Merge branch 'i2c/for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 #ifdef CONFIG_PM_SLEEP
129 /*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
137
138 static gfp_t saved_gfp_mask;
139
140 void pm_restore_gfp_mask(void)
141 {
142 WARN_ON(!mutex_is_locked(&pm_mutex));
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
147 }
148
149 void pm_restrict_gfp_mask(void)
150 {
151 WARN_ON(!mutex_is_locked(&pm_mutex));
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~GFP_IOFS;
155 }
156
157 bool pm_suspended_storage(void)
158 {
159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 return false;
161 return true;
162 }
163 #endif /* CONFIG_PM_SLEEP */
164
165 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166 int pageblock_order __read_mostly;
167 #endif
168
169 static void __free_pages_ok(struct page *page, unsigned int order);
170
171 /*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
181 */
182 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
183 #ifdef CONFIG_ZONE_DMA
184 256,
185 #endif
186 #ifdef CONFIG_ZONE_DMA32
187 256,
188 #endif
189 #ifdef CONFIG_HIGHMEM
190 32,
191 #endif
192 32,
193 };
194
195 EXPORT_SYMBOL(totalram_pages);
196
197 static char * const zone_names[MAX_NR_ZONES] = {
198 #ifdef CONFIG_ZONE_DMA
199 "DMA",
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 "DMA32",
203 #endif
204 "Normal",
205 #ifdef CONFIG_HIGHMEM
206 "HighMem",
207 #endif
208 "Movable",
209 #ifdef CONFIG_ZONE_DEVICE
210 "Device",
211 #endif
212 };
213
214 int min_free_kbytes = 1024;
215 int user_min_free_kbytes = -1;
216
217 static unsigned long __meminitdata nr_kernel_pages;
218 static unsigned long __meminitdata nr_all_pages;
219 static unsigned long __meminitdata dma_reserve;
220
221 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
222 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
223 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
224 static unsigned long __initdata required_kernelcore;
225 static unsigned long __initdata required_movablecore;
226 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
227
228 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
229 int movable_zone;
230 EXPORT_SYMBOL(movable_zone);
231 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
232
233 #if MAX_NUMNODES > 1
234 int nr_node_ids __read_mostly = MAX_NUMNODES;
235 int nr_online_nodes __read_mostly = 1;
236 EXPORT_SYMBOL(nr_node_ids);
237 EXPORT_SYMBOL(nr_online_nodes);
238 #endif
239
240 int page_group_by_mobility_disabled __read_mostly;
241
242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
243 static inline void reset_deferred_meminit(pg_data_t *pgdat)
244 {
245 pgdat->first_deferred_pfn = ULONG_MAX;
246 }
247
248 /* Returns true if the struct page for the pfn is uninitialised */
249 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
250 {
251 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
252 return true;
253
254 return false;
255 }
256
257 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
258 {
259 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
260 return true;
261
262 return false;
263 }
264
265 /*
266 * Returns false when the remaining initialisation should be deferred until
267 * later in the boot cycle when it can be parallelised.
268 */
269 static inline bool update_defer_init(pg_data_t *pgdat,
270 unsigned long pfn, unsigned long zone_end,
271 unsigned long *nr_initialised)
272 {
273 /* Always populate low zones for address-contrained allocations */
274 if (zone_end < pgdat_end_pfn(pgdat))
275 return true;
276
277 /* Initialise at least 2G of the highest zone */
278 (*nr_initialised)++;
279 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
280 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
281 pgdat->first_deferred_pfn = pfn;
282 return false;
283 }
284
285 return true;
286 }
287 #else
288 static inline void reset_deferred_meminit(pg_data_t *pgdat)
289 {
290 }
291
292 static inline bool early_page_uninitialised(unsigned long pfn)
293 {
294 return false;
295 }
296
297 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298 {
299 return false;
300 }
301
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 return true;
307 }
308 #endif
309
310
311 void set_pageblock_migratetype(struct page *page, int migratetype)
312 {
313 if (unlikely(page_group_by_mobility_disabled &&
314 migratetype < MIGRATE_PCPTYPES))
315 migratetype = MIGRATE_UNMOVABLE;
316
317 set_pageblock_flags_group(page, (unsigned long)migratetype,
318 PB_migrate, PB_migrate_end);
319 }
320
321 #ifdef CONFIG_DEBUG_VM
322 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
323 {
324 int ret = 0;
325 unsigned seq;
326 unsigned long pfn = page_to_pfn(page);
327 unsigned long sp, start_pfn;
328
329 do {
330 seq = zone_span_seqbegin(zone);
331 start_pfn = zone->zone_start_pfn;
332 sp = zone->spanned_pages;
333 if (!zone_spans_pfn(zone, pfn))
334 ret = 1;
335 } while (zone_span_seqretry(zone, seq));
336
337 if (ret)
338 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
339 pfn, zone_to_nid(zone), zone->name,
340 start_pfn, start_pfn + sp);
341
342 return ret;
343 }
344
345 static int page_is_consistent(struct zone *zone, struct page *page)
346 {
347 if (!pfn_valid_within(page_to_pfn(page)))
348 return 0;
349 if (zone != page_zone(page))
350 return 0;
351
352 return 1;
353 }
354 /*
355 * Temporary debugging check for pages not lying within a given zone.
356 */
357 static int bad_range(struct zone *zone, struct page *page)
358 {
359 if (page_outside_zone_boundaries(zone, page))
360 return 1;
361 if (!page_is_consistent(zone, page))
362 return 1;
363
364 return 0;
365 }
366 #else
367 static inline int bad_range(struct zone *zone, struct page *page)
368 {
369 return 0;
370 }
371 #endif
372
373 static void bad_page(struct page *page, const char *reason,
374 unsigned long bad_flags)
375 {
376 static unsigned long resume;
377 static unsigned long nr_shown;
378 static unsigned long nr_unshown;
379
380 /* Don't complain about poisoned pages */
381 if (PageHWPoison(page)) {
382 page_mapcount_reset(page); /* remove PageBuddy */
383 return;
384 }
385
386 /*
387 * Allow a burst of 60 reports, then keep quiet for that minute;
388 * or allow a steady drip of one report per second.
389 */
390 if (nr_shown == 60) {
391 if (time_before(jiffies, resume)) {
392 nr_unshown++;
393 goto out;
394 }
395 if (nr_unshown) {
396 printk(KERN_ALERT
397 "BUG: Bad page state: %lu messages suppressed\n",
398 nr_unshown);
399 nr_unshown = 0;
400 }
401 nr_shown = 0;
402 }
403 if (nr_shown++ == 0)
404 resume = jiffies + 60 * HZ;
405
406 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
407 current->comm, page_to_pfn(page));
408 dump_page_badflags(page, reason, bad_flags);
409
410 print_modules();
411 dump_stack();
412 out:
413 /* Leave bad fields for debug, except PageBuddy could make trouble */
414 page_mapcount_reset(page); /* remove PageBuddy */
415 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
416 }
417
418 /*
419 * Higher-order pages are called "compound pages". They are structured thusly:
420 *
421 * The first PAGE_SIZE page is called the "head page".
422 *
423 * The remaining PAGE_SIZE pages are called "tail pages".
424 *
425 * All pages have PG_compound set. All tail pages have their ->first_page
426 * pointing at the head page.
427 *
428 * The first tail page's ->lru.next holds the address of the compound page's
429 * put_page() function. Its ->lru.prev holds the order of allocation.
430 * This usage means that zero-order pages may not be compound.
431 */
432
433 static void free_compound_page(struct page *page)
434 {
435 __free_pages_ok(page, compound_order(page));
436 }
437
438 void prep_compound_page(struct page *page, unsigned long order)
439 {
440 int i;
441 int nr_pages = 1 << order;
442
443 set_compound_page_dtor(page, free_compound_page);
444 set_compound_order(page, order);
445 __SetPageHead(page);
446 for (i = 1; i < nr_pages; i++) {
447 struct page *p = page + i;
448 set_page_count(p, 0);
449 p->first_page = page;
450 /* Make sure p->first_page is always valid for PageTail() */
451 smp_wmb();
452 __SetPageTail(p);
453 }
454 }
455
456 #ifdef CONFIG_DEBUG_PAGEALLOC
457 unsigned int _debug_guardpage_minorder;
458 bool _debug_pagealloc_enabled __read_mostly;
459 bool _debug_guardpage_enabled __read_mostly;
460
461 static int __init early_debug_pagealloc(char *buf)
462 {
463 if (!buf)
464 return -EINVAL;
465
466 if (strcmp(buf, "on") == 0)
467 _debug_pagealloc_enabled = true;
468
469 return 0;
470 }
471 early_param("debug_pagealloc", early_debug_pagealloc);
472
473 static bool need_debug_guardpage(void)
474 {
475 /* If we don't use debug_pagealloc, we don't need guard page */
476 if (!debug_pagealloc_enabled())
477 return false;
478
479 return true;
480 }
481
482 static void init_debug_guardpage(void)
483 {
484 if (!debug_pagealloc_enabled())
485 return;
486
487 _debug_guardpage_enabled = true;
488 }
489
490 struct page_ext_operations debug_guardpage_ops = {
491 .need = need_debug_guardpage,
492 .init = init_debug_guardpage,
493 };
494
495 static int __init debug_guardpage_minorder_setup(char *buf)
496 {
497 unsigned long res;
498
499 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
500 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
501 return 0;
502 }
503 _debug_guardpage_minorder = res;
504 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
505 return 0;
506 }
507 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
508
509 static inline void set_page_guard(struct zone *zone, struct page *page,
510 unsigned int order, int migratetype)
511 {
512 struct page_ext *page_ext;
513
514 if (!debug_guardpage_enabled())
515 return;
516
517 page_ext = lookup_page_ext(page);
518 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
519
520 INIT_LIST_HEAD(&page->lru);
521 set_page_private(page, order);
522 /* Guard pages are not available for any usage */
523 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
524 }
525
526 static inline void clear_page_guard(struct zone *zone, struct page *page,
527 unsigned int order, int migratetype)
528 {
529 struct page_ext *page_ext;
530
531 if (!debug_guardpage_enabled())
532 return;
533
534 page_ext = lookup_page_ext(page);
535 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
536
537 set_page_private(page, 0);
538 if (!is_migrate_isolate(migratetype))
539 __mod_zone_freepage_state(zone, (1 << order), migratetype);
540 }
541 #else
542 struct page_ext_operations debug_guardpage_ops = { NULL, };
543 static inline void set_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
545 static inline void clear_page_guard(struct zone *zone, struct page *page,
546 unsigned int order, int migratetype) {}
547 #endif
548
549 static inline void set_page_order(struct page *page, unsigned int order)
550 {
551 set_page_private(page, order);
552 __SetPageBuddy(page);
553 }
554
555 static inline void rmv_page_order(struct page *page)
556 {
557 __ClearPageBuddy(page);
558 set_page_private(page, 0);
559 }
560
561 /*
562 * This function checks whether a page is free && is the buddy
563 * we can do coalesce a page and its buddy if
564 * (a) the buddy is not in a hole &&
565 * (b) the buddy is in the buddy system &&
566 * (c) a page and its buddy have the same order &&
567 * (d) a page and its buddy are in the same zone.
568 *
569 * For recording whether a page is in the buddy system, we set ->_mapcount
570 * PAGE_BUDDY_MAPCOUNT_VALUE.
571 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
572 * serialized by zone->lock.
573 *
574 * For recording page's order, we use page_private(page).
575 */
576 static inline int page_is_buddy(struct page *page, struct page *buddy,
577 unsigned int order)
578 {
579 if (!pfn_valid_within(page_to_pfn(buddy)))
580 return 0;
581
582 if (page_is_guard(buddy) && page_order(buddy) == order) {
583 if (page_zone_id(page) != page_zone_id(buddy))
584 return 0;
585
586 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
587
588 return 1;
589 }
590
591 if (PageBuddy(buddy) && page_order(buddy) == order) {
592 /*
593 * zone check is done late to avoid uselessly
594 * calculating zone/node ids for pages that could
595 * never merge.
596 */
597 if (page_zone_id(page) != page_zone_id(buddy))
598 return 0;
599
600 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
601
602 return 1;
603 }
604 return 0;
605 }
606
607 /*
608 * Freeing function for a buddy system allocator.
609 *
610 * The concept of a buddy system is to maintain direct-mapped table
611 * (containing bit values) for memory blocks of various "orders".
612 * The bottom level table contains the map for the smallest allocatable
613 * units of memory (here, pages), and each level above it describes
614 * pairs of units from the levels below, hence, "buddies".
615 * At a high level, all that happens here is marking the table entry
616 * at the bottom level available, and propagating the changes upward
617 * as necessary, plus some accounting needed to play nicely with other
618 * parts of the VM system.
619 * At each level, we keep a list of pages, which are heads of continuous
620 * free pages of length of (1 << order) and marked with _mapcount
621 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
622 * field.
623 * So when we are allocating or freeing one, we can derive the state of the
624 * other. That is, if we allocate a small block, and both were
625 * free, the remainder of the region must be split into blocks.
626 * If a block is freed, and its buddy is also free, then this
627 * triggers coalescing into a block of larger size.
628 *
629 * -- nyc
630 */
631
632 static inline void __free_one_page(struct page *page,
633 unsigned long pfn,
634 struct zone *zone, unsigned int order,
635 int migratetype)
636 {
637 unsigned long page_idx;
638 unsigned long combined_idx;
639 unsigned long uninitialized_var(buddy_idx);
640 struct page *buddy;
641 int max_order = MAX_ORDER;
642
643 VM_BUG_ON(!zone_is_initialized(zone));
644 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
645
646 VM_BUG_ON(migratetype == -1);
647 if (is_migrate_isolate(migratetype)) {
648 /*
649 * We restrict max order of merging to prevent merge
650 * between freepages on isolate pageblock and normal
651 * pageblock. Without this, pageblock isolation
652 * could cause incorrect freepage accounting.
653 */
654 max_order = min(MAX_ORDER, pageblock_order + 1);
655 } else {
656 __mod_zone_freepage_state(zone, 1 << order, migratetype);
657 }
658
659 page_idx = pfn & ((1 << max_order) - 1);
660
661 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
662 VM_BUG_ON_PAGE(bad_range(zone, page), page);
663
664 while (order < max_order - 1) {
665 buddy_idx = __find_buddy_index(page_idx, order);
666 buddy = page + (buddy_idx - page_idx);
667 if (!page_is_buddy(page, buddy, order))
668 break;
669 /*
670 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
671 * merge with it and move up one order.
672 */
673 if (page_is_guard(buddy)) {
674 clear_page_guard(zone, buddy, order, migratetype);
675 } else {
676 list_del(&buddy->lru);
677 zone->free_area[order].nr_free--;
678 rmv_page_order(buddy);
679 }
680 combined_idx = buddy_idx & page_idx;
681 page = page + (combined_idx - page_idx);
682 page_idx = combined_idx;
683 order++;
684 }
685 set_page_order(page, order);
686
687 /*
688 * If this is not the largest possible page, check if the buddy
689 * of the next-highest order is free. If it is, it's possible
690 * that pages are being freed that will coalesce soon. In case,
691 * that is happening, add the free page to the tail of the list
692 * so it's less likely to be used soon and more likely to be merged
693 * as a higher order page
694 */
695 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
696 struct page *higher_page, *higher_buddy;
697 combined_idx = buddy_idx & page_idx;
698 higher_page = page + (combined_idx - page_idx);
699 buddy_idx = __find_buddy_index(combined_idx, order + 1);
700 higher_buddy = higher_page + (buddy_idx - combined_idx);
701 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
702 list_add_tail(&page->lru,
703 &zone->free_area[order].free_list[migratetype]);
704 goto out;
705 }
706 }
707
708 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
709 out:
710 zone->free_area[order].nr_free++;
711 }
712
713 static inline int free_pages_check(struct page *page)
714 {
715 const char *bad_reason = NULL;
716 unsigned long bad_flags = 0;
717
718 if (unlikely(page_mapcount(page)))
719 bad_reason = "nonzero mapcount";
720 if (unlikely(page->mapping != NULL))
721 bad_reason = "non-NULL mapping";
722 if (unlikely(atomic_read(&page->_count) != 0))
723 bad_reason = "nonzero _count";
724 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
725 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
726 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
727 }
728 #ifdef CONFIG_MEMCG
729 if (unlikely(page->mem_cgroup))
730 bad_reason = "page still charged to cgroup";
731 #endif
732 if (unlikely(bad_reason)) {
733 bad_page(page, bad_reason, bad_flags);
734 return 1;
735 }
736 page_cpupid_reset_last(page);
737 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
738 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
739 return 0;
740 }
741
742 /*
743 * Frees a number of pages from the PCP lists
744 * Assumes all pages on list are in same zone, and of same order.
745 * count is the number of pages to free.
746 *
747 * If the zone was previously in an "all pages pinned" state then look to
748 * see if this freeing clears that state.
749 *
750 * And clear the zone's pages_scanned counter, to hold off the "all pages are
751 * pinned" detection logic.
752 */
753 static void free_pcppages_bulk(struct zone *zone, int count,
754 struct per_cpu_pages *pcp)
755 {
756 int migratetype = 0;
757 int batch_free = 0;
758 int to_free = count;
759 unsigned long nr_scanned;
760
761 spin_lock(&zone->lock);
762 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
763 if (nr_scanned)
764 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
765
766 while (to_free) {
767 struct page *page;
768 struct list_head *list;
769
770 /*
771 * Remove pages from lists in a round-robin fashion. A
772 * batch_free count is maintained that is incremented when an
773 * empty list is encountered. This is so more pages are freed
774 * off fuller lists instead of spinning excessively around empty
775 * lists
776 */
777 do {
778 batch_free++;
779 if (++migratetype == MIGRATE_PCPTYPES)
780 migratetype = 0;
781 list = &pcp->lists[migratetype];
782 } while (list_empty(list));
783
784 /* This is the only non-empty list. Free them all. */
785 if (batch_free == MIGRATE_PCPTYPES)
786 batch_free = to_free;
787
788 do {
789 int mt; /* migratetype of the to-be-freed page */
790
791 page = list_entry(list->prev, struct page, lru);
792 /* must delete as __free_one_page list manipulates */
793 list_del(&page->lru);
794 mt = get_freepage_migratetype(page);
795 if (unlikely(has_isolate_pageblock(zone)))
796 mt = get_pageblock_migratetype(page);
797
798 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
799 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
800 trace_mm_page_pcpu_drain(page, 0, mt);
801 } while (--to_free && --batch_free && !list_empty(list));
802 }
803 spin_unlock(&zone->lock);
804 }
805
806 static void free_one_page(struct zone *zone,
807 struct page *page, unsigned long pfn,
808 unsigned int order,
809 int migratetype)
810 {
811 unsigned long nr_scanned;
812 spin_lock(&zone->lock);
813 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
814 if (nr_scanned)
815 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
816
817 if (unlikely(has_isolate_pageblock(zone) ||
818 is_migrate_isolate(migratetype))) {
819 migratetype = get_pfnblock_migratetype(page, pfn);
820 }
821 __free_one_page(page, pfn, zone, order, migratetype);
822 spin_unlock(&zone->lock);
823 }
824
825 static int free_tail_pages_check(struct page *head_page, struct page *page)
826 {
827 if (!IS_ENABLED(CONFIG_DEBUG_VM))
828 return 0;
829 if (unlikely(!PageTail(page))) {
830 bad_page(page, "PageTail not set", 0);
831 return 1;
832 }
833 if (unlikely(page->first_page != head_page)) {
834 bad_page(page, "first_page not consistent", 0);
835 return 1;
836 }
837 return 0;
838 }
839
840 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
841 unsigned long zone, int nid)
842 {
843 set_page_links(page, zone, nid, pfn);
844 init_page_count(page);
845 page_mapcount_reset(page);
846 page_cpupid_reset_last(page);
847
848 INIT_LIST_HEAD(&page->lru);
849 #ifdef WANT_PAGE_VIRTUAL
850 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
851 if (!is_highmem_idx(zone))
852 set_page_address(page, __va(pfn << PAGE_SHIFT));
853 #endif
854 }
855
856 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
857 int nid)
858 {
859 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
860 }
861
862 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
863 static void init_reserved_page(unsigned long pfn)
864 {
865 pg_data_t *pgdat;
866 int nid, zid;
867
868 if (!early_page_uninitialised(pfn))
869 return;
870
871 nid = early_pfn_to_nid(pfn);
872 pgdat = NODE_DATA(nid);
873
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct zone *zone = &pgdat->node_zones[zid];
876
877 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
878 break;
879 }
880 __init_single_pfn(pfn, zid, nid);
881 }
882 #else
883 static inline void init_reserved_page(unsigned long pfn)
884 {
885 }
886 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
887
888 /*
889 * Initialised pages do not have PageReserved set. This function is
890 * called for each range allocated by the bootmem allocator and
891 * marks the pages PageReserved. The remaining valid pages are later
892 * sent to the buddy page allocator.
893 */
894 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
895 {
896 unsigned long start_pfn = PFN_DOWN(start);
897 unsigned long end_pfn = PFN_UP(end);
898
899 for (; start_pfn < end_pfn; start_pfn++) {
900 if (pfn_valid(start_pfn)) {
901 struct page *page = pfn_to_page(start_pfn);
902
903 init_reserved_page(start_pfn);
904 SetPageReserved(page);
905 }
906 }
907 }
908
909 static bool free_pages_prepare(struct page *page, unsigned int order)
910 {
911 bool compound = PageCompound(page);
912 int i, bad = 0;
913
914 VM_BUG_ON_PAGE(PageTail(page), page);
915 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
916
917 trace_mm_page_free(page, order);
918 kmemcheck_free_shadow(page, order);
919 kasan_free_pages(page, order);
920
921 if (PageAnon(page))
922 page->mapping = NULL;
923 bad += free_pages_check(page);
924 for (i = 1; i < (1 << order); i++) {
925 if (compound)
926 bad += free_tail_pages_check(page, page + i);
927 bad += free_pages_check(page + i);
928 }
929 if (bad)
930 return false;
931
932 reset_page_owner(page, order);
933
934 if (!PageHighMem(page)) {
935 debug_check_no_locks_freed(page_address(page),
936 PAGE_SIZE << order);
937 debug_check_no_obj_freed(page_address(page),
938 PAGE_SIZE << order);
939 }
940 arch_free_page(page, order);
941 kernel_map_pages(page, 1 << order, 0);
942
943 return true;
944 }
945
946 static void __free_pages_ok(struct page *page, unsigned int order)
947 {
948 unsigned long flags;
949 int migratetype;
950 unsigned long pfn = page_to_pfn(page);
951
952 if (!free_pages_prepare(page, order))
953 return;
954
955 migratetype = get_pfnblock_migratetype(page, pfn);
956 local_irq_save(flags);
957 __count_vm_events(PGFREE, 1 << order);
958 set_freepage_migratetype(page, migratetype);
959 free_one_page(page_zone(page), page, pfn, order, migratetype);
960 local_irq_restore(flags);
961 }
962
963 static void __init __free_pages_boot_core(struct page *page,
964 unsigned long pfn, unsigned int order)
965 {
966 unsigned int nr_pages = 1 << order;
967 struct page *p = page;
968 unsigned int loop;
969
970 prefetchw(p);
971 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
972 prefetchw(p + 1);
973 __ClearPageReserved(p);
974 set_page_count(p, 0);
975 }
976 __ClearPageReserved(p);
977 set_page_count(p, 0);
978
979 page_zone(page)->managed_pages += nr_pages;
980 set_page_refcounted(page);
981 __free_pages(page, order);
982 }
983
984 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
985 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986
987 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
988
989 int __meminit early_pfn_to_nid(unsigned long pfn)
990 {
991 static DEFINE_SPINLOCK(early_pfn_lock);
992 int nid;
993
994 spin_lock(&early_pfn_lock);
995 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
996 if (nid < 0)
997 nid = 0;
998 spin_unlock(&early_pfn_lock);
999
1000 return nid;
1001 }
1002 #endif
1003
1004 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1005 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1006 struct mminit_pfnnid_cache *state)
1007 {
1008 int nid;
1009
1010 nid = __early_pfn_to_nid(pfn, state);
1011 if (nid >= 0 && nid != node)
1012 return false;
1013 return true;
1014 }
1015
1016 /* Only safe to use early in boot when initialisation is single-threaded */
1017 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1018 {
1019 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1020 }
1021
1022 #else
1023
1024 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1025 {
1026 return true;
1027 }
1028 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1029 struct mminit_pfnnid_cache *state)
1030 {
1031 return true;
1032 }
1033 #endif
1034
1035
1036 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1037 unsigned int order)
1038 {
1039 if (early_page_uninitialised(pfn))
1040 return;
1041 return __free_pages_boot_core(page, pfn, order);
1042 }
1043
1044 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1045 static void __init deferred_free_range(struct page *page,
1046 unsigned long pfn, int nr_pages)
1047 {
1048 int i;
1049
1050 if (!page)
1051 return;
1052
1053 /* Free a large naturally-aligned chunk if possible */
1054 if (nr_pages == MAX_ORDER_NR_PAGES &&
1055 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1056 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1057 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1058 return;
1059 }
1060
1061 for (i = 0; i < nr_pages; i++, page++, pfn++)
1062 __free_pages_boot_core(page, pfn, 0);
1063 }
1064
1065 /* Completion tracking for deferred_init_memmap() threads */
1066 static atomic_t pgdat_init_n_undone __initdata;
1067 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1068
1069 static inline void __init pgdat_init_report_one_done(void)
1070 {
1071 if (atomic_dec_and_test(&pgdat_init_n_undone))
1072 complete(&pgdat_init_all_done_comp);
1073 }
1074
1075 /* Initialise remaining memory on a node */
1076 static int __init deferred_init_memmap(void *data)
1077 {
1078 pg_data_t *pgdat = data;
1079 int nid = pgdat->node_id;
1080 struct mminit_pfnnid_cache nid_init_state = { };
1081 unsigned long start = jiffies;
1082 unsigned long nr_pages = 0;
1083 unsigned long walk_start, walk_end;
1084 int i, zid;
1085 struct zone *zone;
1086 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1087 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1088
1089 if (first_init_pfn == ULONG_MAX) {
1090 pgdat_init_report_one_done();
1091 return 0;
1092 }
1093
1094 /* Bind memory initialisation thread to a local node if possible */
1095 if (!cpumask_empty(cpumask))
1096 set_cpus_allowed_ptr(current, cpumask);
1097
1098 /* Sanity check boundaries */
1099 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1100 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1101 pgdat->first_deferred_pfn = ULONG_MAX;
1102
1103 /* Only the highest zone is deferred so find it */
1104 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1105 zone = pgdat->node_zones + zid;
1106 if (first_init_pfn < zone_end_pfn(zone))
1107 break;
1108 }
1109
1110 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1111 unsigned long pfn, end_pfn;
1112 struct page *page = NULL;
1113 struct page *free_base_page = NULL;
1114 unsigned long free_base_pfn = 0;
1115 int nr_to_free = 0;
1116
1117 end_pfn = min(walk_end, zone_end_pfn(zone));
1118 pfn = first_init_pfn;
1119 if (pfn < walk_start)
1120 pfn = walk_start;
1121 if (pfn < zone->zone_start_pfn)
1122 pfn = zone->zone_start_pfn;
1123
1124 for (; pfn < end_pfn; pfn++) {
1125 if (!pfn_valid_within(pfn))
1126 goto free_range;
1127
1128 /*
1129 * Ensure pfn_valid is checked every
1130 * MAX_ORDER_NR_PAGES for memory holes
1131 */
1132 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1133 if (!pfn_valid(pfn)) {
1134 page = NULL;
1135 goto free_range;
1136 }
1137 }
1138
1139 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1140 page = NULL;
1141 goto free_range;
1142 }
1143
1144 /* Minimise pfn page lookups and scheduler checks */
1145 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1146 page++;
1147 } else {
1148 nr_pages += nr_to_free;
1149 deferred_free_range(free_base_page,
1150 free_base_pfn, nr_to_free);
1151 free_base_page = NULL;
1152 free_base_pfn = nr_to_free = 0;
1153
1154 page = pfn_to_page(pfn);
1155 cond_resched();
1156 }
1157
1158 if (page->flags) {
1159 VM_BUG_ON(page_zone(page) != zone);
1160 goto free_range;
1161 }
1162
1163 __init_single_page(page, pfn, zid, nid);
1164 if (!free_base_page) {
1165 free_base_page = page;
1166 free_base_pfn = pfn;
1167 nr_to_free = 0;
1168 }
1169 nr_to_free++;
1170
1171 /* Where possible, batch up pages for a single free */
1172 continue;
1173 free_range:
1174 /* Free the current block of pages to allocator */
1175 nr_pages += nr_to_free;
1176 deferred_free_range(free_base_page, free_base_pfn,
1177 nr_to_free);
1178 free_base_page = NULL;
1179 free_base_pfn = nr_to_free = 0;
1180 }
1181
1182 first_init_pfn = max(end_pfn, first_init_pfn);
1183 }
1184
1185 /* Sanity check that the next zone really is unpopulated */
1186 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1187
1188 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1189 jiffies_to_msecs(jiffies - start));
1190
1191 pgdat_init_report_one_done();
1192 return 0;
1193 }
1194
1195 void __init page_alloc_init_late(void)
1196 {
1197 int nid;
1198
1199 /* There will be num_node_state(N_MEMORY) threads */
1200 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1201 for_each_node_state(nid, N_MEMORY) {
1202 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1203 }
1204
1205 /* Block until all are initialised */
1206 wait_for_completion(&pgdat_init_all_done_comp);
1207
1208 /* Reinit limits that are based on free pages after the kernel is up */
1209 files_maxfiles_init();
1210 }
1211 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1212
1213 #ifdef CONFIG_CMA
1214 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1215 void __init init_cma_reserved_pageblock(struct page *page)
1216 {
1217 unsigned i = pageblock_nr_pages;
1218 struct page *p = page;
1219
1220 do {
1221 __ClearPageReserved(p);
1222 set_page_count(p, 0);
1223 } while (++p, --i);
1224
1225 set_pageblock_migratetype(page, MIGRATE_CMA);
1226
1227 if (pageblock_order >= MAX_ORDER) {
1228 i = pageblock_nr_pages;
1229 p = page;
1230 do {
1231 set_page_refcounted(p);
1232 __free_pages(p, MAX_ORDER - 1);
1233 p += MAX_ORDER_NR_PAGES;
1234 } while (i -= MAX_ORDER_NR_PAGES);
1235 } else {
1236 set_page_refcounted(page);
1237 __free_pages(page, pageblock_order);
1238 }
1239
1240 adjust_managed_page_count(page, pageblock_nr_pages);
1241 }
1242 #endif
1243
1244 /*
1245 * The order of subdivision here is critical for the IO subsystem.
1246 * Please do not alter this order without good reasons and regression
1247 * testing. Specifically, as large blocks of memory are subdivided,
1248 * the order in which smaller blocks are delivered depends on the order
1249 * they're subdivided in this function. This is the primary factor
1250 * influencing the order in which pages are delivered to the IO
1251 * subsystem according to empirical testing, and this is also justified
1252 * by considering the behavior of a buddy system containing a single
1253 * large block of memory acted on by a series of small allocations.
1254 * This behavior is a critical factor in sglist merging's success.
1255 *
1256 * -- nyc
1257 */
1258 static inline void expand(struct zone *zone, struct page *page,
1259 int low, int high, struct free_area *area,
1260 int migratetype)
1261 {
1262 unsigned long size = 1 << high;
1263
1264 while (high > low) {
1265 area--;
1266 high--;
1267 size >>= 1;
1268 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1269
1270 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1271 debug_guardpage_enabled() &&
1272 high < debug_guardpage_minorder()) {
1273 /*
1274 * Mark as guard pages (or page), that will allow to
1275 * merge back to allocator when buddy will be freed.
1276 * Corresponding page table entries will not be touched,
1277 * pages will stay not present in virtual address space
1278 */
1279 set_page_guard(zone, &page[size], high, migratetype);
1280 continue;
1281 }
1282 list_add(&page[size].lru, &area->free_list[migratetype]);
1283 area->nr_free++;
1284 set_page_order(&page[size], high);
1285 }
1286 }
1287
1288 /*
1289 * This page is about to be returned from the page allocator
1290 */
1291 static inline int check_new_page(struct page *page)
1292 {
1293 const char *bad_reason = NULL;
1294 unsigned long bad_flags = 0;
1295
1296 if (unlikely(page_mapcount(page)))
1297 bad_reason = "nonzero mapcount";
1298 if (unlikely(page->mapping != NULL))
1299 bad_reason = "non-NULL mapping";
1300 if (unlikely(atomic_read(&page->_count) != 0))
1301 bad_reason = "nonzero _count";
1302 if (unlikely(page->flags & __PG_HWPOISON)) {
1303 bad_reason = "HWPoisoned (hardware-corrupted)";
1304 bad_flags = __PG_HWPOISON;
1305 }
1306 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1307 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1308 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1309 }
1310 #ifdef CONFIG_MEMCG
1311 if (unlikely(page->mem_cgroup))
1312 bad_reason = "page still charged to cgroup";
1313 #endif
1314 if (unlikely(bad_reason)) {
1315 bad_page(page, bad_reason, bad_flags);
1316 return 1;
1317 }
1318 return 0;
1319 }
1320
1321 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1322 int alloc_flags)
1323 {
1324 int i;
1325
1326 for (i = 0; i < (1 << order); i++) {
1327 struct page *p = page + i;
1328 if (unlikely(check_new_page(p)))
1329 return 1;
1330 }
1331
1332 set_page_private(page, 0);
1333 set_page_refcounted(page);
1334
1335 arch_alloc_page(page, order);
1336 kernel_map_pages(page, 1 << order, 1);
1337 kasan_alloc_pages(page, order);
1338
1339 if (gfp_flags & __GFP_ZERO)
1340 for (i = 0; i < (1 << order); i++)
1341 clear_highpage(page + i);
1342
1343 if (order && (gfp_flags & __GFP_COMP))
1344 prep_compound_page(page, order);
1345
1346 set_page_owner(page, order, gfp_flags);
1347
1348 /*
1349 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1350 * allocate the page. The expectation is that the caller is taking
1351 * steps that will free more memory. The caller should avoid the page
1352 * being used for !PFMEMALLOC purposes.
1353 */
1354 if (alloc_flags & ALLOC_NO_WATERMARKS)
1355 set_page_pfmemalloc(page);
1356 else
1357 clear_page_pfmemalloc(page);
1358
1359 return 0;
1360 }
1361
1362 /*
1363 * Go through the free lists for the given migratetype and remove
1364 * the smallest available page from the freelists
1365 */
1366 static inline
1367 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1368 int migratetype)
1369 {
1370 unsigned int current_order;
1371 struct free_area *area;
1372 struct page *page;
1373
1374 /* Find a page of the appropriate size in the preferred list */
1375 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1376 area = &(zone->free_area[current_order]);
1377 if (list_empty(&area->free_list[migratetype]))
1378 continue;
1379
1380 page = list_entry(area->free_list[migratetype].next,
1381 struct page, lru);
1382 list_del(&page->lru);
1383 rmv_page_order(page);
1384 area->nr_free--;
1385 expand(zone, page, order, current_order, area, migratetype);
1386 set_freepage_migratetype(page, migratetype);
1387 return page;
1388 }
1389
1390 return NULL;
1391 }
1392
1393
1394 /*
1395 * This array describes the order lists are fallen back to when
1396 * the free lists for the desirable migrate type are depleted
1397 */
1398 static int fallbacks[MIGRATE_TYPES][4] = {
1399 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1400 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1401 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1402 #ifdef CONFIG_CMA
1403 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1404 #endif
1405 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1406 #ifdef CONFIG_MEMORY_ISOLATION
1407 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1408 #endif
1409 };
1410
1411 #ifdef CONFIG_CMA
1412 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1413 unsigned int order)
1414 {
1415 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1416 }
1417 #else
1418 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1419 unsigned int order) { return NULL; }
1420 #endif
1421
1422 /*
1423 * Move the free pages in a range to the free lists of the requested type.
1424 * Note that start_page and end_pages are not aligned on a pageblock
1425 * boundary. If alignment is required, use move_freepages_block()
1426 */
1427 int move_freepages(struct zone *zone,
1428 struct page *start_page, struct page *end_page,
1429 int migratetype)
1430 {
1431 struct page *page;
1432 unsigned long order;
1433 int pages_moved = 0;
1434
1435 #ifndef CONFIG_HOLES_IN_ZONE
1436 /*
1437 * page_zone is not safe to call in this context when
1438 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1439 * anyway as we check zone boundaries in move_freepages_block().
1440 * Remove at a later date when no bug reports exist related to
1441 * grouping pages by mobility
1442 */
1443 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1444 #endif
1445
1446 for (page = start_page; page <= end_page;) {
1447 /* Make sure we are not inadvertently changing nodes */
1448 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1449
1450 if (!pfn_valid_within(page_to_pfn(page))) {
1451 page++;
1452 continue;
1453 }
1454
1455 if (!PageBuddy(page)) {
1456 page++;
1457 continue;
1458 }
1459
1460 order = page_order(page);
1461 list_move(&page->lru,
1462 &zone->free_area[order].free_list[migratetype]);
1463 set_freepage_migratetype(page, migratetype);
1464 page += 1 << order;
1465 pages_moved += 1 << order;
1466 }
1467
1468 return pages_moved;
1469 }
1470
1471 int move_freepages_block(struct zone *zone, struct page *page,
1472 int migratetype)
1473 {
1474 unsigned long start_pfn, end_pfn;
1475 struct page *start_page, *end_page;
1476
1477 start_pfn = page_to_pfn(page);
1478 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1479 start_page = pfn_to_page(start_pfn);
1480 end_page = start_page + pageblock_nr_pages - 1;
1481 end_pfn = start_pfn + pageblock_nr_pages - 1;
1482
1483 /* Do not cross zone boundaries */
1484 if (!zone_spans_pfn(zone, start_pfn))
1485 start_page = page;
1486 if (!zone_spans_pfn(zone, end_pfn))
1487 return 0;
1488
1489 return move_freepages(zone, start_page, end_page, migratetype);
1490 }
1491
1492 static void change_pageblock_range(struct page *pageblock_page,
1493 int start_order, int migratetype)
1494 {
1495 int nr_pageblocks = 1 << (start_order - pageblock_order);
1496
1497 while (nr_pageblocks--) {
1498 set_pageblock_migratetype(pageblock_page, migratetype);
1499 pageblock_page += pageblock_nr_pages;
1500 }
1501 }
1502
1503 /*
1504 * When we are falling back to another migratetype during allocation, try to
1505 * steal extra free pages from the same pageblocks to satisfy further
1506 * allocations, instead of polluting multiple pageblocks.
1507 *
1508 * If we are stealing a relatively large buddy page, it is likely there will
1509 * be more free pages in the pageblock, so try to steal them all. For
1510 * reclaimable and unmovable allocations, we steal regardless of page size,
1511 * as fragmentation caused by those allocations polluting movable pageblocks
1512 * is worse than movable allocations stealing from unmovable and reclaimable
1513 * pageblocks.
1514 */
1515 static bool can_steal_fallback(unsigned int order, int start_mt)
1516 {
1517 /*
1518 * Leaving this order check is intended, although there is
1519 * relaxed order check in next check. The reason is that
1520 * we can actually steal whole pageblock if this condition met,
1521 * but, below check doesn't guarantee it and that is just heuristic
1522 * so could be changed anytime.
1523 */
1524 if (order >= pageblock_order)
1525 return true;
1526
1527 if (order >= pageblock_order / 2 ||
1528 start_mt == MIGRATE_RECLAIMABLE ||
1529 start_mt == MIGRATE_UNMOVABLE ||
1530 page_group_by_mobility_disabled)
1531 return true;
1532
1533 return false;
1534 }
1535
1536 /*
1537 * This function implements actual steal behaviour. If order is large enough,
1538 * we can steal whole pageblock. If not, we first move freepages in this
1539 * pageblock and check whether half of pages are moved or not. If half of
1540 * pages are moved, we can change migratetype of pageblock and permanently
1541 * use it's pages as requested migratetype in the future.
1542 */
1543 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1544 int start_type)
1545 {
1546 int current_order = page_order(page);
1547 int pages;
1548
1549 /* Take ownership for orders >= pageblock_order */
1550 if (current_order >= pageblock_order) {
1551 change_pageblock_range(page, current_order, start_type);
1552 return;
1553 }
1554
1555 pages = move_freepages_block(zone, page, start_type);
1556
1557 /* Claim the whole block if over half of it is free */
1558 if (pages >= (1 << (pageblock_order-1)) ||
1559 page_group_by_mobility_disabled)
1560 set_pageblock_migratetype(page, start_type);
1561 }
1562
1563 /*
1564 * Check whether there is a suitable fallback freepage with requested order.
1565 * If only_stealable is true, this function returns fallback_mt only if
1566 * we can steal other freepages all together. This would help to reduce
1567 * fragmentation due to mixed migratetype pages in one pageblock.
1568 */
1569 int find_suitable_fallback(struct free_area *area, unsigned int order,
1570 int migratetype, bool only_stealable, bool *can_steal)
1571 {
1572 int i;
1573 int fallback_mt;
1574
1575 if (area->nr_free == 0)
1576 return -1;
1577
1578 *can_steal = false;
1579 for (i = 0;; i++) {
1580 fallback_mt = fallbacks[migratetype][i];
1581 if (fallback_mt == MIGRATE_RESERVE)
1582 break;
1583
1584 if (list_empty(&area->free_list[fallback_mt]))
1585 continue;
1586
1587 if (can_steal_fallback(order, migratetype))
1588 *can_steal = true;
1589
1590 if (!only_stealable)
1591 return fallback_mt;
1592
1593 if (*can_steal)
1594 return fallback_mt;
1595 }
1596
1597 return -1;
1598 }
1599
1600 /* Remove an element from the buddy allocator from the fallback list */
1601 static inline struct page *
1602 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1603 {
1604 struct free_area *area;
1605 unsigned int current_order;
1606 struct page *page;
1607 int fallback_mt;
1608 bool can_steal;
1609
1610 /* Find the largest possible block of pages in the other list */
1611 for (current_order = MAX_ORDER-1;
1612 current_order >= order && current_order <= MAX_ORDER-1;
1613 --current_order) {
1614 area = &(zone->free_area[current_order]);
1615 fallback_mt = find_suitable_fallback(area, current_order,
1616 start_migratetype, false, &can_steal);
1617 if (fallback_mt == -1)
1618 continue;
1619
1620 page = list_entry(area->free_list[fallback_mt].next,
1621 struct page, lru);
1622 if (can_steal)
1623 steal_suitable_fallback(zone, page, start_migratetype);
1624
1625 /* Remove the page from the freelists */
1626 area->nr_free--;
1627 list_del(&page->lru);
1628 rmv_page_order(page);
1629
1630 expand(zone, page, order, current_order, area,
1631 start_migratetype);
1632 /*
1633 * The freepage_migratetype may differ from pageblock's
1634 * migratetype depending on the decisions in
1635 * try_to_steal_freepages(). This is OK as long as it
1636 * does not differ for MIGRATE_CMA pageblocks. For CMA
1637 * we need to make sure unallocated pages flushed from
1638 * pcp lists are returned to the correct freelist.
1639 */
1640 set_freepage_migratetype(page, start_migratetype);
1641
1642 trace_mm_page_alloc_extfrag(page, order, current_order,
1643 start_migratetype, fallback_mt);
1644
1645 return page;
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /*
1652 * Do the hard work of removing an element from the buddy allocator.
1653 * Call me with the zone->lock already held.
1654 */
1655 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1656 int migratetype)
1657 {
1658 struct page *page;
1659
1660 retry_reserve:
1661 page = __rmqueue_smallest(zone, order, migratetype);
1662
1663 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1664 if (migratetype == MIGRATE_MOVABLE)
1665 page = __rmqueue_cma_fallback(zone, order);
1666
1667 if (!page)
1668 page = __rmqueue_fallback(zone, order, migratetype);
1669
1670 /*
1671 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1672 * is used because __rmqueue_smallest is an inline function
1673 * and we want just one call site
1674 */
1675 if (!page) {
1676 migratetype = MIGRATE_RESERVE;
1677 goto retry_reserve;
1678 }
1679 }
1680
1681 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1682 return page;
1683 }
1684
1685 /*
1686 * Obtain a specified number of elements from the buddy allocator, all under
1687 * a single hold of the lock, for efficiency. Add them to the supplied list.
1688 * Returns the number of new pages which were placed at *list.
1689 */
1690 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1691 unsigned long count, struct list_head *list,
1692 int migratetype, bool cold)
1693 {
1694 int i;
1695
1696 spin_lock(&zone->lock);
1697 for (i = 0; i < count; ++i) {
1698 struct page *page = __rmqueue(zone, order, migratetype);
1699 if (unlikely(page == NULL))
1700 break;
1701
1702 /*
1703 * Split buddy pages returned by expand() are received here
1704 * in physical page order. The page is added to the callers and
1705 * list and the list head then moves forward. From the callers
1706 * perspective, the linked list is ordered by page number in
1707 * some conditions. This is useful for IO devices that can
1708 * merge IO requests if the physical pages are ordered
1709 * properly.
1710 */
1711 if (likely(!cold))
1712 list_add(&page->lru, list);
1713 else
1714 list_add_tail(&page->lru, list);
1715 list = &page->lru;
1716 if (is_migrate_cma(get_freepage_migratetype(page)))
1717 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1718 -(1 << order));
1719 }
1720 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1721 spin_unlock(&zone->lock);
1722 return i;
1723 }
1724
1725 #ifdef CONFIG_NUMA
1726 /*
1727 * Called from the vmstat counter updater to drain pagesets of this
1728 * currently executing processor on remote nodes after they have
1729 * expired.
1730 *
1731 * Note that this function must be called with the thread pinned to
1732 * a single processor.
1733 */
1734 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1735 {
1736 unsigned long flags;
1737 int to_drain, batch;
1738
1739 local_irq_save(flags);
1740 batch = READ_ONCE(pcp->batch);
1741 to_drain = min(pcp->count, batch);
1742 if (to_drain > 0) {
1743 free_pcppages_bulk(zone, to_drain, pcp);
1744 pcp->count -= to_drain;
1745 }
1746 local_irq_restore(flags);
1747 }
1748 #endif
1749
1750 /*
1751 * Drain pcplists of the indicated processor and zone.
1752 *
1753 * The processor must either be the current processor and the
1754 * thread pinned to the current processor or a processor that
1755 * is not online.
1756 */
1757 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1758 {
1759 unsigned long flags;
1760 struct per_cpu_pageset *pset;
1761 struct per_cpu_pages *pcp;
1762
1763 local_irq_save(flags);
1764 pset = per_cpu_ptr(zone->pageset, cpu);
1765
1766 pcp = &pset->pcp;
1767 if (pcp->count) {
1768 free_pcppages_bulk(zone, pcp->count, pcp);
1769 pcp->count = 0;
1770 }
1771 local_irq_restore(flags);
1772 }
1773
1774 /*
1775 * Drain pcplists of all zones on the indicated processor.
1776 *
1777 * The processor must either be the current processor and the
1778 * thread pinned to the current processor or a processor that
1779 * is not online.
1780 */
1781 static void drain_pages(unsigned int cpu)
1782 {
1783 struct zone *zone;
1784
1785 for_each_populated_zone(zone) {
1786 drain_pages_zone(cpu, zone);
1787 }
1788 }
1789
1790 /*
1791 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1792 *
1793 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1794 * the single zone's pages.
1795 */
1796 void drain_local_pages(struct zone *zone)
1797 {
1798 int cpu = smp_processor_id();
1799
1800 if (zone)
1801 drain_pages_zone(cpu, zone);
1802 else
1803 drain_pages(cpu);
1804 }
1805
1806 /*
1807 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1808 *
1809 * When zone parameter is non-NULL, spill just the single zone's pages.
1810 *
1811 * Note that this code is protected against sending an IPI to an offline
1812 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1813 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1814 * nothing keeps CPUs from showing up after we populated the cpumask and
1815 * before the call to on_each_cpu_mask().
1816 */
1817 void drain_all_pages(struct zone *zone)
1818 {
1819 int cpu;
1820
1821 /*
1822 * Allocate in the BSS so we wont require allocation in
1823 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1824 */
1825 static cpumask_t cpus_with_pcps;
1826
1827 /*
1828 * We don't care about racing with CPU hotplug event
1829 * as offline notification will cause the notified
1830 * cpu to drain that CPU pcps and on_each_cpu_mask
1831 * disables preemption as part of its processing
1832 */
1833 for_each_online_cpu(cpu) {
1834 struct per_cpu_pageset *pcp;
1835 struct zone *z;
1836 bool has_pcps = false;
1837
1838 if (zone) {
1839 pcp = per_cpu_ptr(zone->pageset, cpu);
1840 if (pcp->pcp.count)
1841 has_pcps = true;
1842 } else {
1843 for_each_populated_zone(z) {
1844 pcp = per_cpu_ptr(z->pageset, cpu);
1845 if (pcp->pcp.count) {
1846 has_pcps = true;
1847 break;
1848 }
1849 }
1850 }
1851
1852 if (has_pcps)
1853 cpumask_set_cpu(cpu, &cpus_with_pcps);
1854 else
1855 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1856 }
1857 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1858 zone, 1);
1859 }
1860
1861 #ifdef CONFIG_HIBERNATION
1862
1863 void mark_free_pages(struct zone *zone)
1864 {
1865 unsigned long pfn, max_zone_pfn;
1866 unsigned long flags;
1867 unsigned int order, t;
1868 struct list_head *curr;
1869
1870 if (zone_is_empty(zone))
1871 return;
1872
1873 spin_lock_irqsave(&zone->lock, flags);
1874
1875 max_zone_pfn = zone_end_pfn(zone);
1876 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1877 if (pfn_valid(pfn)) {
1878 struct page *page = pfn_to_page(pfn);
1879
1880 if (!swsusp_page_is_forbidden(page))
1881 swsusp_unset_page_free(page);
1882 }
1883
1884 for_each_migratetype_order(order, t) {
1885 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1886 unsigned long i;
1887
1888 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1889 for (i = 0; i < (1UL << order); i++)
1890 swsusp_set_page_free(pfn_to_page(pfn + i));
1891 }
1892 }
1893 spin_unlock_irqrestore(&zone->lock, flags);
1894 }
1895 #endif /* CONFIG_PM */
1896
1897 /*
1898 * Free a 0-order page
1899 * cold == true ? free a cold page : free a hot page
1900 */
1901 void free_hot_cold_page(struct page *page, bool cold)
1902 {
1903 struct zone *zone = page_zone(page);
1904 struct per_cpu_pages *pcp;
1905 unsigned long flags;
1906 unsigned long pfn = page_to_pfn(page);
1907 int migratetype;
1908
1909 if (!free_pages_prepare(page, 0))
1910 return;
1911
1912 migratetype = get_pfnblock_migratetype(page, pfn);
1913 set_freepage_migratetype(page, migratetype);
1914 local_irq_save(flags);
1915 __count_vm_event(PGFREE);
1916
1917 /*
1918 * We only track unmovable, reclaimable and movable on pcp lists.
1919 * Free ISOLATE pages back to the allocator because they are being
1920 * offlined but treat RESERVE as movable pages so we can get those
1921 * areas back if necessary. Otherwise, we may have to free
1922 * excessively into the page allocator
1923 */
1924 if (migratetype >= MIGRATE_PCPTYPES) {
1925 if (unlikely(is_migrate_isolate(migratetype))) {
1926 free_one_page(zone, page, pfn, 0, migratetype);
1927 goto out;
1928 }
1929 migratetype = MIGRATE_MOVABLE;
1930 }
1931
1932 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1933 if (!cold)
1934 list_add(&page->lru, &pcp->lists[migratetype]);
1935 else
1936 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1937 pcp->count++;
1938 if (pcp->count >= pcp->high) {
1939 unsigned long batch = READ_ONCE(pcp->batch);
1940 free_pcppages_bulk(zone, batch, pcp);
1941 pcp->count -= batch;
1942 }
1943
1944 out:
1945 local_irq_restore(flags);
1946 }
1947
1948 /*
1949 * Free a list of 0-order pages
1950 */
1951 void free_hot_cold_page_list(struct list_head *list, bool cold)
1952 {
1953 struct page *page, *next;
1954
1955 list_for_each_entry_safe(page, next, list, lru) {
1956 trace_mm_page_free_batched(page, cold);
1957 free_hot_cold_page(page, cold);
1958 }
1959 }
1960
1961 /*
1962 * split_page takes a non-compound higher-order page, and splits it into
1963 * n (1<<order) sub-pages: page[0..n]
1964 * Each sub-page must be freed individually.
1965 *
1966 * Note: this is probably too low level an operation for use in drivers.
1967 * Please consult with lkml before using this in your driver.
1968 */
1969 void split_page(struct page *page, unsigned int order)
1970 {
1971 int i;
1972 gfp_t gfp_mask;
1973
1974 VM_BUG_ON_PAGE(PageCompound(page), page);
1975 VM_BUG_ON_PAGE(!page_count(page), page);
1976
1977 #ifdef CONFIG_KMEMCHECK
1978 /*
1979 * Split shadow pages too, because free(page[0]) would
1980 * otherwise free the whole shadow.
1981 */
1982 if (kmemcheck_page_is_tracked(page))
1983 split_page(virt_to_page(page[0].shadow), order);
1984 #endif
1985
1986 gfp_mask = get_page_owner_gfp(page);
1987 set_page_owner(page, 0, gfp_mask);
1988 for (i = 1; i < (1 << order); i++) {
1989 set_page_refcounted(page + i);
1990 set_page_owner(page + i, 0, gfp_mask);
1991 }
1992 }
1993 EXPORT_SYMBOL_GPL(split_page);
1994
1995 int __isolate_free_page(struct page *page, unsigned int order)
1996 {
1997 unsigned long watermark;
1998 struct zone *zone;
1999 int mt;
2000
2001 BUG_ON(!PageBuddy(page));
2002
2003 zone = page_zone(page);
2004 mt = get_pageblock_migratetype(page);
2005
2006 if (!is_migrate_isolate(mt)) {
2007 /* Obey watermarks as if the page was being allocated */
2008 watermark = low_wmark_pages(zone) + (1 << order);
2009 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2010 return 0;
2011
2012 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2013 }
2014
2015 /* Remove page from free list */
2016 list_del(&page->lru);
2017 zone->free_area[order].nr_free--;
2018 rmv_page_order(page);
2019
2020 set_page_owner(page, order, __GFP_MOVABLE);
2021
2022 /* Set the pageblock if the isolated page is at least a pageblock */
2023 if (order >= pageblock_order - 1) {
2024 struct page *endpage = page + (1 << order) - 1;
2025 for (; page < endpage; page += pageblock_nr_pages) {
2026 int mt = get_pageblock_migratetype(page);
2027 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2028 set_pageblock_migratetype(page,
2029 MIGRATE_MOVABLE);
2030 }
2031 }
2032
2033
2034 return 1UL << order;
2035 }
2036
2037 /*
2038 * Similar to split_page except the page is already free. As this is only
2039 * being used for migration, the migratetype of the block also changes.
2040 * As this is called with interrupts disabled, the caller is responsible
2041 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2042 * are enabled.
2043 *
2044 * Note: this is probably too low level an operation for use in drivers.
2045 * Please consult with lkml before using this in your driver.
2046 */
2047 int split_free_page(struct page *page)
2048 {
2049 unsigned int order;
2050 int nr_pages;
2051
2052 order = page_order(page);
2053
2054 nr_pages = __isolate_free_page(page, order);
2055 if (!nr_pages)
2056 return 0;
2057
2058 /* Split into individual pages */
2059 set_page_refcounted(page);
2060 split_page(page, order);
2061 return nr_pages;
2062 }
2063
2064 /*
2065 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2066 */
2067 static inline
2068 struct page *buffered_rmqueue(struct zone *preferred_zone,
2069 struct zone *zone, unsigned int order,
2070 gfp_t gfp_flags, int migratetype)
2071 {
2072 unsigned long flags;
2073 struct page *page;
2074 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2075
2076 if (likely(order == 0)) {
2077 struct per_cpu_pages *pcp;
2078 struct list_head *list;
2079
2080 local_irq_save(flags);
2081 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2082 list = &pcp->lists[migratetype];
2083 if (list_empty(list)) {
2084 pcp->count += rmqueue_bulk(zone, 0,
2085 pcp->batch, list,
2086 migratetype, cold);
2087 if (unlikely(list_empty(list)))
2088 goto failed;
2089 }
2090
2091 if (cold)
2092 page = list_entry(list->prev, struct page, lru);
2093 else
2094 page = list_entry(list->next, struct page, lru);
2095
2096 list_del(&page->lru);
2097 pcp->count--;
2098 } else {
2099 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2100 /*
2101 * __GFP_NOFAIL is not to be used in new code.
2102 *
2103 * All __GFP_NOFAIL callers should be fixed so that they
2104 * properly detect and handle allocation failures.
2105 *
2106 * We most definitely don't want callers attempting to
2107 * allocate greater than order-1 page units with
2108 * __GFP_NOFAIL.
2109 */
2110 WARN_ON_ONCE(order > 1);
2111 }
2112 spin_lock_irqsave(&zone->lock, flags);
2113 page = __rmqueue(zone, order, migratetype);
2114 spin_unlock(&zone->lock);
2115 if (!page)
2116 goto failed;
2117 __mod_zone_freepage_state(zone, -(1 << order),
2118 get_freepage_migratetype(page));
2119 }
2120
2121 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2122 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2123 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2124 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2125
2126 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2127 zone_statistics(preferred_zone, zone, gfp_flags);
2128 local_irq_restore(flags);
2129
2130 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2131 return page;
2132
2133 failed:
2134 local_irq_restore(flags);
2135 return NULL;
2136 }
2137
2138 #ifdef CONFIG_FAIL_PAGE_ALLOC
2139
2140 static struct {
2141 struct fault_attr attr;
2142
2143 u32 ignore_gfp_highmem;
2144 u32 ignore_gfp_wait;
2145 u32 min_order;
2146 } fail_page_alloc = {
2147 .attr = FAULT_ATTR_INITIALIZER,
2148 .ignore_gfp_wait = 1,
2149 .ignore_gfp_highmem = 1,
2150 .min_order = 1,
2151 };
2152
2153 static int __init setup_fail_page_alloc(char *str)
2154 {
2155 return setup_fault_attr(&fail_page_alloc.attr, str);
2156 }
2157 __setup("fail_page_alloc=", setup_fail_page_alloc);
2158
2159 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2160 {
2161 if (order < fail_page_alloc.min_order)
2162 return false;
2163 if (gfp_mask & __GFP_NOFAIL)
2164 return false;
2165 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2166 return false;
2167 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2168 return false;
2169
2170 return should_fail(&fail_page_alloc.attr, 1 << order);
2171 }
2172
2173 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2174
2175 static int __init fail_page_alloc_debugfs(void)
2176 {
2177 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2178 struct dentry *dir;
2179
2180 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2181 &fail_page_alloc.attr);
2182 if (IS_ERR(dir))
2183 return PTR_ERR(dir);
2184
2185 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2186 &fail_page_alloc.ignore_gfp_wait))
2187 goto fail;
2188 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2189 &fail_page_alloc.ignore_gfp_highmem))
2190 goto fail;
2191 if (!debugfs_create_u32("min-order", mode, dir,
2192 &fail_page_alloc.min_order))
2193 goto fail;
2194
2195 return 0;
2196 fail:
2197 debugfs_remove_recursive(dir);
2198
2199 return -ENOMEM;
2200 }
2201
2202 late_initcall(fail_page_alloc_debugfs);
2203
2204 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2205
2206 #else /* CONFIG_FAIL_PAGE_ALLOC */
2207
2208 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2209 {
2210 return false;
2211 }
2212
2213 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2214
2215 /*
2216 * Return true if free pages are above 'mark'. This takes into account the order
2217 * of the allocation.
2218 */
2219 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2220 unsigned long mark, int classzone_idx, int alloc_flags,
2221 long free_pages)
2222 {
2223 /* free_pages may go negative - that's OK */
2224 long min = mark;
2225 int o;
2226 long free_cma = 0;
2227
2228 free_pages -= (1 << order) - 1;
2229 if (alloc_flags & ALLOC_HIGH)
2230 min -= min / 2;
2231 if (alloc_flags & ALLOC_HARDER)
2232 min -= min / 4;
2233 #ifdef CONFIG_CMA
2234 /* If allocation can't use CMA areas don't use free CMA pages */
2235 if (!(alloc_flags & ALLOC_CMA))
2236 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2237 #endif
2238
2239 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2240 return false;
2241 for (o = 0; o < order; o++) {
2242 /* At the next order, this order's pages become unavailable */
2243 free_pages -= z->free_area[o].nr_free << o;
2244
2245 /* Require fewer higher order pages to be free */
2246 min >>= 1;
2247
2248 if (free_pages <= min)
2249 return false;
2250 }
2251 return true;
2252 }
2253
2254 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2255 int classzone_idx, int alloc_flags)
2256 {
2257 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2258 zone_page_state(z, NR_FREE_PAGES));
2259 }
2260
2261 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2262 unsigned long mark, int classzone_idx, int alloc_flags)
2263 {
2264 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2265
2266 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2267 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2268
2269 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2270 free_pages);
2271 }
2272
2273 #ifdef CONFIG_NUMA
2274 /*
2275 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2276 * skip over zones that are not allowed by the cpuset, or that have
2277 * been recently (in last second) found to be nearly full. See further
2278 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2279 * that have to skip over a lot of full or unallowed zones.
2280 *
2281 * If the zonelist cache is present in the passed zonelist, then
2282 * returns a pointer to the allowed node mask (either the current
2283 * tasks mems_allowed, or node_states[N_MEMORY].)
2284 *
2285 * If the zonelist cache is not available for this zonelist, does
2286 * nothing and returns NULL.
2287 *
2288 * If the fullzones BITMAP in the zonelist cache is stale (more than
2289 * a second since last zap'd) then we zap it out (clear its bits.)
2290 *
2291 * We hold off even calling zlc_setup, until after we've checked the
2292 * first zone in the zonelist, on the theory that most allocations will
2293 * be satisfied from that first zone, so best to examine that zone as
2294 * quickly as we can.
2295 */
2296 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2297 {
2298 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2299 nodemask_t *allowednodes; /* zonelist_cache approximation */
2300
2301 zlc = zonelist->zlcache_ptr;
2302 if (!zlc)
2303 return NULL;
2304
2305 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2306 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2307 zlc->last_full_zap = jiffies;
2308 }
2309
2310 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2311 &cpuset_current_mems_allowed :
2312 &node_states[N_MEMORY];
2313 return allowednodes;
2314 }
2315
2316 /*
2317 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2318 * if it is worth looking at further for free memory:
2319 * 1) Check that the zone isn't thought to be full (doesn't have its
2320 * bit set in the zonelist_cache fullzones BITMAP).
2321 * 2) Check that the zones node (obtained from the zonelist_cache
2322 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2323 * Return true (non-zero) if zone is worth looking at further, or
2324 * else return false (zero) if it is not.
2325 *
2326 * This check -ignores- the distinction between various watermarks,
2327 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2328 * found to be full for any variation of these watermarks, it will
2329 * be considered full for up to one second by all requests, unless
2330 * we are so low on memory on all allowed nodes that we are forced
2331 * into the second scan of the zonelist.
2332 *
2333 * In the second scan we ignore this zonelist cache and exactly
2334 * apply the watermarks to all zones, even it is slower to do so.
2335 * We are low on memory in the second scan, and should leave no stone
2336 * unturned looking for a free page.
2337 */
2338 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2339 nodemask_t *allowednodes)
2340 {
2341 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2342 int i; /* index of *z in zonelist zones */
2343 int n; /* node that zone *z is on */
2344
2345 zlc = zonelist->zlcache_ptr;
2346 if (!zlc)
2347 return 1;
2348
2349 i = z - zonelist->_zonerefs;
2350 n = zlc->z_to_n[i];
2351
2352 /* This zone is worth trying if it is allowed but not full */
2353 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2354 }
2355
2356 /*
2357 * Given 'z' scanning a zonelist, set the corresponding bit in
2358 * zlc->fullzones, so that subsequent attempts to allocate a page
2359 * from that zone don't waste time re-examining it.
2360 */
2361 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2362 {
2363 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2364 int i; /* index of *z in zonelist zones */
2365
2366 zlc = zonelist->zlcache_ptr;
2367 if (!zlc)
2368 return;
2369
2370 i = z - zonelist->_zonerefs;
2371
2372 set_bit(i, zlc->fullzones);
2373 }
2374
2375 /*
2376 * clear all zones full, called after direct reclaim makes progress so that
2377 * a zone that was recently full is not skipped over for up to a second
2378 */
2379 static void zlc_clear_zones_full(struct zonelist *zonelist)
2380 {
2381 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2382
2383 zlc = zonelist->zlcache_ptr;
2384 if (!zlc)
2385 return;
2386
2387 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2388 }
2389
2390 static bool zone_local(struct zone *local_zone, struct zone *zone)
2391 {
2392 return local_zone->node == zone->node;
2393 }
2394
2395 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2396 {
2397 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2398 RECLAIM_DISTANCE;
2399 }
2400
2401 #else /* CONFIG_NUMA */
2402
2403 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2404 {
2405 return NULL;
2406 }
2407
2408 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2409 nodemask_t *allowednodes)
2410 {
2411 return 1;
2412 }
2413
2414 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2415 {
2416 }
2417
2418 static void zlc_clear_zones_full(struct zonelist *zonelist)
2419 {
2420 }
2421
2422 static bool zone_local(struct zone *local_zone, struct zone *zone)
2423 {
2424 return true;
2425 }
2426
2427 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2428 {
2429 return true;
2430 }
2431
2432 #endif /* CONFIG_NUMA */
2433
2434 static void reset_alloc_batches(struct zone *preferred_zone)
2435 {
2436 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2437
2438 do {
2439 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2440 high_wmark_pages(zone) - low_wmark_pages(zone) -
2441 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2442 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2443 } while (zone++ != preferred_zone);
2444 }
2445
2446 /*
2447 * get_page_from_freelist goes through the zonelist trying to allocate
2448 * a page.
2449 */
2450 static struct page *
2451 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2452 const struct alloc_context *ac)
2453 {
2454 struct zonelist *zonelist = ac->zonelist;
2455 struct zoneref *z;
2456 struct page *page = NULL;
2457 struct zone *zone;
2458 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2459 int zlc_active = 0; /* set if using zonelist_cache */
2460 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2461 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2462 (gfp_mask & __GFP_WRITE);
2463 int nr_fair_skipped = 0;
2464 bool zonelist_rescan;
2465
2466 zonelist_scan:
2467 zonelist_rescan = false;
2468
2469 /*
2470 * Scan zonelist, looking for a zone with enough free.
2471 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2472 */
2473 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2474 ac->nodemask) {
2475 unsigned long mark;
2476
2477 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2478 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2479 continue;
2480 if (cpusets_enabled() &&
2481 (alloc_flags & ALLOC_CPUSET) &&
2482 !cpuset_zone_allowed(zone, gfp_mask))
2483 continue;
2484 /*
2485 * Distribute pages in proportion to the individual
2486 * zone size to ensure fair page aging. The zone a
2487 * page was allocated in should have no effect on the
2488 * time the page has in memory before being reclaimed.
2489 */
2490 if (alloc_flags & ALLOC_FAIR) {
2491 if (!zone_local(ac->preferred_zone, zone))
2492 break;
2493 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2494 nr_fair_skipped++;
2495 continue;
2496 }
2497 }
2498 /*
2499 * When allocating a page cache page for writing, we
2500 * want to get it from a zone that is within its dirty
2501 * limit, such that no single zone holds more than its
2502 * proportional share of globally allowed dirty pages.
2503 * The dirty limits take into account the zone's
2504 * lowmem reserves and high watermark so that kswapd
2505 * should be able to balance it without having to
2506 * write pages from its LRU list.
2507 *
2508 * This may look like it could increase pressure on
2509 * lower zones by failing allocations in higher zones
2510 * before they are full. But the pages that do spill
2511 * over are limited as the lower zones are protected
2512 * by this very same mechanism. It should not become
2513 * a practical burden to them.
2514 *
2515 * XXX: For now, allow allocations to potentially
2516 * exceed the per-zone dirty limit in the slowpath
2517 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2518 * which is important when on a NUMA setup the allowed
2519 * zones are together not big enough to reach the
2520 * global limit. The proper fix for these situations
2521 * will require awareness of zones in the
2522 * dirty-throttling and the flusher threads.
2523 */
2524 if (consider_zone_dirty && !zone_dirty_ok(zone))
2525 continue;
2526
2527 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2528 if (!zone_watermark_ok(zone, order, mark,
2529 ac->classzone_idx, alloc_flags)) {
2530 int ret;
2531
2532 /* Checked here to keep the fast path fast */
2533 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2534 if (alloc_flags & ALLOC_NO_WATERMARKS)
2535 goto try_this_zone;
2536
2537 if (IS_ENABLED(CONFIG_NUMA) &&
2538 !did_zlc_setup && nr_online_nodes > 1) {
2539 /*
2540 * we do zlc_setup if there are multiple nodes
2541 * and before considering the first zone allowed
2542 * by the cpuset.
2543 */
2544 allowednodes = zlc_setup(zonelist, alloc_flags);
2545 zlc_active = 1;
2546 did_zlc_setup = 1;
2547 }
2548
2549 if (zone_reclaim_mode == 0 ||
2550 !zone_allows_reclaim(ac->preferred_zone, zone))
2551 goto this_zone_full;
2552
2553 /*
2554 * As we may have just activated ZLC, check if the first
2555 * eligible zone has failed zone_reclaim recently.
2556 */
2557 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2558 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2559 continue;
2560
2561 ret = zone_reclaim(zone, gfp_mask, order);
2562 switch (ret) {
2563 case ZONE_RECLAIM_NOSCAN:
2564 /* did not scan */
2565 continue;
2566 case ZONE_RECLAIM_FULL:
2567 /* scanned but unreclaimable */
2568 continue;
2569 default:
2570 /* did we reclaim enough */
2571 if (zone_watermark_ok(zone, order, mark,
2572 ac->classzone_idx, alloc_flags))
2573 goto try_this_zone;
2574
2575 /*
2576 * Failed to reclaim enough to meet watermark.
2577 * Only mark the zone full if checking the min
2578 * watermark or if we failed to reclaim just
2579 * 1<<order pages or else the page allocator
2580 * fastpath will prematurely mark zones full
2581 * when the watermark is between the low and
2582 * min watermarks.
2583 */
2584 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2585 ret == ZONE_RECLAIM_SOME)
2586 goto this_zone_full;
2587
2588 continue;
2589 }
2590 }
2591
2592 try_this_zone:
2593 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2594 gfp_mask, ac->migratetype);
2595 if (page) {
2596 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2597 goto try_this_zone;
2598 return page;
2599 }
2600 this_zone_full:
2601 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2602 zlc_mark_zone_full(zonelist, z);
2603 }
2604
2605 /*
2606 * The first pass makes sure allocations are spread fairly within the
2607 * local node. However, the local node might have free pages left
2608 * after the fairness batches are exhausted, and remote zones haven't
2609 * even been considered yet. Try once more without fairness, and
2610 * include remote zones now, before entering the slowpath and waking
2611 * kswapd: prefer spilling to a remote zone over swapping locally.
2612 */
2613 if (alloc_flags & ALLOC_FAIR) {
2614 alloc_flags &= ~ALLOC_FAIR;
2615 if (nr_fair_skipped) {
2616 zonelist_rescan = true;
2617 reset_alloc_batches(ac->preferred_zone);
2618 }
2619 if (nr_online_nodes > 1)
2620 zonelist_rescan = true;
2621 }
2622
2623 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2624 /* Disable zlc cache for second zonelist scan */
2625 zlc_active = 0;
2626 zonelist_rescan = true;
2627 }
2628
2629 if (zonelist_rescan)
2630 goto zonelist_scan;
2631
2632 return NULL;
2633 }
2634
2635 /*
2636 * Large machines with many possible nodes should not always dump per-node
2637 * meminfo in irq context.
2638 */
2639 static inline bool should_suppress_show_mem(void)
2640 {
2641 bool ret = false;
2642
2643 #if NODES_SHIFT > 8
2644 ret = in_interrupt();
2645 #endif
2646 return ret;
2647 }
2648
2649 static DEFINE_RATELIMIT_STATE(nopage_rs,
2650 DEFAULT_RATELIMIT_INTERVAL,
2651 DEFAULT_RATELIMIT_BURST);
2652
2653 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2654 {
2655 unsigned int filter = SHOW_MEM_FILTER_NODES;
2656
2657 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2658 debug_guardpage_minorder() > 0)
2659 return;
2660
2661 /*
2662 * This documents exceptions given to allocations in certain
2663 * contexts that are allowed to allocate outside current's set
2664 * of allowed nodes.
2665 */
2666 if (!(gfp_mask & __GFP_NOMEMALLOC))
2667 if (test_thread_flag(TIF_MEMDIE) ||
2668 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2669 filter &= ~SHOW_MEM_FILTER_NODES;
2670 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2671 filter &= ~SHOW_MEM_FILTER_NODES;
2672
2673 if (fmt) {
2674 struct va_format vaf;
2675 va_list args;
2676
2677 va_start(args, fmt);
2678
2679 vaf.fmt = fmt;
2680 vaf.va = &args;
2681
2682 pr_warn("%pV", &vaf);
2683
2684 va_end(args);
2685 }
2686
2687 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2688 current->comm, order, gfp_mask);
2689
2690 dump_stack();
2691 if (!should_suppress_show_mem())
2692 show_mem(filter);
2693 }
2694
2695 static inline struct page *
2696 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2697 const struct alloc_context *ac, unsigned long *did_some_progress)
2698 {
2699 struct page *page;
2700
2701 *did_some_progress = 0;
2702
2703 /*
2704 * Acquire the oom lock. If that fails, somebody else is
2705 * making progress for us.
2706 */
2707 if (!mutex_trylock(&oom_lock)) {
2708 *did_some_progress = 1;
2709 schedule_timeout_uninterruptible(1);
2710 return NULL;
2711 }
2712
2713 /*
2714 * Go through the zonelist yet one more time, keep very high watermark
2715 * here, this is only to catch a parallel oom killing, we must fail if
2716 * we're still under heavy pressure.
2717 */
2718 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2719 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2720 if (page)
2721 goto out;
2722
2723 if (!(gfp_mask & __GFP_NOFAIL)) {
2724 /* Coredumps can quickly deplete all memory reserves */
2725 if (current->flags & PF_DUMPCORE)
2726 goto out;
2727 /* The OOM killer will not help higher order allocs */
2728 if (order > PAGE_ALLOC_COSTLY_ORDER)
2729 goto out;
2730 /* The OOM killer does not needlessly kill tasks for lowmem */
2731 if (ac->high_zoneidx < ZONE_NORMAL)
2732 goto out;
2733 /* The OOM killer does not compensate for IO-less reclaim */
2734 if (!(gfp_mask & __GFP_FS)) {
2735 /*
2736 * XXX: Page reclaim didn't yield anything,
2737 * and the OOM killer can't be invoked, but
2738 * keep looping as per tradition.
2739 */
2740 *did_some_progress = 1;
2741 goto out;
2742 }
2743 if (pm_suspended_storage())
2744 goto out;
2745 /* The OOM killer may not free memory on a specific node */
2746 if (gfp_mask & __GFP_THISNODE)
2747 goto out;
2748 }
2749 /* Exhausted what can be done so it's blamo time */
2750 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2751 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2752 *did_some_progress = 1;
2753 out:
2754 mutex_unlock(&oom_lock);
2755 return page;
2756 }
2757
2758 #ifdef CONFIG_COMPACTION
2759 /* Try memory compaction for high-order allocations before reclaim */
2760 static struct page *
2761 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2762 int alloc_flags, const struct alloc_context *ac,
2763 enum migrate_mode mode, int *contended_compaction,
2764 bool *deferred_compaction)
2765 {
2766 unsigned long compact_result;
2767 struct page *page;
2768
2769 if (!order)
2770 return NULL;
2771
2772 current->flags |= PF_MEMALLOC;
2773 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2774 mode, contended_compaction);
2775 current->flags &= ~PF_MEMALLOC;
2776
2777 switch (compact_result) {
2778 case COMPACT_DEFERRED:
2779 *deferred_compaction = true;
2780 /* fall-through */
2781 case COMPACT_SKIPPED:
2782 return NULL;
2783 default:
2784 break;
2785 }
2786
2787 /*
2788 * At least in one zone compaction wasn't deferred or skipped, so let's
2789 * count a compaction stall
2790 */
2791 count_vm_event(COMPACTSTALL);
2792
2793 page = get_page_from_freelist(gfp_mask, order,
2794 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2795
2796 if (page) {
2797 struct zone *zone = page_zone(page);
2798
2799 zone->compact_blockskip_flush = false;
2800 compaction_defer_reset(zone, order, true);
2801 count_vm_event(COMPACTSUCCESS);
2802 return page;
2803 }
2804
2805 /*
2806 * It's bad if compaction run occurs and fails. The most likely reason
2807 * is that pages exist, but not enough to satisfy watermarks.
2808 */
2809 count_vm_event(COMPACTFAIL);
2810
2811 cond_resched();
2812
2813 return NULL;
2814 }
2815 #else
2816 static inline struct page *
2817 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2818 int alloc_flags, const struct alloc_context *ac,
2819 enum migrate_mode mode, int *contended_compaction,
2820 bool *deferred_compaction)
2821 {
2822 return NULL;
2823 }
2824 #endif /* CONFIG_COMPACTION */
2825
2826 /* Perform direct synchronous page reclaim */
2827 static int
2828 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2829 const struct alloc_context *ac)
2830 {
2831 struct reclaim_state reclaim_state;
2832 int progress;
2833
2834 cond_resched();
2835
2836 /* We now go into synchronous reclaim */
2837 cpuset_memory_pressure_bump();
2838 current->flags |= PF_MEMALLOC;
2839 lockdep_set_current_reclaim_state(gfp_mask);
2840 reclaim_state.reclaimed_slab = 0;
2841 current->reclaim_state = &reclaim_state;
2842
2843 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2844 ac->nodemask);
2845
2846 current->reclaim_state = NULL;
2847 lockdep_clear_current_reclaim_state();
2848 current->flags &= ~PF_MEMALLOC;
2849
2850 cond_resched();
2851
2852 return progress;
2853 }
2854
2855 /* The really slow allocator path where we enter direct reclaim */
2856 static inline struct page *
2857 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2858 int alloc_flags, const struct alloc_context *ac,
2859 unsigned long *did_some_progress)
2860 {
2861 struct page *page = NULL;
2862 bool drained = false;
2863
2864 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2865 if (unlikely(!(*did_some_progress)))
2866 return NULL;
2867
2868 /* After successful reclaim, reconsider all zones for allocation */
2869 if (IS_ENABLED(CONFIG_NUMA))
2870 zlc_clear_zones_full(ac->zonelist);
2871
2872 retry:
2873 page = get_page_from_freelist(gfp_mask, order,
2874 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2875
2876 /*
2877 * If an allocation failed after direct reclaim, it could be because
2878 * pages are pinned on the per-cpu lists. Drain them and try again
2879 */
2880 if (!page && !drained) {
2881 drain_all_pages(NULL);
2882 drained = true;
2883 goto retry;
2884 }
2885
2886 return page;
2887 }
2888
2889 /*
2890 * This is called in the allocator slow-path if the allocation request is of
2891 * sufficient urgency to ignore watermarks and take other desperate measures
2892 */
2893 static inline struct page *
2894 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2895 const struct alloc_context *ac)
2896 {
2897 struct page *page;
2898
2899 do {
2900 page = get_page_from_freelist(gfp_mask, order,
2901 ALLOC_NO_WATERMARKS, ac);
2902
2903 if (!page && gfp_mask & __GFP_NOFAIL)
2904 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2905 HZ/50);
2906 } while (!page && (gfp_mask & __GFP_NOFAIL));
2907
2908 return page;
2909 }
2910
2911 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2912 {
2913 struct zoneref *z;
2914 struct zone *zone;
2915
2916 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2917 ac->high_zoneidx, ac->nodemask)
2918 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2919 }
2920
2921 static inline int
2922 gfp_to_alloc_flags(gfp_t gfp_mask)
2923 {
2924 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2925 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2926
2927 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2928 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2929
2930 /*
2931 * The caller may dip into page reserves a bit more if the caller
2932 * cannot run direct reclaim, or if the caller has realtime scheduling
2933 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2934 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2935 */
2936 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2937
2938 if (atomic) {
2939 /*
2940 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2941 * if it can't schedule.
2942 */
2943 if (!(gfp_mask & __GFP_NOMEMALLOC))
2944 alloc_flags |= ALLOC_HARDER;
2945 /*
2946 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2947 * comment for __cpuset_node_allowed().
2948 */
2949 alloc_flags &= ~ALLOC_CPUSET;
2950 } else if (unlikely(rt_task(current)) && !in_interrupt())
2951 alloc_flags |= ALLOC_HARDER;
2952
2953 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2954 if (gfp_mask & __GFP_MEMALLOC)
2955 alloc_flags |= ALLOC_NO_WATERMARKS;
2956 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2957 alloc_flags |= ALLOC_NO_WATERMARKS;
2958 else if (!in_interrupt() &&
2959 ((current->flags & PF_MEMALLOC) ||
2960 unlikely(test_thread_flag(TIF_MEMDIE))))
2961 alloc_flags |= ALLOC_NO_WATERMARKS;
2962 }
2963 #ifdef CONFIG_CMA
2964 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2965 alloc_flags |= ALLOC_CMA;
2966 #endif
2967 return alloc_flags;
2968 }
2969
2970 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2971 {
2972 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2973 }
2974
2975 static inline struct page *
2976 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2977 struct alloc_context *ac)
2978 {
2979 const gfp_t wait = gfp_mask & __GFP_WAIT;
2980 struct page *page = NULL;
2981 int alloc_flags;
2982 unsigned long pages_reclaimed = 0;
2983 unsigned long did_some_progress;
2984 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2985 bool deferred_compaction = false;
2986 int contended_compaction = COMPACT_CONTENDED_NONE;
2987
2988 /*
2989 * In the slowpath, we sanity check order to avoid ever trying to
2990 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2991 * be using allocators in order of preference for an area that is
2992 * too large.
2993 */
2994 if (order >= MAX_ORDER) {
2995 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2996 return NULL;
2997 }
2998
2999 /*
3000 * If this allocation cannot block and it is for a specific node, then
3001 * fail early. There's no need to wakeup kswapd or retry for a
3002 * speculative node-specific allocation.
3003 */
3004 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
3005 goto nopage;
3006
3007 retry:
3008 if (!(gfp_mask & __GFP_NO_KSWAPD))
3009 wake_all_kswapds(order, ac);
3010
3011 /*
3012 * OK, we're below the kswapd watermark and have kicked background
3013 * reclaim. Now things get more complex, so set up alloc_flags according
3014 * to how we want to proceed.
3015 */
3016 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3017
3018 /*
3019 * Find the true preferred zone if the allocation is unconstrained by
3020 * cpusets.
3021 */
3022 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3023 struct zoneref *preferred_zoneref;
3024 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3025 ac->high_zoneidx, NULL, &ac->preferred_zone);
3026 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3027 }
3028
3029 /* This is the last chance, in general, before the goto nopage. */
3030 page = get_page_from_freelist(gfp_mask, order,
3031 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3032 if (page)
3033 goto got_pg;
3034
3035 /* Allocate without watermarks if the context allows */
3036 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3037 /*
3038 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3039 * the allocation is high priority and these type of
3040 * allocations are system rather than user orientated
3041 */
3042 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3043
3044 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3045
3046 if (page) {
3047 goto got_pg;
3048 }
3049 }
3050
3051 /* Atomic allocations - we can't balance anything */
3052 if (!wait) {
3053 /*
3054 * All existing users of the deprecated __GFP_NOFAIL are
3055 * blockable, so warn of any new users that actually allow this
3056 * type of allocation to fail.
3057 */
3058 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3059 goto nopage;
3060 }
3061
3062 /* Avoid recursion of direct reclaim */
3063 if (current->flags & PF_MEMALLOC)
3064 goto nopage;
3065
3066 /* Avoid allocations with no watermarks from looping endlessly */
3067 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3068 goto nopage;
3069
3070 /*
3071 * Try direct compaction. The first pass is asynchronous. Subsequent
3072 * attempts after direct reclaim are synchronous
3073 */
3074 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3075 migration_mode,
3076 &contended_compaction,
3077 &deferred_compaction);
3078 if (page)
3079 goto got_pg;
3080
3081 /* Checks for THP-specific high-order allocations */
3082 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3083 /*
3084 * If compaction is deferred for high-order allocations, it is
3085 * because sync compaction recently failed. If this is the case
3086 * and the caller requested a THP allocation, we do not want
3087 * to heavily disrupt the system, so we fail the allocation
3088 * instead of entering direct reclaim.
3089 */
3090 if (deferred_compaction)
3091 goto nopage;
3092
3093 /*
3094 * In all zones where compaction was attempted (and not
3095 * deferred or skipped), lock contention has been detected.
3096 * For THP allocation we do not want to disrupt the others
3097 * so we fallback to base pages instead.
3098 */
3099 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3100 goto nopage;
3101
3102 /*
3103 * If compaction was aborted due to need_resched(), we do not
3104 * want to further increase allocation latency, unless it is
3105 * khugepaged trying to collapse.
3106 */
3107 if (contended_compaction == COMPACT_CONTENDED_SCHED
3108 && !(current->flags & PF_KTHREAD))
3109 goto nopage;
3110 }
3111
3112 /*
3113 * It can become very expensive to allocate transparent hugepages at
3114 * fault, so use asynchronous memory compaction for THP unless it is
3115 * khugepaged trying to collapse.
3116 */
3117 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3118 (current->flags & PF_KTHREAD))
3119 migration_mode = MIGRATE_SYNC_LIGHT;
3120
3121 /* Try direct reclaim and then allocating */
3122 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3123 &did_some_progress);
3124 if (page)
3125 goto got_pg;
3126
3127 /* Do not loop if specifically requested */
3128 if (gfp_mask & __GFP_NORETRY)
3129 goto noretry;
3130
3131 /* Keep reclaiming pages as long as there is reasonable progress */
3132 pages_reclaimed += did_some_progress;
3133 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3134 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3135 /* Wait for some write requests to complete then retry */
3136 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3137 goto retry;
3138 }
3139
3140 /* Reclaim has failed us, start killing things */
3141 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3142 if (page)
3143 goto got_pg;
3144
3145 /* Retry as long as the OOM killer is making progress */
3146 if (did_some_progress)
3147 goto retry;
3148
3149 noretry:
3150 /*
3151 * High-order allocations do not necessarily loop after
3152 * direct reclaim and reclaim/compaction depends on compaction
3153 * being called after reclaim so call directly if necessary
3154 */
3155 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3156 ac, migration_mode,
3157 &contended_compaction,
3158 &deferred_compaction);
3159 if (page)
3160 goto got_pg;
3161 nopage:
3162 warn_alloc_failed(gfp_mask, order, NULL);
3163 got_pg:
3164 return page;
3165 }
3166
3167 /*
3168 * This is the 'heart' of the zoned buddy allocator.
3169 */
3170 struct page *
3171 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3172 struct zonelist *zonelist, nodemask_t *nodemask)
3173 {
3174 struct zoneref *preferred_zoneref;
3175 struct page *page = NULL;
3176 unsigned int cpuset_mems_cookie;
3177 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3178 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3179 struct alloc_context ac = {
3180 .high_zoneidx = gfp_zone(gfp_mask),
3181 .nodemask = nodemask,
3182 .migratetype = gfpflags_to_migratetype(gfp_mask),
3183 };
3184
3185 gfp_mask &= gfp_allowed_mask;
3186
3187 lockdep_trace_alloc(gfp_mask);
3188
3189 might_sleep_if(gfp_mask & __GFP_WAIT);
3190
3191 if (should_fail_alloc_page(gfp_mask, order))
3192 return NULL;
3193
3194 /*
3195 * Check the zones suitable for the gfp_mask contain at least one
3196 * valid zone. It's possible to have an empty zonelist as a result
3197 * of __GFP_THISNODE and a memoryless node
3198 */
3199 if (unlikely(!zonelist->_zonerefs->zone))
3200 return NULL;
3201
3202 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3203 alloc_flags |= ALLOC_CMA;
3204
3205 retry_cpuset:
3206 cpuset_mems_cookie = read_mems_allowed_begin();
3207
3208 /* We set it here, as __alloc_pages_slowpath might have changed it */
3209 ac.zonelist = zonelist;
3210 /* The preferred zone is used for statistics later */
3211 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3212 ac.nodemask ? : &cpuset_current_mems_allowed,
3213 &ac.preferred_zone);
3214 if (!ac.preferred_zone)
3215 goto out;
3216 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3217
3218 /* First allocation attempt */
3219 alloc_mask = gfp_mask|__GFP_HARDWALL;
3220 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3221 if (unlikely(!page)) {
3222 /*
3223 * Runtime PM, block IO and its error handling path
3224 * can deadlock because I/O on the device might not
3225 * complete.
3226 */
3227 alloc_mask = memalloc_noio_flags(gfp_mask);
3228
3229 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3230 }
3231
3232 if (kmemcheck_enabled && page)
3233 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3234
3235 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3236
3237 out:
3238 /*
3239 * When updating a task's mems_allowed, it is possible to race with
3240 * parallel threads in such a way that an allocation can fail while
3241 * the mask is being updated. If a page allocation is about to fail,
3242 * check if the cpuset changed during allocation and if so, retry.
3243 */
3244 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3245 goto retry_cpuset;
3246
3247 return page;
3248 }
3249 EXPORT_SYMBOL(__alloc_pages_nodemask);
3250
3251 /*
3252 * Common helper functions.
3253 */
3254 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3255 {
3256 struct page *page;
3257
3258 /*
3259 * __get_free_pages() returns a 32-bit address, which cannot represent
3260 * a highmem page
3261 */
3262 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3263
3264 page = alloc_pages(gfp_mask, order);
3265 if (!page)
3266 return 0;
3267 return (unsigned long) page_address(page);
3268 }
3269 EXPORT_SYMBOL(__get_free_pages);
3270
3271 unsigned long get_zeroed_page(gfp_t gfp_mask)
3272 {
3273 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3274 }
3275 EXPORT_SYMBOL(get_zeroed_page);
3276
3277 void __free_pages(struct page *page, unsigned int order)
3278 {
3279 if (put_page_testzero(page)) {
3280 if (order == 0)
3281 free_hot_cold_page(page, false);
3282 else
3283 __free_pages_ok(page, order);
3284 }
3285 }
3286
3287 EXPORT_SYMBOL(__free_pages);
3288
3289 void free_pages(unsigned long addr, unsigned int order)
3290 {
3291 if (addr != 0) {
3292 VM_BUG_ON(!virt_addr_valid((void *)addr));
3293 __free_pages(virt_to_page((void *)addr), order);
3294 }
3295 }
3296
3297 EXPORT_SYMBOL(free_pages);
3298
3299 /*
3300 * Page Fragment:
3301 * An arbitrary-length arbitrary-offset area of memory which resides
3302 * within a 0 or higher order page. Multiple fragments within that page
3303 * are individually refcounted, in the page's reference counter.
3304 *
3305 * The page_frag functions below provide a simple allocation framework for
3306 * page fragments. This is used by the network stack and network device
3307 * drivers to provide a backing region of memory for use as either an
3308 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3309 */
3310 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3311 gfp_t gfp_mask)
3312 {
3313 struct page *page = NULL;
3314 gfp_t gfp = gfp_mask;
3315
3316 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3317 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3318 __GFP_NOMEMALLOC;
3319 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3320 PAGE_FRAG_CACHE_MAX_ORDER);
3321 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3322 #endif
3323 if (unlikely(!page))
3324 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3325
3326 nc->va = page ? page_address(page) : NULL;
3327
3328 return page;
3329 }
3330
3331 void *__alloc_page_frag(struct page_frag_cache *nc,
3332 unsigned int fragsz, gfp_t gfp_mask)
3333 {
3334 unsigned int size = PAGE_SIZE;
3335 struct page *page;
3336 int offset;
3337
3338 if (unlikely(!nc->va)) {
3339 refill:
3340 page = __page_frag_refill(nc, gfp_mask);
3341 if (!page)
3342 return NULL;
3343
3344 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3345 /* if size can vary use size else just use PAGE_SIZE */
3346 size = nc->size;
3347 #endif
3348 /* Even if we own the page, we do not use atomic_set().
3349 * This would break get_page_unless_zero() users.
3350 */
3351 atomic_add(size - 1, &page->_count);
3352
3353 /* reset page count bias and offset to start of new frag */
3354 nc->pfmemalloc = page_is_pfmemalloc(page);
3355 nc->pagecnt_bias = size;
3356 nc->offset = size;
3357 }
3358
3359 offset = nc->offset - fragsz;
3360 if (unlikely(offset < 0)) {
3361 page = virt_to_page(nc->va);
3362
3363 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3364 goto refill;
3365
3366 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3367 /* if size can vary use size else just use PAGE_SIZE */
3368 size = nc->size;
3369 #endif
3370 /* OK, page count is 0, we can safely set it */
3371 atomic_set(&page->_count, size);
3372
3373 /* reset page count bias and offset to start of new frag */
3374 nc->pagecnt_bias = size;
3375 offset = size - fragsz;
3376 }
3377
3378 nc->pagecnt_bias--;
3379 nc->offset = offset;
3380
3381 return nc->va + offset;
3382 }
3383 EXPORT_SYMBOL(__alloc_page_frag);
3384
3385 /*
3386 * Frees a page fragment allocated out of either a compound or order 0 page.
3387 */
3388 void __free_page_frag(void *addr)
3389 {
3390 struct page *page = virt_to_head_page(addr);
3391
3392 if (unlikely(put_page_testzero(page)))
3393 __free_pages_ok(page, compound_order(page));
3394 }
3395 EXPORT_SYMBOL(__free_page_frag);
3396
3397 /*
3398 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3399 * of the current memory cgroup.
3400 *
3401 * It should be used when the caller would like to use kmalloc, but since the
3402 * allocation is large, it has to fall back to the page allocator.
3403 */
3404 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3405 {
3406 struct page *page;
3407 struct mem_cgroup *memcg = NULL;
3408
3409 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3410 return NULL;
3411 page = alloc_pages(gfp_mask, order);
3412 memcg_kmem_commit_charge(page, memcg, order);
3413 return page;
3414 }
3415
3416 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3417 {
3418 struct page *page;
3419 struct mem_cgroup *memcg = NULL;
3420
3421 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3422 return NULL;
3423 page = alloc_pages_node(nid, gfp_mask, order);
3424 memcg_kmem_commit_charge(page, memcg, order);
3425 return page;
3426 }
3427
3428 /*
3429 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3430 * alloc_kmem_pages.
3431 */
3432 void __free_kmem_pages(struct page *page, unsigned int order)
3433 {
3434 memcg_kmem_uncharge_pages(page, order);
3435 __free_pages(page, order);
3436 }
3437
3438 void free_kmem_pages(unsigned long addr, unsigned int order)
3439 {
3440 if (addr != 0) {
3441 VM_BUG_ON(!virt_addr_valid((void *)addr));
3442 __free_kmem_pages(virt_to_page((void *)addr), order);
3443 }
3444 }
3445
3446 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3447 {
3448 if (addr) {
3449 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3450 unsigned long used = addr + PAGE_ALIGN(size);
3451
3452 split_page(virt_to_page((void *)addr), order);
3453 while (used < alloc_end) {
3454 free_page(used);
3455 used += PAGE_SIZE;
3456 }
3457 }
3458 return (void *)addr;
3459 }
3460
3461 /**
3462 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3463 * @size: the number of bytes to allocate
3464 * @gfp_mask: GFP flags for the allocation
3465 *
3466 * This function is similar to alloc_pages(), except that it allocates the
3467 * minimum number of pages to satisfy the request. alloc_pages() can only
3468 * allocate memory in power-of-two pages.
3469 *
3470 * This function is also limited by MAX_ORDER.
3471 *
3472 * Memory allocated by this function must be released by free_pages_exact().
3473 */
3474 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3475 {
3476 unsigned int order = get_order(size);
3477 unsigned long addr;
3478
3479 addr = __get_free_pages(gfp_mask, order);
3480 return make_alloc_exact(addr, order, size);
3481 }
3482 EXPORT_SYMBOL(alloc_pages_exact);
3483
3484 /**
3485 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3486 * pages on a node.
3487 * @nid: the preferred node ID where memory should be allocated
3488 * @size: the number of bytes to allocate
3489 * @gfp_mask: GFP flags for the allocation
3490 *
3491 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3492 * back.
3493 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3494 * but is not exact.
3495 */
3496 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3497 {
3498 unsigned order = get_order(size);
3499 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3500 if (!p)
3501 return NULL;
3502 return make_alloc_exact((unsigned long)page_address(p), order, size);
3503 }
3504
3505 /**
3506 * free_pages_exact - release memory allocated via alloc_pages_exact()
3507 * @virt: the value returned by alloc_pages_exact.
3508 * @size: size of allocation, same value as passed to alloc_pages_exact().
3509 *
3510 * Release the memory allocated by a previous call to alloc_pages_exact.
3511 */
3512 void free_pages_exact(void *virt, size_t size)
3513 {
3514 unsigned long addr = (unsigned long)virt;
3515 unsigned long end = addr + PAGE_ALIGN(size);
3516
3517 while (addr < end) {
3518 free_page(addr);
3519 addr += PAGE_SIZE;
3520 }
3521 }
3522 EXPORT_SYMBOL(free_pages_exact);
3523
3524 /**
3525 * nr_free_zone_pages - count number of pages beyond high watermark
3526 * @offset: The zone index of the highest zone
3527 *
3528 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3529 * high watermark within all zones at or below a given zone index. For each
3530 * zone, the number of pages is calculated as:
3531 * managed_pages - high_pages
3532 */
3533 static unsigned long nr_free_zone_pages(int offset)
3534 {
3535 struct zoneref *z;
3536 struct zone *zone;
3537
3538 /* Just pick one node, since fallback list is circular */
3539 unsigned long sum = 0;
3540
3541 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3542
3543 for_each_zone_zonelist(zone, z, zonelist, offset) {
3544 unsigned long size = zone->managed_pages;
3545 unsigned long high = high_wmark_pages(zone);
3546 if (size > high)
3547 sum += size - high;
3548 }
3549
3550 return sum;
3551 }
3552
3553 /**
3554 * nr_free_buffer_pages - count number of pages beyond high watermark
3555 *
3556 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3557 * watermark within ZONE_DMA and ZONE_NORMAL.
3558 */
3559 unsigned long nr_free_buffer_pages(void)
3560 {
3561 return nr_free_zone_pages(gfp_zone(GFP_USER));
3562 }
3563 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3564
3565 /**
3566 * nr_free_pagecache_pages - count number of pages beyond high watermark
3567 *
3568 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3569 * high watermark within all zones.
3570 */
3571 unsigned long nr_free_pagecache_pages(void)
3572 {
3573 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3574 }
3575
3576 static inline void show_node(struct zone *zone)
3577 {
3578 if (IS_ENABLED(CONFIG_NUMA))
3579 printk("Node %d ", zone_to_nid(zone));
3580 }
3581
3582 void si_meminfo(struct sysinfo *val)
3583 {
3584 val->totalram = totalram_pages;
3585 val->sharedram = global_page_state(NR_SHMEM);
3586 val->freeram = global_page_state(NR_FREE_PAGES);
3587 val->bufferram = nr_blockdev_pages();
3588 val->totalhigh = totalhigh_pages;
3589 val->freehigh = nr_free_highpages();
3590 val->mem_unit = PAGE_SIZE;
3591 }
3592
3593 EXPORT_SYMBOL(si_meminfo);
3594
3595 #ifdef CONFIG_NUMA
3596 void si_meminfo_node(struct sysinfo *val, int nid)
3597 {
3598 int zone_type; /* needs to be signed */
3599 unsigned long managed_pages = 0;
3600 pg_data_t *pgdat = NODE_DATA(nid);
3601
3602 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3603 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3604 val->totalram = managed_pages;
3605 val->sharedram = node_page_state(nid, NR_SHMEM);
3606 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3607 #ifdef CONFIG_HIGHMEM
3608 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3609 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3610 NR_FREE_PAGES);
3611 #else
3612 val->totalhigh = 0;
3613 val->freehigh = 0;
3614 #endif
3615 val->mem_unit = PAGE_SIZE;
3616 }
3617 #endif
3618
3619 /*
3620 * Determine whether the node should be displayed or not, depending on whether
3621 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3622 */
3623 bool skip_free_areas_node(unsigned int flags, int nid)
3624 {
3625 bool ret = false;
3626 unsigned int cpuset_mems_cookie;
3627
3628 if (!(flags & SHOW_MEM_FILTER_NODES))
3629 goto out;
3630
3631 do {
3632 cpuset_mems_cookie = read_mems_allowed_begin();
3633 ret = !node_isset(nid, cpuset_current_mems_allowed);
3634 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3635 out:
3636 return ret;
3637 }
3638
3639 #define K(x) ((x) << (PAGE_SHIFT-10))
3640
3641 static void show_migration_types(unsigned char type)
3642 {
3643 static const char types[MIGRATE_TYPES] = {
3644 [MIGRATE_UNMOVABLE] = 'U',
3645 [MIGRATE_RECLAIMABLE] = 'E',
3646 [MIGRATE_MOVABLE] = 'M',
3647 [MIGRATE_RESERVE] = 'R',
3648 #ifdef CONFIG_CMA
3649 [MIGRATE_CMA] = 'C',
3650 #endif
3651 #ifdef CONFIG_MEMORY_ISOLATION
3652 [MIGRATE_ISOLATE] = 'I',
3653 #endif
3654 };
3655 char tmp[MIGRATE_TYPES + 1];
3656 char *p = tmp;
3657 int i;
3658
3659 for (i = 0; i < MIGRATE_TYPES; i++) {
3660 if (type & (1 << i))
3661 *p++ = types[i];
3662 }
3663
3664 *p = '\0';
3665 printk("(%s) ", tmp);
3666 }
3667
3668 /*
3669 * Show free area list (used inside shift_scroll-lock stuff)
3670 * We also calculate the percentage fragmentation. We do this by counting the
3671 * memory on each free list with the exception of the first item on the list.
3672 *
3673 * Bits in @filter:
3674 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3675 * cpuset.
3676 */
3677 void show_free_areas(unsigned int filter)
3678 {
3679 unsigned long free_pcp = 0;
3680 int cpu;
3681 struct zone *zone;
3682
3683 for_each_populated_zone(zone) {
3684 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3685 continue;
3686
3687 for_each_online_cpu(cpu)
3688 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3689 }
3690
3691 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3692 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3693 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3694 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3695 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3696 " free:%lu free_pcp:%lu free_cma:%lu\n",
3697 global_page_state(NR_ACTIVE_ANON),
3698 global_page_state(NR_INACTIVE_ANON),
3699 global_page_state(NR_ISOLATED_ANON),
3700 global_page_state(NR_ACTIVE_FILE),
3701 global_page_state(NR_INACTIVE_FILE),
3702 global_page_state(NR_ISOLATED_FILE),
3703 global_page_state(NR_UNEVICTABLE),
3704 global_page_state(NR_FILE_DIRTY),
3705 global_page_state(NR_WRITEBACK),
3706 global_page_state(NR_UNSTABLE_NFS),
3707 global_page_state(NR_SLAB_RECLAIMABLE),
3708 global_page_state(NR_SLAB_UNRECLAIMABLE),
3709 global_page_state(NR_FILE_MAPPED),
3710 global_page_state(NR_SHMEM),
3711 global_page_state(NR_PAGETABLE),
3712 global_page_state(NR_BOUNCE),
3713 global_page_state(NR_FREE_PAGES),
3714 free_pcp,
3715 global_page_state(NR_FREE_CMA_PAGES));
3716
3717 for_each_populated_zone(zone) {
3718 int i;
3719
3720 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3721 continue;
3722
3723 free_pcp = 0;
3724 for_each_online_cpu(cpu)
3725 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3726
3727 show_node(zone);
3728 printk("%s"
3729 " free:%lukB"
3730 " min:%lukB"
3731 " low:%lukB"
3732 " high:%lukB"
3733 " active_anon:%lukB"
3734 " inactive_anon:%lukB"
3735 " active_file:%lukB"
3736 " inactive_file:%lukB"
3737 " unevictable:%lukB"
3738 " isolated(anon):%lukB"
3739 " isolated(file):%lukB"
3740 " present:%lukB"
3741 " managed:%lukB"
3742 " mlocked:%lukB"
3743 " dirty:%lukB"
3744 " writeback:%lukB"
3745 " mapped:%lukB"
3746 " shmem:%lukB"
3747 " slab_reclaimable:%lukB"
3748 " slab_unreclaimable:%lukB"
3749 " kernel_stack:%lukB"
3750 " pagetables:%lukB"
3751 " unstable:%lukB"
3752 " bounce:%lukB"
3753 " free_pcp:%lukB"
3754 " local_pcp:%ukB"
3755 " free_cma:%lukB"
3756 " writeback_tmp:%lukB"
3757 " pages_scanned:%lu"
3758 " all_unreclaimable? %s"
3759 "\n",
3760 zone->name,
3761 K(zone_page_state(zone, NR_FREE_PAGES)),
3762 K(min_wmark_pages(zone)),
3763 K(low_wmark_pages(zone)),
3764 K(high_wmark_pages(zone)),
3765 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3766 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3767 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3768 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3769 K(zone_page_state(zone, NR_UNEVICTABLE)),
3770 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3771 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3772 K(zone->present_pages),
3773 K(zone->managed_pages),
3774 K(zone_page_state(zone, NR_MLOCK)),
3775 K(zone_page_state(zone, NR_FILE_DIRTY)),
3776 K(zone_page_state(zone, NR_WRITEBACK)),
3777 K(zone_page_state(zone, NR_FILE_MAPPED)),
3778 K(zone_page_state(zone, NR_SHMEM)),
3779 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3780 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3781 zone_page_state(zone, NR_KERNEL_STACK) *
3782 THREAD_SIZE / 1024,
3783 K(zone_page_state(zone, NR_PAGETABLE)),
3784 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3785 K(zone_page_state(zone, NR_BOUNCE)),
3786 K(free_pcp),
3787 K(this_cpu_read(zone->pageset->pcp.count)),
3788 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3789 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3790 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3791 (!zone_reclaimable(zone) ? "yes" : "no")
3792 );
3793 printk("lowmem_reserve[]:");
3794 for (i = 0; i < MAX_NR_ZONES; i++)
3795 printk(" %ld", zone->lowmem_reserve[i]);
3796 printk("\n");
3797 }
3798
3799 for_each_populated_zone(zone) {
3800 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3801 unsigned char types[MAX_ORDER];
3802
3803 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3804 continue;
3805 show_node(zone);
3806 printk("%s: ", zone->name);
3807
3808 spin_lock_irqsave(&zone->lock, flags);
3809 for (order = 0; order < MAX_ORDER; order++) {
3810 struct free_area *area = &zone->free_area[order];
3811 int type;
3812
3813 nr[order] = area->nr_free;
3814 total += nr[order] << order;
3815
3816 types[order] = 0;
3817 for (type = 0; type < MIGRATE_TYPES; type++) {
3818 if (!list_empty(&area->free_list[type]))
3819 types[order] |= 1 << type;
3820 }
3821 }
3822 spin_unlock_irqrestore(&zone->lock, flags);
3823 for (order = 0; order < MAX_ORDER; order++) {
3824 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3825 if (nr[order])
3826 show_migration_types(types[order]);
3827 }
3828 printk("= %lukB\n", K(total));
3829 }
3830
3831 hugetlb_show_meminfo();
3832
3833 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3834
3835 show_swap_cache_info();
3836 }
3837
3838 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3839 {
3840 zoneref->zone = zone;
3841 zoneref->zone_idx = zone_idx(zone);
3842 }
3843
3844 /*
3845 * Builds allocation fallback zone lists.
3846 *
3847 * Add all populated zones of a node to the zonelist.
3848 */
3849 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3850 int nr_zones)
3851 {
3852 struct zone *zone;
3853 enum zone_type zone_type = MAX_NR_ZONES;
3854
3855 do {
3856 zone_type--;
3857 zone = pgdat->node_zones + zone_type;
3858 if (populated_zone(zone)) {
3859 zoneref_set_zone(zone,
3860 &zonelist->_zonerefs[nr_zones++]);
3861 check_highest_zone(zone_type);
3862 }
3863 } while (zone_type);
3864
3865 return nr_zones;
3866 }
3867
3868
3869 /*
3870 * zonelist_order:
3871 * 0 = automatic detection of better ordering.
3872 * 1 = order by ([node] distance, -zonetype)
3873 * 2 = order by (-zonetype, [node] distance)
3874 *
3875 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3876 * the same zonelist. So only NUMA can configure this param.
3877 */
3878 #define ZONELIST_ORDER_DEFAULT 0
3879 #define ZONELIST_ORDER_NODE 1
3880 #define ZONELIST_ORDER_ZONE 2
3881
3882 /* zonelist order in the kernel.
3883 * set_zonelist_order() will set this to NODE or ZONE.
3884 */
3885 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3886 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3887
3888
3889 #ifdef CONFIG_NUMA
3890 /* The value user specified ....changed by config */
3891 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3892 /* string for sysctl */
3893 #define NUMA_ZONELIST_ORDER_LEN 16
3894 char numa_zonelist_order[16] = "default";
3895
3896 /*
3897 * interface for configure zonelist ordering.
3898 * command line option "numa_zonelist_order"
3899 * = "[dD]efault - default, automatic configuration.
3900 * = "[nN]ode - order by node locality, then by zone within node
3901 * = "[zZ]one - order by zone, then by locality within zone
3902 */
3903
3904 static int __parse_numa_zonelist_order(char *s)
3905 {
3906 if (*s == 'd' || *s == 'D') {
3907 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3908 } else if (*s == 'n' || *s == 'N') {
3909 user_zonelist_order = ZONELIST_ORDER_NODE;
3910 } else if (*s == 'z' || *s == 'Z') {
3911 user_zonelist_order = ZONELIST_ORDER_ZONE;
3912 } else {
3913 printk(KERN_WARNING
3914 "Ignoring invalid numa_zonelist_order value: "
3915 "%s\n", s);
3916 return -EINVAL;
3917 }
3918 return 0;
3919 }
3920
3921 static __init int setup_numa_zonelist_order(char *s)
3922 {
3923 int ret;
3924
3925 if (!s)
3926 return 0;
3927
3928 ret = __parse_numa_zonelist_order(s);
3929 if (ret == 0)
3930 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3931
3932 return ret;
3933 }
3934 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3935
3936 /*
3937 * sysctl handler for numa_zonelist_order
3938 */
3939 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3940 void __user *buffer, size_t *length,
3941 loff_t *ppos)
3942 {
3943 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3944 int ret;
3945 static DEFINE_MUTEX(zl_order_mutex);
3946
3947 mutex_lock(&zl_order_mutex);
3948 if (write) {
3949 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3950 ret = -EINVAL;
3951 goto out;
3952 }
3953 strcpy(saved_string, (char *)table->data);
3954 }
3955 ret = proc_dostring(table, write, buffer, length, ppos);
3956 if (ret)
3957 goto out;
3958 if (write) {
3959 int oldval = user_zonelist_order;
3960
3961 ret = __parse_numa_zonelist_order((char *)table->data);
3962 if (ret) {
3963 /*
3964 * bogus value. restore saved string
3965 */
3966 strncpy((char *)table->data, saved_string,
3967 NUMA_ZONELIST_ORDER_LEN);
3968 user_zonelist_order = oldval;
3969 } else if (oldval != user_zonelist_order) {
3970 mutex_lock(&zonelists_mutex);
3971 build_all_zonelists(NULL, NULL);
3972 mutex_unlock(&zonelists_mutex);
3973 }
3974 }
3975 out:
3976 mutex_unlock(&zl_order_mutex);
3977 return ret;
3978 }
3979
3980
3981 #define MAX_NODE_LOAD (nr_online_nodes)
3982 static int node_load[MAX_NUMNODES];
3983
3984 /**
3985 * find_next_best_node - find the next node that should appear in a given node's fallback list
3986 * @node: node whose fallback list we're appending
3987 * @used_node_mask: nodemask_t of already used nodes
3988 *
3989 * We use a number of factors to determine which is the next node that should
3990 * appear on a given node's fallback list. The node should not have appeared
3991 * already in @node's fallback list, and it should be the next closest node
3992 * according to the distance array (which contains arbitrary distance values
3993 * from each node to each node in the system), and should also prefer nodes
3994 * with no CPUs, since presumably they'll have very little allocation pressure
3995 * on them otherwise.
3996 * It returns -1 if no node is found.
3997 */
3998 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3999 {
4000 int n, val;
4001 int min_val = INT_MAX;
4002 int best_node = NUMA_NO_NODE;
4003 const struct cpumask *tmp = cpumask_of_node(0);
4004
4005 /* Use the local node if we haven't already */
4006 if (!node_isset(node, *used_node_mask)) {
4007 node_set(node, *used_node_mask);
4008 return node;
4009 }
4010
4011 for_each_node_state(n, N_MEMORY) {
4012
4013 /* Don't want a node to appear more than once */
4014 if (node_isset(n, *used_node_mask))
4015 continue;
4016
4017 /* Use the distance array to find the distance */
4018 val = node_distance(node, n);
4019
4020 /* Penalize nodes under us ("prefer the next node") */
4021 val += (n < node);
4022
4023 /* Give preference to headless and unused nodes */
4024 tmp = cpumask_of_node(n);
4025 if (!cpumask_empty(tmp))
4026 val += PENALTY_FOR_NODE_WITH_CPUS;
4027
4028 /* Slight preference for less loaded node */
4029 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4030 val += node_load[n];
4031
4032 if (val < min_val) {
4033 min_val = val;
4034 best_node = n;
4035 }
4036 }
4037
4038 if (best_node >= 0)
4039 node_set(best_node, *used_node_mask);
4040
4041 return best_node;
4042 }
4043
4044
4045 /*
4046 * Build zonelists ordered by node and zones within node.
4047 * This results in maximum locality--normal zone overflows into local
4048 * DMA zone, if any--but risks exhausting DMA zone.
4049 */
4050 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4051 {
4052 int j;
4053 struct zonelist *zonelist;
4054
4055 zonelist = &pgdat->node_zonelists[0];
4056 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4057 ;
4058 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4059 zonelist->_zonerefs[j].zone = NULL;
4060 zonelist->_zonerefs[j].zone_idx = 0;
4061 }
4062
4063 /*
4064 * Build gfp_thisnode zonelists
4065 */
4066 static void build_thisnode_zonelists(pg_data_t *pgdat)
4067 {
4068 int j;
4069 struct zonelist *zonelist;
4070
4071 zonelist = &pgdat->node_zonelists[1];
4072 j = build_zonelists_node(pgdat, zonelist, 0);
4073 zonelist->_zonerefs[j].zone = NULL;
4074 zonelist->_zonerefs[j].zone_idx = 0;
4075 }
4076
4077 /*
4078 * Build zonelists ordered by zone and nodes within zones.
4079 * This results in conserving DMA zone[s] until all Normal memory is
4080 * exhausted, but results in overflowing to remote node while memory
4081 * may still exist in local DMA zone.
4082 */
4083 static int node_order[MAX_NUMNODES];
4084
4085 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4086 {
4087 int pos, j, node;
4088 int zone_type; /* needs to be signed */
4089 struct zone *z;
4090 struct zonelist *zonelist;
4091
4092 zonelist = &pgdat->node_zonelists[0];
4093 pos = 0;
4094 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4095 for (j = 0; j < nr_nodes; j++) {
4096 node = node_order[j];
4097 z = &NODE_DATA(node)->node_zones[zone_type];
4098 if (populated_zone(z)) {
4099 zoneref_set_zone(z,
4100 &zonelist->_zonerefs[pos++]);
4101 check_highest_zone(zone_type);
4102 }
4103 }
4104 }
4105 zonelist->_zonerefs[pos].zone = NULL;
4106 zonelist->_zonerefs[pos].zone_idx = 0;
4107 }
4108
4109 #if defined(CONFIG_64BIT)
4110 /*
4111 * Devices that require DMA32/DMA are relatively rare and do not justify a
4112 * penalty to every machine in case the specialised case applies. Default
4113 * to Node-ordering on 64-bit NUMA machines
4114 */
4115 static int default_zonelist_order(void)
4116 {
4117 return ZONELIST_ORDER_NODE;
4118 }
4119 #else
4120 /*
4121 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4122 * by the kernel. If processes running on node 0 deplete the low memory zone
4123 * then reclaim will occur more frequency increasing stalls and potentially
4124 * be easier to OOM if a large percentage of the zone is under writeback or
4125 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4126 * Hence, default to zone ordering on 32-bit.
4127 */
4128 static int default_zonelist_order(void)
4129 {
4130 return ZONELIST_ORDER_ZONE;
4131 }
4132 #endif /* CONFIG_64BIT */
4133
4134 static void set_zonelist_order(void)
4135 {
4136 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4137 current_zonelist_order = default_zonelist_order();
4138 else
4139 current_zonelist_order = user_zonelist_order;
4140 }
4141
4142 static void build_zonelists(pg_data_t *pgdat)
4143 {
4144 int j, node, load;
4145 enum zone_type i;
4146 nodemask_t used_mask;
4147 int local_node, prev_node;
4148 struct zonelist *zonelist;
4149 int order = current_zonelist_order;
4150
4151 /* initialize zonelists */
4152 for (i = 0; i < MAX_ZONELISTS; i++) {
4153 zonelist = pgdat->node_zonelists + i;
4154 zonelist->_zonerefs[0].zone = NULL;
4155 zonelist->_zonerefs[0].zone_idx = 0;
4156 }
4157
4158 /* NUMA-aware ordering of nodes */
4159 local_node = pgdat->node_id;
4160 load = nr_online_nodes;
4161 prev_node = local_node;
4162 nodes_clear(used_mask);
4163
4164 memset(node_order, 0, sizeof(node_order));
4165 j = 0;
4166
4167 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4168 /*
4169 * We don't want to pressure a particular node.
4170 * So adding penalty to the first node in same
4171 * distance group to make it round-robin.
4172 */
4173 if (node_distance(local_node, node) !=
4174 node_distance(local_node, prev_node))
4175 node_load[node] = load;
4176
4177 prev_node = node;
4178 load--;
4179 if (order == ZONELIST_ORDER_NODE)
4180 build_zonelists_in_node_order(pgdat, node);
4181 else
4182 node_order[j++] = node; /* remember order */
4183 }
4184
4185 if (order == ZONELIST_ORDER_ZONE) {
4186 /* calculate node order -- i.e., DMA last! */
4187 build_zonelists_in_zone_order(pgdat, j);
4188 }
4189
4190 build_thisnode_zonelists(pgdat);
4191 }
4192
4193 /* Construct the zonelist performance cache - see further mmzone.h */
4194 static void build_zonelist_cache(pg_data_t *pgdat)
4195 {
4196 struct zonelist *zonelist;
4197 struct zonelist_cache *zlc;
4198 struct zoneref *z;
4199
4200 zonelist = &pgdat->node_zonelists[0];
4201 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4202 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4203 for (z = zonelist->_zonerefs; z->zone; z++)
4204 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4205 }
4206
4207 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4208 /*
4209 * Return node id of node used for "local" allocations.
4210 * I.e., first node id of first zone in arg node's generic zonelist.
4211 * Used for initializing percpu 'numa_mem', which is used primarily
4212 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4213 */
4214 int local_memory_node(int node)
4215 {
4216 struct zone *zone;
4217
4218 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4219 gfp_zone(GFP_KERNEL),
4220 NULL,
4221 &zone);
4222 return zone->node;
4223 }
4224 #endif
4225
4226 #else /* CONFIG_NUMA */
4227
4228 static void set_zonelist_order(void)
4229 {
4230 current_zonelist_order = ZONELIST_ORDER_ZONE;
4231 }
4232
4233 static void build_zonelists(pg_data_t *pgdat)
4234 {
4235 int node, local_node;
4236 enum zone_type j;
4237 struct zonelist *zonelist;
4238
4239 local_node = pgdat->node_id;
4240
4241 zonelist = &pgdat->node_zonelists[0];
4242 j = build_zonelists_node(pgdat, zonelist, 0);
4243
4244 /*
4245 * Now we build the zonelist so that it contains the zones
4246 * of all the other nodes.
4247 * We don't want to pressure a particular node, so when
4248 * building the zones for node N, we make sure that the
4249 * zones coming right after the local ones are those from
4250 * node N+1 (modulo N)
4251 */
4252 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4253 if (!node_online(node))
4254 continue;
4255 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4256 }
4257 for (node = 0; node < local_node; node++) {
4258 if (!node_online(node))
4259 continue;
4260 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4261 }
4262
4263 zonelist->_zonerefs[j].zone = NULL;
4264 zonelist->_zonerefs[j].zone_idx = 0;
4265 }
4266
4267 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4268 static void build_zonelist_cache(pg_data_t *pgdat)
4269 {
4270 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4271 }
4272
4273 #endif /* CONFIG_NUMA */
4274
4275 /*
4276 * Boot pageset table. One per cpu which is going to be used for all
4277 * zones and all nodes. The parameters will be set in such a way
4278 * that an item put on a list will immediately be handed over to
4279 * the buddy list. This is safe since pageset manipulation is done
4280 * with interrupts disabled.
4281 *
4282 * The boot_pagesets must be kept even after bootup is complete for
4283 * unused processors and/or zones. They do play a role for bootstrapping
4284 * hotplugged processors.
4285 *
4286 * zoneinfo_show() and maybe other functions do
4287 * not check if the processor is online before following the pageset pointer.
4288 * Other parts of the kernel may not check if the zone is available.
4289 */
4290 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4291 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4292 static void setup_zone_pageset(struct zone *zone);
4293
4294 /*
4295 * Global mutex to protect against size modification of zonelists
4296 * as well as to serialize pageset setup for the new populated zone.
4297 */
4298 DEFINE_MUTEX(zonelists_mutex);
4299
4300 /* return values int ....just for stop_machine() */
4301 static int __build_all_zonelists(void *data)
4302 {
4303 int nid;
4304 int cpu;
4305 pg_data_t *self = data;
4306
4307 #ifdef CONFIG_NUMA
4308 memset(node_load, 0, sizeof(node_load));
4309 #endif
4310
4311 if (self && !node_online(self->node_id)) {
4312 build_zonelists(self);
4313 build_zonelist_cache(self);
4314 }
4315
4316 for_each_online_node(nid) {
4317 pg_data_t *pgdat = NODE_DATA(nid);
4318
4319 build_zonelists(pgdat);
4320 build_zonelist_cache(pgdat);
4321 }
4322
4323 /*
4324 * Initialize the boot_pagesets that are going to be used
4325 * for bootstrapping processors. The real pagesets for
4326 * each zone will be allocated later when the per cpu
4327 * allocator is available.
4328 *
4329 * boot_pagesets are used also for bootstrapping offline
4330 * cpus if the system is already booted because the pagesets
4331 * are needed to initialize allocators on a specific cpu too.
4332 * F.e. the percpu allocator needs the page allocator which
4333 * needs the percpu allocator in order to allocate its pagesets
4334 * (a chicken-egg dilemma).
4335 */
4336 for_each_possible_cpu(cpu) {
4337 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4338
4339 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4340 /*
4341 * We now know the "local memory node" for each node--
4342 * i.e., the node of the first zone in the generic zonelist.
4343 * Set up numa_mem percpu variable for on-line cpus. During
4344 * boot, only the boot cpu should be on-line; we'll init the
4345 * secondary cpus' numa_mem as they come on-line. During
4346 * node/memory hotplug, we'll fixup all on-line cpus.
4347 */
4348 if (cpu_online(cpu))
4349 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4350 #endif
4351 }
4352
4353 return 0;
4354 }
4355
4356 static noinline void __init
4357 build_all_zonelists_init(void)
4358 {
4359 __build_all_zonelists(NULL);
4360 mminit_verify_zonelist();
4361 cpuset_init_current_mems_allowed();
4362 }
4363
4364 /*
4365 * Called with zonelists_mutex held always
4366 * unless system_state == SYSTEM_BOOTING.
4367 *
4368 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4369 * [we're only called with non-NULL zone through __meminit paths] and
4370 * (2) call of __init annotated helper build_all_zonelists_init
4371 * [protected by SYSTEM_BOOTING].
4372 */
4373 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4374 {
4375 set_zonelist_order();
4376
4377 if (system_state == SYSTEM_BOOTING) {
4378 build_all_zonelists_init();
4379 } else {
4380 #ifdef CONFIG_MEMORY_HOTPLUG
4381 if (zone)
4382 setup_zone_pageset(zone);
4383 #endif
4384 /* we have to stop all cpus to guarantee there is no user
4385 of zonelist */
4386 stop_machine(__build_all_zonelists, pgdat, NULL);
4387 /* cpuset refresh routine should be here */
4388 }
4389 vm_total_pages = nr_free_pagecache_pages();
4390 /*
4391 * Disable grouping by mobility if the number of pages in the
4392 * system is too low to allow the mechanism to work. It would be
4393 * more accurate, but expensive to check per-zone. This check is
4394 * made on memory-hotadd so a system can start with mobility
4395 * disabled and enable it later
4396 */
4397 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4398 page_group_by_mobility_disabled = 1;
4399 else
4400 page_group_by_mobility_disabled = 0;
4401
4402 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4403 "Total pages: %ld\n",
4404 nr_online_nodes,
4405 zonelist_order_name[current_zonelist_order],
4406 page_group_by_mobility_disabled ? "off" : "on",
4407 vm_total_pages);
4408 #ifdef CONFIG_NUMA
4409 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4410 #endif
4411 }
4412
4413 /*
4414 * Helper functions to size the waitqueue hash table.
4415 * Essentially these want to choose hash table sizes sufficiently
4416 * large so that collisions trying to wait on pages are rare.
4417 * But in fact, the number of active page waitqueues on typical
4418 * systems is ridiculously low, less than 200. So this is even
4419 * conservative, even though it seems large.
4420 *
4421 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4422 * waitqueues, i.e. the size of the waitq table given the number of pages.
4423 */
4424 #define PAGES_PER_WAITQUEUE 256
4425
4426 #ifndef CONFIG_MEMORY_HOTPLUG
4427 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4428 {
4429 unsigned long size = 1;
4430
4431 pages /= PAGES_PER_WAITQUEUE;
4432
4433 while (size < pages)
4434 size <<= 1;
4435
4436 /*
4437 * Once we have dozens or even hundreds of threads sleeping
4438 * on IO we've got bigger problems than wait queue collision.
4439 * Limit the size of the wait table to a reasonable size.
4440 */
4441 size = min(size, 4096UL);
4442
4443 return max(size, 4UL);
4444 }
4445 #else
4446 /*
4447 * A zone's size might be changed by hot-add, so it is not possible to determine
4448 * a suitable size for its wait_table. So we use the maximum size now.
4449 *
4450 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4451 *
4452 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4453 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4454 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4455 *
4456 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4457 * or more by the traditional way. (See above). It equals:
4458 *
4459 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4460 * ia64(16K page size) : = ( 8G + 4M)byte.
4461 * powerpc (64K page size) : = (32G +16M)byte.
4462 */
4463 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4464 {
4465 return 4096UL;
4466 }
4467 #endif
4468
4469 /*
4470 * This is an integer logarithm so that shifts can be used later
4471 * to extract the more random high bits from the multiplicative
4472 * hash function before the remainder is taken.
4473 */
4474 static inline unsigned long wait_table_bits(unsigned long size)
4475 {
4476 return ffz(~size);
4477 }
4478
4479 /*
4480 * Check if a pageblock contains reserved pages
4481 */
4482 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4483 {
4484 unsigned long pfn;
4485
4486 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4487 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4488 return 1;
4489 }
4490 return 0;
4491 }
4492
4493 /*
4494 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4495 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4496 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4497 * higher will lead to a bigger reserve which will get freed as contiguous
4498 * blocks as reclaim kicks in
4499 */
4500 static void setup_zone_migrate_reserve(struct zone *zone)
4501 {
4502 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4503 struct page *page;
4504 unsigned long block_migratetype;
4505 int reserve;
4506 int old_reserve;
4507
4508 /*
4509 * Get the start pfn, end pfn and the number of blocks to reserve
4510 * We have to be careful to be aligned to pageblock_nr_pages to
4511 * make sure that we always check pfn_valid for the first page in
4512 * the block.
4513 */
4514 start_pfn = zone->zone_start_pfn;
4515 end_pfn = zone_end_pfn(zone);
4516 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4517 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4518 pageblock_order;
4519
4520 /*
4521 * Reserve blocks are generally in place to help high-order atomic
4522 * allocations that are short-lived. A min_free_kbytes value that
4523 * would result in more than 2 reserve blocks for atomic allocations
4524 * is assumed to be in place to help anti-fragmentation for the
4525 * future allocation of hugepages at runtime.
4526 */
4527 reserve = min(2, reserve);
4528 old_reserve = zone->nr_migrate_reserve_block;
4529
4530 /* When memory hot-add, we almost always need to do nothing */
4531 if (reserve == old_reserve)
4532 return;
4533 zone->nr_migrate_reserve_block = reserve;
4534
4535 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4536 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4537 return;
4538
4539 if (!pfn_valid(pfn))
4540 continue;
4541 page = pfn_to_page(pfn);
4542
4543 /* Watch out for overlapping nodes */
4544 if (page_to_nid(page) != zone_to_nid(zone))
4545 continue;
4546
4547 block_migratetype = get_pageblock_migratetype(page);
4548
4549 /* Only test what is necessary when the reserves are not met */
4550 if (reserve > 0) {
4551 /*
4552 * Blocks with reserved pages will never free, skip
4553 * them.
4554 */
4555 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4556 if (pageblock_is_reserved(pfn, block_end_pfn))
4557 continue;
4558
4559 /* If this block is reserved, account for it */
4560 if (block_migratetype == MIGRATE_RESERVE) {
4561 reserve--;
4562 continue;
4563 }
4564
4565 /* Suitable for reserving if this block is movable */
4566 if (block_migratetype == MIGRATE_MOVABLE) {
4567 set_pageblock_migratetype(page,
4568 MIGRATE_RESERVE);
4569 move_freepages_block(zone, page,
4570 MIGRATE_RESERVE);
4571 reserve--;
4572 continue;
4573 }
4574 } else if (!old_reserve) {
4575 /*
4576 * At boot time we don't need to scan the whole zone
4577 * for turning off MIGRATE_RESERVE.
4578 */
4579 break;
4580 }
4581
4582 /*
4583 * If the reserve is met and this is a previous reserved block,
4584 * take it back
4585 */
4586 if (block_migratetype == MIGRATE_RESERVE) {
4587 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4588 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4589 }
4590 }
4591 }
4592
4593 /*
4594 * Initially all pages are reserved - free ones are freed
4595 * up by free_all_bootmem() once the early boot process is
4596 * done. Non-atomic initialization, single-pass.
4597 */
4598 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4599 unsigned long start_pfn, enum memmap_context context)
4600 {
4601 pg_data_t *pgdat = NODE_DATA(nid);
4602 unsigned long end_pfn = start_pfn + size;
4603 unsigned long pfn;
4604 struct zone *z;
4605 unsigned long nr_initialised = 0;
4606
4607 if (highest_memmap_pfn < end_pfn - 1)
4608 highest_memmap_pfn = end_pfn - 1;
4609
4610 z = &pgdat->node_zones[zone];
4611 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4612 /*
4613 * There can be holes in boot-time mem_map[]s
4614 * handed to this function. They do not
4615 * exist on hotplugged memory.
4616 */
4617 if (context == MEMMAP_EARLY) {
4618 if (!early_pfn_valid(pfn))
4619 continue;
4620 if (!early_pfn_in_nid(pfn, nid))
4621 continue;
4622 if (!update_defer_init(pgdat, pfn, end_pfn,
4623 &nr_initialised))
4624 break;
4625 }
4626
4627 /*
4628 * Mark the block movable so that blocks are reserved for
4629 * movable at startup. This will force kernel allocations
4630 * to reserve their blocks rather than leaking throughout
4631 * the address space during boot when many long-lived
4632 * kernel allocations are made. Later some blocks near
4633 * the start are marked MIGRATE_RESERVE by
4634 * setup_zone_migrate_reserve()
4635 *
4636 * bitmap is created for zone's valid pfn range. but memmap
4637 * can be created for invalid pages (for alignment)
4638 * check here not to call set_pageblock_migratetype() against
4639 * pfn out of zone.
4640 */
4641 if (!(pfn & (pageblock_nr_pages - 1))) {
4642 struct page *page = pfn_to_page(pfn);
4643
4644 __init_single_page(page, pfn, zone, nid);
4645 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4646 } else {
4647 __init_single_pfn(pfn, zone, nid);
4648 }
4649 }
4650 }
4651
4652 static void __meminit zone_init_free_lists(struct zone *zone)
4653 {
4654 unsigned int order, t;
4655 for_each_migratetype_order(order, t) {
4656 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4657 zone->free_area[order].nr_free = 0;
4658 }
4659 }
4660
4661 #ifndef __HAVE_ARCH_MEMMAP_INIT
4662 #define memmap_init(size, nid, zone, start_pfn) \
4663 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4664 #endif
4665
4666 static int zone_batchsize(struct zone *zone)
4667 {
4668 #ifdef CONFIG_MMU
4669 int batch;
4670
4671 /*
4672 * The per-cpu-pages pools are set to around 1000th of the
4673 * size of the zone. But no more than 1/2 of a meg.
4674 *
4675 * OK, so we don't know how big the cache is. So guess.
4676 */
4677 batch = zone->managed_pages / 1024;
4678 if (batch * PAGE_SIZE > 512 * 1024)
4679 batch = (512 * 1024) / PAGE_SIZE;
4680 batch /= 4; /* We effectively *= 4 below */
4681 if (batch < 1)
4682 batch = 1;
4683
4684 /*
4685 * Clamp the batch to a 2^n - 1 value. Having a power
4686 * of 2 value was found to be more likely to have
4687 * suboptimal cache aliasing properties in some cases.
4688 *
4689 * For example if 2 tasks are alternately allocating
4690 * batches of pages, one task can end up with a lot
4691 * of pages of one half of the possible page colors
4692 * and the other with pages of the other colors.
4693 */
4694 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4695
4696 return batch;
4697
4698 #else
4699 /* The deferral and batching of frees should be suppressed under NOMMU
4700 * conditions.
4701 *
4702 * The problem is that NOMMU needs to be able to allocate large chunks
4703 * of contiguous memory as there's no hardware page translation to
4704 * assemble apparent contiguous memory from discontiguous pages.
4705 *
4706 * Queueing large contiguous runs of pages for batching, however,
4707 * causes the pages to actually be freed in smaller chunks. As there
4708 * can be a significant delay between the individual batches being
4709 * recycled, this leads to the once large chunks of space being
4710 * fragmented and becoming unavailable for high-order allocations.
4711 */
4712 return 0;
4713 #endif
4714 }
4715
4716 /*
4717 * pcp->high and pcp->batch values are related and dependent on one another:
4718 * ->batch must never be higher then ->high.
4719 * The following function updates them in a safe manner without read side
4720 * locking.
4721 *
4722 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4723 * those fields changing asynchronously (acording the the above rule).
4724 *
4725 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4726 * outside of boot time (or some other assurance that no concurrent updaters
4727 * exist).
4728 */
4729 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4730 unsigned long batch)
4731 {
4732 /* start with a fail safe value for batch */
4733 pcp->batch = 1;
4734 smp_wmb();
4735
4736 /* Update high, then batch, in order */
4737 pcp->high = high;
4738 smp_wmb();
4739
4740 pcp->batch = batch;
4741 }
4742
4743 /* a companion to pageset_set_high() */
4744 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4745 {
4746 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4747 }
4748
4749 static void pageset_init(struct per_cpu_pageset *p)
4750 {
4751 struct per_cpu_pages *pcp;
4752 int migratetype;
4753
4754 memset(p, 0, sizeof(*p));
4755
4756 pcp = &p->pcp;
4757 pcp->count = 0;
4758 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4759 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4760 }
4761
4762 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4763 {
4764 pageset_init(p);
4765 pageset_set_batch(p, batch);
4766 }
4767
4768 /*
4769 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4770 * to the value high for the pageset p.
4771 */
4772 static void pageset_set_high(struct per_cpu_pageset *p,
4773 unsigned long high)
4774 {
4775 unsigned long batch = max(1UL, high / 4);
4776 if ((high / 4) > (PAGE_SHIFT * 8))
4777 batch = PAGE_SHIFT * 8;
4778
4779 pageset_update(&p->pcp, high, batch);
4780 }
4781
4782 static void pageset_set_high_and_batch(struct zone *zone,
4783 struct per_cpu_pageset *pcp)
4784 {
4785 if (percpu_pagelist_fraction)
4786 pageset_set_high(pcp,
4787 (zone->managed_pages /
4788 percpu_pagelist_fraction));
4789 else
4790 pageset_set_batch(pcp, zone_batchsize(zone));
4791 }
4792
4793 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4794 {
4795 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4796
4797 pageset_init(pcp);
4798 pageset_set_high_and_batch(zone, pcp);
4799 }
4800
4801 static void __meminit setup_zone_pageset(struct zone *zone)
4802 {
4803 int cpu;
4804 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4805 for_each_possible_cpu(cpu)
4806 zone_pageset_init(zone, cpu);
4807 }
4808
4809 /*
4810 * Allocate per cpu pagesets and initialize them.
4811 * Before this call only boot pagesets were available.
4812 */
4813 void __init setup_per_cpu_pageset(void)
4814 {
4815 struct zone *zone;
4816
4817 for_each_populated_zone(zone)
4818 setup_zone_pageset(zone);
4819 }
4820
4821 static noinline __init_refok
4822 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4823 {
4824 int i;
4825 size_t alloc_size;
4826
4827 /*
4828 * The per-page waitqueue mechanism uses hashed waitqueues
4829 * per zone.
4830 */
4831 zone->wait_table_hash_nr_entries =
4832 wait_table_hash_nr_entries(zone_size_pages);
4833 zone->wait_table_bits =
4834 wait_table_bits(zone->wait_table_hash_nr_entries);
4835 alloc_size = zone->wait_table_hash_nr_entries
4836 * sizeof(wait_queue_head_t);
4837
4838 if (!slab_is_available()) {
4839 zone->wait_table = (wait_queue_head_t *)
4840 memblock_virt_alloc_node_nopanic(
4841 alloc_size, zone->zone_pgdat->node_id);
4842 } else {
4843 /*
4844 * This case means that a zone whose size was 0 gets new memory
4845 * via memory hot-add.
4846 * But it may be the case that a new node was hot-added. In
4847 * this case vmalloc() will not be able to use this new node's
4848 * memory - this wait_table must be initialized to use this new
4849 * node itself as well.
4850 * To use this new node's memory, further consideration will be
4851 * necessary.
4852 */
4853 zone->wait_table = vmalloc(alloc_size);
4854 }
4855 if (!zone->wait_table)
4856 return -ENOMEM;
4857
4858 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4859 init_waitqueue_head(zone->wait_table + i);
4860
4861 return 0;
4862 }
4863
4864 static __meminit void zone_pcp_init(struct zone *zone)
4865 {
4866 /*
4867 * per cpu subsystem is not up at this point. The following code
4868 * relies on the ability of the linker to provide the
4869 * offset of a (static) per cpu variable into the per cpu area.
4870 */
4871 zone->pageset = &boot_pageset;
4872
4873 if (populated_zone(zone))
4874 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4875 zone->name, zone->present_pages,
4876 zone_batchsize(zone));
4877 }
4878
4879 int __meminit init_currently_empty_zone(struct zone *zone,
4880 unsigned long zone_start_pfn,
4881 unsigned long size,
4882 enum memmap_context context)
4883 {
4884 struct pglist_data *pgdat = zone->zone_pgdat;
4885 int ret;
4886 ret = zone_wait_table_init(zone, size);
4887 if (ret)
4888 return ret;
4889 pgdat->nr_zones = zone_idx(zone) + 1;
4890
4891 zone->zone_start_pfn = zone_start_pfn;
4892
4893 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4894 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4895 pgdat->node_id,
4896 (unsigned long)zone_idx(zone),
4897 zone_start_pfn, (zone_start_pfn + size));
4898
4899 zone_init_free_lists(zone);
4900
4901 return 0;
4902 }
4903
4904 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4905 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4906
4907 /*
4908 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4909 */
4910 int __meminit __early_pfn_to_nid(unsigned long pfn,
4911 struct mminit_pfnnid_cache *state)
4912 {
4913 unsigned long start_pfn, end_pfn;
4914 int nid;
4915
4916 if (state->last_start <= pfn && pfn < state->last_end)
4917 return state->last_nid;
4918
4919 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4920 if (nid != -1) {
4921 state->last_start = start_pfn;
4922 state->last_end = end_pfn;
4923 state->last_nid = nid;
4924 }
4925
4926 return nid;
4927 }
4928 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4929
4930 /**
4931 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4932 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4933 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4934 *
4935 * If an architecture guarantees that all ranges registered contain no holes
4936 * and may be freed, this this function may be used instead of calling
4937 * memblock_free_early_nid() manually.
4938 */
4939 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4940 {
4941 unsigned long start_pfn, end_pfn;
4942 int i, this_nid;
4943
4944 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4945 start_pfn = min(start_pfn, max_low_pfn);
4946 end_pfn = min(end_pfn, max_low_pfn);
4947
4948 if (start_pfn < end_pfn)
4949 memblock_free_early_nid(PFN_PHYS(start_pfn),
4950 (end_pfn - start_pfn) << PAGE_SHIFT,
4951 this_nid);
4952 }
4953 }
4954
4955 /**
4956 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4957 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4958 *
4959 * If an architecture guarantees that all ranges registered contain no holes and may
4960 * be freed, this function may be used instead of calling memory_present() manually.
4961 */
4962 void __init sparse_memory_present_with_active_regions(int nid)
4963 {
4964 unsigned long start_pfn, end_pfn;
4965 int i, this_nid;
4966
4967 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4968 memory_present(this_nid, start_pfn, end_pfn);
4969 }
4970
4971 /**
4972 * get_pfn_range_for_nid - Return the start and end page frames for a node
4973 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4974 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4975 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4976 *
4977 * It returns the start and end page frame of a node based on information
4978 * provided by memblock_set_node(). If called for a node
4979 * with no available memory, a warning is printed and the start and end
4980 * PFNs will be 0.
4981 */
4982 void __meminit get_pfn_range_for_nid(unsigned int nid,
4983 unsigned long *start_pfn, unsigned long *end_pfn)
4984 {
4985 unsigned long this_start_pfn, this_end_pfn;
4986 int i;
4987
4988 *start_pfn = -1UL;
4989 *end_pfn = 0;
4990
4991 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4992 *start_pfn = min(*start_pfn, this_start_pfn);
4993 *end_pfn = max(*end_pfn, this_end_pfn);
4994 }
4995
4996 if (*start_pfn == -1UL)
4997 *start_pfn = 0;
4998 }
4999
5000 /*
5001 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5002 * assumption is made that zones within a node are ordered in monotonic
5003 * increasing memory addresses so that the "highest" populated zone is used
5004 */
5005 static void __init find_usable_zone_for_movable(void)
5006 {
5007 int zone_index;
5008 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5009 if (zone_index == ZONE_MOVABLE)
5010 continue;
5011
5012 if (arch_zone_highest_possible_pfn[zone_index] >
5013 arch_zone_lowest_possible_pfn[zone_index])
5014 break;
5015 }
5016
5017 VM_BUG_ON(zone_index == -1);
5018 movable_zone = zone_index;
5019 }
5020
5021 /*
5022 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5023 * because it is sized independent of architecture. Unlike the other zones,
5024 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5025 * in each node depending on the size of each node and how evenly kernelcore
5026 * is distributed. This helper function adjusts the zone ranges
5027 * provided by the architecture for a given node by using the end of the
5028 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5029 * zones within a node are in order of monotonic increases memory addresses
5030 */
5031 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5032 unsigned long zone_type,
5033 unsigned long node_start_pfn,
5034 unsigned long node_end_pfn,
5035 unsigned long *zone_start_pfn,
5036 unsigned long *zone_end_pfn)
5037 {
5038 /* Only adjust if ZONE_MOVABLE is on this node */
5039 if (zone_movable_pfn[nid]) {
5040 /* Size ZONE_MOVABLE */
5041 if (zone_type == ZONE_MOVABLE) {
5042 *zone_start_pfn = zone_movable_pfn[nid];
5043 *zone_end_pfn = min(node_end_pfn,
5044 arch_zone_highest_possible_pfn[movable_zone]);
5045
5046 /* Adjust for ZONE_MOVABLE starting within this range */
5047 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5048 *zone_end_pfn > zone_movable_pfn[nid]) {
5049 *zone_end_pfn = zone_movable_pfn[nid];
5050
5051 /* Check if this whole range is within ZONE_MOVABLE */
5052 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5053 *zone_start_pfn = *zone_end_pfn;
5054 }
5055 }
5056
5057 /*
5058 * Return the number of pages a zone spans in a node, including holes
5059 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5060 */
5061 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5062 unsigned long zone_type,
5063 unsigned long node_start_pfn,
5064 unsigned long node_end_pfn,
5065 unsigned long *ignored)
5066 {
5067 unsigned long zone_start_pfn, zone_end_pfn;
5068
5069 /* When hotadd a new node, the node should be empty */
5070 if (!node_start_pfn && !node_end_pfn)
5071 return 0;
5072
5073 /* Get the start and end of the zone */
5074 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5075 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5076 adjust_zone_range_for_zone_movable(nid, zone_type,
5077 node_start_pfn, node_end_pfn,
5078 &zone_start_pfn, &zone_end_pfn);
5079
5080 /* Check that this node has pages within the zone's required range */
5081 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5082 return 0;
5083
5084 /* Move the zone boundaries inside the node if necessary */
5085 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5086 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5087
5088 /* Return the spanned pages */
5089 return zone_end_pfn - zone_start_pfn;
5090 }
5091
5092 /*
5093 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5094 * then all holes in the requested range will be accounted for.
5095 */
5096 unsigned long __meminit __absent_pages_in_range(int nid,
5097 unsigned long range_start_pfn,
5098 unsigned long range_end_pfn)
5099 {
5100 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5101 unsigned long start_pfn, end_pfn;
5102 int i;
5103
5104 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5105 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5106 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5107 nr_absent -= end_pfn - start_pfn;
5108 }
5109 return nr_absent;
5110 }
5111
5112 /**
5113 * absent_pages_in_range - Return number of page frames in holes within a range
5114 * @start_pfn: The start PFN to start searching for holes
5115 * @end_pfn: The end PFN to stop searching for holes
5116 *
5117 * It returns the number of pages frames in memory holes within a range.
5118 */
5119 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5120 unsigned long end_pfn)
5121 {
5122 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5123 }
5124
5125 /* Return the number of page frames in holes in a zone on a node */
5126 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5127 unsigned long zone_type,
5128 unsigned long node_start_pfn,
5129 unsigned long node_end_pfn,
5130 unsigned long *ignored)
5131 {
5132 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5133 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5134 unsigned long zone_start_pfn, zone_end_pfn;
5135
5136 /* When hotadd a new node, the node should be empty */
5137 if (!node_start_pfn && !node_end_pfn)
5138 return 0;
5139
5140 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5141 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5142
5143 adjust_zone_range_for_zone_movable(nid, zone_type,
5144 node_start_pfn, node_end_pfn,
5145 &zone_start_pfn, &zone_end_pfn);
5146 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5147 }
5148
5149 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5150 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5151 unsigned long zone_type,
5152 unsigned long node_start_pfn,
5153 unsigned long node_end_pfn,
5154 unsigned long *zones_size)
5155 {
5156 return zones_size[zone_type];
5157 }
5158
5159 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5160 unsigned long zone_type,
5161 unsigned long node_start_pfn,
5162 unsigned long node_end_pfn,
5163 unsigned long *zholes_size)
5164 {
5165 if (!zholes_size)
5166 return 0;
5167
5168 return zholes_size[zone_type];
5169 }
5170
5171 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5172
5173 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5174 unsigned long node_start_pfn,
5175 unsigned long node_end_pfn,
5176 unsigned long *zones_size,
5177 unsigned long *zholes_size)
5178 {
5179 unsigned long realtotalpages = 0, totalpages = 0;
5180 enum zone_type i;
5181
5182 for (i = 0; i < MAX_NR_ZONES; i++) {
5183 struct zone *zone = pgdat->node_zones + i;
5184 unsigned long size, real_size;
5185
5186 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5187 node_start_pfn,
5188 node_end_pfn,
5189 zones_size);
5190 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5191 node_start_pfn, node_end_pfn,
5192 zholes_size);
5193 zone->spanned_pages = size;
5194 zone->present_pages = real_size;
5195
5196 totalpages += size;
5197 realtotalpages += real_size;
5198 }
5199
5200 pgdat->node_spanned_pages = totalpages;
5201 pgdat->node_present_pages = realtotalpages;
5202 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5203 realtotalpages);
5204 }
5205
5206 #ifndef CONFIG_SPARSEMEM
5207 /*
5208 * Calculate the size of the zone->blockflags rounded to an unsigned long
5209 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5210 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5211 * round what is now in bits to nearest long in bits, then return it in
5212 * bytes.
5213 */
5214 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5215 {
5216 unsigned long usemapsize;
5217
5218 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5219 usemapsize = roundup(zonesize, pageblock_nr_pages);
5220 usemapsize = usemapsize >> pageblock_order;
5221 usemapsize *= NR_PAGEBLOCK_BITS;
5222 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5223
5224 return usemapsize / 8;
5225 }
5226
5227 static void __init setup_usemap(struct pglist_data *pgdat,
5228 struct zone *zone,
5229 unsigned long zone_start_pfn,
5230 unsigned long zonesize)
5231 {
5232 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5233 zone->pageblock_flags = NULL;
5234 if (usemapsize)
5235 zone->pageblock_flags =
5236 memblock_virt_alloc_node_nopanic(usemapsize,
5237 pgdat->node_id);
5238 }
5239 #else
5240 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5241 unsigned long zone_start_pfn, unsigned long zonesize) {}
5242 #endif /* CONFIG_SPARSEMEM */
5243
5244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5245
5246 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5247 void __paginginit set_pageblock_order(void)
5248 {
5249 unsigned int order;
5250
5251 /* Check that pageblock_nr_pages has not already been setup */
5252 if (pageblock_order)
5253 return;
5254
5255 if (HPAGE_SHIFT > PAGE_SHIFT)
5256 order = HUGETLB_PAGE_ORDER;
5257 else
5258 order = MAX_ORDER - 1;
5259
5260 /*
5261 * Assume the largest contiguous order of interest is a huge page.
5262 * This value may be variable depending on boot parameters on IA64 and
5263 * powerpc.
5264 */
5265 pageblock_order = order;
5266 }
5267 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5268
5269 /*
5270 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5271 * is unused as pageblock_order is set at compile-time. See
5272 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5273 * the kernel config
5274 */
5275 void __paginginit set_pageblock_order(void)
5276 {
5277 }
5278
5279 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5280
5281 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5282 unsigned long present_pages)
5283 {
5284 unsigned long pages = spanned_pages;
5285
5286 /*
5287 * Provide a more accurate estimation if there are holes within
5288 * the zone and SPARSEMEM is in use. If there are holes within the
5289 * zone, each populated memory region may cost us one or two extra
5290 * memmap pages due to alignment because memmap pages for each
5291 * populated regions may not naturally algined on page boundary.
5292 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5293 */
5294 if (spanned_pages > present_pages + (present_pages >> 4) &&
5295 IS_ENABLED(CONFIG_SPARSEMEM))
5296 pages = present_pages;
5297
5298 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5299 }
5300
5301 /*
5302 * Set up the zone data structures:
5303 * - mark all pages reserved
5304 * - mark all memory queues empty
5305 * - clear the memory bitmaps
5306 *
5307 * NOTE: pgdat should get zeroed by caller.
5308 */
5309 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5310 unsigned long node_start_pfn, unsigned long node_end_pfn)
5311 {
5312 enum zone_type j;
5313 int nid = pgdat->node_id;
5314 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5315 int ret;
5316
5317 pgdat_resize_init(pgdat);
5318 #ifdef CONFIG_NUMA_BALANCING
5319 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5320 pgdat->numabalancing_migrate_nr_pages = 0;
5321 pgdat->numabalancing_migrate_next_window = jiffies;
5322 #endif
5323 init_waitqueue_head(&pgdat->kswapd_wait);
5324 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5325 pgdat_page_ext_init(pgdat);
5326
5327 for (j = 0; j < MAX_NR_ZONES; j++) {
5328 struct zone *zone = pgdat->node_zones + j;
5329 unsigned long size, realsize, freesize, memmap_pages;
5330
5331 size = zone->spanned_pages;
5332 realsize = freesize = zone->present_pages;
5333
5334 /*
5335 * Adjust freesize so that it accounts for how much memory
5336 * is used by this zone for memmap. This affects the watermark
5337 * and per-cpu initialisations
5338 */
5339 memmap_pages = calc_memmap_size(size, realsize);
5340 if (!is_highmem_idx(j)) {
5341 if (freesize >= memmap_pages) {
5342 freesize -= memmap_pages;
5343 if (memmap_pages)
5344 printk(KERN_DEBUG
5345 " %s zone: %lu pages used for memmap\n",
5346 zone_names[j], memmap_pages);
5347 } else
5348 printk(KERN_WARNING
5349 " %s zone: %lu pages exceeds freesize %lu\n",
5350 zone_names[j], memmap_pages, freesize);
5351 }
5352
5353 /* Account for reserved pages */
5354 if (j == 0 && freesize > dma_reserve) {
5355 freesize -= dma_reserve;
5356 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5357 zone_names[0], dma_reserve);
5358 }
5359
5360 if (!is_highmem_idx(j))
5361 nr_kernel_pages += freesize;
5362 /* Charge for highmem memmap if there are enough kernel pages */
5363 else if (nr_kernel_pages > memmap_pages * 2)
5364 nr_kernel_pages -= memmap_pages;
5365 nr_all_pages += freesize;
5366
5367 /*
5368 * Set an approximate value for lowmem here, it will be adjusted
5369 * when the bootmem allocator frees pages into the buddy system.
5370 * And all highmem pages will be managed by the buddy system.
5371 */
5372 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5373 #ifdef CONFIG_NUMA
5374 zone->node = nid;
5375 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5376 / 100;
5377 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5378 #endif
5379 zone->name = zone_names[j];
5380 spin_lock_init(&zone->lock);
5381 spin_lock_init(&zone->lru_lock);
5382 zone_seqlock_init(zone);
5383 zone->zone_pgdat = pgdat;
5384 zone_pcp_init(zone);
5385
5386 /* For bootup, initialized properly in watermark setup */
5387 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5388
5389 lruvec_init(&zone->lruvec);
5390 if (!size)
5391 continue;
5392
5393 set_pageblock_order();
5394 setup_usemap(pgdat, zone, zone_start_pfn, size);
5395 ret = init_currently_empty_zone(zone, zone_start_pfn,
5396 size, MEMMAP_EARLY);
5397 BUG_ON(ret);
5398 memmap_init(size, nid, j, zone_start_pfn);
5399 zone_start_pfn += size;
5400 }
5401 }
5402
5403 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5404 {
5405 /* Skip empty nodes */
5406 if (!pgdat->node_spanned_pages)
5407 return;
5408
5409 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5410 /* ia64 gets its own node_mem_map, before this, without bootmem */
5411 if (!pgdat->node_mem_map) {
5412 unsigned long size, start, end;
5413 struct page *map;
5414
5415 /*
5416 * The zone's endpoints aren't required to be MAX_ORDER
5417 * aligned but the node_mem_map endpoints must be in order
5418 * for the buddy allocator to function correctly.
5419 */
5420 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5421 end = pgdat_end_pfn(pgdat);
5422 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5423 size = (end - start) * sizeof(struct page);
5424 map = alloc_remap(pgdat->node_id, size);
5425 if (!map)
5426 map = memblock_virt_alloc_node_nopanic(size,
5427 pgdat->node_id);
5428 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5429 }
5430 #ifndef CONFIG_NEED_MULTIPLE_NODES
5431 /*
5432 * With no DISCONTIG, the global mem_map is just set as node 0's
5433 */
5434 if (pgdat == NODE_DATA(0)) {
5435 mem_map = NODE_DATA(0)->node_mem_map;
5436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5437 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5438 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5439 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5440 }
5441 #endif
5442 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5443 }
5444
5445 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5446 unsigned long node_start_pfn, unsigned long *zholes_size)
5447 {
5448 pg_data_t *pgdat = NODE_DATA(nid);
5449 unsigned long start_pfn = 0;
5450 unsigned long end_pfn = 0;
5451
5452 /* pg_data_t should be reset to zero when it's allocated */
5453 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5454
5455 reset_deferred_meminit(pgdat);
5456 pgdat->node_id = nid;
5457 pgdat->node_start_pfn = node_start_pfn;
5458 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5459 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5460 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5461 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5462 #endif
5463 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5464 zones_size, zholes_size);
5465
5466 alloc_node_mem_map(pgdat);
5467 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5468 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5469 nid, (unsigned long)pgdat,
5470 (unsigned long)pgdat->node_mem_map);
5471 #endif
5472
5473 free_area_init_core(pgdat, start_pfn, end_pfn);
5474 }
5475
5476 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5477
5478 #if MAX_NUMNODES > 1
5479 /*
5480 * Figure out the number of possible node ids.
5481 */
5482 void __init setup_nr_node_ids(void)
5483 {
5484 unsigned int node;
5485 unsigned int highest = 0;
5486
5487 for_each_node_mask(node, node_possible_map)
5488 highest = node;
5489 nr_node_ids = highest + 1;
5490 }
5491 #endif
5492
5493 /**
5494 * node_map_pfn_alignment - determine the maximum internode alignment
5495 *
5496 * This function should be called after node map is populated and sorted.
5497 * It calculates the maximum power of two alignment which can distinguish
5498 * all the nodes.
5499 *
5500 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5501 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5502 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5503 * shifted, 1GiB is enough and this function will indicate so.
5504 *
5505 * This is used to test whether pfn -> nid mapping of the chosen memory
5506 * model has fine enough granularity to avoid incorrect mapping for the
5507 * populated node map.
5508 *
5509 * Returns the determined alignment in pfn's. 0 if there is no alignment
5510 * requirement (single node).
5511 */
5512 unsigned long __init node_map_pfn_alignment(void)
5513 {
5514 unsigned long accl_mask = 0, last_end = 0;
5515 unsigned long start, end, mask;
5516 int last_nid = -1;
5517 int i, nid;
5518
5519 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5520 if (!start || last_nid < 0 || last_nid == nid) {
5521 last_nid = nid;
5522 last_end = end;
5523 continue;
5524 }
5525
5526 /*
5527 * Start with a mask granular enough to pin-point to the
5528 * start pfn and tick off bits one-by-one until it becomes
5529 * too coarse to separate the current node from the last.
5530 */
5531 mask = ~((1 << __ffs(start)) - 1);
5532 while (mask && last_end <= (start & (mask << 1)))
5533 mask <<= 1;
5534
5535 /* accumulate all internode masks */
5536 accl_mask |= mask;
5537 }
5538
5539 /* convert mask to number of pages */
5540 return ~accl_mask + 1;
5541 }
5542
5543 /* Find the lowest pfn for a node */
5544 static unsigned long __init find_min_pfn_for_node(int nid)
5545 {
5546 unsigned long min_pfn = ULONG_MAX;
5547 unsigned long start_pfn;
5548 int i;
5549
5550 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5551 min_pfn = min(min_pfn, start_pfn);
5552
5553 if (min_pfn == ULONG_MAX) {
5554 printk(KERN_WARNING
5555 "Could not find start_pfn for node %d\n", nid);
5556 return 0;
5557 }
5558
5559 return min_pfn;
5560 }
5561
5562 /**
5563 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5564 *
5565 * It returns the minimum PFN based on information provided via
5566 * memblock_set_node().
5567 */
5568 unsigned long __init find_min_pfn_with_active_regions(void)
5569 {
5570 return find_min_pfn_for_node(MAX_NUMNODES);
5571 }
5572
5573 /*
5574 * early_calculate_totalpages()
5575 * Sum pages in active regions for movable zone.
5576 * Populate N_MEMORY for calculating usable_nodes.
5577 */
5578 static unsigned long __init early_calculate_totalpages(void)
5579 {
5580 unsigned long totalpages = 0;
5581 unsigned long start_pfn, end_pfn;
5582 int i, nid;
5583
5584 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5585 unsigned long pages = end_pfn - start_pfn;
5586
5587 totalpages += pages;
5588 if (pages)
5589 node_set_state(nid, N_MEMORY);
5590 }
5591 return totalpages;
5592 }
5593
5594 /*
5595 * Find the PFN the Movable zone begins in each node. Kernel memory
5596 * is spread evenly between nodes as long as the nodes have enough
5597 * memory. When they don't, some nodes will have more kernelcore than
5598 * others
5599 */
5600 static void __init find_zone_movable_pfns_for_nodes(void)
5601 {
5602 int i, nid;
5603 unsigned long usable_startpfn;
5604 unsigned long kernelcore_node, kernelcore_remaining;
5605 /* save the state before borrow the nodemask */
5606 nodemask_t saved_node_state = node_states[N_MEMORY];
5607 unsigned long totalpages = early_calculate_totalpages();
5608 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5609 struct memblock_region *r;
5610
5611 /* Need to find movable_zone earlier when movable_node is specified. */
5612 find_usable_zone_for_movable();
5613
5614 /*
5615 * If movable_node is specified, ignore kernelcore and movablecore
5616 * options.
5617 */
5618 if (movable_node_is_enabled()) {
5619 for_each_memblock(memory, r) {
5620 if (!memblock_is_hotpluggable(r))
5621 continue;
5622
5623 nid = r->nid;
5624
5625 usable_startpfn = PFN_DOWN(r->base);
5626 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5627 min(usable_startpfn, zone_movable_pfn[nid]) :
5628 usable_startpfn;
5629 }
5630
5631 goto out2;
5632 }
5633
5634 /*
5635 * If movablecore=nn[KMG] was specified, calculate what size of
5636 * kernelcore that corresponds so that memory usable for
5637 * any allocation type is evenly spread. If both kernelcore
5638 * and movablecore are specified, then the value of kernelcore
5639 * will be used for required_kernelcore if it's greater than
5640 * what movablecore would have allowed.
5641 */
5642 if (required_movablecore) {
5643 unsigned long corepages;
5644
5645 /*
5646 * Round-up so that ZONE_MOVABLE is at least as large as what
5647 * was requested by the user
5648 */
5649 required_movablecore =
5650 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5651 corepages = totalpages - required_movablecore;
5652
5653 required_kernelcore = max(required_kernelcore, corepages);
5654 }
5655
5656 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5657 if (!required_kernelcore)
5658 goto out;
5659
5660 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5661 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5662
5663 restart:
5664 /* Spread kernelcore memory as evenly as possible throughout nodes */
5665 kernelcore_node = required_kernelcore / usable_nodes;
5666 for_each_node_state(nid, N_MEMORY) {
5667 unsigned long start_pfn, end_pfn;
5668
5669 /*
5670 * Recalculate kernelcore_node if the division per node
5671 * now exceeds what is necessary to satisfy the requested
5672 * amount of memory for the kernel
5673 */
5674 if (required_kernelcore < kernelcore_node)
5675 kernelcore_node = required_kernelcore / usable_nodes;
5676
5677 /*
5678 * As the map is walked, we track how much memory is usable
5679 * by the kernel using kernelcore_remaining. When it is
5680 * 0, the rest of the node is usable by ZONE_MOVABLE
5681 */
5682 kernelcore_remaining = kernelcore_node;
5683
5684 /* Go through each range of PFNs within this node */
5685 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5686 unsigned long size_pages;
5687
5688 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5689 if (start_pfn >= end_pfn)
5690 continue;
5691
5692 /* Account for what is only usable for kernelcore */
5693 if (start_pfn < usable_startpfn) {
5694 unsigned long kernel_pages;
5695 kernel_pages = min(end_pfn, usable_startpfn)
5696 - start_pfn;
5697
5698 kernelcore_remaining -= min(kernel_pages,
5699 kernelcore_remaining);
5700 required_kernelcore -= min(kernel_pages,
5701 required_kernelcore);
5702
5703 /* Continue if range is now fully accounted */
5704 if (end_pfn <= usable_startpfn) {
5705
5706 /*
5707 * Push zone_movable_pfn to the end so
5708 * that if we have to rebalance
5709 * kernelcore across nodes, we will
5710 * not double account here
5711 */
5712 zone_movable_pfn[nid] = end_pfn;
5713 continue;
5714 }
5715 start_pfn = usable_startpfn;
5716 }
5717
5718 /*
5719 * The usable PFN range for ZONE_MOVABLE is from
5720 * start_pfn->end_pfn. Calculate size_pages as the
5721 * number of pages used as kernelcore
5722 */
5723 size_pages = end_pfn - start_pfn;
5724 if (size_pages > kernelcore_remaining)
5725 size_pages = kernelcore_remaining;
5726 zone_movable_pfn[nid] = start_pfn + size_pages;
5727
5728 /*
5729 * Some kernelcore has been met, update counts and
5730 * break if the kernelcore for this node has been
5731 * satisfied
5732 */
5733 required_kernelcore -= min(required_kernelcore,
5734 size_pages);
5735 kernelcore_remaining -= size_pages;
5736 if (!kernelcore_remaining)
5737 break;
5738 }
5739 }
5740
5741 /*
5742 * If there is still required_kernelcore, we do another pass with one
5743 * less node in the count. This will push zone_movable_pfn[nid] further
5744 * along on the nodes that still have memory until kernelcore is
5745 * satisfied
5746 */
5747 usable_nodes--;
5748 if (usable_nodes && required_kernelcore > usable_nodes)
5749 goto restart;
5750
5751 out2:
5752 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5753 for (nid = 0; nid < MAX_NUMNODES; nid++)
5754 zone_movable_pfn[nid] =
5755 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5756
5757 out:
5758 /* restore the node_state */
5759 node_states[N_MEMORY] = saved_node_state;
5760 }
5761
5762 /* Any regular or high memory on that node ? */
5763 static void check_for_memory(pg_data_t *pgdat, int nid)
5764 {
5765 enum zone_type zone_type;
5766
5767 if (N_MEMORY == N_NORMAL_MEMORY)
5768 return;
5769
5770 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5771 struct zone *zone = &pgdat->node_zones[zone_type];
5772 if (populated_zone(zone)) {
5773 node_set_state(nid, N_HIGH_MEMORY);
5774 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5775 zone_type <= ZONE_NORMAL)
5776 node_set_state(nid, N_NORMAL_MEMORY);
5777 break;
5778 }
5779 }
5780 }
5781
5782 /**
5783 * free_area_init_nodes - Initialise all pg_data_t and zone data
5784 * @max_zone_pfn: an array of max PFNs for each zone
5785 *
5786 * This will call free_area_init_node() for each active node in the system.
5787 * Using the page ranges provided by memblock_set_node(), the size of each
5788 * zone in each node and their holes is calculated. If the maximum PFN
5789 * between two adjacent zones match, it is assumed that the zone is empty.
5790 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5791 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5792 * starts where the previous one ended. For example, ZONE_DMA32 starts
5793 * at arch_max_dma_pfn.
5794 */
5795 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5796 {
5797 unsigned long start_pfn, end_pfn;
5798 int i, nid;
5799
5800 /* Record where the zone boundaries are */
5801 memset(arch_zone_lowest_possible_pfn, 0,
5802 sizeof(arch_zone_lowest_possible_pfn));
5803 memset(arch_zone_highest_possible_pfn, 0,
5804 sizeof(arch_zone_highest_possible_pfn));
5805 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5806 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5807 for (i = 1; i < MAX_NR_ZONES; i++) {
5808 if (i == ZONE_MOVABLE)
5809 continue;
5810 arch_zone_lowest_possible_pfn[i] =
5811 arch_zone_highest_possible_pfn[i-1];
5812 arch_zone_highest_possible_pfn[i] =
5813 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5814 }
5815 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5816 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5817
5818 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5819 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5820 find_zone_movable_pfns_for_nodes();
5821
5822 /* Print out the zone ranges */
5823 pr_info("Zone ranges:\n");
5824 for (i = 0; i < MAX_NR_ZONES; i++) {
5825 if (i == ZONE_MOVABLE)
5826 continue;
5827 pr_info(" %-8s ", zone_names[i]);
5828 if (arch_zone_lowest_possible_pfn[i] ==
5829 arch_zone_highest_possible_pfn[i])
5830 pr_cont("empty\n");
5831 else
5832 pr_cont("[mem %#018Lx-%#018Lx]\n",
5833 (u64)arch_zone_lowest_possible_pfn[i]
5834 << PAGE_SHIFT,
5835 ((u64)arch_zone_highest_possible_pfn[i]
5836 << PAGE_SHIFT) - 1);
5837 }
5838
5839 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5840 pr_info("Movable zone start for each node\n");
5841 for (i = 0; i < MAX_NUMNODES; i++) {
5842 if (zone_movable_pfn[i])
5843 pr_info(" Node %d: %#018Lx\n", i,
5844 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5845 }
5846
5847 /* Print out the early node map */
5848 pr_info("Early memory node ranges\n");
5849 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5850 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5851 (u64)start_pfn << PAGE_SHIFT,
5852 ((u64)end_pfn << PAGE_SHIFT) - 1);
5853
5854 /* Initialise every node */
5855 mminit_verify_pageflags_layout();
5856 setup_nr_node_ids();
5857 for_each_online_node(nid) {
5858 pg_data_t *pgdat = NODE_DATA(nid);
5859 free_area_init_node(nid, NULL,
5860 find_min_pfn_for_node(nid), NULL);
5861
5862 /* Any memory on that node */
5863 if (pgdat->node_present_pages)
5864 node_set_state(nid, N_MEMORY);
5865 check_for_memory(pgdat, nid);
5866 }
5867 }
5868
5869 static int __init cmdline_parse_core(char *p, unsigned long *core)
5870 {
5871 unsigned long long coremem;
5872 if (!p)
5873 return -EINVAL;
5874
5875 coremem = memparse(p, &p);
5876 *core = coremem >> PAGE_SHIFT;
5877
5878 /* Paranoid check that UL is enough for the coremem value */
5879 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5880
5881 return 0;
5882 }
5883
5884 /*
5885 * kernelcore=size sets the amount of memory for use for allocations that
5886 * cannot be reclaimed or migrated.
5887 */
5888 static int __init cmdline_parse_kernelcore(char *p)
5889 {
5890 return cmdline_parse_core(p, &required_kernelcore);
5891 }
5892
5893 /*
5894 * movablecore=size sets the amount of memory for use for allocations that
5895 * can be reclaimed or migrated.
5896 */
5897 static int __init cmdline_parse_movablecore(char *p)
5898 {
5899 return cmdline_parse_core(p, &required_movablecore);
5900 }
5901
5902 early_param("kernelcore", cmdline_parse_kernelcore);
5903 early_param("movablecore", cmdline_parse_movablecore);
5904
5905 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5906
5907 void adjust_managed_page_count(struct page *page, long count)
5908 {
5909 spin_lock(&managed_page_count_lock);
5910 page_zone(page)->managed_pages += count;
5911 totalram_pages += count;
5912 #ifdef CONFIG_HIGHMEM
5913 if (PageHighMem(page))
5914 totalhigh_pages += count;
5915 #endif
5916 spin_unlock(&managed_page_count_lock);
5917 }
5918 EXPORT_SYMBOL(adjust_managed_page_count);
5919
5920 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5921 {
5922 void *pos;
5923 unsigned long pages = 0;
5924
5925 start = (void *)PAGE_ALIGN((unsigned long)start);
5926 end = (void *)((unsigned long)end & PAGE_MASK);
5927 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5928 if ((unsigned int)poison <= 0xFF)
5929 memset(pos, poison, PAGE_SIZE);
5930 free_reserved_page(virt_to_page(pos));
5931 }
5932
5933 if (pages && s)
5934 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5935 s, pages << (PAGE_SHIFT - 10), start, end);
5936
5937 return pages;
5938 }
5939 EXPORT_SYMBOL(free_reserved_area);
5940
5941 #ifdef CONFIG_HIGHMEM
5942 void free_highmem_page(struct page *page)
5943 {
5944 __free_reserved_page(page);
5945 totalram_pages++;
5946 page_zone(page)->managed_pages++;
5947 totalhigh_pages++;
5948 }
5949 #endif
5950
5951
5952 void __init mem_init_print_info(const char *str)
5953 {
5954 unsigned long physpages, codesize, datasize, rosize, bss_size;
5955 unsigned long init_code_size, init_data_size;
5956
5957 physpages = get_num_physpages();
5958 codesize = _etext - _stext;
5959 datasize = _edata - _sdata;
5960 rosize = __end_rodata - __start_rodata;
5961 bss_size = __bss_stop - __bss_start;
5962 init_data_size = __init_end - __init_begin;
5963 init_code_size = _einittext - _sinittext;
5964
5965 /*
5966 * Detect special cases and adjust section sizes accordingly:
5967 * 1) .init.* may be embedded into .data sections
5968 * 2) .init.text.* may be out of [__init_begin, __init_end],
5969 * please refer to arch/tile/kernel/vmlinux.lds.S.
5970 * 3) .rodata.* may be embedded into .text or .data sections.
5971 */
5972 #define adj_init_size(start, end, size, pos, adj) \
5973 do { \
5974 if (start <= pos && pos < end && size > adj) \
5975 size -= adj; \
5976 } while (0)
5977
5978 adj_init_size(__init_begin, __init_end, init_data_size,
5979 _sinittext, init_code_size);
5980 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5981 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5982 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5983 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5984
5985 #undef adj_init_size
5986
5987 pr_info("Memory: %luK/%luK available "
5988 "(%luK kernel code, %luK rwdata, %luK rodata, "
5989 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5990 #ifdef CONFIG_HIGHMEM
5991 ", %luK highmem"
5992 #endif
5993 "%s%s)\n",
5994 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5995 codesize >> 10, datasize >> 10, rosize >> 10,
5996 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5997 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5998 totalcma_pages << (PAGE_SHIFT-10),
5999 #ifdef CONFIG_HIGHMEM
6000 totalhigh_pages << (PAGE_SHIFT-10),
6001 #endif
6002 str ? ", " : "", str ? str : "");
6003 }
6004
6005 /**
6006 * set_dma_reserve - set the specified number of pages reserved in the first zone
6007 * @new_dma_reserve: The number of pages to mark reserved
6008 *
6009 * The per-cpu batchsize and zone watermarks are determined by present_pages.
6010 * In the DMA zone, a significant percentage may be consumed by kernel image
6011 * and other unfreeable allocations which can skew the watermarks badly. This
6012 * function may optionally be used to account for unfreeable pages in the
6013 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6014 * smaller per-cpu batchsize.
6015 */
6016 void __init set_dma_reserve(unsigned long new_dma_reserve)
6017 {
6018 dma_reserve = new_dma_reserve;
6019 }
6020
6021 void __init free_area_init(unsigned long *zones_size)
6022 {
6023 free_area_init_node(0, zones_size,
6024 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6025 }
6026
6027 static int page_alloc_cpu_notify(struct notifier_block *self,
6028 unsigned long action, void *hcpu)
6029 {
6030 int cpu = (unsigned long)hcpu;
6031
6032 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6033 lru_add_drain_cpu(cpu);
6034 drain_pages(cpu);
6035
6036 /*
6037 * Spill the event counters of the dead processor
6038 * into the current processors event counters.
6039 * This artificially elevates the count of the current
6040 * processor.
6041 */
6042 vm_events_fold_cpu(cpu);
6043
6044 /*
6045 * Zero the differential counters of the dead processor
6046 * so that the vm statistics are consistent.
6047 *
6048 * This is only okay since the processor is dead and cannot
6049 * race with what we are doing.
6050 */
6051 cpu_vm_stats_fold(cpu);
6052 }
6053 return NOTIFY_OK;
6054 }
6055
6056 void __init page_alloc_init(void)
6057 {
6058 hotcpu_notifier(page_alloc_cpu_notify, 0);
6059 }
6060
6061 /*
6062 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6063 * or min_free_kbytes changes.
6064 */
6065 static void calculate_totalreserve_pages(void)
6066 {
6067 struct pglist_data *pgdat;
6068 unsigned long reserve_pages = 0;
6069 enum zone_type i, j;
6070
6071 for_each_online_pgdat(pgdat) {
6072 for (i = 0; i < MAX_NR_ZONES; i++) {
6073 struct zone *zone = pgdat->node_zones + i;
6074 long max = 0;
6075
6076 /* Find valid and maximum lowmem_reserve in the zone */
6077 for (j = i; j < MAX_NR_ZONES; j++) {
6078 if (zone->lowmem_reserve[j] > max)
6079 max = zone->lowmem_reserve[j];
6080 }
6081
6082 /* we treat the high watermark as reserved pages. */
6083 max += high_wmark_pages(zone);
6084
6085 if (max > zone->managed_pages)
6086 max = zone->managed_pages;
6087 reserve_pages += max;
6088 /*
6089 * Lowmem reserves are not available to
6090 * GFP_HIGHUSER page cache allocations and
6091 * kswapd tries to balance zones to their high
6092 * watermark. As a result, neither should be
6093 * regarded as dirtyable memory, to prevent a
6094 * situation where reclaim has to clean pages
6095 * in order to balance the zones.
6096 */
6097 zone->dirty_balance_reserve = max;
6098 }
6099 }
6100 dirty_balance_reserve = reserve_pages;
6101 totalreserve_pages = reserve_pages;
6102 }
6103
6104 /*
6105 * setup_per_zone_lowmem_reserve - called whenever
6106 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6107 * has a correct pages reserved value, so an adequate number of
6108 * pages are left in the zone after a successful __alloc_pages().
6109 */
6110 static void setup_per_zone_lowmem_reserve(void)
6111 {
6112 struct pglist_data *pgdat;
6113 enum zone_type j, idx;
6114
6115 for_each_online_pgdat(pgdat) {
6116 for (j = 0; j < MAX_NR_ZONES; j++) {
6117 struct zone *zone = pgdat->node_zones + j;
6118 unsigned long managed_pages = zone->managed_pages;
6119
6120 zone->lowmem_reserve[j] = 0;
6121
6122 idx = j;
6123 while (idx) {
6124 struct zone *lower_zone;
6125
6126 idx--;
6127
6128 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6129 sysctl_lowmem_reserve_ratio[idx] = 1;
6130
6131 lower_zone = pgdat->node_zones + idx;
6132 lower_zone->lowmem_reserve[j] = managed_pages /
6133 sysctl_lowmem_reserve_ratio[idx];
6134 managed_pages += lower_zone->managed_pages;
6135 }
6136 }
6137 }
6138
6139 /* update totalreserve_pages */
6140 calculate_totalreserve_pages();
6141 }
6142
6143 static void __setup_per_zone_wmarks(void)
6144 {
6145 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6146 unsigned long lowmem_pages = 0;
6147 struct zone *zone;
6148 unsigned long flags;
6149
6150 /* Calculate total number of !ZONE_HIGHMEM pages */
6151 for_each_zone(zone) {
6152 if (!is_highmem(zone))
6153 lowmem_pages += zone->managed_pages;
6154 }
6155
6156 for_each_zone(zone) {
6157 u64 tmp;
6158
6159 spin_lock_irqsave(&zone->lock, flags);
6160 tmp = (u64)pages_min * zone->managed_pages;
6161 do_div(tmp, lowmem_pages);
6162 if (is_highmem(zone)) {
6163 /*
6164 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6165 * need highmem pages, so cap pages_min to a small
6166 * value here.
6167 *
6168 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6169 * deltas control asynch page reclaim, and so should
6170 * not be capped for highmem.
6171 */
6172 unsigned long min_pages;
6173
6174 min_pages = zone->managed_pages / 1024;
6175 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6176 zone->watermark[WMARK_MIN] = min_pages;
6177 } else {
6178 /*
6179 * If it's a lowmem zone, reserve a number of pages
6180 * proportionate to the zone's size.
6181 */
6182 zone->watermark[WMARK_MIN] = tmp;
6183 }
6184
6185 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6186 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6187
6188 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6189 high_wmark_pages(zone) - low_wmark_pages(zone) -
6190 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6191
6192 setup_zone_migrate_reserve(zone);
6193 spin_unlock_irqrestore(&zone->lock, flags);
6194 }
6195
6196 /* update totalreserve_pages */
6197 calculate_totalreserve_pages();
6198 }
6199
6200 /**
6201 * setup_per_zone_wmarks - called when min_free_kbytes changes
6202 * or when memory is hot-{added|removed}
6203 *
6204 * Ensures that the watermark[min,low,high] values for each zone are set
6205 * correctly with respect to min_free_kbytes.
6206 */
6207 void setup_per_zone_wmarks(void)
6208 {
6209 mutex_lock(&zonelists_mutex);
6210 __setup_per_zone_wmarks();
6211 mutex_unlock(&zonelists_mutex);
6212 }
6213
6214 /*
6215 * The inactive anon list should be small enough that the VM never has to
6216 * do too much work, but large enough that each inactive page has a chance
6217 * to be referenced again before it is swapped out.
6218 *
6219 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6220 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6221 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6222 * the anonymous pages are kept on the inactive list.
6223 *
6224 * total target max
6225 * memory ratio inactive anon
6226 * -------------------------------------
6227 * 10MB 1 5MB
6228 * 100MB 1 50MB
6229 * 1GB 3 250MB
6230 * 10GB 10 0.9GB
6231 * 100GB 31 3GB
6232 * 1TB 101 10GB
6233 * 10TB 320 32GB
6234 */
6235 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6236 {
6237 unsigned int gb, ratio;
6238
6239 /* Zone size in gigabytes */
6240 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6241 if (gb)
6242 ratio = int_sqrt(10 * gb);
6243 else
6244 ratio = 1;
6245
6246 zone->inactive_ratio = ratio;
6247 }
6248
6249 static void __meminit setup_per_zone_inactive_ratio(void)
6250 {
6251 struct zone *zone;
6252
6253 for_each_zone(zone)
6254 calculate_zone_inactive_ratio(zone);
6255 }
6256
6257 /*
6258 * Initialise min_free_kbytes.
6259 *
6260 * For small machines we want it small (128k min). For large machines
6261 * we want it large (64MB max). But it is not linear, because network
6262 * bandwidth does not increase linearly with machine size. We use
6263 *
6264 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6265 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6266 *
6267 * which yields
6268 *
6269 * 16MB: 512k
6270 * 32MB: 724k
6271 * 64MB: 1024k
6272 * 128MB: 1448k
6273 * 256MB: 2048k
6274 * 512MB: 2896k
6275 * 1024MB: 4096k
6276 * 2048MB: 5792k
6277 * 4096MB: 8192k
6278 * 8192MB: 11584k
6279 * 16384MB: 16384k
6280 */
6281 int __meminit init_per_zone_wmark_min(void)
6282 {
6283 unsigned long lowmem_kbytes;
6284 int new_min_free_kbytes;
6285
6286 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6287 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6288
6289 if (new_min_free_kbytes > user_min_free_kbytes) {
6290 min_free_kbytes = new_min_free_kbytes;
6291 if (min_free_kbytes < 128)
6292 min_free_kbytes = 128;
6293 if (min_free_kbytes > 65536)
6294 min_free_kbytes = 65536;
6295 } else {
6296 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6297 new_min_free_kbytes, user_min_free_kbytes);
6298 }
6299 setup_per_zone_wmarks();
6300 refresh_zone_stat_thresholds();
6301 setup_per_zone_lowmem_reserve();
6302 setup_per_zone_inactive_ratio();
6303 return 0;
6304 }
6305 module_init(init_per_zone_wmark_min)
6306
6307 /*
6308 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6309 * that we can call two helper functions whenever min_free_kbytes
6310 * changes.
6311 */
6312 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6313 void __user *buffer, size_t *length, loff_t *ppos)
6314 {
6315 int rc;
6316
6317 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6318 if (rc)
6319 return rc;
6320
6321 if (write) {
6322 user_min_free_kbytes = min_free_kbytes;
6323 setup_per_zone_wmarks();
6324 }
6325 return 0;
6326 }
6327
6328 #ifdef CONFIG_NUMA
6329 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6330 void __user *buffer, size_t *length, loff_t *ppos)
6331 {
6332 struct zone *zone;
6333 int rc;
6334
6335 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6336 if (rc)
6337 return rc;
6338
6339 for_each_zone(zone)
6340 zone->min_unmapped_pages = (zone->managed_pages *
6341 sysctl_min_unmapped_ratio) / 100;
6342 return 0;
6343 }
6344
6345 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6346 void __user *buffer, size_t *length, loff_t *ppos)
6347 {
6348 struct zone *zone;
6349 int rc;
6350
6351 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6352 if (rc)
6353 return rc;
6354
6355 for_each_zone(zone)
6356 zone->min_slab_pages = (zone->managed_pages *
6357 sysctl_min_slab_ratio) / 100;
6358 return 0;
6359 }
6360 #endif
6361
6362 /*
6363 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6364 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6365 * whenever sysctl_lowmem_reserve_ratio changes.
6366 *
6367 * The reserve ratio obviously has absolutely no relation with the
6368 * minimum watermarks. The lowmem reserve ratio can only make sense
6369 * if in function of the boot time zone sizes.
6370 */
6371 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6372 void __user *buffer, size_t *length, loff_t *ppos)
6373 {
6374 proc_dointvec_minmax(table, write, buffer, length, ppos);
6375 setup_per_zone_lowmem_reserve();
6376 return 0;
6377 }
6378
6379 /*
6380 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6381 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6382 * pagelist can have before it gets flushed back to buddy allocator.
6383 */
6384 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6385 void __user *buffer, size_t *length, loff_t *ppos)
6386 {
6387 struct zone *zone;
6388 int old_percpu_pagelist_fraction;
6389 int ret;
6390
6391 mutex_lock(&pcp_batch_high_lock);
6392 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6393
6394 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6395 if (!write || ret < 0)
6396 goto out;
6397
6398 /* Sanity checking to avoid pcp imbalance */
6399 if (percpu_pagelist_fraction &&
6400 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6401 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6402 ret = -EINVAL;
6403 goto out;
6404 }
6405
6406 /* No change? */
6407 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6408 goto out;
6409
6410 for_each_populated_zone(zone) {
6411 unsigned int cpu;
6412
6413 for_each_possible_cpu(cpu)
6414 pageset_set_high_and_batch(zone,
6415 per_cpu_ptr(zone->pageset, cpu));
6416 }
6417 out:
6418 mutex_unlock(&pcp_batch_high_lock);
6419 return ret;
6420 }
6421
6422 #ifdef CONFIG_NUMA
6423 int hashdist = HASHDIST_DEFAULT;
6424
6425 static int __init set_hashdist(char *str)
6426 {
6427 if (!str)
6428 return 0;
6429 hashdist = simple_strtoul(str, &str, 0);
6430 return 1;
6431 }
6432 __setup("hashdist=", set_hashdist);
6433 #endif
6434
6435 /*
6436 * allocate a large system hash table from bootmem
6437 * - it is assumed that the hash table must contain an exact power-of-2
6438 * quantity of entries
6439 * - limit is the number of hash buckets, not the total allocation size
6440 */
6441 void *__init alloc_large_system_hash(const char *tablename,
6442 unsigned long bucketsize,
6443 unsigned long numentries,
6444 int scale,
6445 int flags,
6446 unsigned int *_hash_shift,
6447 unsigned int *_hash_mask,
6448 unsigned long low_limit,
6449 unsigned long high_limit)
6450 {
6451 unsigned long long max = high_limit;
6452 unsigned long log2qty, size;
6453 void *table = NULL;
6454
6455 /* allow the kernel cmdline to have a say */
6456 if (!numentries) {
6457 /* round applicable memory size up to nearest megabyte */
6458 numentries = nr_kernel_pages;
6459
6460 /* It isn't necessary when PAGE_SIZE >= 1MB */
6461 if (PAGE_SHIFT < 20)
6462 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6463
6464 /* limit to 1 bucket per 2^scale bytes of low memory */
6465 if (scale > PAGE_SHIFT)
6466 numentries >>= (scale - PAGE_SHIFT);
6467 else
6468 numentries <<= (PAGE_SHIFT - scale);
6469
6470 /* Make sure we've got at least a 0-order allocation.. */
6471 if (unlikely(flags & HASH_SMALL)) {
6472 /* Makes no sense without HASH_EARLY */
6473 WARN_ON(!(flags & HASH_EARLY));
6474 if (!(numentries >> *_hash_shift)) {
6475 numentries = 1UL << *_hash_shift;
6476 BUG_ON(!numentries);
6477 }
6478 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6479 numentries = PAGE_SIZE / bucketsize;
6480 }
6481 numentries = roundup_pow_of_two(numentries);
6482
6483 /* limit allocation size to 1/16 total memory by default */
6484 if (max == 0) {
6485 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6486 do_div(max, bucketsize);
6487 }
6488 max = min(max, 0x80000000ULL);
6489
6490 if (numentries < low_limit)
6491 numentries = low_limit;
6492 if (numentries > max)
6493 numentries = max;
6494
6495 log2qty = ilog2(numentries);
6496
6497 do {
6498 size = bucketsize << log2qty;
6499 if (flags & HASH_EARLY)
6500 table = memblock_virt_alloc_nopanic(size, 0);
6501 else if (hashdist)
6502 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6503 else {
6504 /*
6505 * If bucketsize is not a power-of-two, we may free
6506 * some pages at the end of hash table which
6507 * alloc_pages_exact() automatically does
6508 */
6509 if (get_order(size) < MAX_ORDER) {
6510 table = alloc_pages_exact(size, GFP_ATOMIC);
6511 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6512 }
6513 }
6514 } while (!table && size > PAGE_SIZE && --log2qty);
6515
6516 if (!table)
6517 panic("Failed to allocate %s hash table\n", tablename);
6518
6519 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6520 tablename,
6521 (1UL << log2qty),
6522 ilog2(size) - PAGE_SHIFT,
6523 size);
6524
6525 if (_hash_shift)
6526 *_hash_shift = log2qty;
6527 if (_hash_mask)
6528 *_hash_mask = (1 << log2qty) - 1;
6529
6530 return table;
6531 }
6532
6533 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6534 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6535 unsigned long pfn)
6536 {
6537 #ifdef CONFIG_SPARSEMEM
6538 return __pfn_to_section(pfn)->pageblock_flags;
6539 #else
6540 return zone->pageblock_flags;
6541 #endif /* CONFIG_SPARSEMEM */
6542 }
6543
6544 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6545 {
6546 #ifdef CONFIG_SPARSEMEM
6547 pfn &= (PAGES_PER_SECTION-1);
6548 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6549 #else
6550 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6551 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6552 #endif /* CONFIG_SPARSEMEM */
6553 }
6554
6555 /**
6556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6557 * @page: The page within the block of interest
6558 * @pfn: The target page frame number
6559 * @end_bitidx: The last bit of interest to retrieve
6560 * @mask: mask of bits that the caller is interested in
6561 *
6562 * Return: pageblock_bits flags
6563 */
6564 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6565 unsigned long end_bitidx,
6566 unsigned long mask)
6567 {
6568 struct zone *zone;
6569 unsigned long *bitmap;
6570 unsigned long bitidx, word_bitidx;
6571 unsigned long word;
6572
6573 zone = page_zone(page);
6574 bitmap = get_pageblock_bitmap(zone, pfn);
6575 bitidx = pfn_to_bitidx(zone, pfn);
6576 word_bitidx = bitidx / BITS_PER_LONG;
6577 bitidx &= (BITS_PER_LONG-1);
6578
6579 word = bitmap[word_bitidx];
6580 bitidx += end_bitidx;
6581 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6582 }
6583
6584 /**
6585 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6586 * @page: The page within the block of interest
6587 * @flags: The flags to set
6588 * @pfn: The target page frame number
6589 * @end_bitidx: The last bit of interest
6590 * @mask: mask of bits that the caller is interested in
6591 */
6592 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6593 unsigned long pfn,
6594 unsigned long end_bitidx,
6595 unsigned long mask)
6596 {
6597 struct zone *zone;
6598 unsigned long *bitmap;
6599 unsigned long bitidx, word_bitidx;
6600 unsigned long old_word, word;
6601
6602 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6603
6604 zone = page_zone(page);
6605 bitmap = get_pageblock_bitmap(zone, pfn);
6606 bitidx = pfn_to_bitidx(zone, pfn);
6607 word_bitidx = bitidx / BITS_PER_LONG;
6608 bitidx &= (BITS_PER_LONG-1);
6609
6610 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6611
6612 bitidx += end_bitidx;
6613 mask <<= (BITS_PER_LONG - bitidx - 1);
6614 flags <<= (BITS_PER_LONG - bitidx - 1);
6615
6616 word = READ_ONCE(bitmap[word_bitidx]);
6617 for (;;) {
6618 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6619 if (word == old_word)
6620 break;
6621 word = old_word;
6622 }
6623 }
6624
6625 /*
6626 * This function checks whether pageblock includes unmovable pages or not.
6627 * If @count is not zero, it is okay to include less @count unmovable pages
6628 *
6629 * PageLRU check without isolation or lru_lock could race so that
6630 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6631 * expect this function should be exact.
6632 */
6633 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6634 bool skip_hwpoisoned_pages)
6635 {
6636 unsigned long pfn, iter, found;
6637 int mt;
6638
6639 /*
6640 * For avoiding noise data, lru_add_drain_all() should be called
6641 * If ZONE_MOVABLE, the zone never contains unmovable pages
6642 */
6643 if (zone_idx(zone) == ZONE_MOVABLE)
6644 return false;
6645 mt = get_pageblock_migratetype(page);
6646 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6647 return false;
6648
6649 pfn = page_to_pfn(page);
6650 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6651 unsigned long check = pfn + iter;
6652
6653 if (!pfn_valid_within(check))
6654 continue;
6655
6656 page = pfn_to_page(check);
6657
6658 /*
6659 * Hugepages are not in LRU lists, but they're movable.
6660 * We need not scan over tail pages bacause we don't
6661 * handle each tail page individually in migration.
6662 */
6663 if (PageHuge(page)) {
6664 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6665 continue;
6666 }
6667
6668 /*
6669 * We can't use page_count without pin a page
6670 * because another CPU can free compound page.
6671 * This check already skips compound tails of THP
6672 * because their page->_count is zero at all time.
6673 */
6674 if (!atomic_read(&page->_count)) {
6675 if (PageBuddy(page))
6676 iter += (1 << page_order(page)) - 1;
6677 continue;
6678 }
6679
6680 /*
6681 * The HWPoisoned page may be not in buddy system, and
6682 * page_count() is not 0.
6683 */
6684 if (skip_hwpoisoned_pages && PageHWPoison(page))
6685 continue;
6686
6687 if (!PageLRU(page))
6688 found++;
6689 /*
6690 * If there are RECLAIMABLE pages, we need to check
6691 * it. But now, memory offline itself doesn't call
6692 * shrink_node_slabs() and it still to be fixed.
6693 */
6694 /*
6695 * If the page is not RAM, page_count()should be 0.
6696 * we don't need more check. This is an _used_ not-movable page.
6697 *
6698 * The problematic thing here is PG_reserved pages. PG_reserved
6699 * is set to both of a memory hole page and a _used_ kernel
6700 * page at boot.
6701 */
6702 if (found > count)
6703 return true;
6704 }
6705 return false;
6706 }
6707
6708 bool is_pageblock_removable_nolock(struct page *page)
6709 {
6710 struct zone *zone;
6711 unsigned long pfn;
6712
6713 /*
6714 * We have to be careful here because we are iterating over memory
6715 * sections which are not zone aware so we might end up outside of
6716 * the zone but still within the section.
6717 * We have to take care about the node as well. If the node is offline
6718 * its NODE_DATA will be NULL - see page_zone.
6719 */
6720 if (!node_online(page_to_nid(page)))
6721 return false;
6722
6723 zone = page_zone(page);
6724 pfn = page_to_pfn(page);
6725 if (!zone_spans_pfn(zone, pfn))
6726 return false;
6727
6728 return !has_unmovable_pages(zone, page, 0, true);
6729 }
6730
6731 #ifdef CONFIG_CMA
6732
6733 static unsigned long pfn_max_align_down(unsigned long pfn)
6734 {
6735 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6736 pageblock_nr_pages) - 1);
6737 }
6738
6739 static unsigned long pfn_max_align_up(unsigned long pfn)
6740 {
6741 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6742 pageblock_nr_pages));
6743 }
6744
6745 /* [start, end) must belong to a single zone. */
6746 static int __alloc_contig_migrate_range(struct compact_control *cc,
6747 unsigned long start, unsigned long end)
6748 {
6749 /* This function is based on compact_zone() from compaction.c. */
6750 unsigned long nr_reclaimed;
6751 unsigned long pfn = start;
6752 unsigned int tries = 0;
6753 int ret = 0;
6754
6755 migrate_prep();
6756
6757 while (pfn < end || !list_empty(&cc->migratepages)) {
6758 if (fatal_signal_pending(current)) {
6759 ret = -EINTR;
6760 break;
6761 }
6762
6763 if (list_empty(&cc->migratepages)) {
6764 cc->nr_migratepages = 0;
6765 pfn = isolate_migratepages_range(cc, pfn, end);
6766 if (!pfn) {
6767 ret = -EINTR;
6768 break;
6769 }
6770 tries = 0;
6771 } else if (++tries == 5) {
6772 ret = ret < 0 ? ret : -EBUSY;
6773 break;
6774 }
6775
6776 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6777 &cc->migratepages);
6778 cc->nr_migratepages -= nr_reclaimed;
6779
6780 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6781 NULL, 0, cc->mode, MR_CMA);
6782 }
6783 if (ret < 0) {
6784 putback_movable_pages(&cc->migratepages);
6785 return ret;
6786 }
6787 return 0;
6788 }
6789
6790 /**
6791 * alloc_contig_range() -- tries to allocate given range of pages
6792 * @start: start PFN to allocate
6793 * @end: one-past-the-last PFN to allocate
6794 * @migratetype: migratetype of the underlaying pageblocks (either
6795 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6796 * in range must have the same migratetype and it must
6797 * be either of the two.
6798 *
6799 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6800 * aligned, however it's the caller's responsibility to guarantee that
6801 * we are the only thread that changes migrate type of pageblocks the
6802 * pages fall in.
6803 *
6804 * The PFN range must belong to a single zone.
6805 *
6806 * Returns zero on success or negative error code. On success all
6807 * pages which PFN is in [start, end) are allocated for the caller and
6808 * need to be freed with free_contig_range().
6809 */
6810 int alloc_contig_range(unsigned long start, unsigned long end,
6811 unsigned migratetype)
6812 {
6813 unsigned long outer_start, outer_end;
6814 int ret = 0, order;
6815
6816 struct compact_control cc = {
6817 .nr_migratepages = 0,
6818 .order = -1,
6819 .zone = page_zone(pfn_to_page(start)),
6820 .mode = MIGRATE_SYNC,
6821 .ignore_skip_hint = true,
6822 };
6823 INIT_LIST_HEAD(&cc.migratepages);
6824
6825 /*
6826 * What we do here is we mark all pageblocks in range as
6827 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6828 * have different sizes, and due to the way page allocator
6829 * work, we align the range to biggest of the two pages so
6830 * that page allocator won't try to merge buddies from
6831 * different pageblocks and change MIGRATE_ISOLATE to some
6832 * other migration type.
6833 *
6834 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6835 * migrate the pages from an unaligned range (ie. pages that
6836 * we are interested in). This will put all the pages in
6837 * range back to page allocator as MIGRATE_ISOLATE.
6838 *
6839 * When this is done, we take the pages in range from page
6840 * allocator removing them from the buddy system. This way
6841 * page allocator will never consider using them.
6842 *
6843 * This lets us mark the pageblocks back as
6844 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6845 * aligned range but not in the unaligned, original range are
6846 * put back to page allocator so that buddy can use them.
6847 */
6848
6849 ret = start_isolate_page_range(pfn_max_align_down(start),
6850 pfn_max_align_up(end), migratetype,
6851 false);
6852 if (ret)
6853 return ret;
6854
6855 ret = __alloc_contig_migrate_range(&cc, start, end);
6856 if (ret)
6857 goto done;
6858
6859 /*
6860 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6861 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6862 * more, all pages in [start, end) are free in page allocator.
6863 * What we are going to do is to allocate all pages from
6864 * [start, end) (that is remove them from page allocator).
6865 *
6866 * The only problem is that pages at the beginning and at the
6867 * end of interesting range may be not aligned with pages that
6868 * page allocator holds, ie. they can be part of higher order
6869 * pages. Because of this, we reserve the bigger range and
6870 * once this is done free the pages we are not interested in.
6871 *
6872 * We don't have to hold zone->lock here because the pages are
6873 * isolated thus they won't get removed from buddy.
6874 */
6875
6876 lru_add_drain_all();
6877 drain_all_pages(cc.zone);
6878
6879 order = 0;
6880 outer_start = start;
6881 while (!PageBuddy(pfn_to_page(outer_start))) {
6882 if (++order >= MAX_ORDER) {
6883 ret = -EBUSY;
6884 goto done;
6885 }
6886 outer_start &= ~0UL << order;
6887 }
6888
6889 /* Make sure the range is really isolated. */
6890 if (test_pages_isolated(outer_start, end, false)) {
6891 pr_info("%s: [%lx, %lx) PFNs busy\n",
6892 __func__, outer_start, end);
6893 ret = -EBUSY;
6894 goto done;
6895 }
6896
6897 /* Grab isolated pages from freelists. */
6898 outer_end = isolate_freepages_range(&cc, outer_start, end);
6899 if (!outer_end) {
6900 ret = -EBUSY;
6901 goto done;
6902 }
6903
6904 /* Free head and tail (if any) */
6905 if (start != outer_start)
6906 free_contig_range(outer_start, start - outer_start);
6907 if (end != outer_end)
6908 free_contig_range(end, outer_end - end);
6909
6910 done:
6911 undo_isolate_page_range(pfn_max_align_down(start),
6912 pfn_max_align_up(end), migratetype);
6913 return ret;
6914 }
6915
6916 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6917 {
6918 unsigned int count = 0;
6919
6920 for (; nr_pages--; pfn++) {
6921 struct page *page = pfn_to_page(pfn);
6922
6923 count += page_count(page) != 1;
6924 __free_page(page);
6925 }
6926 WARN(count != 0, "%d pages are still in use!\n", count);
6927 }
6928 #endif
6929
6930 #ifdef CONFIG_MEMORY_HOTPLUG
6931 /*
6932 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6933 * page high values need to be recalulated.
6934 */
6935 void __meminit zone_pcp_update(struct zone *zone)
6936 {
6937 unsigned cpu;
6938 mutex_lock(&pcp_batch_high_lock);
6939 for_each_possible_cpu(cpu)
6940 pageset_set_high_and_batch(zone,
6941 per_cpu_ptr(zone->pageset, cpu));
6942 mutex_unlock(&pcp_batch_high_lock);
6943 }
6944 #endif
6945
6946 void zone_pcp_reset(struct zone *zone)
6947 {
6948 unsigned long flags;
6949 int cpu;
6950 struct per_cpu_pageset *pset;
6951
6952 /* avoid races with drain_pages() */
6953 local_irq_save(flags);
6954 if (zone->pageset != &boot_pageset) {
6955 for_each_online_cpu(cpu) {
6956 pset = per_cpu_ptr(zone->pageset, cpu);
6957 drain_zonestat(zone, pset);
6958 }
6959 free_percpu(zone->pageset);
6960 zone->pageset = &boot_pageset;
6961 }
6962 local_irq_restore(flags);
6963 }
6964
6965 #ifdef CONFIG_MEMORY_HOTREMOVE
6966 /*
6967 * All pages in the range must be isolated before calling this.
6968 */
6969 void
6970 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6971 {
6972 struct page *page;
6973 struct zone *zone;
6974 unsigned int order, i;
6975 unsigned long pfn;
6976 unsigned long flags;
6977 /* find the first valid pfn */
6978 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6979 if (pfn_valid(pfn))
6980 break;
6981 if (pfn == end_pfn)
6982 return;
6983 zone = page_zone(pfn_to_page(pfn));
6984 spin_lock_irqsave(&zone->lock, flags);
6985 pfn = start_pfn;
6986 while (pfn < end_pfn) {
6987 if (!pfn_valid(pfn)) {
6988 pfn++;
6989 continue;
6990 }
6991 page = pfn_to_page(pfn);
6992 /*
6993 * The HWPoisoned page may be not in buddy system, and
6994 * page_count() is not 0.
6995 */
6996 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6997 pfn++;
6998 SetPageReserved(page);
6999 continue;
7000 }
7001
7002 BUG_ON(page_count(page));
7003 BUG_ON(!PageBuddy(page));
7004 order = page_order(page);
7005 #ifdef CONFIG_DEBUG_VM
7006 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7007 pfn, 1 << order, end_pfn);
7008 #endif
7009 list_del(&page->lru);
7010 rmv_page_order(page);
7011 zone->free_area[order].nr_free--;
7012 for (i = 0; i < (1 << order); i++)
7013 SetPageReserved((page+i));
7014 pfn += (1 << order);
7015 }
7016 spin_unlock_irqrestore(&zone->lock, flags);
7017 }
7018 #endif
7019
7020 #ifdef CONFIG_MEMORY_FAILURE
7021 bool is_free_buddy_page(struct page *page)
7022 {
7023 struct zone *zone = page_zone(page);
7024 unsigned long pfn = page_to_pfn(page);
7025 unsigned long flags;
7026 unsigned int order;
7027
7028 spin_lock_irqsave(&zone->lock, flags);
7029 for (order = 0; order < MAX_ORDER; order++) {
7030 struct page *page_head = page - (pfn & ((1 << order) - 1));
7031
7032 if (PageBuddy(page_head) && page_order(page_head) >= order)
7033 break;
7034 }
7035 spin_unlock_irqrestore(&zone->lock, flags);
7036
7037 return order < MAX_ORDER;
7038 }
7039 #endif
This page took 0.221759 seconds and 6 git commands to generate.