size) - PAGE_SHIFT,
4913 size);
4914
4915 if (_hash_shift)
4916 *_hash_shift = log2qty;
4917 if (_hash_mask)
4918 *_hash_mask = (1 << log2qty) - 1;
4919
4920 return table;
4921 }
4922
4923 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4924 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4925 unsigned long pfn)
4926 {
4927 #ifdef CONFIG_SPARSEMEM
4928 return __pfn_to_section(pfn)->pageblock_flags;
4929 #else
4930 return zone->pageblock_flags;
4931 #endif /* CONFIG_SPARSEMEM */
4932 }
4933
4934 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4935 {
4936 #ifdef CONFIG_SPARSEMEM
4937 pfn &= (PAGES_PER_SECTION-1);
4938 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4939 #else
4940 pfn = pfn - zone->zone_start_pfn;
4941 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4942 #endif /* CONFIG_SPARSEMEM */
4943 }
4944
4945 /**
4946 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4947 * @page: The page within the block of interest
4948 * @start_bitidx: The first bit of interest to retrieve
4949 * @end_bitidx: The last bit of interest
4950 * returns pageblock_bits flags
4951 */
4952 unsigned long get_pageblock_flags_group(struct page *page,
4953 int start_bitidx, int end_bitidx)
4954 {
4955 struct zone *zone;
4956 unsigned long *bitmap;
4957 unsigned long pfn, bitidx;
4958 unsigned long flags = 0;
4959 unsigned long value = 1;
4960
4961 zone = page_zone(page);
4962 pfn = page_to_pfn(page);
4963 bitmap = get_pageblock_bitmap(zone, pfn);
4964 bitidx = pfn_to_bitidx(zone, pfn);
4965
4966 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4967 if (test_bit(bitidx + start_bitidx, bitmap))
4968 flags |= value;
4969
4970 return flags;
4971 }
4972
4973 /**
4974 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4975 * @page: The page within the block of interest
4976 * @start_bitidx: The first bit of interest
4977 * @end_bitidx: The last bit of interest
4978 * @flags: The flags to set
4979 */
4980 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4981 int start_bitidx, int end_bitidx)
4982 {
4983 struct zone *zone;
4984 unsigned long *bitmap;
4985 unsigned long pfn, bitidx;
4986 unsigned long value = 1;
4987
4988 zone = page_zone(page);
4989 pfn = page_to_pfn(page);
4990 bitmap = get_pageblock_bitmap(zone, pfn);
4991 bitidx = pfn_to_bitidx(zone, pfn);
4992 VM_BUG_ON(pfn < zone->zone_start_pfn);
4993 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4994
4995 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4996 if (flags & value)
4997 __set_bit(bitidx + start_bitidx, bitmap);
4998 else
4999 __clear_bit(bitidx + start_bitidx, bitmap);
5000 }
5001
5002 /*
5003 * This is designed as sub function...plz see page_isolation.c also.
5004 * set/clear page block's type to be ISOLATE.
5005 * page allocater never alloc memory from ISOLATE block.
5006 */
5007
5008 int set_migratetype_isolate(struct page *page)
5009 {
5010 struct zone *zone;
5011 unsigned long flags;
5012 int ret = -EBUSY;
5013 int zone_idx;
5014
5015 zone = page_zone(page);
5016 zone_idx = zone_idx(zone);
5017 spin_lock_irqsave(&zone->lock, flags);
5018 /*
5019 * In future, more migrate types will be able to be isolation target.
5020 */
5021 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5022 zone_idx != ZONE_MOVABLE)
5023 goto out;
5024 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5025 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5026 ret = 0;
5027 out:
5028 spin_unlock_irqrestore(&zone->lock, flags);
5029 if (!ret)
5030 drain_all_pages();
5031 return ret;
5032 }
5033
5034 void unset_migratetype_isolate(struct page *page)
5035 {
5036 struct zone *zone;
5037 unsigned long flags;
5038 zone = page_zone(page);
5039 spin_lock_irqsave(&zone->lock, flags);
5040 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5041 goto out;
5042 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5043 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5044 out:
5045 spin_unlock_irqrestore(&zone->lock, flags);
5046 }
5047
5048 #ifdef CONFIG_MEMORY_HOTREMOVE
5049 /*
5050 * All pages in the range must be isolated before calling this.
5051 */
5052 void
5053 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5054 {
5055 struct page *page;
5056 struct zone *zone;
5057 int order, i;
5058 unsigned long pfn;
5059 unsigned long flags;
5060 /* find the first valid pfn */
5061 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5062 if (pfn_valid(pfn))
5063 break;
5064 if (pfn == end_pfn)
5065 return;
5066 zone = page_zone(pfn_to_page(pfn));
5067 spin_lock_irqsave(&zone->lock, flags);
5068 pfn = start_pfn;
5069 while (pfn < end_pfn) {
5070 if (!pfn_valid(pfn)) {
5071 pfn++;
5072 continue;
5073 }
5074 page = pfn_to_page(pfn);
5075 BUG_ON(page_count(page));
5076 BUG_ON(!PageBuddy(page));
5077 order = page_order(page);
5078 #ifdef CONFIG_DEBUG_VM
5079 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5080 pfn, 1 << order, end_pfn);
5081 #endif
5082 list_del(&page->lru);
5083 rmv_page_order(page);
5084 zone->free_area[order].nr_free--;
5085 __mod_zone_page_state(zone, NR_FREE_PAGES,
5086 - (1UL << order));
5087 for (i = 0; i < (1 << order); i++)
5088 SetPageReserved((page+i));
5089 pfn += (1 << order);
5090 }
5091 spin_unlock_irqrestore(&zone->lock, flags);
5092 }
5093 #endif
This page took 0.130117 seconds and 6 git commands to generate.