mm: compaction: clear PG_migrate_skip based on compaction and reclaim activity
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597 out:
598 zone->free_area[order].nr_free++;
599 }
600
601 /*
602 * free_page_mlock() -- clean up attempts to free and mlocked() page.
603 * Page should not be on lru, so no need to fix that up.
604 * free_pages_check() will verify...
605 */
606 static inline void free_page_mlock(struct page *page)
607 {
608 __dec_zone_page_state(page, NR_MLOCK);
609 __count_vm_event(UNEVICTABLE_MLOCKFREED);
610 }
611
612 static inline int free_pages_check(struct page *page)
613 {
614 if (unlikely(page_mapcount(page) |
615 (page->mapping != NULL) |
616 (atomic_read(&page->_count) != 0) |
617 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
618 (mem_cgroup_bad_page_check(page)))) {
619 bad_page(page);
620 return 1;
621 }
622 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
623 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
624 return 0;
625 }
626
627 /*
628 * Frees a number of pages from the PCP lists
629 * Assumes all pages on list are in same zone, and of same order.
630 * count is the number of pages to free.
631 *
632 * If the zone was previously in an "all pages pinned" state then look to
633 * see if this freeing clears that state.
634 *
635 * And clear the zone's pages_scanned counter, to hold off the "all pages are
636 * pinned" detection logic.
637 */
638 static void free_pcppages_bulk(struct zone *zone, int count,
639 struct per_cpu_pages *pcp)
640 {
641 int migratetype = 0;
642 int batch_free = 0;
643 int to_free = count;
644
645 spin_lock(&zone->lock);
646 zone->all_unreclaimable = 0;
647 zone->pages_scanned = 0;
648
649 while (to_free) {
650 struct page *page;
651 struct list_head *list;
652
653 /*
654 * Remove pages from lists in a round-robin fashion. A
655 * batch_free count is maintained that is incremented when an
656 * empty list is encountered. This is so more pages are freed
657 * off fuller lists instead of spinning excessively around empty
658 * lists
659 */
660 do {
661 batch_free++;
662 if (++migratetype == MIGRATE_PCPTYPES)
663 migratetype = 0;
664 list = &pcp->lists[migratetype];
665 } while (list_empty(list));
666
667 /* This is the only non-empty list. Free them all. */
668 if (batch_free == MIGRATE_PCPTYPES)
669 batch_free = to_free;
670
671 do {
672 int mt; /* migratetype of the to-be-freed page */
673
674 page = list_entry(list->prev, struct page, lru);
675 /* must delete as __free_one_page list manipulates */
676 list_del(&page->lru);
677 mt = get_freepage_migratetype(page);
678 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
679 __free_one_page(page, zone, 0, mt);
680 trace_mm_page_pcpu_drain(page, 0, mt);
681 if (is_migrate_cma(mt))
682 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
683 } while (--to_free && --batch_free && !list_empty(list));
684 }
685 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
686 spin_unlock(&zone->lock);
687 }
688
689 static void free_one_page(struct zone *zone, struct page *page, int order,
690 int migratetype)
691 {
692 spin_lock(&zone->lock);
693 zone->all_unreclaimable = 0;
694 zone->pages_scanned = 0;
695
696 __free_one_page(page, zone, order, migratetype);
697 if (unlikely(migratetype != MIGRATE_ISOLATE))
698 __mod_zone_freepage_state(zone, 1 << order, migratetype);
699 spin_unlock(&zone->lock);
700 }
701
702 static bool free_pages_prepare(struct page *page, unsigned int order)
703 {
704 int i;
705 int bad = 0;
706
707 trace_mm_page_free(page, order);
708 kmemcheck_free_shadow(page, order);
709
710 if (PageAnon(page))
711 page->mapping = NULL;
712 for (i = 0; i < (1 << order); i++)
713 bad += free_pages_check(page + i);
714 if (bad)
715 return false;
716
717 if (!PageHighMem(page)) {
718 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
719 debug_check_no_obj_freed(page_address(page),
720 PAGE_SIZE << order);
721 }
722 arch_free_page(page, order);
723 kernel_map_pages(page, 1 << order, 0);
724
725 return true;
726 }
727
728 static void __free_pages_ok(struct page *page, unsigned int order)
729 {
730 unsigned long flags;
731 int wasMlocked = __TestClearPageMlocked(page);
732 int migratetype;
733
734 if (!free_pages_prepare(page, order))
735 return;
736
737 local_irq_save(flags);
738 if (unlikely(wasMlocked))
739 free_page_mlock(page);
740 __count_vm_events(PGFREE, 1 << order);
741 migratetype = get_pageblock_migratetype(page);
742 set_freepage_migratetype(page, migratetype);
743 free_one_page(page_zone(page), page, order, migratetype);
744 local_irq_restore(flags);
745 }
746
747 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
748 {
749 unsigned int nr_pages = 1 << order;
750 unsigned int loop;
751
752 prefetchw(page);
753 for (loop = 0; loop < nr_pages; loop++) {
754 struct page *p = &page[loop];
755
756 if (loop + 1 < nr_pages)
757 prefetchw(p + 1);
758 __ClearPageReserved(p);
759 set_page_count(p, 0);
760 }
761
762 set_page_refcounted(page);
763 __free_pages(page, order);
764 }
765
766 #ifdef CONFIG_CMA
767 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
768 void __init init_cma_reserved_pageblock(struct page *page)
769 {
770 unsigned i = pageblock_nr_pages;
771 struct page *p = page;
772
773 do {
774 __ClearPageReserved(p);
775 set_page_count(p, 0);
776 } while (++p, --i);
777
778 set_page_refcounted(page);
779 set_pageblock_migratetype(page, MIGRATE_CMA);
780 __free_pages(page, pageblock_order);
781 totalram_pages += pageblock_nr_pages;
782 }
783 #endif
784
785 /*
786 * The order of subdivision here is critical for the IO subsystem.
787 * Please do not alter this order without good reasons and regression
788 * testing. Specifically, as large blocks of memory are subdivided,
789 * the order in which smaller blocks are delivered depends on the order
790 * they're subdivided in this function. This is the primary factor
791 * influencing the order in which pages are delivered to the IO
792 * subsystem according to empirical testing, and this is also justified
793 * by considering the behavior of a buddy system containing a single
794 * large block of memory acted on by a series of small allocations.
795 * This behavior is a critical factor in sglist merging's success.
796 *
797 * -- wli
798 */
799 static inline void expand(struct zone *zone, struct page *page,
800 int low, int high, struct free_area *area,
801 int migratetype)
802 {
803 unsigned long size = 1 << high;
804
805 while (high > low) {
806 area--;
807 high--;
808 size >>= 1;
809 VM_BUG_ON(bad_range(zone, &page[size]));
810
811 #ifdef CONFIG_DEBUG_PAGEALLOC
812 if (high < debug_guardpage_minorder()) {
813 /*
814 * Mark as guard pages (or page), that will allow to
815 * merge back to allocator when buddy will be freed.
816 * Corresponding page table entries will not be touched,
817 * pages will stay not present in virtual address space
818 */
819 INIT_LIST_HEAD(&page[size].lru);
820 set_page_guard_flag(&page[size]);
821 set_page_private(&page[size], high);
822 /* Guard pages are not available for any usage */
823 __mod_zone_freepage_state(zone, -(1 << high),
824 migratetype);
825 continue;
826 }
827 #endif
828 list_add(&page[size].lru, &area->free_list[migratetype]);
829 area->nr_free++;
830 set_page_order(&page[size], high);
831 }
832 }
833
834 /*
835 * This page is about to be returned from the page allocator
836 */
837 static inline int check_new_page(struct page *page)
838 {
839 if (unlikely(page_mapcount(page) |
840 (page->mapping != NULL) |
841 (atomic_read(&page->_count) != 0) |
842 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
843 (mem_cgroup_bad_page_check(page)))) {
844 bad_page(page);
845 return 1;
846 }
847 return 0;
848 }
849
850 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
851 {
852 int i;
853
854 for (i = 0; i < (1 << order); i++) {
855 struct page *p = page + i;
856 if (unlikely(check_new_page(p)))
857 return 1;
858 }
859
860 set_page_private(page, 0);
861 set_page_refcounted(page);
862
863 arch_alloc_page(page, order);
864 kernel_map_pages(page, 1 << order, 1);
865
866 if (gfp_flags & __GFP_ZERO)
867 prep_zero_page(page, order, gfp_flags);
868
869 if (order && (gfp_flags & __GFP_COMP))
870 prep_compound_page(page, order);
871
872 return 0;
873 }
874
875 /*
876 * Go through the free lists for the given migratetype and remove
877 * the smallest available page from the freelists
878 */
879 static inline
880 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
881 int migratetype)
882 {
883 unsigned int current_order;
884 struct free_area * area;
885 struct page *page;
886
887 /* Find a page of the appropriate size in the preferred list */
888 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
889 area = &(zone->free_area[current_order]);
890 if (list_empty(&area->free_list[migratetype]))
891 continue;
892
893 page = list_entry(area->free_list[migratetype].next,
894 struct page, lru);
895 list_del(&page->lru);
896 rmv_page_order(page);
897 area->nr_free--;
898 expand(zone, page, order, current_order, area, migratetype);
899 return page;
900 }
901
902 return NULL;
903 }
904
905
906 /*
907 * This array describes the order lists are fallen back to when
908 * the free lists for the desirable migrate type are depleted
909 */
910 static int fallbacks[MIGRATE_TYPES][4] = {
911 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
912 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
913 #ifdef CONFIG_CMA
914 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
915 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
916 #else
917 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
918 #endif
919 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
920 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
921 };
922
923 /*
924 * Move the free pages in a range to the free lists of the requested type.
925 * Note that start_page and end_pages are not aligned on a pageblock
926 * boundary. If alignment is required, use move_freepages_block()
927 */
928 int move_freepages(struct zone *zone,
929 struct page *start_page, struct page *end_page,
930 int migratetype)
931 {
932 struct page *page;
933 unsigned long order;
934 int pages_moved = 0;
935
936 #ifndef CONFIG_HOLES_IN_ZONE
937 /*
938 * page_zone is not safe to call in this context when
939 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
940 * anyway as we check zone boundaries in move_freepages_block().
941 * Remove at a later date when no bug reports exist related to
942 * grouping pages by mobility
943 */
944 BUG_ON(page_zone(start_page) != page_zone(end_page));
945 #endif
946
947 for (page = start_page; page <= end_page;) {
948 /* Make sure we are not inadvertently changing nodes */
949 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
950
951 if (!pfn_valid_within(page_to_pfn(page))) {
952 page++;
953 continue;
954 }
955
956 if (!PageBuddy(page)) {
957 page++;
958 continue;
959 }
960
961 order = page_order(page);
962 list_move(&page->lru,
963 &zone->free_area[order].free_list[migratetype]);
964 set_freepage_migratetype(page, migratetype);
965 page += 1 << order;
966 pages_moved += 1 << order;
967 }
968
969 return pages_moved;
970 }
971
972 int move_freepages_block(struct zone *zone, struct page *page,
973 int migratetype)
974 {
975 unsigned long start_pfn, end_pfn;
976 struct page *start_page, *end_page;
977
978 start_pfn = page_to_pfn(page);
979 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
980 start_page = pfn_to_page(start_pfn);
981 end_page = start_page + pageblock_nr_pages - 1;
982 end_pfn = start_pfn + pageblock_nr_pages - 1;
983
984 /* Do not cross zone boundaries */
985 if (start_pfn < zone->zone_start_pfn)
986 start_page = page;
987 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
988 return 0;
989
990 return move_freepages(zone, start_page, end_page, migratetype);
991 }
992
993 static void change_pageblock_range(struct page *pageblock_page,
994 int start_order, int migratetype)
995 {
996 int nr_pageblocks = 1 << (start_order - pageblock_order);
997
998 while (nr_pageblocks--) {
999 set_pageblock_migratetype(pageblock_page, migratetype);
1000 pageblock_page += pageblock_nr_pages;
1001 }
1002 }
1003
1004 /* Remove an element from the buddy allocator from the fallback list */
1005 static inline struct page *
1006 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1007 {
1008 struct free_area * area;
1009 int current_order;
1010 struct page *page;
1011 int migratetype, i;
1012
1013 /* Find the largest possible block of pages in the other list */
1014 for (current_order = MAX_ORDER-1; current_order >= order;
1015 --current_order) {
1016 for (i = 0;; i++) {
1017 migratetype = fallbacks[start_migratetype][i];
1018
1019 /* MIGRATE_RESERVE handled later if necessary */
1020 if (migratetype == MIGRATE_RESERVE)
1021 break;
1022
1023 area = &(zone->free_area[current_order]);
1024 if (list_empty(&area->free_list[migratetype]))
1025 continue;
1026
1027 page = list_entry(area->free_list[migratetype].next,
1028 struct page, lru);
1029 area->nr_free--;
1030
1031 /*
1032 * If breaking a large block of pages, move all free
1033 * pages to the preferred allocation list. If falling
1034 * back for a reclaimable kernel allocation, be more
1035 * aggressive about taking ownership of free pages
1036 *
1037 * On the other hand, never change migration
1038 * type of MIGRATE_CMA pageblocks nor move CMA
1039 * pages on different free lists. We don't
1040 * want unmovable pages to be allocated from
1041 * MIGRATE_CMA areas.
1042 */
1043 if (!is_migrate_cma(migratetype) &&
1044 (unlikely(current_order >= pageblock_order / 2) ||
1045 start_migratetype == MIGRATE_RECLAIMABLE ||
1046 page_group_by_mobility_disabled)) {
1047 int pages;
1048 pages = move_freepages_block(zone, page,
1049 start_migratetype);
1050
1051 /* Claim the whole block if over half of it is free */
1052 if (pages >= (1 << (pageblock_order-1)) ||
1053 page_group_by_mobility_disabled)
1054 set_pageblock_migratetype(page,
1055 start_migratetype);
1056
1057 migratetype = start_migratetype;
1058 }
1059
1060 /* Remove the page from the freelists */
1061 list_del(&page->lru);
1062 rmv_page_order(page);
1063
1064 /* Take ownership for orders >= pageblock_order */
1065 if (current_order >= pageblock_order &&
1066 !is_migrate_cma(migratetype))
1067 change_pageblock_range(page, current_order,
1068 start_migratetype);
1069
1070 expand(zone, page, order, current_order, area,
1071 is_migrate_cma(migratetype)
1072 ? migratetype : start_migratetype);
1073
1074 trace_mm_page_alloc_extfrag(page, order, current_order,
1075 start_migratetype, migratetype);
1076
1077 return page;
1078 }
1079 }
1080
1081 return NULL;
1082 }
1083
1084 /*
1085 * Do the hard work of removing an element from the buddy allocator.
1086 * Call me with the zone->lock already held.
1087 */
1088 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1089 int migratetype)
1090 {
1091 struct page *page;
1092
1093 retry_reserve:
1094 page = __rmqueue_smallest(zone, order, migratetype);
1095
1096 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1097 page = __rmqueue_fallback(zone, order, migratetype);
1098
1099 /*
1100 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1101 * is used because __rmqueue_smallest is an inline function
1102 * and we want just one call site
1103 */
1104 if (!page) {
1105 migratetype = MIGRATE_RESERVE;
1106 goto retry_reserve;
1107 }
1108 }
1109
1110 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1111 return page;
1112 }
1113
1114 /*
1115 * Obtain a specified number of elements from the buddy allocator, all under
1116 * a single hold of the lock, for efficiency. Add them to the supplied list.
1117 * Returns the number of new pages which were placed at *list.
1118 */
1119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1120 unsigned long count, struct list_head *list,
1121 int migratetype, int cold)
1122 {
1123 int mt = migratetype, i;
1124
1125 spin_lock(&zone->lock);
1126 for (i = 0; i < count; ++i) {
1127 struct page *page = __rmqueue(zone, order, migratetype);
1128 if (unlikely(page == NULL))
1129 break;
1130
1131 /*
1132 * Split buddy pages returned by expand() are received here
1133 * in physical page order. The page is added to the callers and
1134 * list and the list head then moves forward. From the callers
1135 * perspective, the linked list is ordered by page number in
1136 * some conditions. This is useful for IO devices that can
1137 * merge IO requests if the physical pages are ordered
1138 * properly.
1139 */
1140 if (likely(cold == 0))
1141 list_add(&page->lru, list);
1142 else
1143 list_add_tail(&page->lru, list);
1144 if (IS_ENABLED(CONFIG_CMA)) {
1145 mt = get_pageblock_migratetype(page);
1146 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1147 mt = migratetype;
1148 }
1149 set_freepage_migratetype(page, mt);
1150 list = &page->lru;
1151 if (is_migrate_cma(mt))
1152 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1153 -(1 << order));
1154 }
1155 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1156 spin_unlock(&zone->lock);
1157 return i;
1158 }
1159
1160 #ifdef CONFIG_NUMA
1161 /*
1162 * Called from the vmstat counter updater to drain pagesets of this
1163 * currently executing processor on remote nodes after they have
1164 * expired.
1165 *
1166 * Note that this function must be called with the thread pinned to
1167 * a single processor.
1168 */
1169 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1170 {
1171 unsigned long flags;
1172 int to_drain;
1173
1174 local_irq_save(flags);
1175 if (pcp->count >= pcp->batch)
1176 to_drain = pcp->batch;
1177 else
1178 to_drain = pcp->count;
1179 if (to_drain > 0) {
1180 free_pcppages_bulk(zone, to_drain, pcp);
1181 pcp->count -= to_drain;
1182 }
1183 local_irq_restore(flags);
1184 }
1185 #endif
1186
1187 /*
1188 * Drain pages of the indicated processor.
1189 *
1190 * The processor must either be the current processor and the
1191 * thread pinned to the current processor or a processor that
1192 * is not online.
1193 */
1194 static void drain_pages(unsigned int cpu)
1195 {
1196 unsigned long flags;
1197 struct zone *zone;
1198
1199 for_each_populated_zone(zone) {
1200 struct per_cpu_pageset *pset;
1201 struct per_cpu_pages *pcp;
1202
1203 local_irq_save(flags);
1204 pset = per_cpu_ptr(zone->pageset, cpu);
1205
1206 pcp = &pset->pcp;
1207 if (pcp->count) {
1208 free_pcppages_bulk(zone, pcp->count, pcp);
1209 pcp->count = 0;
1210 }
1211 local_irq_restore(flags);
1212 }
1213 }
1214
1215 /*
1216 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1217 */
1218 void drain_local_pages(void *arg)
1219 {
1220 drain_pages(smp_processor_id());
1221 }
1222
1223 /*
1224 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1225 *
1226 * Note that this code is protected against sending an IPI to an offline
1227 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1228 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1229 * nothing keeps CPUs from showing up after we populated the cpumask and
1230 * before the call to on_each_cpu_mask().
1231 */
1232 void drain_all_pages(void)
1233 {
1234 int cpu;
1235 struct per_cpu_pageset *pcp;
1236 struct zone *zone;
1237
1238 /*
1239 * Allocate in the BSS so we wont require allocation in
1240 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1241 */
1242 static cpumask_t cpus_with_pcps;
1243
1244 /*
1245 * We don't care about racing with CPU hotplug event
1246 * as offline notification will cause the notified
1247 * cpu to drain that CPU pcps and on_each_cpu_mask
1248 * disables preemption as part of its processing
1249 */
1250 for_each_online_cpu(cpu) {
1251 bool has_pcps = false;
1252 for_each_populated_zone(zone) {
1253 pcp = per_cpu_ptr(zone->pageset, cpu);
1254 if (pcp->pcp.count) {
1255 has_pcps = true;
1256 break;
1257 }
1258 }
1259 if (has_pcps)
1260 cpumask_set_cpu(cpu, &cpus_with_pcps);
1261 else
1262 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1263 }
1264 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1265 }
1266
1267 #ifdef CONFIG_HIBERNATION
1268
1269 void mark_free_pages(struct zone *zone)
1270 {
1271 unsigned long pfn, max_zone_pfn;
1272 unsigned long flags;
1273 int order, t;
1274 struct list_head *curr;
1275
1276 if (!zone->spanned_pages)
1277 return;
1278
1279 spin_lock_irqsave(&zone->lock, flags);
1280
1281 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1282 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1283 if (pfn_valid(pfn)) {
1284 struct page *page = pfn_to_page(pfn);
1285
1286 if (!swsusp_page_is_forbidden(page))
1287 swsusp_unset_page_free(page);
1288 }
1289
1290 for_each_migratetype_order(order, t) {
1291 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1292 unsigned long i;
1293
1294 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1295 for (i = 0; i < (1UL << order); i++)
1296 swsusp_set_page_free(pfn_to_page(pfn + i));
1297 }
1298 }
1299 spin_unlock_irqrestore(&zone->lock, flags);
1300 }
1301 #endif /* CONFIG_PM */
1302
1303 /*
1304 * Free a 0-order page
1305 * cold == 1 ? free a cold page : free a hot page
1306 */
1307 void free_hot_cold_page(struct page *page, int cold)
1308 {
1309 struct zone *zone = page_zone(page);
1310 struct per_cpu_pages *pcp;
1311 unsigned long flags;
1312 int migratetype;
1313 int wasMlocked = __TestClearPageMlocked(page);
1314
1315 if (!free_pages_prepare(page, 0))
1316 return;
1317
1318 migratetype = get_pageblock_migratetype(page);
1319 set_freepage_migratetype(page, migratetype);
1320 local_irq_save(flags);
1321 if (unlikely(wasMlocked))
1322 free_page_mlock(page);
1323 __count_vm_event(PGFREE);
1324
1325 /*
1326 * We only track unmovable, reclaimable and movable on pcp lists.
1327 * Free ISOLATE pages back to the allocator because they are being
1328 * offlined but treat RESERVE as movable pages so we can get those
1329 * areas back if necessary. Otherwise, we may have to free
1330 * excessively into the page allocator
1331 */
1332 if (migratetype >= MIGRATE_PCPTYPES) {
1333 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1334 free_one_page(zone, page, 0, migratetype);
1335 goto out;
1336 }
1337 migratetype = MIGRATE_MOVABLE;
1338 }
1339
1340 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1341 if (cold)
1342 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1343 else
1344 list_add(&page->lru, &pcp->lists[migratetype]);
1345 pcp->count++;
1346 if (pcp->count >= pcp->high) {
1347 free_pcppages_bulk(zone, pcp->batch, pcp);
1348 pcp->count -= pcp->batch;
1349 }
1350
1351 out:
1352 local_irq_restore(flags);
1353 }
1354
1355 /*
1356 * Free a list of 0-order pages
1357 */
1358 void free_hot_cold_page_list(struct list_head *list, int cold)
1359 {
1360 struct page *page, *next;
1361
1362 list_for_each_entry_safe(page, next, list, lru) {
1363 trace_mm_page_free_batched(page, cold);
1364 free_hot_cold_page(page, cold);
1365 }
1366 }
1367
1368 /*
1369 * split_page takes a non-compound higher-order page, and splits it into
1370 * n (1<<order) sub-pages: page[0..n]
1371 * Each sub-page must be freed individually.
1372 *
1373 * Note: this is probably too low level an operation for use in drivers.
1374 * Please consult with lkml before using this in your driver.
1375 */
1376 void split_page(struct page *page, unsigned int order)
1377 {
1378 int i;
1379
1380 VM_BUG_ON(PageCompound(page));
1381 VM_BUG_ON(!page_count(page));
1382
1383 #ifdef CONFIG_KMEMCHECK
1384 /*
1385 * Split shadow pages too, because free(page[0]) would
1386 * otherwise free the whole shadow.
1387 */
1388 if (kmemcheck_page_is_tracked(page))
1389 split_page(virt_to_page(page[0].shadow), order);
1390 #endif
1391
1392 for (i = 1; i < (1 << order); i++)
1393 set_page_refcounted(page + i);
1394 }
1395
1396 /*
1397 * Similar to the split_page family of functions except that the page
1398 * required at the given order and being isolated now to prevent races
1399 * with parallel allocators
1400 */
1401 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1402 {
1403 unsigned int order;
1404 unsigned long watermark;
1405 struct zone *zone;
1406 int mt;
1407
1408 BUG_ON(!PageBuddy(page));
1409
1410 zone = page_zone(page);
1411 order = page_order(page);
1412
1413 /* Obey watermarks as if the page was being allocated */
1414 watermark = low_wmark_pages(zone) + (1 << order);
1415 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1416 return 0;
1417
1418 /* Remove page from free list */
1419 list_del(&page->lru);
1420 zone->free_area[order].nr_free--;
1421 rmv_page_order(page);
1422
1423 mt = get_pageblock_migratetype(page);
1424 if (unlikely(mt != MIGRATE_ISOLATE))
1425 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1426
1427 if (alloc_order != order)
1428 expand(zone, page, alloc_order, order,
1429 &zone->free_area[order], migratetype);
1430
1431 /* Set the pageblock if the captured page is at least a pageblock */
1432 if (order >= pageblock_order - 1) {
1433 struct page *endpage = page + (1 << order) - 1;
1434 for (; page < endpage; page += pageblock_nr_pages) {
1435 int mt = get_pageblock_migratetype(page);
1436 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1437 set_pageblock_migratetype(page,
1438 MIGRATE_MOVABLE);
1439 }
1440 }
1441
1442 return 1UL << order;
1443 }
1444
1445 /*
1446 * Similar to split_page except the page is already free. As this is only
1447 * being used for migration, the migratetype of the block also changes.
1448 * As this is called with interrupts disabled, the caller is responsible
1449 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1450 * are enabled.
1451 *
1452 * Note: this is probably too low level an operation for use in drivers.
1453 * Please consult with lkml before using this in your driver.
1454 */
1455 int split_free_page(struct page *page)
1456 {
1457 unsigned int order;
1458 int nr_pages;
1459
1460 BUG_ON(!PageBuddy(page));
1461 order = page_order(page);
1462
1463 nr_pages = capture_free_page(page, order, 0);
1464 if (!nr_pages)
1465 return 0;
1466
1467 /* Split into individual pages */
1468 set_page_refcounted(page);
1469 split_page(page, order);
1470 return nr_pages;
1471 }
1472
1473 /*
1474 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1475 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1476 * or two.
1477 */
1478 static inline
1479 struct page *buffered_rmqueue(struct zone *preferred_zone,
1480 struct zone *zone, int order, gfp_t gfp_flags,
1481 int migratetype)
1482 {
1483 unsigned long flags;
1484 struct page *page;
1485 int cold = !!(gfp_flags & __GFP_COLD);
1486
1487 again:
1488 if (likely(order == 0)) {
1489 struct per_cpu_pages *pcp;
1490 struct list_head *list;
1491
1492 local_irq_save(flags);
1493 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1494 list = &pcp->lists[migratetype];
1495 if (list_empty(list)) {
1496 pcp->count += rmqueue_bulk(zone, 0,
1497 pcp->batch, list,
1498 migratetype, cold);
1499 if (unlikely(list_empty(list)))
1500 goto failed;
1501 }
1502
1503 if (cold)
1504 page = list_entry(list->prev, struct page, lru);
1505 else
1506 page = list_entry(list->next, struct page, lru);
1507
1508 list_del(&page->lru);
1509 pcp->count--;
1510 } else {
1511 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1512 /*
1513 * __GFP_NOFAIL is not to be used in new code.
1514 *
1515 * All __GFP_NOFAIL callers should be fixed so that they
1516 * properly detect and handle allocation failures.
1517 *
1518 * We most definitely don't want callers attempting to
1519 * allocate greater than order-1 page units with
1520 * __GFP_NOFAIL.
1521 */
1522 WARN_ON_ONCE(order > 1);
1523 }
1524 spin_lock_irqsave(&zone->lock, flags);
1525 page = __rmqueue(zone, order, migratetype);
1526 spin_unlock(&zone->lock);
1527 if (!page)
1528 goto failed;
1529 __mod_zone_freepage_state(zone, -(1 << order),
1530 get_pageblock_migratetype(page));
1531 }
1532
1533 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1534 zone_statistics(preferred_zone, zone, gfp_flags);
1535 local_irq_restore(flags);
1536
1537 VM_BUG_ON(bad_range(zone, page));
1538 if (prep_new_page(page, order, gfp_flags))
1539 goto again;
1540 return page;
1541
1542 failed:
1543 local_irq_restore(flags);
1544 return NULL;
1545 }
1546
1547 #ifdef CONFIG_FAIL_PAGE_ALLOC
1548
1549 static struct {
1550 struct fault_attr attr;
1551
1552 u32 ignore_gfp_highmem;
1553 u32 ignore_gfp_wait;
1554 u32 min_order;
1555 } fail_page_alloc = {
1556 .attr = FAULT_ATTR_INITIALIZER,
1557 .ignore_gfp_wait = 1,
1558 .ignore_gfp_highmem = 1,
1559 .min_order = 1,
1560 };
1561
1562 static int __init setup_fail_page_alloc(char *str)
1563 {
1564 return setup_fault_attr(&fail_page_alloc.attr, str);
1565 }
1566 __setup("fail_page_alloc=", setup_fail_page_alloc);
1567
1568 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1569 {
1570 if (order < fail_page_alloc.min_order)
1571 return false;
1572 if (gfp_mask & __GFP_NOFAIL)
1573 return false;
1574 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1575 return false;
1576 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1577 return false;
1578
1579 return should_fail(&fail_page_alloc.attr, 1 << order);
1580 }
1581
1582 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1583
1584 static int __init fail_page_alloc_debugfs(void)
1585 {
1586 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1587 struct dentry *dir;
1588
1589 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1590 &fail_page_alloc.attr);
1591 if (IS_ERR(dir))
1592 return PTR_ERR(dir);
1593
1594 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1595 &fail_page_alloc.ignore_gfp_wait))
1596 goto fail;
1597 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1598 &fail_page_alloc.ignore_gfp_highmem))
1599 goto fail;
1600 if (!debugfs_create_u32("min-order", mode, dir,
1601 &fail_page_alloc.min_order))
1602 goto fail;
1603
1604 return 0;
1605 fail:
1606 debugfs_remove_recursive(dir);
1607
1608 return -ENOMEM;
1609 }
1610
1611 late_initcall(fail_page_alloc_debugfs);
1612
1613 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1614
1615 #else /* CONFIG_FAIL_PAGE_ALLOC */
1616
1617 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1618 {
1619 return false;
1620 }
1621
1622 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1623
1624 /*
1625 * Return true if free pages are above 'mark'. This takes into account the order
1626 * of the allocation.
1627 */
1628 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1629 int classzone_idx, int alloc_flags, long free_pages)
1630 {
1631 /* free_pages my go negative - that's OK */
1632 long min = mark;
1633 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1634 int o;
1635
1636 free_pages -= (1 << order) - 1;
1637 if (alloc_flags & ALLOC_HIGH)
1638 min -= min / 2;
1639 if (alloc_flags & ALLOC_HARDER)
1640 min -= min / 4;
1641 #ifdef CONFIG_CMA
1642 /* If allocation can't use CMA areas don't use free CMA pages */
1643 if (!(alloc_flags & ALLOC_CMA))
1644 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1645 #endif
1646 if (free_pages <= min + lowmem_reserve)
1647 return false;
1648 for (o = 0; o < order; o++) {
1649 /* At the next order, this order's pages become unavailable */
1650 free_pages -= z->free_area[o].nr_free << o;
1651
1652 /* Require fewer higher order pages to be free */
1653 min >>= 1;
1654
1655 if (free_pages <= min)
1656 return false;
1657 }
1658 return true;
1659 }
1660
1661 #ifdef CONFIG_MEMORY_ISOLATION
1662 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1663 {
1664 if (unlikely(zone->nr_pageblock_isolate))
1665 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1666 return 0;
1667 }
1668 #else
1669 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1670 {
1671 return 0;
1672 }
1673 #endif
1674
1675 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676 int classzone_idx, int alloc_flags)
1677 {
1678 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1679 zone_page_state(z, NR_FREE_PAGES));
1680 }
1681
1682 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1683 int classzone_idx, int alloc_flags)
1684 {
1685 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1686
1687 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1688 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1689
1690 /*
1691 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1692 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1693 * sleep although it could do so. But this is more desirable for memory
1694 * hotplug than sleeping which can cause a livelock in the direct
1695 * reclaim path.
1696 */
1697 free_pages -= nr_zone_isolate_freepages(z);
1698 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1699 free_pages);
1700 }
1701
1702 #ifdef CONFIG_NUMA
1703 /*
1704 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1705 * skip over zones that are not allowed by the cpuset, or that have
1706 * been recently (in last second) found to be nearly full. See further
1707 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1708 * that have to skip over a lot of full or unallowed zones.
1709 *
1710 * If the zonelist cache is present in the passed in zonelist, then
1711 * returns a pointer to the allowed node mask (either the current
1712 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1713 *
1714 * If the zonelist cache is not available for this zonelist, does
1715 * nothing and returns NULL.
1716 *
1717 * If the fullzones BITMAP in the zonelist cache is stale (more than
1718 * a second since last zap'd) then we zap it out (clear its bits.)
1719 *
1720 * We hold off even calling zlc_setup, until after we've checked the
1721 * first zone in the zonelist, on the theory that most allocations will
1722 * be satisfied from that first zone, so best to examine that zone as
1723 * quickly as we can.
1724 */
1725 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1726 {
1727 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1728 nodemask_t *allowednodes; /* zonelist_cache approximation */
1729
1730 zlc = zonelist->zlcache_ptr;
1731 if (!zlc)
1732 return NULL;
1733
1734 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1735 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1736 zlc->last_full_zap = jiffies;
1737 }
1738
1739 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1740 &cpuset_current_mems_allowed :
1741 &node_states[N_HIGH_MEMORY];
1742 return allowednodes;
1743 }
1744
1745 /*
1746 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1747 * if it is worth looking at further for free memory:
1748 * 1) Check that the zone isn't thought to be full (doesn't have its
1749 * bit set in the zonelist_cache fullzones BITMAP).
1750 * 2) Check that the zones node (obtained from the zonelist_cache
1751 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1752 * Return true (non-zero) if zone is worth looking at further, or
1753 * else return false (zero) if it is not.
1754 *
1755 * This check -ignores- the distinction between various watermarks,
1756 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1757 * found to be full for any variation of these watermarks, it will
1758 * be considered full for up to one second by all requests, unless
1759 * we are so low on memory on all allowed nodes that we are forced
1760 * into the second scan of the zonelist.
1761 *
1762 * In the second scan we ignore this zonelist cache and exactly
1763 * apply the watermarks to all zones, even it is slower to do so.
1764 * We are low on memory in the second scan, and should leave no stone
1765 * unturned looking for a free page.
1766 */
1767 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1768 nodemask_t *allowednodes)
1769 {
1770 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1771 int i; /* index of *z in zonelist zones */
1772 int n; /* node that zone *z is on */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return 1;
1777
1778 i = z - zonelist->_zonerefs;
1779 n = zlc->z_to_n[i];
1780
1781 /* This zone is worth trying if it is allowed but not full */
1782 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1783 }
1784
1785 /*
1786 * Given 'z' scanning a zonelist, set the corresponding bit in
1787 * zlc->fullzones, so that subsequent attempts to allocate a page
1788 * from that zone don't waste time re-examining it.
1789 */
1790 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1791 {
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793 int i; /* index of *z in zonelist zones */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 i = z - zonelist->_zonerefs;
1800
1801 set_bit(i, zlc->fullzones);
1802 }
1803
1804 /*
1805 * clear all zones full, called after direct reclaim makes progress so that
1806 * a zone that was recently full is not skipped over for up to a second
1807 */
1808 static void zlc_clear_zones_full(struct zonelist *zonelist)
1809 {
1810 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1811
1812 zlc = zonelist->zlcache_ptr;
1813 if (!zlc)
1814 return;
1815
1816 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1817 }
1818
1819 #else /* CONFIG_NUMA */
1820
1821 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1822 {
1823 return NULL;
1824 }
1825
1826 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1827 nodemask_t *allowednodes)
1828 {
1829 return 1;
1830 }
1831
1832 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1833 {
1834 }
1835
1836 static void zlc_clear_zones_full(struct zonelist *zonelist)
1837 {
1838 }
1839 #endif /* CONFIG_NUMA */
1840
1841 /*
1842 * get_page_from_freelist goes through the zonelist trying to allocate
1843 * a page.
1844 */
1845 static struct page *
1846 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1847 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1848 struct zone *preferred_zone, int migratetype)
1849 {
1850 struct zoneref *z;
1851 struct page *page = NULL;
1852 int classzone_idx;
1853 struct zone *zone;
1854 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1855 int zlc_active = 0; /* set if using zonelist_cache */
1856 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1857
1858 classzone_idx = zone_idx(preferred_zone);
1859 zonelist_scan:
1860 /*
1861 * Scan zonelist, looking for a zone with enough free.
1862 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1863 */
1864 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1865 high_zoneidx, nodemask) {
1866 if (NUMA_BUILD && zlc_active &&
1867 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1868 continue;
1869 if ((alloc_flags & ALLOC_CPUSET) &&
1870 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1871 continue;
1872 /*
1873 * When allocating a page cache page for writing, we
1874 * want to get it from a zone that is within its dirty
1875 * limit, such that no single zone holds more than its
1876 * proportional share of globally allowed dirty pages.
1877 * The dirty limits take into account the zone's
1878 * lowmem reserves and high watermark so that kswapd
1879 * should be able to balance it without having to
1880 * write pages from its LRU list.
1881 *
1882 * This may look like it could increase pressure on
1883 * lower zones by failing allocations in higher zones
1884 * before they are full. But the pages that do spill
1885 * over are limited as the lower zones are protected
1886 * by this very same mechanism. It should not become
1887 * a practical burden to them.
1888 *
1889 * XXX: For now, allow allocations to potentially
1890 * exceed the per-zone dirty limit in the slowpath
1891 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1892 * which is important when on a NUMA setup the allowed
1893 * zones are together not big enough to reach the
1894 * global limit. The proper fix for these situations
1895 * will require awareness of zones in the
1896 * dirty-throttling and the flusher threads.
1897 */
1898 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1899 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1900 goto this_zone_full;
1901
1902 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1903 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1904 unsigned long mark;
1905 int ret;
1906
1907 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1908 if (zone_watermark_ok(zone, order, mark,
1909 classzone_idx, alloc_flags))
1910 goto try_this_zone;
1911
1912 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1913 /*
1914 * we do zlc_setup if there are multiple nodes
1915 * and before considering the first zone allowed
1916 * by the cpuset.
1917 */
1918 allowednodes = zlc_setup(zonelist, alloc_flags);
1919 zlc_active = 1;
1920 did_zlc_setup = 1;
1921 }
1922
1923 if (zone_reclaim_mode == 0)
1924 goto this_zone_full;
1925
1926 /*
1927 * As we may have just activated ZLC, check if the first
1928 * eligible zone has failed zone_reclaim recently.
1929 */
1930 if (NUMA_BUILD && zlc_active &&
1931 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1932 continue;
1933
1934 ret = zone_reclaim(zone, gfp_mask, order);
1935 switch (ret) {
1936 case ZONE_RECLAIM_NOSCAN:
1937 /* did not scan */
1938 continue;
1939 case ZONE_RECLAIM_FULL:
1940 /* scanned but unreclaimable */
1941 continue;
1942 default:
1943 /* did we reclaim enough */
1944 if (!zone_watermark_ok(zone, order, mark,
1945 classzone_idx, alloc_flags))
1946 goto this_zone_full;
1947 }
1948 }
1949
1950 try_this_zone:
1951 page = buffered_rmqueue(preferred_zone, zone, order,
1952 gfp_mask, migratetype);
1953 if (page)
1954 break;
1955 this_zone_full:
1956 if (NUMA_BUILD)
1957 zlc_mark_zone_full(zonelist, z);
1958 }
1959
1960 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1961 /* Disable zlc cache for second zonelist scan */
1962 zlc_active = 0;
1963 goto zonelist_scan;
1964 }
1965
1966 if (page)
1967 /*
1968 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1969 * necessary to allocate the page. The expectation is
1970 * that the caller is taking steps that will free more
1971 * memory. The caller should avoid the page being used
1972 * for !PFMEMALLOC purposes.
1973 */
1974 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1975
1976 return page;
1977 }
1978
1979 /*
1980 * Large machines with many possible nodes should not always dump per-node
1981 * meminfo in irq context.
1982 */
1983 static inline bool should_suppress_show_mem(void)
1984 {
1985 bool ret = false;
1986
1987 #if NODES_SHIFT > 8
1988 ret = in_interrupt();
1989 #endif
1990 return ret;
1991 }
1992
1993 static DEFINE_RATELIMIT_STATE(nopage_rs,
1994 DEFAULT_RATELIMIT_INTERVAL,
1995 DEFAULT_RATELIMIT_BURST);
1996
1997 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1998 {
1999 unsigned int filter = SHOW_MEM_FILTER_NODES;
2000
2001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2002 debug_guardpage_minorder() > 0)
2003 return;
2004
2005 /*
2006 * This documents exceptions given to allocations in certain
2007 * contexts that are allowed to allocate outside current's set
2008 * of allowed nodes.
2009 */
2010 if (!(gfp_mask & __GFP_NOMEMALLOC))
2011 if (test_thread_flag(TIF_MEMDIE) ||
2012 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2013 filter &= ~SHOW_MEM_FILTER_NODES;
2014 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2015 filter &= ~SHOW_MEM_FILTER_NODES;
2016
2017 if (fmt) {
2018 struct va_format vaf;
2019 va_list args;
2020
2021 va_start(args, fmt);
2022
2023 vaf.fmt = fmt;
2024 vaf.va = &args;
2025
2026 pr_warn("%pV", &vaf);
2027
2028 va_end(args);
2029 }
2030
2031 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2032 current->comm, order, gfp_mask);
2033
2034 dump_stack();
2035 if (!should_suppress_show_mem())
2036 show_mem(filter);
2037 }
2038
2039 static inline int
2040 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2041 unsigned long did_some_progress,
2042 unsigned long pages_reclaimed)
2043 {
2044 /* Do not loop if specifically requested */
2045 if (gfp_mask & __GFP_NORETRY)
2046 return 0;
2047
2048 /* Always retry if specifically requested */
2049 if (gfp_mask & __GFP_NOFAIL)
2050 return 1;
2051
2052 /*
2053 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2054 * making forward progress without invoking OOM. Suspend also disables
2055 * storage devices so kswapd will not help. Bail if we are suspending.
2056 */
2057 if (!did_some_progress && pm_suspended_storage())
2058 return 0;
2059
2060 /*
2061 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2062 * means __GFP_NOFAIL, but that may not be true in other
2063 * implementations.
2064 */
2065 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2066 return 1;
2067
2068 /*
2069 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2070 * specified, then we retry until we no longer reclaim any pages
2071 * (above), or we've reclaimed an order of pages at least as
2072 * large as the allocation's order. In both cases, if the
2073 * allocation still fails, we stop retrying.
2074 */
2075 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2076 return 1;
2077
2078 return 0;
2079 }
2080
2081 static inline struct page *
2082 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2083 struct zonelist *zonelist, enum zone_type high_zoneidx,
2084 nodemask_t *nodemask, struct zone *preferred_zone,
2085 int migratetype)
2086 {
2087 struct page *page;
2088
2089 /* Acquire the OOM killer lock for the zones in zonelist */
2090 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2091 schedule_timeout_uninterruptible(1);
2092 return NULL;
2093 }
2094
2095 /*
2096 * Go through the zonelist yet one more time, keep very high watermark
2097 * here, this is only to catch a parallel oom killing, we must fail if
2098 * we're still under heavy pressure.
2099 */
2100 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2101 order, zonelist, high_zoneidx,
2102 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2103 preferred_zone, migratetype);
2104 if (page)
2105 goto out;
2106
2107 if (!(gfp_mask & __GFP_NOFAIL)) {
2108 /* The OOM killer will not help higher order allocs */
2109 if (order > PAGE_ALLOC_COSTLY_ORDER)
2110 goto out;
2111 /* The OOM killer does not needlessly kill tasks for lowmem */
2112 if (high_zoneidx < ZONE_NORMAL)
2113 goto out;
2114 /*
2115 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2116 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2117 * The caller should handle page allocation failure by itself if
2118 * it specifies __GFP_THISNODE.
2119 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2120 */
2121 if (gfp_mask & __GFP_THISNODE)
2122 goto out;
2123 }
2124 /* Exhausted what can be done so it's blamo time */
2125 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2126
2127 out:
2128 clear_zonelist_oom(zonelist, gfp_mask);
2129 return page;
2130 }
2131
2132 #ifdef CONFIG_COMPACTION
2133 /* Try memory compaction for high-order allocations before reclaim */
2134 static struct page *
2135 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2136 struct zonelist *zonelist, enum zone_type high_zoneidx,
2137 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2138 int migratetype, bool sync_migration,
2139 bool *contended_compaction, bool *deferred_compaction,
2140 unsigned long *did_some_progress)
2141 {
2142 struct page *page = NULL;
2143
2144 if (!order)
2145 return NULL;
2146
2147 if (compaction_deferred(preferred_zone, order)) {
2148 *deferred_compaction = true;
2149 return NULL;
2150 }
2151
2152 current->flags |= PF_MEMALLOC;
2153 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2154 nodemask, sync_migration,
2155 contended_compaction, &page);
2156 current->flags &= ~PF_MEMALLOC;
2157
2158 /* If compaction captured a page, prep and use it */
2159 if (page) {
2160 prep_new_page(page, order, gfp_mask);
2161 goto got_page;
2162 }
2163
2164 if (*did_some_progress != COMPACT_SKIPPED) {
2165 /* Page migration frees to the PCP lists but we want merging */
2166 drain_pages(get_cpu());
2167 put_cpu();
2168
2169 page = get_page_from_freelist(gfp_mask, nodemask,
2170 order, zonelist, high_zoneidx,
2171 alloc_flags & ~ALLOC_NO_WATERMARKS,
2172 preferred_zone, migratetype);
2173 if (page) {
2174 got_page:
2175 preferred_zone->compact_blockskip_flush = false;
2176 preferred_zone->compact_considered = 0;
2177 preferred_zone->compact_defer_shift = 0;
2178 if (order >= preferred_zone->compact_order_failed)
2179 preferred_zone->compact_order_failed = order + 1;
2180 count_vm_event(COMPACTSUCCESS);
2181 return page;
2182 }
2183
2184 /*
2185 * It's bad if compaction run occurs and fails.
2186 * The most likely reason is that pages exist,
2187 * but not enough to satisfy watermarks.
2188 */
2189 count_vm_event(COMPACTFAIL);
2190
2191 /*
2192 * As async compaction considers a subset of pageblocks, only
2193 * defer if the failure was a sync compaction failure.
2194 */
2195 if (sync_migration)
2196 defer_compaction(preferred_zone, order);
2197
2198 cond_resched();
2199 }
2200
2201 return NULL;
2202 }
2203 #else
2204 static inline struct page *
2205 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2206 struct zonelist *zonelist, enum zone_type high_zoneidx,
2207 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2208 int migratetype, bool sync_migration,
2209 bool *contended_compaction, bool *deferred_compaction,
2210 unsigned long *did_some_progress)
2211 {
2212 return NULL;
2213 }
2214 #endif /* CONFIG_COMPACTION */
2215
2216 /* Perform direct synchronous page reclaim */
2217 static int
2218 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2219 nodemask_t *nodemask)
2220 {
2221 struct reclaim_state reclaim_state;
2222 int progress;
2223
2224 cond_resched();
2225
2226 /* We now go into synchronous reclaim */
2227 cpuset_memory_pressure_bump();
2228 current->flags |= PF_MEMALLOC;
2229 lockdep_set_current_reclaim_state(gfp_mask);
2230 reclaim_state.reclaimed_slab = 0;
2231 current->reclaim_state = &reclaim_state;
2232
2233 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2234
2235 current->reclaim_state = NULL;
2236 lockdep_clear_current_reclaim_state();
2237 current->flags &= ~PF_MEMALLOC;
2238
2239 cond_resched();
2240
2241 return progress;
2242 }
2243
2244 /* The really slow allocator path where we enter direct reclaim */
2245 static inline struct page *
2246 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2247 struct zonelist *zonelist, enum zone_type high_zoneidx,
2248 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2249 int migratetype, unsigned long *did_some_progress)
2250 {
2251 struct page *page = NULL;
2252 bool drained = false;
2253
2254 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2255 nodemask);
2256 if (unlikely(!(*did_some_progress)))
2257 return NULL;
2258
2259 /* After successful reclaim, reconsider all zones for allocation */
2260 if (NUMA_BUILD)
2261 zlc_clear_zones_full(zonelist);
2262
2263 retry:
2264 page = get_page_from_freelist(gfp_mask, nodemask, order,
2265 zonelist, high_zoneidx,
2266 alloc_flags & ~ALLOC_NO_WATERMARKS,
2267 preferred_zone, migratetype);
2268
2269 /*
2270 * If an allocation failed after direct reclaim, it could be because
2271 * pages are pinned on the per-cpu lists. Drain them and try again
2272 */
2273 if (!page && !drained) {
2274 drain_all_pages();
2275 drained = true;
2276 goto retry;
2277 }
2278
2279 return page;
2280 }
2281
2282 /*
2283 * This is called in the allocator slow-path if the allocation request is of
2284 * sufficient urgency to ignore watermarks and take other desperate measures
2285 */
2286 static inline struct page *
2287 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2288 struct zonelist *zonelist, enum zone_type high_zoneidx,
2289 nodemask_t *nodemask, struct zone *preferred_zone,
2290 int migratetype)
2291 {
2292 struct page *page;
2293
2294 do {
2295 page = get_page_from_freelist(gfp_mask, nodemask, order,
2296 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2297 preferred_zone, migratetype);
2298
2299 if (!page && gfp_mask & __GFP_NOFAIL)
2300 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2301 } while (!page && (gfp_mask & __GFP_NOFAIL));
2302
2303 return page;
2304 }
2305
2306 static inline
2307 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2308 enum zone_type high_zoneidx,
2309 enum zone_type classzone_idx)
2310 {
2311 struct zoneref *z;
2312 struct zone *zone;
2313
2314 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2315 wakeup_kswapd(zone, order, classzone_idx);
2316 }
2317
2318 static inline int
2319 gfp_to_alloc_flags(gfp_t gfp_mask)
2320 {
2321 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2322 const gfp_t wait = gfp_mask & __GFP_WAIT;
2323
2324 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2325 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2326
2327 /*
2328 * The caller may dip into page reserves a bit more if the caller
2329 * cannot run direct reclaim, or if the caller has realtime scheduling
2330 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2331 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2332 */
2333 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2334
2335 if (!wait) {
2336 /*
2337 * Not worth trying to allocate harder for
2338 * __GFP_NOMEMALLOC even if it can't schedule.
2339 */
2340 if (!(gfp_mask & __GFP_NOMEMALLOC))
2341 alloc_flags |= ALLOC_HARDER;
2342 /*
2343 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2344 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2345 */
2346 alloc_flags &= ~ALLOC_CPUSET;
2347 } else if (unlikely(rt_task(current)) && !in_interrupt())
2348 alloc_flags |= ALLOC_HARDER;
2349
2350 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2351 if (gfp_mask & __GFP_MEMALLOC)
2352 alloc_flags |= ALLOC_NO_WATERMARKS;
2353 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2354 alloc_flags |= ALLOC_NO_WATERMARKS;
2355 else if (!in_interrupt() &&
2356 ((current->flags & PF_MEMALLOC) ||
2357 unlikely(test_thread_flag(TIF_MEMDIE))))
2358 alloc_flags |= ALLOC_NO_WATERMARKS;
2359 }
2360 #ifdef CONFIG_CMA
2361 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2362 alloc_flags |= ALLOC_CMA;
2363 #endif
2364 return alloc_flags;
2365 }
2366
2367 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2368 {
2369 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2370 }
2371
2372 static inline struct page *
2373 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2374 struct zonelist *zonelist, enum zone_type high_zoneidx,
2375 nodemask_t *nodemask, struct zone *preferred_zone,
2376 int migratetype)
2377 {
2378 const gfp_t wait = gfp_mask & __GFP_WAIT;
2379 struct page *page = NULL;
2380 int alloc_flags;
2381 unsigned long pages_reclaimed = 0;
2382 unsigned long did_some_progress;
2383 bool sync_migration = false;
2384 bool deferred_compaction = false;
2385 bool contended_compaction = false;
2386
2387 /*
2388 * In the slowpath, we sanity check order to avoid ever trying to
2389 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2390 * be using allocators in order of preference for an area that is
2391 * too large.
2392 */
2393 if (order >= MAX_ORDER) {
2394 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2395 return NULL;
2396 }
2397
2398 /*
2399 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2400 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2401 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2402 * using a larger set of nodes after it has established that the
2403 * allowed per node queues are empty and that nodes are
2404 * over allocated.
2405 */
2406 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2407 goto nopage;
2408
2409 restart:
2410 wake_all_kswapd(order, zonelist, high_zoneidx,
2411 zone_idx(preferred_zone));
2412
2413 /*
2414 * OK, we're below the kswapd watermark and have kicked background
2415 * reclaim. Now things get more complex, so set up alloc_flags according
2416 * to how we want to proceed.
2417 */
2418 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2419
2420 /*
2421 * Find the true preferred zone if the allocation is unconstrained by
2422 * cpusets.
2423 */
2424 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2425 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2426 &preferred_zone);
2427
2428 rebalance:
2429 /* This is the last chance, in general, before the goto nopage. */
2430 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2431 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2432 preferred_zone, migratetype);
2433 if (page)
2434 goto got_pg;
2435
2436 /* Allocate without watermarks if the context allows */
2437 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2438 /*
2439 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2440 * the allocation is high priority and these type of
2441 * allocations are system rather than user orientated
2442 */
2443 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2444
2445 page = __alloc_pages_high_priority(gfp_mask, order,
2446 zonelist, high_zoneidx, nodemask,
2447 preferred_zone, migratetype);
2448 if (page) {
2449 goto got_pg;
2450 }
2451 }
2452
2453 /* Atomic allocations - we can't balance anything */
2454 if (!wait)
2455 goto nopage;
2456
2457 /* Avoid recursion of direct reclaim */
2458 if (current->flags & PF_MEMALLOC)
2459 goto nopage;
2460
2461 /* Avoid allocations with no watermarks from looping endlessly */
2462 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2463 goto nopage;
2464
2465 /*
2466 * Try direct compaction. The first pass is asynchronous. Subsequent
2467 * attempts after direct reclaim are synchronous
2468 */
2469 page = __alloc_pages_direct_compact(gfp_mask, order,
2470 zonelist, high_zoneidx,
2471 nodemask,
2472 alloc_flags, preferred_zone,
2473 migratetype, sync_migration,
2474 &contended_compaction,
2475 &deferred_compaction,
2476 &did_some_progress);
2477 if (page)
2478 goto got_pg;
2479 sync_migration = true;
2480
2481 /*
2482 * If compaction is deferred for high-order allocations, it is because
2483 * sync compaction recently failed. In this is the case and the caller
2484 * requested a movable allocation that does not heavily disrupt the
2485 * system then fail the allocation instead of entering direct reclaim.
2486 */
2487 if ((deferred_compaction || contended_compaction) &&
2488 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2489 goto nopage;
2490
2491 /* Try direct reclaim and then allocating */
2492 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2493 zonelist, high_zoneidx,
2494 nodemask,
2495 alloc_flags, preferred_zone,
2496 migratetype, &did_some_progress);
2497 if (page)
2498 goto got_pg;
2499
2500 /*
2501 * If we failed to make any progress reclaiming, then we are
2502 * running out of options and have to consider going OOM
2503 */
2504 if (!did_some_progress) {
2505 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2506 if (oom_killer_disabled)
2507 goto nopage;
2508 /* Coredumps can quickly deplete all memory reserves */
2509 if ((current->flags & PF_DUMPCORE) &&
2510 !(gfp_mask & __GFP_NOFAIL))
2511 goto nopage;
2512 page = __alloc_pages_may_oom(gfp_mask, order,
2513 zonelist, high_zoneidx,
2514 nodemask, preferred_zone,
2515 migratetype);
2516 if (page)
2517 goto got_pg;
2518
2519 if (!(gfp_mask & __GFP_NOFAIL)) {
2520 /*
2521 * The oom killer is not called for high-order
2522 * allocations that may fail, so if no progress
2523 * is being made, there are no other options and
2524 * retrying is unlikely to help.
2525 */
2526 if (order > PAGE_ALLOC_COSTLY_ORDER)
2527 goto nopage;
2528 /*
2529 * The oom killer is not called for lowmem
2530 * allocations to prevent needlessly killing
2531 * innocent tasks.
2532 */
2533 if (high_zoneidx < ZONE_NORMAL)
2534 goto nopage;
2535 }
2536
2537 goto restart;
2538 }
2539 }
2540
2541 /* Check if we should retry the allocation */
2542 pages_reclaimed += did_some_progress;
2543 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2544 pages_reclaimed)) {
2545 /* Wait for some write requests to complete then retry */
2546 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2547 goto rebalance;
2548 } else {
2549 /*
2550 * High-order allocations do not necessarily loop after
2551 * direct reclaim and reclaim/compaction depends on compaction
2552 * being called after reclaim so call directly if necessary
2553 */
2554 page = __alloc_pages_direct_compact(gfp_mask, order,
2555 zonelist, high_zoneidx,
2556 nodemask,
2557 alloc_flags, preferred_zone,
2558 migratetype, sync_migration,
2559 &contended_compaction,
2560 &deferred_compaction,
2561 &did_some_progress);
2562 if (page)
2563 goto got_pg;
2564 }
2565
2566 nopage:
2567 warn_alloc_failed(gfp_mask, order, NULL);
2568 return page;
2569 got_pg:
2570 if (kmemcheck_enabled)
2571 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2572
2573 return page;
2574 }
2575
2576 /*
2577 * This is the 'heart' of the zoned buddy allocator.
2578 */
2579 struct page *
2580 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2581 struct zonelist *zonelist, nodemask_t *nodemask)
2582 {
2583 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2584 struct zone *preferred_zone;
2585 struct page *page = NULL;
2586 int migratetype = allocflags_to_migratetype(gfp_mask);
2587 unsigned int cpuset_mems_cookie;
2588 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2589
2590 gfp_mask &= gfp_allowed_mask;
2591
2592 lockdep_trace_alloc(gfp_mask);
2593
2594 might_sleep_if(gfp_mask & __GFP_WAIT);
2595
2596 if (should_fail_alloc_page(gfp_mask, order))
2597 return NULL;
2598
2599 /*
2600 * Check the zones suitable for the gfp_mask contain at least one
2601 * valid zone. It's possible to have an empty zonelist as a result
2602 * of GFP_THISNODE and a memoryless node
2603 */
2604 if (unlikely(!zonelist->_zonerefs->zone))
2605 return NULL;
2606
2607 retry_cpuset:
2608 cpuset_mems_cookie = get_mems_allowed();
2609
2610 /* The preferred zone is used for statistics later */
2611 first_zones_zonelist(zonelist, high_zoneidx,
2612 nodemask ? : &cpuset_current_mems_allowed,
2613 &preferred_zone);
2614 if (!preferred_zone)
2615 goto out;
2616
2617 #ifdef CONFIG_CMA
2618 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2619 alloc_flags |= ALLOC_CMA;
2620 #endif
2621 /* First allocation attempt */
2622 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2623 zonelist, high_zoneidx, alloc_flags,
2624 preferred_zone, migratetype);
2625 if (unlikely(!page))
2626 page = __alloc_pages_slowpath(gfp_mask, order,
2627 zonelist, high_zoneidx, nodemask,
2628 preferred_zone, migratetype);
2629
2630 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2631
2632 out:
2633 /*
2634 * When updating a task's mems_allowed, it is possible to race with
2635 * parallel threads in such a way that an allocation can fail while
2636 * the mask is being updated. If a page allocation is about to fail,
2637 * check if the cpuset changed during allocation and if so, retry.
2638 */
2639 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2640 goto retry_cpuset;
2641
2642 return page;
2643 }
2644 EXPORT_SYMBOL(__alloc_pages_nodemask);
2645
2646 /*
2647 * Common helper functions.
2648 */
2649 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2650 {
2651 struct page *page;
2652
2653 /*
2654 * __get_free_pages() returns a 32-bit address, which cannot represent
2655 * a highmem page
2656 */
2657 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2658
2659 page = alloc_pages(gfp_mask, order);
2660 if (!page)
2661 return 0;
2662 return (unsigned long) page_address(page);
2663 }
2664 EXPORT_SYMBOL(__get_free_pages);
2665
2666 unsigned long get_zeroed_page(gfp_t gfp_mask)
2667 {
2668 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2669 }
2670 EXPORT_SYMBOL(get_zeroed_page);
2671
2672 void __free_pages(struct page *page, unsigned int order)
2673 {
2674 if (put_page_testzero(page)) {
2675 if (order == 0)
2676 free_hot_cold_page(page, 0);
2677 else
2678 __free_pages_ok(page, order);
2679 }
2680 }
2681
2682 EXPORT_SYMBOL(__free_pages);
2683
2684 void free_pages(unsigned long addr, unsigned int order)
2685 {
2686 if (addr != 0) {
2687 VM_BUG_ON(!virt_addr_valid((void *)addr));
2688 __free_pages(virt_to_page((void *)addr), order);
2689 }
2690 }
2691
2692 EXPORT_SYMBOL(free_pages);
2693
2694 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2695 {
2696 if (addr) {
2697 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2698 unsigned long used = addr + PAGE_ALIGN(size);
2699
2700 split_page(virt_to_page((void *)addr), order);
2701 while (used < alloc_end) {
2702 free_page(used);
2703 used += PAGE_SIZE;
2704 }
2705 }
2706 return (void *)addr;
2707 }
2708
2709 /**
2710 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2711 * @size: the number of bytes to allocate
2712 * @gfp_mask: GFP flags for the allocation
2713 *
2714 * This function is similar to alloc_pages(), except that it allocates the
2715 * minimum number of pages to satisfy the request. alloc_pages() can only
2716 * allocate memory in power-of-two pages.
2717 *
2718 * This function is also limited by MAX_ORDER.
2719 *
2720 * Memory allocated by this function must be released by free_pages_exact().
2721 */
2722 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2723 {
2724 unsigned int order = get_order(size);
2725 unsigned long addr;
2726
2727 addr = __get_free_pages(gfp_mask, order);
2728 return make_alloc_exact(addr, order, size);
2729 }
2730 EXPORT_SYMBOL(alloc_pages_exact);
2731
2732 /**
2733 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2734 * pages on a node.
2735 * @nid: the preferred node ID where memory should be allocated
2736 * @size: the number of bytes to allocate
2737 * @gfp_mask: GFP flags for the allocation
2738 *
2739 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2740 * back.
2741 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2742 * but is not exact.
2743 */
2744 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2745 {
2746 unsigned order = get_order(size);
2747 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2748 if (!p)
2749 return NULL;
2750 return make_alloc_exact((unsigned long)page_address(p), order, size);
2751 }
2752 EXPORT_SYMBOL(alloc_pages_exact_nid);
2753
2754 /**
2755 * free_pages_exact - release memory allocated via alloc_pages_exact()
2756 * @virt: the value returned by alloc_pages_exact.
2757 * @size: size of allocation, same value as passed to alloc_pages_exact().
2758 *
2759 * Release the memory allocated by a previous call to alloc_pages_exact.
2760 */
2761 void free_pages_exact(void *virt, size_t size)
2762 {
2763 unsigned long addr = (unsigned long)virt;
2764 unsigned long end = addr + PAGE_ALIGN(size);
2765
2766 while (addr < end) {
2767 free_page(addr);
2768 addr += PAGE_SIZE;
2769 }
2770 }
2771 EXPORT_SYMBOL(free_pages_exact);
2772
2773 static unsigned int nr_free_zone_pages(int offset)
2774 {
2775 struct zoneref *z;
2776 struct zone *zone;
2777
2778 /* Just pick one node, since fallback list is circular */
2779 unsigned int sum = 0;
2780
2781 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2782
2783 for_each_zone_zonelist(zone, z, zonelist, offset) {
2784 unsigned long size = zone->present_pages;
2785 unsigned long high = high_wmark_pages(zone);
2786 if (size > high)
2787 sum += size - high;
2788 }
2789
2790 return sum;
2791 }
2792
2793 /*
2794 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2795 */
2796 unsigned int nr_free_buffer_pages(void)
2797 {
2798 return nr_free_zone_pages(gfp_zone(GFP_USER));
2799 }
2800 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2801
2802 /*
2803 * Amount of free RAM allocatable within all zones
2804 */
2805 unsigned int nr_free_pagecache_pages(void)
2806 {
2807 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2808 }
2809
2810 static inline void show_node(struct zone *zone)
2811 {
2812 if (NUMA_BUILD)
2813 printk("Node %d ", zone_to_nid(zone));
2814 }
2815
2816 void si_meminfo(struct sysinfo *val)
2817 {
2818 val->totalram = totalram_pages;
2819 val->sharedram = 0;
2820 val->freeram = global_page_state(NR_FREE_PAGES);
2821 val->bufferram = nr_blockdev_pages();
2822 val->totalhigh = totalhigh_pages;
2823 val->freehigh = nr_free_highpages();
2824 val->mem_unit = PAGE_SIZE;
2825 }
2826
2827 EXPORT_SYMBOL(si_meminfo);
2828
2829 #ifdef CONFIG_NUMA
2830 void si_meminfo_node(struct sysinfo *val, int nid)
2831 {
2832 pg_data_t *pgdat = NODE_DATA(nid);
2833
2834 val->totalram = pgdat->node_present_pages;
2835 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2836 #ifdef CONFIG_HIGHMEM
2837 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2838 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2839 NR_FREE_PAGES);
2840 #else
2841 val->totalhigh = 0;
2842 val->freehigh = 0;
2843 #endif
2844 val->mem_unit = PAGE_SIZE;
2845 }
2846 #endif
2847
2848 /*
2849 * Determine whether the node should be displayed or not, depending on whether
2850 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2851 */
2852 bool skip_free_areas_node(unsigned int flags, int nid)
2853 {
2854 bool ret = false;
2855 unsigned int cpuset_mems_cookie;
2856
2857 if (!(flags & SHOW_MEM_FILTER_NODES))
2858 goto out;
2859
2860 do {
2861 cpuset_mems_cookie = get_mems_allowed();
2862 ret = !node_isset(nid, cpuset_current_mems_allowed);
2863 } while (!put_mems_allowed(cpuset_mems_cookie));
2864 out:
2865 return ret;
2866 }
2867
2868 #define K(x) ((x) << (PAGE_SHIFT-10))
2869
2870 /*
2871 * Show free area list (used inside shift_scroll-lock stuff)
2872 * We also calculate the percentage fragmentation. We do this by counting the
2873 * memory on each free list with the exception of the first item on the list.
2874 * Suppresses nodes that are not allowed by current's cpuset if
2875 * SHOW_MEM_FILTER_NODES is passed.
2876 */
2877 void show_free_areas(unsigned int filter)
2878 {
2879 int cpu;
2880 struct zone *zone;
2881
2882 for_each_populated_zone(zone) {
2883 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2884 continue;
2885 show_node(zone);
2886 printk("%s per-cpu:\n", zone->name);
2887
2888 for_each_online_cpu(cpu) {
2889 struct per_cpu_pageset *pageset;
2890
2891 pageset = per_cpu_ptr(zone->pageset, cpu);
2892
2893 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2894 cpu, pageset->pcp.high,
2895 pageset->pcp.batch, pageset->pcp.count);
2896 }
2897 }
2898
2899 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2900 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2901 " unevictable:%lu"
2902 " dirty:%lu writeback:%lu unstable:%lu\n"
2903 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2904 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2905 " free_cma:%lu\n",
2906 global_page_state(NR_ACTIVE_ANON),
2907 global_page_state(NR_INACTIVE_ANON),
2908 global_page_state(NR_ISOLATED_ANON),
2909 global_page_state(NR_ACTIVE_FILE),
2910 global_page_state(NR_INACTIVE_FILE),
2911 global_page_state(NR_ISOLATED_FILE),
2912 global_page_state(NR_UNEVICTABLE),
2913 global_page_state(NR_FILE_DIRTY),
2914 global_page_state(NR_WRITEBACK),
2915 global_page_state(NR_UNSTABLE_NFS),
2916 global_page_state(NR_FREE_PAGES),
2917 global_page_state(NR_SLAB_RECLAIMABLE),
2918 global_page_state(NR_SLAB_UNRECLAIMABLE),
2919 global_page_state(NR_FILE_MAPPED),
2920 global_page_state(NR_SHMEM),
2921 global_page_state(NR_PAGETABLE),
2922 global_page_state(NR_BOUNCE),
2923 global_page_state(NR_FREE_CMA_PAGES));
2924
2925 for_each_populated_zone(zone) {
2926 int i;
2927
2928 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2929 continue;
2930 show_node(zone);
2931 printk("%s"
2932 " free:%lukB"
2933 " min:%lukB"
2934 " low:%lukB"
2935 " high:%lukB"
2936 " active_anon:%lukB"
2937 " inactive_anon:%lukB"
2938 " active_file:%lukB"
2939 " inactive_file:%lukB"
2940 " unevictable:%lukB"
2941 " isolated(anon):%lukB"
2942 " isolated(file):%lukB"
2943 " present:%lukB"
2944 " mlocked:%lukB"
2945 " dirty:%lukB"
2946 " writeback:%lukB"
2947 " mapped:%lukB"
2948 " shmem:%lukB"
2949 " slab_reclaimable:%lukB"
2950 " slab_unreclaimable:%lukB"
2951 " kernel_stack:%lukB"
2952 " pagetables:%lukB"
2953 " unstable:%lukB"
2954 " bounce:%lukB"
2955 " free_cma:%lukB"
2956 " writeback_tmp:%lukB"
2957 " pages_scanned:%lu"
2958 " all_unreclaimable? %s"
2959 "\n",
2960 zone->name,
2961 K(zone_page_state(zone, NR_FREE_PAGES)),
2962 K(min_wmark_pages(zone)),
2963 K(low_wmark_pages(zone)),
2964 K(high_wmark_pages(zone)),
2965 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2966 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2967 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2968 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2969 K(zone_page_state(zone, NR_UNEVICTABLE)),
2970 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2971 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2972 K(zone->present_pages),
2973 K(zone_page_state(zone, NR_MLOCK)),
2974 K(zone_page_state(zone, NR_FILE_DIRTY)),
2975 K(zone_page_state(zone, NR_WRITEBACK)),
2976 K(zone_page_state(zone, NR_FILE_MAPPED)),
2977 K(zone_page_state(zone, NR_SHMEM)),
2978 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2979 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2980 zone_page_state(zone, NR_KERNEL_STACK) *
2981 THREAD_SIZE / 1024,
2982 K(zone_page_state(zone, NR_PAGETABLE)),
2983 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2984 K(zone_page_state(zone, NR_BOUNCE)),
2985 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
2986 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2987 zone->pages_scanned,
2988 (zone->all_unreclaimable ? "yes" : "no")
2989 );
2990 printk("lowmem_reserve[]:");
2991 for (i = 0; i < MAX_NR_ZONES; i++)
2992 printk(" %lu", zone->lowmem_reserve[i]);
2993 printk("\n");
2994 }
2995
2996 for_each_populated_zone(zone) {
2997 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2998
2999 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3000 continue;
3001 show_node(zone);
3002 printk("%s: ", zone->name);
3003
3004 spin_lock_irqsave(&zone->lock, flags);
3005 for (order = 0; order < MAX_ORDER; order++) {
3006 nr[order] = zone->free_area[order].nr_free;
3007 total += nr[order] << order;
3008 }
3009 spin_unlock_irqrestore(&zone->lock, flags);
3010 for (order = 0; order < MAX_ORDER; order++)
3011 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3012 printk("= %lukB\n", K(total));
3013 }
3014
3015 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3016
3017 show_swap_cache_info();
3018 }
3019
3020 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3021 {
3022 zoneref->zone = zone;
3023 zoneref->zone_idx = zone_idx(zone);
3024 }
3025
3026 /*
3027 * Builds allocation fallback zone lists.
3028 *
3029 * Add all populated zones of a node to the zonelist.
3030 */
3031 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3032 int nr_zones, enum zone_type zone_type)
3033 {
3034 struct zone *zone;
3035
3036 BUG_ON(zone_type >= MAX_NR_ZONES);
3037 zone_type++;
3038
3039 do {
3040 zone_type--;
3041 zone = pgdat->node_zones + zone_type;
3042 if (populated_zone(zone)) {
3043 zoneref_set_zone(zone,
3044 &zonelist->_zonerefs[nr_zones++]);
3045 check_highest_zone(zone_type);
3046 }
3047
3048 } while (zone_type);
3049 return nr_zones;
3050 }
3051
3052
3053 /*
3054 * zonelist_order:
3055 * 0 = automatic detection of better ordering.
3056 * 1 = order by ([node] distance, -zonetype)
3057 * 2 = order by (-zonetype, [node] distance)
3058 *
3059 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3060 * the same zonelist. So only NUMA can configure this param.
3061 */
3062 #define ZONELIST_ORDER_DEFAULT 0
3063 #define ZONELIST_ORDER_NODE 1
3064 #define ZONELIST_ORDER_ZONE 2
3065
3066 /* zonelist order in the kernel.
3067 * set_zonelist_order() will set this to NODE or ZONE.
3068 */
3069 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3070 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3071
3072
3073 #ifdef CONFIG_NUMA
3074 /* The value user specified ....changed by config */
3075 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3076 /* string for sysctl */
3077 #define NUMA_ZONELIST_ORDER_LEN 16
3078 char numa_zonelist_order[16] = "default";
3079
3080 /*
3081 * interface for configure zonelist ordering.
3082 * command line option "numa_zonelist_order"
3083 * = "[dD]efault - default, automatic configuration.
3084 * = "[nN]ode - order by node locality, then by zone within node
3085 * = "[zZ]one - order by zone, then by locality within zone
3086 */
3087
3088 static int __parse_numa_zonelist_order(char *s)
3089 {
3090 if (*s == 'd' || *s == 'D') {
3091 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3092 } else if (*s == 'n' || *s == 'N') {
3093 user_zonelist_order = ZONELIST_ORDER_NODE;
3094 } else if (*s == 'z' || *s == 'Z') {
3095 user_zonelist_order = ZONELIST_ORDER_ZONE;
3096 } else {
3097 printk(KERN_WARNING
3098 "Ignoring invalid numa_zonelist_order value: "
3099 "%s\n", s);
3100 return -EINVAL;
3101 }
3102 return 0;
3103 }
3104
3105 static __init int setup_numa_zonelist_order(char *s)
3106 {
3107 int ret;
3108
3109 if (!s)
3110 return 0;
3111
3112 ret = __parse_numa_zonelist_order(s);
3113 if (ret == 0)
3114 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3115
3116 return ret;
3117 }
3118 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3119
3120 /*
3121 * sysctl handler for numa_zonelist_order
3122 */
3123 int numa_zonelist_order_handler(ctl_table *table, int write,
3124 void __user *buffer, size_t *length,
3125 loff_t *ppos)
3126 {
3127 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3128 int ret;
3129 static DEFINE_MUTEX(zl_order_mutex);
3130
3131 mutex_lock(&zl_order_mutex);
3132 if (write)
3133 strcpy(saved_string, (char*)table->data);
3134 ret = proc_dostring(table, write, buffer, length, ppos);
3135 if (ret)
3136 goto out;
3137 if (write) {
3138 int oldval = user_zonelist_order;
3139 if (__parse_numa_zonelist_order((char*)table->data)) {
3140 /*
3141 * bogus value. restore saved string
3142 */
3143 strncpy((char*)table->data, saved_string,
3144 NUMA_ZONELIST_ORDER_LEN);
3145 user_zonelist_order = oldval;
3146 } else if (oldval != user_zonelist_order) {
3147 mutex_lock(&zonelists_mutex);
3148 build_all_zonelists(NULL, NULL);
3149 mutex_unlock(&zonelists_mutex);
3150 }
3151 }
3152 out:
3153 mutex_unlock(&zl_order_mutex);
3154 return ret;
3155 }
3156
3157
3158 #define MAX_NODE_LOAD (nr_online_nodes)
3159 static int node_load[MAX_NUMNODES];
3160
3161 /**
3162 * find_next_best_node - find the next node that should appear in a given node's fallback list
3163 * @node: node whose fallback list we're appending
3164 * @used_node_mask: nodemask_t of already used nodes
3165 *
3166 * We use a number of factors to determine which is the next node that should
3167 * appear on a given node's fallback list. The node should not have appeared
3168 * already in @node's fallback list, and it should be the next closest node
3169 * according to the distance array (which contains arbitrary distance values
3170 * from each node to each node in the system), and should also prefer nodes
3171 * with no CPUs, since presumably they'll have very little allocation pressure
3172 * on them otherwise.
3173 * It returns -1 if no node is found.
3174 */
3175 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3176 {
3177 int n, val;
3178 int min_val = INT_MAX;
3179 int best_node = -1;
3180 const struct cpumask *tmp = cpumask_of_node(0);
3181
3182 /* Use the local node if we haven't already */
3183 if (!node_isset(node, *used_node_mask)) {
3184 node_set(node, *used_node_mask);
3185 return node;
3186 }
3187
3188 for_each_node_state(n, N_HIGH_MEMORY) {
3189
3190 /* Don't want a node to appear more than once */
3191 if (node_isset(n, *used_node_mask))
3192 continue;
3193
3194 /* Use the distance array to find the distance */
3195 val = node_distance(node, n);
3196
3197 /* Penalize nodes under us ("prefer the next node") */
3198 val += (n < node);
3199
3200 /* Give preference to headless and unused nodes */
3201 tmp = cpumask_of_node(n);
3202 if (!cpumask_empty(tmp))
3203 val += PENALTY_FOR_NODE_WITH_CPUS;
3204
3205 /* Slight preference for less loaded node */
3206 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3207 val += node_load[n];
3208
3209 if (val < min_val) {
3210 min_val = val;
3211 best_node = n;
3212 }
3213 }
3214
3215 if (best_node >= 0)
3216 node_set(best_node, *used_node_mask);
3217
3218 return best_node;
3219 }
3220
3221
3222 /*
3223 * Build zonelists ordered by node and zones within node.
3224 * This results in maximum locality--normal zone overflows into local
3225 * DMA zone, if any--but risks exhausting DMA zone.
3226 */
3227 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3228 {
3229 int j;
3230 struct zonelist *zonelist;
3231
3232 zonelist = &pgdat->node_zonelists[0];
3233 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3234 ;
3235 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3236 MAX_NR_ZONES - 1);
3237 zonelist->_zonerefs[j].zone = NULL;
3238 zonelist->_zonerefs[j].zone_idx = 0;
3239 }
3240
3241 /*
3242 * Build gfp_thisnode zonelists
3243 */
3244 static void build_thisnode_zonelists(pg_data_t *pgdat)
3245 {
3246 int j;
3247 struct zonelist *zonelist;
3248
3249 zonelist = &pgdat->node_zonelists[1];
3250 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3251 zonelist->_zonerefs[j].zone = NULL;
3252 zonelist->_zonerefs[j].zone_idx = 0;
3253 }
3254
3255 /*
3256 * Build zonelists ordered by zone and nodes within zones.
3257 * This results in conserving DMA zone[s] until all Normal memory is
3258 * exhausted, but results in overflowing to remote node while memory
3259 * may still exist in local DMA zone.
3260 */
3261 static int node_order[MAX_NUMNODES];
3262
3263 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3264 {
3265 int pos, j, node;
3266 int zone_type; /* needs to be signed */
3267 struct zone *z;
3268 struct zonelist *zonelist;
3269
3270 zonelist = &pgdat->node_zonelists[0];
3271 pos = 0;
3272 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3273 for (j = 0; j < nr_nodes; j++) {
3274 node = node_order[j];
3275 z = &NODE_DATA(node)->node_zones[zone_type];
3276 if (populated_zone(z)) {
3277 zoneref_set_zone(z,
3278 &zonelist->_zonerefs[pos++]);
3279 check_highest_zone(zone_type);
3280 }
3281 }
3282 }
3283 zonelist->_zonerefs[pos].zone = NULL;
3284 zonelist->_zonerefs[pos].zone_idx = 0;
3285 }
3286
3287 static int default_zonelist_order(void)
3288 {
3289 int nid, zone_type;
3290 unsigned long low_kmem_size,total_size;
3291 struct zone *z;
3292 int average_size;
3293 /*
3294 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3295 * If they are really small and used heavily, the system can fall
3296 * into OOM very easily.
3297 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3298 */
3299 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3300 low_kmem_size = 0;
3301 total_size = 0;
3302 for_each_online_node(nid) {
3303 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3304 z = &NODE_DATA(nid)->node_zones[zone_type];
3305 if (populated_zone(z)) {
3306 if (zone_type < ZONE_NORMAL)
3307 low_kmem_size += z->present_pages;
3308 total_size += z->present_pages;
3309 } else if (zone_type == ZONE_NORMAL) {
3310 /*
3311 * If any node has only lowmem, then node order
3312 * is preferred to allow kernel allocations
3313 * locally; otherwise, they can easily infringe
3314 * on other nodes when there is an abundance of
3315 * lowmem available to allocate from.
3316 */
3317 return ZONELIST_ORDER_NODE;
3318 }
3319 }
3320 }
3321 if (!low_kmem_size || /* there are no DMA area. */
3322 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3323 return ZONELIST_ORDER_NODE;
3324 /*
3325 * look into each node's config.
3326 * If there is a node whose DMA/DMA32 memory is very big area on
3327 * local memory, NODE_ORDER may be suitable.
3328 */
3329 average_size = total_size /
3330 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3331 for_each_online_node(nid) {
3332 low_kmem_size = 0;
3333 total_size = 0;
3334 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3335 z = &NODE_DATA(nid)->node_zones[zone_type];
3336 if (populated_zone(z)) {
3337 if (zone_type < ZONE_NORMAL)
3338 low_kmem_size += z->present_pages;
3339 total_size += z->present_pages;
3340 }
3341 }
3342 if (low_kmem_size &&
3343 total_size > average_size && /* ignore small node */
3344 low_kmem_size > total_size * 70/100)
3345 return ZONELIST_ORDER_NODE;
3346 }
3347 return ZONELIST_ORDER_ZONE;
3348 }
3349
3350 static void set_zonelist_order(void)
3351 {
3352 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3353 current_zonelist_order = default_zonelist_order();
3354 else
3355 current_zonelist_order = user_zonelist_order;
3356 }
3357
3358 static void build_zonelists(pg_data_t *pgdat)
3359 {
3360 int j, node, load;
3361 enum zone_type i;
3362 nodemask_t used_mask;
3363 int local_node, prev_node;
3364 struct zonelist *zonelist;
3365 int order = current_zonelist_order;
3366
3367 /* initialize zonelists */
3368 for (i = 0; i < MAX_ZONELISTS; i++) {
3369 zonelist = pgdat->node_zonelists + i;
3370 zonelist->_zonerefs[0].zone = NULL;
3371 zonelist->_zonerefs[0].zone_idx = 0;
3372 }
3373
3374 /* NUMA-aware ordering of nodes */
3375 local_node = pgdat->node_id;
3376 load = nr_online_nodes;
3377 prev_node = local_node;
3378 nodes_clear(used_mask);
3379
3380 memset(node_order, 0, sizeof(node_order));
3381 j = 0;
3382
3383 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3384 int distance = node_distance(local_node, node);
3385
3386 /*
3387 * If another node is sufficiently far away then it is better
3388 * to reclaim pages in a zone before going off node.
3389 */
3390 if (distance > RECLAIM_DISTANCE)
3391 zone_reclaim_mode = 1;
3392
3393 /*
3394 * We don't want to pressure a particular node.
3395 * So adding penalty to the first node in same
3396 * distance group to make it round-robin.
3397 */
3398 if (distance != node_distance(local_node, prev_node))
3399 node_load[node] = load;
3400
3401 prev_node = node;
3402 load--;
3403 if (order == ZONELIST_ORDER_NODE)
3404 build_zonelists_in_node_order(pgdat, node);
3405 else
3406 node_order[j++] = node; /* remember order */
3407 }
3408
3409 if (order == ZONELIST_ORDER_ZONE) {
3410 /* calculate node order -- i.e., DMA last! */
3411 build_zonelists_in_zone_order(pgdat, j);
3412 }
3413
3414 build_thisnode_zonelists(pgdat);
3415 }
3416
3417 /* Construct the zonelist performance cache - see further mmzone.h */
3418 static void build_zonelist_cache(pg_data_t *pgdat)
3419 {
3420 struct zonelist *zonelist;
3421 struct zonelist_cache *zlc;
3422 struct zoneref *z;
3423
3424 zonelist = &pgdat->node_zonelists[0];
3425 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3426 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3427 for (z = zonelist->_zonerefs; z->zone; z++)
3428 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3429 }
3430
3431 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3432 /*
3433 * Return node id of node used for "local" allocations.
3434 * I.e., first node id of first zone in arg node's generic zonelist.
3435 * Used for initializing percpu 'numa_mem', which is used primarily
3436 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3437 */
3438 int local_memory_node(int node)
3439 {
3440 struct zone *zone;
3441
3442 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3443 gfp_zone(GFP_KERNEL),
3444 NULL,
3445 &zone);
3446 return zone->node;
3447 }
3448 #endif
3449
3450 #else /* CONFIG_NUMA */
3451
3452 static void set_zonelist_order(void)
3453 {
3454 current_zonelist_order = ZONELIST_ORDER_ZONE;
3455 }
3456
3457 static void build_zonelists(pg_data_t *pgdat)
3458 {
3459 int node, local_node;
3460 enum zone_type j;
3461 struct zonelist *zonelist;
3462
3463 local_node = pgdat->node_id;
3464
3465 zonelist = &pgdat->node_zonelists[0];
3466 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3467
3468 /*
3469 * Now we build the zonelist so that it contains the zones
3470 * of all the other nodes.
3471 * We don't want to pressure a particular node, so when
3472 * building the zones for node N, we make sure that the
3473 * zones coming right after the local ones are those from
3474 * node N+1 (modulo N)
3475 */
3476 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3477 if (!node_online(node))
3478 continue;
3479 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3480 MAX_NR_ZONES - 1);
3481 }
3482 for (node = 0; node < local_node; node++) {
3483 if (!node_online(node))
3484 continue;
3485 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3486 MAX_NR_ZONES - 1);
3487 }
3488
3489 zonelist->_zonerefs[j].zone = NULL;
3490 zonelist->_zonerefs[j].zone_idx = 0;
3491 }
3492
3493 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3494 static void build_zonelist_cache(pg_data_t *pgdat)
3495 {
3496 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3497 }
3498
3499 #endif /* CONFIG_NUMA */
3500
3501 /*
3502 * Boot pageset table. One per cpu which is going to be used for all
3503 * zones and all nodes. The parameters will be set in such a way
3504 * that an item put on a list will immediately be handed over to
3505 * the buddy list. This is safe since pageset manipulation is done
3506 * with interrupts disabled.
3507 *
3508 * The boot_pagesets must be kept even after bootup is complete for
3509 * unused processors and/or zones. They do play a role for bootstrapping
3510 * hotplugged processors.
3511 *
3512 * zoneinfo_show() and maybe other functions do
3513 * not check if the processor is online before following the pageset pointer.
3514 * Other parts of the kernel may not check if the zone is available.
3515 */
3516 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3517 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3518 static void setup_zone_pageset(struct zone *zone);
3519
3520 /*
3521 * Global mutex to protect against size modification of zonelists
3522 * as well as to serialize pageset setup for the new populated zone.
3523 */
3524 DEFINE_MUTEX(zonelists_mutex);
3525
3526 /* return values int ....just for stop_machine() */
3527 static int __build_all_zonelists(void *data)
3528 {
3529 int nid;
3530 int cpu;
3531 pg_data_t *self = data;
3532
3533 #ifdef CONFIG_NUMA
3534 memset(node_load, 0, sizeof(node_load));
3535 #endif
3536
3537 if (self && !node_online(self->node_id)) {
3538 build_zonelists(self);
3539 build_zonelist_cache(self);
3540 }
3541
3542 for_each_online_node(nid) {
3543 pg_data_t *pgdat = NODE_DATA(nid);
3544
3545 build_zonelists(pgdat);
3546 build_zonelist_cache(pgdat);
3547 }
3548
3549 /*
3550 * Initialize the boot_pagesets that are going to be used
3551 * for bootstrapping processors. The real pagesets for
3552 * each zone will be allocated later when the per cpu
3553 * allocator is available.
3554 *
3555 * boot_pagesets are used also for bootstrapping offline
3556 * cpus if the system is already booted because the pagesets
3557 * are needed to initialize allocators on a specific cpu too.
3558 * F.e. the percpu allocator needs the page allocator which
3559 * needs the percpu allocator in order to allocate its pagesets
3560 * (a chicken-egg dilemma).
3561 */
3562 for_each_possible_cpu(cpu) {
3563 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3564
3565 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3566 /*
3567 * We now know the "local memory node" for each node--
3568 * i.e., the node of the first zone in the generic zonelist.
3569 * Set up numa_mem percpu variable for on-line cpus. During
3570 * boot, only the boot cpu should be on-line; we'll init the
3571 * secondary cpus' numa_mem as they come on-line. During
3572 * node/memory hotplug, we'll fixup all on-line cpus.
3573 */
3574 if (cpu_online(cpu))
3575 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3576 #endif
3577 }
3578
3579 return 0;
3580 }
3581
3582 /*
3583 * Called with zonelists_mutex held always
3584 * unless system_state == SYSTEM_BOOTING.
3585 */
3586 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3587 {
3588 set_zonelist_order();
3589
3590 if (system_state == SYSTEM_BOOTING) {
3591 __build_all_zonelists(NULL);
3592 mminit_verify_zonelist();
3593 cpuset_init_current_mems_allowed();
3594 } else {
3595 /* we have to stop all cpus to guarantee there is no user
3596 of zonelist */
3597 #ifdef CONFIG_MEMORY_HOTPLUG
3598 if (zone)
3599 setup_zone_pageset(zone);
3600 #endif
3601 stop_machine(__build_all_zonelists, pgdat, NULL);
3602 /* cpuset refresh routine should be here */
3603 }
3604 vm_total_pages = nr_free_pagecache_pages();
3605 /*
3606 * Disable grouping by mobility if the number of pages in the
3607 * system is too low to allow the mechanism to work. It would be
3608 * more accurate, but expensive to check per-zone. This check is
3609 * made on memory-hotadd so a system can start with mobility
3610 * disabled and enable it later
3611 */
3612 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3613 page_group_by_mobility_disabled = 1;
3614 else
3615 page_group_by_mobility_disabled = 0;
3616
3617 printk("Built %i zonelists in %s order, mobility grouping %s. "
3618 "Total pages: %ld\n",
3619 nr_online_nodes,
3620 zonelist_order_name[current_zonelist_order],
3621 page_group_by_mobility_disabled ? "off" : "on",
3622 vm_total_pages);
3623 #ifdef CONFIG_NUMA
3624 printk("Policy zone: %s\n", zone_names[policy_zone]);
3625 #endif
3626 }
3627
3628 /*
3629 * Helper functions to size the waitqueue hash table.
3630 * Essentially these want to choose hash table sizes sufficiently
3631 * large so that collisions trying to wait on pages are rare.
3632 * But in fact, the number of active page waitqueues on typical
3633 * systems is ridiculously low, less than 200. So this is even
3634 * conservative, even though it seems large.
3635 *
3636 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3637 * waitqueues, i.e. the size of the waitq table given the number of pages.
3638 */
3639 #define PAGES_PER_WAITQUEUE 256
3640
3641 #ifndef CONFIG_MEMORY_HOTPLUG
3642 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3643 {
3644 unsigned long size = 1;
3645
3646 pages /= PAGES_PER_WAITQUEUE;
3647
3648 while (size < pages)
3649 size <<= 1;
3650
3651 /*
3652 * Once we have dozens or even hundreds of threads sleeping
3653 * on IO we've got bigger problems than wait queue collision.
3654 * Limit the size of the wait table to a reasonable size.
3655 */
3656 size = min(size, 4096UL);
3657
3658 return max(size, 4UL);
3659 }
3660 #else
3661 /*
3662 * A zone's size might be changed by hot-add, so it is not possible to determine
3663 * a suitable size for its wait_table. So we use the maximum size now.
3664 *
3665 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3666 *
3667 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3668 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3669 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3670 *
3671 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3672 * or more by the traditional way. (See above). It equals:
3673 *
3674 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3675 * ia64(16K page size) : = ( 8G + 4M)byte.
3676 * powerpc (64K page size) : = (32G +16M)byte.
3677 */
3678 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3679 {
3680 return 4096UL;
3681 }
3682 #endif
3683
3684 /*
3685 * This is an integer logarithm so that shifts can be used later
3686 * to extract the more random high bits from the multiplicative
3687 * hash function before the remainder is taken.
3688 */
3689 static inline unsigned long wait_table_bits(unsigned long size)
3690 {
3691 return ffz(~size);
3692 }
3693
3694 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3695
3696 /*
3697 * Check if a pageblock contains reserved pages
3698 */
3699 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3700 {
3701 unsigned long pfn;
3702
3703 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3704 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3705 return 1;
3706 }
3707 return 0;
3708 }
3709
3710 /*
3711 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3712 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3713 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3714 * higher will lead to a bigger reserve which will get freed as contiguous
3715 * blocks as reclaim kicks in
3716 */
3717 static void setup_zone_migrate_reserve(struct zone *zone)
3718 {
3719 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3720 struct page *page;
3721 unsigned long block_migratetype;
3722 int reserve;
3723
3724 /*
3725 * Get the start pfn, end pfn and the number of blocks to reserve
3726 * We have to be careful to be aligned to pageblock_nr_pages to
3727 * make sure that we always check pfn_valid for the first page in
3728 * the block.
3729 */
3730 start_pfn = zone->zone_start_pfn;
3731 end_pfn = start_pfn + zone->spanned_pages;
3732 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3733 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3734 pageblock_order;
3735
3736 /*
3737 * Reserve blocks are generally in place to help high-order atomic
3738 * allocations that are short-lived. A min_free_kbytes value that
3739 * would result in more than 2 reserve blocks for atomic allocations
3740 * is assumed to be in place to help anti-fragmentation for the
3741 * future allocation of hugepages at runtime.
3742 */
3743 reserve = min(2, reserve);
3744
3745 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3746 if (!pfn_valid(pfn))
3747 continue;
3748 page = pfn_to_page(pfn);
3749
3750 /* Watch out for overlapping nodes */
3751 if (page_to_nid(page) != zone_to_nid(zone))
3752 continue;
3753
3754 block_migratetype = get_pageblock_migratetype(page);
3755
3756 /* Only test what is necessary when the reserves are not met */
3757 if (reserve > 0) {
3758 /*
3759 * Blocks with reserved pages will never free, skip
3760 * them.
3761 */
3762 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3763 if (pageblock_is_reserved(pfn, block_end_pfn))
3764 continue;
3765
3766 /* If this block is reserved, account for it */
3767 if (block_migratetype == MIGRATE_RESERVE) {
3768 reserve--;
3769 continue;
3770 }
3771
3772 /* Suitable for reserving if this block is movable */
3773 if (block_migratetype == MIGRATE_MOVABLE) {
3774 set_pageblock_migratetype(page,
3775 MIGRATE_RESERVE);
3776 move_freepages_block(zone, page,
3777 MIGRATE_RESERVE);
3778 reserve--;
3779 continue;
3780 }
3781 }
3782
3783 /*
3784 * If the reserve is met and this is a previous reserved block,
3785 * take it back
3786 */
3787 if (block_migratetype == MIGRATE_RESERVE) {
3788 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3789 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3790 }
3791 }
3792 }
3793
3794 /*
3795 * Initially all pages are reserved - free ones are freed
3796 * up by free_all_bootmem() once the early boot process is
3797 * done. Non-atomic initialization, single-pass.
3798 */
3799 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3800 unsigned long start_pfn, enum memmap_context context)
3801 {
3802 struct page *page;
3803 unsigned long end_pfn = start_pfn + size;
3804 unsigned long pfn;
3805 struct zone *z;
3806
3807 if (highest_memmap_pfn < end_pfn - 1)
3808 highest_memmap_pfn = end_pfn - 1;
3809
3810 z = &NODE_DATA(nid)->node_zones[zone];
3811 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3812 /*
3813 * There can be holes in boot-time mem_map[]s
3814 * handed to this function. They do not
3815 * exist on hotplugged memory.
3816 */
3817 if (context == MEMMAP_EARLY) {
3818 if (!early_pfn_valid(pfn))
3819 continue;
3820 if (!early_pfn_in_nid(pfn, nid))
3821 continue;
3822 }
3823 page = pfn_to_page(pfn);
3824 set_page_links(page, zone, nid, pfn);
3825 mminit_verify_page_links(page, zone, nid, pfn);
3826 init_page_count(page);
3827 reset_page_mapcount(page);
3828 SetPageReserved(page);
3829 /*
3830 * Mark the block movable so that blocks are reserved for
3831 * movable at startup. This will force kernel allocations
3832 * to reserve their blocks rather than leaking throughout
3833 * the address space during boot when many long-lived
3834 * kernel allocations are made. Later some blocks near
3835 * the start are marked MIGRATE_RESERVE by
3836 * setup_zone_migrate_reserve()
3837 *
3838 * bitmap is created for zone's valid pfn range. but memmap
3839 * can be created for invalid pages (for alignment)
3840 * check here not to call set_pageblock_migratetype() against
3841 * pfn out of zone.
3842 */
3843 if ((z->zone_start_pfn <= pfn)
3844 && (pfn < z->zone_start_pfn + z->spanned_pages)
3845 && !(pfn & (pageblock_nr_pages - 1)))
3846 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3847
3848 INIT_LIST_HEAD(&page->lru);
3849 #ifdef WANT_PAGE_VIRTUAL
3850 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3851 if (!is_highmem_idx(zone))
3852 set_page_address(page, __va(pfn << PAGE_SHIFT));
3853 #endif
3854 }
3855 }
3856
3857 static void __meminit zone_init_free_lists(struct zone *zone)
3858 {
3859 int order, t;
3860 for_each_migratetype_order(order, t) {
3861 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3862 zone->free_area[order].nr_free = 0;
3863 }
3864 }
3865
3866 #ifndef __HAVE_ARCH_MEMMAP_INIT
3867 #define memmap_init(size, nid, zone, start_pfn) \
3868 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3869 #endif
3870
3871 static int __meminit zone_batchsize(struct zone *zone)
3872 {
3873 #ifdef CONFIG_MMU
3874 int batch;
3875
3876 /*
3877 * The per-cpu-pages pools are set to around 1000th of the
3878 * size of the zone. But no more than 1/2 of a meg.
3879 *
3880 * OK, so we don't know how big the cache is. So guess.
3881 */
3882 batch = zone->present_pages / 1024;
3883 if (batch * PAGE_SIZE > 512 * 1024)
3884 batch = (512 * 1024) / PAGE_SIZE;
3885 batch /= 4; /* We effectively *= 4 below */
3886 if (batch < 1)
3887 batch = 1;
3888
3889 /*
3890 * Clamp the batch to a 2^n - 1 value. Having a power
3891 * of 2 value was found to be more likely to have
3892 * suboptimal cache aliasing properties in some cases.
3893 *
3894 * For example if 2 tasks are alternately allocating
3895 * batches of pages, one task can end up with a lot
3896 * of pages of one half of the possible page colors
3897 * and the other with pages of the other colors.
3898 */
3899 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3900
3901 return batch;
3902
3903 #else
3904 /* The deferral and batching of frees should be suppressed under NOMMU
3905 * conditions.
3906 *
3907 * The problem is that NOMMU needs to be able to allocate large chunks
3908 * of contiguous memory as there's no hardware page translation to
3909 * assemble apparent contiguous memory from discontiguous pages.
3910 *
3911 * Queueing large contiguous runs of pages for batching, however,
3912 * causes the pages to actually be freed in smaller chunks. As there
3913 * can be a significant delay between the individual batches being
3914 * recycled, this leads to the once large chunks of space being
3915 * fragmented and becoming unavailable for high-order allocations.
3916 */
3917 return 0;
3918 #endif
3919 }
3920
3921 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3922 {
3923 struct per_cpu_pages *pcp;
3924 int migratetype;
3925
3926 memset(p, 0, sizeof(*p));
3927
3928 pcp = &p->pcp;
3929 pcp->count = 0;
3930 pcp->high = 6 * batch;
3931 pcp->batch = max(1UL, 1 * batch);
3932 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3933 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3934 }
3935
3936 /*
3937 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3938 * to the value high for the pageset p.
3939 */
3940
3941 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3942 unsigned long high)
3943 {
3944 struct per_cpu_pages *pcp;
3945
3946 pcp = &p->pcp;
3947 pcp->high = high;
3948 pcp->batch = max(1UL, high/4);
3949 if ((high/4) > (PAGE_SHIFT * 8))
3950 pcp->batch = PAGE_SHIFT * 8;
3951 }
3952
3953 static void __meminit setup_zone_pageset(struct zone *zone)
3954 {
3955 int cpu;
3956
3957 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3958
3959 for_each_possible_cpu(cpu) {
3960 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3961
3962 setup_pageset(pcp, zone_batchsize(zone));
3963
3964 if (percpu_pagelist_fraction)
3965 setup_pagelist_highmark(pcp,
3966 (zone->present_pages /
3967 percpu_pagelist_fraction));
3968 }
3969 }
3970
3971 /*
3972 * Allocate per cpu pagesets and initialize them.
3973 * Before this call only boot pagesets were available.
3974 */
3975 void __init setup_per_cpu_pageset(void)
3976 {
3977 struct zone *zone;
3978
3979 for_each_populated_zone(zone)
3980 setup_zone_pageset(zone);
3981 }
3982
3983 static noinline __init_refok
3984 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3985 {
3986 int i;
3987 struct pglist_data *pgdat = zone->zone_pgdat;
3988 size_t alloc_size;
3989
3990 /*
3991 * The per-page waitqueue mechanism uses hashed waitqueues
3992 * per zone.
3993 */
3994 zone->wait_table_hash_nr_entries =
3995 wait_table_hash_nr_entries(zone_size_pages);
3996 zone->wait_table_bits =
3997 wait_table_bits(zone->wait_table_hash_nr_entries);
3998 alloc_size = zone->wait_table_hash_nr_entries
3999 * sizeof(wait_queue_head_t);
4000
4001 if (!slab_is_available()) {
4002 zone->wait_table = (wait_queue_head_t *)
4003 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4004 } else {
4005 /*
4006 * This case means that a zone whose size was 0 gets new memory
4007 * via memory hot-add.
4008 * But it may be the case that a new node was hot-added. In
4009 * this case vmalloc() will not be able to use this new node's
4010 * memory - this wait_table must be initialized to use this new
4011 * node itself as well.
4012 * To use this new node's memory, further consideration will be
4013 * necessary.
4014 */
4015 zone->wait_table = vmalloc(alloc_size);
4016 }
4017 if (!zone->wait_table)
4018 return -ENOMEM;
4019
4020 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4021 init_waitqueue_head(zone->wait_table + i);
4022
4023 return 0;
4024 }
4025
4026 static __meminit void zone_pcp_init(struct zone *zone)
4027 {
4028 /*
4029 * per cpu subsystem is not up at this point. The following code
4030 * relies on the ability of the linker to provide the
4031 * offset of a (static) per cpu variable into the per cpu area.
4032 */
4033 zone->pageset = &boot_pageset;
4034
4035 if (zone->present_pages)
4036 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4037 zone->name, zone->present_pages,
4038 zone_batchsize(zone));
4039 }
4040
4041 int __meminit init_currently_empty_zone(struct zone *zone,
4042 unsigned long zone_start_pfn,
4043 unsigned long size,
4044 enum memmap_context context)
4045 {
4046 struct pglist_data *pgdat = zone->zone_pgdat;
4047 int ret;
4048 ret = zone_wait_table_init(zone, size);
4049 if (ret)
4050 return ret;
4051 pgdat->nr_zones = zone_idx(zone) + 1;
4052
4053 zone->zone_start_pfn = zone_start_pfn;
4054
4055 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4056 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4057 pgdat->node_id,
4058 (unsigned long)zone_idx(zone),
4059 zone_start_pfn, (zone_start_pfn + size));
4060
4061 zone_init_free_lists(zone);
4062
4063 return 0;
4064 }
4065
4066 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4067 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4068 /*
4069 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4070 * Architectures may implement their own version but if add_active_range()
4071 * was used and there are no special requirements, this is a convenient
4072 * alternative
4073 */
4074 int __meminit __early_pfn_to_nid(unsigned long pfn)
4075 {
4076 unsigned long start_pfn, end_pfn;
4077 int i, nid;
4078
4079 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4080 if (start_pfn <= pfn && pfn < end_pfn)
4081 return nid;
4082 /* This is a memory hole */
4083 return -1;
4084 }
4085 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4086
4087 int __meminit early_pfn_to_nid(unsigned long pfn)
4088 {
4089 int nid;
4090
4091 nid = __early_pfn_to_nid(pfn);
4092 if (nid >= 0)
4093 return nid;
4094 /* just returns 0 */
4095 return 0;
4096 }
4097
4098 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4099 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4100 {
4101 int nid;
4102
4103 nid = __early_pfn_to_nid(pfn);
4104 if (nid >= 0 && nid != node)
4105 return false;
4106 return true;
4107 }
4108 #endif
4109
4110 /**
4111 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4112 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4113 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4114 *
4115 * If an architecture guarantees that all ranges registered with
4116 * add_active_ranges() contain no holes and may be freed, this
4117 * this function may be used instead of calling free_bootmem() manually.
4118 */
4119 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4120 {
4121 unsigned long start_pfn, end_pfn;
4122 int i, this_nid;
4123
4124 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4125 start_pfn = min(start_pfn, max_low_pfn);
4126 end_pfn = min(end_pfn, max_low_pfn);
4127
4128 if (start_pfn < end_pfn)
4129 free_bootmem_node(NODE_DATA(this_nid),
4130 PFN_PHYS(start_pfn),
4131 (end_pfn - start_pfn) << PAGE_SHIFT);
4132 }
4133 }
4134
4135 /**
4136 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4137 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4138 *
4139 * If an architecture guarantees that all ranges registered with
4140 * add_active_ranges() contain no holes and may be freed, this
4141 * function may be used instead of calling memory_present() manually.
4142 */
4143 void __init sparse_memory_present_with_active_regions(int nid)
4144 {
4145 unsigned long start_pfn, end_pfn;
4146 int i, this_nid;
4147
4148 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4149 memory_present(this_nid, start_pfn, end_pfn);
4150 }
4151
4152 /**
4153 * get_pfn_range_for_nid - Return the start and end page frames for a node
4154 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4155 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4156 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4157 *
4158 * It returns the start and end page frame of a node based on information
4159 * provided by an arch calling add_active_range(). If called for a node
4160 * with no available memory, a warning is printed and the start and end
4161 * PFNs will be 0.
4162 */
4163 void __meminit get_pfn_range_for_nid(unsigned int nid,
4164 unsigned long *start_pfn, unsigned long *end_pfn)
4165 {
4166 unsigned long this_start_pfn, this_end_pfn;
4167 int i;
4168
4169 *start_pfn = -1UL;
4170 *end_pfn = 0;
4171
4172 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4173 *start_pfn = min(*start_pfn, this_start_pfn);
4174 *end_pfn = max(*end_pfn, this_end_pfn);
4175 }
4176
4177 if (*start_pfn == -1UL)
4178 *start_pfn = 0;
4179 }
4180
4181 /*
4182 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4183 * assumption is made that zones within a node are ordered in monotonic
4184 * increasing memory addresses so that the "highest" populated zone is used
4185 */
4186 static void __init find_usable_zone_for_movable(void)
4187 {
4188 int zone_index;
4189 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4190 if (zone_index == ZONE_MOVABLE)
4191 continue;
4192
4193 if (arch_zone_highest_possible_pfn[zone_index] >
4194 arch_zone_lowest_possible_pfn[zone_index])
4195 break;
4196 }
4197
4198 VM_BUG_ON(zone_index == -1);
4199 movable_zone = zone_index;
4200 }
4201
4202 /*
4203 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4204 * because it is sized independent of architecture. Unlike the other zones,
4205 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4206 * in each node depending on the size of each node and how evenly kernelcore
4207 * is distributed. This helper function adjusts the zone ranges
4208 * provided by the architecture for a given node by using the end of the
4209 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4210 * zones within a node are in order of monotonic increases memory addresses
4211 */
4212 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4213 unsigned long zone_type,
4214 unsigned long node_start_pfn,
4215 unsigned long node_end_pfn,
4216 unsigned long *zone_start_pfn,
4217 unsigned long *zone_end_pfn)
4218 {
4219 /* Only adjust if ZONE_MOVABLE is on this node */
4220 if (zone_movable_pfn[nid]) {
4221 /* Size ZONE_MOVABLE */
4222 if (zone_type == ZONE_MOVABLE) {
4223 *zone_start_pfn = zone_movable_pfn[nid];
4224 *zone_end_pfn = min(node_end_pfn,
4225 arch_zone_highest_possible_pfn[movable_zone]);
4226
4227 /* Adjust for ZONE_MOVABLE starting within this range */
4228 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4229 *zone_end_pfn > zone_movable_pfn[nid]) {
4230 *zone_end_pfn = zone_movable_pfn[nid];
4231
4232 /* Check if this whole range is within ZONE_MOVABLE */
4233 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4234 *zone_start_pfn = *zone_end_pfn;
4235 }
4236 }
4237
4238 /*
4239 * Return the number of pages a zone spans in a node, including holes
4240 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4241 */
4242 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4243 unsigned long zone_type,
4244 unsigned long *ignored)
4245 {
4246 unsigned long node_start_pfn, node_end_pfn;
4247 unsigned long zone_start_pfn, zone_end_pfn;
4248
4249 /* Get the start and end of the node and zone */
4250 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4251 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4252 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4253 adjust_zone_range_for_zone_movable(nid, zone_type,
4254 node_start_pfn, node_end_pfn,
4255 &zone_start_pfn, &zone_end_pfn);
4256
4257 /* Check that this node has pages within the zone's required range */
4258 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4259 return 0;
4260
4261 /* Move the zone boundaries inside the node if necessary */
4262 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4263 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4264
4265 /* Return the spanned pages */
4266 return zone_end_pfn - zone_start_pfn;
4267 }
4268
4269 /*
4270 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4271 * then all holes in the requested range will be accounted for.
4272 */
4273 unsigned long __meminit __absent_pages_in_range(int nid,
4274 unsigned long range_start_pfn,
4275 unsigned long range_end_pfn)
4276 {
4277 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4278 unsigned long start_pfn, end_pfn;
4279 int i;
4280
4281 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4282 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4283 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4284 nr_absent -= end_pfn - start_pfn;
4285 }
4286 return nr_absent;
4287 }
4288
4289 /**
4290 * absent_pages_in_range - Return number of page frames in holes within a range
4291 * @start_pfn: The start PFN to start searching for holes
4292 * @end_pfn: The end PFN to stop searching for holes
4293 *
4294 * It returns the number of pages frames in memory holes within a range.
4295 */
4296 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4297 unsigned long end_pfn)
4298 {
4299 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4300 }
4301
4302 /* Return the number of page frames in holes in a zone on a node */
4303 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4304 unsigned long zone_type,
4305 unsigned long *ignored)
4306 {
4307 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4308 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4309 unsigned long node_start_pfn, node_end_pfn;
4310 unsigned long zone_start_pfn, zone_end_pfn;
4311
4312 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4313 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4314 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4315
4316 adjust_zone_range_for_zone_movable(nid, zone_type,
4317 node_start_pfn, node_end_pfn,
4318 &zone_start_pfn, &zone_end_pfn);
4319 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4320 }
4321
4322 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4323 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4324 unsigned long zone_type,
4325 unsigned long *zones_size)
4326 {
4327 return zones_size[zone_type];
4328 }
4329
4330 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4331 unsigned long zone_type,
4332 unsigned long *zholes_size)
4333 {
4334 if (!zholes_size)
4335 return 0;
4336
4337 return zholes_size[zone_type];
4338 }
4339
4340 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4341
4342 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4343 unsigned long *zones_size, unsigned long *zholes_size)
4344 {
4345 unsigned long realtotalpages, totalpages = 0;
4346 enum zone_type i;
4347
4348 for (i = 0; i < MAX_NR_ZONES; i++)
4349 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4350 zones_size);
4351 pgdat->node_spanned_pages = totalpages;
4352
4353 realtotalpages = totalpages;
4354 for (i = 0; i < MAX_NR_ZONES; i++)
4355 realtotalpages -=
4356 zone_absent_pages_in_node(pgdat->node_id, i,
4357 zholes_size);
4358 pgdat->node_present_pages = realtotalpages;
4359 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4360 realtotalpages);
4361 }
4362
4363 #ifndef CONFIG_SPARSEMEM
4364 /*
4365 * Calculate the size of the zone->blockflags rounded to an unsigned long
4366 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4367 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4368 * round what is now in bits to nearest long in bits, then return it in
4369 * bytes.
4370 */
4371 static unsigned long __init usemap_size(unsigned long zonesize)
4372 {
4373 unsigned long usemapsize;
4374
4375 usemapsize = roundup(zonesize, pageblock_nr_pages);
4376 usemapsize = usemapsize >> pageblock_order;
4377 usemapsize *= NR_PAGEBLOCK_BITS;
4378 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4379
4380 return usemapsize / 8;
4381 }
4382
4383 static void __init setup_usemap(struct pglist_data *pgdat,
4384 struct zone *zone, unsigned long zonesize)
4385 {
4386 unsigned long usemapsize = usemap_size(zonesize);
4387 zone->pageblock_flags = NULL;
4388 if (usemapsize)
4389 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4390 usemapsize);
4391 }
4392 #else
4393 static inline void setup_usemap(struct pglist_data *pgdat,
4394 struct zone *zone, unsigned long zonesize) {}
4395 #endif /* CONFIG_SPARSEMEM */
4396
4397 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4398
4399 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4400 void __init set_pageblock_order(void)
4401 {
4402 unsigned int order;
4403
4404 /* Check that pageblock_nr_pages has not already been setup */
4405 if (pageblock_order)
4406 return;
4407
4408 if (HPAGE_SHIFT > PAGE_SHIFT)
4409 order = HUGETLB_PAGE_ORDER;
4410 else
4411 order = MAX_ORDER - 1;
4412
4413 /*
4414 * Assume the largest contiguous order of interest is a huge page.
4415 * This value may be variable depending on boot parameters on IA64 and
4416 * powerpc.
4417 */
4418 pageblock_order = order;
4419 }
4420 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4421
4422 /*
4423 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4424 * is unused as pageblock_order is set at compile-time. See
4425 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4426 * the kernel config
4427 */
4428 void __init set_pageblock_order(void)
4429 {
4430 }
4431
4432 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4433
4434 /*
4435 * Set up the zone data structures:
4436 * - mark all pages reserved
4437 * - mark all memory queues empty
4438 * - clear the memory bitmaps
4439 *
4440 * NOTE: pgdat should get zeroed by caller.
4441 */
4442 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4443 unsigned long *zones_size, unsigned long *zholes_size)
4444 {
4445 enum zone_type j;
4446 int nid = pgdat->node_id;
4447 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4448 int ret;
4449
4450 pgdat_resize_init(pgdat);
4451 init_waitqueue_head(&pgdat->kswapd_wait);
4452 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4453 pgdat_page_cgroup_init(pgdat);
4454
4455 for (j = 0; j < MAX_NR_ZONES; j++) {
4456 struct zone *zone = pgdat->node_zones + j;
4457 unsigned long size, realsize, memmap_pages;
4458
4459 size = zone_spanned_pages_in_node(nid, j, zones_size);
4460 realsize = size - zone_absent_pages_in_node(nid, j,
4461 zholes_size);
4462
4463 /*
4464 * Adjust realsize so that it accounts for how much memory
4465 * is used by this zone for memmap. This affects the watermark
4466 * and per-cpu initialisations
4467 */
4468 memmap_pages =
4469 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4470 if (realsize >= memmap_pages) {
4471 realsize -= memmap_pages;
4472 if (memmap_pages)
4473 printk(KERN_DEBUG
4474 " %s zone: %lu pages used for memmap\n",
4475 zone_names[j], memmap_pages);
4476 } else
4477 printk(KERN_WARNING
4478 " %s zone: %lu pages exceeds realsize %lu\n",
4479 zone_names[j], memmap_pages, realsize);
4480
4481 /* Account for reserved pages */
4482 if (j == 0 && realsize > dma_reserve) {
4483 realsize -= dma_reserve;
4484 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4485 zone_names[0], dma_reserve);
4486 }
4487
4488 if (!is_highmem_idx(j))
4489 nr_kernel_pages += realsize;
4490 nr_all_pages += realsize;
4491
4492 zone->spanned_pages = size;
4493 zone->present_pages = realsize;
4494 #ifdef CONFIG_NUMA
4495 zone->node = nid;
4496 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4497 / 100;
4498 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4499 #endif
4500 zone->name = zone_names[j];
4501 spin_lock_init(&zone->lock);
4502 spin_lock_init(&zone->lru_lock);
4503 zone_seqlock_init(zone);
4504 zone->zone_pgdat = pgdat;
4505
4506 zone_pcp_init(zone);
4507 lruvec_init(&zone->lruvec, zone);
4508 if (!size)
4509 continue;
4510
4511 set_pageblock_order();
4512 setup_usemap(pgdat, zone, size);
4513 ret = init_currently_empty_zone(zone, zone_start_pfn,
4514 size, MEMMAP_EARLY);
4515 BUG_ON(ret);
4516 memmap_init(size, nid, j, zone_start_pfn);
4517 zone_start_pfn += size;
4518 }
4519 }
4520
4521 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4522 {
4523 /* Skip empty nodes */
4524 if (!pgdat->node_spanned_pages)
4525 return;
4526
4527 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4528 /* ia64 gets its own node_mem_map, before this, without bootmem */
4529 if (!pgdat->node_mem_map) {
4530 unsigned long size, start, end;
4531 struct page *map;
4532
4533 /*
4534 * The zone's endpoints aren't required to be MAX_ORDER
4535 * aligned but the node_mem_map endpoints must be in order
4536 * for the buddy allocator to function correctly.
4537 */
4538 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4539 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4540 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4541 size = (end - start) * sizeof(struct page);
4542 map = alloc_remap(pgdat->node_id, size);
4543 if (!map)
4544 map = alloc_bootmem_node_nopanic(pgdat, size);
4545 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4546 }
4547 #ifndef CONFIG_NEED_MULTIPLE_NODES
4548 /*
4549 * With no DISCONTIG, the global mem_map is just set as node 0's
4550 */
4551 if (pgdat == NODE_DATA(0)) {
4552 mem_map = NODE_DATA(0)->node_mem_map;
4553 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4554 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4555 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4556 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4557 }
4558 #endif
4559 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4560 }
4561
4562 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4563 unsigned long node_start_pfn, unsigned long *zholes_size)
4564 {
4565 pg_data_t *pgdat = NODE_DATA(nid);
4566
4567 /* pg_data_t should be reset to zero when it's allocated */
4568 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4569
4570 pgdat->node_id = nid;
4571 pgdat->node_start_pfn = node_start_pfn;
4572 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4573
4574 alloc_node_mem_map(pgdat);
4575 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4576 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4577 nid, (unsigned long)pgdat,
4578 (unsigned long)pgdat->node_mem_map);
4579 #endif
4580
4581 free_area_init_core(pgdat, zones_size, zholes_size);
4582 }
4583
4584 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4585
4586 #if MAX_NUMNODES > 1
4587 /*
4588 * Figure out the number of possible node ids.
4589 */
4590 static void __init setup_nr_node_ids(void)
4591 {
4592 unsigned int node;
4593 unsigned int highest = 0;
4594
4595 for_each_node_mask(node, node_possible_map)
4596 highest = node;
4597 nr_node_ids = highest + 1;
4598 }
4599 #else
4600 static inline void setup_nr_node_ids(void)
4601 {
4602 }
4603 #endif
4604
4605 /**
4606 * node_map_pfn_alignment - determine the maximum internode alignment
4607 *
4608 * This function should be called after node map is populated and sorted.
4609 * It calculates the maximum power of two alignment which can distinguish
4610 * all the nodes.
4611 *
4612 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4613 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4614 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4615 * shifted, 1GiB is enough and this function will indicate so.
4616 *
4617 * This is used to test whether pfn -> nid mapping of the chosen memory
4618 * model has fine enough granularity to avoid incorrect mapping for the
4619 * populated node map.
4620 *
4621 * Returns the determined alignment in pfn's. 0 if there is no alignment
4622 * requirement (single node).
4623 */
4624 unsigned long __init node_map_pfn_alignment(void)
4625 {
4626 unsigned long accl_mask = 0, last_end = 0;
4627 unsigned long start, end, mask;
4628 int last_nid = -1;
4629 int i, nid;
4630
4631 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4632 if (!start || last_nid < 0 || last_nid == nid) {
4633 last_nid = nid;
4634 last_end = end;
4635 continue;
4636 }
4637
4638 /*
4639 * Start with a mask granular enough to pin-point to the
4640 * start pfn and tick off bits one-by-one until it becomes
4641 * too coarse to separate the current node from the last.
4642 */
4643 mask = ~((1 << __ffs(start)) - 1);
4644 while (mask && last_end <= (start & (mask << 1)))
4645 mask <<= 1;
4646
4647 /* accumulate all internode masks */
4648 accl_mask |= mask;
4649 }
4650
4651 /* convert mask to number of pages */
4652 return ~accl_mask + 1;
4653 }
4654
4655 /* Find the lowest pfn for a node */
4656 static unsigned long __init find_min_pfn_for_node(int nid)
4657 {
4658 unsigned long min_pfn = ULONG_MAX;
4659 unsigned long start_pfn;
4660 int i;
4661
4662 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4663 min_pfn = min(min_pfn, start_pfn);
4664
4665 if (min_pfn == ULONG_MAX) {
4666 printk(KERN_WARNING
4667 "Could not find start_pfn for node %d\n", nid);
4668 return 0;
4669 }
4670
4671 return min_pfn;
4672 }
4673
4674 /**
4675 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4676 *
4677 * It returns the minimum PFN based on information provided via
4678 * add_active_range().
4679 */
4680 unsigned long __init find_min_pfn_with_active_regions(void)
4681 {
4682 return find_min_pfn_for_node(MAX_NUMNODES);
4683 }
4684
4685 /*
4686 * early_calculate_totalpages()
4687 * Sum pages in active regions for movable zone.
4688 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4689 */
4690 static unsigned long __init early_calculate_totalpages(void)
4691 {
4692 unsigned long totalpages = 0;
4693 unsigned long start_pfn, end_pfn;
4694 int i, nid;
4695
4696 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4697 unsigned long pages = end_pfn - start_pfn;
4698
4699 totalpages += pages;
4700 if (pages)
4701 node_set_state(nid, N_HIGH_MEMORY);
4702 }
4703 return totalpages;
4704 }
4705
4706 /*
4707 * Find the PFN the Movable zone begins in each node. Kernel memory
4708 * is spread evenly between nodes as long as the nodes have enough
4709 * memory. When they don't, some nodes will have more kernelcore than
4710 * others
4711 */
4712 static void __init find_zone_movable_pfns_for_nodes(void)
4713 {
4714 int i, nid;
4715 unsigned long usable_startpfn;
4716 unsigned long kernelcore_node, kernelcore_remaining;
4717 /* save the state before borrow the nodemask */
4718 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4719 unsigned long totalpages = early_calculate_totalpages();
4720 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4721
4722 /*
4723 * If movablecore was specified, calculate what size of
4724 * kernelcore that corresponds so that memory usable for
4725 * any allocation type is evenly spread. If both kernelcore
4726 * and movablecore are specified, then the value of kernelcore
4727 * will be used for required_kernelcore if it's greater than
4728 * what movablecore would have allowed.
4729 */
4730 if (required_movablecore) {
4731 unsigned long corepages;
4732
4733 /*
4734 * Round-up so that ZONE_MOVABLE is at least as large as what
4735 * was requested by the user
4736 */
4737 required_movablecore =
4738 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4739 corepages = totalpages - required_movablecore;
4740
4741 required_kernelcore = max(required_kernelcore, corepages);
4742 }
4743
4744 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4745 if (!required_kernelcore)
4746 goto out;
4747
4748 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4749 find_usable_zone_for_movable();
4750 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4751
4752 restart:
4753 /* Spread kernelcore memory as evenly as possible throughout nodes */
4754 kernelcore_node = required_kernelcore / usable_nodes;
4755 for_each_node_state(nid, N_HIGH_MEMORY) {
4756 unsigned long start_pfn, end_pfn;
4757
4758 /*
4759 * Recalculate kernelcore_node if the division per node
4760 * now exceeds what is necessary to satisfy the requested
4761 * amount of memory for the kernel
4762 */
4763 if (required_kernelcore < kernelcore_node)
4764 kernelcore_node = required_kernelcore / usable_nodes;
4765
4766 /*
4767 * As the map is walked, we track how much memory is usable
4768 * by the kernel using kernelcore_remaining. When it is
4769 * 0, the rest of the node is usable by ZONE_MOVABLE
4770 */
4771 kernelcore_remaining = kernelcore_node;
4772
4773 /* Go through each range of PFNs within this node */
4774 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4775 unsigned long size_pages;
4776
4777 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4778 if (start_pfn >= end_pfn)
4779 continue;
4780
4781 /* Account for what is only usable for kernelcore */
4782 if (start_pfn < usable_startpfn) {
4783 unsigned long kernel_pages;
4784 kernel_pages = min(end_pfn, usable_startpfn)
4785 - start_pfn;
4786
4787 kernelcore_remaining -= min(kernel_pages,
4788 kernelcore_remaining);
4789 required_kernelcore -= min(kernel_pages,
4790 required_kernelcore);
4791
4792 /* Continue if range is now fully accounted */
4793 if (end_pfn <= usable_startpfn) {
4794
4795 /*
4796 * Push zone_movable_pfn to the end so
4797 * that if we have to rebalance
4798 * kernelcore across nodes, we will
4799 * not double account here
4800 */
4801 zone_movable_pfn[nid] = end_pfn;
4802 continue;
4803 }
4804 start_pfn = usable_startpfn;
4805 }
4806
4807 /*
4808 * The usable PFN range for ZONE_MOVABLE is from
4809 * start_pfn->end_pfn. Calculate size_pages as the
4810 * number of pages used as kernelcore
4811 */
4812 size_pages = end_pfn - start_pfn;
4813 if (size_pages > kernelcore_remaining)
4814 size_pages = kernelcore_remaining;
4815 zone_movable_pfn[nid] = start_pfn + size_pages;
4816
4817 /*
4818 * Some kernelcore has been met, update counts and
4819 * break if the kernelcore for this node has been
4820 * satisified
4821 */
4822 required_kernelcore -= min(required_kernelcore,
4823 size_pages);
4824 kernelcore_remaining -= size_pages;
4825 if (!kernelcore_remaining)
4826 break;
4827 }
4828 }
4829
4830 /*
4831 * If there is still required_kernelcore, we do another pass with one
4832 * less node in the count. This will push zone_movable_pfn[nid] further
4833 * along on the nodes that still have memory until kernelcore is
4834 * satisified
4835 */
4836 usable_nodes--;
4837 if (usable_nodes && required_kernelcore > usable_nodes)
4838 goto restart;
4839
4840 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4841 for (nid = 0; nid < MAX_NUMNODES; nid++)
4842 zone_movable_pfn[nid] =
4843 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4844
4845 out:
4846 /* restore the node_state */
4847 node_states[N_HIGH_MEMORY] = saved_node_state;
4848 }
4849
4850 /* Any regular memory on that node ? */
4851 static void __init check_for_regular_memory(pg_data_t *pgdat)
4852 {
4853 #ifdef CONFIG_HIGHMEM
4854 enum zone_type zone_type;
4855
4856 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4857 struct zone *zone = &pgdat->node_zones[zone_type];
4858 if (zone->present_pages) {
4859 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4860 break;
4861 }
4862 }
4863 #endif
4864 }
4865
4866 /**
4867 * free_area_init_nodes - Initialise all pg_data_t and zone data
4868 * @max_zone_pfn: an array of max PFNs for each zone
4869 *
4870 * This will call free_area_init_node() for each active node in the system.
4871 * Using the page ranges provided by add_active_range(), the size of each
4872 * zone in each node and their holes is calculated. If the maximum PFN
4873 * between two adjacent zones match, it is assumed that the zone is empty.
4874 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4875 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4876 * starts where the previous one ended. For example, ZONE_DMA32 starts
4877 * at arch_max_dma_pfn.
4878 */
4879 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4880 {
4881 unsigned long start_pfn, end_pfn;
4882 int i, nid;
4883
4884 /* Record where the zone boundaries are */
4885 memset(arch_zone_lowest_possible_pfn, 0,
4886 sizeof(arch_zone_lowest_possible_pfn));
4887 memset(arch_zone_highest_possible_pfn, 0,
4888 sizeof(arch_zone_highest_possible_pfn));
4889 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4890 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4891 for (i = 1; i < MAX_NR_ZONES; i++) {
4892 if (i == ZONE_MOVABLE)
4893 continue;
4894 arch_zone_lowest_possible_pfn[i] =
4895 arch_zone_highest_possible_pfn[i-1];
4896 arch_zone_highest_possible_pfn[i] =
4897 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4898 }
4899 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4900 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4901
4902 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4903 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4904 find_zone_movable_pfns_for_nodes();
4905
4906 /* Print out the zone ranges */
4907 printk("Zone ranges:\n");
4908 for (i = 0; i < MAX_NR_ZONES; i++) {
4909 if (i == ZONE_MOVABLE)
4910 continue;
4911 printk(KERN_CONT " %-8s ", zone_names[i]);
4912 if (arch_zone_lowest_possible_pfn[i] ==
4913 arch_zone_highest_possible_pfn[i])
4914 printk(KERN_CONT "empty\n");
4915 else
4916 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4917 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4918 (arch_zone_highest_possible_pfn[i]
4919 << PAGE_SHIFT) - 1);
4920 }
4921
4922 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4923 printk("Movable zone start for each node\n");
4924 for (i = 0; i < MAX_NUMNODES; i++) {
4925 if (zone_movable_pfn[i])
4926 printk(" Node %d: %#010lx\n", i,
4927 zone_movable_pfn[i] << PAGE_SHIFT);
4928 }
4929
4930 /* Print out the early node map */
4931 printk("Early memory node ranges\n");
4932 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4933 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4934 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4935
4936 /* Initialise every node */
4937 mminit_verify_pageflags_layout();
4938 setup_nr_node_ids();
4939 for_each_online_node(nid) {
4940 pg_data_t *pgdat = NODE_DATA(nid);
4941 free_area_init_node(nid, NULL,
4942 find_min_pfn_for_node(nid), NULL);
4943
4944 /* Any memory on that node */
4945 if (pgdat->node_present_pages)
4946 node_set_state(nid, N_HIGH_MEMORY);
4947 check_for_regular_memory(pgdat);
4948 }
4949 }
4950
4951 static int __init cmdline_parse_core(char *p, unsigned long *core)
4952 {
4953 unsigned long long coremem;
4954 if (!p)
4955 return -EINVAL;
4956
4957 coremem = memparse(p, &p);
4958 *core = coremem >> PAGE_SHIFT;
4959
4960 /* Paranoid check that UL is enough for the coremem value */
4961 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4962
4963 return 0;
4964 }
4965
4966 /*
4967 * kernelcore=size sets the amount of memory for use for allocations that
4968 * cannot be reclaimed or migrated.
4969 */
4970 static int __init cmdline_parse_kernelcore(char *p)
4971 {
4972 return cmdline_parse_core(p, &required_kernelcore);
4973 }
4974
4975 /*
4976 * movablecore=size sets the amount of memory for use for allocations that
4977 * can be reclaimed or migrated.
4978 */
4979 static int __init cmdline_parse_movablecore(char *p)
4980 {
4981 return cmdline_parse_core(p, &required_movablecore);
4982 }
4983
4984 early_param("kernelcore", cmdline_parse_kernelcore);
4985 early_param("movablecore", cmdline_parse_movablecore);
4986
4987 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4988
4989 /**
4990 * set_dma_reserve - set the specified number of pages reserved in the first zone
4991 * @new_dma_reserve: The number of pages to mark reserved
4992 *
4993 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4994 * In the DMA zone, a significant percentage may be consumed by kernel image
4995 * and other unfreeable allocations which can skew the watermarks badly. This
4996 * function may optionally be used to account for unfreeable pages in the
4997 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4998 * smaller per-cpu batchsize.
4999 */
5000 void __init set_dma_reserve(unsigned long new_dma_reserve)
5001 {
5002 dma_reserve = new_dma_reserve;
5003 }
5004
5005 void __init free_area_init(unsigned long *zones_size)
5006 {
5007 free_area_init_node(0, zones_size,
5008 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5009 }
5010
5011 static int page_alloc_cpu_notify(struct notifier_block *self,
5012 unsigned long action, void *hcpu)
5013 {
5014 int cpu = (unsigned long)hcpu;
5015
5016 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5017 lru_add_drain_cpu(cpu);
5018 drain_pages(cpu);
5019
5020 /*
5021 * Spill the event counters of the dead processor
5022 * into the current processors event counters.
5023 * This artificially elevates the count of the current
5024 * processor.
5025 */
5026 vm_events_fold_cpu(cpu);
5027
5028 /*
5029 * Zero the differential counters of the dead processor
5030 * so that the vm statistics are consistent.
5031 *
5032 * This is only okay since the processor is dead and cannot
5033 * race with what we are doing.
5034 */
5035 refresh_cpu_vm_stats(cpu);
5036 }
5037 return NOTIFY_OK;
5038 }
5039
5040 void __init page_alloc_init(void)
5041 {
5042 hotcpu_notifier(page_alloc_cpu_notify, 0);
5043 }
5044
5045 /*
5046 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5047 * or min_free_kbytes changes.
5048 */
5049 static void calculate_totalreserve_pages(void)
5050 {
5051 struct pglist_data *pgdat;
5052 unsigned long reserve_pages = 0;
5053 enum zone_type i, j;
5054
5055 for_each_online_pgdat(pgdat) {
5056 for (i = 0; i < MAX_NR_ZONES; i++) {
5057 struct zone *zone = pgdat->node_zones + i;
5058 unsigned long max = 0;
5059
5060 /* Find valid and maximum lowmem_reserve in the zone */
5061 for (j = i; j < MAX_NR_ZONES; j++) {
5062 if (zone->lowmem_reserve[j] > max)
5063 max = zone->lowmem_reserve[j];
5064 }
5065
5066 /* we treat the high watermark as reserved pages. */
5067 max += high_wmark_pages(zone);
5068
5069 if (max > zone->present_pages)
5070 max = zone->present_pages;
5071 reserve_pages += max;
5072 /*
5073 * Lowmem reserves are not available to
5074 * GFP_HIGHUSER page cache allocations and
5075 * kswapd tries to balance zones to their high
5076 * watermark. As a result, neither should be
5077 * regarded as dirtyable memory, to prevent a
5078 * situation where reclaim has to clean pages
5079 * in order to balance the zones.
5080 */
5081 zone->dirty_balance_reserve = max;
5082 }
5083 }
5084 dirty_balance_reserve = reserve_pages;
5085 totalreserve_pages = reserve_pages;
5086 }
5087
5088 /*
5089 * setup_per_zone_lowmem_reserve - called whenever
5090 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5091 * has a correct pages reserved value, so an adequate number of
5092 * pages are left in the zone after a successful __alloc_pages().
5093 */
5094 static void setup_per_zone_lowmem_reserve(void)
5095 {
5096 struct pglist_data *pgdat;
5097 enum zone_type j, idx;
5098
5099 for_each_online_pgdat(pgdat) {
5100 for (j = 0; j < MAX_NR_ZONES; j++) {
5101 struct zone *zone = pgdat->node_zones + j;
5102 unsigned long present_pages = zone->present_pages;
5103
5104 zone->lowmem_reserve[j] = 0;
5105
5106 idx = j;
5107 while (idx) {
5108 struct zone *lower_zone;
5109
5110 idx--;
5111
5112 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5113 sysctl_lowmem_reserve_ratio[idx] = 1;
5114
5115 lower_zone = pgdat->node_zones + idx;
5116 lower_zone->lowmem_reserve[j] = present_pages /
5117 sysctl_lowmem_reserve_ratio[idx];
5118 present_pages += lower_zone->present_pages;
5119 }
5120 }
5121 }
5122
5123 /* update totalreserve_pages */
5124 calculate_totalreserve_pages();
5125 }
5126
5127 static void __setup_per_zone_wmarks(void)
5128 {
5129 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5130 unsigned long lowmem_pages = 0;
5131 struct zone *zone;
5132 unsigned long flags;
5133
5134 /* Calculate total number of !ZONE_HIGHMEM pages */
5135 for_each_zone(zone) {
5136 if (!is_highmem(zone))
5137 lowmem_pages += zone->present_pages;
5138 }
5139
5140 for_each_zone(zone) {
5141 u64 tmp;
5142
5143 spin_lock_irqsave(&zone->lock, flags);
5144 tmp = (u64)pages_min * zone->present_pages;
5145 do_div(tmp, lowmem_pages);
5146 if (is_highmem(zone)) {
5147 /*
5148 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5149 * need highmem pages, so cap pages_min to a small
5150 * value here.
5151 *
5152 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5153 * deltas controls asynch page reclaim, and so should
5154 * not be capped for highmem.
5155 */
5156 int min_pages;
5157
5158 min_pages = zone->present_pages / 1024;
5159 if (min_pages < SWAP_CLUSTER_MAX)
5160 min_pages = SWAP_CLUSTER_MAX;
5161 if (min_pages > 128)
5162 min_pages = 128;
5163 zone->watermark[WMARK_MIN] = min_pages;
5164 } else {
5165 /*
5166 * If it's a lowmem zone, reserve a number of pages
5167 * proportionate to the zone's size.
5168 */
5169 zone->watermark[WMARK_MIN] = tmp;
5170 }
5171
5172 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5173 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5174
5175 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5176 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5177 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5178
5179 setup_zone_migrate_reserve(zone);
5180 spin_unlock_irqrestore(&zone->lock, flags);
5181 }
5182
5183 /* update totalreserve_pages */
5184 calculate_totalreserve_pages();
5185 }
5186
5187 /**
5188 * setup_per_zone_wmarks - called when min_free_kbytes changes
5189 * or when memory is hot-{added|removed}
5190 *
5191 * Ensures that the watermark[min,low,high] values for each zone are set
5192 * correctly with respect to min_free_kbytes.
5193 */
5194 void setup_per_zone_wmarks(void)
5195 {
5196 mutex_lock(&zonelists_mutex);
5197 __setup_per_zone_wmarks();
5198 mutex_unlock(&zonelists_mutex);
5199 }
5200
5201 /*
5202 * The inactive anon list should be small enough that the VM never has to
5203 * do too much work, but large enough that each inactive page has a chance
5204 * to be referenced again before it is swapped out.
5205 *
5206 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5207 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5208 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5209 * the anonymous pages are kept on the inactive list.
5210 *
5211 * total target max
5212 * memory ratio inactive anon
5213 * -------------------------------------
5214 * 10MB 1 5MB
5215 * 100MB 1 50MB
5216 * 1GB 3 250MB
5217 * 10GB 10 0.9GB
5218 * 100GB 31 3GB
5219 * 1TB 101 10GB
5220 * 10TB 320 32GB
5221 */
5222 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5223 {
5224 unsigned int gb, ratio;
5225
5226 /* Zone size in gigabytes */
5227 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5228 if (gb)
5229 ratio = int_sqrt(10 * gb);
5230 else
5231 ratio = 1;
5232
5233 zone->inactive_ratio = ratio;
5234 }
5235
5236 static void __meminit setup_per_zone_inactive_ratio(void)
5237 {
5238 struct zone *zone;
5239
5240 for_each_zone(zone)
5241 calculate_zone_inactive_ratio(zone);
5242 }
5243
5244 /*
5245 * Initialise min_free_kbytes.
5246 *
5247 * For small machines we want it small (128k min). For large machines
5248 * we want it large (64MB max). But it is not linear, because network
5249 * bandwidth does not increase linearly with machine size. We use
5250 *
5251 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5252 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5253 *
5254 * which yields
5255 *
5256 * 16MB: 512k
5257 * 32MB: 724k
5258 * 64MB: 1024k
5259 * 128MB: 1448k
5260 * 256MB: 2048k
5261 * 512MB: 2896k
5262 * 1024MB: 4096k
5263 * 2048MB: 5792k
5264 * 4096MB: 8192k
5265 * 8192MB: 11584k
5266 * 16384MB: 16384k
5267 */
5268 int __meminit init_per_zone_wmark_min(void)
5269 {
5270 unsigned long lowmem_kbytes;
5271
5272 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5273
5274 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5275 if (min_free_kbytes < 128)
5276 min_free_kbytes = 128;
5277 if (min_free_kbytes > 65536)
5278 min_free_kbytes = 65536;
5279 setup_per_zone_wmarks();
5280 refresh_zone_stat_thresholds();
5281 setup_per_zone_lowmem_reserve();
5282 setup_per_zone_inactive_ratio();
5283 return 0;
5284 }
5285 module_init(init_per_zone_wmark_min)
5286
5287 /*
5288 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5289 * that we can call two helper functions whenever min_free_kbytes
5290 * changes.
5291 */
5292 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5293 void __user *buffer, size_t *length, loff_t *ppos)
5294 {
5295 proc_dointvec(table, write, buffer, length, ppos);
5296 if (write)
5297 setup_per_zone_wmarks();
5298 return 0;
5299 }
5300
5301 #ifdef CONFIG_NUMA
5302 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5303 void __user *buffer, size_t *length, loff_t *ppos)
5304 {
5305 struct zone *zone;
5306 int rc;
5307
5308 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5309 if (rc)
5310 return rc;
5311
5312 for_each_zone(zone)
5313 zone->min_unmapped_pages = (zone->present_pages *
5314 sysctl_min_unmapped_ratio) / 100;
5315 return 0;
5316 }
5317
5318 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5319 void __user *buffer, size_t *length, loff_t *ppos)
5320 {
5321 struct zone *zone;
5322 int rc;
5323
5324 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5325 if (rc)
5326 return rc;
5327
5328 for_each_zone(zone)
5329 zone->min_slab_pages = (zone->present_pages *
5330 sysctl_min_slab_ratio) / 100;
5331 return 0;
5332 }
5333 #endif
5334
5335 /*
5336 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5337 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5338 * whenever sysctl_lowmem_reserve_ratio changes.
5339 *
5340 * The reserve ratio obviously has absolutely no relation with the
5341 * minimum watermarks. The lowmem reserve ratio can only make sense
5342 * if in function of the boot time zone sizes.
5343 */
5344 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5345 void __user *buffer, size_t *length, loff_t *ppos)
5346 {
5347 proc_dointvec_minmax(table, write, buffer, length, ppos);
5348 setup_per_zone_lowmem_reserve();
5349 return 0;
5350 }
5351
5352 /*
5353 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5354 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5355 * can have before it gets flushed back to buddy allocator.
5356 */
5357
5358 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5359 void __user *buffer, size_t *length, loff_t *ppos)
5360 {
5361 struct zone *zone;
5362 unsigned int cpu;
5363 int ret;
5364
5365 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5366 if (!write || (ret < 0))
5367 return ret;
5368 for_each_populated_zone(zone) {
5369 for_each_possible_cpu(cpu) {
5370 unsigned long high;
5371 high = zone->present_pages / percpu_pagelist_fraction;
5372 setup_pagelist_highmark(
5373 per_cpu_ptr(zone->pageset, cpu), high);
5374 }
5375 }
5376 return 0;
5377 }
5378
5379 int hashdist = HASHDIST_DEFAULT;
5380
5381 #ifdef CONFIG_NUMA
5382 static int __init set_hashdist(char *str)
5383 {
5384 if (!str)
5385 return 0;
5386 hashdist = simple_strtoul(str, &str, 0);
5387 return 1;
5388 }
5389 __setup("hashdist=", set_hashdist);
5390 #endif
5391
5392 /*
5393 * allocate a large system hash table from bootmem
5394 * - it is assumed that the hash table must contain an exact power-of-2
5395 * quantity of entries
5396 * - limit is the number of hash buckets, not the total allocation size
5397 */
5398 void *__init alloc_large_system_hash(const char *tablename,
5399 unsigned long bucketsize,
5400 unsigned long numentries,
5401 int scale,
5402 int flags,
5403 unsigned int *_hash_shift,
5404 unsigned int *_hash_mask,
5405 unsigned long low_limit,
5406 unsigned long high_limit)
5407 {
5408 unsigned long long max = high_limit;
5409 unsigned long log2qty, size;
5410 void *table = NULL;
5411
5412 /* allow the kernel cmdline to have a say */
5413 if (!numentries) {
5414 /* round applicable memory size up to nearest megabyte */
5415 numentries = nr_kernel_pages;
5416 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5417 numentries >>= 20 - PAGE_SHIFT;
5418 numentries <<= 20 - PAGE_SHIFT;
5419
5420 /* limit to 1 bucket per 2^scale bytes of low memory */
5421 if (scale > PAGE_SHIFT)
5422 numentries >>= (scale - PAGE_SHIFT);
5423 else
5424 numentries <<= (PAGE_SHIFT - scale);
5425
5426 /* Make sure we've got at least a 0-order allocation.. */
5427 if (unlikely(flags & HASH_SMALL)) {
5428 /* Makes no sense without HASH_EARLY */
5429 WARN_ON(!(flags & HASH_EARLY));
5430 if (!(numentries >> *_hash_shift)) {
5431 numentries = 1UL << *_hash_shift;
5432 BUG_ON(!numentries);
5433 }
5434 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5435 numentries = PAGE_SIZE / bucketsize;
5436 }
5437 numentries = roundup_pow_of_two(numentries);
5438
5439 /* limit allocation size to 1/16 total memory by default */
5440 if (max == 0) {
5441 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5442 do_div(max, bucketsize);
5443 }
5444 max = min(max, 0x80000000ULL);
5445
5446 if (numentries < low_limit)
5447 numentries = low_limit;
5448 if (numentries > max)
5449 numentries = max;
5450
5451 log2qty = ilog2(numentries);
5452
5453 do {
5454 size = bucketsize << log2qty;
5455 if (flags & HASH_EARLY)
5456 table = alloc_bootmem_nopanic(size);
5457 else if (hashdist)
5458 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5459 else {
5460 /*
5461 * If bucketsize is not a power-of-two, we may free
5462 * some pages at the end of hash table which
5463 * alloc_pages_exact() automatically does
5464 */
5465 if (get_order(size) < MAX_ORDER) {
5466 table = alloc_pages_exact(size, GFP_ATOMIC);
5467 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5468 }
5469 }
5470 } while (!table && size > PAGE_SIZE && --log2qty);
5471
5472 if (!table)
5473 panic("Failed to allocate %s hash table\n", tablename);
5474
5475 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5476 tablename,
5477 (1UL << log2qty),
5478 ilog2(size) - PAGE_SHIFT,
5479 size);
5480
5481 if (_hash_shift)
5482 *_hash_shift = log2qty;
5483 if (_hash_mask)
5484 *_hash_mask = (1 << log2qty) - 1;
5485
5486 return table;
5487 }
5488
5489 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5490 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5491 unsigned long pfn)
5492 {
5493 #ifdef CONFIG_SPARSEMEM
5494 return __pfn_to_section(pfn)->pageblock_flags;
5495 #else
5496 return zone->pageblock_flags;
5497 #endif /* CONFIG_SPARSEMEM */
5498 }
5499
5500 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5501 {
5502 #ifdef CONFIG_SPARSEMEM
5503 pfn &= (PAGES_PER_SECTION-1);
5504 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5505 #else
5506 pfn = pfn - zone->zone_start_pfn;
5507 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5508 #endif /* CONFIG_SPARSEMEM */
5509 }
5510
5511 /**
5512 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5513 * @page: The page within the block of interest
5514 * @start_bitidx: The first bit of interest to retrieve
5515 * @end_bitidx: The last bit of interest
5516 * returns pageblock_bits flags
5517 */
5518 unsigned long get_pageblock_flags_group(struct page *page,
5519 int start_bitidx, int end_bitidx)
5520 {
5521 struct zone *zone;
5522 unsigned long *bitmap;
5523 unsigned long pfn, bitidx;
5524 unsigned long flags = 0;
5525 unsigned long value = 1;
5526
5527 zone = page_zone(page);
5528 pfn = page_to_pfn(page);
5529 bitmap = get_pageblock_bitmap(zone, pfn);
5530 bitidx = pfn_to_bitidx(zone, pfn);
5531
5532 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5533 if (test_bit(bitidx + start_bitidx, bitmap))
5534 flags |= value;
5535
5536 return flags;
5537 }
5538
5539 /**
5540 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5541 * @page: The page within the block of interest
5542 * @start_bitidx: The first bit of interest
5543 * @end_bitidx: The last bit of interest
5544 * @flags: The flags to set
5545 */
5546 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5547 int start_bitidx, int end_bitidx)
5548 {
5549 struct zone *zone;
5550 unsigned long *bitmap;
5551 unsigned long pfn, bitidx;
5552 unsigned long value = 1;
5553
5554 zone = page_zone(page);
5555 pfn = page_to_pfn(page);
5556 bitmap = get_pageblock_bitmap(zone, pfn);
5557 bitidx = pfn_to_bitidx(zone, pfn);
5558 VM_BUG_ON(pfn < zone->zone_start_pfn);
5559 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5560
5561 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5562 if (flags & value)
5563 __set_bit(bitidx + start_bitidx, bitmap);
5564 else
5565 __clear_bit(bitidx + start_bitidx, bitmap);
5566 }
5567
5568 /*
5569 * This function checks whether pageblock includes unmovable pages or not.
5570 * If @count is not zero, it is okay to include less @count unmovable pages
5571 *
5572 * PageLRU check wihtout isolation or lru_lock could race so that
5573 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5574 * expect this function should be exact.
5575 */
5576 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5577 {
5578 unsigned long pfn, iter, found;
5579 int mt;
5580
5581 /*
5582 * For avoiding noise data, lru_add_drain_all() should be called
5583 * If ZONE_MOVABLE, the zone never contains unmovable pages
5584 */
5585 if (zone_idx(zone) == ZONE_MOVABLE)
5586 return false;
5587 mt = get_pageblock_migratetype(page);
5588 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5589 return false;
5590
5591 pfn = page_to_pfn(page);
5592 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5593 unsigned long check = pfn + iter;
5594
5595 if (!pfn_valid_within(check))
5596 continue;
5597
5598 page = pfn_to_page(check);
5599 /*
5600 * We can't use page_count without pin a page
5601 * because another CPU can free compound page.
5602 * This check already skips compound tails of THP
5603 * because their page->_count is zero at all time.
5604 */
5605 if (!atomic_read(&page->_count)) {
5606 if (PageBuddy(page))
5607 iter += (1 << page_order(page)) - 1;
5608 continue;
5609 }
5610
5611 if (!PageLRU(page))
5612 found++;
5613 /*
5614 * If there are RECLAIMABLE pages, we need to check it.
5615 * But now, memory offline itself doesn't call shrink_slab()
5616 * and it still to be fixed.
5617 */
5618 /*
5619 * If the page is not RAM, page_count()should be 0.
5620 * we don't need more check. This is an _used_ not-movable page.
5621 *
5622 * The problematic thing here is PG_reserved pages. PG_reserved
5623 * is set to both of a memory hole page and a _used_ kernel
5624 * page at boot.
5625 */
5626 if (found > count)
5627 return true;
5628 }
5629 return false;
5630 }
5631
5632 bool is_pageblock_removable_nolock(struct page *page)
5633 {
5634 struct zone *zone;
5635 unsigned long pfn;
5636
5637 /*
5638 * We have to be careful here because we are iterating over memory
5639 * sections which are not zone aware so we might end up outside of
5640 * the zone but still within the section.
5641 * We have to take care about the node as well. If the node is offline
5642 * its NODE_DATA will be NULL - see page_zone.
5643 */
5644 if (!node_online(page_to_nid(page)))
5645 return false;
5646
5647 zone = page_zone(page);
5648 pfn = page_to_pfn(page);
5649 if (zone->zone_start_pfn > pfn ||
5650 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5651 return false;
5652
5653 return !has_unmovable_pages(zone, page, 0);
5654 }
5655
5656 #ifdef CONFIG_CMA
5657
5658 static unsigned long pfn_max_align_down(unsigned long pfn)
5659 {
5660 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5661 pageblock_nr_pages) - 1);
5662 }
5663
5664 static unsigned long pfn_max_align_up(unsigned long pfn)
5665 {
5666 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5667 pageblock_nr_pages));
5668 }
5669
5670 static struct page *
5671 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5672 int **resultp)
5673 {
5674 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5675
5676 if (PageHighMem(page))
5677 gfp_mask |= __GFP_HIGHMEM;
5678
5679 return alloc_page(gfp_mask);
5680 }
5681
5682 /* [start, end) must belong to a single zone. */
5683 static int __alloc_contig_migrate_range(struct compact_control *cc,
5684 unsigned long start, unsigned long end)
5685 {
5686 /* This function is based on compact_zone() from compaction.c. */
5687
5688 unsigned long pfn = start;
5689 unsigned int tries = 0;
5690 int ret = 0;
5691
5692 migrate_prep_local();
5693
5694 while (pfn < end || !list_empty(&cc->migratepages)) {
5695 if (fatal_signal_pending(current)) {
5696 ret = -EINTR;
5697 break;
5698 }
5699
5700 if (list_empty(&cc->migratepages)) {
5701 cc->nr_migratepages = 0;
5702 pfn = isolate_migratepages_range(cc->zone, cc,
5703 pfn, end);
5704 if (!pfn) {
5705 ret = -EINTR;
5706 break;
5707 }
5708 tries = 0;
5709 } else if (++tries == 5) {
5710 ret = ret < 0 ? ret : -EBUSY;
5711 break;
5712 }
5713
5714 reclaim_clean_pages_from_list(cc->zone, &cc->migratepages);
5715
5716 ret = migrate_pages(&cc->migratepages,
5717 __alloc_contig_migrate_alloc,
5718 0, false, MIGRATE_SYNC);
5719 }
5720
5721 putback_lru_pages(&cc->migratepages);
5722 return ret > 0 ? 0 : ret;
5723 }
5724
5725 /*
5726 * Update zone's cma pages counter used for watermark level calculation.
5727 */
5728 static inline void __update_cma_watermarks(struct zone *zone, int count)
5729 {
5730 unsigned long flags;
5731 spin_lock_irqsave(&zone->lock, flags);
5732 zone->min_cma_pages += count;
5733 spin_unlock_irqrestore(&zone->lock, flags);
5734 setup_per_zone_wmarks();
5735 }
5736
5737 /*
5738 * Trigger memory pressure bump to reclaim some pages in order to be able to
5739 * allocate 'count' pages in single page units. Does similar work as
5740 *__alloc_pages_slowpath() function.
5741 */
5742 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5743 {
5744 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5745 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5746 int did_some_progress = 0;
5747 int order = 1;
5748
5749 /*
5750 * Increase level of watermarks to force kswapd do his job
5751 * to stabilise at new watermark level.
5752 */
5753 __update_cma_watermarks(zone, count);
5754
5755 /* Obey watermarks as if the page was being allocated */
5756 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5757 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5758
5759 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5760 NULL);
5761 if (!did_some_progress) {
5762 /* Exhausted what can be done so it's blamo time */
5763 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5764 }
5765 }
5766
5767 /* Restore original watermark levels. */
5768 __update_cma_watermarks(zone, -count);
5769
5770 return count;
5771 }
5772
5773 /**
5774 * alloc_contig_range() -- tries to allocate given range of pages
5775 * @start: start PFN to allocate
5776 * @end: one-past-the-last PFN to allocate
5777 * @migratetype: migratetype of the underlaying pageblocks (either
5778 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5779 * in range must have the same migratetype and it must
5780 * be either of the two.
5781 *
5782 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5783 * aligned, however it's the caller's responsibility to guarantee that
5784 * we are the only thread that changes migrate type of pageblocks the
5785 * pages fall in.
5786 *
5787 * The PFN range must belong to a single zone.
5788 *
5789 * Returns zero on success or negative error code. On success all
5790 * pages which PFN is in [start, end) are allocated for the caller and
5791 * need to be freed with free_contig_range().
5792 */
5793 int alloc_contig_range(unsigned long start, unsigned long end,
5794 unsigned migratetype)
5795 {
5796 struct zone *zone = page_zone(pfn_to_page(start));
5797 unsigned long outer_start, outer_end;
5798 int ret = 0, order;
5799
5800 struct compact_control cc = {
5801 .nr_migratepages = 0,
5802 .order = -1,
5803 .zone = page_zone(pfn_to_page(start)),
5804 .sync = true,
5805 .ignore_skip_hint = true,
5806 };
5807 INIT_LIST_HEAD(&cc.migratepages);
5808
5809 /*
5810 * What we do here is we mark all pageblocks in range as
5811 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5812 * have different sizes, and due to the way page allocator
5813 * work, we align the range to biggest of the two pages so
5814 * that page allocator won't try to merge buddies from
5815 * different pageblocks and change MIGRATE_ISOLATE to some
5816 * other migration type.
5817 *
5818 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5819 * migrate the pages from an unaligned range (ie. pages that
5820 * we are interested in). This will put all the pages in
5821 * range back to page allocator as MIGRATE_ISOLATE.
5822 *
5823 * When this is done, we take the pages in range from page
5824 * allocator removing them from the buddy system. This way
5825 * page allocator will never consider using them.
5826 *
5827 * This lets us mark the pageblocks back as
5828 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5829 * aligned range but not in the unaligned, original range are
5830 * put back to page allocator so that buddy can use them.
5831 */
5832
5833 ret = start_isolate_page_range(pfn_max_align_down(start),
5834 pfn_max_align_up(end), migratetype);
5835 if (ret)
5836 goto done;
5837
5838 ret = __alloc_contig_migrate_range(&cc, start, end);
5839 if (ret)
5840 goto done;
5841
5842 /*
5843 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5844 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5845 * more, all pages in [start, end) are free in page allocator.
5846 * What we are going to do is to allocate all pages from
5847 * [start, end) (that is remove them from page allocator).
5848 *
5849 * The only problem is that pages at the beginning and at the
5850 * end of interesting range may be not aligned with pages that
5851 * page allocator holds, ie. they can be part of higher order
5852 * pages. Because of this, we reserve the bigger range and
5853 * once this is done free the pages we are not interested in.
5854 *
5855 * We don't have to hold zone->lock here because the pages are
5856 * isolated thus they won't get removed from buddy.
5857 */
5858
5859 lru_add_drain_all();
5860 drain_all_pages();
5861
5862 order = 0;
5863 outer_start = start;
5864 while (!PageBuddy(pfn_to_page(outer_start))) {
5865 if (++order >= MAX_ORDER) {
5866 ret = -EBUSY;
5867 goto done;
5868 }
5869 outer_start &= ~0UL << order;
5870 }
5871
5872 /* Make sure the range is really isolated. */
5873 if (test_pages_isolated(outer_start, end)) {
5874 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5875 outer_start, end);
5876 ret = -EBUSY;
5877 goto done;
5878 }
5879
5880 /*
5881 * Reclaim enough pages to make sure that contiguous allocation
5882 * will not starve the system.
5883 */
5884 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5885
5886 /* Grab isolated pages from freelists. */
5887 outer_end = isolate_freepages_range(&cc, outer_start, end);
5888 if (!outer_end) {
5889 ret = -EBUSY;
5890 goto done;
5891 }
5892
5893 /* Free head and tail (if any) */
5894 if (start != outer_start)
5895 free_contig_range(outer_start, start - outer_start);
5896 if (end != outer_end)
5897 free_contig_range(end, outer_end - end);
5898
5899 done:
5900 undo_isolate_page_range(pfn_max_align_down(start),
5901 pfn_max_align_up(end), migratetype);
5902 return ret;
5903 }
5904
5905 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5906 {
5907 for (; nr_pages--; ++pfn)
5908 __free_page(pfn_to_page(pfn));
5909 }
5910 #endif
5911
5912 #ifdef CONFIG_MEMORY_HOTPLUG
5913 static int __meminit __zone_pcp_update(void *data)
5914 {
5915 struct zone *zone = data;
5916 int cpu;
5917 unsigned long batch = zone_batchsize(zone), flags;
5918
5919 for_each_possible_cpu(cpu) {
5920 struct per_cpu_pageset *pset;
5921 struct per_cpu_pages *pcp;
5922
5923 pset = per_cpu_ptr(zone->pageset, cpu);
5924 pcp = &pset->pcp;
5925
5926 local_irq_save(flags);
5927 if (pcp->count > 0)
5928 free_pcppages_bulk(zone, pcp->count, pcp);
5929 setup_pageset(pset, batch);
5930 local_irq_restore(flags);
5931 }
5932 return 0;
5933 }
5934
5935 void __meminit zone_pcp_update(struct zone *zone)
5936 {
5937 stop_machine(__zone_pcp_update, zone, NULL);
5938 }
5939 #endif
5940
5941 #ifdef CONFIG_MEMORY_HOTREMOVE
5942 void zone_pcp_reset(struct zone *zone)
5943 {
5944 unsigned long flags;
5945
5946 /* avoid races with drain_pages() */
5947 local_irq_save(flags);
5948 if (zone->pageset != &boot_pageset) {
5949 free_percpu(zone->pageset);
5950 zone->pageset = &boot_pageset;
5951 }
5952 local_irq_restore(flags);
5953 }
5954
5955 /*
5956 * All pages in the range must be isolated before calling this.
5957 */
5958 void
5959 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5960 {
5961 struct page *page;
5962 struct zone *zone;
5963 int order, i;
5964 unsigned long pfn;
5965 unsigned long flags;
5966 /* find the first valid pfn */
5967 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5968 if (pfn_valid(pfn))
5969 break;
5970 if (pfn == end_pfn)
5971 return;
5972 zone = page_zone(pfn_to_page(pfn));
5973 spin_lock_irqsave(&zone->lock, flags);
5974 pfn = start_pfn;
5975 while (pfn < end_pfn) {
5976 if (!pfn_valid(pfn)) {
5977 pfn++;
5978 continue;
5979 }
5980 page = pfn_to_page(pfn);
5981 BUG_ON(page_count(page));
5982 BUG_ON(!PageBuddy(page));
5983 order = page_order(page);
5984 #ifdef CONFIG_DEBUG_VM
5985 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5986 pfn, 1 << order, end_pfn);
5987 #endif
5988 list_del(&page->lru);
5989 rmv_page_order(page);
5990 zone->free_area[order].nr_free--;
5991 __mod_zone_page_state(zone, NR_FREE_PAGES,
5992 - (1UL << order));
5993 for (i = 0; i < (1 << order); i++)
5994 SetPageReserved((page+i));
5995 pfn += (1 << order);
5996 }
5997 spin_unlock_irqrestore(&zone->lock, flags);
5998 }
5999 #endif
6000
6001 #ifdef CONFIG_MEMORY_FAILURE
6002 bool is_free_buddy_page(struct page *page)
6003 {
6004 struct zone *zone = page_zone(page);
6005 unsigned long pfn = page_to_pfn(page);
6006 unsigned long flags;
6007 int order;
6008
6009 spin_lock_irqsave(&zone->lock, flags);
6010 for (order = 0; order < MAX_ORDER; order++) {
6011 struct page *page_head = page - (pfn & ((1 << order) - 1));
6012
6013 if (PageBuddy(page_head) && page_order(page_head) >= order)
6014 break;
6015 }
6016 spin_unlock_irqrestore(&zone->lock, flags);
6017
6018 return order < MAX_ORDER;
6019 }
6020 #endif
6021
6022 static const struct trace_print_flags pageflag_names[] = {
6023 {1UL << PG_locked, "locked" },
6024 {1UL << PG_error, "error" },
6025 {1UL << PG_referenced, "referenced" },
6026 {1UL << PG_uptodate, "uptodate" },
6027 {1UL << PG_dirty, "dirty" },
6028 {1UL << PG_lru, "lru" },
6029 {1UL << PG_active, "active" },
6030 {1UL << PG_slab, "slab" },
6031 {1UL << PG_owner_priv_1, "owner_priv_1" },
6032 {1UL << PG_arch_1, "arch_1" },
6033 {1UL << PG_reserved, "reserved" },
6034 {1UL << PG_private, "private" },
6035 {1UL << PG_private_2, "private_2" },
6036 {1UL << PG_writeback, "writeback" },
6037 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6038 {1UL << PG_head, "head" },
6039 {1UL << PG_tail, "tail" },
6040 #else
6041 {1UL << PG_compound, "compound" },
6042 #endif
6043 {1UL << PG_swapcache, "swapcache" },
6044 {1UL << PG_mappedtodisk, "mappedtodisk" },
6045 {1UL << PG_reclaim, "reclaim" },
6046 {1UL << PG_swapbacked, "swapbacked" },
6047 {1UL << PG_unevictable, "unevictable" },
6048 #ifdef CONFIG_MMU
6049 {1UL << PG_mlocked, "mlocked" },
6050 #endif
6051 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6052 {1UL << PG_uncached, "uncached" },
6053 #endif
6054 #ifdef CONFIG_MEMORY_FAILURE
6055 {1UL << PG_hwpoison, "hwpoison" },
6056 #endif
6057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6058 {1UL << PG_compound_lock, "compound_lock" },
6059 #endif
6060 };
6061
6062 static void dump_page_flags(unsigned long flags)
6063 {
6064 const char *delim = "";
6065 unsigned long mask;
6066 int i;
6067
6068 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6069
6070 printk(KERN_ALERT "page flags: %#lx(", flags);
6071
6072 /* remove zone id */
6073 flags &= (1UL << NR_PAGEFLAGS) - 1;
6074
6075 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6076
6077 mask = pageflag_names[i].mask;
6078 if ((flags & mask) != mask)
6079 continue;
6080
6081 flags &= ~mask;
6082 printk("%s%s", delim, pageflag_names[i].name);
6083 delim = "|";
6084 }
6085
6086 /* check for left over flags */
6087 if (flags)
6088 printk("%s%#lx", delim, flags);
6089
6090 printk(")\n");
6091 }
6092
6093 void dump_page(struct page *page)
6094 {
6095 printk(KERN_ALERT
6096 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6097 page, atomic_read(&page->_count), page_mapcount(page),
6098 page->mapping, page->index);
6099 dump_page_flags(page->flags);
6100 mem_cgroup_print_bad_page(page);
6101 }
This page took 0.228163 seconds and 6 git commands to generate.