mm/page_alloc: factor out fallback freepage checking
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 gfp_t gfp_flags)
385 {
386 int i;
387
388 /*
389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 */
392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 for (i = 0; i < (1 << order); i++)
394 clear_highpage(page + i);
395 }
396
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 if (!buf)
405 return -EINVAL;
406
407 if (strcmp(buf, "on") == 0)
408 _debug_pagealloc_enabled = true;
409
410 return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413
414 static bool need_debug_guardpage(void)
415 {
416 /* If we don't use debug_pagealloc, we don't need guard page */
417 if (!debug_pagealloc_enabled())
418 return false;
419
420 return true;
421 }
422
423 static void init_debug_guardpage(void)
424 {
425 if (!debug_pagealloc_enabled())
426 return;
427
428 _debug_guardpage_enabled = true;
429 }
430
431 struct page_ext_operations debug_guardpage_ops = {
432 .need = need_debug_guardpage,
433 .init = init_debug_guardpage,
434 };
435
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 unsigned long res;
439
440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 return 0;
443 }
444 _debug_guardpage_minorder = res;
445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 unsigned int order, int migratetype)
452 {
453 struct page_ext *page_ext;
454
455 if (!debug_guardpage_enabled())
456 return;
457
458 page_ext = lookup_page_ext(page);
459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460
461 INIT_LIST_HEAD(&page->lru);
462 set_page_private(page, order);
463 /* Guard pages are not available for any usage */
464 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 unsigned int order, int migratetype)
469 {
470 struct page_ext *page_ext;
471
472 if (!debug_guardpage_enabled())
473 return;
474
475 page_ext = lookup_page_ext(page);
476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477
478 set_page_private(page, 0);
479 if (!is_migrate_isolate(migratetype))
480 __mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 unsigned int order, int migratetype) {}
488 #endif
489
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 set_page_private(page, order);
493 __SetPageBuddy(page);
494 }
495
496 static inline void rmv_page_order(struct page *page)
497 {
498 __ClearPageBuddy(page);
499 set_page_private(page, 0);
500 }
501
502 /*
503 * This function checks whether a page is free && is the buddy
504 * we can do coalesce a page and its buddy if
505 * (a) the buddy is not in a hole &&
506 * (b) the buddy is in the buddy system &&
507 * (c) a page and its buddy have the same order &&
508 * (d) a page and its buddy are in the same zone.
509 *
510 * For recording whether a page is in the buddy system, we set ->_mapcount
511 * PAGE_BUDDY_MAPCOUNT_VALUE.
512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513 * serialized by zone->lock.
514 *
515 * For recording page's order, we use page_private(page).
516 */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 unsigned int order)
519 {
520 if (!pfn_valid_within(page_to_pfn(buddy)))
521 return 0;
522
523 if (page_is_guard(buddy) && page_order(buddy) == order) {
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531
532 if (PageBuddy(buddy) && page_order(buddy) == order) {
533 /*
534 * zone check is done late to avoid uselessly
535 * calculating zone/node ids for pages that could
536 * never merge.
537 */
538 if (page_zone_id(page) != page_zone_id(buddy))
539 return 0;
540
541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542
543 return 1;
544 }
545 return 0;
546 }
547
548 /*
549 * Freeing function for a buddy system allocator.
550 *
551 * The concept of a buddy system is to maintain direct-mapped table
552 * (containing bit values) for memory blocks of various "orders".
553 * The bottom level table contains the map for the smallest allocatable
554 * units of memory (here, pages), and each level above it describes
555 * pairs of units from the levels below, hence, "buddies".
556 * At a high level, all that happens here is marking the table entry
557 * at the bottom level available, and propagating the changes upward
558 * as necessary, plus some accounting needed to play nicely with other
559 * parts of the VM system.
560 * At each level, we keep a list of pages, which are heads of continuous
561 * free pages of length of (1 << order) and marked with _mapcount
562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563 * field.
564 * So when we are allocating or freeing one, we can derive the state of the
565 * other. That is, if we allocate a small block, and both were
566 * free, the remainder of the region must be split into blocks.
567 * If a block is freed, and its buddy is also free, then this
568 * triggers coalescing into a block of larger size.
569 *
570 * -- nyc
571 */
572
573 static inline void __free_one_page(struct page *page,
574 unsigned long pfn,
575 struct zone *zone, unsigned int order,
576 int migratetype)
577 {
578 unsigned long page_idx;
579 unsigned long combined_idx;
580 unsigned long uninitialized_var(buddy_idx);
581 struct page *buddy;
582 int max_order = MAX_ORDER;
583
584 VM_BUG_ON(!zone_is_initialized(zone));
585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586
587 VM_BUG_ON(migratetype == -1);
588 if (is_migrate_isolate(migratetype)) {
589 /*
590 * We restrict max order of merging to prevent merge
591 * between freepages on isolate pageblock and normal
592 * pageblock. Without this, pageblock isolation
593 * could cause incorrect freepage accounting.
594 */
595 max_order = min(MAX_ORDER, pageblock_order + 1);
596 } else {
597 __mod_zone_freepage_state(zone, 1 << order, migratetype);
598 }
599
600 page_idx = pfn & ((1 << max_order) - 1);
601
602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 VM_BUG_ON_PAGE(bad_range(zone, page), page);
604
605 while (order < max_order - 1) {
606 buddy_idx = __find_buddy_index(page_idx, order);
607 buddy = page + (buddy_idx - page_idx);
608 if (!page_is_buddy(page, buddy, order))
609 break;
610 /*
611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 * merge with it and move up one order.
613 */
614 if (page_is_guard(buddy)) {
615 clear_page_guard(zone, buddy, order, migratetype);
616 } else {
617 list_del(&buddy->lru);
618 zone->free_area[order].nr_free--;
619 rmv_page_order(buddy);
620 }
621 combined_idx = buddy_idx & page_idx;
622 page = page + (combined_idx - page_idx);
623 page_idx = combined_idx;
624 order++;
625 }
626 set_page_order(page, order);
627
628 /*
629 * If this is not the largest possible page, check if the buddy
630 * of the next-highest order is free. If it is, it's possible
631 * that pages are being freed that will coalesce soon. In case,
632 * that is happening, add the free page to the tail of the list
633 * so it's less likely to be used soon and more likely to be merged
634 * as a higher order page
635 */
636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 struct page *higher_page, *higher_buddy;
638 combined_idx = buddy_idx & page_idx;
639 higher_page = page + (combined_idx - page_idx);
640 buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 higher_buddy = higher_page + (buddy_idx - combined_idx);
642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 list_add_tail(&page->lru,
644 &zone->free_area[order].free_list[migratetype]);
645 goto out;
646 }
647 }
648
649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 zone->free_area[order].nr_free++;
652 }
653
654 static inline int free_pages_check(struct page *page)
655 {
656 const char *bad_reason = NULL;
657 unsigned long bad_flags = 0;
658
659 if (unlikely(page_mapcount(page)))
660 bad_reason = "nonzero mapcount";
661 if (unlikely(page->mapping != NULL))
662 bad_reason = "non-NULL mapping";
663 if (unlikely(atomic_read(&page->_count) != 0))
664 bad_reason = "nonzero _count";
665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 }
669 #ifdef CONFIG_MEMCG
670 if (unlikely(page->mem_cgroup))
671 bad_reason = "page still charged to cgroup";
672 #endif
673 if (unlikely(bad_reason)) {
674 bad_page(page, bad_reason, bad_flags);
675 return 1;
676 }
677 page_cpupid_reset_last(page);
678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 return 0;
681 }
682
683 /*
684 * Frees a number of pages from the PCP lists
685 * Assumes all pages on list are in same zone, and of same order.
686 * count is the number of pages to free.
687 *
688 * If the zone was previously in an "all pages pinned" state then look to
689 * see if this freeing clears that state.
690 *
691 * And clear the zone's pages_scanned counter, to hold off the "all pages are
692 * pinned" detection logic.
693 */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 struct per_cpu_pages *pcp)
696 {
697 int migratetype = 0;
698 int batch_free = 0;
699 int to_free = count;
700 unsigned long nr_scanned;
701
702 spin_lock(&zone->lock);
703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 if (nr_scanned)
705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706
707 while (to_free) {
708 struct page *page;
709 struct list_head *list;
710
711 /*
712 * Remove pages from lists in a round-robin fashion. A
713 * batch_free count is maintained that is incremented when an
714 * empty list is encountered. This is so more pages are freed
715 * off fuller lists instead of spinning excessively around empty
716 * lists
717 */
718 do {
719 batch_free++;
720 if (++migratetype == MIGRATE_PCPTYPES)
721 migratetype = 0;
722 list = &pcp->lists[migratetype];
723 } while (list_empty(list));
724
725 /* This is the only non-empty list. Free them all. */
726 if (batch_free == MIGRATE_PCPTYPES)
727 batch_free = to_free;
728
729 do {
730 int mt; /* migratetype of the to-be-freed page */
731
732 page = list_entry(list->prev, struct page, lru);
733 /* must delete as __free_one_page list manipulates */
734 list_del(&page->lru);
735 mt = get_freepage_migratetype(page);
736 if (unlikely(has_isolate_pageblock(zone)))
737 mt = get_pageblock_migratetype(page);
738
739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 trace_mm_page_pcpu_drain(page, 0, mt);
742 } while (--to_free && --batch_free && !list_empty(list));
743 }
744 spin_unlock(&zone->lock);
745 }
746
747 static void free_one_page(struct zone *zone,
748 struct page *page, unsigned long pfn,
749 unsigned int order,
750 int migratetype)
751 {
752 unsigned long nr_scanned;
753 spin_lock(&zone->lock);
754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 if (nr_scanned)
756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757
758 if (unlikely(has_isolate_pageblock(zone) ||
759 is_migrate_isolate(migratetype))) {
760 migratetype = get_pfnblock_migratetype(page, pfn);
761 }
762 __free_one_page(page, pfn, zone, order, migratetype);
763 spin_unlock(&zone->lock);
764 }
765
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 return 0;
770 if (unlikely(!PageTail(page))) {
771 bad_page(page, "PageTail not set", 0);
772 return 1;
773 }
774 if (unlikely(page->first_page != head_page)) {
775 bad_page(page, "first_page not consistent", 0);
776 return 1;
777 }
778 return 0;
779 }
780
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 bool compound = PageCompound(page);
784 int i, bad = 0;
785
786 VM_BUG_ON_PAGE(PageTail(page), page);
787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788
789 trace_mm_page_free(page, order);
790 kmemcheck_free_shadow(page, order);
791 kasan_free_pages(page, order);
792
793 if (PageAnon(page))
794 page->mapping = NULL;
795 bad += free_pages_check(page);
796 for (i = 1; i < (1 << order); i++) {
797 if (compound)
798 bad += free_tail_pages_check(page, page + i);
799 bad += free_pages_check(page + i);
800 }
801 if (bad)
802 return false;
803
804 reset_page_owner(page, order);
805
806 if (!PageHighMem(page)) {
807 debug_check_no_locks_freed(page_address(page),
808 PAGE_SIZE << order);
809 debug_check_no_obj_freed(page_address(page),
810 PAGE_SIZE << order);
811 }
812 arch_free_page(page, order);
813 kernel_map_pages(page, 1 << order, 0);
814
815 return true;
816 }
817
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 unsigned long flags;
821 int migratetype;
822 unsigned long pfn = page_to_pfn(page);
823
824 if (!free_pages_prepare(page, order))
825 return;
826
827 migratetype = get_pfnblock_migratetype(page, pfn);
828 local_irq_save(flags);
829 __count_vm_events(PGFREE, 1 << order);
830 set_freepage_migratetype(page, migratetype);
831 free_one_page(page_zone(page), page, pfn, order, migratetype);
832 local_irq_restore(flags);
833 }
834
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 unsigned int nr_pages = 1 << order;
838 struct page *p = page;
839 unsigned int loop;
840
841 prefetchw(p);
842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 prefetchw(p + 1);
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
846 }
847 __ClearPageReserved(p);
848 set_page_count(p, 0);
849
850 page_zone(page)->managed_pages += nr_pages;
851 set_page_refcounted(page);
852 __free_pages(page, order);
853 }
854
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 unsigned i = pageblock_nr_pages;
860 struct page *p = page;
861
862 do {
863 __ClearPageReserved(p);
864 set_page_count(p, 0);
865 } while (++p, --i);
866
867 set_pageblock_migratetype(page, MIGRATE_CMA);
868
869 if (pageblock_order >= MAX_ORDER) {
870 i = pageblock_nr_pages;
871 p = page;
872 do {
873 set_page_refcounted(p);
874 __free_pages(p, MAX_ORDER - 1);
875 p += MAX_ORDER_NR_PAGES;
876 } while (i -= MAX_ORDER_NR_PAGES);
877 } else {
878 set_page_refcounted(page);
879 __free_pages(page, pageblock_order);
880 }
881
882 adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885
886 /*
887 * The order of subdivision here is critical for the IO subsystem.
888 * Please do not alter this order without good reasons and regression
889 * testing. Specifically, as large blocks of memory are subdivided,
890 * the order in which smaller blocks are delivered depends on the order
891 * they're subdivided in this function. This is the primary factor
892 * influencing the order in which pages are delivered to the IO
893 * subsystem according to empirical testing, and this is also justified
894 * by considering the behavior of a buddy system containing a single
895 * large block of memory acted on by a series of small allocations.
896 * This behavior is a critical factor in sglist merging's success.
897 *
898 * -- nyc
899 */
900 static inline void expand(struct zone *zone, struct page *page,
901 int low, int high, struct free_area *area,
902 int migratetype)
903 {
904 unsigned long size = 1 << high;
905
906 while (high > low) {
907 area--;
908 high--;
909 size >>= 1;
910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911
912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 debug_guardpage_enabled() &&
914 high < debug_guardpage_minorder()) {
915 /*
916 * Mark as guard pages (or page), that will allow to
917 * merge back to allocator when buddy will be freed.
918 * Corresponding page table entries will not be touched,
919 * pages will stay not present in virtual address space
920 */
921 set_page_guard(zone, &page[size], high, migratetype);
922 continue;
923 }
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
927 }
928 }
929
930 /*
931 * This page is about to be returned from the page allocator
932 */
933 static inline int check_new_page(struct page *page)
934 {
935 const char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
937
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 }
948 #ifdef CONFIG_MEMCG
949 if (unlikely(page->mem_cgroup))
950 bad_reason = "page still charged to cgroup";
951 #endif
952 if (unlikely(bad_reason)) {
953 bad_page(page, bad_reason, bad_flags);
954 return 1;
955 }
956 return 0;
957 }
958
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 int alloc_flags)
961 {
962 int i;
963
964 for (i = 0; i < (1 << order); i++) {
965 struct page *p = page + i;
966 if (unlikely(check_new_page(p)))
967 return 1;
968 }
969
970 set_page_private(page, 0);
971 set_page_refcounted(page);
972
973 arch_alloc_page(page, order);
974 kernel_map_pages(page, 1 << order, 1);
975 kasan_alloc_pages(page, order);
976
977 if (gfp_flags & __GFP_ZERO)
978 prep_zero_page(page, order, gfp_flags);
979
980 if (order && (gfp_flags & __GFP_COMP))
981 prep_compound_page(page, order);
982
983 set_page_owner(page, order, gfp_flags);
984
985 /*
986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 * allocate the page. The expectation is that the caller is taking
988 * steps that will free more memory. The caller should avoid the page
989 * being used for !PFMEMALLOC purposes.
990 */
991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992
993 return 0;
994 }
995
996 /*
997 * Go through the free lists for the given migratetype and remove
998 * the smallest available page from the freelists
999 */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 int migratetype)
1003 {
1004 unsigned int current_order;
1005 struct free_area *area;
1006 struct page *page;
1007
1008 /* Find a page of the appropriate size in the preferred list */
1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 area = &(zone->free_area[current_order]);
1011 if (list_empty(&area->free_list[migratetype]))
1012 continue;
1013
1014 page = list_entry(area->free_list[migratetype].next,
1015 struct page, lru);
1016 list_del(&page->lru);
1017 rmv_page_order(page);
1018 area->nr_free--;
1019 expand(zone, page, order, current_order, area, migratetype);
1020 set_freepage_migratetype(page, migratetype);
1021 return page;
1022 }
1023
1024 return NULL;
1025 }
1026
1027
1028 /*
1029 * This array describes the order lists are fallen back to when
1030 * the free lists for the desirable migrate type are depleted
1031 */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1035 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1036 #ifdef CONFIG_CMA
1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1038 #endif
1039 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1040 #ifdef CONFIG_MEMORY_ISOLATION
1041 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1042 #endif
1043 };
1044
1045 #ifdef CONFIG_CMA
1046 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1047 unsigned int order)
1048 {
1049 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1050 }
1051 #else
1052 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1053 unsigned int order) { return NULL; }
1054 #endif
1055
1056 /*
1057 * Move the free pages in a range to the free lists of the requested type.
1058 * Note that start_page and end_pages are not aligned on a pageblock
1059 * boundary. If alignment is required, use move_freepages_block()
1060 */
1061 int move_freepages(struct zone *zone,
1062 struct page *start_page, struct page *end_page,
1063 int migratetype)
1064 {
1065 struct page *page;
1066 unsigned long order;
1067 int pages_moved = 0;
1068
1069 #ifndef CONFIG_HOLES_IN_ZONE
1070 /*
1071 * page_zone is not safe to call in this context when
1072 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1073 * anyway as we check zone boundaries in move_freepages_block().
1074 * Remove at a later date when no bug reports exist related to
1075 * grouping pages by mobility
1076 */
1077 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1078 #endif
1079
1080 for (page = start_page; page <= end_page;) {
1081 /* Make sure we are not inadvertently changing nodes */
1082 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1083
1084 if (!pfn_valid_within(page_to_pfn(page))) {
1085 page++;
1086 continue;
1087 }
1088
1089 if (!PageBuddy(page)) {
1090 page++;
1091 continue;
1092 }
1093
1094 order = page_order(page);
1095 list_move(&page->lru,
1096 &zone->free_area[order].free_list[migratetype]);
1097 set_freepage_migratetype(page, migratetype);
1098 page += 1 << order;
1099 pages_moved += 1 << order;
1100 }
1101
1102 return pages_moved;
1103 }
1104
1105 int move_freepages_block(struct zone *zone, struct page *page,
1106 int migratetype)
1107 {
1108 unsigned long start_pfn, end_pfn;
1109 struct page *start_page, *end_page;
1110
1111 start_pfn = page_to_pfn(page);
1112 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1113 start_page = pfn_to_page(start_pfn);
1114 end_page = start_page + pageblock_nr_pages - 1;
1115 end_pfn = start_pfn + pageblock_nr_pages - 1;
1116
1117 /* Do not cross zone boundaries */
1118 if (!zone_spans_pfn(zone, start_pfn))
1119 start_page = page;
1120 if (!zone_spans_pfn(zone, end_pfn))
1121 return 0;
1122
1123 return move_freepages(zone, start_page, end_page, migratetype);
1124 }
1125
1126 static void change_pageblock_range(struct page *pageblock_page,
1127 int start_order, int migratetype)
1128 {
1129 int nr_pageblocks = 1 << (start_order - pageblock_order);
1130
1131 while (nr_pageblocks--) {
1132 set_pageblock_migratetype(pageblock_page, migratetype);
1133 pageblock_page += pageblock_nr_pages;
1134 }
1135 }
1136
1137 /*
1138 * When we are falling back to another migratetype during allocation, try to
1139 * steal extra free pages from the same pageblocks to satisfy further
1140 * allocations, instead of polluting multiple pageblocks.
1141 *
1142 * If we are stealing a relatively large buddy page, it is likely there will
1143 * be more free pages in the pageblock, so try to steal them all. For
1144 * reclaimable and unmovable allocations, we steal regardless of page size,
1145 * as fragmentation caused by those allocations polluting movable pageblocks
1146 * is worse than movable allocations stealing from unmovable and reclaimable
1147 * pageblocks.
1148 */
1149 static bool can_steal_fallback(unsigned int order, int start_mt)
1150 {
1151 /*
1152 * Leaving this order check is intended, although there is
1153 * relaxed order check in next check. The reason is that
1154 * we can actually steal whole pageblock if this condition met,
1155 * but, below check doesn't guarantee it and that is just heuristic
1156 * so could be changed anytime.
1157 */
1158 if (order >= pageblock_order)
1159 return true;
1160
1161 if (order >= pageblock_order / 2 ||
1162 start_mt == MIGRATE_RECLAIMABLE ||
1163 start_mt == MIGRATE_UNMOVABLE ||
1164 page_group_by_mobility_disabled)
1165 return true;
1166
1167 return false;
1168 }
1169
1170 /*
1171 * This function implements actual steal behaviour. If order is large enough,
1172 * we can steal whole pageblock. If not, we first move freepages in this
1173 * pageblock and check whether half of pages are moved or not. If half of
1174 * pages are moved, we can change migratetype of pageblock and permanently
1175 * use it's pages as requested migratetype in the future.
1176 */
1177 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1178 int start_type)
1179 {
1180 int current_order = page_order(page);
1181 int pages;
1182
1183 /* Take ownership for orders >= pageblock_order */
1184 if (current_order >= pageblock_order) {
1185 change_pageblock_range(page, current_order, start_type);
1186 return;
1187 }
1188
1189 pages = move_freepages_block(zone, page, start_type);
1190
1191 /* Claim the whole block if over half of it is free */
1192 if (pages >= (1 << (pageblock_order-1)) ||
1193 page_group_by_mobility_disabled)
1194 set_pageblock_migratetype(page, start_type);
1195 }
1196
1197 /* Check whether there is a suitable fallback freepage with requested order. */
1198 static int find_suitable_fallback(struct free_area *area, unsigned int order,
1199 int migratetype, bool *can_steal)
1200 {
1201 int i;
1202 int fallback_mt;
1203
1204 if (area->nr_free == 0)
1205 return -1;
1206
1207 *can_steal = false;
1208 for (i = 0;; i++) {
1209 fallback_mt = fallbacks[migratetype][i];
1210 if (fallback_mt == MIGRATE_RESERVE)
1211 break;
1212
1213 if (list_empty(&area->free_list[fallback_mt]))
1214 continue;
1215
1216 if (can_steal_fallback(order, migratetype))
1217 *can_steal = true;
1218
1219 return fallback_mt;
1220 }
1221
1222 return -1;
1223 }
1224
1225 /* Remove an element from the buddy allocator from the fallback list */
1226 static inline struct page *
1227 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1228 {
1229 struct free_area *area;
1230 unsigned int current_order;
1231 struct page *page;
1232 int fallback_mt;
1233 bool can_steal;
1234
1235 /* Find the largest possible block of pages in the other list */
1236 for (current_order = MAX_ORDER-1;
1237 current_order >= order && current_order <= MAX_ORDER-1;
1238 --current_order) {
1239 area = &(zone->free_area[current_order]);
1240 fallback_mt = find_suitable_fallback(area, current_order,
1241 start_migratetype, &can_steal);
1242 if (fallback_mt == -1)
1243 continue;
1244
1245 page = list_entry(area->free_list[fallback_mt].next,
1246 struct page, lru);
1247 if (can_steal)
1248 steal_suitable_fallback(zone, page, start_migratetype);
1249
1250 /* Remove the page from the freelists */
1251 area->nr_free--;
1252 list_del(&page->lru);
1253 rmv_page_order(page);
1254
1255 expand(zone, page, order, current_order, area,
1256 start_migratetype);
1257 /*
1258 * The freepage_migratetype may differ from pageblock's
1259 * migratetype depending on the decisions in
1260 * try_to_steal_freepages(). This is OK as long as it
1261 * does not differ for MIGRATE_CMA pageblocks. For CMA
1262 * we need to make sure unallocated pages flushed from
1263 * pcp lists are returned to the correct freelist.
1264 */
1265 set_freepage_migratetype(page, start_migratetype);
1266
1267 trace_mm_page_alloc_extfrag(page, order, current_order,
1268 start_migratetype, fallback_mt);
1269
1270 return page;
1271 }
1272
1273 return NULL;
1274 }
1275
1276 /*
1277 * Do the hard work of removing an element from the buddy allocator.
1278 * Call me with the zone->lock already held.
1279 */
1280 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1281 int migratetype)
1282 {
1283 struct page *page;
1284
1285 retry_reserve:
1286 page = __rmqueue_smallest(zone, order, migratetype);
1287
1288 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1289 if (migratetype == MIGRATE_MOVABLE)
1290 page = __rmqueue_cma_fallback(zone, order);
1291
1292 if (!page)
1293 page = __rmqueue_fallback(zone, order, migratetype);
1294
1295 /*
1296 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1297 * is used because __rmqueue_smallest is an inline function
1298 * and we want just one call site
1299 */
1300 if (!page) {
1301 migratetype = MIGRATE_RESERVE;
1302 goto retry_reserve;
1303 }
1304 }
1305
1306 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1307 return page;
1308 }
1309
1310 /*
1311 * Obtain a specified number of elements from the buddy allocator, all under
1312 * a single hold of the lock, for efficiency. Add them to the supplied list.
1313 * Returns the number of new pages which were placed at *list.
1314 */
1315 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1316 unsigned long count, struct list_head *list,
1317 int migratetype, bool cold)
1318 {
1319 int i;
1320
1321 spin_lock(&zone->lock);
1322 for (i = 0; i < count; ++i) {
1323 struct page *page = __rmqueue(zone, order, migratetype);
1324 if (unlikely(page == NULL))
1325 break;
1326
1327 /*
1328 * Split buddy pages returned by expand() are received here
1329 * in physical page order. The page is added to the callers and
1330 * list and the list head then moves forward. From the callers
1331 * perspective, the linked list is ordered by page number in
1332 * some conditions. This is useful for IO devices that can
1333 * merge IO requests if the physical pages are ordered
1334 * properly.
1335 */
1336 if (likely(!cold))
1337 list_add(&page->lru, list);
1338 else
1339 list_add_tail(&page->lru, list);
1340 list = &page->lru;
1341 if (is_migrate_cma(get_freepage_migratetype(page)))
1342 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1343 -(1 << order));
1344 }
1345 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1346 spin_unlock(&zone->lock);
1347 return i;
1348 }
1349
1350 #ifdef CONFIG_NUMA
1351 /*
1352 * Called from the vmstat counter updater to drain pagesets of this
1353 * currently executing processor on remote nodes after they have
1354 * expired.
1355 *
1356 * Note that this function must be called with the thread pinned to
1357 * a single processor.
1358 */
1359 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1360 {
1361 unsigned long flags;
1362 int to_drain, batch;
1363
1364 local_irq_save(flags);
1365 batch = ACCESS_ONCE(pcp->batch);
1366 to_drain = min(pcp->count, batch);
1367 if (to_drain > 0) {
1368 free_pcppages_bulk(zone, to_drain, pcp);
1369 pcp->count -= to_drain;
1370 }
1371 local_irq_restore(flags);
1372 }
1373 #endif
1374
1375 /*
1376 * Drain pcplists of the indicated processor and zone.
1377 *
1378 * The processor must either be the current processor and the
1379 * thread pinned to the current processor or a processor that
1380 * is not online.
1381 */
1382 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1383 {
1384 unsigned long flags;
1385 struct per_cpu_pageset *pset;
1386 struct per_cpu_pages *pcp;
1387
1388 local_irq_save(flags);
1389 pset = per_cpu_ptr(zone->pageset, cpu);
1390
1391 pcp = &pset->pcp;
1392 if (pcp->count) {
1393 free_pcppages_bulk(zone, pcp->count, pcp);
1394 pcp->count = 0;
1395 }
1396 local_irq_restore(flags);
1397 }
1398
1399 /*
1400 * Drain pcplists of all zones on the indicated processor.
1401 *
1402 * The processor must either be the current processor and the
1403 * thread pinned to the current processor or a processor that
1404 * is not online.
1405 */
1406 static void drain_pages(unsigned int cpu)
1407 {
1408 struct zone *zone;
1409
1410 for_each_populated_zone(zone) {
1411 drain_pages_zone(cpu, zone);
1412 }
1413 }
1414
1415 /*
1416 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1417 *
1418 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1419 * the single zone's pages.
1420 */
1421 void drain_local_pages(struct zone *zone)
1422 {
1423 int cpu = smp_processor_id();
1424
1425 if (zone)
1426 drain_pages_zone(cpu, zone);
1427 else
1428 drain_pages(cpu);
1429 }
1430
1431 /*
1432 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1433 *
1434 * When zone parameter is non-NULL, spill just the single zone's pages.
1435 *
1436 * Note that this code is protected against sending an IPI to an offline
1437 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1438 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1439 * nothing keeps CPUs from showing up after we populated the cpumask and
1440 * before the call to on_each_cpu_mask().
1441 */
1442 void drain_all_pages(struct zone *zone)
1443 {
1444 int cpu;
1445
1446 /*
1447 * Allocate in the BSS so we wont require allocation in
1448 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1449 */
1450 static cpumask_t cpus_with_pcps;
1451
1452 /*
1453 * We don't care about racing with CPU hotplug event
1454 * as offline notification will cause the notified
1455 * cpu to drain that CPU pcps and on_each_cpu_mask
1456 * disables preemption as part of its processing
1457 */
1458 for_each_online_cpu(cpu) {
1459 struct per_cpu_pageset *pcp;
1460 struct zone *z;
1461 bool has_pcps = false;
1462
1463 if (zone) {
1464 pcp = per_cpu_ptr(zone->pageset, cpu);
1465 if (pcp->pcp.count)
1466 has_pcps = true;
1467 } else {
1468 for_each_populated_zone(z) {
1469 pcp = per_cpu_ptr(z->pageset, cpu);
1470 if (pcp->pcp.count) {
1471 has_pcps = true;
1472 break;
1473 }
1474 }
1475 }
1476
1477 if (has_pcps)
1478 cpumask_set_cpu(cpu, &cpus_with_pcps);
1479 else
1480 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1481 }
1482 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1483 zone, 1);
1484 }
1485
1486 #ifdef CONFIG_HIBERNATION
1487
1488 void mark_free_pages(struct zone *zone)
1489 {
1490 unsigned long pfn, max_zone_pfn;
1491 unsigned long flags;
1492 unsigned int order, t;
1493 struct list_head *curr;
1494
1495 if (zone_is_empty(zone))
1496 return;
1497
1498 spin_lock_irqsave(&zone->lock, flags);
1499
1500 max_zone_pfn = zone_end_pfn(zone);
1501 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1502 if (pfn_valid(pfn)) {
1503 struct page *page = pfn_to_page(pfn);
1504
1505 if (!swsusp_page_is_forbidden(page))
1506 swsusp_unset_page_free(page);
1507 }
1508
1509 for_each_migratetype_order(order, t) {
1510 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1511 unsigned long i;
1512
1513 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1514 for (i = 0; i < (1UL << order); i++)
1515 swsusp_set_page_free(pfn_to_page(pfn + i));
1516 }
1517 }
1518 spin_unlock_irqrestore(&zone->lock, flags);
1519 }
1520 #endif /* CONFIG_PM */
1521
1522 /*
1523 * Free a 0-order page
1524 * cold == true ? free a cold page : free a hot page
1525 */
1526 void free_hot_cold_page(struct page *page, bool cold)
1527 {
1528 struct zone *zone = page_zone(page);
1529 struct per_cpu_pages *pcp;
1530 unsigned long flags;
1531 unsigned long pfn = page_to_pfn(page);
1532 int migratetype;
1533
1534 if (!free_pages_prepare(page, 0))
1535 return;
1536
1537 migratetype = get_pfnblock_migratetype(page, pfn);
1538 set_freepage_migratetype(page, migratetype);
1539 local_irq_save(flags);
1540 __count_vm_event(PGFREE);
1541
1542 /*
1543 * We only track unmovable, reclaimable and movable on pcp lists.
1544 * Free ISOLATE pages back to the allocator because they are being
1545 * offlined but treat RESERVE as movable pages so we can get those
1546 * areas back if necessary. Otherwise, we may have to free
1547 * excessively into the page allocator
1548 */
1549 if (migratetype >= MIGRATE_PCPTYPES) {
1550 if (unlikely(is_migrate_isolate(migratetype))) {
1551 free_one_page(zone, page, pfn, 0, migratetype);
1552 goto out;
1553 }
1554 migratetype = MIGRATE_MOVABLE;
1555 }
1556
1557 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1558 if (!cold)
1559 list_add(&page->lru, &pcp->lists[migratetype]);
1560 else
1561 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1562 pcp->count++;
1563 if (pcp->count >= pcp->high) {
1564 unsigned long batch = ACCESS_ONCE(pcp->batch);
1565 free_pcppages_bulk(zone, batch, pcp);
1566 pcp->count -= batch;
1567 }
1568
1569 out:
1570 local_irq_restore(flags);
1571 }
1572
1573 /*
1574 * Free a list of 0-order pages
1575 */
1576 void free_hot_cold_page_list(struct list_head *list, bool cold)
1577 {
1578 struct page *page, *next;
1579
1580 list_for_each_entry_safe(page, next, list, lru) {
1581 trace_mm_page_free_batched(page, cold);
1582 free_hot_cold_page(page, cold);
1583 }
1584 }
1585
1586 /*
1587 * split_page takes a non-compound higher-order page, and splits it into
1588 * n (1<<order) sub-pages: page[0..n]
1589 * Each sub-page must be freed individually.
1590 *
1591 * Note: this is probably too low level an operation for use in drivers.
1592 * Please consult with lkml before using this in your driver.
1593 */
1594 void split_page(struct page *page, unsigned int order)
1595 {
1596 int i;
1597
1598 VM_BUG_ON_PAGE(PageCompound(page), page);
1599 VM_BUG_ON_PAGE(!page_count(page), page);
1600
1601 #ifdef CONFIG_KMEMCHECK
1602 /*
1603 * Split shadow pages too, because free(page[0]) would
1604 * otherwise free the whole shadow.
1605 */
1606 if (kmemcheck_page_is_tracked(page))
1607 split_page(virt_to_page(page[0].shadow), order);
1608 #endif
1609
1610 set_page_owner(page, 0, 0);
1611 for (i = 1; i < (1 << order); i++) {
1612 set_page_refcounted(page + i);
1613 set_page_owner(page + i, 0, 0);
1614 }
1615 }
1616 EXPORT_SYMBOL_GPL(split_page);
1617
1618 int __isolate_free_page(struct page *page, unsigned int order)
1619 {
1620 unsigned long watermark;
1621 struct zone *zone;
1622 int mt;
1623
1624 BUG_ON(!PageBuddy(page));
1625
1626 zone = page_zone(page);
1627 mt = get_pageblock_migratetype(page);
1628
1629 if (!is_migrate_isolate(mt)) {
1630 /* Obey watermarks as if the page was being allocated */
1631 watermark = low_wmark_pages(zone) + (1 << order);
1632 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1633 return 0;
1634
1635 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1636 }
1637
1638 /* Remove page from free list */
1639 list_del(&page->lru);
1640 zone->free_area[order].nr_free--;
1641 rmv_page_order(page);
1642
1643 /* Set the pageblock if the isolated page is at least a pageblock */
1644 if (order >= pageblock_order - 1) {
1645 struct page *endpage = page + (1 << order) - 1;
1646 for (; page < endpage; page += pageblock_nr_pages) {
1647 int mt = get_pageblock_migratetype(page);
1648 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1649 set_pageblock_migratetype(page,
1650 MIGRATE_MOVABLE);
1651 }
1652 }
1653
1654 set_page_owner(page, order, 0);
1655 return 1UL << order;
1656 }
1657
1658 /*
1659 * Similar to split_page except the page is already free. As this is only
1660 * being used for migration, the migratetype of the block also changes.
1661 * As this is called with interrupts disabled, the caller is responsible
1662 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1663 * are enabled.
1664 *
1665 * Note: this is probably too low level an operation for use in drivers.
1666 * Please consult with lkml before using this in your driver.
1667 */
1668 int split_free_page(struct page *page)
1669 {
1670 unsigned int order;
1671 int nr_pages;
1672
1673 order = page_order(page);
1674
1675 nr_pages = __isolate_free_page(page, order);
1676 if (!nr_pages)
1677 return 0;
1678
1679 /* Split into individual pages */
1680 set_page_refcounted(page);
1681 split_page(page, order);
1682 return nr_pages;
1683 }
1684
1685 /*
1686 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1687 */
1688 static inline
1689 struct page *buffered_rmqueue(struct zone *preferred_zone,
1690 struct zone *zone, unsigned int order,
1691 gfp_t gfp_flags, int migratetype)
1692 {
1693 unsigned long flags;
1694 struct page *page;
1695 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1696
1697 if (likely(order == 0)) {
1698 struct per_cpu_pages *pcp;
1699 struct list_head *list;
1700
1701 local_irq_save(flags);
1702 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1703 list = &pcp->lists[migratetype];
1704 if (list_empty(list)) {
1705 pcp->count += rmqueue_bulk(zone, 0,
1706 pcp->batch, list,
1707 migratetype, cold);
1708 if (unlikely(list_empty(list)))
1709 goto failed;
1710 }
1711
1712 if (cold)
1713 page = list_entry(list->prev, struct page, lru);
1714 else
1715 page = list_entry(list->next, struct page, lru);
1716
1717 list_del(&page->lru);
1718 pcp->count--;
1719 } else {
1720 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1721 /*
1722 * __GFP_NOFAIL is not to be used in new code.
1723 *
1724 * All __GFP_NOFAIL callers should be fixed so that they
1725 * properly detect and handle allocation failures.
1726 *
1727 * We most definitely don't want callers attempting to
1728 * allocate greater than order-1 page units with
1729 * __GFP_NOFAIL.
1730 */
1731 WARN_ON_ONCE(order > 1);
1732 }
1733 spin_lock_irqsave(&zone->lock, flags);
1734 page = __rmqueue(zone, order, migratetype);
1735 spin_unlock(&zone->lock);
1736 if (!page)
1737 goto failed;
1738 __mod_zone_freepage_state(zone, -(1 << order),
1739 get_freepage_migratetype(page));
1740 }
1741
1742 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1743 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1744 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1745 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1746
1747 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1748 zone_statistics(preferred_zone, zone, gfp_flags);
1749 local_irq_restore(flags);
1750
1751 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1752 return page;
1753
1754 failed:
1755 local_irq_restore(flags);
1756 return NULL;
1757 }
1758
1759 #ifdef CONFIG_FAIL_PAGE_ALLOC
1760
1761 static struct {
1762 struct fault_attr attr;
1763
1764 u32 ignore_gfp_highmem;
1765 u32 ignore_gfp_wait;
1766 u32 min_order;
1767 } fail_page_alloc = {
1768 .attr = FAULT_ATTR_INITIALIZER,
1769 .ignore_gfp_wait = 1,
1770 .ignore_gfp_highmem = 1,
1771 .min_order = 1,
1772 };
1773
1774 static int __init setup_fail_page_alloc(char *str)
1775 {
1776 return setup_fault_attr(&fail_page_alloc.attr, str);
1777 }
1778 __setup("fail_page_alloc=", setup_fail_page_alloc);
1779
1780 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1781 {
1782 if (order < fail_page_alloc.min_order)
1783 return false;
1784 if (gfp_mask & __GFP_NOFAIL)
1785 return false;
1786 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1787 return false;
1788 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1789 return false;
1790
1791 return should_fail(&fail_page_alloc.attr, 1 << order);
1792 }
1793
1794 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1795
1796 static int __init fail_page_alloc_debugfs(void)
1797 {
1798 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1799 struct dentry *dir;
1800
1801 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1802 &fail_page_alloc.attr);
1803 if (IS_ERR(dir))
1804 return PTR_ERR(dir);
1805
1806 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1807 &fail_page_alloc.ignore_gfp_wait))
1808 goto fail;
1809 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1810 &fail_page_alloc.ignore_gfp_highmem))
1811 goto fail;
1812 if (!debugfs_create_u32("min-order", mode, dir,
1813 &fail_page_alloc.min_order))
1814 goto fail;
1815
1816 return 0;
1817 fail:
1818 debugfs_remove_recursive(dir);
1819
1820 return -ENOMEM;
1821 }
1822
1823 late_initcall(fail_page_alloc_debugfs);
1824
1825 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1826
1827 #else /* CONFIG_FAIL_PAGE_ALLOC */
1828
1829 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1830 {
1831 return false;
1832 }
1833
1834 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1835
1836 /*
1837 * Return true if free pages are above 'mark'. This takes into account the order
1838 * of the allocation.
1839 */
1840 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1841 unsigned long mark, int classzone_idx, int alloc_flags,
1842 long free_pages)
1843 {
1844 /* free_pages may go negative - that's OK */
1845 long min = mark;
1846 int o;
1847 long free_cma = 0;
1848
1849 free_pages -= (1 << order) - 1;
1850 if (alloc_flags & ALLOC_HIGH)
1851 min -= min / 2;
1852 if (alloc_flags & ALLOC_HARDER)
1853 min -= min / 4;
1854 #ifdef CONFIG_CMA
1855 /* If allocation can't use CMA areas don't use free CMA pages */
1856 if (!(alloc_flags & ALLOC_CMA))
1857 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1858 #endif
1859
1860 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1861 return false;
1862 for (o = 0; o < order; o++) {
1863 /* At the next order, this order's pages become unavailable */
1864 free_pages -= z->free_area[o].nr_free << o;
1865
1866 /* Require fewer higher order pages to be free */
1867 min >>= 1;
1868
1869 if (free_pages <= min)
1870 return false;
1871 }
1872 return true;
1873 }
1874
1875 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1876 int classzone_idx, int alloc_flags)
1877 {
1878 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1879 zone_page_state(z, NR_FREE_PAGES));
1880 }
1881
1882 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1883 unsigned long mark, int classzone_idx, int alloc_flags)
1884 {
1885 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1886
1887 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1888 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1889
1890 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1891 free_pages);
1892 }
1893
1894 #ifdef CONFIG_NUMA
1895 /*
1896 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1897 * skip over zones that are not allowed by the cpuset, or that have
1898 * been recently (in last second) found to be nearly full. See further
1899 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1900 * that have to skip over a lot of full or unallowed zones.
1901 *
1902 * If the zonelist cache is present in the passed zonelist, then
1903 * returns a pointer to the allowed node mask (either the current
1904 * tasks mems_allowed, or node_states[N_MEMORY].)
1905 *
1906 * If the zonelist cache is not available for this zonelist, does
1907 * nothing and returns NULL.
1908 *
1909 * If the fullzones BITMAP in the zonelist cache is stale (more than
1910 * a second since last zap'd) then we zap it out (clear its bits.)
1911 *
1912 * We hold off even calling zlc_setup, until after we've checked the
1913 * first zone in the zonelist, on the theory that most allocations will
1914 * be satisfied from that first zone, so best to examine that zone as
1915 * quickly as we can.
1916 */
1917 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1918 {
1919 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1920 nodemask_t *allowednodes; /* zonelist_cache approximation */
1921
1922 zlc = zonelist->zlcache_ptr;
1923 if (!zlc)
1924 return NULL;
1925
1926 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1927 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1928 zlc->last_full_zap = jiffies;
1929 }
1930
1931 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1932 &cpuset_current_mems_allowed :
1933 &node_states[N_MEMORY];
1934 return allowednodes;
1935 }
1936
1937 /*
1938 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1939 * if it is worth looking at further for free memory:
1940 * 1) Check that the zone isn't thought to be full (doesn't have its
1941 * bit set in the zonelist_cache fullzones BITMAP).
1942 * 2) Check that the zones node (obtained from the zonelist_cache
1943 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1944 * Return true (non-zero) if zone is worth looking at further, or
1945 * else return false (zero) if it is not.
1946 *
1947 * This check -ignores- the distinction between various watermarks,
1948 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1949 * found to be full for any variation of these watermarks, it will
1950 * be considered full for up to one second by all requests, unless
1951 * we are so low on memory on all allowed nodes that we are forced
1952 * into the second scan of the zonelist.
1953 *
1954 * In the second scan we ignore this zonelist cache and exactly
1955 * apply the watermarks to all zones, even it is slower to do so.
1956 * We are low on memory in the second scan, and should leave no stone
1957 * unturned looking for a free page.
1958 */
1959 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1960 nodemask_t *allowednodes)
1961 {
1962 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1963 int i; /* index of *z in zonelist zones */
1964 int n; /* node that zone *z is on */
1965
1966 zlc = zonelist->zlcache_ptr;
1967 if (!zlc)
1968 return 1;
1969
1970 i = z - zonelist->_zonerefs;
1971 n = zlc->z_to_n[i];
1972
1973 /* This zone is worth trying if it is allowed but not full */
1974 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1975 }
1976
1977 /*
1978 * Given 'z' scanning a zonelist, set the corresponding bit in
1979 * zlc->fullzones, so that subsequent attempts to allocate a page
1980 * from that zone don't waste time re-examining it.
1981 */
1982 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1983 {
1984 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1985 int i; /* index of *z in zonelist zones */
1986
1987 zlc = zonelist->zlcache_ptr;
1988 if (!zlc)
1989 return;
1990
1991 i = z - zonelist->_zonerefs;
1992
1993 set_bit(i, zlc->fullzones);
1994 }
1995
1996 /*
1997 * clear all zones full, called after direct reclaim makes progress so that
1998 * a zone that was recently full is not skipped over for up to a second
1999 */
2000 static void zlc_clear_zones_full(struct zonelist *zonelist)
2001 {
2002 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2003
2004 zlc = zonelist->zlcache_ptr;
2005 if (!zlc)
2006 return;
2007
2008 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2009 }
2010
2011 static bool zone_local(struct zone *local_zone, struct zone *zone)
2012 {
2013 return local_zone->node == zone->node;
2014 }
2015
2016 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2017 {
2018 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2019 RECLAIM_DISTANCE;
2020 }
2021
2022 #else /* CONFIG_NUMA */
2023
2024 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2025 {
2026 return NULL;
2027 }
2028
2029 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2030 nodemask_t *allowednodes)
2031 {
2032 return 1;
2033 }
2034
2035 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2036 {
2037 }
2038
2039 static void zlc_clear_zones_full(struct zonelist *zonelist)
2040 {
2041 }
2042
2043 static bool zone_local(struct zone *local_zone, struct zone *zone)
2044 {
2045 return true;
2046 }
2047
2048 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2049 {
2050 return true;
2051 }
2052
2053 #endif /* CONFIG_NUMA */
2054
2055 static void reset_alloc_batches(struct zone *preferred_zone)
2056 {
2057 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2058
2059 do {
2060 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2061 high_wmark_pages(zone) - low_wmark_pages(zone) -
2062 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2063 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2064 } while (zone++ != preferred_zone);
2065 }
2066
2067 /*
2068 * get_page_from_freelist goes through the zonelist trying to allocate
2069 * a page.
2070 */
2071 static struct page *
2072 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2073 const struct alloc_context *ac)
2074 {
2075 struct zonelist *zonelist = ac->zonelist;
2076 struct zoneref *z;
2077 struct page *page = NULL;
2078 struct zone *zone;
2079 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2080 int zlc_active = 0; /* set if using zonelist_cache */
2081 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2082 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2083 (gfp_mask & __GFP_WRITE);
2084 int nr_fair_skipped = 0;
2085 bool zonelist_rescan;
2086
2087 zonelist_scan:
2088 zonelist_rescan = false;
2089
2090 /*
2091 * Scan zonelist, looking for a zone with enough free.
2092 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2093 */
2094 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2095 ac->nodemask) {
2096 unsigned long mark;
2097
2098 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2099 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2100 continue;
2101 if (cpusets_enabled() &&
2102 (alloc_flags & ALLOC_CPUSET) &&
2103 !cpuset_zone_allowed(zone, gfp_mask))
2104 continue;
2105 /*
2106 * Distribute pages in proportion to the individual
2107 * zone size to ensure fair page aging. The zone a
2108 * page was allocated in should have no effect on the
2109 * time the page has in memory before being reclaimed.
2110 */
2111 if (alloc_flags & ALLOC_FAIR) {
2112 if (!zone_local(ac->preferred_zone, zone))
2113 break;
2114 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2115 nr_fair_skipped++;
2116 continue;
2117 }
2118 }
2119 /*
2120 * When allocating a page cache page for writing, we
2121 * want to get it from a zone that is within its dirty
2122 * limit, such that no single zone holds more than its
2123 * proportional share of globally allowed dirty pages.
2124 * The dirty limits take into account the zone's
2125 * lowmem reserves and high watermark so that kswapd
2126 * should be able to balance it without having to
2127 * write pages from its LRU list.
2128 *
2129 * This may look like it could increase pressure on
2130 * lower zones by failing allocations in higher zones
2131 * before they are full. But the pages that do spill
2132 * over are limited as the lower zones are protected
2133 * by this very same mechanism. It should not become
2134 * a practical burden to them.
2135 *
2136 * XXX: For now, allow allocations to potentially
2137 * exceed the per-zone dirty limit in the slowpath
2138 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2139 * which is important when on a NUMA setup the allowed
2140 * zones are together not big enough to reach the
2141 * global limit. The proper fix for these situations
2142 * will require awareness of zones in the
2143 * dirty-throttling and the flusher threads.
2144 */
2145 if (consider_zone_dirty && !zone_dirty_ok(zone))
2146 continue;
2147
2148 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2149 if (!zone_watermark_ok(zone, order, mark,
2150 ac->classzone_idx, alloc_flags)) {
2151 int ret;
2152
2153 /* Checked here to keep the fast path fast */
2154 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2155 if (alloc_flags & ALLOC_NO_WATERMARKS)
2156 goto try_this_zone;
2157
2158 if (IS_ENABLED(CONFIG_NUMA) &&
2159 !did_zlc_setup && nr_online_nodes > 1) {
2160 /*
2161 * we do zlc_setup if there are multiple nodes
2162 * and before considering the first zone allowed
2163 * by the cpuset.
2164 */
2165 allowednodes = zlc_setup(zonelist, alloc_flags);
2166 zlc_active = 1;
2167 did_zlc_setup = 1;
2168 }
2169
2170 if (zone_reclaim_mode == 0 ||
2171 !zone_allows_reclaim(ac->preferred_zone, zone))
2172 goto this_zone_full;
2173
2174 /*
2175 * As we may have just activated ZLC, check if the first
2176 * eligible zone has failed zone_reclaim recently.
2177 */
2178 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2179 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2180 continue;
2181
2182 ret = zone_reclaim(zone, gfp_mask, order);
2183 switch (ret) {
2184 case ZONE_RECLAIM_NOSCAN:
2185 /* did not scan */
2186 continue;
2187 case ZONE_RECLAIM_FULL:
2188 /* scanned but unreclaimable */
2189 continue;
2190 default:
2191 /* did we reclaim enough */
2192 if (zone_watermark_ok(zone, order, mark,
2193 ac->classzone_idx, alloc_flags))
2194 goto try_this_zone;
2195
2196 /*
2197 * Failed to reclaim enough to meet watermark.
2198 * Only mark the zone full if checking the min
2199 * watermark or if we failed to reclaim just
2200 * 1<<order pages or else the page allocator
2201 * fastpath will prematurely mark zones full
2202 * when the watermark is between the low and
2203 * min watermarks.
2204 */
2205 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2206 ret == ZONE_RECLAIM_SOME)
2207 goto this_zone_full;
2208
2209 continue;
2210 }
2211 }
2212
2213 try_this_zone:
2214 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2215 gfp_mask, ac->migratetype);
2216 if (page) {
2217 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2218 goto try_this_zone;
2219 return page;
2220 }
2221 this_zone_full:
2222 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2223 zlc_mark_zone_full(zonelist, z);
2224 }
2225
2226 /*
2227 * The first pass makes sure allocations are spread fairly within the
2228 * local node. However, the local node might have free pages left
2229 * after the fairness batches are exhausted, and remote zones haven't
2230 * even been considered yet. Try once more without fairness, and
2231 * include remote zones now, before entering the slowpath and waking
2232 * kswapd: prefer spilling to a remote zone over swapping locally.
2233 */
2234 if (alloc_flags & ALLOC_FAIR) {
2235 alloc_flags &= ~ALLOC_FAIR;
2236 if (nr_fair_skipped) {
2237 zonelist_rescan = true;
2238 reset_alloc_batches(ac->preferred_zone);
2239 }
2240 if (nr_online_nodes > 1)
2241 zonelist_rescan = true;
2242 }
2243
2244 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2245 /* Disable zlc cache for second zonelist scan */
2246 zlc_active = 0;
2247 zonelist_rescan = true;
2248 }
2249
2250 if (zonelist_rescan)
2251 goto zonelist_scan;
2252
2253 return NULL;
2254 }
2255
2256 /*
2257 * Large machines with many possible nodes should not always dump per-node
2258 * meminfo in irq context.
2259 */
2260 static inline bool should_suppress_show_mem(void)
2261 {
2262 bool ret = false;
2263
2264 #if NODES_SHIFT > 8
2265 ret = in_interrupt();
2266 #endif
2267 return ret;
2268 }
2269
2270 static DEFINE_RATELIMIT_STATE(nopage_rs,
2271 DEFAULT_RATELIMIT_INTERVAL,
2272 DEFAULT_RATELIMIT_BURST);
2273
2274 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2275 {
2276 unsigned int filter = SHOW_MEM_FILTER_NODES;
2277
2278 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2279 debug_guardpage_minorder() > 0)
2280 return;
2281
2282 /*
2283 * This documents exceptions given to allocations in certain
2284 * contexts that are allowed to allocate outside current's set
2285 * of allowed nodes.
2286 */
2287 if (!(gfp_mask & __GFP_NOMEMALLOC))
2288 if (test_thread_flag(TIF_MEMDIE) ||
2289 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2290 filter &= ~SHOW_MEM_FILTER_NODES;
2291 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2292 filter &= ~SHOW_MEM_FILTER_NODES;
2293
2294 if (fmt) {
2295 struct va_format vaf;
2296 va_list args;
2297
2298 va_start(args, fmt);
2299
2300 vaf.fmt = fmt;
2301 vaf.va = &args;
2302
2303 pr_warn("%pV", &vaf);
2304
2305 va_end(args);
2306 }
2307
2308 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2309 current->comm, order, gfp_mask);
2310
2311 dump_stack();
2312 if (!should_suppress_show_mem())
2313 show_mem(filter);
2314 }
2315
2316 static inline int
2317 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2318 unsigned long did_some_progress,
2319 unsigned long pages_reclaimed)
2320 {
2321 /* Do not loop if specifically requested */
2322 if (gfp_mask & __GFP_NORETRY)
2323 return 0;
2324
2325 /* Always retry if specifically requested */
2326 if (gfp_mask & __GFP_NOFAIL)
2327 return 1;
2328
2329 /*
2330 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2331 * making forward progress without invoking OOM. Suspend also disables
2332 * storage devices so kswapd will not help. Bail if we are suspending.
2333 */
2334 if (!did_some_progress && pm_suspended_storage())
2335 return 0;
2336
2337 /*
2338 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2339 * means __GFP_NOFAIL, but that may not be true in other
2340 * implementations.
2341 */
2342 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2343 return 1;
2344
2345 /*
2346 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2347 * specified, then we retry until we no longer reclaim any pages
2348 * (above), or we've reclaimed an order of pages at least as
2349 * large as the allocation's order. In both cases, if the
2350 * allocation still fails, we stop retrying.
2351 */
2352 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2353 return 1;
2354
2355 return 0;
2356 }
2357
2358 static inline struct page *
2359 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2360 const struct alloc_context *ac, unsigned long *did_some_progress)
2361 {
2362 struct page *page;
2363
2364 *did_some_progress = 0;
2365
2366 /*
2367 * Acquire the per-zone oom lock for each zone. If that
2368 * fails, somebody else is making progress for us.
2369 */
2370 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2371 *did_some_progress = 1;
2372 schedule_timeout_uninterruptible(1);
2373 return NULL;
2374 }
2375
2376 /*
2377 * Go through the zonelist yet one more time, keep very high watermark
2378 * here, this is only to catch a parallel oom killing, we must fail if
2379 * we're still under heavy pressure.
2380 */
2381 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2382 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2383 if (page)
2384 goto out;
2385
2386 if (!(gfp_mask & __GFP_NOFAIL)) {
2387 /* Coredumps can quickly deplete all memory reserves */
2388 if (current->flags & PF_DUMPCORE)
2389 goto out;
2390 /* The OOM killer will not help higher order allocs */
2391 if (order > PAGE_ALLOC_COSTLY_ORDER)
2392 goto out;
2393 /* The OOM killer does not needlessly kill tasks for lowmem */
2394 if (ac->high_zoneidx < ZONE_NORMAL)
2395 goto out;
2396 /* The OOM killer does not compensate for light reclaim */
2397 if (!(gfp_mask & __GFP_FS)) {
2398 /*
2399 * XXX: Page reclaim didn't yield anything,
2400 * and the OOM killer can't be invoked, but
2401 * keep looping as per should_alloc_retry().
2402 */
2403 *did_some_progress = 1;
2404 goto out;
2405 }
2406 /*
2407 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2408 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2409 * The caller should handle page allocation failure by itself if
2410 * it specifies __GFP_THISNODE.
2411 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2412 */
2413 if (gfp_mask & __GFP_THISNODE)
2414 goto out;
2415 }
2416 /* Exhausted what can be done so it's blamo time */
2417 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2418 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2419 *did_some_progress = 1;
2420 out:
2421 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2422 return page;
2423 }
2424
2425 #ifdef CONFIG_COMPACTION
2426 /* Try memory compaction for high-order allocations before reclaim */
2427 static struct page *
2428 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2429 int alloc_flags, const struct alloc_context *ac,
2430 enum migrate_mode mode, int *contended_compaction,
2431 bool *deferred_compaction)
2432 {
2433 unsigned long compact_result;
2434 struct page *page;
2435
2436 if (!order)
2437 return NULL;
2438
2439 current->flags |= PF_MEMALLOC;
2440 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2441 mode, contended_compaction);
2442 current->flags &= ~PF_MEMALLOC;
2443
2444 switch (compact_result) {
2445 case COMPACT_DEFERRED:
2446 *deferred_compaction = true;
2447 /* fall-through */
2448 case COMPACT_SKIPPED:
2449 return NULL;
2450 default:
2451 break;
2452 }
2453
2454 /*
2455 * At least in one zone compaction wasn't deferred or skipped, so let's
2456 * count a compaction stall
2457 */
2458 count_vm_event(COMPACTSTALL);
2459
2460 page = get_page_from_freelist(gfp_mask, order,
2461 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2462
2463 if (page) {
2464 struct zone *zone = page_zone(page);
2465
2466 zone->compact_blockskip_flush = false;
2467 compaction_defer_reset(zone, order, true);
2468 count_vm_event(COMPACTSUCCESS);
2469 return page;
2470 }
2471
2472 /*
2473 * It's bad if compaction run occurs and fails. The most likely reason
2474 * is that pages exist, but not enough to satisfy watermarks.
2475 */
2476 count_vm_event(COMPACTFAIL);
2477
2478 cond_resched();
2479
2480 return NULL;
2481 }
2482 #else
2483 static inline struct page *
2484 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2485 int alloc_flags, const struct alloc_context *ac,
2486 enum migrate_mode mode, int *contended_compaction,
2487 bool *deferred_compaction)
2488 {
2489 return NULL;
2490 }
2491 #endif /* CONFIG_COMPACTION */
2492
2493 /* Perform direct synchronous page reclaim */
2494 static int
2495 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2496 const struct alloc_context *ac)
2497 {
2498 struct reclaim_state reclaim_state;
2499 int progress;
2500
2501 cond_resched();
2502
2503 /* We now go into synchronous reclaim */
2504 cpuset_memory_pressure_bump();
2505 current->flags |= PF_MEMALLOC;
2506 lockdep_set_current_reclaim_state(gfp_mask);
2507 reclaim_state.reclaimed_slab = 0;
2508 current->reclaim_state = &reclaim_state;
2509
2510 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2511 ac->nodemask);
2512
2513 current->reclaim_state = NULL;
2514 lockdep_clear_current_reclaim_state();
2515 current->flags &= ~PF_MEMALLOC;
2516
2517 cond_resched();
2518
2519 return progress;
2520 }
2521
2522 /* The really slow allocator path where we enter direct reclaim */
2523 static inline struct page *
2524 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2525 int alloc_flags, const struct alloc_context *ac,
2526 unsigned long *did_some_progress)
2527 {
2528 struct page *page = NULL;
2529 bool drained = false;
2530
2531 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2532 if (unlikely(!(*did_some_progress)))
2533 return NULL;
2534
2535 /* After successful reclaim, reconsider all zones for allocation */
2536 if (IS_ENABLED(CONFIG_NUMA))
2537 zlc_clear_zones_full(ac->zonelist);
2538
2539 retry:
2540 page = get_page_from_freelist(gfp_mask, order,
2541 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2542
2543 /*
2544 * If an allocation failed after direct reclaim, it could be because
2545 * pages are pinned on the per-cpu lists. Drain them and try again
2546 */
2547 if (!page && !drained) {
2548 drain_all_pages(NULL);
2549 drained = true;
2550 goto retry;
2551 }
2552
2553 return page;
2554 }
2555
2556 /*
2557 * This is called in the allocator slow-path if the allocation request is of
2558 * sufficient urgency to ignore watermarks and take other desperate measures
2559 */
2560 static inline struct page *
2561 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2562 const struct alloc_context *ac)
2563 {
2564 struct page *page;
2565
2566 do {
2567 page = get_page_from_freelist(gfp_mask, order,
2568 ALLOC_NO_WATERMARKS, ac);
2569
2570 if (!page && gfp_mask & __GFP_NOFAIL)
2571 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2572 HZ/50);
2573 } while (!page && (gfp_mask & __GFP_NOFAIL));
2574
2575 return page;
2576 }
2577
2578 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2579 {
2580 struct zoneref *z;
2581 struct zone *zone;
2582
2583 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2584 ac->high_zoneidx, ac->nodemask)
2585 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2586 }
2587
2588 static inline int
2589 gfp_to_alloc_flags(gfp_t gfp_mask)
2590 {
2591 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2592 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2593
2594 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2595 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2596
2597 /*
2598 * The caller may dip into page reserves a bit more if the caller
2599 * cannot run direct reclaim, or if the caller has realtime scheduling
2600 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2601 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2602 */
2603 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2604
2605 if (atomic) {
2606 /*
2607 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2608 * if it can't schedule.
2609 */
2610 if (!(gfp_mask & __GFP_NOMEMALLOC))
2611 alloc_flags |= ALLOC_HARDER;
2612 /*
2613 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2614 * comment for __cpuset_node_allowed().
2615 */
2616 alloc_flags &= ~ALLOC_CPUSET;
2617 } else if (unlikely(rt_task(current)) && !in_interrupt())
2618 alloc_flags |= ALLOC_HARDER;
2619
2620 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2621 if (gfp_mask & __GFP_MEMALLOC)
2622 alloc_flags |= ALLOC_NO_WATERMARKS;
2623 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2624 alloc_flags |= ALLOC_NO_WATERMARKS;
2625 else if (!in_interrupt() &&
2626 ((current->flags & PF_MEMALLOC) ||
2627 unlikely(test_thread_flag(TIF_MEMDIE))))
2628 alloc_flags |= ALLOC_NO_WATERMARKS;
2629 }
2630 #ifdef CONFIG_CMA
2631 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2632 alloc_flags |= ALLOC_CMA;
2633 #endif
2634 return alloc_flags;
2635 }
2636
2637 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2638 {
2639 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2640 }
2641
2642 static inline struct page *
2643 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2644 struct alloc_context *ac)
2645 {
2646 const gfp_t wait = gfp_mask & __GFP_WAIT;
2647 struct page *page = NULL;
2648 int alloc_flags;
2649 unsigned long pages_reclaimed = 0;
2650 unsigned long did_some_progress;
2651 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2652 bool deferred_compaction = false;
2653 int contended_compaction = COMPACT_CONTENDED_NONE;
2654
2655 /*
2656 * In the slowpath, we sanity check order to avoid ever trying to
2657 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2658 * be using allocators in order of preference for an area that is
2659 * too large.
2660 */
2661 if (order >= MAX_ORDER) {
2662 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2663 return NULL;
2664 }
2665
2666 /*
2667 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2668 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2669 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2670 * using a larger set of nodes after it has established that the
2671 * allowed per node queues are empty and that nodes are
2672 * over allocated.
2673 */
2674 if (IS_ENABLED(CONFIG_NUMA) &&
2675 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2676 goto nopage;
2677
2678 retry:
2679 if (!(gfp_mask & __GFP_NO_KSWAPD))
2680 wake_all_kswapds(order, ac);
2681
2682 /*
2683 * OK, we're below the kswapd watermark and have kicked background
2684 * reclaim. Now things get more complex, so set up alloc_flags according
2685 * to how we want to proceed.
2686 */
2687 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2688
2689 /*
2690 * Find the true preferred zone if the allocation is unconstrained by
2691 * cpusets.
2692 */
2693 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2694 struct zoneref *preferred_zoneref;
2695 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2696 ac->high_zoneidx, NULL, &ac->preferred_zone);
2697 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2698 }
2699
2700 /* This is the last chance, in general, before the goto nopage. */
2701 page = get_page_from_freelist(gfp_mask, order,
2702 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2703 if (page)
2704 goto got_pg;
2705
2706 /* Allocate without watermarks if the context allows */
2707 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2708 /*
2709 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2710 * the allocation is high priority and these type of
2711 * allocations are system rather than user orientated
2712 */
2713 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2714
2715 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2716
2717 if (page) {
2718 goto got_pg;
2719 }
2720 }
2721
2722 /* Atomic allocations - we can't balance anything */
2723 if (!wait) {
2724 /*
2725 * All existing users of the deprecated __GFP_NOFAIL are
2726 * blockable, so warn of any new users that actually allow this
2727 * type of allocation to fail.
2728 */
2729 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2730 goto nopage;
2731 }
2732
2733 /* Avoid recursion of direct reclaim */
2734 if (current->flags & PF_MEMALLOC)
2735 goto nopage;
2736
2737 /* Avoid allocations with no watermarks from looping endlessly */
2738 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2739 goto nopage;
2740
2741 /*
2742 * Try direct compaction. The first pass is asynchronous. Subsequent
2743 * attempts after direct reclaim are synchronous
2744 */
2745 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2746 migration_mode,
2747 &contended_compaction,
2748 &deferred_compaction);
2749 if (page)
2750 goto got_pg;
2751
2752 /* Checks for THP-specific high-order allocations */
2753 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2754 /*
2755 * If compaction is deferred for high-order allocations, it is
2756 * because sync compaction recently failed. If this is the case
2757 * and the caller requested a THP allocation, we do not want
2758 * to heavily disrupt the system, so we fail the allocation
2759 * instead of entering direct reclaim.
2760 */
2761 if (deferred_compaction)
2762 goto nopage;
2763
2764 /*
2765 * In all zones where compaction was attempted (and not
2766 * deferred or skipped), lock contention has been detected.
2767 * For THP allocation we do not want to disrupt the others
2768 * so we fallback to base pages instead.
2769 */
2770 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2771 goto nopage;
2772
2773 /*
2774 * If compaction was aborted due to need_resched(), we do not
2775 * want to further increase allocation latency, unless it is
2776 * khugepaged trying to collapse.
2777 */
2778 if (contended_compaction == COMPACT_CONTENDED_SCHED
2779 && !(current->flags & PF_KTHREAD))
2780 goto nopage;
2781 }
2782
2783 /*
2784 * It can become very expensive to allocate transparent hugepages at
2785 * fault, so use asynchronous memory compaction for THP unless it is
2786 * khugepaged trying to collapse.
2787 */
2788 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2789 (current->flags & PF_KTHREAD))
2790 migration_mode = MIGRATE_SYNC_LIGHT;
2791
2792 /* Try direct reclaim and then allocating */
2793 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2794 &did_some_progress);
2795 if (page)
2796 goto got_pg;
2797
2798 /* Check if we should retry the allocation */
2799 pages_reclaimed += did_some_progress;
2800 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2801 pages_reclaimed)) {
2802 /*
2803 * If we fail to make progress by freeing individual
2804 * pages, but the allocation wants us to keep going,
2805 * start OOM killing tasks.
2806 */
2807 if (!did_some_progress) {
2808 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2809 &did_some_progress);
2810 if (page)
2811 goto got_pg;
2812 if (!did_some_progress)
2813 goto nopage;
2814 }
2815 /* Wait for some write requests to complete then retry */
2816 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2817 goto retry;
2818 } else {
2819 /*
2820 * High-order allocations do not necessarily loop after
2821 * direct reclaim and reclaim/compaction depends on compaction
2822 * being called after reclaim so call directly if necessary
2823 */
2824 page = __alloc_pages_direct_compact(gfp_mask, order,
2825 alloc_flags, ac, migration_mode,
2826 &contended_compaction,
2827 &deferred_compaction);
2828 if (page)
2829 goto got_pg;
2830 }
2831
2832 nopage:
2833 warn_alloc_failed(gfp_mask, order, NULL);
2834 got_pg:
2835 return page;
2836 }
2837
2838 /*
2839 * This is the 'heart' of the zoned buddy allocator.
2840 */
2841 struct page *
2842 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2843 struct zonelist *zonelist, nodemask_t *nodemask)
2844 {
2845 struct zoneref *preferred_zoneref;
2846 struct page *page = NULL;
2847 unsigned int cpuset_mems_cookie;
2848 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2849 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2850 struct alloc_context ac = {
2851 .high_zoneidx = gfp_zone(gfp_mask),
2852 .nodemask = nodemask,
2853 .migratetype = gfpflags_to_migratetype(gfp_mask),
2854 };
2855
2856 gfp_mask &= gfp_allowed_mask;
2857
2858 lockdep_trace_alloc(gfp_mask);
2859
2860 might_sleep_if(gfp_mask & __GFP_WAIT);
2861
2862 if (should_fail_alloc_page(gfp_mask, order))
2863 return NULL;
2864
2865 /*
2866 * Check the zones suitable for the gfp_mask contain at least one
2867 * valid zone. It's possible to have an empty zonelist as a result
2868 * of GFP_THISNODE and a memoryless node
2869 */
2870 if (unlikely(!zonelist->_zonerefs->zone))
2871 return NULL;
2872
2873 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2874 alloc_flags |= ALLOC_CMA;
2875
2876 retry_cpuset:
2877 cpuset_mems_cookie = read_mems_allowed_begin();
2878
2879 /* We set it here, as __alloc_pages_slowpath might have changed it */
2880 ac.zonelist = zonelist;
2881 /* The preferred zone is used for statistics later */
2882 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2883 ac.nodemask ? : &cpuset_current_mems_allowed,
2884 &ac.preferred_zone);
2885 if (!ac.preferred_zone)
2886 goto out;
2887 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2888
2889 /* First allocation attempt */
2890 alloc_mask = gfp_mask|__GFP_HARDWALL;
2891 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2892 if (unlikely(!page)) {
2893 /*
2894 * Runtime PM, block IO and its error handling path
2895 * can deadlock because I/O on the device might not
2896 * complete.
2897 */
2898 alloc_mask = memalloc_noio_flags(gfp_mask);
2899
2900 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2901 }
2902
2903 if (kmemcheck_enabled && page)
2904 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2905
2906 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2907
2908 out:
2909 /*
2910 * When updating a task's mems_allowed, it is possible to race with
2911 * parallel threads in such a way that an allocation can fail while
2912 * the mask is being updated. If a page allocation is about to fail,
2913 * check if the cpuset changed during allocation and if so, retry.
2914 */
2915 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2916 goto retry_cpuset;
2917
2918 return page;
2919 }
2920 EXPORT_SYMBOL(__alloc_pages_nodemask);
2921
2922 /*
2923 * Common helper functions.
2924 */
2925 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2926 {
2927 struct page *page;
2928
2929 /*
2930 * __get_free_pages() returns a 32-bit address, which cannot represent
2931 * a highmem page
2932 */
2933 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2934
2935 page = alloc_pages(gfp_mask, order);
2936 if (!page)
2937 return 0;
2938 return (unsigned long) page_address(page);
2939 }
2940 EXPORT_SYMBOL(__get_free_pages);
2941
2942 unsigned long get_zeroed_page(gfp_t gfp_mask)
2943 {
2944 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2945 }
2946 EXPORT_SYMBOL(get_zeroed_page);
2947
2948 void __free_pages(struct page *page, unsigned int order)
2949 {
2950 if (put_page_testzero(page)) {
2951 if (order == 0)
2952 free_hot_cold_page(page, false);
2953 else
2954 __free_pages_ok(page, order);
2955 }
2956 }
2957
2958 EXPORT_SYMBOL(__free_pages);
2959
2960 void free_pages(unsigned long addr, unsigned int order)
2961 {
2962 if (addr != 0) {
2963 VM_BUG_ON(!virt_addr_valid((void *)addr));
2964 __free_pages(virt_to_page((void *)addr), order);
2965 }
2966 }
2967
2968 EXPORT_SYMBOL(free_pages);
2969
2970 /*
2971 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2972 * of the current memory cgroup.
2973 *
2974 * It should be used when the caller would like to use kmalloc, but since the
2975 * allocation is large, it has to fall back to the page allocator.
2976 */
2977 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2978 {
2979 struct page *page;
2980 struct mem_cgroup *memcg = NULL;
2981
2982 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2983 return NULL;
2984 page = alloc_pages(gfp_mask, order);
2985 memcg_kmem_commit_charge(page, memcg, order);
2986 return page;
2987 }
2988
2989 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2990 {
2991 struct page *page;
2992 struct mem_cgroup *memcg = NULL;
2993
2994 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2995 return NULL;
2996 page = alloc_pages_node(nid, gfp_mask, order);
2997 memcg_kmem_commit_charge(page, memcg, order);
2998 return page;
2999 }
3000
3001 /*
3002 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3003 * alloc_kmem_pages.
3004 */
3005 void __free_kmem_pages(struct page *page, unsigned int order)
3006 {
3007 memcg_kmem_uncharge_pages(page, order);
3008 __free_pages(page, order);
3009 }
3010
3011 void free_kmem_pages(unsigned long addr, unsigned int order)
3012 {
3013 if (addr != 0) {
3014 VM_BUG_ON(!virt_addr_valid((void *)addr));
3015 __free_kmem_pages(virt_to_page((void *)addr), order);
3016 }
3017 }
3018
3019 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3020 {
3021 if (addr) {
3022 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3023 unsigned long used = addr + PAGE_ALIGN(size);
3024
3025 split_page(virt_to_page((void *)addr), order);
3026 while (used < alloc_end) {
3027 free_page(used);
3028 used += PAGE_SIZE;
3029 }
3030 }
3031 return (void *)addr;
3032 }
3033
3034 /**
3035 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3036 * @size: the number of bytes to allocate
3037 * @gfp_mask: GFP flags for the allocation
3038 *
3039 * This function is similar to alloc_pages(), except that it allocates the
3040 * minimum number of pages to satisfy the request. alloc_pages() can only
3041 * allocate memory in power-of-two pages.
3042 *
3043 * This function is also limited by MAX_ORDER.
3044 *
3045 * Memory allocated by this function must be released by free_pages_exact().
3046 */
3047 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3048 {
3049 unsigned int order = get_order(size);
3050 unsigned long addr;
3051
3052 addr = __get_free_pages(gfp_mask, order);
3053 return make_alloc_exact(addr, order, size);
3054 }
3055 EXPORT_SYMBOL(alloc_pages_exact);
3056
3057 /**
3058 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3059 * pages on a node.
3060 * @nid: the preferred node ID where memory should be allocated
3061 * @size: the number of bytes to allocate
3062 * @gfp_mask: GFP flags for the allocation
3063 *
3064 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3065 * back.
3066 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3067 * but is not exact.
3068 */
3069 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3070 {
3071 unsigned order = get_order(size);
3072 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3073 if (!p)
3074 return NULL;
3075 return make_alloc_exact((unsigned long)page_address(p), order, size);
3076 }
3077
3078 /**
3079 * free_pages_exact - release memory allocated via alloc_pages_exact()
3080 * @virt: the value returned by alloc_pages_exact.
3081 * @size: size of allocation, same value as passed to alloc_pages_exact().
3082 *
3083 * Release the memory allocated by a previous call to alloc_pages_exact.
3084 */
3085 void free_pages_exact(void *virt, size_t size)
3086 {
3087 unsigned long addr = (unsigned long)virt;
3088 unsigned long end = addr + PAGE_ALIGN(size);
3089
3090 while (addr < end) {
3091 free_page(addr);
3092 addr += PAGE_SIZE;
3093 }
3094 }
3095 EXPORT_SYMBOL(free_pages_exact);
3096
3097 /**
3098 * nr_free_zone_pages - count number of pages beyond high watermark
3099 * @offset: The zone index of the highest zone
3100 *
3101 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3102 * high watermark within all zones at or below a given zone index. For each
3103 * zone, the number of pages is calculated as:
3104 * managed_pages - high_pages
3105 */
3106 static unsigned long nr_free_zone_pages(int offset)
3107 {
3108 struct zoneref *z;
3109 struct zone *zone;
3110
3111 /* Just pick one node, since fallback list is circular */
3112 unsigned long sum = 0;
3113
3114 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3115
3116 for_each_zone_zonelist(zone, z, zonelist, offset) {
3117 unsigned long size = zone->managed_pages;
3118 unsigned long high = high_wmark_pages(zone);
3119 if (size > high)
3120 sum += size - high;
3121 }
3122
3123 return sum;
3124 }
3125
3126 /**
3127 * nr_free_buffer_pages - count number of pages beyond high watermark
3128 *
3129 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3130 * watermark within ZONE_DMA and ZONE_NORMAL.
3131 */
3132 unsigned long nr_free_buffer_pages(void)
3133 {
3134 return nr_free_zone_pages(gfp_zone(GFP_USER));
3135 }
3136 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3137
3138 /**
3139 * nr_free_pagecache_pages - count number of pages beyond high watermark
3140 *
3141 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3142 * high watermark within all zones.
3143 */
3144 unsigned long nr_free_pagecache_pages(void)
3145 {
3146 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3147 }
3148
3149 static inline void show_node(struct zone *zone)
3150 {
3151 if (IS_ENABLED(CONFIG_NUMA))
3152 printk("Node %d ", zone_to_nid(zone));
3153 }
3154
3155 void si_meminfo(struct sysinfo *val)
3156 {
3157 val->totalram = totalram_pages;
3158 val->sharedram = global_page_state(NR_SHMEM);
3159 val->freeram = global_page_state(NR_FREE_PAGES);
3160 val->bufferram = nr_blockdev_pages();
3161 val->totalhigh = totalhigh_pages;
3162 val->freehigh = nr_free_highpages();
3163 val->mem_unit = PAGE_SIZE;
3164 }
3165
3166 EXPORT_SYMBOL(si_meminfo);
3167
3168 #ifdef CONFIG_NUMA
3169 void si_meminfo_node(struct sysinfo *val, int nid)
3170 {
3171 int zone_type; /* needs to be signed */
3172 unsigned long managed_pages = 0;
3173 pg_data_t *pgdat = NODE_DATA(nid);
3174
3175 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3176 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3177 val->totalram = managed_pages;
3178 val->sharedram = node_page_state(nid, NR_SHMEM);
3179 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3180 #ifdef CONFIG_HIGHMEM
3181 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3182 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3183 NR_FREE_PAGES);
3184 #else
3185 val->totalhigh = 0;
3186 val->freehigh = 0;
3187 #endif
3188 val->mem_unit = PAGE_SIZE;
3189 }
3190 #endif
3191
3192 /*
3193 * Determine whether the node should be displayed or not, depending on whether
3194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3195 */
3196 bool skip_free_areas_node(unsigned int flags, int nid)
3197 {
3198 bool ret = false;
3199 unsigned int cpuset_mems_cookie;
3200
3201 if (!(flags & SHOW_MEM_FILTER_NODES))
3202 goto out;
3203
3204 do {
3205 cpuset_mems_cookie = read_mems_allowed_begin();
3206 ret = !node_isset(nid, cpuset_current_mems_allowed);
3207 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3208 out:
3209 return ret;
3210 }
3211
3212 #define K(x) ((x) << (PAGE_SHIFT-10))
3213
3214 static void show_migration_types(unsigned char type)
3215 {
3216 static const char types[MIGRATE_TYPES] = {
3217 [MIGRATE_UNMOVABLE] = 'U',
3218 [MIGRATE_RECLAIMABLE] = 'E',
3219 [MIGRATE_MOVABLE] = 'M',
3220 [MIGRATE_RESERVE] = 'R',
3221 #ifdef CONFIG_CMA
3222 [MIGRATE_CMA] = 'C',
3223 #endif
3224 #ifdef CONFIG_MEMORY_ISOLATION
3225 [MIGRATE_ISOLATE] = 'I',
3226 #endif
3227 };
3228 char tmp[MIGRATE_TYPES + 1];
3229 char *p = tmp;
3230 int i;
3231
3232 for (i = 0; i < MIGRATE_TYPES; i++) {
3233 if (type & (1 << i))
3234 *p++ = types[i];
3235 }
3236
3237 *p = '\0';
3238 printk("(%s) ", tmp);
3239 }
3240
3241 /*
3242 * Show free area list (used inside shift_scroll-lock stuff)
3243 * We also calculate the percentage fragmentation. We do this by counting the
3244 * memory on each free list with the exception of the first item on the list.
3245 * Suppresses nodes that are not allowed by current's cpuset if
3246 * SHOW_MEM_FILTER_NODES is passed.
3247 */
3248 void show_free_areas(unsigned int filter)
3249 {
3250 int cpu;
3251 struct zone *zone;
3252
3253 for_each_populated_zone(zone) {
3254 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3255 continue;
3256 show_node(zone);
3257 printk("%s per-cpu:\n", zone->name);
3258
3259 for_each_online_cpu(cpu) {
3260 struct per_cpu_pageset *pageset;
3261
3262 pageset = per_cpu_ptr(zone->pageset, cpu);
3263
3264 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3265 cpu, pageset->pcp.high,
3266 pageset->pcp.batch, pageset->pcp.count);
3267 }
3268 }
3269
3270 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3271 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3272 " unevictable:%lu"
3273 " dirty:%lu writeback:%lu unstable:%lu\n"
3274 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3275 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3276 " free_cma:%lu\n",
3277 global_page_state(NR_ACTIVE_ANON),
3278 global_page_state(NR_INACTIVE_ANON),
3279 global_page_state(NR_ISOLATED_ANON),
3280 global_page_state(NR_ACTIVE_FILE),
3281 global_page_state(NR_INACTIVE_FILE),
3282 global_page_state(NR_ISOLATED_FILE),
3283 global_page_state(NR_UNEVICTABLE),
3284 global_page_state(NR_FILE_DIRTY),
3285 global_page_state(NR_WRITEBACK),
3286 global_page_state(NR_UNSTABLE_NFS),
3287 global_page_state(NR_FREE_PAGES),
3288 global_page_state(NR_SLAB_RECLAIMABLE),
3289 global_page_state(NR_SLAB_UNRECLAIMABLE),
3290 global_page_state(NR_FILE_MAPPED),
3291 global_page_state(NR_SHMEM),
3292 global_page_state(NR_PAGETABLE),
3293 global_page_state(NR_BOUNCE),
3294 global_page_state(NR_FREE_CMA_PAGES));
3295
3296 for_each_populated_zone(zone) {
3297 int i;
3298
3299 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3300 continue;
3301 show_node(zone);
3302 printk("%s"
3303 " free:%lukB"
3304 " min:%lukB"
3305 " low:%lukB"
3306 " high:%lukB"
3307 " active_anon:%lukB"
3308 " inactive_anon:%lukB"
3309 " active_file:%lukB"
3310 " inactive_file:%lukB"
3311 " unevictable:%lukB"
3312 " isolated(anon):%lukB"
3313 " isolated(file):%lukB"
3314 " present:%lukB"
3315 " managed:%lukB"
3316 " mlocked:%lukB"
3317 " dirty:%lukB"
3318 " writeback:%lukB"
3319 " mapped:%lukB"
3320 " shmem:%lukB"
3321 " slab_reclaimable:%lukB"
3322 " slab_unreclaimable:%lukB"
3323 " kernel_stack:%lukB"
3324 " pagetables:%lukB"
3325 " unstable:%lukB"
3326 " bounce:%lukB"
3327 " free_cma:%lukB"
3328 " writeback_tmp:%lukB"
3329 " pages_scanned:%lu"
3330 " all_unreclaimable? %s"
3331 "\n",
3332 zone->name,
3333 K(zone_page_state(zone, NR_FREE_PAGES)),
3334 K(min_wmark_pages(zone)),
3335 K(low_wmark_pages(zone)),
3336 K(high_wmark_pages(zone)),
3337 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3338 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3339 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3340 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3341 K(zone_page_state(zone, NR_UNEVICTABLE)),
3342 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3343 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3344 K(zone->present_pages),
3345 K(zone->managed_pages),
3346 K(zone_page_state(zone, NR_MLOCK)),
3347 K(zone_page_state(zone, NR_FILE_DIRTY)),
3348 K(zone_page_state(zone, NR_WRITEBACK)),
3349 K(zone_page_state(zone, NR_FILE_MAPPED)),
3350 K(zone_page_state(zone, NR_SHMEM)),
3351 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3352 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3353 zone_page_state(zone, NR_KERNEL_STACK) *
3354 THREAD_SIZE / 1024,
3355 K(zone_page_state(zone, NR_PAGETABLE)),
3356 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3357 K(zone_page_state(zone, NR_BOUNCE)),
3358 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3359 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3360 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3361 (!zone_reclaimable(zone) ? "yes" : "no")
3362 );
3363 printk("lowmem_reserve[]:");
3364 for (i = 0; i < MAX_NR_ZONES; i++)
3365 printk(" %ld", zone->lowmem_reserve[i]);
3366 printk("\n");
3367 }
3368
3369 for_each_populated_zone(zone) {
3370 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3371 unsigned char types[MAX_ORDER];
3372
3373 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3374 continue;
3375 show_node(zone);
3376 printk("%s: ", zone->name);
3377
3378 spin_lock_irqsave(&zone->lock, flags);
3379 for (order = 0; order < MAX_ORDER; order++) {
3380 struct free_area *area = &zone->free_area[order];
3381 int type;
3382
3383 nr[order] = area->nr_free;
3384 total += nr[order] << order;
3385
3386 types[order] = 0;
3387 for (type = 0; type < MIGRATE_TYPES; type++) {
3388 if (!list_empty(&area->free_list[type]))
3389 types[order] |= 1 << type;
3390 }
3391 }
3392 spin_unlock_irqrestore(&zone->lock, flags);
3393 for (order = 0; order < MAX_ORDER; order++) {
3394 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3395 if (nr[order])
3396 show_migration_types(types[order]);
3397 }
3398 printk("= %lukB\n", K(total));
3399 }
3400
3401 hugetlb_show_meminfo();
3402
3403 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3404
3405 show_swap_cache_info();
3406 }
3407
3408 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3409 {
3410 zoneref->zone = zone;
3411 zoneref->zone_idx = zone_idx(zone);
3412 }
3413
3414 /*
3415 * Builds allocation fallback zone lists.
3416 *
3417 * Add all populated zones of a node to the zonelist.
3418 */
3419 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3420 int nr_zones)
3421 {
3422 struct zone *zone;
3423 enum zone_type zone_type = MAX_NR_ZONES;
3424
3425 do {
3426 zone_type--;
3427 zone = pgdat->node_zones + zone_type;
3428 if (populated_zone(zone)) {
3429 zoneref_set_zone(zone,
3430 &zonelist->_zonerefs[nr_zones++]);
3431 check_highest_zone(zone_type);
3432 }
3433 } while (zone_type);
3434
3435 return nr_zones;
3436 }
3437
3438
3439 /*
3440 * zonelist_order:
3441 * 0 = automatic detection of better ordering.
3442 * 1 = order by ([node] distance, -zonetype)
3443 * 2 = order by (-zonetype, [node] distance)
3444 *
3445 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3446 * the same zonelist. So only NUMA can configure this param.
3447 */
3448 #define ZONELIST_ORDER_DEFAULT 0
3449 #define ZONELIST_ORDER_NODE 1
3450 #define ZONELIST_ORDER_ZONE 2
3451
3452 /* zonelist order in the kernel.
3453 * set_zonelist_order() will set this to NODE or ZONE.
3454 */
3455 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3456 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3457
3458
3459 #ifdef CONFIG_NUMA
3460 /* The value user specified ....changed by config */
3461 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3462 /* string for sysctl */
3463 #define NUMA_ZONELIST_ORDER_LEN 16
3464 char numa_zonelist_order[16] = "default";
3465
3466 /*
3467 * interface for configure zonelist ordering.
3468 * command line option "numa_zonelist_order"
3469 * = "[dD]efault - default, automatic configuration.
3470 * = "[nN]ode - order by node locality, then by zone within node
3471 * = "[zZ]one - order by zone, then by locality within zone
3472 */
3473
3474 static int __parse_numa_zonelist_order(char *s)
3475 {
3476 if (*s == 'd' || *s == 'D') {
3477 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3478 } else if (*s == 'n' || *s == 'N') {
3479 user_zonelist_order = ZONELIST_ORDER_NODE;
3480 } else if (*s == 'z' || *s == 'Z') {
3481 user_zonelist_order = ZONELIST_ORDER_ZONE;
3482 } else {
3483 printk(KERN_WARNING
3484 "Ignoring invalid numa_zonelist_order value: "
3485 "%s\n", s);
3486 return -EINVAL;
3487 }
3488 return 0;
3489 }
3490
3491 static __init int setup_numa_zonelist_order(char *s)
3492 {
3493 int ret;
3494
3495 if (!s)
3496 return 0;
3497
3498 ret = __parse_numa_zonelist_order(s);
3499 if (ret == 0)
3500 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3501
3502 return ret;
3503 }
3504 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3505
3506 /*
3507 * sysctl handler for numa_zonelist_order
3508 */
3509 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3510 void __user *buffer, size_t *length,
3511 loff_t *ppos)
3512 {
3513 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3514 int ret;
3515 static DEFINE_MUTEX(zl_order_mutex);
3516
3517 mutex_lock(&zl_order_mutex);
3518 if (write) {
3519 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3520 ret = -EINVAL;
3521 goto out;
3522 }
3523 strcpy(saved_string, (char *)table->data);
3524 }
3525 ret = proc_dostring(table, write, buffer, length, ppos);
3526 if (ret)
3527 goto out;
3528 if (write) {
3529 int oldval = user_zonelist_order;
3530
3531 ret = __parse_numa_zonelist_order((char *)table->data);
3532 if (ret) {
3533 /*
3534 * bogus value. restore saved string
3535 */
3536 strncpy((char *)table->data, saved_string,
3537 NUMA_ZONELIST_ORDER_LEN);
3538 user_zonelist_order = oldval;
3539 } else if (oldval != user_zonelist_order) {
3540 mutex_lock(&zonelists_mutex);
3541 build_all_zonelists(NULL, NULL);
3542 mutex_unlock(&zonelists_mutex);
3543 }
3544 }
3545 out:
3546 mutex_unlock(&zl_order_mutex);
3547 return ret;
3548 }
3549
3550
3551 #define MAX_NODE_LOAD (nr_online_nodes)
3552 static int node_load[MAX_NUMNODES];
3553
3554 /**
3555 * find_next_best_node - find the next node that should appear in a given node's fallback list
3556 * @node: node whose fallback list we're appending
3557 * @used_node_mask: nodemask_t of already used nodes
3558 *
3559 * We use a number of factors to determine which is the next node that should
3560 * appear on a given node's fallback list. The node should not have appeared
3561 * already in @node's fallback list, and it should be the next closest node
3562 * according to the distance array (which contains arbitrary distance values
3563 * from each node to each node in the system), and should also prefer nodes
3564 * with no CPUs, since presumably they'll have very little allocation pressure
3565 * on them otherwise.
3566 * It returns -1 if no node is found.
3567 */
3568 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3569 {
3570 int n, val;
3571 int min_val = INT_MAX;
3572 int best_node = NUMA_NO_NODE;
3573 const struct cpumask *tmp = cpumask_of_node(0);
3574
3575 /* Use the local node if we haven't already */
3576 if (!node_isset(node, *used_node_mask)) {
3577 node_set(node, *used_node_mask);
3578 return node;
3579 }
3580
3581 for_each_node_state(n, N_MEMORY) {
3582
3583 /* Don't want a node to appear more than once */
3584 if (node_isset(n, *used_node_mask))
3585 continue;
3586
3587 /* Use the distance array to find the distance */
3588 val = node_distance(node, n);
3589
3590 /* Penalize nodes under us ("prefer the next node") */
3591 val += (n < node);
3592
3593 /* Give preference to headless and unused nodes */
3594 tmp = cpumask_of_node(n);
3595 if (!cpumask_empty(tmp))
3596 val += PENALTY_FOR_NODE_WITH_CPUS;
3597
3598 /* Slight preference for less loaded node */
3599 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3600 val += node_load[n];
3601
3602 if (val < min_val) {
3603 min_val = val;
3604 best_node = n;
3605 }
3606 }
3607
3608 if (best_node >= 0)
3609 node_set(best_node, *used_node_mask);
3610
3611 return best_node;
3612 }
3613
3614
3615 /*
3616 * Build zonelists ordered by node and zones within node.
3617 * This results in maximum locality--normal zone overflows into local
3618 * DMA zone, if any--but risks exhausting DMA zone.
3619 */
3620 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3621 {
3622 int j;
3623 struct zonelist *zonelist;
3624
3625 zonelist = &pgdat->node_zonelists[0];
3626 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3627 ;
3628 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3629 zonelist->_zonerefs[j].zone = NULL;
3630 zonelist->_zonerefs[j].zone_idx = 0;
3631 }
3632
3633 /*
3634 * Build gfp_thisnode zonelists
3635 */
3636 static void build_thisnode_zonelists(pg_data_t *pgdat)
3637 {
3638 int j;
3639 struct zonelist *zonelist;
3640
3641 zonelist = &pgdat->node_zonelists[1];
3642 j = build_zonelists_node(pgdat, zonelist, 0);
3643 zonelist->_zonerefs[j].zone = NULL;
3644 zonelist->_zonerefs[j].zone_idx = 0;
3645 }
3646
3647 /*
3648 * Build zonelists ordered by zone and nodes within zones.
3649 * This results in conserving DMA zone[s] until all Normal memory is
3650 * exhausted, but results in overflowing to remote node while memory
3651 * may still exist in local DMA zone.
3652 */
3653 static int node_order[MAX_NUMNODES];
3654
3655 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3656 {
3657 int pos, j, node;
3658 int zone_type; /* needs to be signed */
3659 struct zone *z;
3660 struct zonelist *zonelist;
3661
3662 zonelist = &pgdat->node_zonelists[0];
3663 pos = 0;
3664 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3665 for (j = 0; j < nr_nodes; j++) {
3666 node = node_order[j];
3667 z = &NODE_DATA(node)->node_zones[zone_type];
3668 if (populated_zone(z)) {
3669 zoneref_set_zone(z,
3670 &zonelist->_zonerefs[pos++]);
3671 check_highest_zone(zone_type);
3672 }
3673 }
3674 }
3675 zonelist->_zonerefs[pos].zone = NULL;
3676 zonelist->_zonerefs[pos].zone_idx = 0;
3677 }
3678
3679 #if defined(CONFIG_64BIT)
3680 /*
3681 * Devices that require DMA32/DMA are relatively rare and do not justify a
3682 * penalty to every machine in case the specialised case applies. Default
3683 * to Node-ordering on 64-bit NUMA machines
3684 */
3685 static int default_zonelist_order(void)
3686 {
3687 return ZONELIST_ORDER_NODE;
3688 }
3689 #else
3690 /*
3691 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3692 * by the kernel. If processes running on node 0 deplete the low memory zone
3693 * then reclaim will occur more frequency increasing stalls and potentially
3694 * be easier to OOM if a large percentage of the zone is under writeback or
3695 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3696 * Hence, default to zone ordering on 32-bit.
3697 */
3698 static int default_zonelist_order(void)
3699 {
3700 return ZONELIST_ORDER_ZONE;
3701 }
3702 #endif /* CONFIG_64BIT */
3703
3704 static void set_zonelist_order(void)
3705 {
3706 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3707 current_zonelist_order = default_zonelist_order();
3708 else
3709 current_zonelist_order = user_zonelist_order;
3710 }
3711
3712 static void build_zonelists(pg_data_t *pgdat)
3713 {
3714 int j, node, load;
3715 enum zone_type i;
3716 nodemask_t used_mask;
3717 int local_node, prev_node;
3718 struct zonelist *zonelist;
3719 int order = current_zonelist_order;
3720
3721 /* initialize zonelists */
3722 for (i = 0; i < MAX_ZONELISTS; i++) {
3723 zonelist = pgdat->node_zonelists + i;
3724 zonelist->_zonerefs[0].zone = NULL;
3725 zonelist->_zonerefs[0].zone_idx = 0;
3726 }
3727
3728 /* NUMA-aware ordering of nodes */
3729 local_node = pgdat->node_id;
3730 load = nr_online_nodes;
3731 prev_node = local_node;
3732 nodes_clear(used_mask);
3733
3734 memset(node_order, 0, sizeof(node_order));
3735 j = 0;
3736
3737 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3738 /*
3739 * We don't want to pressure a particular node.
3740 * So adding penalty to the first node in same
3741 * distance group to make it round-robin.
3742 */
3743 if (node_distance(local_node, node) !=
3744 node_distance(local_node, prev_node))
3745 node_load[node] = load;
3746
3747 prev_node = node;
3748 load--;
3749 if (order == ZONELIST_ORDER_NODE)
3750 build_zonelists_in_node_order(pgdat, node);
3751 else
3752 node_order[j++] = node; /* remember order */
3753 }
3754
3755 if (order == ZONELIST_ORDER_ZONE) {
3756 /* calculate node order -- i.e., DMA last! */
3757 build_zonelists_in_zone_order(pgdat, j);
3758 }
3759
3760 build_thisnode_zonelists(pgdat);
3761 }
3762
3763 /* Construct the zonelist performance cache - see further mmzone.h */
3764 static void build_zonelist_cache(pg_data_t *pgdat)
3765 {
3766 struct zonelist *zonelist;
3767 struct zonelist_cache *zlc;
3768 struct zoneref *z;
3769
3770 zonelist = &pgdat->node_zonelists[0];
3771 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3772 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3773 for (z = zonelist->_zonerefs; z->zone; z++)
3774 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3775 }
3776
3777 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3778 /*
3779 * Return node id of node used for "local" allocations.
3780 * I.e., first node id of first zone in arg node's generic zonelist.
3781 * Used for initializing percpu 'numa_mem', which is used primarily
3782 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3783 */
3784 int local_memory_node(int node)
3785 {
3786 struct zone *zone;
3787
3788 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3789 gfp_zone(GFP_KERNEL),
3790 NULL,
3791 &zone);
3792 return zone->node;
3793 }
3794 #endif
3795
3796 #else /* CONFIG_NUMA */
3797
3798 static void set_zonelist_order(void)
3799 {
3800 current_zonelist_order = ZONELIST_ORDER_ZONE;
3801 }
3802
3803 static void build_zonelists(pg_data_t *pgdat)
3804 {
3805 int node, local_node;
3806 enum zone_type j;
3807 struct zonelist *zonelist;
3808
3809 local_node = pgdat->node_id;
3810
3811 zonelist = &pgdat->node_zonelists[0];
3812 j = build_zonelists_node(pgdat, zonelist, 0);
3813
3814 /*
3815 * Now we build the zonelist so that it contains the zones
3816 * of all the other nodes.
3817 * We don't want to pressure a particular node, so when
3818 * building the zones for node N, we make sure that the
3819 * zones coming right after the local ones are those from
3820 * node N+1 (modulo N)
3821 */
3822 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3823 if (!node_online(node))
3824 continue;
3825 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3826 }
3827 for (node = 0; node < local_node; node++) {
3828 if (!node_online(node))
3829 continue;
3830 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3831 }
3832
3833 zonelist->_zonerefs[j].zone = NULL;
3834 zonelist->_zonerefs[j].zone_idx = 0;
3835 }
3836
3837 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3838 static void build_zonelist_cache(pg_data_t *pgdat)
3839 {
3840 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3841 }
3842
3843 #endif /* CONFIG_NUMA */
3844
3845 /*
3846 * Boot pageset table. One per cpu which is going to be used for all
3847 * zones and all nodes. The parameters will be set in such a way
3848 * that an item put on a list will immediately be handed over to
3849 * the buddy list. This is safe since pageset manipulation is done
3850 * with interrupts disabled.
3851 *
3852 * The boot_pagesets must be kept even after bootup is complete for
3853 * unused processors and/or zones. They do play a role for bootstrapping
3854 * hotplugged processors.
3855 *
3856 * zoneinfo_show() and maybe other functions do
3857 * not check if the processor is online before following the pageset pointer.
3858 * Other parts of the kernel may not check if the zone is available.
3859 */
3860 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3861 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3862 static void setup_zone_pageset(struct zone *zone);
3863
3864 /*
3865 * Global mutex to protect against size modification of zonelists
3866 * as well as to serialize pageset setup for the new populated zone.
3867 */
3868 DEFINE_MUTEX(zonelists_mutex);
3869
3870 /* return values int ....just for stop_machine() */
3871 static int __build_all_zonelists(void *data)
3872 {
3873 int nid;
3874 int cpu;
3875 pg_data_t *self = data;
3876
3877 #ifdef CONFIG_NUMA
3878 memset(node_load, 0, sizeof(node_load));
3879 #endif
3880
3881 if (self && !node_online(self->node_id)) {
3882 build_zonelists(self);
3883 build_zonelist_cache(self);
3884 }
3885
3886 for_each_online_node(nid) {
3887 pg_data_t *pgdat = NODE_DATA(nid);
3888
3889 build_zonelists(pgdat);
3890 build_zonelist_cache(pgdat);
3891 }
3892
3893 /*
3894 * Initialize the boot_pagesets that are going to be used
3895 * for bootstrapping processors. The real pagesets for
3896 * each zone will be allocated later when the per cpu
3897 * allocator is available.
3898 *
3899 * boot_pagesets are used also for bootstrapping offline
3900 * cpus if the system is already booted because the pagesets
3901 * are needed to initialize allocators on a specific cpu too.
3902 * F.e. the percpu allocator needs the page allocator which
3903 * needs the percpu allocator in order to allocate its pagesets
3904 * (a chicken-egg dilemma).
3905 */
3906 for_each_possible_cpu(cpu) {
3907 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3908
3909 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3910 /*
3911 * We now know the "local memory node" for each node--
3912 * i.e., the node of the first zone in the generic zonelist.
3913 * Set up numa_mem percpu variable for on-line cpus. During
3914 * boot, only the boot cpu should be on-line; we'll init the
3915 * secondary cpus' numa_mem as they come on-line. During
3916 * node/memory hotplug, we'll fixup all on-line cpus.
3917 */
3918 if (cpu_online(cpu))
3919 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3920 #endif
3921 }
3922
3923 return 0;
3924 }
3925
3926 static noinline void __init
3927 build_all_zonelists_init(void)
3928 {
3929 __build_all_zonelists(NULL);
3930 mminit_verify_zonelist();
3931 cpuset_init_current_mems_allowed();
3932 }
3933
3934 /*
3935 * Called with zonelists_mutex held always
3936 * unless system_state == SYSTEM_BOOTING.
3937 *
3938 * __ref due to (1) call of __meminit annotated setup_zone_pageset
3939 * [we're only called with non-NULL zone through __meminit paths] and
3940 * (2) call of __init annotated helper build_all_zonelists_init
3941 * [protected by SYSTEM_BOOTING].
3942 */
3943 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3944 {
3945 set_zonelist_order();
3946
3947 if (system_state == SYSTEM_BOOTING) {
3948 build_all_zonelists_init();
3949 } else {
3950 #ifdef CONFIG_MEMORY_HOTPLUG
3951 if (zone)
3952 setup_zone_pageset(zone);
3953 #endif
3954 /* we have to stop all cpus to guarantee there is no user
3955 of zonelist */
3956 stop_machine(__build_all_zonelists, pgdat, NULL);
3957 /* cpuset refresh routine should be here */
3958 }
3959 vm_total_pages = nr_free_pagecache_pages();
3960 /*
3961 * Disable grouping by mobility if the number of pages in the
3962 * system is too low to allow the mechanism to work. It would be
3963 * more accurate, but expensive to check per-zone. This check is
3964 * made on memory-hotadd so a system can start with mobility
3965 * disabled and enable it later
3966 */
3967 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3968 page_group_by_mobility_disabled = 1;
3969 else
3970 page_group_by_mobility_disabled = 0;
3971
3972 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3973 "Total pages: %ld\n",
3974 nr_online_nodes,
3975 zonelist_order_name[current_zonelist_order],
3976 page_group_by_mobility_disabled ? "off" : "on",
3977 vm_total_pages);
3978 #ifdef CONFIG_NUMA
3979 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3980 #endif
3981 }
3982
3983 /*
3984 * Helper functions to size the waitqueue hash table.
3985 * Essentially these want to choose hash table sizes sufficiently
3986 * large so that collisions trying to wait on pages are rare.
3987 * But in fact, the number of active page waitqueues on typical
3988 * systems is ridiculously low, less than 200. So this is even
3989 * conservative, even though it seems large.
3990 *
3991 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3992 * waitqueues, i.e. the size of the waitq table given the number of pages.
3993 */
3994 #define PAGES_PER_WAITQUEUE 256
3995
3996 #ifndef CONFIG_MEMORY_HOTPLUG
3997 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3998 {
3999 unsigned long size = 1;
4000
4001 pages /= PAGES_PER_WAITQUEUE;
4002
4003 while (size < pages)
4004 size <<= 1;
4005
4006 /*
4007 * Once we have dozens or even hundreds of threads sleeping
4008 * on IO we've got bigger problems than wait queue collision.
4009 * Limit the size of the wait table to a reasonable size.
4010 */
4011 size = min(size, 4096UL);
4012
4013 return max(size, 4UL);
4014 }
4015 #else
4016 /*
4017 * A zone's size might be changed by hot-add, so it is not possible to determine
4018 * a suitable size for its wait_table. So we use the maximum size now.
4019 *
4020 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4021 *
4022 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4023 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4024 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4025 *
4026 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4027 * or more by the traditional way. (See above). It equals:
4028 *
4029 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4030 * ia64(16K page size) : = ( 8G + 4M)byte.
4031 * powerpc (64K page size) : = (32G +16M)byte.
4032 */
4033 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4034 {
4035 return 4096UL;
4036 }
4037 #endif
4038
4039 /*
4040 * This is an integer logarithm so that shifts can be used later
4041 * to extract the more random high bits from the multiplicative
4042 * hash function before the remainder is taken.
4043 */
4044 static inline unsigned long wait_table_bits(unsigned long size)
4045 {
4046 return ffz(~size);
4047 }
4048
4049 /*
4050 * Check if a pageblock contains reserved pages
4051 */
4052 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4053 {
4054 unsigned long pfn;
4055
4056 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4057 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4058 return 1;
4059 }
4060 return 0;
4061 }
4062
4063 /*
4064 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4065 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4066 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4067 * higher will lead to a bigger reserve which will get freed as contiguous
4068 * blocks as reclaim kicks in
4069 */
4070 static void setup_zone_migrate_reserve(struct zone *zone)
4071 {
4072 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4073 struct page *page;
4074 unsigned long block_migratetype;
4075 int reserve;
4076 int old_reserve;
4077
4078 /*
4079 * Get the start pfn, end pfn and the number of blocks to reserve
4080 * We have to be careful to be aligned to pageblock_nr_pages to
4081 * make sure that we always check pfn_valid for the first page in
4082 * the block.
4083 */
4084 start_pfn = zone->zone_start_pfn;
4085 end_pfn = zone_end_pfn(zone);
4086 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4087 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4088 pageblock_order;
4089
4090 /*
4091 * Reserve blocks are generally in place to help high-order atomic
4092 * allocations that are short-lived. A min_free_kbytes value that
4093 * would result in more than 2 reserve blocks for atomic allocations
4094 * is assumed to be in place to help anti-fragmentation for the
4095 * future allocation of hugepages at runtime.
4096 */
4097 reserve = min(2, reserve);
4098 old_reserve = zone->nr_migrate_reserve_block;
4099
4100 /* When memory hot-add, we almost always need to do nothing */
4101 if (reserve == old_reserve)
4102 return;
4103 zone->nr_migrate_reserve_block = reserve;
4104
4105 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4106 if (!pfn_valid(pfn))
4107 continue;
4108 page = pfn_to_page(pfn);
4109
4110 /* Watch out for overlapping nodes */
4111 if (page_to_nid(page) != zone_to_nid(zone))
4112 continue;
4113
4114 block_migratetype = get_pageblock_migratetype(page);
4115
4116 /* Only test what is necessary when the reserves are not met */
4117 if (reserve > 0) {
4118 /*
4119 * Blocks with reserved pages will never free, skip
4120 * them.
4121 */
4122 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4123 if (pageblock_is_reserved(pfn, block_end_pfn))
4124 continue;
4125
4126 /* If this block is reserved, account for it */
4127 if (block_migratetype == MIGRATE_RESERVE) {
4128 reserve--;
4129 continue;
4130 }
4131
4132 /* Suitable for reserving if this block is movable */
4133 if (block_migratetype == MIGRATE_MOVABLE) {
4134 set_pageblock_migratetype(page,
4135 MIGRATE_RESERVE);
4136 move_freepages_block(zone, page,
4137 MIGRATE_RESERVE);
4138 reserve--;
4139 continue;
4140 }
4141 } else if (!old_reserve) {
4142 /*
4143 * At boot time we don't need to scan the whole zone
4144 * for turning off MIGRATE_RESERVE.
4145 */
4146 break;
4147 }
4148
4149 /*
4150 * If the reserve is met and this is a previous reserved block,
4151 * take it back
4152 */
4153 if (block_migratetype == MIGRATE_RESERVE) {
4154 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4155 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4156 }
4157 }
4158 }
4159
4160 /*
4161 * Initially all pages are reserved - free ones are freed
4162 * up by free_all_bootmem() once the early boot process is
4163 * done. Non-atomic initialization, single-pass.
4164 */
4165 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4166 unsigned long start_pfn, enum memmap_context context)
4167 {
4168 struct page *page;
4169 unsigned long end_pfn = start_pfn + size;
4170 unsigned long pfn;
4171 struct zone *z;
4172
4173 if (highest_memmap_pfn < end_pfn - 1)
4174 highest_memmap_pfn = end_pfn - 1;
4175
4176 z = &NODE_DATA(nid)->node_zones[zone];
4177 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4178 /*
4179 * There can be holes in boot-time mem_map[]s
4180 * handed to this function. They do not
4181 * exist on hotplugged memory.
4182 */
4183 if (context == MEMMAP_EARLY) {
4184 if (!early_pfn_valid(pfn))
4185 continue;
4186 if (!early_pfn_in_nid(pfn, nid))
4187 continue;
4188 }
4189 page = pfn_to_page(pfn);
4190 set_page_links(page, zone, nid, pfn);
4191 mminit_verify_page_links(page, zone, nid, pfn);
4192 init_page_count(page);
4193 page_mapcount_reset(page);
4194 page_cpupid_reset_last(page);
4195 SetPageReserved(page);
4196 /*
4197 * Mark the block movable so that blocks are reserved for
4198 * movable at startup. This will force kernel allocations
4199 * to reserve their blocks rather than leaking throughout
4200 * the address space during boot when many long-lived
4201 * kernel allocations are made. Later some blocks near
4202 * the start are marked MIGRATE_RESERVE by
4203 * setup_zone_migrate_reserve()
4204 *
4205 * bitmap is created for zone's valid pfn range. but memmap
4206 * can be created for invalid pages (for alignment)
4207 * check here not to call set_pageblock_migratetype() against
4208 * pfn out of zone.
4209 */
4210 if ((z->zone_start_pfn <= pfn)
4211 && (pfn < zone_end_pfn(z))
4212 && !(pfn & (pageblock_nr_pages - 1)))
4213 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4214
4215 INIT_LIST_HEAD(&page->lru);
4216 #ifdef WANT_PAGE_VIRTUAL
4217 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4218 if (!is_highmem_idx(zone))
4219 set_page_address(page, __va(pfn << PAGE_SHIFT));
4220 #endif
4221 }
4222 }
4223
4224 static void __meminit zone_init_free_lists(struct zone *zone)
4225 {
4226 unsigned int order, t;
4227 for_each_migratetype_order(order, t) {
4228 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4229 zone->free_area[order].nr_free = 0;
4230 }
4231 }
4232
4233 #ifndef __HAVE_ARCH_MEMMAP_INIT
4234 #define memmap_init(size, nid, zone, start_pfn) \
4235 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4236 #endif
4237
4238 static int zone_batchsize(struct zone *zone)
4239 {
4240 #ifdef CONFIG_MMU
4241 int batch;
4242
4243 /*
4244 * The per-cpu-pages pools are set to around 1000th of the
4245 * size of the zone. But no more than 1/2 of a meg.
4246 *
4247 * OK, so we don't know how big the cache is. So guess.
4248 */
4249 batch = zone->managed_pages / 1024;
4250 if (batch * PAGE_SIZE > 512 * 1024)
4251 batch = (512 * 1024) / PAGE_SIZE;
4252 batch /= 4; /* We effectively *= 4 below */
4253 if (batch < 1)
4254 batch = 1;
4255
4256 /*
4257 * Clamp the batch to a 2^n - 1 value. Having a power
4258 * of 2 value was found to be more likely to have
4259 * suboptimal cache aliasing properties in some cases.
4260 *
4261 * For example if 2 tasks are alternately allocating
4262 * batches of pages, one task can end up with a lot
4263 * of pages of one half of the possible page colors
4264 * and the other with pages of the other colors.
4265 */
4266 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4267
4268 return batch;
4269
4270 #else
4271 /* The deferral and batching of frees should be suppressed under NOMMU
4272 * conditions.
4273 *
4274 * The problem is that NOMMU needs to be able to allocate large chunks
4275 * of contiguous memory as there's no hardware page translation to
4276 * assemble apparent contiguous memory from discontiguous pages.
4277 *
4278 * Queueing large contiguous runs of pages for batching, however,
4279 * causes the pages to actually be freed in smaller chunks. As there
4280 * can be a significant delay between the individual batches being
4281 * recycled, this leads to the once large chunks of space being
4282 * fragmented and becoming unavailable for high-order allocations.
4283 */
4284 return 0;
4285 #endif
4286 }
4287
4288 /*
4289 * pcp->high and pcp->batch values are related and dependent on one another:
4290 * ->batch must never be higher then ->high.
4291 * The following function updates them in a safe manner without read side
4292 * locking.
4293 *
4294 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4295 * those fields changing asynchronously (acording the the above rule).
4296 *
4297 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4298 * outside of boot time (or some other assurance that no concurrent updaters
4299 * exist).
4300 */
4301 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4302 unsigned long batch)
4303 {
4304 /* start with a fail safe value for batch */
4305 pcp->batch = 1;
4306 smp_wmb();
4307
4308 /* Update high, then batch, in order */
4309 pcp->high = high;
4310 smp_wmb();
4311
4312 pcp->batch = batch;
4313 }
4314
4315 /* a companion to pageset_set_high() */
4316 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4317 {
4318 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4319 }
4320
4321 static void pageset_init(struct per_cpu_pageset *p)
4322 {
4323 struct per_cpu_pages *pcp;
4324 int migratetype;
4325
4326 memset(p, 0, sizeof(*p));
4327
4328 pcp = &p->pcp;
4329 pcp->count = 0;
4330 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4331 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4332 }
4333
4334 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4335 {
4336 pageset_init(p);
4337 pageset_set_batch(p, batch);
4338 }
4339
4340 /*
4341 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4342 * to the value high for the pageset p.
4343 */
4344 static void pageset_set_high(struct per_cpu_pageset *p,
4345 unsigned long high)
4346 {
4347 unsigned long batch = max(1UL, high / 4);
4348 if ((high / 4) > (PAGE_SHIFT * 8))
4349 batch = PAGE_SHIFT * 8;
4350
4351 pageset_update(&p->pcp, high, batch);
4352 }
4353
4354 static void pageset_set_high_and_batch(struct zone *zone,
4355 struct per_cpu_pageset *pcp)
4356 {
4357 if (percpu_pagelist_fraction)
4358 pageset_set_high(pcp,
4359 (zone->managed_pages /
4360 percpu_pagelist_fraction));
4361 else
4362 pageset_set_batch(pcp, zone_batchsize(zone));
4363 }
4364
4365 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4366 {
4367 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4368
4369 pageset_init(pcp);
4370 pageset_set_high_and_batch(zone, pcp);
4371 }
4372
4373 static void __meminit setup_zone_pageset(struct zone *zone)
4374 {
4375 int cpu;
4376 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4377 for_each_possible_cpu(cpu)
4378 zone_pageset_init(zone, cpu);
4379 }
4380
4381 /*
4382 * Allocate per cpu pagesets and initialize them.
4383 * Before this call only boot pagesets were available.
4384 */
4385 void __init setup_per_cpu_pageset(void)
4386 {
4387 struct zone *zone;
4388
4389 for_each_populated_zone(zone)
4390 setup_zone_pageset(zone);
4391 }
4392
4393 static noinline __init_refok
4394 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4395 {
4396 int i;
4397 size_t alloc_size;
4398
4399 /*
4400 * The per-page waitqueue mechanism uses hashed waitqueues
4401 * per zone.
4402 */
4403 zone->wait_table_hash_nr_entries =
4404 wait_table_hash_nr_entries(zone_size_pages);
4405 zone->wait_table_bits =
4406 wait_table_bits(zone->wait_table_hash_nr_entries);
4407 alloc_size = zone->wait_table_hash_nr_entries
4408 * sizeof(wait_queue_head_t);
4409
4410 if (!slab_is_available()) {
4411 zone->wait_table = (wait_queue_head_t *)
4412 memblock_virt_alloc_node_nopanic(
4413 alloc_size, zone->zone_pgdat->node_id);
4414 } else {
4415 /*
4416 * This case means that a zone whose size was 0 gets new memory
4417 * via memory hot-add.
4418 * But it may be the case that a new node was hot-added. In
4419 * this case vmalloc() will not be able to use this new node's
4420 * memory - this wait_table must be initialized to use this new
4421 * node itself as well.
4422 * To use this new node's memory, further consideration will be
4423 * necessary.
4424 */
4425 zone->wait_table = vmalloc(alloc_size);
4426 }
4427 if (!zone->wait_table)
4428 return -ENOMEM;
4429
4430 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4431 init_waitqueue_head(zone->wait_table + i);
4432
4433 return 0;
4434 }
4435
4436 static __meminit void zone_pcp_init(struct zone *zone)
4437 {
4438 /*
4439 * per cpu subsystem is not up at this point. The following code
4440 * relies on the ability of the linker to provide the
4441 * offset of a (static) per cpu variable into the per cpu area.
4442 */
4443 zone->pageset = &boot_pageset;
4444
4445 if (populated_zone(zone))
4446 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4447 zone->name, zone->present_pages,
4448 zone_batchsize(zone));
4449 }
4450
4451 int __meminit init_currently_empty_zone(struct zone *zone,
4452 unsigned long zone_start_pfn,
4453 unsigned long size,
4454 enum memmap_context context)
4455 {
4456 struct pglist_data *pgdat = zone->zone_pgdat;
4457 int ret;
4458 ret = zone_wait_table_init(zone, size);
4459 if (ret)
4460 return ret;
4461 pgdat->nr_zones = zone_idx(zone) + 1;
4462
4463 zone->zone_start_pfn = zone_start_pfn;
4464
4465 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4466 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4467 pgdat->node_id,
4468 (unsigned long)zone_idx(zone),
4469 zone_start_pfn, (zone_start_pfn + size));
4470
4471 zone_init_free_lists(zone);
4472
4473 return 0;
4474 }
4475
4476 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4477 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4478 /*
4479 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4480 */
4481 int __meminit __early_pfn_to_nid(unsigned long pfn)
4482 {
4483 unsigned long start_pfn, end_pfn;
4484 int nid;
4485 /*
4486 * NOTE: The following SMP-unsafe globals are only used early in boot
4487 * when the kernel is running single-threaded.
4488 */
4489 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4490 static int __meminitdata last_nid;
4491
4492 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4493 return last_nid;
4494
4495 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4496 if (nid != -1) {
4497 last_start_pfn = start_pfn;
4498 last_end_pfn = end_pfn;
4499 last_nid = nid;
4500 }
4501
4502 return nid;
4503 }
4504 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4505
4506 int __meminit early_pfn_to_nid(unsigned long pfn)
4507 {
4508 int nid;
4509
4510 nid = __early_pfn_to_nid(pfn);
4511 if (nid >= 0)
4512 return nid;
4513 /* just returns 0 */
4514 return 0;
4515 }
4516
4517 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4518 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4519 {
4520 int nid;
4521
4522 nid = __early_pfn_to_nid(pfn);
4523 if (nid >= 0 && nid != node)
4524 return false;
4525 return true;
4526 }
4527 #endif
4528
4529 /**
4530 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4531 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4532 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4533 *
4534 * If an architecture guarantees that all ranges registered contain no holes
4535 * and may be freed, this this function may be used instead of calling
4536 * memblock_free_early_nid() manually.
4537 */
4538 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4539 {
4540 unsigned long start_pfn, end_pfn;
4541 int i, this_nid;
4542
4543 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4544 start_pfn = min(start_pfn, max_low_pfn);
4545 end_pfn = min(end_pfn, max_low_pfn);
4546
4547 if (start_pfn < end_pfn)
4548 memblock_free_early_nid(PFN_PHYS(start_pfn),
4549 (end_pfn - start_pfn) << PAGE_SHIFT,
4550 this_nid);
4551 }
4552 }
4553
4554 /**
4555 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4556 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4557 *
4558 * If an architecture guarantees that all ranges registered contain no holes and may
4559 * be freed, this function may be used instead of calling memory_present() manually.
4560 */
4561 void __init sparse_memory_present_with_active_regions(int nid)
4562 {
4563 unsigned long start_pfn, end_pfn;
4564 int i, this_nid;
4565
4566 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4567 memory_present(this_nid, start_pfn, end_pfn);
4568 }
4569
4570 /**
4571 * get_pfn_range_for_nid - Return the start and end page frames for a node
4572 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4573 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4574 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4575 *
4576 * It returns the start and end page frame of a node based on information
4577 * provided by memblock_set_node(). If called for a node
4578 * with no available memory, a warning is printed and the start and end
4579 * PFNs will be 0.
4580 */
4581 void __meminit get_pfn_range_for_nid(unsigned int nid,
4582 unsigned long *start_pfn, unsigned long *end_pfn)
4583 {
4584 unsigned long this_start_pfn, this_end_pfn;
4585 int i;
4586
4587 *start_pfn = -1UL;
4588 *end_pfn = 0;
4589
4590 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4591 *start_pfn = min(*start_pfn, this_start_pfn);
4592 *end_pfn = max(*end_pfn, this_end_pfn);
4593 }
4594
4595 if (*start_pfn == -1UL)
4596 *start_pfn = 0;
4597 }
4598
4599 /*
4600 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4601 * assumption is made that zones within a node are ordered in monotonic
4602 * increasing memory addresses so that the "highest" populated zone is used
4603 */
4604 static void __init find_usable_zone_for_movable(void)
4605 {
4606 int zone_index;
4607 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4608 if (zone_index == ZONE_MOVABLE)
4609 continue;
4610
4611 if (arch_zone_highest_possible_pfn[zone_index] >
4612 arch_zone_lowest_possible_pfn[zone_index])
4613 break;
4614 }
4615
4616 VM_BUG_ON(zone_index == -1);
4617 movable_zone = zone_index;
4618 }
4619
4620 /*
4621 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4622 * because it is sized independent of architecture. Unlike the other zones,
4623 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4624 * in each node depending on the size of each node and how evenly kernelcore
4625 * is distributed. This helper function adjusts the zone ranges
4626 * provided by the architecture for a given node by using the end of the
4627 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4628 * zones within a node are in order of monotonic increases memory addresses
4629 */
4630 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4631 unsigned long zone_type,
4632 unsigned long node_start_pfn,
4633 unsigned long node_end_pfn,
4634 unsigned long *zone_start_pfn,
4635 unsigned long *zone_end_pfn)
4636 {
4637 /* Only adjust if ZONE_MOVABLE is on this node */
4638 if (zone_movable_pfn[nid]) {
4639 /* Size ZONE_MOVABLE */
4640 if (zone_type == ZONE_MOVABLE) {
4641 *zone_start_pfn = zone_movable_pfn[nid];
4642 *zone_end_pfn = min(node_end_pfn,
4643 arch_zone_highest_possible_pfn[movable_zone]);
4644
4645 /* Adjust for ZONE_MOVABLE starting within this range */
4646 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4647 *zone_end_pfn > zone_movable_pfn[nid]) {
4648 *zone_end_pfn = zone_movable_pfn[nid];
4649
4650 /* Check if this whole range is within ZONE_MOVABLE */
4651 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4652 *zone_start_pfn = *zone_end_pfn;
4653 }
4654 }
4655
4656 /*
4657 * Return the number of pages a zone spans in a node, including holes
4658 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4659 */
4660 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4661 unsigned long zone_type,
4662 unsigned long node_start_pfn,
4663 unsigned long node_end_pfn,
4664 unsigned long *ignored)
4665 {
4666 unsigned long zone_start_pfn, zone_end_pfn;
4667
4668 /* Get the start and end of the zone */
4669 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4670 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4671 adjust_zone_range_for_zone_movable(nid, zone_type,
4672 node_start_pfn, node_end_pfn,
4673 &zone_start_pfn, &zone_end_pfn);
4674
4675 /* Check that this node has pages within the zone's required range */
4676 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4677 return 0;
4678
4679 /* Move the zone boundaries inside the node if necessary */
4680 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4681 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4682
4683 /* Return the spanned pages */
4684 return zone_end_pfn - zone_start_pfn;
4685 }
4686
4687 /*
4688 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4689 * then all holes in the requested range will be accounted for.
4690 */
4691 unsigned long __meminit __absent_pages_in_range(int nid,
4692 unsigned long range_start_pfn,
4693 unsigned long range_end_pfn)
4694 {
4695 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4696 unsigned long start_pfn, end_pfn;
4697 int i;
4698
4699 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4700 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4701 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4702 nr_absent -= end_pfn - start_pfn;
4703 }
4704 return nr_absent;
4705 }
4706
4707 /**
4708 * absent_pages_in_range - Return number of page frames in holes within a range
4709 * @start_pfn: The start PFN to start searching for holes
4710 * @end_pfn: The end PFN to stop searching for holes
4711 *
4712 * It returns the number of pages frames in memory holes within a range.
4713 */
4714 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4715 unsigned long end_pfn)
4716 {
4717 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4718 }
4719
4720 /* Return the number of page frames in holes in a zone on a node */
4721 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4722 unsigned long zone_type,
4723 unsigned long node_start_pfn,
4724 unsigned long node_end_pfn,
4725 unsigned long *ignored)
4726 {
4727 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4728 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4729 unsigned long zone_start_pfn, zone_end_pfn;
4730
4731 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4732 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4733
4734 adjust_zone_range_for_zone_movable(nid, zone_type,
4735 node_start_pfn, node_end_pfn,
4736 &zone_start_pfn, &zone_end_pfn);
4737 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4738 }
4739
4740 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4741 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4742 unsigned long zone_type,
4743 unsigned long node_start_pfn,
4744 unsigned long node_end_pfn,
4745 unsigned long *zones_size)
4746 {
4747 return zones_size[zone_type];
4748 }
4749
4750 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4751 unsigned long zone_type,
4752 unsigned long node_start_pfn,
4753 unsigned long node_end_pfn,
4754 unsigned long *zholes_size)
4755 {
4756 if (!zholes_size)
4757 return 0;
4758
4759 return zholes_size[zone_type];
4760 }
4761
4762 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4763
4764 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4765 unsigned long node_start_pfn,
4766 unsigned long node_end_pfn,
4767 unsigned long *zones_size,
4768 unsigned long *zholes_size)
4769 {
4770 unsigned long realtotalpages, totalpages = 0;
4771 enum zone_type i;
4772
4773 for (i = 0; i < MAX_NR_ZONES; i++)
4774 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4775 node_start_pfn,
4776 node_end_pfn,
4777 zones_size);
4778 pgdat->node_spanned_pages = totalpages;
4779
4780 realtotalpages = totalpages;
4781 for (i = 0; i < MAX_NR_ZONES; i++)
4782 realtotalpages -=
4783 zone_absent_pages_in_node(pgdat->node_id, i,
4784 node_start_pfn, node_end_pfn,
4785 zholes_size);
4786 pgdat->node_present_pages = realtotalpages;
4787 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4788 realtotalpages);
4789 }
4790
4791 #ifndef CONFIG_SPARSEMEM
4792 /*
4793 * Calculate the size of the zone->blockflags rounded to an unsigned long
4794 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4795 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4796 * round what is now in bits to nearest long in bits, then return it in
4797 * bytes.
4798 */
4799 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4800 {
4801 unsigned long usemapsize;
4802
4803 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4804 usemapsize = roundup(zonesize, pageblock_nr_pages);
4805 usemapsize = usemapsize >> pageblock_order;
4806 usemapsize *= NR_PAGEBLOCK_BITS;
4807 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4808
4809 return usemapsize / 8;
4810 }
4811
4812 static void __init setup_usemap(struct pglist_data *pgdat,
4813 struct zone *zone,
4814 unsigned long zone_start_pfn,
4815 unsigned long zonesize)
4816 {
4817 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4818 zone->pageblock_flags = NULL;
4819 if (usemapsize)
4820 zone->pageblock_flags =
4821 memblock_virt_alloc_node_nopanic(usemapsize,
4822 pgdat->node_id);
4823 }
4824 #else
4825 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4826 unsigned long zone_start_pfn, unsigned long zonesize) {}
4827 #endif /* CONFIG_SPARSEMEM */
4828
4829 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4830
4831 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4832 void __paginginit set_pageblock_order(void)
4833 {
4834 unsigned int order;
4835
4836 /* Check that pageblock_nr_pages has not already been setup */
4837 if (pageblock_order)
4838 return;
4839
4840 if (HPAGE_SHIFT > PAGE_SHIFT)
4841 order = HUGETLB_PAGE_ORDER;
4842 else
4843 order = MAX_ORDER - 1;
4844
4845 /*
4846 * Assume the largest contiguous order of interest is a huge page.
4847 * This value may be variable depending on boot parameters on IA64 and
4848 * powerpc.
4849 */
4850 pageblock_order = order;
4851 }
4852 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4853
4854 /*
4855 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4856 * is unused as pageblock_order is set at compile-time. See
4857 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4858 * the kernel config
4859 */
4860 void __paginginit set_pageblock_order(void)
4861 {
4862 }
4863
4864 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4865
4866 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4867 unsigned long present_pages)
4868 {
4869 unsigned long pages = spanned_pages;
4870
4871 /*
4872 * Provide a more accurate estimation if there are holes within
4873 * the zone and SPARSEMEM is in use. If there are holes within the
4874 * zone, each populated memory region may cost us one or two extra
4875 * memmap pages due to alignment because memmap pages for each
4876 * populated regions may not naturally algined on page boundary.
4877 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4878 */
4879 if (spanned_pages > present_pages + (present_pages >> 4) &&
4880 IS_ENABLED(CONFIG_SPARSEMEM))
4881 pages = present_pages;
4882
4883 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4884 }
4885
4886 /*
4887 * Set up the zone data structures:
4888 * - mark all pages reserved
4889 * - mark all memory queues empty
4890 * - clear the memory bitmaps
4891 *
4892 * NOTE: pgdat should get zeroed by caller.
4893 */
4894 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4895 unsigned long node_start_pfn, unsigned long node_end_pfn,
4896 unsigned long *zones_size, unsigned long *zholes_size)
4897 {
4898 enum zone_type j;
4899 int nid = pgdat->node_id;
4900 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4901 int ret;
4902
4903 pgdat_resize_init(pgdat);
4904 #ifdef CONFIG_NUMA_BALANCING
4905 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4906 pgdat->numabalancing_migrate_nr_pages = 0;
4907 pgdat->numabalancing_migrate_next_window = jiffies;
4908 #endif
4909 init_waitqueue_head(&pgdat->kswapd_wait);
4910 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4911 pgdat_page_ext_init(pgdat);
4912
4913 for (j = 0; j < MAX_NR_ZONES; j++) {
4914 struct zone *zone = pgdat->node_zones + j;
4915 unsigned long size, realsize, freesize, memmap_pages;
4916
4917 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4918 node_end_pfn, zones_size);
4919 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4920 node_start_pfn,
4921 node_end_pfn,
4922 zholes_size);
4923
4924 /*
4925 * Adjust freesize so that it accounts for how much memory
4926 * is used by this zone for memmap. This affects the watermark
4927 * and per-cpu initialisations
4928 */
4929 memmap_pages = calc_memmap_size(size, realsize);
4930 if (!is_highmem_idx(j)) {
4931 if (freesize >= memmap_pages) {
4932 freesize -= memmap_pages;
4933 if (memmap_pages)
4934 printk(KERN_DEBUG
4935 " %s zone: %lu pages used for memmap\n",
4936 zone_names[j], memmap_pages);
4937 } else
4938 printk(KERN_WARNING
4939 " %s zone: %lu pages exceeds freesize %lu\n",
4940 zone_names[j], memmap_pages, freesize);
4941 }
4942
4943 /* Account for reserved pages */
4944 if (j == 0 && freesize > dma_reserve) {
4945 freesize -= dma_reserve;
4946 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4947 zone_names[0], dma_reserve);
4948 }
4949
4950 if (!is_highmem_idx(j))
4951 nr_kernel_pages += freesize;
4952 /* Charge for highmem memmap if there are enough kernel pages */
4953 else if (nr_kernel_pages > memmap_pages * 2)
4954 nr_kernel_pages -= memmap_pages;
4955 nr_all_pages += freesize;
4956
4957 zone->spanned_pages = size;
4958 zone->present_pages = realsize;
4959 /*
4960 * Set an approximate value for lowmem here, it will be adjusted
4961 * when the bootmem allocator frees pages into the buddy system.
4962 * And all highmem pages will be managed by the buddy system.
4963 */
4964 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4965 #ifdef CONFIG_NUMA
4966 zone->node = nid;
4967 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4968 / 100;
4969 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4970 #endif
4971 zone->name = zone_names[j];
4972 spin_lock_init(&zone->lock);
4973 spin_lock_init(&zone->lru_lock);
4974 zone_seqlock_init(zone);
4975 zone->zone_pgdat = pgdat;
4976 zone_pcp_init(zone);
4977
4978 /* For bootup, initialized properly in watermark setup */
4979 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4980
4981 lruvec_init(&zone->lruvec);
4982 if (!size)
4983 continue;
4984
4985 set_pageblock_order();
4986 setup_usemap(pgdat, zone, zone_start_pfn, size);
4987 ret = init_currently_empty_zone(zone, zone_start_pfn,
4988 size, MEMMAP_EARLY);
4989 BUG_ON(ret);
4990 memmap_init(size, nid, j, zone_start_pfn);
4991 zone_start_pfn += size;
4992 }
4993 }
4994
4995 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4996 {
4997 /* Skip empty nodes */
4998 if (!pgdat->node_spanned_pages)
4999 return;
5000
5001 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5002 /* ia64 gets its own node_mem_map, before this, without bootmem */
5003 if (!pgdat->node_mem_map) {
5004 unsigned long size, start, end;
5005 struct page *map;
5006
5007 /*
5008 * The zone's endpoints aren't required to be MAX_ORDER
5009 * aligned but the node_mem_map endpoints must be in order
5010 * for the buddy allocator to function correctly.
5011 */
5012 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5013 end = pgdat_end_pfn(pgdat);
5014 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5015 size = (end - start) * sizeof(struct page);
5016 map = alloc_remap(pgdat->node_id, size);
5017 if (!map)
5018 map = memblock_virt_alloc_node_nopanic(size,
5019 pgdat->node_id);
5020 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5021 }
5022 #ifndef CONFIG_NEED_MULTIPLE_NODES
5023 /*
5024 * With no DISCONTIG, the global mem_map is just set as node 0's
5025 */
5026 if (pgdat == NODE_DATA(0)) {
5027 mem_map = NODE_DATA(0)->node_mem_map;
5028 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5029 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5030 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5031 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5032 }
5033 #endif
5034 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5035 }
5036
5037 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5038 unsigned long node_start_pfn, unsigned long *zholes_size)
5039 {
5040 pg_data_t *pgdat = NODE_DATA(nid);
5041 unsigned long start_pfn = 0;
5042 unsigned long end_pfn = 0;
5043
5044 /* pg_data_t should be reset to zero when it's allocated */
5045 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5046
5047 pgdat->node_id = nid;
5048 pgdat->node_start_pfn = node_start_pfn;
5049 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5050 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5051 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5052 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5053 #endif
5054 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5055 zones_size, zholes_size);
5056
5057 alloc_node_mem_map(pgdat);
5058 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5059 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5060 nid, (unsigned long)pgdat,
5061 (unsigned long)pgdat->node_mem_map);
5062 #endif
5063
5064 free_area_init_core(pgdat, start_pfn, end_pfn,
5065 zones_size, zholes_size);
5066 }
5067
5068 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5069
5070 #if MAX_NUMNODES > 1
5071 /*
5072 * Figure out the number of possible node ids.
5073 */
5074 void __init setup_nr_node_ids(void)
5075 {
5076 unsigned int node;
5077 unsigned int highest = 0;
5078
5079 for_each_node_mask(node, node_possible_map)
5080 highest = node;
5081 nr_node_ids = highest + 1;
5082 }
5083 #endif
5084
5085 /**
5086 * node_map_pfn_alignment - determine the maximum internode alignment
5087 *
5088 * This function should be called after node map is populated and sorted.
5089 * It calculates the maximum power of two alignment which can distinguish
5090 * all the nodes.
5091 *
5092 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5093 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5094 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5095 * shifted, 1GiB is enough and this function will indicate so.
5096 *
5097 * This is used to test whether pfn -> nid mapping of the chosen memory
5098 * model has fine enough granularity to avoid incorrect mapping for the
5099 * populated node map.
5100 *
5101 * Returns the determined alignment in pfn's. 0 if there is no alignment
5102 * requirement (single node).
5103 */
5104 unsigned long __init node_map_pfn_alignment(void)
5105 {
5106 unsigned long accl_mask = 0, last_end = 0;
5107 unsigned long start, end, mask;
5108 int last_nid = -1;
5109 int i, nid;
5110
5111 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5112 if (!start || last_nid < 0 || last_nid == nid) {
5113 last_nid = nid;
5114 last_end = end;
5115 continue;
5116 }
5117
5118 /*
5119 * Start with a mask granular enough to pin-point to the
5120 * start pfn and tick off bits one-by-one until it becomes
5121 * too coarse to separate the current node from the last.
5122 */
5123 mask = ~((1 << __ffs(start)) - 1);
5124 while (mask && last_end <= (start & (mask << 1)))
5125 mask <<= 1;
5126
5127 /* accumulate all internode masks */
5128 accl_mask |= mask;
5129 }
5130
5131 /* convert mask to number of pages */
5132 return ~accl_mask + 1;
5133 }
5134
5135 /* Find the lowest pfn for a node */
5136 static unsigned long __init find_min_pfn_for_node(int nid)
5137 {
5138 unsigned long min_pfn = ULONG_MAX;
5139 unsigned long start_pfn;
5140 int i;
5141
5142 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5143 min_pfn = min(min_pfn, start_pfn);
5144
5145 if (min_pfn == ULONG_MAX) {
5146 printk(KERN_WARNING
5147 "Could not find start_pfn for node %d\n", nid);
5148 return 0;
5149 }
5150
5151 return min_pfn;
5152 }
5153
5154 /**
5155 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5156 *
5157 * It returns the minimum PFN based on information provided via
5158 * memblock_set_node().
5159 */
5160 unsigned long __init find_min_pfn_with_active_regions(void)
5161 {
5162 return find_min_pfn_for_node(MAX_NUMNODES);
5163 }
5164
5165 /*
5166 * early_calculate_totalpages()
5167 * Sum pages in active regions for movable zone.
5168 * Populate N_MEMORY for calculating usable_nodes.
5169 */
5170 static unsigned long __init early_calculate_totalpages(void)
5171 {
5172 unsigned long totalpages = 0;
5173 unsigned long start_pfn, end_pfn;
5174 int i, nid;
5175
5176 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5177 unsigned long pages = end_pfn - start_pfn;
5178
5179 totalpages += pages;
5180 if (pages)
5181 node_set_state(nid, N_MEMORY);
5182 }
5183 return totalpages;
5184 }
5185
5186 /*
5187 * Find the PFN the Movable zone begins in each node. Kernel memory
5188 * is spread evenly between nodes as long as the nodes have enough
5189 * memory. When they don't, some nodes will have more kernelcore than
5190 * others
5191 */
5192 static void __init find_zone_movable_pfns_for_nodes(void)
5193 {
5194 int i, nid;
5195 unsigned long usable_startpfn;
5196 unsigned long kernelcore_node, kernelcore_remaining;
5197 /* save the state before borrow the nodemask */
5198 nodemask_t saved_node_state = node_states[N_MEMORY];
5199 unsigned long totalpages = early_calculate_totalpages();
5200 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5201 struct memblock_region *r;
5202
5203 /* Need to find movable_zone earlier when movable_node is specified. */
5204 find_usable_zone_for_movable();
5205
5206 /*
5207 * If movable_node is specified, ignore kernelcore and movablecore
5208 * options.
5209 */
5210 if (movable_node_is_enabled()) {
5211 for_each_memblock(memory, r) {
5212 if (!memblock_is_hotpluggable(r))
5213 continue;
5214
5215 nid = r->nid;
5216
5217 usable_startpfn = PFN_DOWN(r->base);
5218 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5219 min(usable_startpfn, zone_movable_pfn[nid]) :
5220 usable_startpfn;
5221 }
5222
5223 goto out2;
5224 }
5225
5226 /*
5227 * If movablecore=nn[KMG] was specified, calculate what size of
5228 * kernelcore that corresponds so that memory usable for
5229 * any allocation type is evenly spread. If both kernelcore
5230 * and movablecore are specified, then the value of kernelcore
5231 * will be used for required_kernelcore if it's greater than
5232 * what movablecore would have allowed.
5233 */
5234 if (required_movablecore) {
5235 unsigned long corepages;
5236
5237 /*
5238 * Round-up so that ZONE_MOVABLE is at least as large as what
5239 * was requested by the user
5240 */
5241 required_movablecore =
5242 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5243 corepages = totalpages - required_movablecore;
5244
5245 required_kernelcore = max(required_kernelcore, corepages);
5246 }
5247
5248 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5249 if (!required_kernelcore)
5250 goto out;
5251
5252 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5253 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5254
5255 restart:
5256 /* Spread kernelcore memory as evenly as possible throughout nodes */
5257 kernelcore_node = required_kernelcore / usable_nodes;
5258 for_each_node_state(nid, N_MEMORY) {
5259 unsigned long start_pfn, end_pfn;
5260
5261 /*
5262 * Recalculate kernelcore_node if the division per node
5263 * now exceeds what is necessary to satisfy the requested
5264 * amount of memory for the kernel
5265 */
5266 if (required_kernelcore < kernelcore_node)
5267 kernelcore_node = required_kernelcore / usable_nodes;
5268
5269 /*
5270 * As the map is walked, we track how much memory is usable
5271 * by the kernel using kernelcore_remaining. When it is
5272 * 0, the rest of the node is usable by ZONE_MOVABLE
5273 */
5274 kernelcore_remaining = kernelcore_node;
5275
5276 /* Go through each range of PFNs within this node */
5277 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5278 unsigned long size_pages;
5279
5280 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5281 if (start_pfn >= end_pfn)
5282 continue;
5283
5284 /* Account for what is only usable for kernelcore */
5285 if (start_pfn < usable_startpfn) {
5286 unsigned long kernel_pages;
5287 kernel_pages = min(end_pfn, usable_startpfn)
5288 - start_pfn;
5289
5290 kernelcore_remaining -= min(kernel_pages,
5291 kernelcore_remaining);
5292 required_kernelcore -= min(kernel_pages,
5293 required_kernelcore);
5294
5295 /* Continue if range is now fully accounted */
5296 if (end_pfn <= usable_startpfn) {
5297
5298 /*
5299 * Push zone_movable_pfn to the end so
5300 * that if we have to rebalance
5301 * kernelcore across nodes, we will
5302 * not double account here
5303 */
5304 zone_movable_pfn[nid] = end_pfn;
5305 continue;
5306 }
5307 start_pfn = usable_startpfn;
5308 }
5309
5310 /*
5311 * The usable PFN range for ZONE_MOVABLE is from
5312 * start_pfn->end_pfn. Calculate size_pages as the
5313 * number of pages used as kernelcore
5314 */
5315 size_pages = end_pfn - start_pfn;
5316 if (size_pages > kernelcore_remaining)
5317 size_pages = kernelcore_remaining;
5318 zone_movable_pfn[nid] = start_pfn + size_pages;
5319
5320 /*
5321 * Some kernelcore has been met, update counts and
5322 * break if the kernelcore for this node has been
5323 * satisfied
5324 */
5325 required_kernelcore -= min(required_kernelcore,
5326 size_pages);
5327 kernelcore_remaining -= size_pages;
5328 if (!kernelcore_remaining)
5329 break;
5330 }
5331 }
5332
5333 /*
5334 * If there is still required_kernelcore, we do another pass with one
5335 * less node in the count. This will push zone_movable_pfn[nid] further
5336 * along on the nodes that still have memory until kernelcore is
5337 * satisfied
5338 */
5339 usable_nodes--;
5340 if (usable_nodes && required_kernelcore > usable_nodes)
5341 goto restart;
5342
5343 out2:
5344 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5345 for (nid = 0; nid < MAX_NUMNODES; nid++)
5346 zone_movable_pfn[nid] =
5347 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5348
5349 out:
5350 /* restore the node_state */
5351 node_states[N_MEMORY] = saved_node_state;
5352 }
5353
5354 /* Any regular or high memory on that node ? */
5355 static void check_for_memory(pg_data_t *pgdat, int nid)
5356 {
5357 enum zone_type zone_type;
5358
5359 if (N_MEMORY == N_NORMAL_MEMORY)
5360 return;
5361
5362 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5363 struct zone *zone = &pgdat->node_zones[zone_type];
5364 if (populated_zone(zone)) {
5365 node_set_state(nid, N_HIGH_MEMORY);
5366 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5367 zone_type <= ZONE_NORMAL)
5368 node_set_state(nid, N_NORMAL_MEMORY);
5369 break;
5370 }
5371 }
5372 }
5373
5374 /**
5375 * free_area_init_nodes - Initialise all pg_data_t and zone data
5376 * @max_zone_pfn: an array of max PFNs for each zone
5377 *
5378 * This will call free_area_init_node() for each active node in the system.
5379 * Using the page ranges provided by memblock_set_node(), the size of each
5380 * zone in each node and their holes is calculated. If the maximum PFN
5381 * between two adjacent zones match, it is assumed that the zone is empty.
5382 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5383 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5384 * starts where the previous one ended. For example, ZONE_DMA32 starts
5385 * at arch_max_dma_pfn.
5386 */
5387 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5388 {
5389 unsigned long start_pfn, end_pfn;
5390 int i, nid;
5391
5392 /* Record where the zone boundaries are */
5393 memset(arch_zone_lowest_possible_pfn, 0,
5394 sizeof(arch_zone_lowest_possible_pfn));
5395 memset(arch_zone_highest_possible_pfn, 0,
5396 sizeof(arch_zone_highest_possible_pfn));
5397 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5398 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5399 for (i = 1; i < MAX_NR_ZONES; i++) {
5400 if (i == ZONE_MOVABLE)
5401 continue;
5402 arch_zone_lowest_possible_pfn[i] =
5403 arch_zone_highest_possible_pfn[i-1];
5404 arch_zone_highest_possible_pfn[i] =
5405 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5406 }
5407 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5408 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5409
5410 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5411 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5412 find_zone_movable_pfns_for_nodes();
5413
5414 /* Print out the zone ranges */
5415 pr_info("Zone ranges:\n");
5416 for (i = 0; i < MAX_NR_ZONES; i++) {
5417 if (i == ZONE_MOVABLE)
5418 continue;
5419 pr_info(" %-8s ", zone_names[i]);
5420 if (arch_zone_lowest_possible_pfn[i] ==
5421 arch_zone_highest_possible_pfn[i])
5422 pr_cont("empty\n");
5423 else
5424 pr_cont("[mem %#018Lx-%#018Lx]\n",
5425 (u64)arch_zone_lowest_possible_pfn[i]
5426 << PAGE_SHIFT,
5427 ((u64)arch_zone_highest_possible_pfn[i]
5428 << PAGE_SHIFT) - 1);
5429 }
5430
5431 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5432 pr_info("Movable zone start for each node\n");
5433 for (i = 0; i < MAX_NUMNODES; i++) {
5434 if (zone_movable_pfn[i])
5435 pr_info(" Node %d: %#018Lx\n", i,
5436 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5437 }
5438
5439 /* Print out the early node map */
5440 pr_info("Early memory node ranges\n");
5441 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5442 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5443 (u64)start_pfn << PAGE_SHIFT,
5444 ((u64)end_pfn << PAGE_SHIFT) - 1);
5445
5446 /* Initialise every node */
5447 mminit_verify_pageflags_layout();
5448 setup_nr_node_ids();
5449 for_each_online_node(nid) {
5450 pg_data_t *pgdat = NODE_DATA(nid);
5451 free_area_init_node(nid, NULL,
5452 find_min_pfn_for_node(nid), NULL);
5453
5454 /* Any memory on that node */
5455 if (pgdat->node_present_pages)
5456 node_set_state(nid, N_MEMORY);
5457 check_for_memory(pgdat, nid);
5458 }
5459 }
5460
5461 static int __init cmdline_parse_core(char *p, unsigned long *core)
5462 {
5463 unsigned long long coremem;
5464 if (!p)
5465 return -EINVAL;
5466
5467 coremem = memparse(p, &p);
5468 *core = coremem >> PAGE_SHIFT;
5469
5470 /* Paranoid check that UL is enough for the coremem value */
5471 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5472
5473 return 0;
5474 }
5475
5476 /*
5477 * kernelcore=size sets the amount of memory for use for allocations that
5478 * cannot be reclaimed or migrated.
5479 */
5480 static int __init cmdline_parse_kernelcore(char *p)
5481 {
5482 return cmdline_parse_core(p, &required_kernelcore);
5483 }
5484
5485 /*
5486 * movablecore=size sets the amount of memory for use for allocations that
5487 * can be reclaimed or migrated.
5488 */
5489 static int __init cmdline_parse_movablecore(char *p)
5490 {
5491 return cmdline_parse_core(p, &required_movablecore);
5492 }
5493
5494 early_param("kernelcore", cmdline_parse_kernelcore);
5495 early_param("movablecore", cmdline_parse_movablecore);
5496
5497 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5498
5499 void adjust_managed_page_count(struct page *page, long count)
5500 {
5501 spin_lock(&managed_page_count_lock);
5502 page_zone(page)->managed_pages += count;
5503 totalram_pages += count;
5504 #ifdef CONFIG_HIGHMEM
5505 if (PageHighMem(page))
5506 totalhigh_pages += count;
5507 #endif
5508 spin_unlock(&managed_page_count_lock);
5509 }
5510 EXPORT_SYMBOL(adjust_managed_page_count);
5511
5512 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5513 {
5514 void *pos;
5515 unsigned long pages = 0;
5516
5517 start = (void *)PAGE_ALIGN((unsigned long)start);
5518 end = (void *)((unsigned long)end & PAGE_MASK);
5519 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5520 if ((unsigned int)poison <= 0xFF)
5521 memset(pos, poison, PAGE_SIZE);
5522 free_reserved_page(virt_to_page(pos));
5523 }
5524
5525 if (pages && s)
5526 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5527 s, pages << (PAGE_SHIFT - 10), start, end);
5528
5529 return pages;
5530 }
5531 EXPORT_SYMBOL(free_reserved_area);
5532
5533 #ifdef CONFIG_HIGHMEM
5534 void free_highmem_page(struct page *page)
5535 {
5536 __free_reserved_page(page);
5537 totalram_pages++;
5538 page_zone(page)->managed_pages++;
5539 totalhigh_pages++;
5540 }
5541 #endif
5542
5543
5544 void __init mem_init_print_info(const char *str)
5545 {
5546 unsigned long physpages, codesize, datasize, rosize, bss_size;
5547 unsigned long init_code_size, init_data_size;
5548
5549 physpages = get_num_physpages();
5550 codesize = _etext - _stext;
5551 datasize = _edata - _sdata;
5552 rosize = __end_rodata - __start_rodata;
5553 bss_size = __bss_stop - __bss_start;
5554 init_data_size = __init_end - __init_begin;
5555 init_code_size = _einittext - _sinittext;
5556
5557 /*
5558 * Detect special cases and adjust section sizes accordingly:
5559 * 1) .init.* may be embedded into .data sections
5560 * 2) .init.text.* may be out of [__init_begin, __init_end],
5561 * please refer to arch/tile/kernel/vmlinux.lds.S.
5562 * 3) .rodata.* may be embedded into .text or .data sections.
5563 */
5564 #define adj_init_size(start, end, size, pos, adj) \
5565 do { \
5566 if (start <= pos && pos < end && size > adj) \
5567 size -= adj; \
5568 } while (0)
5569
5570 adj_init_size(__init_begin, __init_end, init_data_size,
5571 _sinittext, init_code_size);
5572 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5573 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5574 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5575 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5576
5577 #undef adj_init_size
5578
5579 pr_info("Memory: %luK/%luK available "
5580 "(%luK kernel code, %luK rwdata, %luK rodata, "
5581 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5582 #ifdef CONFIG_HIGHMEM
5583 ", %luK highmem"
5584 #endif
5585 "%s%s)\n",
5586 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5587 codesize >> 10, datasize >> 10, rosize >> 10,
5588 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5589 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5590 totalcma_pages << (PAGE_SHIFT-10),
5591 #ifdef CONFIG_HIGHMEM
5592 totalhigh_pages << (PAGE_SHIFT-10),
5593 #endif
5594 str ? ", " : "", str ? str : "");
5595 }
5596
5597 /**
5598 * set_dma_reserve - set the specified number of pages reserved in the first zone
5599 * @new_dma_reserve: The number of pages to mark reserved
5600 *
5601 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5602 * In the DMA zone, a significant percentage may be consumed by kernel image
5603 * and other unfreeable allocations which can skew the watermarks badly. This
5604 * function may optionally be used to account for unfreeable pages in the
5605 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5606 * smaller per-cpu batchsize.
5607 */
5608 void __init set_dma_reserve(unsigned long new_dma_reserve)
5609 {
5610 dma_reserve = new_dma_reserve;
5611 }
5612
5613 void __init free_area_init(unsigned long *zones_size)
5614 {
5615 free_area_init_node(0, zones_size,
5616 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5617 }
5618
5619 static int page_alloc_cpu_notify(struct notifier_block *self,
5620 unsigned long action, void *hcpu)
5621 {
5622 int cpu = (unsigned long)hcpu;
5623
5624 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5625 lru_add_drain_cpu(cpu);
5626 drain_pages(cpu);
5627
5628 /*
5629 * Spill the event counters of the dead processor
5630 * into the current processors event counters.
5631 * This artificially elevates the count of the current
5632 * processor.
5633 */
5634 vm_events_fold_cpu(cpu);
5635
5636 /*
5637 * Zero the differential counters of the dead processor
5638 * so that the vm statistics are consistent.
5639 *
5640 * This is only okay since the processor is dead and cannot
5641 * race with what we are doing.
5642 */
5643 cpu_vm_stats_fold(cpu);
5644 }
5645 return NOTIFY_OK;
5646 }
5647
5648 void __init page_alloc_init(void)
5649 {
5650 hotcpu_notifier(page_alloc_cpu_notify, 0);
5651 }
5652
5653 /*
5654 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5655 * or min_free_kbytes changes.
5656 */
5657 static void calculate_totalreserve_pages(void)
5658 {
5659 struct pglist_data *pgdat;
5660 unsigned long reserve_pages = 0;
5661 enum zone_type i, j;
5662
5663 for_each_online_pgdat(pgdat) {
5664 for (i = 0; i < MAX_NR_ZONES; i++) {
5665 struct zone *zone = pgdat->node_zones + i;
5666 long max = 0;
5667
5668 /* Find valid and maximum lowmem_reserve in the zone */
5669 for (j = i; j < MAX_NR_ZONES; j++) {
5670 if (zone->lowmem_reserve[j] > max)
5671 max = zone->lowmem_reserve[j];
5672 }
5673
5674 /* we treat the high watermark as reserved pages. */
5675 max += high_wmark_pages(zone);
5676
5677 if (max > zone->managed_pages)
5678 max = zone->managed_pages;
5679 reserve_pages += max;
5680 /*
5681 * Lowmem reserves are not available to
5682 * GFP_HIGHUSER page cache allocations and
5683 * kswapd tries to balance zones to their high
5684 * watermark. As a result, neither should be
5685 * regarded as dirtyable memory, to prevent a
5686 * situation where reclaim has to clean pages
5687 * in order to balance the zones.
5688 */
5689 zone->dirty_balance_reserve = max;
5690 }
5691 }
5692 dirty_balance_reserve = reserve_pages;
5693 totalreserve_pages = reserve_pages;
5694 }
5695
5696 /*
5697 * setup_per_zone_lowmem_reserve - called whenever
5698 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5699 * has a correct pages reserved value, so an adequate number of
5700 * pages are left in the zone after a successful __alloc_pages().
5701 */
5702 static void setup_per_zone_lowmem_reserve(void)
5703 {
5704 struct pglist_data *pgdat;
5705 enum zone_type j, idx;
5706
5707 for_each_online_pgdat(pgdat) {
5708 for (j = 0; j < MAX_NR_ZONES; j++) {
5709 struct zone *zone = pgdat->node_zones + j;
5710 unsigned long managed_pages = zone->managed_pages;
5711
5712 zone->lowmem_reserve[j] = 0;
5713
5714 idx = j;
5715 while (idx) {
5716 struct zone *lower_zone;
5717
5718 idx--;
5719
5720 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5721 sysctl_lowmem_reserve_ratio[idx] = 1;
5722
5723 lower_zone = pgdat->node_zones + idx;
5724 lower_zone->lowmem_reserve[j] = managed_pages /
5725 sysctl_lowmem_reserve_ratio[idx];
5726 managed_pages += lower_zone->managed_pages;
5727 }
5728 }
5729 }
5730
5731 /* update totalreserve_pages */
5732 calculate_totalreserve_pages();
5733 }
5734
5735 static void __setup_per_zone_wmarks(void)
5736 {
5737 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5738 unsigned long lowmem_pages = 0;
5739 struct zone *zone;
5740 unsigned long flags;
5741
5742 /* Calculate total number of !ZONE_HIGHMEM pages */
5743 for_each_zone(zone) {
5744 if (!is_highmem(zone))
5745 lowmem_pages += zone->managed_pages;
5746 }
5747
5748 for_each_zone(zone) {
5749 u64 tmp;
5750
5751 spin_lock_irqsave(&zone->lock, flags);
5752 tmp = (u64)pages_min * zone->managed_pages;
5753 do_div(tmp, lowmem_pages);
5754 if (is_highmem(zone)) {
5755 /*
5756 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5757 * need highmem pages, so cap pages_min to a small
5758 * value here.
5759 *
5760 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5761 * deltas controls asynch page reclaim, and so should
5762 * not be capped for highmem.
5763 */
5764 unsigned long min_pages;
5765
5766 min_pages = zone->managed_pages / 1024;
5767 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5768 zone->watermark[WMARK_MIN] = min_pages;
5769 } else {
5770 /*
5771 * If it's a lowmem zone, reserve a number of pages
5772 * proportionate to the zone's size.
5773 */
5774 zone->watermark[WMARK_MIN] = tmp;
5775 }
5776
5777 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5778 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5779
5780 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5781 high_wmark_pages(zone) - low_wmark_pages(zone) -
5782 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5783
5784 setup_zone_migrate_reserve(zone);
5785 spin_unlock_irqrestore(&zone->lock, flags);
5786 }
5787
5788 /* update totalreserve_pages */
5789 calculate_totalreserve_pages();
5790 }
5791
5792 /**
5793 * setup_per_zone_wmarks - called when min_free_kbytes changes
5794 * or when memory is hot-{added|removed}
5795 *
5796 * Ensures that the watermark[min,low,high] values for each zone are set
5797 * correctly with respect to min_free_kbytes.
5798 */
5799 void setup_per_zone_wmarks(void)
5800 {
5801 mutex_lock(&zonelists_mutex);
5802 __setup_per_zone_wmarks();
5803 mutex_unlock(&zonelists_mutex);
5804 }
5805
5806 /*
5807 * The inactive anon list should be small enough that the VM never has to
5808 * do too much work, but large enough that each inactive page has a chance
5809 * to be referenced again before it is swapped out.
5810 *
5811 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5812 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5813 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5814 * the anonymous pages are kept on the inactive list.
5815 *
5816 * total target max
5817 * memory ratio inactive anon
5818 * -------------------------------------
5819 * 10MB 1 5MB
5820 * 100MB 1 50MB
5821 * 1GB 3 250MB
5822 * 10GB 10 0.9GB
5823 * 100GB 31 3GB
5824 * 1TB 101 10GB
5825 * 10TB 320 32GB
5826 */
5827 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5828 {
5829 unsigned int gb, ratio;
5830
5831 /* Zone size in gigabytes */
5832 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5833 if (gb)
5834 ratio = int_sqrt(10 * gb);
5835 else
5836 ratio = 1;
5837
5838 zone->inactive_ratio = ratio;
5839 }
5840
5841 static void __meminit setup_per_zone_inactive_ratio(void)
5842 {
5843 struct zone *zone;
5844
5845 for_each_zone(zone)
5846 calculate_zone_inactive_ratio(zone);
5847 }
5848
5849 /*
5850 * Initialise min_free_kbytes.
5851 *
5852 * For small machines we want it small (128k min). For large machines
5853 * we want it large (64MB max). But it is not linear, because network
5854 * bandwidth does not increase linearly with machine size. We use
5855 *
5856 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5857 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5858 *
5859 * which yields
5860 *
5861 * 16MB: 512k
5862 * 32MB: 724k
5863 * 64MB: 1024k
5864 * 128MB: 1448k
5865 * 256MB: 2048k
5866 * 512MB: 2896k
5867 * 1024MB: 4096k
5868 * 2048MB: 5792k
5869 * 4096MB: 8192k
5870 * 8192MB: 11584k
5871 * 16384MB: 16384k
5872 */
5873 int __meminit init_per_zone_wmark_min(void)
5874 {
5875 unsigned long lowmem_kbytes;
5876 int new_min_free_kbytes;
5877
5878 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5879 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5880
5881 if (new_min_free_kbytes > user_min_free_kbytes) {
5882 min_free_kbytes = new_min_free_kbytes;
5883 if (min_free_kbytes < 128)
5884 min_free_kbytes = 128;
5885 if (min_free_kbytes > 65536)
5886 min_free_kbytes = 65536;
5887 } else {
5888 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5889 new_min_free_kbytes, user_min_free_kbytes);
5890 }
5891 setup_per_zone_wmarks();
5892 refresh_zone_stat_thresholds();
5893 setup_per_zone_lowmem_reserve();
5894 setup_per_zone_inactive_ratio();
5895 return 0;
5896 }
5897 module_init(init_per_zone_wmark_min)
5898
5899 /*
5900 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5901 * that we can call two helper functions whenever min_free_kbytes
5902 * changes.
5903 */
5904 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5905 void __user *buffer, size_t *length, loff_t *ppos)
5906 {
5907 int rc;
5908
5909 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5910 if (rc)
5911 return rc;
5912
5913 if (write) {
5914 user_min_free_kbytes = min_free_kbytes;
5915 setup_per_zone_wmarks();
5916 }
5917 return 0;
5918 }
5919
5920 #ifdef CONFIG_NUMA
5921 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5922 void __user *buffer, size_t *length, loff_t *ppos)
5923 {
5924 struct zone *zone;
5925 int rc;
5926
5927 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5928 if (rc)
5929 return rc;
5930
5931 for_each_zone(zone)
5932 zone->min_unmapped_pages = (zone->managed_pages *
5933 sysctl_min_unmapped_ratio) / 100;
5934 return 0;
5935 }
5936
5937 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5938 void __user *buffer, size_t *length, loff_t *ppos)
5939 {
5940 struct zone *zone;
5941 int rc;
5942
5943 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5944 if (rc)
5945 return rc;
5946
5947 for_each_zone(zone)
5948 zone->min_slab_pages = (zone->managed_pages *
5949 sysctl_min_slab_ratio) / 100;
5950 return 0;
5951 }
5952 #endif
5953
5954 /*
5955 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5956 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5957 * whenever sysctl_lowmem_reserve_ratio changes.
5958 *
5959 * The reserve ratio obviously has absolutely no relation with the
5960 * minimum watermarks. The lowmem reserve ratio can only make sense
5961 * if in function of the boot time zone sizes.
5962 */
5963 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5964 void __user *buffer, size_t *length, loff_t *ppos)
5965 {
5966 proc_dointvec_minmax(table, write, buffer, length, ppos);
5967 setup_per_zone_lowmem_reserve();
5968 return 0;
5969 }
5970
5971 /*
5972 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5973 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5974 * pagelist can have before it gets flushed back to buddy allocator.
5975 */
5976 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5977 void __user *buffer, size_t *length, loff_t *ppos)
5978 {
5979 struct zone *zone;
5980 int old_percpu_pagelist_fraction;
5981 int ret;
5982
5983 mutex_lock(&pcp_batch_high_lock);
5984 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5985
5986 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5987 if (!write || ret < 0)
5988 goto out;
5989
5990 /* Sanity checking to avoid pcp imbalance */
5991 if (percpu_pagelist_fraction &&
5992 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5993 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5994 ret = -EINVAL;
5995 goto out;
5996 }
5997
5998 /* No change? */
5999 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6000 goto out;
6001
6002 for_each_populated_zone(zone) {
6003 unsigned int cpu;
6004
6005 for_each_possible_cpu(cpu)
6006 pageset_set_high_and_batch(zone,
6007 per_cpu_ptr(zone->pageset, cpu));
6008 }
6009 out:
6010 mutex_unlock(&pcp_batch_high_lock);
6011 return ret;
6012 }
6013
6014 int hashdist = HASHDIST_DEFAULT;
6015
6016 #ifdef CONFIG_NUMA
6017 static int __init set_hashdist(char *str)
6018 {
6019 if (!str)
6020 return 0;
6021 hashdist = simple_strtoul(str, &str, 0);
6022 return 1;
6023 }
6024 __setup("hashdist=", set_hashdist);
6025 #endif
6026
6027 /*
6028 * allocate a large system hash table from bootmem
6029 * - it is assumed that the hash table must contain an exact power-of-2
6030 * quantity of entries
6031 * - limit is the number of hash buckets, not the total allocation size
6032 */
6033 void *__init alloc_large_system_hash(const char *tablename,
6034 unsigned long bucketsize,
6035 unsigned long numentries,
6036 int scale,
6037 int flags,
6038 unsigned int *_hash_shift,
6039 unsigned int *_hash_mask,
6040 unsigned long low_limit,
6041 unsigned long high_limit)
6042 {
6043 unsigned long long max = high_limit;
6044 unsigned long log2qty, size;
6045 void *table = NULL;
6046
6047 /* allow the kernel cmdline to have a say */
6048 if (!numentries) {
6049 /* round applicable memory size up to nearest megabyte */
6050 numentries = nr_kernel_pages;
6051
6052 /* It isn't necessary when PAGE_SIZE >= 1MB */
6053 if (PAGE_SHIFT < 20)
6054 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6055
6056 /* limit to 1 bucket per 2^scale bytes of low memory */
6057 if (scale > PAGE_SHIFT)
6058 numentries >>= (scale - PAGE_SHIFT);
6059 else
6060 numentries <<= (PAGE_SHIFT - scale);
6061
6062 /* Make sure we've got at least a 0-order allocation.. */
6063 if (unlikely(flags & HASH_SMALL)) {
6064 /* Makes no sense without HASH_EARLY */
6065 WARN_ON(!(flags & HASH_EARLY));
6066 if (!(numentries >> *_hash_shift)) {
6067 numentries = 1UL << *_hash_shift;
6068 BUG_ON(!numentries);
6069 }
6070 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6071 numentries = PAGE_SIZE / bucketsize;
6072 }
6073 numentries = roundup_pow_of_two(numentries);
6074
6075 /* limit allocation size to 1/16 total memory by default */
6076 if (max == 0) {
6077 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6078 do_div(max, bucketsize);
6079 }
6080 max = min(max, 0x80000000ULL);
6081
6082 if (numentries < low_limit)
6083 numentries = low_limit;
6084 if (numentries > max)
6085 numentries = max;
6086
6087 log2qty = ilog2(numentries);
6088
6089 do {
6090 size = bucketsize << log2qty;
6091 if (flags & HASH_EARLY)
6092 table = memblock_virt_alloc_nopanic(size, 0);
6093 else if (hashdist)
6094 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6095 else {
6096 /*
6097 * If bucketsize is not a power-of-two, we may free
6098 * some pages at the end of hash table which
6099 * alloc_pages_exact() automatically does
6100 */
6101 if (get_order(size) < MAX_ORDER) {
6102 table = alloc_pages_exact(size, GFP_ATOMIC);
6103 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6104 }
6105 }
6106 } while (!table && size > PAGE_SIZE && --log2qty);
6107
6108 if (!table)
6109 panic("Failed to allocate %s hash table\n", tablename);
6110
6111 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6112 tablename,
6113 (1UL << log2qty),
6114 ilog2(size) - PAGE_SHIFT,
6115 size);
6116
6117 if (_hash_shift)
6118 *_hash_shift = log2qty;
6119 if (_hash_mask)
6120 *_hash_mask = (1 << log2qty) - 1;
6121
6122 return table;
6123 }
6124
6125 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6126 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6127 unsigned long pfn)
6128 {
6129 #ifdef CONFIG_SPARSEMEM
6130 return __pfn_to_section(pfn)->pageblock_flags;
6131 #else
6132 return zone->pageblock_flags;
6133 #endif /* CONFIG_SPARSEMEM */
6134 }
6135
6136 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6137 {
6138 #ifdef CONFIG_SPARSEMEM
6139 pfn &= (PAGES_PER_SECTION-1);
6140 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6141 #else
6142 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6143 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6144 #endif /* CONFIG_SPARSEMEM */
6145 }
6146
6147 /**
6148 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6149 * @page: The page within the block of interest
6150 * @pfn: The target page frame number
6151 * @end_bitidx: The last bit of interest to retrieve
6152 * @mask: mask of bits that the caller is interested in
6153 *
6154 * Return: pageblock_bits flags
6155 */
6156 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6157 unsigned long end_bitidx,
6158 unsigned long mask)
6159 {
6160 struct zone *zone;
6161 unsigned long *bitmap;
6162 unsigned long bitidx, word_bitidx;
6163 unsigned long word;
6164
6165 zone = page_zone(page);
6166 bitmap = get_pageblock_bitmap(zone, pfn);
6167 bitidx = pfn_to_bitidx(zone, pfn);
6168 word_bitidx = bitidx / BITS_PER_LONG;
6169 bitidx &= (BITS_PER_LONG-1);
6170
6171 word = bitmap[word_bitidx];
6172 bitidx += end_bitidx;
6173 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6174 }
6175
6176 /**
6177 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6178 * @page: The page within the block of interest
6179 * @flags: The flags to set
6180 * @pfn: The target page frame number
6181 * @end_bitidx: The last bit of interest
6182 * @mask: mask of bits that the caller is interested in
6183 */
6184 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6185 unsigned long pfn,
6186 unsigned long end_bitidx,
6187 unsigned long mask)
6188 {
6189 struct zone *zone;
6190 unsigned long *bitmap;
6191 unsigned long bitidx, word_bitidx;
6192 unsigned long old_word, word;
6193
6194 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6195
6196 zone = page_zone(page);
6197 bitmap = get_pageblock_bitmap(zone, pfn);
6198 bitidx = pfn_to_bitidx(zone, pfn);
6199 word_bitidx = bitidx / BITS_PER_LONG;
6200 bitidx &= (BITS_PER_LONG-1);
6201
6202 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6203
6204 bitidx += end_bitidx;
6205 mask <<= (BITS_PER_LONG - bitidx - 1);
6206 flags <<= (BITS_PER_LONG - bitidx - 1);
6207
6208 word = ACCESS_ONCE(bitmap[word_bitidx]);
6209 for (;;) {
6210 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6211 if (word == old_word)
6212 break;
6213 word = old_word;
6214 }
6215 }
6216
6217 /*
6218 * This function checks whether pageblock includes unmovable pages or not.
6219 * If @count is not zero, it is okay to include less @count unmovable pages
6220 *
6221 * PageLRU check without isolation or lru_lock could race so that
6222 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6223 * expect this function should be exact.
6224 */
6225 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6226 bool skip_hwpoisoned_pages)
6227 {
6228 unsigned long pfn, iter, found;
6229 int mt;
6230
6231 /*
6232 * For avoiding noise data, lru_add_drain_all() should be called
6233 * If ZONE_MOVABLE, the zone never contains unmovable pages
6234 */
6235 if (zone_idx(zone) == ZONE_MOVABLE)
6236 return false;
6237 mt = get_pageblock_migratetype(page);
6238 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6239 return false;
6240
6241 pfn = page_to_pfn(page);
6242 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6243 unsigned long check = pfn + iter;
6244
6245 if (!pfn_valid_within(check))
6246 continue;
6247
6248 page = pfn_to_page(check);
6249
6250 /*
6251 * Hugepages are not in LRU lists, but they're movable.
6252 * We need not scan over tail pages bacause we don't
6253 * handle each tail page individually in migration.
6254 */
6255 if (PageHuge(page)) {
6256 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6257 continue;
6258 }
6259
6260 /*
6261 * We can't use page_count without pin a page
6262 * because another CPU can free compound page.
6263 * This check already skips compound tails of THP
6264 * because their page->_count is zero at all time.
6265 */
6266 if (!atomic_read(&page->_count)) {
6267 if (PageBuddy(page))
6268 iter += (1 << page_order(page)) - 1;
6269 continue;
6270 }
6271
6272 /*
6273 * The HWPoisoned page may be not in buddy system, and
6274 * page_count() is not 0.
6275 */
6276 if (skip_hwpoisoned_pages && PageHWPoison(page))
6277 continue;
6278
6279 if (!PageLRU(page))
6280 found++;
6281 /*
6282 * If there are RECLAIMABLE pages, we need to check
6283 * it. But now, memory offline itself doesn't call
6284 * shrink_node_slabs() and it still to be fixed.
6285 */
6286 /*
6287 * If the page is not RAM, page_count()should be 0.
6288 * we don't need more check. This is an _used_ not-movable page.
6289 *
6290 * The problematic thing here is PG_reserved pages. PG_reserved
6291 * is set to both of a memory hole page and a _used_ kernel
6292 * page at boot.
6293 */
6294 if (found > count)
6295 return true;
6296 }
6297 return false;
6298 }
6299
6300 bool is_pageblock_removable_nolock(struct page *page)
6301 {
6302 struct zone *zone;
6303 unsigned long pfn;
6304
6305 /*
6306 * We have to be careful here because we are iterating over memory
6307 * sections which are not zone aware so we might end up outside of
6308 * the zone but still within the section.
6309 * We have to take care about the node as well. If the node is offline
6310 * its NODE_DATA will be NULL - see page_zone.
6311 */
6312 if (!node_online(page_to_nid(page)))
6313 return false;
6314
6315 zone = page_zone(page);
6316 pfn = page_to_pfn(page);
6317 if (!zone_spans_pfn(zone, pfn))
6318 return false;
6319
6320 return !has_unmovable_pages(zone, page, 0, true);
6321 }
6322
6323 #ifdef CONFIG_CMA
6324
6325 static unsigned long pfn_max_align_down(unsigned long pfn)
6326 {
6327 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6328 pageblock_nr_pages) - 1);
6329 }
6330
6331 static unsigned long pfn_max_align_up(unsigned long pfn)
6332 {
6333 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6334 pageblock_nr_pages));
6335 }
6336
6337 /* [start, end) must belong to a single zone. */
6338 static int __alloc_contig_migrate_range(struct compact_control *cc,
6339 unsigned long start, unsigned long end)
6340 {
6341 /* This function is based on compact_zone() from compaction.c. */
6342 unsigned long nr_reclaimed;
6343 unsigned long pfn = start;
6344 unsigned int tries = 0;
6345 int ret = 0;
6346
6347 migrate_prep();
6348
6349 while (pfn < end || !list_empty(&cc->migratepages)) {
6350 if (fatal_signal_pending(current)) {
6351 ret = -EINTR;
6352 break;
6353 }
6354
6355 if (list_empty(&cc->migratepages)) {
6356 cc->nr_migratepages = 0;
6357 pfn = isolate_migratepages_range(cc, pfn, end);
6358 if (!pfn) {
6359 ret = -EINTR;
6360 break;
6361 }
6362 tries = 0;
6363 } else if (++tries == 5) {
6364 ret = ret < 0 ? ret : -EBUSY;
6365 break;
6366 }
6367
6368 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6369 &cc->migratepages);
6370 cc->nr_migratepages -= nr_reclaimed;
6371
6372 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6373 NULL, 0, cc->mode, MR_CMA);
6374 }
6375 if (ret < 0) {
6376 putback_movable_pages(&cc->migratepages);
6377 return ret;
6378 }
6379 return 0;
6380 }
6381
6382 /**
6383 * alloc_contig_range() -- tries to allocate given range of pages
6384 * @start: start PFN to allocate
6385 * @end: one-past-the-last PFN to allocate
6386 * @migratetype: migratetype of the underlaying pageblocks (either
6387 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6388 * in range must have the same migratetype and it must
6389 * be either of the two.
6390 *
6391 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6392 * aligned, however it's the caller's responsibility to guarantee that
6393 * we are the only thread that changes migrate type of pageblocks the
6394 * pages fall in.
6395 *
6396 * The PFN range must belong to a single zone.
6397 *
6398 * Returns zero on success or negative error code. On success all
6399 * pages which PFN is in [start, end) are allocated for the caller and
6400 * need to be freed with free_contig_range().
6401 */
6402 int alloc_contig_range(unsigned long start, unsigned long end,
6403 unsigned migratetype)
6404 {
6405 unsigned long outer_start, outer_end;
6406 int ret = 0, order;
6407
6408 struct compact_control cc = {
6409 .nr_migratepages = 0,
6410 .order = -1,
6411 .zone = page_zone(pfn_to_page(start)),
6412 .mode = MIGRATE_SYNC,
6413 .ignore_skip_hint = true,
6414 };
6415 INIT_LIST_HEAD(&cc.migratepages);
6416
6417 /*
6418 * What we do here is we mark all pageblocks in range as
6419 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6420 * have different sizes, and due to the way page allocator
6421 * work, we align the range to biggest of the two pages so
6422 * that page allocator won't try to merge buddies from
6423 * different pageblocks and change MIGRATE_ISOLATE to some
6424 * other migration type.
6425 *
6426 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6427 * migrate the pages from an unaligned range (ie. pages that
6428 * we are interested in). This will put all the pages in
6429 * range back to page allocator as MIGRATE_ISOLATE.
6430 *
6431 * When this is done, we take the pages in range from page
6432 * allocator removing them from the buddy system. This way
6433 * page allocator will never consider using them.
6434 *
6435 * This lets us mark the pageblocks back as
6436 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6437 * aligned range but not in the unaligned, original range are
6438 * put back to page allocator so that buddy can use them.
6439 */
6440
6441 ret = start_isolate_page_range(pfn_max_align_down(start),
6442 pfn_max_align_up(end), migratetype,
6443 false);
6444 if (ret)
6445 return ret;
6446
6447 ret = __alloc_contig_migrate_range(&cc, start, end);
6448 if (ret)
6449 goto done;
6450
6451 /*
6452 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6453 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6454 * more, all pages in [start, end) are free in page allocator.
6455 * What we are going to do is to allocate all pages from
6456 * [start, end) (that is remove them from page allocator).
6457 *
6458 * The only problem is that pages at the beginning and at the
6459 * end of interesting range may be not aligned with pages that
6460 * page allocator holds, ie. they can be part of higher order
6461 * pages. Because of this, we reserve the bigger range and
6462 * once this is done free the pages we are not interested in.
6463 *
6464 * We don't have to hold zone->lock here because the pages are
6465 * isolated thus they won't get removed from buddy.
6466 */
6467
6468 lru_add_drain_all();
6469 drain_all_pages(cc.zone);
6470
6471 order = 0;
6472 outer_start = start;
6473 while (!PageBuddy(pfn_to_page(outer_start))) {
6474 if (++order >= MAX_ORDER) {
6475 ret = -EBUSY;
6476 goto done;
6477 }
6478 outer_start &= ~0UL << order;
6479 }
6480
6481 /* Make sure the range is really isolated. */
6482 if (test_pages_isolated(outer_start, end, false)) {
6483 pr_info("%s: [%lx, %lx) PFNs busy\n",
6484 __func__, outer_start, end);
6485 ret = -EBUSY;
6486 goto done;
6487 }
6488
6489 /* Grab isolated pages from freelists. */
6490 outer_end = isolate_freepages_range(&cc, outer_start, end);
6491 if (!outer_end) {
6492 ret = -EBUSY;
6493 goto done;
6494 }
6495
6496 /* Free head and tail (if any) */
6497 if (start != outer_start)
6498 free_contig_range(outer_start, start - outer_start);
6499 if (end != outer_end)
6500 free_contig_range(end, outer_end - end);
6501
6502 done:
6503 undo_isolate_page_range(pfn_max_align_down(start),
6504 pfn_max_align_up(end), migratetype);
6505 return ret;
6506 }
6507
6508 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6509 {
6510 unsigned int count = 0;
6511
6512 for (; nr_pages--; pfn++) {
6513 struct page *page = pfn_to_page(pfn);
6514
6515 count += page_count(page) != 1;
6516 __free_page(page);
6517 }
6518 WARN(count != 0, "%d pages are still in use!\n", count);
6519 }
6520 #endif
6521
6522 #ifdef CONFIG_MEMORY_HOTPLUG
6523 /*
6524 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6525 * page high values need to be recalulated.
6526 */
6527 void __meminit zone_pcp_update(struct zone *zone)
6528 {
6529 unsigned cpu;
6530 mutex_lock(&pcp_batch_high_lock);
6531 for_each_possible_cpu(cpu)
6532 pageset_set_high_and_batch(zone,
6533 per_cpu_ptr(zone->pageset, cpu));
6534 mutex_unlock(&pcp_batch_high_lock);
6535 }
6536 #endif
6537
6538 void zone_pcp_reset(struct zone *zone)
6539 {
6540 unsigned long flags;
6541 int cpu;
6542 struct per_cpu_pageset *pset;
6543
6544 /* avoid races with drain_pages() */
6545 local_irq_save(flags);
6546 if (zone->pageset != &boot_pageset) {
6547 for_each_online_cpu(cpu) {
6548 pset = per_cpu_ptr(zone->pageset, cpu);
6549 drain_zonestat(zone, pset);
6550 }
6551 free_percpu(zone->pageset);
6552 zone->pageset = &boot_pageset;
6553 }
6554 local_irq_restore(flags);
6555 }
6556
6557 #ifdef CONFIG_MEMORY_HOTREMOVE
6558 /*
6559 * All pages in the range must be isolated before calling this.
6560 */
6561 void
6562 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6563 {
6564 struct page *page;
6565 struct zone *zone;
6566 unsigned int order, i;
6567 unsigned long pfn;
6568 unsigned long flags;
6569 /* find the first valid pfn */
6570 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6571 if (pfn_valid(pfn))
6572 break;
6573 if (pfn == end_pfn)
6574 return;
6575 zone = page_zone(pfn_to_page(pfn));
6576 spin_lock_irqsave(&zone->lock, flags);
6577 pfn = start_pfn;
6578 while (pfn < end_pfn) {
6579 if (!pfn_valid(pfn)) {
6580 pfn++;
6581 continue;
6582 }
6583 page = pfn_to_page(pfn);
6584 /*
6585 * The HWPoisoned page may be not in buddy system, and
6586 * page_count() is not 0.
6587 */
6588 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6589 pfn++;
6590 SetPageReserved(page);
6591 continue;
6592 }
6593
6594 BUG_ON(page_count(page));
6595 BUG_ON(!PageBuddy(page));
6596 order = page_order(page);
6597 #ifdef CONFIG_DEBUG_VM
6598 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6599 pfn, 1 << order, end_pfn);
6600 #endif
6601 list_del(&page->lru);
6602 rmv_page_order(page);
6603 zone->free_area[order].nr_free--;
6604 for (i = 0; i < (1 << order); i++)
6605 SetPageReserved((page+i));
6606 pfn += (1 << order);
6607 }
6608 spin_unlock_irqrestore(&zone->lock, flags);
6609 }
6610 #endif
6611
6612 #ifdef CONFIG_MEMORY_FAILURE
6613 bool is_free_buddy_page(struct page *page)
6614 {
6615 struct zone *zone = page_zone(page);
6616 unsigned long pfn = page_to_pfn(page);
6617 unsigned long flags;
6618 unsigned int order;
6619
6620 spin_lock_irqsave(&zone->lock, flags);
6621 for (order = 0; order < MAX_ORDER; order++) {
6622 struct page *page_head = page - (pfn & ((1 << order) - 1));
6623
6624 if (PageBuddy(page_head) && page_order(page_head) >= order)
6625 break;
6626 }
6627 spin_unlock_irqrestore(&zone->lock, flags);
6628
6629 return order < MAX_ORDER;
6630 }
6631 #endif
This page took 0.154816 seconds and 6 git commands to generate.