kmemcheck: add hooks for the page allocator
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55
56 /*
57 * Array of node states.
58 */
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 [N_CPU] = { { [0] = 1UL } },
68 #endif /* NUMA */
69 };
70 EXPORT_SYMBOL(node_states);
71
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76
77 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
78 int pageblock_order __read_mostly;
79 #endif
80
81 static void __free_pages_ok(struct page *page, unsigned int order);
82
83 /*
84 * results with 256, 32 in the lowmem_reserve sysctl:
85 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
86 * 1G machine -> (16M dma, 784M normal, 224M high)
87 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
88 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
89 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 *
91 * TBD: should special case ZONE_DMA32 machines here - in those we normally
92 * don't need any ZONE_NORMAL reservation
93 */
94 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
95 #ifdef CONFIG_ZONE_DMA
96 256,
97 #endif
98 #ifdef CONFIG_ZONE_DMA32
99 256,
100 #endif
101 #ifdef CONFIG_HIGHMEM
102 32,
103 #endif
104 32,
105 };
106
107 EXPORT_SYMBOL(totalram_pages);
108
109 static char * const zone_names[MAX_NR_ZONES] = {
110 #ifdef CONFIG_ZONE_DMA
111 "DMA",
112 #endif
113 #ifdef CONFIG_ZONE_DMA32
114 "DMA32",
115 #endif
116 "Normal",
117 #ifdef CONFIG_HIGHMEM
118 "HighMem",
119 #endif
120 "Movable",
121 };
122
123 int min_free_kbytes = 1024;
124
125 unsigned long __meminitdata nr_kernel_pages;
126 unsigned long __meminitdata nr_all_pages;
127 static unsigned long __meminitdata dma_reserve;
128
129 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 /*
131 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
132 * ranges of memory (RAM) that may be registered with add_active_range().
133 * Ranges passed to add_active_range() will be merged if possible
134 * so the number of times add_active_range() can be called is
135 * related to the number of nodes and the number of holes
136 */
137 #ifdef CONFIG_MAX_ACTIVE_REGIONS
138 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
139 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
140 #else
141 #if MAX_NUMNODES >= 32
142 /* If there can be many nodes, allow up to 50 holes per node */
143 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
144 #else
145 /* By default, allow up to 256 distinct regions */
146 #define MAX_ACTIVE_REGIONS 256
147 #endif
148 #endif
149
150 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
151 static int __meminitdata nr_nodemap_entries;
152 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __initdata required_kernelcore;
155 static unsigned long __initdata required_movablecore;
156 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157
158 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 int movable_zone;
160 EXPORT_SYMBOL(movable_zone);
161 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162
163 #if MAX_NUMNODES > 1
164 int nr_node_ids __read_mostly = MAX_NUMNODES;
165 EXPORT_SYMBOL(nr_node_ids);
166 #endif
167
168 int page_group_by_mobility_disabled __read_mostly;
169
170 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 {
172 set_pageblock_flags_group(page, (unsigned long)migratetype,
173 PB_migrate, PB_migrate_end);
174 }
175
176 #ifdef CONFIG_DEBUG_VM
177 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
178 {
179 int ret = 0;
180 unsigned seq;
181 unsigned long pfn = page_to_pfn(page);
182
183 do {
184 seq = zone_span_seqbegin(zone);
185 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
186 ret = 1;
187 else if (pfn < zone->zone_start_pfn)
188 ret = 1;
189 } while (zone_span_seqretry(zone, seq));
190
191 return ret;
192 }
193
194 static int page_is_consistent(struct zone *zone, struct page *page)
195 {
196 if (!pfn_valid_within(page_to_pfn(page)))
197 return 0;
198 if (zone != page_zone(page))
199 return 0;
200
201 return 1;
202 }
203 /*
204 * Temporary debugging check for pages not lying within a given zone.
205 */
206 static int bad_range(struct zone *zone, struct page *page)
207 {
208 if (page_outside_zone_boundaries(zone, page))
209 return 1;
210 if (!page_is_consistent(zone, page))
211 return 1;
212
213 return 0;
214 }
215 #else
216 static inline int bad_range(struct zone *zone, struct page *page)
217 {
218 return 0;
219 }
220 #endif
221
222 static void bad_page(struct page *page)
223 {
224 static unsigned long resume;
225 static unsigned long nr_shown;
226 static unsigned long nr_unshown;
227
228 /*
229 * Allow a burst of 60 reports, then keep quiet for that minute;
230 * or allow a steady drip of one report per second.
231 */
232 if (nr_shown == 60) {
233 if (time_before(jiffies, resume)) {
234 nr_unshown++;
235 goto out;
236 }
237 if (nr_unshown) {
238 printk(KERN_ALERT
239 "BUG: Bad page state: %lu messages suppressed\n",
240 nr_unshown);
241 nr_unshown = 0;
242 }
243 nr_shown = 0;
244 }
245 if (nr_shown++ == 0)
246 resume = jiffies + 60 * HZ;
247
248 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
249 current->comm, page_to_pfn(page));
250 printk(KERN_ALERT
251 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
252 page, (void *)page->flags, page_count(page),
253 page_mapcount(page), page->mapping, page->index);
254
255 dump_stack();
256 out:
257 /* Leave bad fields for debug, except PageBuddy could make trouble */
258 __ClearPageBuddy(page);
259 add_taint(TAINT_BAD_PAGE);
260 }
261
262 /*
263 * Higher-order pages are called "compound pages". They are structured thusly:
264 *
265 * The first PAGE_SIZE page is called the "head page".
266 *
267 * The remaining PAGE_SIZE pages are called "tail pages".
268 *
269 * All pages have PG_compound set. All pages have their ->private pointing at
270 * the head page (even the head page has this).
271 *
272 * The first tail page's ->lru.next holds the address of the compound page's
273 * put_page() function. Its ->lru.prev holds the order of allocation.
274 * This usage means that zero-order pages may not be compound.
275 */
276
277 static void free_compound_page(struct page *page)
278 {
279 __free_pages_ok(page, compound_order(page));
280 }
281
282 void prep_compound_page(struct page *page, unsigned long order)
283 {
284 int i;
285 int nr_pages = 1 << order;
286
287 set_compound_page_dtor(page, free_compound_page);
288 set_compound_order(page, order);
289 __SetPageHead(page);
290 for (i = 1; i < nr_pages; i++) {
291 struct page *p = page + i;
292
293 __SetPageTail(p);
294 p->first_page = page;
295 }
296 }
297
298 #ifdef CONFIG_HUGETLBFS
299 void prep_compound_gigantic_page(struct page *page, unsigned long order)
300 {
301 int i;
302 int nr_pages = 1 << order;
303 struct page *p = page + 1;
304
305 set_compound_page_dtor(page, free_compound_page);
306 set_compound_order(page, order);
307 __SetPageHead(page);
308 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
309 __SetPageTail(p);
310 p->first_page = page;
311 }
312 }
313 #endif
314
315 static int destroy_compound_page(struct page *page, unsigned long order)
316 {
317 int i;
318 int nr_pages = 1 << order;
319 int bad = 0;
320
321 if (unlikely(compound_order(page) != order) ||
322 unlikely(!PageHead(page))) {
323 bad_page(page);
324 bad++;
325 }
326
327 __ClearPageHead(page);
328
329 for (i = 1; i < nr_pages; i++) {
330 struct page *p = page + i;
331
332 if (unlikely(!PageTail(p) || (p->first_page != page))) {
333 bad_page(page);
334 bad++;
335 }
336 __ClearPageTail(p);
337 }
338
339 return bad;
340 }
341
342 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 {
344 int i;
345
346 /*
347 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
348 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 */
350 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
351 for (i = 0; i < (1 << order); i++)
352 clear_highpage(page + i);
353 }
354
355 static inline void set_page_order(struct page *page, int order)
356 {
357 set_page_private(page, order);
358 __SetPageBuddy(page);
359 }
360
361 static inline void rmv_page_order(struct page *page)
362 {
363 __ClearPageBuddy(page);
364 set_page_private(page, 0);
365 }
366
367 /*
368 * Locate the struct page for both the matching buddy in our
369 * pair (buddy1) and the combined O(n+1) page they form (page).
370 *
371 * 1) Any buddy B1 will have an order O twin B2 which satisfies
372 * the following equation:
373 * B2 = B1 ^ (1 << O)
374 * For example, if the starting buddy (buddy2) is #8 its order
375 * 1 buddy is #10:
376 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 *
378 * 2) Any buddy B will have an order O+1 parent P which
379 * satisfies the following equation:
380 * P = B & ~(1 << O)
381 *
382 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 */
384 static inline struct page *
385 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 {
387 unsigned long buddy_idx = page_idx ^ (1 << order);
388
389 return page + (buddy_idx - page_idx);
390 }
391
392 static inline unsigned long
393 __find_combined_index(unsigned long page_idx, unsigned int order)
394 {
395 return (page_idx & ~(1 << order));
396 }
397
398 /*
399 * This function checks whether a page is free && is the buddy
400 * we can do coalesce a page and its buddy if
401 * (a) the buddy is not in a hole &&
402 * (b) the buddy is in the buddy system &&
403 * (c) a page and its buddy have the same order &&
404 * (d) a page and its buddy are in the same zone.
405 *
406 * For recording whether a page is in the buddy system, we use PG_buddy.
407 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 *
409 * For recording page's order, we use page_private(page).
410 */
411 static inline int page_is_buddy(struct page *page, struct page *buddy,
412 int order)
413 {
414 if (!pfn_valid_within(page_to_pfn(buddy)))
415 return 0;
416
417 if (page_zone_id(page) != page_zone_id(buddy))
418 return 0;
419
420 if (PageBuddy(buddy) && page_order(buddy) == order) {
421 BUG_ON(page_count(buddy) != 0);
422 return 1;
423 }
424 return 0;
425 }
426
427 /*
428 * Freeing function for a buddy system allocator.
429 *
430 * The concept of a buddy system is to maintain direct-mapped table
431 * (containing bit values) for memory blocks of various "orders".
432 * The bottom level table contains the map for the smallest allocatable
433 * units of memory (here, pages), and each level above it describes
434 * pairs of units from the levels below, hence, "buddies".
435 * At a high level, all that happens here is marking the table entry
436 * at the bottom level available, and propagating the changes upward
437 * as necessary, plus some accounting needed to play nicely with other
438 * parts of the VM system.
439 * At each level, we keep a list of pages, which are heads of continuous
440 * free pages of length of (1 << order) and marked with PG_buddy. Page's
441 * order is recorded in page_private(page) field.
442 * So when we are allocating or freeing one, we can derive the state of the
443 * other. That is, if we allocate a small block, and both were
444 * free, the remainder of the region must be split into blocks.
445 * If a block is freed, and its buddy is also free, then this
446 * triggers coalescing into a block of larger size.
447 *
448 * -- wli
449 */
450
451 static inline void __free_one_page(struct page *page,
452 struct zone *zone, unsigned int order)
453 {
454 unsigned long page_idx;
455 int order_size = 1 << order;
456 int migratetype = get_pageblock_migratetype(page);
457
458 if (unlikely(PageCompound(page)))
459 if (unlikely(destroy_compound_page(page, order)))
460 return;
461
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463
464 VM_BUG_ON(page_idx & (order_size - 1));
465 VM_BUG_ON(bad_range(zone, page));
466
467 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
468 while (order < MAX_ORDER-1) {
469 unsigned long combined_idx;
470 struct page *buddy;
471
472 buddy = __page_find_buddy(page, page_idx, order);
473 if (!page_is_buddy(page, buddy, order))
474 break;
475
476 /* Our buddy is free, merge with it and move up one order. */
477 list_del(&buddy->lru);
478 zone->free_area[order].nr_free--;
479 rmv_page_order(buddy);
480 combined_idx = __find_combined_index(page_idx, order);
481 page = page + (combined_idx - page_idx);
482 page_idx = combined_idx;
483 order++;
484 }
485 set_page_order(page, order);
486 list_add(&page->lru,
487 &zone->free_area[order].free_list[migratetype]);
488 zone->free_area[order].nr_free++;
489 }
490
491 static inline int free_pages_check(struct page *page)
492 {
493 free_page_mlock(page);
494 if (unlikely(page_mapcount(page) |
495 (page->mapping != NULL) |
496 (page_count(page) != 0) |
497 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
498 bad_page(page);
499 return 1;
500 }
501 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
502 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
503 return 0;
504 }
505
506 /*
507 * Frees a list of pages.
508 * Assumes all pages on list are in same zone, and of same order.
509 * count is the number of pages to free.
510 *
511 * If the zone was previously in an "all pages pinned" state then look to
512 * see if this freeing clears that state.
513 *
514 * And clear the zone's pages_scanned counter, to hold off the "all pages are
515 * pinned" detection logic.
516 */
517 static void free_pages_bulk(struct zone *zone, int count,
518 struct list_head *list, int order)
519 {
520 spin_lock(&zone->lock);
521 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
522 zone->pages_scanned = 0;
523 while (count--) {
524 struct page *page;
525
526 VM_BUG_ON(list_empty(list));
527 page = list_entry(list->prev, struct page, lru);
528 /* have to delete it as __free_one_page list manipulates */
529 list_del(&page->lru);
530 __free_one_page(page, zone, order);
531 }
532 spin_unlock(&zone->lock);
533 }
534
535 static void free_one_page(struct zone *zone, struct page *page, int order)
536 {
537 spin_lock(&zone->lock);
538 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
539 zone->pages_scanned = 0;
540 __free_one_page(page, zone, order);
541 spin_unlock(&zone->lock);
542 }
543
544 static void __free_pages_ok(struct page *page, unsigned int order)
545 {
546 unsigned long flags;
547 int i;
548 int bad = 0;
549
550 kmemcheck_free_shadow(page, order);
551
552 for (i = 0 ; i < (1 << order) ; ++i)
553 bad += free_pages_check(page + i);
554 if (bad)
555 return;
556
557 if (!PageHighMem(page)) {
558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
561 }
562 arch_free_page(page, order);
563 kernel_map_pages(page, 1 << order, 0);
564
565 local_irq_save(flags);
566 __count_vm_events(PGFREE, 1 << order);
567 free_one_page(page_zone(page), page, order);
568 local_irq_restore(flags);
569 }
570
571 /*
572 * permit the bootmem allocator to evade page validation on high-order frees
573 */
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
575 {
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
579 set_page_refcounted(page);
580 __free_page(page);
581 } else {
582 int loop;
583
584 prefetchw(page);
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
587
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
592 }
593
594 set_page_refcounted(page);
595 __free_pages(page, order);
596 }
597 }
598
599
600 /*
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
611 *
612 * -- wli
613 */
614 static inline void expand(struct zone *zone, struct page *page,
615 int low, int high, struct free_area *area,
616 int migratetype)
617 {
618 unsigned long size = 1 << high;
619
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
624 VM_BUG_ON(bad_range(zone, &page[size]));
625 list_add(&page[size].lru, &area->free_list[migratetype]);
626 area->nr_free++;
627 set_page_order(&page[size], high);
628 }
629 }
630
631 /*
632 * This page is about to be returned from the page allocator
633 */
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
635 {
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 bad_page(page);
641 return 1;
642 }
643
644 set_page_private(page, 0);
645 set_page_refcounted(page);
646
647 arch_alloc_page(page, order);
648 kernel_map_pages(page, 1 << order, 1);
649
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
652
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
655
656 return 0;
657 }
658
659 /*
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
662 */
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
665 {
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
669
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
675
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
684 }
685
686 return NULL;
687 }
688
689
690 /*
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
693 */
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
699 };
700
701 /*
702 * Move the free pages in a range to the free lists of the requested type.
703 * Note that start_page and end_pages are not aligned on a pageblock
704 * boundary. If alignment is required, use move_freepages_block()
705 */
706 static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
709 {
710 struct page *page;
711 unsigned long order;
712 int pages_moved = 0;
713
714 #ifndef CONFIG_HOLES_IN_ZONE
715 /*
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
720 * grouping pages by mobility
721 */
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
724
725 for (page = start_page; page <= end_page;) {
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
732 }
733
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
737 }
738
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
744 pages_moved += 1 << order;
745 }
746
747 return pages_moved;
748 }
749
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
752 {
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
755
756 start_pfn = page_to_pfn(page);
757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 start_page = pfn_to_page(start_pfn);
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
761
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
767
768 return move_freepages(zone, start_page, end_page, migratetype);
769 }
770
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
774 {
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
779
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
785
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
789
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
793
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
797
798 /*
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
803 */
804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
809
810 /* Claim the whole block if over half of it is free */
811 if (pages >= (1 << (pageblock_order-1)))
812 set_pageblock_migratetype(page,
813 start_migratetype);
814
815 migratetype = start_migratetype;
816 }
817
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
823
824 if (current_order == pageblock_order)
825 set_pageblock_migratetype(page,
826 start_migratetype);
827
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
830 }
831 }
832
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836
837 /*
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
843 {
844 struct page *page;
845
846 page = __rmqueue_smallest(zone, order, migratetype);
847
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
850
851 return page;
852 }
853
854 /*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 unsigned long count, struct list_head *list,
861 int migratetype)
862 {
863 int i;
864
865 spin_lock(&zone->lock);
866 for (i = 0; i < count; ++i) {
867 struct page *page = __rmqueue(zone, order, migratetype);
868 if (unlikely(page == NULL))
869 break;
870
871 /*
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
879 */
880 list_add(&page->lru, list);
881 set_page_private(page, migratetype);
882 list = &page->lru;
883 }
884 spin_unlock(&zone->lock);
885 return i;
886 }
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Called from the vmstat counter updater to drain pagesets of this
891 * currently executing processor on remote nodes after they have
892 * expired.
893 *
894 * Note that this function must be called with the thread pinned to
895 * a single processor.
896 */
897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
898 {
899 unsigned long flags;
900 int to_drain;
901
902 local_irq_save(flags);
903 if (pcp->count >= pcp->batch)
904 to_drain = pcp->batch;
905 else
906 to_drain = pcp->count;
907 free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 pcp->count -= to_drain;
909 local_irq_restore(flags);
910 }
911 #endif
912
913 /*
914 * Drain pages of the indicated processor.
915 *
916 * The processor must either be the current processor and the
917 * thread pinned to the current processor or a processor that
918 * is not online.
919 */
920 static void drain_pages(unsigned int cpu)
921 {
922 unsigned long flags;
923 struct zone *zone;
924
925 for_each_populated_zone(zone) {
926 struct per_cpu_pageset *pset;
927 struct per_cpu_pages *pcp;
928
929 pset = zone_pcp(zone, cpu);
930
931 pcp = &pset->pcp;
932 local_irq_save(flags);
933 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
934 pcp->count = 0;
935 local_irq_restore(flags);
936 }
937 }
938
939 /*
940 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
941 */
942 void drain_local_pages(void *arg)
943 {
944 drain_pages(smp_processor_id());
945 }
946
947 /*
948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
949 */
950 void drain_all_pages(void)
951 {
952 on_each_cpu(drain_local_pages, NULL, 1);
953 }
954
955 #ifdef CONFIG_HIBERNATION
956
957 void mark_free_pages(struct zone *zone)
958 {
959 unsigned long pfn, max_zone_pfn;
960 unsigned long flags;
961 int order, t;
962 struct list_head *curr;
963
964 if (!zone->spanned_pages)
965 return;
966
967 spin_lock_irqsave(&zone->lock, flags);
968
969 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
970 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
971 if (pfn_valid(pfn)) {
972 struct page *page = pfn_to_page(pfn);
973
974 if (!swsusp_page_is_forbidden(page))
975 swsusp_unset_page_free(page);
976 }
977
978 for_each_migratetype_order(order, t) {
979 list_for_each(curr, &zone->free_area[order].free_list[t]) {
980 unsigned long i;
981
982 pfn = page_to_pfn(list_entry(curr, struct page, lru));
983 for (i = 0; i < (1UL << order); i++)
984 swsusp_set_page_free(pfn_to_page(pfn + i));
985 }
986 }
987 spin_unlock_irqrestore(&zone->lock, flags);
988 }
989 #endif /* CONFIG_PM */
990
991 /*
992 * Free a 0-order page
993 */
994 static void free_hot_cold_page(struct page *page, int cold)
995 {
996 struct zone *zone = page_zone(page);
997 struct per_cpu_pages *pcp;
998 unsigned long flags;
999
1000 kmemcheck_free_shadow(page, 0);
1001
1002 if (PageAnon(page))
1003 page->mapping = NULL;
1004 if (free_pages_check(page))
1005 return;
1006
1007 if (!PageHighMem(page)) {
1008 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1009 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1010 }
1011 arch_free_page(page, 0);
1012 kernel_map_pages(page, 1, 0);
1013
1014 pcp = &zone_pcp(zone, get_cpu())->pcp;
1015 local_irq_save(flags);
1016 __count_vm_event(PGFREE);
1017 if (cold)
1018 list_add_tail(&page->lru, &pcp->list);
1019 else
1020 list_add(&page->lru, &pcp->list);
1021 set_page_private(page, get_pageblock_migratetype(page));
1022 pcp->count++;
1023 if (pcp->count >= pcp->high) {
1024 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1025 pcp->count -= pcp->batch;
1026 }
1027 local_irq_restore(flags);
1028 put_cpu();
1029 }
1030
1031 void free_hot_page(struct page *page)
1032 {
1033 free_hot_cold_page(page, 0);
1034 }
1035
1036 void free_cold_page(struct page *page)
1037 {
1038 free_hot_cold_page(page, 1);
1039 }
1040
1041 /*
1042 * split_page takes a non-compound higher-order page, and splits it into
1043 * n (1<<order) sub-pages: page[0..n]
1044 * Each sub-page must be freed individually.
1045 *
1046 * Note: this is probably too low level an operation for use in drivers.
1047 * Please consult with lkml before using this in your driver.
1048 */
1049 void split_page(struct page *page, unsigned int order)
1050 {
1051 int i;
1052
1053 VM_BUG_ON(PageCompound(page));
1054 VM_BUG_ON(!page_count(page));
1055
1056 #ifdef CONFIG_KMEMCHECK
1057 /*
1058 * Split shadow pages too, because free(page[0]) would
1059 * otherwise free the whole shadow.
1060 */
1061 if (kmemcheck_page_is_tracked(page))
1062 split_page(virt_to_page(page[0].shadow), order);
1063 #endif
1064
1065 for (i = 1; i < (1 << order); i++)
1066 set_page_refcounted(page + i);
1067 }
1068
1069 /*
1070 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1071 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1072 * or two.
1073 */
1074 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1075 struct zone *zone, int order, gfp_t gfp_flags)
1076 {
1077 unsigned long flags;
1078 struct page *page;
1079 int cold = !!(gfp_flags & __GFP_COLD);
1080 int cpu;
1081 int migratetype = allocflags_to_migratetype(gfp_flags);
1082
1083 again:
1084 cpu = get_cpu();
1085 if (likely(order == 0)) {
1086 struct per_cpu_pages *pcp;
1087
1088 pcp = &zone_pcp(zone, cpu)->pcp;
1089 local_irq_save(flags);
1090 if (!pcp->count) {
1091 pcp->count = rmqueue_bulk(zone, 0,
1092 pcp->batch, &pcp->list, migratetype);
1093 if (unlikely(!pcp->count))
1094 goto failed;
1095 }
1096
1097 /* Find a page of the appropriate migrate type */
1098 if (cold) {
1099 list_for_each_entry_reverse(page, &pcp->list, lru)
1100 if (page_private(page) == migratetype)
1101 break;
1102 } else {
1103 list_for_each_entry(page, &pcp->list, lru)
1104 if (page_private(page) == migratetype)
1105 break;
1106 }
1107
1108 /* Allocate more to the pcp list if necessary */
1109 if (unlikely(&page->lru == &pcp->list)) {
1110 pcp->count += rmqueue_bulk(zone, 0,
1111 pcp->batch, &pcp->list, migratetype);
1112 page = list_entry(pcp->list.next, struct page, lru);
1113 }
1114
1115 list_del(&page->lru);
1116 pcp->count--;
1117 } else {
1118 spin_lock_irqsave(&zone->lock, flags);
1119 page = __rmqueue(zone, order, migratetype);
1120 spin_unlock(&zone->lock);
1121 if (!page)
1122 goto failed;
1123 }
1124
1125 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1126 zone_statistics(preferred_zone, zone);
1127 local_irq_restore(flags);
1128 put_cpu();
1129
1130 VM_BUG_ON(bad_range(zone, page));
1131 if (prep_new_page(page, order, gfp_flags))
1132 goto again;
1133 return page;
1134
1135 failed:
1136 local_irq_restore(flags);
1137 put_cpu();
1138 return NULL;
1139 }
1140
1141 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1142 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1143 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1144 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1145 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1146 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1147 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1148
1149 #ifdef CONFIG_FAIL_PAGE_ALLOC
1150
1151 static struct fail_page_alloc_attr {
1152 struct fault_attr attr;
1153
1154 u32 ignore_gfp_highmem;
1155 u32 ignore_gfp_wait;
1156 u32 min_order;
1157
1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1159
1160 struct dentry *ignore_gfp_highmem_file;
1161 struct dentry *ignore_gfp_wait_file;
1162 struct dentry *min_order_file;
1163
1164 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1165
1166 } fail_page_alloc = {
1167 .attr = FAULT_ATTR_INITIALIZER,
1168 .ignore_gfp_wait = 1,
1169 .ignore_gfp_highmem = 1,
1170 .min_order = 1,
1171 };
1172
1173 static int __init setup_fail_page_alloc(char *str)
1174 {
1175 return setup_fault_attr(&fail_page_alloc.attr, str);
1176 }
1177 __setup("fail_page_alloc=", setup_fail_page_alloc);
1178
1179 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1180 {
1181 if (order < fail_page_alloc.min_order)
1182 return 0;
1183 if (gfp_mask & __GFP_NOFAIL)
1184 return 0;
1185 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1186 return 0;
1187 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1188 return 0;
1189
1190 return should_fail(&fail_page_alloc.attr, 1 << order);
1191 }
1192
1193 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1194
1195 static int __init fail_page_alloc_debugfs(void)
1196 {
1197 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1198 struct dentry *dir;
1199 int err;
1200
1201 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1202 "fail_page_alloc");
1203 if (err)
1204 return err;
1205 dir = fail_page_alloc.attr.dentries.dir;
1206
1207 fail_page_alloc.ignore_gfp_wait_file =
1208 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1209 &fail_page_alloc.ignore_gfp_wait);
1210
1211 fail_page_alloc.ignore_gfp_highmem_file =
1212 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1213 &fail_page_alloc.ignore_gfp_highmem);
1214 fail_page_alloc.min_order_file =
1215 debugfs_create_u32("min-order", mode, dir,
1216 &fail_page_alloc.min_order);
1217
1218 if (!fail_page_alloc.ignore_gfp_wait_file ||
1219 !fail_page_alloc.ignore_gfp_highmem_file ||
1220 !fail_page_alloc.min_order_file) {
1221 err = -ENOMEM;
1222 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1223 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1224 debugfs_remove(fail_page_alloc.min_order_file);
1225 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1226 }
1227
1228 return err;
1229 }
1230
1231 late_initcall(fail_page_alloc_debugfs);
1232
1233 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1234
1235 #else /* CONFIG_FAIL_PAGE_ALLOC */
1236
1237 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1238 {
1239 return 0;
1240 }
1241
1242 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1243
1244 /*
1245 * Return 1 if free pages are above 'mark'. This takes into account the order
1246 * of the allocation.
1247 */
1248 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1249 int classzone_idx, int alloc_flags)
1250 {
1251 /* free_pages my go negative - that's OK */
1252 long min = mark;
1253 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1254 int o;
1255
1256 if (alloc_flags & ALLOC_HIGH)
1257 min -= min / 2;
1258 if (alloc_flags & ALLOC_HARDER)
1259 min -= min / 4;
1260
1261 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1262 return 0;
1263 for (o = 0; o < order; o++) {
1264 /* At the next order, this order's pages become unavailable */
1265 free_pages -= z->free_area[o].nr_free << o;
1266
1267 /* Require fewer higher order pages to be free */
1268 min >>= 1;
1269
1270 if (free_pages <= min)
1271 return 0;
1272 }
1273 return 1;
1274 }
1275
1276 #ifdef CONFIG_NUMA
1277 /*
1278 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1279 * skip over zones that are not allowed by the cpuset, or that have
1280 * been recently (in last second) found to be nearly full. See further
1281 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1282 * that have to skip over a lot of full or unallowed zones.
1283 *
1284 * If the zonelist cache is present in the passed in zonelist, then
1285 * returns a pointer to the allowed node mask (either the current
1286 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1287 *
1288 * If the zonelist cache is not available for this zonelist, does
1289 * nothing and returns NULL.
1290 *
1291 * If the fullzones BITMAP in the zonelist cache is stale (more than
1292 * a second since last zap'd) then we zap it out (clear its bits.)
1293 *
1294 * We hold off even calling zlc_setup, until after we've checked the
1295 * first zone in the zonelist, on the theory that most allocations will
1296 * be satisfied from that first zone, so best to examine that zone as
1297 * quickly as we can.
1298 */
1299 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1300 {
1301 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1302 nodemask_t *allowednodes; /* zonelist_cache approximation */
1303
1304 zlc = zonelist->zlcache_ptr;
1305 if (!zlc)
1306 return NULL;
1307
1308 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1309 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1310 zlc->last_full_zap = jiffies;
1311 }
1312
1313 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1314 &cpuset_current_mems_allowed :
1315 &node_states[N_HIGH_MEMORY];
1316 return allowednodes;
1317 }
1318
1319 /*
1320 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1321 * if it is worth looking at further for free memory:
1322 * 1) Check that the zone isn't thought to be full (doesn't have its
1323 * bit set in the zonelist_cache fullzones BITMAP).
1324 * 2) Check that the zones node (obtained from the zonelist_cache
1325 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1326 * Return true (non-zero) if zone is worth looking at further, or
1327 * else return false (zero) if it is not.
1328 *
1329 * This check -ignores- the distinction between various watermarks,
1330 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1331 * found to be full for any variation of these watermarks, it will
1332 * be considered full for up to one second by all requests, unless
1333 * we are so low on memory on all allowed nodes that we are forced
1334 * into the second scan of the zonelist.
1335 *
1336 * In the second scan we ignore this zonelist cache and exactly
1337 * apply the watermarks to all zones, even it is slower to do so.
1338 * We are low on memory in the second scan, and should leave no stone
1339 * unturned looking for a free page.
1340 */
1341 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1342 nodemask_t *allowednodes)
1343 {
1344 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1345 int i; /* index of *z in zonelist zones */
1346 int n; /* node that zone *z is on */
1347
1348 zlc = zonelist->zlcache_ptr;
1349 if (!zlc)
1350 return 1;
1351
1352 i = z - zonelist->_zonerefs;
1353 n = zlc->z_to_n[i];
1354
1355 /* This zone is worth trying if it is allowed but not full */
1356 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1357 }
1358
1359 /*
1360 * Given 'z' scanning a zonelist, set the corresponding bit in
1361 * zlc->fullzones, so that subsequent attempts to allocate a page
1362 * from that zone don't waste time re-examining it.
1363 */
1364 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1365 {
1366 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1367 int i; /* index of *z in zonelist zones */
1368
1369 zlc = zonelist->zlcache_ptr;
1370 if (!zlc)
1371 return;
1372
1373 i = z - zonelist->_zonerefs;
1374
1375 set_bit(i, zlc->fullzones);
1376 }
1377
1378 #else /* CONFIG_NUMA */
1379
1380 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1381 {
1382 return NULL;
1383 }
1384
1385 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1386 nodemask_t *allowednodes)
1387 {
1388 return 1;
1389 }
1390
1391 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1392 {
1393 }
1394 #endif /* CONFIG_NUMA */
1395
1396 /*
1397 * get_page_from_freelist goes through the zonelist trying to allocate
1398 * a page.
1399 */
1400 static struct page *
1401 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1402 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1403 {
1404 struct zoneref *z;
1405 struct page *page = NULL;
1406 int classzone_idx;
1407 struct zone *zone, *preferred_zone;
1408 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1409 int zlc_active = 0; /* set if using zonelist_cache */
1410 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1411
1412 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1413 &preferred_zone);
1414 if (!preferred_zone)
1415 return NULL;
1416
1417 classzone_idx = zone_idx(preferred_zone);
1418
1419 zonelist_scan:
1420 /*
1421 * Scan zonelist, looking for a zone with enough free.
1422 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1423 */
1424 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1425 high_zoneidx, nodemask) {
1426 if (NUMA_BUILD && zlc_active &&
1427 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1428 continue;
1429 if ((alloc_flags & ALLOC_CPUSET) &&
1430 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1431 goto try_next_zone;
1432
1433 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1434 unsigned long mark;
1435 if (alloc_flags & ALLOC_WMARK_MIN)
1436 mark = zone->pages_min;
1437 else if (alloc_flags & ALLOC_WMARK_LOW)
1438 mark = zone->pages_low;
1439 else
1440 mark = zone->pages_high;
1441 if (!zone_watermark_ok(zone, order, mark,
1442 classzone_idx, alloc_flags)) {
1443 if (!zone_reclaim_mode ||
1444 !zone_reclaim(zone, gfp_mask, order))
1445 goto this_zone_full;
1446 }
1447 }
1448
1449 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1450 if (page)
1451 break;
1452 this_zone_full:
1453 if (NUMA_BUILD)
1454 zlc_mark_zone_full(zonelist, z);
1455 try_next_zone:
1456 if (NUMA_BUILD && !did_zlc_setup) {
1457 /* we do zlc_setup after the first zone is tried */
1458 allowednodes = zlc_setup(zonelist, alloc_flags);
1459 zlc_active = 1;
1460 did_zlc_setup = 1;
1461 }
1462 }
1463
1464 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1465 /* Disable zlc cache for second zonelist scan */
1466 zlc_active = 0;
1467 goto zonelist_scan;
1468 }
1469 return page;
1470 }
1471
1472 /*
1473 * This is the 'heart' of the zoned buddy allocator.
1474 */
1475 struct page *
1476 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1477 struct zonelist *zonelist, nodemask_t *nodemask)
1478 {
1479 const gfp_t wait = gfp_mask & __GFP_WAIT;
1480 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1481 struct zoneref *z;
1482 struct zone *zone;
1483 struct page *page;
1484 struct reclaim_state reclaim_state;
1485 struct task_struct *p = current;
1486 int do_retry;
1487 int alloc_flags;
1488 unsigned long did_some_progress;
1489 unsigned long pages_reclaimed = 0;
1490
1491 lockdep_trace_alloc(gfp_mask);
1492
1493 might_sleep_if(wait);
1494
1495 if (should_fail_alloc_page(gfp_mask, order))
1496 return NULL;
1497
1498 restart:
1499 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1500
1501 if (unlikely(!z->zone)) {
1502 /*
1503 * Happens if we have an empty zonelist as a result of
1504 * GFP_THISNODE being used on a memoryless node
1505 */
1506 return NULL;
1507 }
1508
1509 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1510 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1511 if (page)
1512 goto got_pg;
1513
1514 /*
1515 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1516 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1517 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1518 * using a larger set of nodes after it has established that the
1519 * allowed per node queues are empty and that nodes are
1520 * over allocated.
1521 */
1522 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1523 goto nopage;
1524
1525 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1526 wakeup_kswapd(zone, order);
1527
1528 /*
1529 * OK, we're below the kswapd watermark and have kicked background
1530 * reclaim. Now things get more complex, so set up alloc_flags according
1531 * to how we want to proceed.
1532 *
1533 * The caller may dip into page reserves a bit more if the caller
1534 * cannot run direct reclaim, or if the caller has realtime scheduling
1535 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1536 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1537 */
1538 alloc_flags = ALLOC_WMARK_MIN;
1539 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1540 alloc_flags |= ALLOC_HARDER;
1541 if (gfp_mask & __GFP_HIGH)
1542 alloc_flags |= ALLOC_HIGH;
1543 if (wait)
1544 alloc_flags |= ALLOC_CPUSET;
1545
1546 /*
1547 * Go through the zonelist again. Let __GFP_HIGH and allocations
1548 * coming from realtime tasks go deeper into reserves.
1549 *
1550 * This is the last chance, in general, before the goto nopage.
1551 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1552 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1553 */
1554 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1555 high_zoneidx, alloc_flags);
1556 if (page)
1557 goto got_pg;
1558
1559 /* This allocation should allow future memory freeing. */
1560
1561 rebalance:
1562 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1563 && !in_interrupt()) {
1564 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1565 nofail_alloc:
1566 /* go through the zonelist yet again, ignoring mins */
1567 page = get_page_from_freelist(gfp_mask, nodemask, order,
1568 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1569 if (page)
1570 goto got_pg;
1571 if (gfp_mask & __GFP_NOFAIL) {
1572 congestion_wait(WRITE, HZ/50);
1573 goto nofail_alloc;
1574 }
1575 }
1576 goto nopage;
1577 }
1578
1579 /* Atomic allocations - we can't balance anything */
1580 if (!wait)
1581 goto nopage;
1582
1583 cond_resched();
1584
1585 /* We now go into synchronous reclaim */
1586 cpuset_memory_pressure_bump();
1587 /*
1588 * The task's cpuset might have expanded its set of allowable nodes
1589 */
1590 cpuset_update_task_memory_state();
1591 p->flags |= PF_MEMALLOC;
1592
1593 lockdep_set_current_reclaim_state(gfp_mask);
1594 reclaim_state.reclaimed_slab = 0;
1595 p->reclaim_state = &reclaim_state;
1596
1597 did_some_progress = try_to_free_pages(zonelist, order,
1598 gfp_mask, nodemask);
1599
1600 p->reclaim_state = NULL;
1601 lockdep_clear_current_reclaim_state();
1602 p->flags &= ~PF_MEMALLOC;
1603
1604 cond_resched();
1605
1606 if (order != 0)
1607 drain_all_pages();
1608
1609 if (likely(did_some_progress)) {
1610 page = get_page_from_freelist(gfp_mask, nodemask, order,
1611 zonelist, high_zoneidx, alloc_flags);
1612 if (page)
1613 goto got_pg;
1614 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1615 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1616 schedule_timeout_uninterruptible(1);
1617 goto restart;
1618 }
1619
1620 /*
1621 * Go through the zonelist yet one more time, keep
1622 * very high watermark here, this is only to catch
1623 * a parallel oom killing, we must fail if we're still
1624 * under heavy pressure.
1625 */
1626 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1627 order, zonelist, high_zoneidx,
1628 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1629 if (page) {
1630 clear_zonelist_oom(zonelist, gfp_mask);
1631 goto got_pg;
1632 }
1633
1634 /* The OOM killer will not help higher order allocs so fail */
1635 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1636 clear_zonelist_oom(zonelist, gfp_mask);
1637 goto nopage;
1638 }
1639
1640 out_of_memory(zonelist, gfp_mask, order);
1641 clear_zonelist_oom(zonelist, gfp_mask);
1642 goto restart;
1643 }
1644
1645 /*
1646 * Don't let big-order allocations loop unless the caller explicitly
1647 * requests that. Wait for some write requests to complete then retry.
1648 *
1649 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1650 * means __GFP_NOFAIL, but that may not be true in other
1651 * implementations.
1652 *
1653 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1654 * specified, then we retry until we no longer reclaim any pages
1655 * (above), or we've reclaimed an order of pages at least as
1656 * large as the allocation's order. In both cases, if the
1657 * allocation still fails, we stop retrying.
1658 */
1659 pages_reclaimed += did_some_progress;
1660 do_retry = 0;
1661 if (!(gfp_mask & __GFP_NORETRY)) {
1662 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1663 do_retry = 1;
1664 } else {
1665 if (gfp_mask & __GFP_REPEAT &&
1666 pages_reclaimed < (1 << order))
1667 do_retry = 1;
1668 }
1669 if (gfp_mask & __GFP_NOFAIL)
1670 do_retry = 1;
1671 }
1672 if (do_retry) {
1673 congestion_wait(WRITE, HZ/50);
1674 goto rebalance;
1675 }
1676
1677 nopage:
1678 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1679 printk(KERN_WARNING "%s: page allocation failure."
1680 " order:%d, mode:0x%x\n",
1681 p->comm, order, gfp_mask);
1682 dump_stack();
1683 show_mem();
1684 }
1685 return page;
1686 got_pg:
1687 if (kmemcheck_enabled)
1688 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1689 return page;
1690 }
1691 EXPORT_SYMBOL(__alloc_pages_internal);
1692
1693 /*
1694 * Common helper functions.
1695 */
1696 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1697 {
1698 struct page * page;
1699 page = alloc_pages(gfp_mask, order);
1700 if (!page)
1701 return 0;
1702 return (unsigned long) page_address(page);
1703 }
1704
1705 EXPORT_SYMBOL(__get_free_pages);
1706
1707 unsigned long get_zeroed_page(gfp_t gfp_mask)
1708 {
1709 struct page * page;
1710
1711 /*
1712 * get_zeroed_page() returns a 32-bit address, which cannot represent
1713 * a highmem page
1714 */
1715 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1716
1717 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1718 if (page)
1719 return (unsigned long) page_address(page);
1720 return 0;
1721 }
1722
1723 EXPORT_SYMBOL(get_zeroed_page);
1724
1725 void __pagevec_free(struct pagevec *pvec)
1726 {
1727 int i = pagevec_count(pvec);
1728
1729 while (--i >= 0)
1730 free_hot_cold_page(pvec->pages[i], pvec->cold);
1731 }
1732
1733 void __free_pages(struct page *page, unsigned int order)
1734 {
1735 if (put_page_testzero(page)) {
1736 if (order == 0)
1737 free_hot_page(page);
1738 else
1739 __free_pages_ok(page, order);
1740 }
1741 }
1742
1743 EXPORT_SYMBOL(__free_pages);
1744
1745 void free_pages(unsigned long addr, unsigned int order)
1746 {
1747 if (addr != 0) {
1748 VM_BUG_ON(!virt_addr_valid((void *)addr));
1749 __free_pages(virt_to_page((void *)addr), order);
1750 }
1751 }
1752
1753 EXPORT_SYMBOL(free_pages);
1754
1755 /**
1756 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1757 * @size: the number of bytes to allocate
1758 * @gfp_mask: GFP flags for the allocation
1759 *
1760 * This function is similar to alloc_pages(), except that it allocates the
1761 * minimum number of pages to satisfy the request. alloc_pages() can only
1762 * allocate memory in power-of-two pages.
1763 *
1764 * This function is also limited by MAX_ORDER.
1765 *
1766 * Memory allocated by this function must be released by free_pages_exact().
1767 */
1768 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1769 {
1770 unsigned int order = get_order(size);
1771 unsigned long addr;
1772
1773 addr = __get_free_pages(gfp_mask, order);
1774 if (addr) {
1775 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1776 unsigned long used = addr + PAGE_ALIGN(size);
1777
1778 split_page(virt_to_page(addr), order);
1779 while (used < alloc_end) {
1780 free_page(used);
1781 used += PAGE_SIZE;
1782 }
1783 }
1784
1785 return (void *)addr;
1786 }
1787 EXPORT_SYMBOL(alloc_pages_exact);
1788
1789 /**
1790 * free_pages_exact - release memory allocated via alloc_pages_exact()
1791 * @virt: the value returned by alloc_pages_exact.
1792 * @size: size of allocation, same value as passed to alloc_pages_exact().
1793 *
1794 * Release the memory allocated by a previous call to alloc_pages_exact.
1795 */
1796 void free_pages_exact(void *virt, size_t size)
1797 {
1798 unsigned long addr = (unsigned long)virt;
1799 unsigned long end = addr + PAGE_ALIGN(size);
1800
1801 while (addr < end) {
1802 free_page(addr);
1803 addr += PAGE_SIZE;
1804 }
1805 }
1806 EXPORT_SYMBOL(free_pages_exact);
1807
1808 static unsigned int nr_free_zone_pages(int offset)
1809 {
1810 struct zoneref *z;
1811 struct zone *zone;
1812
1813 /* Just pick one node, since fallback list is circular */
1814 unsigned int sum = 0;
1815
1816 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1817
1818 for_each_zone_zonelist(zone, z, zonelist, offset) {
1819 unsigned long size = zone->present_pages;
1820 unsigned long high = zone->pages_high;
1821 if (size > high)
1822 sum += size - high;
1823 }
1824
1825 return sum;
1826 }
1827
1828 /*
1829 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1830 */
1831 unsigned int nr_free_buffer_pages(void)
1832 {
1833 return nr_free_zone_pages(gfp_zone(GFP_USER));
1834 }
1835 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1836
1837 /*
1838 * Amount of free RAM allocatable within all zones
1839 */
1840 unsigned int nr_free_pagecache_pages(void)
1841 {
1842 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1843 }
1844
1845 static inline void show_node(struct zone *zone)
1846 {
1847 if (NUMA_BUILD)
1848 printk("Node %d ", zone_to_nid(zone));
1849 }
1850
1851 void si_meminfo(struct sysinfo *val)
1852 {
1853 val->totalram = totalram_pages;
1854 val->sharedram = 0;
1855 val->freeram = global_page_state(NR_FREE_PAGES);
1856 val->bufferram = nr_blockdev_pages();
1857 val->totalhigh = totalhigh_pages;
1858 val->freehigh = nr_free_highpages();
1859 val->mem_unit = PAGE_SIZE;
1860 }
1861
1862 EXPORT_SYMBOL(si_meminfo);
1863
1864 #ifdef CONFIG_NUMA
1865 void si_meminfo_node(struct sysinfo *val, int nid)
1866 {
1867 pg_data_t *pgdat = NODE_DATA(nid);
1868
1869 val->totalram = pgdat->node_present_pages;
1870 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1871 #ifdef CONFIG_HIGHMEM
1872 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1873 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1874 NR_FREE_PAGES);
1875 #else
1876 val->totalhigh = 0;
1877 val->freehigh = 0;
1878 #endif
1879 val->mem_unit = PAGE_SIZE;
1880 }
1881 #endif
1882
1883 #define K(x) ((x) << (PAGE_SHIFT-10))
1884
1885 /*
1886 * Show free area list (used inside shift_scroll-lock stuff)
1887 * We also calculate the percentage fragmentation. We do this by counting the
1888 * memory on each free list with the exception of the first item on the list.
1889 */
1890 void show_free_areas(void)
1891 {
1892 int cpu;
1893 struct zone *zone;
1894
1895 for_each_populated_zone(zone) {
1896 show_node(zone);
1897 printk("%s per-cpu:\n", zone->name);
1898
1899 for_each_online_cpu(cpu) {
1900 struct per_cpu_pageset *pageset;
1901
1902 pageset = zone_pcp(zone, cpu);
1903
1904 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1905 cpu, pageset->pcp.high,
1906 pageset->pcp.batch, pageset->pcp.count);
1907 }
1908 }
1909
1910 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1911 " inactive_file:%lu"
1912 //TODO: check/adjust line lengths
1913 #ifdef CONFIG_UNEVICTABLE_LRU
1914 " unevictable:%lu"
1915 #endif
1916 " dirty:%lu writeback:%lu unstable:%lu\n"
1917 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1918 global_page_state(NR_ACTIVE_ANON),
1919 global_page_state(NR_ACTIVE_FILE),
1920 global_page_state(NR_INACTIVE_ANON),
1921 global_page_state(NR_INACTIVE_FILE),
1922 #ifdef CONFIG_UNEVICTABLE_LRU
1923 global_page_state(NR_UNEVICTABLE),
1924 #endif
1925 global_page_state(NR_FILE_DIRTY),
1926 global_page_state(NR_WRITEBACK),
1927 global_page_state(NR_UNSTABLE_NFS),
1928 global_page_state(NR_FREE_PAGES),
1929 global_page_state(NR_SLAB_RECLAIMABLE) +
1930 global_page_state(NR_SLAB_UNRECLAIMABLE),
1931 global_page_state(NR_FILE_MAPPED),
1932 global_page_state(NR_PAGETABLE),
1933 global_page_state(NR_BOUNCE));
1934
1935 for_each_populated_zone(zone) {
1936 int i;
1937
1938 show_node(zone);
1939 printk("%s"
1940 " free:%lukB"
1941 " min:%lukB"
1942 " low:%lukB"
1943 " high:%lukB"
1944 " active_anon:%lukB"
1945 " inactive_anon:%lukB"
1946 " active_file:%lukB"
1947 " inactive_file:%lukB"
1948 #ifdef CONFIG_UNEVICTABLE_LRU
1949 " unevictable:%lukB"
1950 #endif
1951 " present:%lukB"
1952 " pages_scanned:%lu"
1953 " all_unreclaimable? %s"
1954 "\n",
1955 zone->name,
1956 K(zone_page_state(zone, NR_FREE_PAGES)),
1957 K(zone->pages_min),
1958 K(zone->pages_low),
1959 K(zone->pages_high),
1960 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1961 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1962 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1963 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1964 #ifdef CONFIG_UNEVICTABLE_LRU
1965 K(zone_page_state(zone, NR_UNEVICTABLE)),
1966 #endif
1967 K(zone->present_pages),
1968 zone->pages_scanned,
1969 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1970 );
1971 printk("lowmem_reserve[]:");
1972 for (i = 0; i < MAX_NR_ZONES; i++)
1973 printk(" %lu", zone->lowmem_reserve[i]);
1974 printk("\n");
1975 }
1976
1977 for_each_populated_zone(zone) {
1978 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1979
1980 show_node(zone);
1981 printk("%s: ", zone->name);
1982
1983 spin_lock_irqsave(&zone->lock, flags);
1984 for (order = 0; order < MAX_ORDER; order++) {
1985 nr[order] = zone->free_area[order].nr_free;
1986 total += nr[order] << order;
1987 }
1988 spin_unlock_irqrestore(&zone->lock, flags);
1989 for (order = 0; order < MAX_ORDER; order++)
1990 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1991 printk("= %lukB\n", K(total));
1992 }
1993
1994 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1995
1996 show_swap_cache_info();
1997 }
1998
1999 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2000 {
2001 zoneref->zone = zone;
2002 zoneref->zone_idx = zone_idx(zone);
2003 }
2004
2005 /*
2006 * Builds allocation fallback zone lists.
2007 *
2008 * Add all populated zones of a node to the zonelist.
2009 */
2010 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2011 int nr_zones, enum zone_type zone_type)
2012 {
2013 struct zone *zone;
2014
2015 BUG_ON(zone_type >= MAX_NR_ZONES);
2016 zone_type++;
2017
2018 do {
2019 zone_type--;
2020 zone = pgdat->node_zones + zone_type;
2021 if (populated_zone(zone)) {
2022 zoneref_set_zone(zone,
2023 &zonelist->_zonerefs[nr_zones++]);
2024 check_highest_zone(zone_type);
2025 }
2026
2027 } while (zone_type);
2028 return nr_zones;
2029 }
2030
2031
2032 /*
2033 * zonelist_order:
2034 * 0 = automatic detection of better ordering.
2035 * 1 = order by ([node] distance, -zonetype)
2036 * 2 = order by (-zonetype, [node] distance)
2037 *
2038 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2039 * the same zonelist. So only NUMA can configure this param.
2040 */
2041 #define ZONELIST_ORDER_DEFAULT 0
2042 #define ZONELIST_ORDER_NODE 1
2043 #define ZONELIST_ORDER_ZONE 2
2044
2045 /* zonelist order in the kernel.
2046 * set_zonelist_order() will set this to NODE or ZONE.
2047 */
2048 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2049 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2050
2051
2052 #ifdef CONFIG_NUMA
2053 /* The value user specified ....changed by config */
2054 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2055 /* string for sysctl */
2056 #define NUMA_ZONELIST_ORDER_LEN 16
2057 char numa_zonelist_order[16] = "default";
2058
2059 /*
2060 * interface for configure zonelist ordering.
2061 * command line option "numa_zonelist_order"
2062 * = "[dD]efault - default, automatic configuration.
2063 * = "[nN]ode - order by node locality, then by zone within node
2064 * = "[zZ]one - order by zone, then by locality within zone
2065 */
2066
2067 static int __parse_numa_zonelist_order(char *s)
2068 {
2069 if (*s == 'd' || *s == 'D') {
2070 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2071 } else if (*s == 'n' || *s == 'N') {
2072 user_zonelist_order = ZONELIST_ORDER_NODE;
2073 } else if (*s == 'z' || *s == 'Z') {
2074 user_zonelist_order = ZONELIST_ORDER_ZONE;
2075 } else {
2076 printk(KERN_WARNING
2077 "Ignoring invalid numa_zonelist_order value: "
2078 "%s\n", s);
2079 return -EINVAL;
2080 }
2081 return 0;
2082 }
2083
2084 static __init int setup_numa_zonelist_order(char *s)
2085 {
2086 if (s)
2087 return __parse_numa_zonelist_order(s);
2088 return 0;
2089 }
2090 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2091
2092 /*
2093 * sysctl handler for numa_zonelist_order
2094 */
2095 int numa_zonelist_order_handler(ctl_table *table, int write,
2096 struct file *file, void __user *buffer, size_t *length,
2097 loff_t *ppos)
2098 {
2099 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2100 int ret;
2101
2102 if (write)
2103 strncpy(saved_string, (char*)table->data,
2104 NUMA_ZONELIST_ORDER_LEN);
2105 ret = proc_dostring(table, write, file, buffer, length, ppos);
2106 if (ret)
2107 return ret;
2108 if (write) {
2109 int oldval = user_zonelist_order;
2110 if (__parse_numa_zonelist_order((char*)table->data)) {
2111 /*
2112 * bogus value. restore saved string
2113 */
2114 strncpy((char*)table->data, saved_string,
2115 NUMA_ZONELIST_ORDER_LEN);
2116 user_zonelist_order = oldval;
2117 } else if (oldval != user_zonelist_order)
2118 build_all_zonelists();
2119 }
2120 return 0;
2121 }
2122
2123
2124 #define MAX_NODE_LOAD (num_online_nodes())
2125 static int node_load[MAX_NUMNODES];
2126
2127 /**
2128 * find_next_best_node - find the next node that should appear in a given node's fallback list
2129 * @node: node whose fallback list we're appending
2130 * @used_node_mask: nodemask_t of already used nodes
2131 *
2132 * We use a number of factors to determine which is the next node that should
2133 * appear on a given node's fallback list. The node should not have appeared
2134 * already in @node's fallback list, and it should be the next closest node
2135 * according to the distance array (which contains arbitrary distance values
2136 * from each node to each node in the system), and should also prefer nodes
2137 * with no CPUs, since presumably they'll have very little allocation pressure
2138 * on them otherwise.
2139 * It returns -1 if no node is found.
2140 */
2141 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2142 {
2143 int n, val;
2144 int min_val = INT_MAX;
2145 int best_node = -1;
2146 const struct cpumask *tmp = cpumask_of_node(0);
2147
2148 /* Use the local node if we haven't already */
2149 if (!node_isset(node, *used_node_mask)) {
2150 node_set(node, *used_node_mask);
2151 return node;
2152 }
2153
2154 for_each_node_state(n, N_HIGH_MEMORY) {
2155
2156 /* Don't want a node to appear more than once */
2157 if (node_isset(n, *used_node_mask))
2158 continue;
2159
2160 /* Use the distance array to find the distance */
2161 val = node_distance(node, n);
2162
2163 /* Penalize nodes under us ("prefer the next node") */
2164 val += (n < node);
2165
2166 /* Give preference to headless and unused nodes */
2167 tmp = cpumask_of_node(n);
2168 if (!cpumask_empty(tmp))
2169 val += PENALTY_FOR_NODE_WITH_CPUS;
2170
2171 /* Slight preference for less loaded node */
2172 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2173 val += node_load[n];
2174
2175 if (val < min_val) {
2176 min_val = val;
2177 best_node = n;
2178 }
2179 }
2180
2181 if (best_node >= 0)
2182 node_set(best_node, *used_node_mask);
2183
2184 return best_node;
2185 }
2186
2187
2188 /*
2189 * Build zonelists ordered by node and zones within node.
2190 * This results in maximum locality--normal zone overflows into local
2191 * DMA zone, if any--but risks exhausting DMA zone.
2192 */
2193 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2194 {
2195 int j;
2196 struct zonelist *zonelist;
2197
2198 zonelist = &pgdat->node_zonelists[0];
2199 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2200 ;
2201 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2202 MAX_NR_ZONES - 1);
2203 zonelist->_zonerefs[j].zone = NULL;
2204 zonelist->_zonerefs[j].zone_idx = 0;
2205 }
2206
2207 /*
2208 * Build gfp_thisnode zonelists
2209 */
2210 static void build_thisnode_zonelists(pg_data_t *pgdat)
2211 {
2212 int j;
2213 struct zonelist *zonelist;
2214
2215 zonelist = &pgdat->node_zonelists[1];
2216 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2217 zonelist->_zonerefs[j].zone = NULL;
2218 zonelist->_zonerefs[j].zone_idx = 0;
2219 }
2220
2221 /*
2222 * Build zonelists ordered by zone and nodes within zones.
2223 * This results in conserving DMA zone[s] until all Normal memory is
2224 * exhausted, but results in overflowing to remote node while memory
2225 * may still exist in local DMA zone.
2226 */
2227 static int node_order[MAX_NUMNODES];
2228
2229 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2230 {
2231 int pos, j, node;
2232 int zone_type; /* needs to be signed */
2233 struct zone *z;
2234 struct zonelist *zonelist;
2235
2236 zonelist = &pgdat->node_zonelists[0];
2237 pos = 0;
2238 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2239 for (j = 0; j < nr_nodes; j++) {
2240 node = node_order[j];
2241 z = &NODE_DATA(node)->node_zones[zone_type];
2242 if (populated_zone(z)) {
2243 zoneref_set_zone(z,
2244 &zonelist->_zonerefs[pos++]);
2245 check_highest_zone(zone_type);
2246 }
2247 }
2248 }
2249 zonelist->_zonerefs[pos].zone = NULL;
2250 zonelist->_zonerefs[pos].zone_idx = 0;
2251 }
2252
2253 static int default_zonelist_order(void)
2254 {
2255 int nid, zone_type;
2256 unsigned long low_kmem_size,total_size;
2257 struct zone *z;
2258 int average_size;
2259 /*
2260 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2261 * If they are really small and used heavily, the system can fall
2262 * into OOM very easily.
2263 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2264 */
2265 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2266 low_kmem_size = 0;
2267 total_size = 0;
2268 for_each_online_node(nid) {
2269 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2270 z = &NODE_DATA(nid)->node_zones[zone_type];
2271 if (populated_zone(z)) {
2272 if (zone_type < ZONE_NORMAL)
2273 low_kmem_size += z->present_pages;
2274 total_size += z->present_pages;
2275 }
2276 }
2277 }
2278 if (!low_kmem_size || /* there are no DMA area. */
2279 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2280 return ZONELIST_ORDER_NODE;
2281 /*
2282 * look into each node's config.
2283 * If there is a node whose DMA/DMA32 memory is very big area on
2284 * local memory, NODE_ORDER may be suitable.
2285 */
2286 average_size = total_size /
2287 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2288 for_each_online_node(nid) {
2289 low_kmem_size = 0;
2290 total_size = 0;
2291 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2292 z = &NODE_DATA(nid)->node_zones[zone_type];
2293 if (populated_zone(z)) {
2294 if (zone_type < ZONE_NORMAL)
2295 low_kmem_size += z->present_pages;
2296 total_size += z->present_pages;
2297 }
2298 }
2299 if (low_kmem_size &&
2300 total_size > average_size && /* ignore small node */
2301 low_kmem_size > total_size * 70/100)
2302 return ZONELIST_ORDER_NODE;
2303 }
2304 return ZONELIST_ORDER_ZONE;
2305 }
2306
2307 static void set_zonelist_order(void)
2308 {
2309 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2310 current_zonelist_order = default_zonelist_order();
2311 else
2312 current_zonelist_order = user_zonelist_order;
2313 }
2314
2315 static void build_zonelists(pg_data_t *pgdat)
2316 {
2317 int j, node, load;
2318 enum zone_type i;
2319 nodemask_t used_mask;
2320 int local_node, prev_node;
2321 struct zonelist *zonelist;
2322 int order = current_zonelist_order;
2323
2324 /* initialize zonelists */
2325 for (i = 0; i < MAX_ZONELISTS; i++) {
2326 zonelist = pgdat->node_zonelists + i;
2327 zonelist->_zonerefs[0].zone = NULL;
2328 zonelist->_zonerefs[0].zone_idx = 0;
2329 }
2330
2331 /* NUMA-aware ordering of nodes */
2332 local_node = pgdat->node_id;
2333 load = num_online_nodes();
2334 prev_node = local_node;
2335 nodes_clear(used_mask);
2336
2337 memset(node_load, 0, sizeof(node_load));
2338 memset(node_order, 0, sizeof(node_order));
2339 j = 0;
2340
2341 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2342 int distance = node_distance(local_node, node);
2343
2344 /*
2345 * If another node is sufficiently far away then it is better
2346 * to reclaim pages in a zone before going off node.
2347 */
2348 if (distance > RECLAIM_DISTANCE)
2349 zone_reclaim_mode = 1;
2350
2351 /*
2352 * We don't want to pressure a particular node.
2353 * So adding penalty to the first node in same
2354 * distance group to make it round-robin.
2355 */
2356 if (distance != node_distance(local_node, prev_node))
2357 node_load[node] = load;
2358
2359 prev_node = node;
2360 load--;
2361 if (order == ZONELIST_ORDER_NODE)
2362 build_zonelists_in_node_order(pgdat, node);
2363 else
2364 node_order[j++] = node; /* remember order */
2365 }
2366
2367 if (order == ZONELIST_ORDER_ZONE) {
2368 /* calculate node order -- i.e., DMA last! */
2369 build_zonelists_in_zone_order(pgdat, j);
2370 }
2371
2372 build_thisnode_zonelists(pgdat);
2373 }
2374
2375 /* Construct the zonelist performance cache - see further mmzone.h */
2376 static void build_zonelist_cache(pg_data_t *pgdat)
2377 {
2378 struct zonelist *zonelist;
2379 struct zonelist_cache *zlc;
2380 struct zoneref *z;
2381
2382 zonelist = &pgdat->node_zonelists[0];
2383 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2384 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2385 for (z = zonelist->_zonerefs; z->zone; z++)
2386 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2387 }
2388
2389
2390 #else /* CONFIG_NUMA */
2391
2392 static void set_zonelist_order(void)
2393 {
2394 current_zonelist_order = ZONELIST_ORDER_ZONE;
2395 }
2396
2397 static void build_zonelists(pg_data_t *pgdat)
2398 {
2399 int node, local_node;
2400 enum zone_type j;
2401 struct zonelist *zonelist;
2402
2403 local_node = pgdat->node_id;
2404
2405 zonelist = &pgdat->node_zonelists[0];
2406 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2407
2408 /*
2409 * Now we build the zonelist so that it contains the zones
2410 * of all the other nodes.
2411 * We don't want to pressure a particular node, so when
2412 * building the zones for node N, we make sure that the
2413 * zones coming right after the local ones are those from
2414 * node N+1 (modulo N)
2415 */
2416 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2417 if (!node_online(node))
2418 continue;
2419 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2420 MAX_NR_ZONES - 1);
2421 }
2422 for (node = 0; node < local_node; node++) {
2423 if (!node_online(node))
2424 continue;
2425 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2426 MAX_NR_ZONES - 1);
2427 }
2428
2429 zonelist->_zonerefs[j].zone = NULL;
2430 zonelist->_zonerefs[j].zone_idx = 0;
2431 }
2432
2433 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2434 static void build_zonelist_cache(pg_data_t *pgdat)
2435 {
2436 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2437 }
2438
2439 #endif /* CONFIG_NUMA */
2440
2441 /* return values int ....just for stop_machine() */
2442 static int __build_all_zonelists(void *dummy)
2443 {
2444 int nid;
2445
2446 for_each_online_node(nid) {
2447 pg_data_t *pgdat = NODE_DATA(nid);
2448
2449 build_zonelists(pgdat);
2450 build_zonelist_cache(pgdat);
2451 }
2452 return 0;
2453 }
2454
2455 void build_all_zonelists(void)
2456 {
2457 set_zonelist_order();
2458
2459 if (system_state == SYSTEM_BOOTING) {
2460 __build_all_zonelists(NULL);
2461 mminit_verify_zonelist();
2462 cpuset_init_current_mems_allowed();
2463 } else {
2464 /* we have to stop all cpus to guarantee there is no user
2465 of zonelist */
2466 stop_machine(__build_all_zonelists, NULL, NULL);
2467 /* cpuset refresh routine should be here */
2468 }
2469 vm_total_pages = nr_free_pagecache_pages();
2470 /*
2471 * Disable grouping by mobility if the number of pages in the
2472 * system is too low to allow the mechanism to work. It would be
2473 * more accurate, but expensive to check per-zone. This check is
2474 * made on memory-hotadd so a system can start with mobility
2475 * disabled and enable it later
2476 */
2477 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2478 page_group_by_mobility_disabled = 1;
2479 else
2480 page_group_by_mobility_disabled = 0;
2481
2482 printk("Built %i zonelists in %s order, mobility grouping %s. "
2483 "Total pages: %ld\n",
2484 num_online_nodes(),
2485 zonelist_order_name[current_zonelist_order],
2486 page_group_by_mobility_disabled ? "off" : "on",
2487 vm_total_pages);
2488 #ifdef CONFIG_NUMA
2489 printk("Policy zone: %s\n", zone_names[policy_zone]);
2490 #endif
2491 }
2492
2493 /*
2494 * Helper functions to size the waitqueue hash table.
2495 * Essentially these want to choose hash table sizes sufficiently
2496 * large so that collisions trying to wait on pages are rare.
2497 * But in fact, the number of active page waitqueues on typical
2498 * systems is ridiculously low, less than 200. So this is even
2499 * conservative, even though it seems large.
2500 *
2501 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2502 * waitqueues, i.e. the size of the waitq table given the number of pages.
2503 */
2504 #define PAGES_PER_WAITQUEUE 256
2505
2506 #ifndef CONFIG_MEMORY_HOTPLUG
2507 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2508 {
2509 unsigned long size = 1;
2510
2511 pages /= PAGES_PER_WAITQUEUE;
2512
2513 while (size < pages)
2514 size <<= 1;
2515
2516 /*
2517 * Once we have dozens or even hundreds of threads sleeping
2518 * on IO we've got bigger problems than wait queue collision.
2519 * Limit the size of the wait table to a reasonable size.
2520 */
2521 size = min(size, 4096UL);
2522
2523 return max(size, 4UL);
2524 }
2525 #else
2526 /*
2527 * A zone's size might be changed by hot-add, so it is not possible to determine
2528 * a suitable size for its wait_table. So we use the maximum size now.
2529 *
2530 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2531 *
2532 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2533 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2534 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2535 *
2536 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2537 * or more by the traditional way. (See above). It equals:
2538 *
2539 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2540 * ia64(16K page size) : = ( 8G + 4M)byte.
2541 * powerpc (64K page size) : = (32G +16M)byte.
2542 */
2543 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2544 {
2545 return 4096UL;
2546 }
2547 #endif
2548
2549 /*
2550 * This is an integer logarithm so that shifts can be used later
2551 * to extract the more random high bits from the multiplicative
2552 * hash function before the remainder is taken.
2553 */
2554 static inline unsigned long wait_table_bits(unsigned long size)
2555 {
2556 return ffz(~size);
2557 }
2558
2559 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2560
2561 /*
2562 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2563 * of blocks reserved is based on zone->pages_min. The memory within the
2564 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2565 * higher will lead to a bigger reserve which will get freed as contiguous
2566 * blocks as reclaim kicks in
2567 */
2568 static void setup_zone_migrate_reserve(struct zone *zone)
2569 {
2570 unsigned long start_pfn, pfn, end_pfn;
2571 struct page *page;
2572 unsigned long reserve, block_migratetype;
2573
2574 /* Get the start pfn, end pfn and the number of blocks to reserve */
2575 start_pfn = zone->zone_start_pfn;
2576 end_pfn = start_pfn + zone->spanned_pages;
2577 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2578 pageblock_order;
2579
2580 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2581 if (!pfn_valid(pfn))
2582 continue;
2583 page = pfn_to_page(pfn);
2584
2585 /* Watch out for overlapping nodes */
2586 if (page_to_nid(page) != zone_to_nid(zone))
2587 continue;
2588
2589 /* Blocks with reserved pages will never free, skip them. */
2590 if (PageReserved(page))
2591 continue;
2592
2593 block_migratetype = get_pageblock_migratetype(page);
2594
2595 /* If this block is reserved, account for it */
2596 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2597 reserve--;
2598 continue;
2599 }
2600
2601 /* Suitable for reserving if this block is movable */
2602 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2603 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2604 move_freepages_block(zone, page, MIGRATE_RESERVE);
2605 reserve--;
2606 continue;
2607 }
2608
2609 /*
2610 * If the reserve is met and this is a previous reserved block,
2611 * take it back
2612 */
2613 if (block_migratetype == MIGRATE_RESERVE) {
2614 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2615 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2616 }
2617 }
2618 }
2619
2620 /*
2621 * Initially all pages are reserved - free ones are freed
2622 * up by free_all_bootmem() once the early boot process is
2623 * done. Non-atomic initialization, single-pass.
2624 */
2625 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2626 unsigned long start_pfn, enum memmap_context context)
2627 {
2628 struct page *page;
2629 unsigned long end_pfn = start_pfn + size;
2630 unsigned long pfn;
2631 struct zone *z;
2632
2633 if (highest_memmap_pfn < end_pfn - 1)
2634 highest_memmap_pfn = end_pfn - 1;
2635
2636 z = &NODE_DATA(nid)->node_zones[zone];
2637 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2638 /*
2639 * There can be holes in boot-time mem_map[]s
2640 * handed to this function. They do not
2641 * exist on hotplugged memory.
2642 */
2643 if (context == MEMMAP_EARLY) {
2644 if (!early_pfn_valid(pfn))
2645 continue;
2646 if (!early_pfn_in_nid(pfn, nid))
2647 continue;
2648 }
2649 page = pfn_to_page(pfn);
2650 set_page_links(page, zone, nid, pfn);
2651 mminit_verify_page_links(page, zone, nid, pfn);
2652 init_page_count(page);
2653 reset_page_mapcount(page);
2654 SetPageReserved(page);
2655 /*
2656 * Mark the block movable so that blocks are reserved for
2657 * movable at startup. This will force kernel allocations
2658 * to reserve their blocks rather than leaking throughout
2659 * the address space during boot when many long-lived
2660 * kernel allocations are made. Later some blocks near
2661 * the start are marked MIGRATE_RESERVE by
2662 * setup_zone_migrate_reserve()
2663 *
2664 * bitmap is created for zone's valid pfn range. but memmap
2665 * can be created for invalid pages (for alignment)
2666 * check here not to call set_pageblock_migratetype() against
2667 * pfn out of zone.
2668 */
2669 if ((z->zone_start_pfn <= pfn)
2670 && (pfn < z->zone_start_pfn + z->spanned_pages)
2671 && !(pfn & (pageblock_nr_pages - 1)))
2672 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2673
2674 INIT_LIST_HEAD(&page->lru);
2675 #ifdef WANT_PAGE_VIRTUAL
2676 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2677 if (!is_highmem_idx(zone))
2678 set_page_address(page, __va(pfn << PAGE_SHIFT));
2679 #endif
2680 }
2681 }
2682
2683 static void __meminit zone_init_free_lists(struct zone *zone)
2684 {
2685 int order, t;
2686 for_each_migratetype_order(order, t) {
2687 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2688 zone->free_area[order].nr_free = 0;
2689 }
2690 }
2691
2692 #ifndef __HAVE_ARCH_MEMMAP_INIT
2693 #define memmap_init(size, nid, zone, start_pfn) \
2694 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2695 #endif
2696
2697 static int zone_batchsize(struct zone *zone)
2698 {
2699 #ifdef CONFIG_MMU
2700 int batch;
2701
2702 /*
2703 * The per-cpu-pages pools are set to around 1000th of the
2704 * size of the zone. But no more than 1/2 of a meg.
2705 *
2706 * OK, so we don't know how big the cache is. So guess.
2707 */
2708 batch = zone->present_pages / 1024;
2709 if (batch * PAGE_SIZE > 512 * 1024)
2710 batch = (512 * 1024) / PAGE_SIZE;
2711 batch /= 4; /* We effectively *= 4 below */
2712 if (batch < 1)
2713 batch = 1;
2714
2715 /*
2716 * Clamp the batch to a 2^n - 1 value. Having a power
2717 * of 2 value was found to be more likely to have
2718 * suboptimal cache aliasing properties in some cases.
2719 *
2720 * For example if 2 tasks are alternately allocating
2721 * batches of pages, one task can end up with a lot
2722 * of pages of one half of the possible page colors
2723 * and the other with pages of the other colors.
2724 */
2725 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2726
2727 return batch;
2728
2729 #else
2730 /* The deferral and batching of frees should be suppressed under NOMMU
2731 * conditions.
2732 *
2733 * The problem is that NOMMU needs to be able to allocate large chunks
2734 * of contiguous memory as there's no hardware page translation to
2735 * assemble apparent contiguous memory from discontiguous pages.
2736 *
2737 * Queueing large contiguous runs of pages for batching, however,
2738 * causes the pages to actually be freed in smaller chunks. As there
2739 * can be a significant delay between the individual batches being
2740 * recycled, this leads to the once large chunks of space being
2741 * fragmented and becoming unavailable for high-order allocations.
2742 */
2743 return 0;
2744 #endif
2745 }
2746
2747 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2748 {
2749 struct per_cpu_pages *pcp;
2750
2751 memset(p, 0, sizeof(*p));
2752
2753 pcp = &p->pcp;
2754 pcp->count = 0;
2755 pcp->high = 6 * batch;
2756 pcp->batch = max(1UL, 1 * batch);
2757 INIT_LIST_HEAD(&pcp->list);
2758 }
2759
2760 /*
2761 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2762 * to the value high for the pageset p.
2763 */
2764
2765 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2766 unsigned long high)
2767 {
2768 struct per_cpu_pages *pcp;
2769
2770 pcp = &p->pcp;
2771 pcp->high = high;
2772 pcp->batch = max(1UL, high/4);
2773 if ((high/4) > (PAGE_SHIFT * 8))
2774 pcp->batch = PAGE_SHIFT * 8;
2775 }
2776
2777
2778 #ifdef CONFIG_NUMA
2779 /*
2780 * Boot pageset table. One per cpu which is going to be used for all
2781 * zones and all nodes. The parameters will be set in such a way
2782 * that an item put on a list will immediately be handed over to
2783 * the buddy list. This is safe since pageset manipulation is done
2784 * with interrupts disabled.
2785 *
2786 * Some NUMA counter updates may also be caught by the boot pagesets.
2787 *
2788 * The boot_pagesets must be kept even after bootup is complete for
2789 * unused processors and/or zones. They do play a role for bootstrapping
2790 * hotplugged processors.
2791 *
2792 * zoneinfo_show() and maybe other functions do
2793 * not check if the processor is online before following the pageset pointer.
2794 * Other parts of the kernel may not check if the zone is available.
2795 */
2796 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2797
2798 /*
2799 * Dynamically allocate memory for the
2800 * per cpu pageset array in struct zone.
2801 */
2802 static int __cpuinit process_zones(int cpu)
2803 {
2804 struct zone *zone, *dzone;
2805 int node = cpu_to_node(cpu);
2806
2807 node_set_state(node, N_CPU); /* this node has a cpu */
2808
2809 for_each_populated_zone(zone) {
2810 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2811 GFP_KERNEL, node);
2812 if (!zone_pcp(zone, cpu))
2813 goto bad;
2814
2815 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2816
2817 if (percpu_pagelist_fraction)
2818 setup_pagelist_highmark(zone_pcp(zone, cpu),
2819 (zone->present_pages / percpu_pagelist_fraction));
2820 }
2821
2822 return 0;
2823 bad:
2824 for_each_zone(dzone) {
2825 if (!populated_zone(dzone))
2826 continue;
2827 if (dzone == zone)
2828 break;
2829 kfree(zone_pcp(dzone, cpu));
2830 zone_pcp(dzone, cpu) = NULL;
2831 }
2832 return -ENOMEM;
2833 }
2834
2835 static inline void free_zone_pagesets(int cpu)
2836 {
2837 struct zone *zone;
2838
2839 for_each_zone(zone) {
2840 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2841
2842 /* Free per_cpu_pageset if it is slab allocated */
2843 if (pset != &boot_pageset[cpu])
2844 kfree(pset);
2845 zone_pcp(zone, cpu) = NULL;
2846 }
2847 }
2848
2849 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2850 unsigned long action,
2851 void *hcpu)
2852 {
2853 int cpu = (long)hcpu;
2854 int ret = NOTIFY_OK;
2855
2856 switch (action) {
2857 case CPU_UP_PREPARE:
2858 case CPU_UP_PREPARE_FROZEN:
2859 if (process_zones(cpu))
2860 ret = NOTIFY_BAD;
2861 break;
2862 case CPU_UP_CANCELED:
2863 case CPU_UP_CANCELED_FROZEN:
2864 case CPU_DEAD:
2865 case CPU_DEAD_FROZEN:
2866 free_zone_pagesets(cpu);
2867 break;
2868 default:
2869 break;
2870 }
2871 return ret;
2872 }
2873
2874 static struct notifier_block __cpuinitdata pageset_notifier =
2875 { &pageset_cpuup_callback, NULL, 0 };
2876
2877 void __init setup_per_cpu_pageset(void)
2878 {
2879 int err;
2880
2881 /* Initialize per_cpu_pageset for cpu 0.
2882 * A cpuup callback will do this for every cpu
2883 * as it comes online
2884 */
2885 err = process_zones(smp_processor_id());
2886 BUG_ON(err);
2887 register_cpu_notifier(&pageset_notifier);
2888 }
2889
2890 #endif
2891
2892 static noinline __init_refok
2893 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2894 {
2895 int i;
2896 struct pglist_data *pgdat = zone->zone_pgdat;
2897 size_t alloc_size;
2898
2899 /*
2900 * The per-page waitqueue mechanism uses hashed waitqueues
2901 * per zone.
2902 */
2903 zone->wait_table_hash_nr_entries =
2904 wait_table_hash_nr_entries(zone_size_pages);
2905 zone->wait_table_bits =
2906 wait_table_bits(zone->wait_table_hash_nr_entries);
2907 alloc_size = zone->wait_table_hash_nr_entries
2908 * sizeof(wait_queue_head_t);
2909
2910 if (!slab_is_available()) {
2911 zone->wait_table = (wait_queue_head_t *)
2912 alloc_bootmem_node(pgdat, alloc_size);
2913 } else {
2914 /*
2915 * This case means that a zone whose size was 0 gets new memory
2916 * via memory hot-add.
2917 * But it may be the case that a new node was hot-added. In
2918 * this case vmalloc() will not be able to use this new node's
2919 * memory - this wait_table must be initialized to use this new
2920 * node itself as well.
2921 * To use this new node's memory, further consideration will be
2922 * necessary.
2923 */
2924 zone->wait_table = vmalloc(alloc_size);
2925 }
2926 if (!zone->wait_table)
2927 return -ENOMEM;
2928
2929 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2930 init_waitqueue_head(zone->wait_table + i);
2931
2932 return 0;
2933 }
2934
2935 static __meminit void zone_pcp_init(struct zone *zone)
2936 {
2937 int cpu;
2938 unsigned long batch = zone_batchsize(zone);
2939
2940 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2941 #ifdef CONFIG_NUMA
2942 /* Early boot. Slab allocator not functional yet */
2943 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2944 setup_pageset(&boot_pageset[cpu],0);
2945 #else
2946 setup_pageset(zone_pcp(zone,cpu), batch);
2947 #endif
2948 }
2949 if (zone->present_pages)
2950 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2951 zone->name, zone->present_pages, batch);
2952 }
2953
2954 __meminit int init_currently_empty_zone(struct zone *zone,
2955 unsigned long zone_start_pfn,
2956 unsigned long size,
2957 enum memmap_context context)
2958 {
2959 struct pglist_data *pgdat = zone->zone_pgdat;
2960 int ret;
2961 ret = zone_wait_table_init(zone, size);
2962 if (ret)
2963 return ret;
2964 pgdat->nr_zones = zone_idx(zone) + 1;
2965
2966 zone->zone_start_pfn = zone_start_pfn;
2967
2968 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2969 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2970 pgdat->node_id,
2971 (unsigned long)zone_idx(zone),
2972 zone_start_pfn, (zone_start_pfn + size));
2973
2974 zone_init_free_lists(zone);
2975
2976 return 0;
2977 }
2978
2979 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2980 /*
2981 * Basic iterator support. Return the first range of PFNs for a node
2982 * Note: nid == MAX_NUMNODES returns first region regardless of node
2983 */
2984 static int __meminit first_active_region_index_in_nid(int nid)
2985 {
2986 int i;
2987
2988 for (i = 0; i < nr_nodemap_entries; i++)
2989 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2990 return i;
2991
2992 return -1;
2993 }
2994
2995 /*
2996 * Basic iterator support. Return the next active range of PFNs for a node
2997 * Note: nid == MAX_NUMNODES returns next region regardless of node
2998 */
2999 static int __meminit next_active_region_index_in_nid(int index, int nid)
3000 {
3001 for (index = index + 1; index < nr_nodemap_entries; index++)
3002 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3003 return index;
3004
3005 return -1;
3006 }
3007
3008 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3009 /*
3010 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3011 * Architectures may implement their own version but if add_active_range()
3012 * was used and there are no special requirements, this is a convenient
3013 * alternative
3014 */
3015 int __meminit __early_pfn_to_nid(unsigned long pfn)
3016 {
3017 int i;
3018
3019 for (i = 0; i < nr_nodemap_entries; i++) {
3020 unsigned long start_pfn = early_node_map[i].start_pfn;
3021 unsigned long end_pfn = early_node_map[i].end_pfn;
3022
3023 if (start_pfn <= pfn && pfn < end_pfn)
3024 return early_node_map[i].nid;
3025 }
3026 /* This is a memory hole */
3027 return -1;
3028 }
3029 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3030
3031 int __meminit early_pfn_to_nid(unsigned long pfn)
3032 {
3033 int nid;
3034
3035 nid = __early_pfn_to_nid(pfn);
3036 if (nid >= 0)
3037 return nid;
3038 /* just returns 0 */
3039 return 0;
3040 }
3041
3042 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3043 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3044 {
3045 int nid;
3046
3047 nid = __early_pfn_to_nid(pfn);
3048 if (nid >= 0 && nid != node)
3049 return false;
3050 return true;
3051 }
3052 #endif
3053
3054 /* Basic iterator support to walk early_node_map[] */
3055 #define for_each_active_range_index_in_nid(i, nid) \
3056 for (i = first_active_region_index_in_nid(nid); i != -1; \
3057 i = next_active_region_index_in_nid(i, nid))
3058
3059 /**
3060 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3061 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3062 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3063 *
3064 * If an architecture guarantees that all ranges registered with
3065 * add_active_ranges() contain no holes and may be freed, this
3066 * this function may be used instead of calling free_bootmem() manually.
3067 */
3068 void __init free_bootmem_with_active_regions(int nid,
3069 unsigned long max_low_pfn)
3070 {
3071 int i;
3072
3073 for_each_active_range_index_in_nid(i, nid) {
3074 unsigned long size_pages = 0;
3075 unsigned long end_pfn = early_node_map[i].end_pfn;
3076
3077 if (early_node_map[i].start_pfn >= max_low_pfn)
3078 continue;
3079
3080 if (end_pfn > max_low_pfn)
3081 end_pfn = max_low_pfn;
3082
3083 size_pages = end_pfn - early_node_map[i].start_pfn;
3084 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3085 PFN_PHYS(early_node_map[i].start_pfn),
3086 size_pages << PAGE_SHIFT);
3087 }
3088 }
3089
3090 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3091 {
3092 int i;
3093 int ret;
3094
3095 for_each_active_range_index_in_nid(i, nid) {
3096 ret = work_fn(early_node_map[i].start_pfn,
3097 early_node_map[i].end_pfn, data);
3098 if (ret)
3099 break;
3100 }
3101 }
3102 /**
3103 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3104 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3105 *
3106 * If an architecture guarantees that all ranges registered with
3107 * add_active_ranges() contain no holes and may be freed, this
3108 * function may be used instead of calling memory_present() manually.
3109 */
3110 void __init sparse_memory_present_with_active_regions(int nid)
3111 {
3112 int i;
3113
3114 for_each_active_range_index_in_nid(i, nid)
3115 memory_present(early_node_map[i].nid,
3116 early_node_map[i].start_pfn,
3117 early_node_map[i].end_pfn);
3118 }
3119
3120 /**
3121 * get_pfn_range_for_nid - Return the start and end page frames for a node
3122 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3123 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3124 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3125 *
3126 * It returns the start and end page frame of a node based on information
3127 * provided by an arch calling add_active_range(). If called for a node
3128 * with no available memory, a warning is printed and the start and end
3129 * PFNs will be 0.
3130 */
3131 void __meminit get_pfn_range_for_nid(unsigned int nid,
3132 unsigned long *start_pfn, unsigned long *end_pfn)
3133 {
3134 int i;
3135 *start_pfn = -1UL;
3136 *end_pfn = 0;
3137
3138 for_each_active_range_index_in_nid(i, nid) {
3139 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3140 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3141 }
3142
3143 if (*start_pfn == -1UL)
3144 *start_pfn = 0;
3145 }
3146
3147 /*
3148 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3149 * assumption is made that zones within a node are ordered in monotonic
3150 * increasing memory addresses so that the "highest" populated zone is used
3151 */
3152 static void __init find_usable_zone_for_movable(void)
3153 {
3154 int zone_index;
3155 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3156 if (zone_index == ZONE_MOVABLE)
3157 continue;
3158
3159 if (arch_zone_highest_possible_pfn[zone_index] >
3160 arch_zone_lowest_possible_pfn[zone_index])
3161 break;
3162 }
3163
3164 VM_BUG_ON(zone_index == -1);
3165 movable_zone = zone_index;
3166 }
3167
3168 /*
3169 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3170 * because it is sized independant of architecture. Unlike the other zones,
3171 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3172 * in each node depending on the size of each node and how evenly kernelcore
3173 * is distributed. This helper function adjusts the zone ranges
3174 * provided by the architecture for a given node by using the end of the
3175 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3176 * zones within a node are in order of monotonic increases memory addresses
3177 */
3178 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3179 unsigned long zone_type,
3180 unsigned long node_start_pfn,
3181 unsigned long node_end_pfn,
3182 unsigned long *zone_start_pfn,
3183 unsigned long *zone_end_pfn)
3184 {
3185 /* Only adjust if ZONE_MOVABLE is on this node */
3186 if (zone_movable_pfn[nid]) {
3187 /* Size ZONE_MOVABLE */
3188 if (zone_type == ZONE_MOVABLE) {
3189 *zone_start_pfn = zone_movable_pfn[nid];
3190 *zone_end_pfn = min(node_end_pfn,
3191 arch_zone_highest_possible_pfn[movable_zone]);
3192
3193 /* Adjust for ZONE_MOVABLE starting within this range */
3194 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3195 *zone_end_pfn > zone_movable_pfn[nid]) {
3196 *zone_end_pfn = zone_movable_pfn[nid];
3197
3198 /* Check if this whole range is within ZONE_MOVABLE */
3199 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3200 *zone_start_pfn = *zone_end_pfn;
3201 }
3202 }
3203
3204 /*
3205 * Return the number of pages a zone spans in a node, including holes
3206 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3207 */
3208 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3209 unsigned long zone_type,
3210 unsigned long *ignored)
3211 {
3212 unsigned long node_start_pfn, node_end_pfn;
3213 unsigned long zone_start_pfn, zone_end_pfn;
3214
3215 /* Get the start and end of the node and zone */
3216 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3217 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3218 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3219 adjust_zone_range_for_zone_movable(nid, zone_type,
3220 node_start_pfn, node_end_pfn,
3221 &zone_start_pfn, &zone_end_pfn);
3222
3223 /* Check that this node has pages within the zone's required range */
3224 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3225 return 0;
3226
3227 /* Move the zone boundaries inside the node if necessary */
3228 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3229 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3230
3231 /* Return the spanned pages */
3232 return zone_end_pfn - zone_start_pfn;
3233 }
3234
3235 /*
3236 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3237 * then all holes in the requested range will be accounted for.
3238 */
3239 static unsigned long __meminit __absent_pages_in_range(int nid,
3240 unsigned long range_start_pfn,
3241 unsigned long range_end_pfn)
3242 {
3243 int i = 0;
3244 unsigned long prev_end_pfn = 0, hole_pages = 0;
3245 unsigned long start_pfn;
3246
3247 /* Find the end_pfn of the first active range of pfns in the node */
3248 i = first_active_region_index_in_nid(nid);
3249 if (i == -1)
3250 return 0;
3251
3252 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3253
3254 /* Account for ranges before physical memory on this node */
3255 if (early_node_map[i].start_pfn > range_start_pfn)
3256 hole_pages = prev_end_pfn - range_start_pfn;
3257
3258 /* Find all holes for the zone within the node */
3259 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3260
3261 /* No need to continue if prev_end_pfn is outside the zone */
3262 if (prev_end_pfn >= range_end_pfn)
3263 break;
3264
3265 /* Make sure the end of the zone is not within the hole */
3266 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3267 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3268
3269 /* Update the hole size cound and move on */
3270 if (start_pfn > range_start_pfn) {
3271 BUG_ON(prev_end_pfn > start_pfn);
3272 hole_pages += start_pfn - prev_end_pfn;
3273 }
3274 prev_end_pfn = early_node_map[i].end_pfn;
3275 }
3276
3277 /* Account for ranges past physical memory on this node */
3278 if (range_end_pfn > prev_end_pfn)
3279 hole_pages += range_end_pfn -
3280 max(range_start_pfn, prev_end_pfn);
3281
3282 return hole_pages;
3283 }
3284
3285 /**
3286 * absent_pages_in_range - Return number of page frames in holes within a range
3287 * @start_pfn: The start PFN to start searching for holes
3288 * @end_pfn: The end PFN to stop searching for holes
3289 *
3290 * It returns the number of pages frames in memory holes within a range.
3291 */
3292 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3293 unsigned long end_pfn)
3294 {
3295 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3296 }
3297
3298 /* Return the number of page frames in holes in a zone on a node */
3299 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3300 unsigned long zone_type,
3301 unsigned long *ignored)
3302 {
3303 unsigned long node_start_pfn, node_end_pfn;
3304 unsigned long zone_start_pfn, zone_end_pfn;
3305
3306 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3307 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3308 node_start_pfn);
3309 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3310 node_end_pfn);
3311
3312 adjust_zone_range_for_zone_movable(nid, zone_type,
3313 node_start_pfn, node_end_pfn,
3314 &zone_start_pfn, &zone_end_pfn);
3315 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3316 }
3317
3318 #else
3319 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3320 unsigned long zone_type,
3321 unsigned long *zones_size)
3322 {
3323 return zones_size[zone_type];
3324 }
3325
3326 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3327 unsigned long zone_type,
3328 unsigned long *zholes_size)
3329 {
3330 if (!zholes_size)
3331 return 0;
3332
3333 return zholes_size[zone_type];
3334 }
3335
3336 #endif
3337
3338 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3339 unsigned long *zones_size, unsigned long *zholes_size)
3340 {
3341 unsigned long realtotalpages, totalpages = 0;
3342 enum zone_type i;
3343
3344 for (i = 0; i < MAX_NR_ZONES; i++)
3345 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3346 zones_size);
3347 pgdat->node_spanned_pages = totalpages;
3348
3349 realtotalpages = totalpages;
3350 for (i = 0; i < MAX_NR_ZONES; i++)
3351 realtotalpages -=
3352 zone_absent_pages_in_node(pgdat->node_id, i,
3353 zholes_size);
3354 pgdat->node_present_pages = realtotalpages;
3355 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3356 realtotalpages);
3357 }
3358
3359 #ifndef CONFIG_SPARSEMEM
3360 /*
3361 * Calculate the size of the zone->blockflags rounded to an unsigned long
3362 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3363 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3364 * round what is now in bits to nearest long in bits, then return it in
3365 * bytes.
3366 */
3367 static unsigned long __init usemap_size(unsigned long zonesize)
3368 {
3369 unsigned long usemapsize;
3370
3371 usemapsize = roundup(zonesize, pageblock_nr_pages);
3372 usemapsize = usemapsize >> pageblock_order;
3373 usemapsize *= NR_PAGEBLOCK_BITS;
3374 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3375
3376 return usemapsize / 8;
3377 }
3378
3379 static void __init setup_usemap(struct pglist_data *pgdat,
3380 struct zone *zone, unsigned long zonesize)
3381 {
3382 unsigned long usemapsize = usemap_size(zonesize);
3383 zone->pageblock_flags = NULL;
3384 if (usemapsize)
3385 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3386 }
3387 #else
3388 static void inline setup_usemap(struct pglist_data *pgdat,
3389 struct zone *zone, unsigned long zonesize) {}
3390 #endif /* CONFIG_SPARSEMEM */
3391
3392 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3393
3394 /* Return a sensible default order for the pageblock size. */
3395 static inline int pageblock_default_order(void)
3396 {
3397 if (HPAGE_SHIFT > PAGE_SHIFT)
3398 return HUGETLB_PAGE_ORDER;
3399
3400 return MAX_ORDER-1;
3401 }
3402
3403 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3404 static inline void __init set_pageblock_order(unsigned int order)
3405 {
3406 /* Check that pageblock_nr_pages has not already been setup */
3407 if (pageblock_order)
3408 return;
3409
3410 /*
3411 * Assume the largest contiguous order of interest is a huge page.
3412 * This value may be variable depending on boot parameters on IA64
3413 */
3414 pageblock_order = order;
3415 }
3416 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3417
3418 /*
3419 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3420 * and pageblock_default_order() are unused as pageblock_order is set
3421 * at compile-time. See include/linux/pageblock-flags.h for the values of
3422 * pageblock_order based on the kernel config
3423 */
3424 static inline int pageblock_default_order(unsigned int order)
3425 {
3426 return MAX_ORDER-1;
3427 }
3428 #define set_pageblock_order(x) do {} while (0)
3429
3430 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3431
3432 /*
3433 * Set up the zone data structures:
3434 * - mark all pages reserved
3435 * - mark all memory queues empty
3436 * - clear the memory bitmaps
3437 */
3438 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3439 unsigned long *zones_size, unsigned long *zholes_size)
3440 {
3441 enum zone_type j;
3442 int nid = pgdat->node_id;
3443 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3444 int ret;
3445
3446 pgdat_resize_init(pgdat);
3447 pgdat->nr_zones = 0;
3448 init_waitqueue_head(&pgdat->kswapd_wait);
3449 pgdat->kswapd_max_order = 0;
3450 pgdat_page_cgroup_init(pgdat);
3451
3452 for (j = 0; j < MAX_NR_ZONES; j++) {
3453 struct zone *zone = pgdat->node_zones + j;
3454 unsigned long size, realsize, memmap_pages;
3455 enum lru_list l;
3456
3457 size = zone_spanned_pages_in_node(nid, j, zones_size);
3458 realsize = size - zone_absent_pages_in_node(nid, j,
3459 zholes_size);
3460
3461 /*
3462 * Adjust realsize so that it accounts for how much memory
3463 * is used by this zone for memmap. This affects the watermark
3464 * and per-cpu initialisations
3465 */
3466 memmap_pages =
3467 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3468 if (realsize >= memmap_pages) {
3469 realsize -= memmap_pages;
3470 if (memmap_pages)
3471 printk(KERN_DEBUG
3472 " %s zone: %lu pages used for memmap\n",
3473 zone_names[j], memmap_pages);
3474 } else
3475 printk(KERN_WARNING
3476 " %s zone: %lu pages exceeds realsize %lu\n",
3477 zone_names[j], memmap_pages, realsize);
3478
3479 /* Account for reserved pages */
3480 if (j == 0 && realsize > dma_reserve) {
3481 realsize -= dma_reserve;
3482 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3483 zone_names[0], dma_reserve);
3484 }
3485
3486 if (!is_highmem_idx(j))
3487 nr_kernel_pages += realsize;
3488 nr_all_pages += realsize;
3489
3490 zone->spanned_pages = size;
3491 zone->present_pages = realsize;
3492 #ifdef CONFIG_NUMA
3493 zone->node = nid;
3494 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3495 / 100;
3496 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3497 #endif
3498 zone->name = zone_names[j];
3499 spin_lock_init(&zone->lock);
3500 spin_lock_init(&zone->lru_lock);
3501 zone_seqlock_init(zone);
3502 zone->zone_pgdat = pgdat;
3503
3504 zone->prev_priority = DEF_PRIORITY;
3505
3506 zone_pcp_init(zone);
3507 for_each_lru(l) {
3508 INIT_LIST_HEAD(&zone->lru[l].list);
3509 zone->lru[l].nr_scan = 0;
3510 }
3511 zone->reclaim_stat.recent_rotated[0] = 0;
3512 zone->reclaim_stat.recent_rotated[1] = 0;
3513 zone->reclaim_stat.recent_scanned[0] = 0;
3514 zone->reclaim_stat.recent_scanned[1] = 0;
3515 zap_zone_vm_stats(zone);
3516 zone->flags = 0;
3517 if (!size)
3518 continue;
3519
3520 set_pageblock_order(pageblock_default_order());
3521 setup_usemap(pgdat, zone, size);
3522 ret = init_currently_empty_zone(zone, zone_start_pfn,
3523 size, MEMMAP_EARLY);
3524 BUG_ON(ret);
3525 memmap_init(size, nid, j, zone_start_pfn);
3526 zone_start_pfn += size;
3527 }
3528 }
3529
3530 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3531 {
3532 /* Skip empty nodes */
3533 if (!pgdat->node_spanned_pages)
3534 return;
3535
3536 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3537 /* ia64 gets its own node_mem_map, before this, without bootmem */
3538 if (!pgdat->node_mem_map) {
3539 unsigned long size, start, end;
3540 struct page *map;
3541
3542 /*
3543 * The zone's endpoints aren't required to be MAX_ORDER
3544 * aligned but the node_mem_map endpoints must be in order
3545 * for the buddy allocator to function correctly.
3546 */
3547 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3548 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3549 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3550 size = (end - start) * sizeof(struct page);
3551 map = alloc_remap(pgdat->node_id, size);
3552 if (!map)
3553 map = alloc_bootmem_node(pgdat, size);
3554 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3555 }
3556 #ifndef CONFIG_NEED_MULTIPLE_NODES
3557 /*
3558 * With no DISCONTIG, the global mem_map is just set as node 0's
3559 */
3560 if (pgdat == NODE_DATA(0)) {
3561 mem_map = NODE_DATA(0)->node_mem_map;
3562 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3563 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3564 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3565 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3566 }
3567 #endif
3568 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3569 }
3570
3571 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3572 unsigned long node_start_pfn, unsigned long *zholes_size)
3573 {
3574 pg_data_t *pgdat = NODE_DATA(nid);
3575
3576 pgdat->node_id = nid;
3577 pgdat->node_start_pfn = node_start_pfn;
3578 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3579
3580 alloc_node_mem_map(pgdat);
3581 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3582 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3583 nid, (unsigned long)pgdat,
3584 (unsigned long)pgdat->node_mem_map);
3585 #endif
3586
3587 free_area_init_core(pgdat, zones_size, zholes_size);
3588 }
3589
3590 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3591
3592 #if MAX_NUMNODES > 1
3593 /*
3594 * Figure out the number of possible node ids.
3595 */
3596 static void __init setup_nr_node_ids(void)
3597 {
3598 unsigned int node;
3599 unsigned int highest = 0;
3600
3601 for_each_node_mask(node, node_possible_map)
3602 highest = node;
3603 nr_node_ids = highest + 1;
3604 }
3605 #else
3606 static inline void setup_nr_node_ids(void)
3607 {
3608 }
3609 #endif
3610
3611 /**
3612 * add_active_range - Register a range of PFNs backed by physical memory
3613 * @nid: The node ID the range resides on
3614 * @start_pfn: The start PFN of the available physical memory
3615 * @end_pfn: The end PFN of the available physical memory
3616 *
3617 * These ranges are stored in an early_node_map[] and later used by
3618 * free_area_init_nodes() to calculate zone sizes and holes. If the
3619 * range spans a memory hole, it is up to the architecture to ensure
3620 * the memory is not freed by the bootmem allocator. If possible
3621 * the range being registered will be merged with existing ranges.
3622 */
3623 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3624 unsigned long end_pfn)
3625 {
3626 int i;
3627
3628 mminit_dprintk(MMINIT_TRACE, "memory_register",
3629 "Entering add_active_range(%d, %#lx, %#lx) "
3630 "%d entries of %d used\n",
3631 nid, start_pfn, end_pfn,
3632 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3633
3634 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3635
3636 /* Merge with existing active regions if possible */
3637 for (i = 0; i < nr_nodemap_entries; i++) {
3638 if (early_node_map[i].nid != nid)
3639 continue;
3640
3641 /* Skip if an existing region covers this new one */
3642 if (start_pfn >= early_node_map[i].start_pfn &&
3643 end_pfn <= early_node_map[i].end_pfn)
3644 return;
3645
3646 /* Merge forward if suitable */
3647 if (start_pfn <= early_node_map[i].end_pfn &&
3648 end_pfn > early_node_map[i].end_pfn) {
3649 early_node_map[i].end_pfn = end_pfn;
3650 return;
3651 }
3652
3653 /* Merge backward if suitable */
3654 if (start_pfn < early_node_map[i].end_pfn &&
3655 end_pfn >= early_node_map[i].start_pfn) {
3656 early_node_map[i].start_pfn = start_pfn;
3657 return;
3658 }
3659 }
3660
3661 /* Check that early_node_map is large enough */
3662 if (i >= MAX_ACTIVE_REGIONS) {
3663 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3664 MAX_ACTIVE_REGIONS);
3665 return;
3666 }
3667
3668 early_node_map[i].nid = nid;
3669 early_node_map[i].start_pfn = start_pfn;
3670 early_node_map[i].end_pfn = end_pfn;
3671 nr_nodemap_entries = i + 1;
3672 }
3673
3674 /**
3675 * remove_active_range - Shrink an existing registered range of PFNs
3676 * @nid: The node id the range is on that should be shrunk
3677 * @start_pfn: The new PFN of the range
3678 * @end_pfn: The new PFN of the range
3679 *
3680 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3681 * The map is kept near the end physical page range that has already been
3682 * registered. This function allows an arch to shrink an existing registered
3683 * range.
3684 */
3685 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3686 unsigned long end_pfn)
3687 {
3688 int i, j;
3689 int removed = 0;
3690
3691 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3692 nid, start_pfn, end_pfn);
3693
3694 /* Find the old active region end and shrink */
3695 for_each_active_range_index_in_nid(i, nid) {
3696 if (early_node_map[i].start_pfn >= start_pfn &&
3697 early_node_map[i].end_pfn <= end_pfn) {
3698 /* clear it */
3699 early_node_map[i].start_pfn = 0;
3700 early_node_map[i].end_pfn = 0;
3701 removed = 1;
3702 continue;
3703 }
3704 if (early_node_map[i].start_pfn < start_pfn &&
3705 early_node_map[i].end_pfn > start_pfn) {
3706 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3707 early_node_map[i].end_pfn = start_pfn;
3708 if (temp_end_pfn > end_pfn)
3709 add_active_range(nid, end_pfn, temp_end_pfn);
3710 continue;
3711 }
3712 if (early_node_map[i].start_pfn >= start_pfn &&
3713 early_node_map[i].end_pfn > end_pfn &&
3714 early_node_map[i].start_pfn < end_pfn) {
3715 early_node_map[i].start_pfn = end_pfn;
3716 continue;
3717 }
3718 }
3719
3720 if (!removed)
3721 return;
3722
3723 /* remove the blank ones */
3724 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3725 if (early_node_map[i].nid != nid)
3726 continue;
3727 if (early_node_map[i].end_pfn)
3728 continue;
3729 /* we found it, get rid of it */
3730 for (j = i; j < nr_nodemap_entries - 1; j++)
3731 memcpy(&early_node_map[j], &early_node_map[j+1],
3732 sizeof(early_node_map[j]));
3733 j = nr_nodemap_entries - 1;
3734 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3735 nr_nodemap_entries--;
3736 }
3737 }
3738
3739 /**
3740 * remove_all_active_ranges - Remove all currently registered regions
3741 *
3742 * During discovery, it may be found that a table like SRAT is invalid
3743 * and an alternative discovery method must be used. This function removes
3744 * all currently registered regions.
3745 */
3746 void __init remove_all_active_ranges(void)
3747 {
3748 memset(early_node_map, 0, sizeof(early_node_map));
3749 nr_nodemap_entries = 0;
3750 }
3751
3752 /* Compare two active node_active_regions */
3753 static int __init cmp_node_active_region(const void *a, const void *b)
3754 {
3755 struct node_active_region *arange = (struct node_active_region *)a;
3756 struct node_active_region *brange = (struct node_active_region *)b;
3757
3758 /* Done this way to avoid overflows */
3759 if (arange->start_pfn > brange->start_pfn)
3760 return 1;
3761 if (arange->start_pfn < brange->start_pfn)
3762 return -1;
3763
3764 return 0;
3765 }
3766
3767 /* sort the node_map by start_pfn */
3768 static void __init sort_node_map(void)
3769 {
3770 sort(early_node_map, (size_t)nr_nodemap_entries,
3771 sizeof(struct node_active_region),
3772 cmp_node_active_region, NULL);
3773 }
3774
3775 /* Find the lowest pfn for a node */
3776 static unsigned long __init find_min_pfn_for_node(int nid)
3777 {
3778 int i;
3779 unsigned long min_pfn = ULONG_MAX;
3780
3781 /* Assuming a sorted map, the first range found has the starting pfn */
3782 for_each_active_range_index_in_nid(i, nid)
3783 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3784
3785 if (min_pfn == ULONG_MAX) {
3786 printk(KERN_WARNING
3787 "Could not find start_pfn for node %d\n", nid);
3788 return 0;
3789 }
3790
3791 return min_pfn;
3792 }
3793
3794 /**
3795 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3796 *
3797 * It returns the minimum PFN based on information provided via
3798 * add_active_range().
3799 */
3800 unsigned long __init find_min_pfn_with_active_regions(void)
3801 {
3802 return find_min_pfn_for_node(MAX_NUMNODES);
3803 }
3804
3805 /*
3806 * early_calculate_totalpages()
3807 * Sum pages in active regions for movable zone.
3808 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3809 */
3810 static unsigned long __init early_calculate_totalpages(void)
3811 {
3812 int i;
3813 unsigned long totalpages = 0;
3814
3815 for (i = 0; i < nr_nodemap_entries; i++) {
3816 unsigned long pages = early_node_map[i].end_pfn -
3817 early_node_map[i].start_pfn;
3818 totalpages += pages;
3819 if (pages)
3820 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3821 }
3822 return totalpages;
3823 }
3824
3825 /*
3826 * Find the PFN the Movable zone begins in each node. Kernel memory
3827 * is spread evenly between nodes as long as the nodes have enough
3828 * memory. When they don't, some nodes will have more kernelcore than
3829 * others
3830 */
3831 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3832 {
3833 int i, nid;
3834 unsigned long usable_startpfn;
3835 unsigned long kernelcore_node, kernelcore_remaining;
3836 unsigned long totalpages = early_calculate_totalpages();
3837 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3838
3839 /*
3840 * If movablecore was specified, calculate what size of
3841 * kernelcore that corresponds so that memory usable for
3842 * any allocation type is evenly spread. If both kernelcore
3843 * and movablecore are specified, then the value of kernelcore
3844 * will be used for required_kernelcore if it's greater than
3845 * what movablecore would have allowed.
3846 */
3847 if (required_movablecore) {
3848 unsigned long corepages;
3849
3850 /*
3851 * Round-up so that ZONE_MOVABLE is at least as large as what
3852 * was requested by the user
3853 */
3854 required_movablecore =
3855 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3856 corepages = totalpages - required_movablecore;
3857
3858 required_kernelcore = max(required_kernelcore, corepages);
3859 }
3860
3861 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3862 if (!required_kernelcore)
3863 return;
3864
3865 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3866 find_usable_zone_for_movable();
3867 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3868
3869 restart:
3870 /* Spread kernelcore memory as evenly as possible throughout nodes */
3871 kernelcore_node = required_kernelcore / usable_nodes;
3872 for_each_node_state(nid, N_HIGH_MEMORY) {
3873 /*
3874 * Recalculate kernelcore_node if the division per node
3875 * now exceeds what is necessary to satisfy the requested
3876 * amount of memory for the kernel
3877 */
3878 if (required_kernelcore < kernelcore_node)
3879 kernelcore_node = required_kernelcore / usable_nodes;
3880
3881 /*
3882 * As the map is walked, we track how much memory is usable
3883 * by the kernel using kernelcore_remaining. When it is
3884 * 0, the rest of the node is usable by ZONE_MOVABLE
3885 */
3886 kernelcore_remaining = kernelcore_node;
3887
3888 /* Go through each range of PFNs within this node */
3889 for_each_active_range_index_in_nid(i, nid) {
3890 unsigned long start_pfn, end_pfn;
3891 unsigned long size_pages;
3892
3893 start_pfn = max(early_node_map[i].start_pfn,
3894 zone_movable_pfn[nid]);
3895 end_pfn = early_node_map[i].end_pfn;
3896 if (start_pfn >= end_pfn)
3897 continue;
3898
3899 /* Account for what is only usable for kernelcore */
3900 if (start_pfn < usable_startpfn) {
3901 unsigned long kernel_pages;
3902 kernel_pages = min(end_pfn, usable_startpfn)
3903 - start_pfn;
3904
3905 kernelcore_remaining -= min(kernel_pages,
3906 kernelcore_remaining);
3907 required_kernelcore -= min(kernel_pages,
3908 required_kernelcore);
3909
3910 /* Continue if range is now fully accounted */
3911 if (end_pfn <= usable_startpfn) {
3912
3913 /*
3914 * Push zone_movable_pfn to the end so
3915 * that if we have to rebalance
3916 * kernelcore across nodes, we will
3917 * not double account here
3918 */
3919 zone_movable_pfn[nid] = end_pfn;
3920 continue;
3921 }
3922 start_pfn = usable_startpfn;
3923 }
3924
3925 /*
3926 * The usable PFN range for ZONE_MOVABLE is from
3927 * start_pfn->end_pfn. Calculate size_pages as the
3928 * number of pages used as kernelcore
3929 */
3930 size_pages = end_pfn - start_pfn;
3931 if (size_pages > kernelcore_remaining)
3932 size_pages = kernelcore_remaining;
3933 zone_movable_pfn[nid] = start_pfn + size_pages;
3934
3935 /*
3936 * Some kernelcore has been met, update counts and
3937 * break if the kernelcore for this node has been
3938 * satisified
3939 */
3940 required_kernelcore -= min(required_kernelcore,
3941 size_pages);
3942 kernelcore_remaining -= size_pages;
3943 if (!kernelcore_remaining)
3944 break;
3945 }
3946 }
3947
3948 /*
3949 * If there is still required_kernelcore, we do another pass with one
3950 * less node in the count. This will push zone_movable_pfn[nid] further
3951 * along on the nodes that still have memory until kernelcore is
3952 * satisified
3953 */
3954 usable_nodes--;
3955 if (usable_nodes && required_kernelcore > usable_nodes)
3956 goto restart;
3957
3958 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3959 for (nid = 0; nid < MAX_NUMNODES; nid++)
3960 zone_movable_pfn[nid] =
3961 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3962 }
3963
3964 /* Any regular memory on that node ? */
3965 static void check_for_regular_memory(pg_data_t *pgdat)
3966 {
3967 #ifdef CONFIG_HIGHMEM
3968 enum zone_type zone_type;
3969
3970 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3971 struct zone *zone = &pgdat->node_zones[zone_type];
3972 if (zone->present_pages)
3973 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3974 }
3975 #endif
3976 }
3977
3978 /**
3979 * free_area_init_nodes - Initialise all pg_data_t and zone data
3980 * @max_zone_pfn: an array of max PFNs for each zone
3981 *
3982 * This will call free_area_init_node() for each active node in the system.
3983 * Using the page ranges provided by add_active_range(), the size of each
3984 * zone in each node and their holes is calculated. If the maximum PFN
3985 * between two adjacent zones match, it is assumed that the zone is empty.
3986 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3987 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3988 * starts where the previous one ended. For example, ZONE_DMA32 starts
3989 * at arch_max_dma_pfn.
3990 */
3991 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3992 {
3993 unsigned long nid;
3994 int i;
3995
3996 /* Sort early_node_map as initialisation assumes it is sorted */
3997 sort_node_map();
3998
3999 /* Record where the zone boundaries are */
4000 memset(arch_zone_lowest_possible_pfn, 0,
4001 sizeof(arch_zone_lowest_possible_pfn));
4002 memset(arch_zone_highest_possible_pfn, 0,
4003 sizeof(arch_zone_highest_possible_pfn));
4004 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4005 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4006 for (i = 1; i < MAX_NR_ZONES; i++) {
4007 if (i == ZONE_MOVABLE)
4008 continue;
4009 arch_zone_lowest_possible_pfn[i] =
4010 arch_zone_highest_possible_pfn[i-1];
4011 arch_zone_highest_possible_pfn[i] =
4012 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4013 }
4014 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4015 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4016
4017 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4018 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4019 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4020
4021 /* Print out the zone ranges */
4022 printk("Zone PFN ranges:\n");
4023 for (i = 0; i < MAX_NR_ZONES; i++) {
4024 if (i == ZONE_MOVABLE)
4025 continue;
4026 printk(" %-8s %0#10lx -> %0#10lx\n",
4027 zone_names[i],
4028 arch_zone_lowest_possible_pfn[i],
4029 arch_zone_highest_possible_pfn[i]);
4030 }
4031
4032 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4033 printk("Movable zone start PFN for each node\n");
4034 for (i = 0; i < MAX_NUMNODES; i++) {
4035 if (zone_movable_pfn[i])
4036 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4037 }
4038
4039 /* Print out the early_node_map[] */
4040 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4041 for (i = 0; i < nr_nodemap_entries; i++)
4042 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4043 early_node_map[i].start_pfn,
4044 early_node_map[i].end_pfn);
4045
4046 /* Initialise every node */
4047 mminit_verify_pageflags_layout();
4048 setup_nr_node_ids();
4049 for_each_online_node(nid) {
4050 pg_data_t *pgdat = NODE_DATA(nid);
4051 free_area_init_node(nid, NULL,
4052 find_min_pfn_for_node(nid), NULL);
4053
4054 /* Any memory on that node */
4055 if (pgdat->node_present_pages)
4056 node_set_state(nid, N_HIGH_MEMORY);
4057 check_for_regular_memory(pgdat);
4058 }
4059 }
4060
4061 static int __init cmdline_parse_core(char *p, unsigned long *core)
4062 {
4063 unsigned long long coremem;
4064 if (!p)
4065 return -EINVAL;
4066
4067 coremem = memparse(p, &p);
4068 *core = coremem >> PAGE_SHIFT;
4069
4070 /* Paranoid check that UL is enough for the coremem value */
4071 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4072
4073 return 0;
4074 }
4075
4076 /*
4077 * kernelcore=size sets the amount of memory for use for allocations that
4078 * cannot be reclaimed or migrated.
4079 */
4080 static int __init cmdline_parse_kernelcore(char *p)
4081 {
4082 return cmdline_parse_core(p, &required_kernelcore);
4083 }
4084
4085 /*
4086 * movablecore=size sets the amount of memory for use for allocations that
4087 * can be reclaimed or migrated.
4088 */
4089 static int __init cmdline_parse_movablecore(char *p)
4090 {
4091 return cmdline_parse_core(p, &required_movablecore);
4092 }
4093
4094 early_param("kernelcore", cmdline_parse_kernelcore);
4095 early_param("movablecore", cmdline_parse_movablecore);
4096
4097 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4098
4099 /**
4100 * set_dma_reserve - set the specified number of pages reserved in the first zone
4101 * @new_dma_reserve: The number of pages to mark reserved
4102 *
4103 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4104 * In the DMA zone, a significant percentage may be consumed by kernel image
4105 * and other unfreeable allocations which can skew the watermarks badly. This
4106 * function may optionally be used to account for unfreeable pages in the
4107 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4108 * smaller per-cpu batchsize.
4109 */
4110 void __init set_dma_reserve(unsigned long new_dma_reserve)
4111 {
4112 dma_reserve = new_dma_reserve;
4113 }
4114
4115 #ifndef CONFIG_NEED_MULTIPLE_NODES
4116 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4117 EXPORT_SYMBOL(contig_page_data);
4118 #endif
4119
4120 void __init free_area_init(unsigned long *zones_size)
4121 {
4122 free_area_init_node(0, zones_size,
4123 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4124 }
4125
4126 static int page_alloc_cpu_notify(struct notifier_block *self,
4127 unsigned long action, void *hcpu)
4128 {
4129 int cpu = (unsigned long)hcpu;
4130
4131 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4132 drain_pages(cpu);
4133
4134 /*
4135 * Spill the event counters of the dead processor
4136 * into the current processors event counters.
4137 * This artificially elevates the count of the current
4138 * processor.
4139 */
4140 vm_events_fold_cpu(cpu);
4141
4142 /*
4143 * Zero the differential counters of the dead processor
4144 * so that the vm statistics are consistent.
4145 *
4146 * This is only okay since the processor is dead and cannot
4147 * race with what we are doing.
4148 */
4149 refresh_cpu_vm_stats(cpu);
4150 }
4151 return NOTIFY_OK;
4152 }
4153
4154 void __init page_alloc_init(void)
4155 {
4156 hotcpu_notifier(page_alloc_cpu_notify, 0);
4157 }
4158
4159 /*
4160 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4161 * or min_free_kbytes changes.
4162 */
4163 static void calculate_totalreserve_pages(void)
4164 {
4165 struct pglist_data *pgdat;
4166 unsigned long reserve_pages = 0;
4167 enum zone_type i, j;
4168
4169 for_each_online_pgdat(pgdat) {
4170 for (i = 0; i < MAX_NR_ZONES; i++) {
4171 struct zone *zone = pgdat->node_zones + i;
4172 unsigned long max = 0;
4173
4174 /* Find valid and maximum lowmem_reserve in the zone */
4175 for (j = i; j < MAX_NR_ZONES; j++) {
4176 if (zone->lowmem_reserve[j] > max)
4177 max = zone->lowmem_reserve[j];
4178 }
4179
4180 /* we treat pages_high as reserved pages. */
4181 max += zone->pages_high;
4182
4183 if (max > zone->present_pages)
4184 max = zone->present_pages;
4185 reserve_pages += max;
4186 }
4187 }
4188 totalreserve_pages = reserve_pages;
4189 }
4190
4191 /*
4192 * setup_per_zone_lowmem_reserve - called whenever
4193 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4194 * has a correct pages reserved value, so an adequate number of
4195 * pages are left in the zone after a successful __alloc_pages().
4196 */
4197 static void setup_per_zone_lowmem_reserve(void)
4198 {
4199 struct pglist_data *pgdat;
4200 enum zone_type j, idx;
4201
4202 for_each_online_pgdat(pgdat) {
4203 for (j = 0; j < MAX_NR_ZONES; j++) {
4204 struct zone *zone = pgdat->node_zones + j;
4205 unsigned long present_pages = zone->present_pages;
4206
4207 zone->lowmem_reserve[j] = 0;
4208
4209 idx = j;
4210 while (idx) {
4211 struct zone *lower_zone;
4212
4213 idx--;
4214
4215 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4216 sysctl_lowmem_reserve_ratio[idx] = 1;
4217
4218 lower_zone = pgdat->node_zones + idx;
4219 lower_zone->lowmem_reserve[j] = present_pages /
4220 sysctl_lowmem_reserve_ratio[idx];
4221 present_pages += lower_zone->present_pages;
4222 }
4223 }
4224 }
4225
4226 /* update totalreserve_pages */
4227 calculate_totalreserve_pages();
4228 }
4229
4230 /**
4231 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4232 *
4233 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4234 * with respect to min_free_kbytes.
4235 */
4236 void setup_per_zone_pages_min(void)
4237 {
4238 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4239 unsigned long lowmem_pages = 0;
4240 struct zone *zone;
4241 unsigned long flags;
4242
4243 /* Calculate total number of !ZONE_HIGHMEM pages */
4244 for_each_zone(zone) {
4245 if (!is_highmem(zone))
4246 lowmem_pages += zone->present_pages;
4247 }
4248
4249 for_each_zone(zone) {
4250 u64 tmp;
4251
4252 spin_lock_irqsave(&zone->lock, flags);
4253 tmp = (u64)pages_min * zone->present_pages;
4254 do_div(tmp, lowmem_pages);
4255 if (is_highmem(zone)) {
4256 /*
4257 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4258 * need highmem pages, so cap pages_min to a small
4259 * value here.
4260 *
4261 * The (pages_high-pages_low) and (pages_low-pages_min)
4262 * deltas controls asynch page reclaim, and so should
4263 * not be capped for highmem.
4264 */
4265 int min_pages;
4266
4267 min_pages = zone->present_pages / 1024;
4268 if (min_pages < SWAP_CLUSTER_MAX)
4269 min_pages = SWAP_CLUSTER_MAX;
4270 if (min_pages > 128)
4271 min_pages = 128;
4272 zone->pages_min = min_pages;
4273 } else {
4274 /*
4275 * If it's a lowmem zone, reserve a number of pages
4276 * proportionate to the zone's size.
4277 */
4278 zone->pages_min = tmp;
4279 }
4280
4281 zone->pages_low = zone->pages_min + (tmp >> 2);
4282 zone->pages_high = zone->pages_min + (tmp >> 1);
4283 setup_zone_migrate_reserve(zone);
4284 spin_unlock_irqrestore(&zone->lock, flags);
4285 }
4286
4287 /* update totalreserve_pages */
4288 calculate_totalreserve_pages();
4289 }
4290
4291 /**
4292 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4293 *
4294 * The inactive anon list should be small enough that the VM never has to
4295 * do too much work, but large enough that each inactive page has a chance
4296 * to be referenced again before it is swapped out.
4297 *
4298 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4299 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4300 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4301 * the anonymous pages are kept on the inactive list.
4302 *
4303 * total target max
4304 * memory ratio inactive anon
4305 * -------------------------------------
4306 * 10MB 1 5MB
4307 * 100MB 1 50MB
4308 * 1GB 3 250MB
4309 * 10GB 10 0.9GB
4310 * 100GB 31 3GB
4311 * 1TB 101 10GB
4312 * 10TB 320 32GB
4313 */
4314 static void setup_per_zone_inactive_ratio(void)
4315 {
4316 struct zone *zone;
4317
4318 for_each_zone(zone) {
4319 unsigned int gb, ratio;
4320
4321 /* Zone size in gigabytes */
4322 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4323 ratio = int_sqrt(10 * gb);
4324 if (!ratio)
4325 ratio = 1;
4326
4327 zone->inactive_ratio = ratio;
4328 }
4329 }
4330
4331 /*
4332 * Initialise min_free_kbytes.
4333 *
4334 * For small machines we want it small (128k min). For large machines
4335 * we want it large (64MB max). But it is not linear, because network
4336 * bandwidth does not increase linearly with machine size. We use
4337 *
4338 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4339 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4340 *
4341 * which yields
4342 *
4343 * 16MB: 512k
4344 * 32MB: 724k
4345 * 64MB: 1024k
4346 * 128MB: 1448k
4347 * 256MB: 2048k
4348 * 512MB: 2896k
4349 * 1024MB: 4096k
4350 * 2048MB: 5792k
4351 * 4096MB: 8192k
4352 * 8192MB: 11584k
4353 * 16384MB: 16384k
4354 */
4355 static int __init init_per_zone_pages_min(void)
4356 {
4357 unsigned long lowmem_kbytes;
4358
4359 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4360
4361 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4362 if (min_free_kbytes < 128)
4363 min_free_kbytes = 128;
4364 if (min_free_kbytes > 65536)
4365 min_free_kbytes = 65536;
4366 setup_per_zone_pages_min();
4367 setup_per_zone_lowmem_reserve();
4368 setup_per_zone_inactive_ratio();
4369 return 0;
4370 }
4371 module_init(init_per_zone_pages_min)
4372
4373 /*
4374 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4375 * that we can call two helper functions whenever min_free_kbytes
4376 * changes.
4377 */
4378 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4379 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4380 {
4381 proc_dointvec(table, write, file, buffer, length, ppos);
4382 if (write)
4383 setup_per_zone_pages_min();
4384 return 0;
4385 }
4386
4387 #ifdef CONFIG_NUMA
4388 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4389 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4390 {
4391 struct zone *zone;
4392 int rc;
4393
4394 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4395 if (rc)
4396 return rc;
4397
4398 for_each_zone(zone)
4399 zone->min_unmapped_pages = (zone->present_pages *
4400 sysctl_min_unmapped_ratio) / 100;
4401 return 0;
4402 }
4403
4404 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4405 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4406 {
4407 struct zone *zone;
4408 int rc;
4409
4410 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4411 if (rc)
4412 return rc;
4413
4414 for_each_zone(zone)
4415 zone->min_slab_pages = (zone->present_pages *
4416 sysctl_min_slab_ratio) / 100;
4417 return 0;
4418 }
4419 #endif
4420
4421 /*
4422 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4423 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4424 * whenever sysctl_lowmem_reserve_ratio changes.
4425 *
4426 * The reserve ratio obviously has absolutely no relation with the
4427 * pages_min watermarks. The lowmem reserve ratio can only make sense
4428 * if in function of the boot time zone sizes.
4429 */
4430 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4431 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4432 {
4433 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4434 setup_per_zone_lowmem_reserve();
4435 return 0;
4436 }
4437
4438 /*
4439 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4440 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4441 * can have before it gets flushed back to buddy allocator.
4442 */
4443
4444 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4445 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4446 {
4447 struct zone *zone;
4448 unsigned int cpu;
4449 int ret;
4450
4451 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4452 if (!write || (ret == -EINVAL))
4453 return ret;
4454 for_each_zone(zone) {
4455 for_each_online_cpu(cpu) {
4456 unsigned long high;
4457 high = zone->present_pages / percpu_pagelist_fraction;
4458 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4459 }
4460 }
4461 return 0;
4462 }
4463
4464 int hashdist = HASHDIST_DEFAULT;
4465
4466 #ifdef CONFIG_NUMA
4467 static int __init set_hashdist(char *str)
4468 {
4469 if (!str)
4470 return 0;
4471 hashdist = simple_strtoul(str, &str, 0);
4472 return 1;
4473 }
4474 __setup("hashdist=", set_hashdist);
4475 #endif
4476
4477 /*
4478 * allocate a large system hash table from bootmem
4479 * - it is assumed that the hash table must contain an exact power-of-2
4480 * quantity of entries
4481 * - limit is the number of hash buckets, not the total allocation size
4482 */
4483 void *__init alloc_large_system_hash(const char *tablename,
4484 unsigned long bucketsize,
4485 unsigned long numentries,
4486 int scale,
4487 int flags,
4488 unsigned int *_hash_shift,
4489 unsigned int *_hash_mask,
4490 unsigned long limit)
4491 {
4492 unsigned long long max = limit;
4493 unsigned long log2qty, size;
4494 void *table = NULL;
4495
4496 /* allow the kernel cmdline to have a say */
4497 if (!numentries) {
4498 /* round applicable memory size up to nearest megabyte */
4499 numentries = nr_kernel_pages;
4500 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4501 numentries >>= 20 - PAGE_SHIFT;
4502 numentries <<= 20 - PAGE_SHIFT;
4503
4504 /* limit to 1 bucket per 2^scale bytes of low memory */
4505 if (scale > PAGE_SHIFT)
4506 numentries >>= (scale - PAGE_SHIFT);
4507 else
4508 numentries <<= (PAGE_SHIFT - scale);
4509
4510 /* Make sure we've got at least a 0-order allocation.. */
4511 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4512 numentries = PAGE_SIZE / bucketsize;
4513 }
4514 numentries = roundup_pow_of_two(numentries);
4515
4516 /* limit allocation size to 1/16 total memory by default */
4517 if (max == 0) {
4518 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4519 do_div(max, bucketsize);
4520 }
4521
4522 if (numentries > max)
4523 numentries = max;
4524
4525 log2qty = ilog2(numentries);
4526
4527 do {
4528 size = bucketsize << log2qty;
4529 if (flags & HASH_EARLY)
4530 table = alloc_bootmem_nopanic(size);
4531 else if (hashdist)
4532 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4533 else {
4534 unsigned long order = get_order(size);
4535 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4536 /*
4537 * If bucketsize is not a power-of-two, we may free
4538 * some pages at the end of hash table.
4539 */
4540 if (table) {
4541 unsigned long alloc_end = (unsigned long)table +
4542 (PAGE_SIZE << order);
4543 unsigned long used = (unsigned long)table +
4544 PAGE_ALIGN(size);
4545 split_page(virt_to_page(table), order);
4546 while (used < alloc_end) {
4547 free_page(used);
4548 used += PAGE_SIZE;
4549 }
4550 }
4551 }
4552 } while (!table && size > PAGE_SIZE && --log2qty);
4553
4554 if (!table)
4555 panic("Failed to allocate %s hash table\n", tablename);
4556
4557 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4558 tablename,
4559 (1U << log2qty),
4560 ilog2(size) - PAGE_SHIFT,
4561 size);
4562
4563 if (_hash_shift)
4564 *_hash_shift = log2qty;
4565 if (_hash_mask)
4566 *_hash_mask = (1 << log2qty) - 1;
4567
4568 /*
4569 * If hashdist is set, the table allocation is done with __vmalloc()
4570 * which invokes the kmemleak_alloc() callback. This function may also
4571 * be called before the slab and kmemleak are initialised when
4572 * kmemleak simply buffers the request to be executed later
4573 * (GFP_ATOMIC flag ignored in this case).
4574 */
4575 if (!hashdist)
4576 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4577
4578 return table;
4579 }
4580
4581 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4582 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4583 unsigned long pfn)
4584 {
4585 #ifdef CONFIG_SPARSEMEM
4586 return __pfn_to_section(pfn)->pageblock_flags;
4587 #else
4588 return zone->pageblock_flags;
4589 #endif /* CONFIG_SPARSEMEM */
4590 }
4591
4592 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4593 {
4594 #ifdef CONFIG_SPARSEMEM
4595 pfn &= (PAGES_PER_SECTION-1);
4596 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4597 #else
4598 pfn = pfn - zone->zone_start_pfn;
4599 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4600 #endif /* CONFIG_SPARSEMEM */
4601 }
4602
4603 /**
4604 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4605 * @page: The page within the block of interest
4606 * @start_bitidx: The first bit of interest to retrieve
4607 * @end_bitidx: The last bit of interest
4608 * returns pageblock_bits flags
4609 */
4610 unsigned long get_pageblock_flags_group(struct page *page,
4611 int start_bitidx, int end_bitidx)
4612 {
4613 struct zone *zone;
4614 unsigned long *bitmap;
4615 unsigned long pfn, bitidx;
4616 unsigned long flags = 0;
4617 unsigned long value = 1;
4618
4619 zone = page_zone(page);
4620 pfn = page_to_pfn(page);
4621 bitmap = get_pageblock_bitmap(zone, pfn);
4622 bitidx = pfn_to_bitidx(zone, pfn);
4623
4624 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4625 if (test_bit(bitidx + start_bitidx, bitmap))
4626 flags |= value;
4627
4628 return flags;
4629 }
4630
4631 /**
4632 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4633 * @page: The page within the block of interest
4634 * @start_bitidx: The first bit of interest
4635 * @end_bitidx: The last bit of interest
4636 * @flags: The flags to set
4637 */
4638 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4639 int start_bitidx, int end_bitidx)
4640 {
4641 struct zone *zone;
4642 unsigned long *bitmap;
4643 unsigned long pfn, bitidx;
4644 unsigned long value = 1;
4645
4646 zone = page_zone(page);
4647 pfn = page_to_pfn(page);
4648 bitmap = get_pageblock_bitmap(zone, pfn);
4649 bitidx = pfn_to_bitidx(zone, pfn);
4650 VM_BUG_ON(pfn < zone->zone_start_pfn);
4651 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4652
4653 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4654 if (flags & value)
4655 __set_bit(bitidx + start_bitidx, bitmap);
4656 else
4657 __clear_bit(bitidx + start_bitidx, bitmap);
4658 }
4659
4660 /*
4661 * This is designed as sub function...plz see page_isolation.c also.
4662 * set/clear page block's type to be ISOLATE.
4663 * page allocater never alloc memory from ISOLATE block.
4664 */
4665
4666 int set_migratetype_isolate(struct page *page)
4667 {
4668 struct zone *zone;
4669 unsigned long flags;
4670 int ret = -EBUSY;
4671
4672 zone = page_zone(page);
4673 spin_lock_irqsave(&zone->lock, flags);
4674 /*
4675 * In future, more migrate types will be able to be isolation target.
4676 */
4677 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4678 goto out;
4679 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4680 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4681 ret = 0;
4682 out:
4683 spin_unlock_irqrestore(&zone->lock, flags);
4684 if (!ret)
4685 drain_all_pages();
4686 return ret;
4687 }
4688
4689 void unset_migratetype_isolate(struct page *page)
4690 {
4691 struct zone *zone;
4692 unsigned long flags;
4693 zone = page_zone(page);
4694 spin_lock_irqsave(&zone->lock, flags);
4695 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4696 goto out;
4697 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4698 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4699 out:
4700 spin_unlock_irqrestore(&zone->lock, flags);
4701 }
4702
4703 #ifdef CONFIG_MEMORY_HOTREMOVE
4704 /*
4705 * All pages in the range must be isolated before calling this.
4706 */
4707 void
4708 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4709 {
4710 struct page *page;
4711 struct zone *zone;
4712 int order, i;
4713 unsigned long pfn;
4714 unsigned long flags;
4715 /* find the first valid pfn */
4716 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4717 if (pfn_valid(pfn))
4718 break;
4719 if (pfn == end_pfn)
4720 return;
4721 zone = page_zone(pfn_to_page(pfn));
4722 spin_lock_irqsave(&zone->lock, flags);
4723 pfn = start_pfn;
4724 while (pfn < end_pfn) {
4725 if (!pfn_valid(pfn)) {
4726 pfn++;
4727 continue;
4728 }
4729 page = pfn_to_page(pfn);
4730 BUG_ON(page_count(page));
4731 BUG_ON(!PageBuddy(page));
4732 order = page_order(page);
4733 #ifdef CONFIG_DEBUG_VM
4734 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4735 pfn, 1 << order, end_pfn);
4736 #endif
4737 list_del(&page->lru);
4738 rmv_page_order(page);
4739 zone->free_area[order].nr_free--;
4740 __mod_zone_page_state(zone, NR_FREE_PAGES,
4741 - (1UL << order));
4742 for (i = 0; i < (1 << order); i++)
4743 SetPageReserved((page+i));
4744 pfn += (1 << order);
4745 }
4746 spin_unlock_irqrestore(&zone->lock, flags);
4747 }
4748 #endif
This page took 0.589535 seconds and 6 git commands to generate.