Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
64
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
69
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
71 /*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
80
81 /*
82 * Array of node states.
83 */
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 [N_CPU] = { { [0] = 1UL } },
93 #endif /* NUMA */
94 };
95 EXPORT_SYMBOL(node_states);
96
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101
102 #ifdef CONFIG_PM_SLEEP
103 /*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
111
112 static gfp_t saved_gfp_mask;
113
114 void pm_restore_gfp_mask(void)
115 {
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
121 }
122
123 void pm_restrict_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
129 }
130 #endif /* CONFIG_PM_SLEEP */
131
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
135
136 static void __free_pages_ok(struct page *page, unsigned int order);
137
138 /*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
148 */
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
157 32,
158 #endif
159 32,
160 };
161
162 EXPORT_SYMBOL(totalram_pages);
163
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 "DMA32",
170 #endif
171 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 "HighMem",
174 #endif
175 "Movable",
176 };
177
178 int min_free_kbytes = 1024;
179
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
183
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185 /*
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
191 */
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
204
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209 static unsigned long __initdata required_kernelcore;
210 static unsigned long __initdata required_movablecore;
211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
218 #if MAX_NUMNODES > 1
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
223 #endif
224
225 int page_group_by_mobility_disabled __read_mostly;
226
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
228 {
229
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
232
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
235 }
236
237 bool oom_killer_disabled __read_mostly;
238
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241 {
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
245
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 return ret;
255 }
256
257 static int page_is_consistent(struct zone *zone, struct page *page)
258 {
259 if (!pfn_valid_within(page_to_pfn(page)))
260 return 0;
261 if (zone != page_zone(page))
262 return 0;
263
264 return 1;
265 }
266 /*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269 static int bad_range(struct zone *zone, struct page *page)
270 {
271 if (page_outside_zone_boundaries(zone, page))
272 return 1;
273 if (!page_is_consistent(zone, page))
274 return 1;
275
276 return 0;
277 }
278 #else
279 static inline int bad_range(struct zone *zone, struct page *page)
280 {
281 return 0;
282 }
283 #endif
284
285 static void bad_page(struct page *page)
286 {
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
290
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
293 reset_page_mapcount(page); /* remove PageBuddy */
294 return;
295 }
296
297 /*
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
300 */
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
305 }
306 if (nr_unshown) {
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
309 nr_unshown);
310 nr_unshown = 0;
311 }
312 nr_shown = 0;
313 }
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
316
317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
318 current->comm, page_to_pfn(page));
319 dump_page(page);
320
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358
359 __SetPageTail(p);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 static inline void set_page_order(struct page *page, int order)
406 {
407 set_page_private(page, order);
408 __SetPageBuddy(page);
409 }
410
411 static inline void rmv_page_order(struct page *page)
412 {
413 __ClearPageBuddy(page);
414 set_page_private(page, 0);
415 }
416
417 /*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
431 *
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
433 */
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx, unsigned int order)
436 {
437 return page_idx ^ (1 << order);
438 }
439
440 /*
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
447 *
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
450 *
451 * For recording page's order, we use page_private(page).
452 */
453 static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
455 {
456 if (!pfn_valid_within(page_to_pfn(buddy)))
457 return 0;
458
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
461
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
463 VM_BUG_ON(page_count(buddy) != 0);
464 return 1;
465 }
466 return 0;
467 }
468
469 /*
470 * Freeing function for a buddy system allocator.
471 *
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
489 *
490 * -- wli
491 */
492
493 static inline void __free_one_page(struct page *page,
494 struct zone *zone, unsigned int order,
495 int migratetype)
496 {
497 unsigned long page_idx;
498 unsigned long combined_idx;
499 unsigned long uninitialized_var(buddy_idx);
500 struct page *buddy;
501
502 if (unlikely(PageCompound(page)))
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
505
506 VM_BUG_ON(migratetype == -1);
507
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
510 VM_BUG_ON(page_idx & ((1 << order) - 1));
511 VM_BUG_ON(bad_range(zone, page));
512
513 while (order < MAX_ORDER-1) {
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
516 if (!page_is_buddy(page, buddy, order))
517 break;
518
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy->lru);
521 zone->free_area[order].nr_free--;
522 rmv_page_order(buddy);
523 combined_idx = buddy_idx & page_idx;
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
527 }
528 set_page_order(page, order);
529
530 /*
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
537 */
538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 struct page *higher_page, *higher_buddy;
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 zone->free_area[order].nr_free++;
554 }
555
556 /*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561 static inline void free_page_mlock(struct page *page)
562 {
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565 }
566
567 static inline int free_pages_check(struct page *page)
568 {
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
571 (atomic_read(&page->_count) != 0) |
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
574 bad_page(page);
575 return 1;
576 }
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
580 }
581
582 /*
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
593 static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
595 {
596 int migratetype = 0;
597 int batch_free = 0;
598 int to_free = count;
599
600 spin_lock(&zone->lock);
601 zone->all_unreclaimable = 0;
602 zone->pages_scanned = 0;
603
604 while (to_free) {
605 struct page *page;
606 struct list_head *list;
607
608 /*
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
614 */
615 do {
616 batch_free++;
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
621
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
625
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
633 } while (--to_free && --batch_free && !list_empty(list));
634 }
635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
636 spin_unlock(&zone->lock);
637 }
638
639 static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
641 {
642 spin_lock(&zone->lock);
643 zone->all_unreclaimable = 0;
644 zone->pages_scanned = 0;
645
646 __free_one_page(page, zone, order, migratetype);
647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648 spin_unlock(&zone->lock);
649 }
650
651 static bool free_pages_prepare(struct page *page, unsigned int order)
652 {
653 int i;
654 int bad = 0;
655
656 trace_mm_page_free_direct(page, order);
657 kmemcheck_free_shadow(page, order);
658
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
663 if (bad)
664 return false;
665
666 if (!PageHighMem(page)) {
667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
670 }
671 arch_free_page(page, order);
672 kernel_map_pages(page, 1 << order, 0);
673
674 return true;
675 }
676
677 static void __free_pages_ok(struct page *page, unsigned int order)
678 {
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
681
682 if (!free_pages_prepare(page, order))
683 return;
684
685 local_irq_save(flags);
686 if (unlikely(wasMlocked))
687 free_page_mlock(page);
688 __count_vm_events(PGFREE, 1 << order);
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
691 local_irq_restore(flags);
692 }
693
694 /*
695 * permit the bootmem allocator to evade page validation on high-order frees
696 */
697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
698 {
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
702 set_page_refcounted(page);
703 __free_page(page);
704 } else {
705 int loop;
706
707 prefetchw(page);
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
710
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
715 }
716
717 set_page_refcounted(page);
718 __free_pages(page, order);
719 }
720 }
721
722
723 /*
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
734 *
735 * -- wli
736 */
737 static inline void expand(struct zone *zone, struct page *page,
738 int low, int high, struct free_area *area,
739 int migratetype)
740 {
741 unsigned long size = 1 << high;
742
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
747 VM_BUG_ON(bad_range(zone, &page[size]));
748 list_add(&page[size].lru, &area->free_list[migratetype]);
749 area->nr_free++;
750 set_page_order(&page[size], high);
751 }
752 }
753
754 /*
755 * This page is about to be returned from the page allocator
756 */
757 static inline int check_new_page(struct page *page)
758 {
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
761 (atomic_read(&page->_count) != 0) |
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
764 bad_page(page);
765 return 1;
766 }
767 return 0;
768 }
769
770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771 {
772 int i;
773
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
778 }
779
780 set_page_private(page, 0);
781 set_page_refcounted(page);
782
783 arch_alloc_page(page, order);
784 kernel_map_pages(page, 1 << order, 1);
785
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
788
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
791
792 return 0;
793 }
794
795 /*
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
798 */
799 static inline
800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
801 int migratetype)
802 {
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
806
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
812
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821
822 return NULL;
823 }
824
825
826 /*
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
829 */
830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
835 };
836
837 /*
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
841 */
842 static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
845 {
846 struct page *page;
847 unsigned long order;
848 int pages_moved = 0;
849
850 #ifndef CONFIG_HOLES_IN_ZONE
851 /*
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
857 */
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859 #endif
860
861 for (page = start_page; page <= end_page;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
868 }
869
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
873 }
874
875 order = page_order(page);
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 page += 1 << order;
879 pages_moved += 1 << order;
880 }
881
882 return pages_moved;
883 }
884
885 static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
887 {
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
890
891 start_pfn = page_to_pfn(page);
892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893 start_page = pfn_to_page(start_pfn);
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
896
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
902
903 return move_freepages(zone, start_page, end_page, migratetype);
904 }
905
906 static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
908 {
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
914 }
915 }
916
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page *
919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
920 {
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
925
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
931
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
935
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
939
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
943
944 /*
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
949 */
950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
956
957 /* Claim the whole block if over half of it is free */
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
960 set_pageblock_migratetype(page,
961 start_migratetype);
962
963 migratetype = start_migratetype;
964 }
965
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
969
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
973 start_migratetype);
974
975 expand(zone, page, order, current_order, area, migratetype);
976
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
979
980 return page;
981 }
982 }
983
984 return NULL;
985 }
986
987 /*
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
990 */
991 static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
993 {
994 struct page *page;
995
996 retry_reserve:
997 page = __rmqueue_smallest(zone, order, migratetype);
998
999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000 page = __rmqueue_fallback(zone, order, migratetype);
1001
1002 /*
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1006 */
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1010 }
1011 }
1012
1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1014 return page;
1015 }
1016
1017 /*
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023 unsigned long count, struct list_head *list,
1024 int migratetype, int cold)
1025 {
1026 int i;
1027
1028 spin_lock(&zone->lock);
1029 for (i = 0; i < count; ++i) {
1030 struct page *page = __rmqueue(zone, order, migratetype);
1031 if (unlikely(page == NULL))
1032 break;
1033
1034 /*
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1042 */
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
1047 set_page_private(page, migratetype);
1048 list = &page->lru;
1049 }
1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051 spin_unlock(&zone->lock);
1052 return i;
1053 }
1054
1055 #ifdef CONFIG_NUMA
1056 /*
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1063 */
1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1065 {
1066 unsigned long flags;
1067 int to_drain;
1068
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
1074 free_pcppages_bulk(zone, to_drain, pcp);
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
1077 }
1078 #endif
1079
1080 /*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087 static void drain_pages(unsigned int cpu)
1088 {
1089 unsigned long flags;
1090 struct zone *zone;
1091
1092 for_each_populated_zone(zone) {
1093 struct per_cpu_pageset *pset;
1094 struct per_cpu_pages *pcp;
1095
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
1098
1099 pcp = &pset->pcp;
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1103 }
1104 local_irq_restore(flags);
1105 }
1106 }
1107
1108 /*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111 void drain_local_pages(void *arg)
1112 {
1113 drain_pages(smp_processor_id());
1114 }
1115
1116 /*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118 */
1119 void drain_all_pages(void)
1120 {
1121 on_each_cpu(drain_local_pages, NULL, 1);
1122 }
1123
1124 #ifdef CONFIG_HIBERNATION
1125
1126 void mark_free_pages(struct zone *zone)
1127 {
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
1130 int order, t;
1131 struct list_head *curr;
1132
1133 if (!zone->spanned_pages)
1134 return;
1135
1136 spin_lock_irqsave(&zone->lock, flags);
1137
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1142
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
1145 }
1146
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149 unsigned long i;
1150
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
1153 swsusp_set_page_free(pfn_to_page(pfn + i));
1154 }
1155 }
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157 }
1158 #endif /* CONFIG_PM */
1159
1160 /*
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1163 */
1164 void free_hot_cold_page(struct page *page, int cold)
1165 {
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
1169 int migratetype;
1170 int wasMlocked = __TestClearPageMlocked(page);
1171
1172 if (!free_pages_prepare(page, 0))
1173 return;
1174
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1177 local_irq_save(flags);
1178 if (unlikely(wasMlocked))
1179 free_page_mlock(page);
1180 __count_vm_event(PGFREE);
1181
1182 /*
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1188 */
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1193 }
1194 migratetype = MIGRATE_MOVABLE;
1195 }
1196
1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198 if (cold)
1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200 else
1201 list_add(&page->lru, &pcp->lists[migratetype]);
1202 pcp->count++;
1203 if (pcp->count >= pcp->high) {
1204 free_pcppages_bulk(zone, pcp->batch, pcp);
1205 pcp->count -= pcp->batch;
1206 }
1207
1208 out:
1209 local_irq_restore(flags);
1210 }
1211
1212 /*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220 void split_page(struct page *page, unsigned int order)
1221 {
1222 int i;
1223
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
1226
1227 #ifdef CONFIG_KMEMCHECK
1228 /*
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1231 */
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234 #endif
1235
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
1238 }
1239
1240 /*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250 int split_free_page(struct page *page)
1251 {
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1255
1256 BUG_ON(!PageBuddy(page));
1257
1258 zone = page_zone(page);
1259 order = page_order(page);
1260
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1265
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1275
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280 }
1281
1282 return 1 << order;
1283 }
1284
1285 /*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1289 */
1290 static inline
1291 struct page *buffered_rmqueue(struct zone *preferred_zone,
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1294 {
1295 unsigned long flags;
1296 struct page *page;
1297 int cold = !!(gfp_flags & __GFP_COLD);
1298
1299 again:
1300 if (likely(order == 0)) {
1301 struct per_cpu_pages *pcp;
1302 struct list_head *list;
1303
1304 local_irq_save(flags);
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
1307 if (list_empty(list)) {
1308 pcp->count += rmqueue_bulk(zone, 0,
1309 pcp->batch, list,
1310 migratetype, cold);
1311 if (unlikely(list_empty(list)))
1312 goto failed;
1313 }
1314
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1319
1320 list_del(&page->lru);
1321 pcp->count--;
1322 } else {
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324 /*
1325 * __GFP_NOFAIL is not to be used in new code.
1326 *
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1329 *
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1332 * __GFP_NOFAIL.
1333 */
1334 WARN_ON_ONCE(order > 1);
1335 }
1336 spin_lock_irqsave(&zone->lock, flags);
1337 page = __rmqueue(zone, order, migratetype);
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1342 }
1343
1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1345 zone_statistics(preferred_zone, zone, gfp_flags);
1346 local_irq_restore(flags);
1347
1348 VM_BUG_ON(bad_range(zone, page));
1349 if (prep_new_page(page, order, gfp_flags))
1350 goto again;
1351 return page;
1352
1353 failed:
1354 local_irq_restore(flags);
1355 return NULL;
1356 }
1357
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1363
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1366
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1370
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373 static struct {
1374 struct fault_attr attr;
1375
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
1378 u32 min_order;
1379 } fail_page_alloc = {
1380 .attr = FAULT_ATTR_INITIALIZER,
1381 .ignore_gfp_wait = 1,
1382 .ignore_gfp_highmem = 1,
1383 .min_order = 1,
1384 };
1385
1386 static int __init setup_fail_page_alloc(char *str)
1387 {
1388 return setup_fault_attr(&fail_page_alloc.attr, str);
1389 }
1390 __setup("fail_page_alloc=", setup_fail_page_alloc);
1391
1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393 {
1394 if (order < fail_page_alloc.min_order)
1395 return 0;
1396 if (gfp_mask & __GFP_NOFAIL)
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 return 0;
1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 return 0;
1402
1403 return should_fail(&fail_page_alloc.attr, 1 << order);
1404 }
1405
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407
1408 static int __init fail_page_alloc_debugfs(void)
1409 {
1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 struct dentry *dir;
1412 int err;
1413
1414 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1415 "fail_page_alloc");
1416 if (err)
1417 return err;
1418
1419 dir = fail_page_alloc.attr.dir;
1420
1421 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 &fail_page_alloc.ignore_gfp_wait))
1423 goto fail;
1424 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem))
1426 goto fail;
1427 if (!debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order))
1429 goto fail;
1430
1431 return 0;
1432 fail:
1433 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1434
1435 return -ENOMEM;
1436 }
1437
1438 late_initcall(fail_page_alloc_debugfs);
1439
1440 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1441
1442 #else /* CONFIG_FAIL_PAGE_ALLOC */
1443
1444 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1445 {
1446 return 0;
1447 }
1448
1449 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1450
1451 /*
1452 * Return true if free pages are above 'mark'. This takes into account the order
1453 * of the allocation.
1454 */
1455 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1456 int classzone_idx, int alloc_flags, long free_pages)
1457 {
1458 /* free_pages my go negative - that's OK */
1459 long min = mark;
1460 int o;
1461
1462 free_pages -= (1 << order) + 1;
1463 if (alloc_flags & ALLOC_HIGH)
1464 min -= min / 2;
1465 if (alloc_flags & ALLOC_HARDER)
1466 min -= min / 4;
1467
1468 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1469 return false;
1470 for (o = 0; o < order; o++) {
1471 /* At the next order, this order's pages become unavailable */
1472 free_pages -= z->free_area[o].nr_free << o;
1473
1474 /* Require fewer higher order pages to be free */
1475 min >>= 1;
1476
1477 if (free_pages <= min)
1478 return false;
1479 }
1480 return true;
1481 }
1482
1483 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1484 int classzone_idx, int alloc_flags)
1485 {
1486 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1487 zone_page_state(z, NR_FREE_PAGES));
1488 }
1489
1490 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1491 int classzone_idx, int alloc_flags)
1492 {
1493 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1494
1495 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1496 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1497
1498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1499 free_pages);
1500 }
1501
1502 #ifdef CONFIG_NUMA
1503 /*
1504 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1505 * skip over zones that are not allowed by the cpuset, or that have
1506 * been recently (in last second) found to be nearly full. See further
1507 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1508 * that have to skip over a lot of full or unallowed zones.
1509 *
1510 * If the zonelist cache is present in the passed in zonelist, then
1511 * returns a pointer to the allowed node mask (either the current
1512 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1513 *
1514 * If the zonelist cache is not available for this zonelist, does
1515 * nothing and returns NULL.
1516 *
1517 * If the fullzones BITMAP in the zonelist cache is stale (more than
1518 * a second since last zap'd) then we zap it out (clear its bits.)
1519 *
1520 * We hold off even calling zlc_setup, until after we've checked the
1521 * first zone in the zonelist, on the theory that most allocations will
1522 * be satisfied from that first zone, so best to examine that zone as
1523 * quickly as we can.
1524 */
1525 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1526 {
1527 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1528 nodemask_t *allowednodes; /* zonelist_cache approximation */
1529
1530 zlc = zonelist->zlcache_ptr;
1531 if (!zlc)
1532 return NULL;
1533
1534 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1535 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1536 zlc->last_full_zap = jiffies;
1537 }
1538
1539 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1540 &cpuset_current_mems_allowed :
1541 &node_states[N_HIGH_MEMORY];
1542 return allowednodes;
1543 }
1544
1545 /*
1546 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1547 * if it is worth looking at further for free memory:
1548 * 1) Check that the zone isn't thought to be full (doesn't have its
1549 * bit set in the zonelist_cache fullzones BITMAP).
1550 * 2) Check that the zones node (obtained from the zonelist_cache
1551 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1552 * Return true (non-zero) if zone is worth looking at further, or
1553 * else return false (zero) if it is not.
1554 *
1555 * This check -ignores- the distinction between various watermarks,
1556 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1557 * found to be full for any variation of these watermarks, it will
1558 * be considered full for up to one second by all requests, unless
1559 * we are so low on memory on all allowed nodes that we are forced
1560 * into the second scan of the zonelist.
1561 *
1562 * In the second scan we ignore this zonelist cache and exactly
1563 * apply the watermarks to all zones, even it is slower to do so.
1564 * We are low on memory in the second scan, and should leave no stone
1565 * unturned looking for a free page.
1566 */
1567 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1568 nodemask_t *allowednodes)
1569 {
1570 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1571 int i; /* index of *z in zonelist zones */
1572 int n; /* node that zone *z is on */
1573
1574 zlc = zonelist->zlcache_ptr;
1575 if (!zlc)
1576 return 1;
1577
1578 i = z - zonelist->_zonerefs;
1579 n = zlc->z_to_n[i];
1580
1581 /* This zone is worth trying if it is allowed but not full */
1582 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1583 }
1584
1585 /*
1586 * Given 'z' scanning a zonelist, set the corresponding bit in
1587 * zlc->fullzones, so that subsequent attempts to allocate a page
1588 * from that zone don't waste time re-examining it.
1589 */
1590 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1591 {
1592 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1593 int i; /* index of *z in zonelist zones */
1594
1595 zlc = zonelist->zlcache_ptr;
1596 if (!zlc)
1597 return;
1598
1599 i = z - zonelist->_zonerefs;
1600
1601 set_bit(i, zlc->fullzones);
1602 }
1603
1604 /*
1605 * clear all zones full, called after direct reclaim makes progress so that
1606 * a zone that was recently full is not skipped over for up to a second
1607 */
1608 static void zlc_clear_zones_full(struct zonelist *zonelist)
1609 {
1610 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1611
1612 zlc = zonelist->zlcache_ptr;
1613 if (!zlc)
1614 return;
1615
1616 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1617 }
1618
1619 #else /* CONFIG_NUMA */
1620
1621 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622 {
1623 return NULL;
1624 }
1625
1626 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1627 nodemask_t *allowednodes)
1628 {
1629 return 1;
1630 }
1631
1632 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1633 {
1634 }
1635
1636 static void zlc_clear_zones_full(struct zonelist *zonelist)
1637 {
1638 }
1639 #endif /* CONFIG_NUMA */
1640
1641 /*
1642 * get_page_from_freelist goes through the zonelist trying to allocate
1643 * a page.
1644 */
1645 static struct page *
1646 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1647 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1648 struct zone *preferred_zone, int migratetype)
1649 {
1650 struct zoneref *z;
1651 struct page *page = NULL;
1652 int classzone_idx;
1653 struct zone *zone;
1654 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1655 int zlc_active = 0; /* set if using zonelist_cache */
1656 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1657
1658 classzone_idx = zone_idx(preferred_zone);
1659 zonelist_scan:
1660 /*
1661 * Scan zonelist, looking for a zone with enough free.
1662 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1663 */
1664 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1665 high_zoneidx, nodemask) {
1666 if (NUMA_BUILD && zlc_active &&
1667 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1668 continue;
1669 if ((alloc_flags & ALLOC_CPUSET) &&
1670 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1671 continue;
1672
1673 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1674 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1675 unsigned long mark;
1676 int ret;
1677
1678 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1679 if (zone_watermark_ok(zone, order, mark,
1680 classzone_idx, alloc_flags))
1681 goto try_this_zone;
1682
1683 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1684 /*
1685 * we do zlc_setup if there are multiple nodes
1686 * and before considering the first zone allowed
1687 * by the cpuset.
1688 */
1689 allowednodes = zlc_setup(zonelist, alloc_flags);
1690 zlc_active = 1;
1691 did_zlc_setup = 1;
1692 }
1693
1694 if (zone_reclaim_mode == 0)
1695 goto this_zone_full;
1696
1697 /*
1698 * As we may have just activated ZLC, check if the first
1699 * eligible zone has failed zone_reclaim recently.
1700 */
1701 if (NUMA_BUILD && zlc_active &&
1702 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1703 continue;
1704
1705 ret = zone_reclaim(zone, gfp_mask, order);
1706 switch (ret) {
1707 case ZONE_RECLAIM_NOSCAN:
1708 /* did not scan */
1709 continue;
1710 case ZONE_RECLAIM_FULL:
1711 /* scanned but unreclaimable */
1712 continue;
1713 default:
1714 /* did we reclaim enough */
1715 if (!zone_watermark_ok(zone, order, mark,
1716 classzone_idx, alloc_flags))
1717 goto this_zone_full;
1718 }
1719 }
1720
1721 try_this_zone:
1722 page = buffered_rmqueue(preferred_zone, zone, order,
1723 gfp_mask, migratetype);
1724 if (page)
1725 break;
1726 this_zone_full:
1727 if (NUMA_BUILD)
1728 zlc_mark_zone_full(zonelist, z);
1729 }
1730
1731 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1732 /* Disable zlc cache for second zonelist scan */
1733 zlc_active = 0;
1734 goto zonelist_scan;
1735 }
1736 return page;
1737 }
1738
1739 /*
1740 * Large machines with many possible nodes should not always dump per-node
1741 * meminfo in irq context.
1742 */
1743 static inline bool should_suppress_show_mem(void)
1744 {
1745 bool ret = false;
1746
1747 #if NODES_SHIFT > 8
1748 ret = in_interrupt();
1749 #endif
1750 return ret;
1751 }
1752
1753 static DEFINE_RATELIMIT_STATE(nopage_rs,
1754 DEFAULT_RATELIMIT_INTERVAL,
1755 DEFAULT_RATELIMIT_BURST);
1756
1757 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1758 {
1759 va_list args;
1760 unsigned int filter = SHOW_MEM_FILTER_NODES;
1761
1762 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1763 return;
1764
1765 /*
1766 * This documents exceptions given to allocations in certain
1767 * contexts that are allowed to allocate outside current's set
1768 * of allowed nodes.
1769 */
1770 if (!(gfp_mask & __GFP_NOMEMALLOC))
1771 if (test_thread_flag(TIF_MEMDIE) ||
1772 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1773 filter &= ~SHOW_MEM_FILTER_NODES;
1774 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1775 filter &= ~SHOW_MEM_FILTER_NODES;
1776
1777 if (fmt) {
1778 printk(KERN_WARNING);
1779 va_start(args, fmt);
1780 vprintk(fmt, args);
1781 va_end(args);
1782 }
1783
1784 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1785 current->comm, order, gfp_mask);
1786
1787 dump_stack();
1788 if (!should_suppress_show_mem())
1789 show_mem(filter);
1790 }
1791
1792 static inline int
1793 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1794 unsigned long pages_reclaimed)
1795 {
1796 /* Do not loop if specifically requested */
1797 if (gfp_mask & __GFP_NORETRY)
1798 return 0;
1799
1800 /*
1801 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1802 * means __GFP_NOFAIL, but that may not be true in other
1803 * implementations.
1804 */
1805 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1806 return 1;
1807
1808 /*
1809 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1810 * specified, then we retry until we no longer reclaim any pages
1811 * (above), or we've reclaimed an order of pages at least as
1812 * large as the allocation's order. In both cases, if the
1813 * allocation still fails, we stop retrying.
1814 */
1815 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1816 return 1;
1817
1818 /*
1819 * Don't let big-order allocations loop unless the caller
1820 * explicitly requests that.
1821 */
1822 if (gfp_mask & __GFP_NOFAIL)
1823 return 1;
1824
1825 return 0;
1826 }
1827
1828 static inline struct page *
1829 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1830 struct zonelist *zonelist, enum zone_type high_zoneidx,
1831 nodemask_t *nodemask, struct zone *preferred_zone,
1832 int migratetype)
1833 {
1834 struct page *page;
1835
1836 /* Acquire the OOM killer lock for the zones in zonelist */
1837 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1838 schedule_timeout_uninterruptible(1);
1839 return NULL;
1840 }
1841
1842 /*
1843 * Go through the zonelist yet one more time, keep very high watermark
1844 * here, this is only to catch a parallel oom killing, we must fail if
1845 * we're still under heavy pressure.
1846 */
1847 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1848 order, zonelist, high_zoneidx,
1849 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1850 preferred_zone, migratetype);
1851 if (page)
1852 goto out;
1853
1854 if (!(gfp_mask & __GFP_NOFAIL)) {
1855 /* The OOM killer will not help higher order allocs */
1856 if (order > PAGE_ALLOC_COSTLY_ORDER)
1857 goto out;
1858 /* The OOM killer does not needlessly kill tasks for lowmem */
1859 if (high_zoneidx < ZONE_NORMAL)
1860 goto out;
1861 /*
1862 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1863 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1864 * The caller should handle page allocation failure by itself if
1865 * it specifies __GFP_THISNODE.
1866 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1867 */
1868 if (gfp_mask & __GFP_THISNODE)
1869 goto out;
1870 }
1871 /* Exhausted what can be done so it's blamo time */
1872 out_of_memory(zonelist, gfp_mask, order, nodemask);
1873
1874 out:
1875 clear_zonelist_oom(zonelist, gfp_mask);
1876 return page;
1877 }
1878
1879 #ifdef CONFIG_COMPACTION
1880 /* Try memory compaction for high-order allocations before reclaim */
1881 static struct page *
1882 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1883 struct zonelist *zonelist, enum zone_type high_zoneidx,
1884 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1885 int migratetype, unsigned long *did_some_progress,
1886 bool sync_migration)
1887 {
1888 struct page *page;
1889
1890 if (!order || compaction_deferred(preferred_zone))
1891 return NULL;
1892
1893 current->flags |= PF_MEMALLOC;
1894 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1895 nodemask, sync_migration);
1896 current->flags &= ~PF_MEMALLOC;
1897 if (*did_some_progress != COMPACT_SKIPPED) {
1898
1899 /* Page migration frees to the PCP lists but we want merging */
1900 drain_pages(get_cpu());
1901 put_cpu();
1902
1903 page = get_page_from_freelist(gfp_mask, nodemask,
1904 order, zonelist, high_zoneidx,
1905 alloc_flags, preferred_zone,
1906 migratetype);
1907 if (page) {
1908 preferred_zone->compact_considered = 0;
1909 preferred_zone->compact_defer_shift = 0;
1910 count_vm_event(COMPACTSUCCESS);
1911 return page;
1912 }
1913
1914 /*
1915 * It's bad if compaction run occurs and fails.
1916 * The most likely reason is that pages exist,
1917 * but not enough to satisfy watermarks.
1918 */
1919 count_vm_event(COMPACTFAIL);
1920 defer_compaction(preferred_zone);
1921
1922 cond_resched();
1923 }
1924
1925 return NULL;
1926 }
1927 #else
1928 static inline struct page *
1929 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1930 struct zonelist *zonelist, enum zone_type high_zoneidx,
1931 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1932 int migratetype, unsigned long *did_some_progress,
1933 bool sync_migration)
1934 {
1935 return NULL;
1936 }
1937 #endif /* CONFIG_COMPACTION */
1938
1939 /* The really slow allocator path where we enter direct reclaim */
1940 static inline struct page *
1941 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1942 struct zonelist *zonelist, enum zone_type high_zoneidx,
1943 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1944 int migratetype, unsigned long *did_some_progress)
1945 {
1946 struct page *page = NULL;
1947 struct reclaim_state reclaim_state;
1948 bool drained = false;
1949
1950 cond_resched();
1951
1952 /* We now go into synchronous reclaim */
1953 cpuset_memory_pressure_bump();
1954 current->flags |= PF_MEMALLOC;
1955 lockdep_set_current_reclaim_state(gfp_mask);
1956 reclaim_state.reclaimed_slab = 0;
1957 current->reclaim_state = &reclaim_state;
1958
1959 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1960
1961 current->reclaim_state = NULL;
1962 lockdep_clear_current_reclaim_state();
1963 current->flags &= ~PF_MEMALLOC;
1964
1965 cond_resched();
1966
1967 if (unlikely(!(*did_some_progress)))
1968 return NULL;
1969
1970 /* After successful reclaim, reconsider all zones for allocation */
1971 if (NUMA_BUILD)
1972 zlc_clear_zones_full(zonelist);
1973
1974 retry:
1975 page = get_page_from_freelist(gfp_mask, nodemask, order,
1976 zonelist, high_zoneidx,
1977 alloc_flags, preferred_zone,
1978 migratetype);
1979
1980 /*
1981 * If an allocation failed after direct reclaim, it could be because
1982 * pages are pinned on the per-cpu lists. Drain them and try again
1983 */
1984 if (!page && !drained) {
1985 drain_all_pages();
1986 drained = true;
1987 goto retry;
1988 }
1989
1990 return page;
1991 }
1992
1993 /*
1994 * This is called in the allocator slow-path if the allocation request is of
1995 * sufficient urgency to ignore watermarks and take other desperate measures
1996 */
1997 static inline struct page *
1998 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1999 struct zonelist *zonelist, enum zone_type high_zoneidx,
2000 nodemask_t *nodemask, struct zone *preferred_zone,
2001 int migratetype)
2002 {
2003 struct page *page;
2004
2005 do {
2006 page = get_page_from_freelist(gfp_mask, nodemask, order,
2007 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2008 preferred_zone, migratetype);
2009
2010 if (!page && gfp_mask & __GFP_NOFAIL)
2011 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2012 } while (!page && (gfp_mask & __GFP_NOFAIL));
2013
2014 return page;
2015 }
2016
2017 static inline
2018 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2019 enum zone_type high_zoneidx,
2020 enum zone_type classzone_idx)
2021 {
2022 struct zoneref *z;
2023 struct zone *zone;
2024
2025 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2026 wakeup_kswapd(zone, order, classzone_idx);
2027 }
2028
2029 static inline int
2030 gfp_to_alloc_flags(gfp_t gfp_mask)
2031 {
2032 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2033 const gfp_t wait = gfp_mask & __GFP_WAIT;
2034
2035 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2036 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2037
2038 /*
2039 * The caller may dip into page reserves a bit more if the caller
2040 * cannot run direct reclaim, or if the caller has realtime scheduling
2041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2042 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2043 */
2044 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2045
2046 if (!wait) {
2047 /*
2048 * Not worth trying to allocate harder for
2049 * __GFP_NOMEMALLOC even if it can't schedule.
2050 */
2051 if (!(gfp_mask & __GFP_NOMEMALLOC))
2052 alloc_flags |= ALLOC_HARDER;
2053 /*
2054 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2055 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2056 */
2057 alloc_flags &= ~ALLOC_CPUSET;
2058 } else if (unlikely(rt_task(current)) && !in_interrupt())
2059 alloc_flags |= ALLOC_HARDER;
2060
2061 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2062 if (!in_interrupt() &&
2063 ((current->flags & PF_MEMALLOC) ||
2064 unlikely(test_thread_flag(TIF_MEMDIE))))
2065 alloc_flags |= ALLOC_NO_WATERMARKS;
2066 }
2067
2068 return alloc_flags;
2069 }
2070
2071 static inline struct page *
2072 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2073 struct zonelist *zonelist, enum zone_type high_zoneidx,
2074 nodemask_t *nodemask, struct zone *preferred_zone,
2075 int migratetype)
2076 {
2077 const gfp_t wait = gfp_mask & __GFP_WAIT;
2078 struct page *page = NULL;
2079 int alloc_flags;
2080 unsigned long pages_reclaimed = 0;
2081 unsigned long did_some_progress;
2082 bool sync_migration = false;
2083
2084 /*
2085 * In the slowpath, we sanity check order to avoid ever trying to
2086 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2087 * be using allocators in order of preference for an area that is
2088 * too large.
2089 */
2090 if (order >= MAX_ORDER) {
2091 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2092 return NULL;
2093 }
2094
2095 /*
2096 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2097 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2098 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2099 * using a larger set of nodes after it has established that the
2100 * allowed per node queues are empty and that nodes are
2101 * over allocated.
2102 */
2103 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2104 goto nopage;
2105
2106 restart:
2107 if (!(gfp_mask & __GFP_NO_KSWAPD))
2108 wake_all_kswapd(order, zonelist, high_zoneidx,
2109 zone_idx(preferred_zone));
2110
2111 /*
2112 * OK, we're below the kswapd watermark and have kicked background
2113 * reclaim. Now things get more complex, so set up alloc_flags according
2114 * to how we want to proceed.
2115 */
2116 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2117
2118 /*
2119 * Find the true preferred zone if the allocation is unconstrained by
2120 * cpusets.
2121 */
2122 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2123 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2124 &preferred_zone);
2125
2126 rebalance:
2127 /* This is the last chance, in general, before the goto nopage. */
2128 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2129 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2130 preferred_zone, migratetype);
2131 if (page)
2132 goto got_pg;
2133
2134 /* Allocate without watermarks if the context allows */
2135 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2136 page = __alloc_pages_high_priority(gfp_mask, order,
2137 zonelist, high_zoneidx, nodemask,
2138 preferred_zone, migratetype);
2139 if (page)
2140 goto got_pg;
2141 }
2142
2143 /* Atomic allocations - we can't balance anything */
2144 if (!wait)
2145 goto nopage;
2146
2147 /* Avoid recursion of direct reclaim */
2148 if (current->flags & PF_MEMALLOC)
2149 goto nopage;
2150
2151 /* Avoid allocations with no watermarks from looping endlessly */
2152 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2153 goto nopage;
2154
2155 /*
2156 * Try direct compaction. The first pass is asynchronous. Subsequent
2157 * attempts after direct reclaim are synchronous
2158 */
2159 page = __alloc_pages_direct_compact(gfp_mask, order,
2160 zonelist, high_zoneidx,
2161 nodemask,
2162 alloc_flags, preferred_zone,
2163 migratetype, &did_some_progress,
2164 sync_migration);
2165 if (page)
2166 goto got_pg;
2167 sync_migration = true;
2168
2169 /* Try direct reclaim and then allocating */
2170 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2171 zonelist, high_zoneidx,
2172 nodemask,
2173 alloc_flags, preferred_zone,
2174 migratetype, &did_some_progress);
2175 if (page)
2176 goto got_pg;
2177
2178 /*
2179 * If we failed to make any progress reclaiming, then we are
2180 * running out of options and have to consider going OOM
2181 */
2182 if (!did_some_progress) {
2183 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2184 if (oom_killer_disabled)
2185 goto nopage;
2186 page = __alloc_pages_may_oom(gfp_mask, order,
2187 zonelist, high_zoneidx,
2188 nodemask, preferred_zone,
2189 migratetype);
2190 if (page)
2191 goto got_pg;
2192
2193 if (!(gfp_mask & __GFP_NOFAIL)) {
2194 /*
2195 * The oom killer is not called for high-order
2196 * allocations that may fail, so if no progress
2197 * is being made, there are no other options and
2198 * retrying is unlikely to help.
2199 */
2200 if (order > PAGE_ALLOC_COSTLY_ORDER)
2201 goto nopage;
2202 /*
2203 * The oom killer is not called for lowmem
2204 * allocations to prevent needlessly killing
2205 * innocent tasks.
2206 */
2207 if (high_zoneidx < ZONE_NORMAL)
2208 goto nopage;
2209 }
2210
2211 goto restart;
2212 }
2213 }
2214
2215 /* Check if we should retry the allocation */
2216 pages_reclaimed += did_some_progress;
2217 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2218 /* Wait for some write requests to complete then retry */
2219 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2220 goto rebalance;
2221 } else {
2222 /*
2223 * High-order allocations do not necessarily loop after
2224 * direct reclaim and reclaim/compaction depends on compaction
2225 * being called after reclaim so call directly if necessary
2226 */
2227 page = __alloc_pages_direct_compact(gfp_mask, order,
2228 zonelist, high_zoneidx,
2229 nodemask,
2230 alloc_flags, preferred_zone,
2231 migratetype, &did_some_progress,
2232 sync_migration);
2233 if (page)
2234 goto got_pg;
2235 }
2236
2237 nopage:
2238 warn_alloc_failed(gfp_mask, order, NULL);
2239 return page;
2240 got_pg:
2241 if (kmemcheck_enabled)
2242 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2243 return page;
2244
2245 }
2246
2247 /*
2248 * This is the 'heart' of the zoned buddy allocator.
2249 */
2250 struct page *
2251 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2252 struct zonelist *zonelist, nodemask_t *nodemask)
2253 {
2254 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2255 struct zone *preferred_zone;
2256 struct page *page;
2257 int migratetype = allocflags_to_migratetype(gfp_mask);
2258
2259 gfp_mask &= gfp_allowed_mask;
2260
2261 lockdep_trace_alloc(gfp_mask);
2262
2263 might_sleep_if(gfp_mask & __GFP_WAIT);
2264
2265 if (should_fail_alloc_page(gfp_mask, order))
2266 return NULL;
2267
2268 /*
2269 * Check the zones suitable for the gfp_mask contain at least one
2270 * valid zone. It's possible to have an empty zonelist as a result
2271 * of GFP_THISNODE and a memoryless node
2272 */
2273 if (unlikely(!zonelist->_zonerefs->zone))
2274 return NULL;
2275
2276 get_mems_allowed();
2277 /* The preferred zone is used for statistics later */
2278 first_zones_zonelist(zonelist, high_zoneidx,
2279 nodemask ? : &cpuset_current_mems_allowed,
2280 &preferred_zone);
2281 if (!preferred_zone) {
2282 put_mems_allowed();
2283 return NULL;
2284 }
2285
2286 /* First allocation attempt */
2287 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2288 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2289 preferred_zone, migratetype);
2290 if (unlikely(!page))
2291 page = __alloc_pages_slowpath(gfp_mask, order,
2292 zonelist, high_zoneidx, nodemask,
2293 preferred_zone, migratetype);
2294 put_mems_allowed();
2295
2296 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2297 return page;
2298 }
2299 EXPORT_SYMBOL(__alloc_pages_nodemask);
2300
2301 /*
2302 * Common helper functions.
2303 */
2304 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2305 {
2306 struct page *page;
2307
2308 /*
2309 * __get_free_pages() returns a 32-bit address, which cannot represent
2310 * a highmem page
2311 */
2312 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2313
2314 page = alloc_pages(gfp_mask, order);
2315 if (!page)
2316 return 0;
2317 return (unsigned long) page_address(page);
2318 }
2319 EXPORT_SYMBOL(__get_free_pages);
2320
2321 unsigned long get_zeroed_page(gfp_t gfp_mask)
2322 {
2323 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2324 }
2325 EXPORT_SYMBOL(get_zeroed_page);
2326
2327 void __pagevec_free(struct pagevec *pvec)
2328 {
2329 int i = pagevec_count(pvec);
2330
2331 while (--i >= 0) {
2332 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2333 free_hot_cold_page(pvec->pages[i], pvec->cold);
2334 }
2335 }
2336
2337 void __free_pages(struct page *page, unsigned int order)
2338 {
2339 if (put_page_testzero(page)) {
2340 if (order == 0)
2341 free_hot_cold_page(page, 0);
2342 else
2343 __free_pages_ok(page, order);
2344 }
2345 }
2346
2347 EXPORT_SYMBOL(__free_pages);
2348
2349 void free_pages(unsigned long addr, unsigned int order)
2350 {
2351 if (addr != 0) {
2352 VM_BUG_ON(!virt_addr_valid((void *)addr));
2353 __free_pages(virt_to_page((void *)addr), order);
2354 }
2355 }
2356
2357 EXPORT_SYMBOL(free_pages);
2358
2359 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2360 {
2361 if (addr) {
2362 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2363 unsigned long used = addr + PAGE_ALIGN(size);
2364
2365 split_page(virt_to_page((void *)addr), order);
2366 while (used < alloc_end) {
2367 free_page(used);
2368 used += PAGE_SIZE;
2369 }
2370 }
2371 return (void *)addr;
2372 }
2373
2374 /**
2375 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2376 * @size: the number of bytes to allocate
2377 * @gfp_mask: GFP flags for the allocation
2378 *
2379 * This function is similar to alloc_pages(), except that it allocates the
2380 * minimum number of pages to satisfy the request. alloc_pages() can only
2381 * allocate memory in power-of-two pages.
2382 *
2383 * This function is also limited by MAX_ORDER.
2384 *
2385 * Memory allocated by this function must be released by free_pages_exact().
2386 */
2387 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2388 {
2389 unsigned int order = get_order(size);
2390 unsigned long addr;
2391
2392 addr = __get_free_pages(gfp_mask, order);
2393 return make_alloc_exact(addr, order, size);
2394 }
2395 EXPORT_SYMBOL(alloc_pages_exact);
2396
2397 /**
2398 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2399 * pages on a node.
2400 * @nid: the preferred node ID where memory should be allocated
2401 * @size: the number of bytes to allocate
2402 * @gfp_mask: GFP flags for the allocation
2403 *
2404 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2405 * back.
2406 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2407 * but is not exact.
2408 */
2409 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2410 {
2411 unsigned order = get_order(size);
2412 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2413 if (!p)
2414 return NULL;
2415 return make_alloc_exact((unsigned long)page_address(p), order, size);
2416 }
2417 EXPORT_SYMBOL(alloc_pages_exact_nid);
2418
2419 /**
2420 * free_pages_exact - release memory allocated via alloc_pages_exact()
2421 * @virt: the value returned by alloc_pages_exact.
2422 * @size: size of allocation, same value as passed to alloc_pages_exact().
2423 *
2424 * Release the memory allocated by a previous call to alloc_pages_exact.
2425 */
2426 void free_pages_exact(void *virt, size_t size)
2427 {
2428 unsigned long addr = (unsigned long)virt;
2429 unsigned long end = addr + PAGE_ALIGN(size);
2430
2431 while (addr < end) {
2432 free_page(addr);
2433 addr += PAGE_SIZE;
2434 }
2435 }
2436 EXPORT_SYMBOL(free_pages_exact);
2437
2438 static unsigned int nr_free_zone_pages(int offset)
2439 {
2440 struct zoneref *z;
2441 struct zone *zone;
2442
2443 /* Just pick one node, since fallback list is circular */
2444 unsigned int sum = 0;
2445
2446 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2447
2448 for_each_zone_zonelist(zone, z, zonelist, offset) {
2449 unsigned long size = zone->present_pages;
2450 unsigned long high = high_wmark_pages(zone);
2451 if (size > high)
2452 sum += size - high;
2453 }
2454
2455 return sum;
2456 }
2457
2458 /*
2459 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2460 */
2461 unsigned int nr_free_buffer_pages(void)
2462 {
2463 return nr_free_zone_pages(gfp_zone(GFP_USER));
2464 }
2465 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2466
2467 /*
2468 * Amount of free RAM allocatable within all zones
2469 */
2470 unsigned int nr_free_pagecache_pages(void)
2471 {
2472 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2473 }
2474
2475 static inline void show_node(struct zone *zone)
2476 {
2477 if (NUMA_BUILD)
2478 printk("Node %d ", zone_to_nid(zone));
2479 }
2480
2481 void si_meminfo(struct sysinfo *val)
2482 {
2483 val->totalram = totalram_pages;
2484 val->sharedram = 0;
2485 val->freeram = global_page_state(NR_FREE_PAGES);
2486 val->bufferram = nr_blockdev_pages();
2487 val->totalhigh = totalhigh_pages;
2488 val->freehigh = nr_free_highpages();
2489 val->mem_unit = PAGE_SIZE;
2490 }
2491
2492 EXPORT_SYMBOL(si_meminfo);
2493
2494 #ifdef CONFIG_NUMA
2495 void si_meminfo_node(struct sysinfo *val, int nid)
2496 {
2497 pg_data_t *pgdat = NODE_DATA(nid);
2498
2499 val->totalram = pgdat->node_present_pages;
2500 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2501 #ifdef CONFIG_HIGHMEM
2502 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2503 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2504 NR_FREE_PAGES);
2505 #else
2506 val->totalhigh = 0;
2507 val->freehigh = 0;
2508 #endif
2509 val->mem_unit = PAGE_SIZE;
2510 }
2511 #endif
2512
2513 /*
2514 * Determine whether the node should be displayed or not, depending on whether
2515 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2516 */
2517 bool skip_free_areas_node(unsigned int flags, int nid)
2518 {
2519 bool ret = false;
2520
2521 if (!(flags & SHOW_MEM_FILTER_NODES))
2522 goto out;
2523
2524 get_mems_allowed();
2525 ret = !node_isset(nid, cpuset_current_mems_allowed);
2526 put_mems_allowed();
2527 out:
2528 return ret;
2529 }
2530
2531 #define K(x) ((x) << (PAGE_SHIFT-10))
2532
2533 /*
2534 * Show free area list (used inside shift_scroll-lock stuff)
2535 * We also calculate the percentage fragmentation. We do this by counting the
2536 * memory on each free list with the exception of the first item on the list.
2537 * Suppresses nodes that are not allowed by current's cpuset if
2538 * SHOW_MEM_FILTER_NODES is passed.
2539 */
2540 void show_free_areas(unsigned int filter)
2541 {
2542 int cpu;
2543 struct zone *zone;
2544
2545 for_each_populated_zone(zone) {
2546 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2547 continue;
2548 show_node(zone);
2549 printk("%s per-cpu:\n", zone->name);
2550
2551 for_each_online_cpu(cpu) {
2552 struct per_cpu_pageset *pageset;
2553
2554 pageset = per_cpu_ptr(zone->pageset, cpu);
2555
2556 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2557 cpu, pageset->pcp.high,
2558 pageset->pcp.batch, pageset->pcp.count);
2559 }
2560 }
2561
2562 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2563 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2564 " unevictable:%lu"
2565 " dirty:%lu writeback:%lu unstable:%lu\n"
2566 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2567 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2568 global_page_state(NR_ACTIVE_ANON),
2569 global_page_state(NR_INACTIVE_ANON),
2570 global_page_state(NR_ISOLATED_ANON),
2571 global_page_state(NR_ACTIVE_FILE),
2572 global_page_state(NR_INACTIVE_FILE),
2573 global_page_state(NR_ISOLATED_FILE),
2574 global_page_state(NR_UNEVICTABLE),
2575 global_page_state(NR_FILE_DIRTY),
2576 global_page_state(NR_WRITEBACK),
2577 global_page_state(NR_UNSTABLE_NFS),
2578 global_page_state(NR_FREE_PAGES),
2579 global_page_state(NR_SLAB_RECLAIMABLE),
2580 global_page_state(NR_SLAB_UNRECLAIMABLE),
2581 global_page_state(NR_FILE_MAPPED),
2582 global_page_state(NR_SHMEM),
2583 global_page_state(NR_PAGETABLE),
2584 global_page_state(NR_BOUNCE));
2585
2586 for_each_populated_zone(zone) {
2587 int i;
2588
2589 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2590 continue;
2591 show_node(zone);
2592 printk("%s"
2593 " free:%lukB"
2594 " min:%lukB"
2595 " low:%lukB"
2596 " high:%lukB"
2597 " active_anon:%lukB"
2598 " inactive_anon:%lukB"
2599 " active_file:%lukB"
2600 " inactive_file:%lukB"
2601 " unevictable:%lukB"
2602 " isolated(anon):%lukB"
2603 " isolated(file):%lukB"
2604 " present:%lukB"
2605 " mlocked:%lukB"
2606 " dirty:%lukB"
2607 " writeback:%lukB"
2608 " mapped:%lukB"
2609 " shmem:%lukB"
2610 " slab_reclaimable:%lukB"
2611 " slab_unreclaimable:%lukB"
2612 " kernel_stack:%lukB"
2613 " pagetables:%lukB"
2614 " unstable:%lukB"
2615 " bounce:%lukB"
2616 " writeback_tmp:%lukB"
2617 " pages_scanned:%lu"
2618 " all_unreclaimable? %s"
2619 "\n",
2620 zone->name,
2621 K(zone_page_state(zone, NR_FREE_PAGES)),
2622 K(min_wmark_pages(zone)),
2623 K(low_wmark_pages(zone)),
2624 K(high_wmark_pages(zone)),
2625 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2626 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2627 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2628 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2629 K(zone_page_state(zone, NR_UNEVICTABLE)),
2630 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2631 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2632 K(zone->present_pages),
2633 K(zone_page_state(zone, NR_MLOCK)),
2634 K(zone_page_state(zone, NR_FILE_DIRTY)),
2635 K(zone_page_state(zone, NR_WRITEBACK)),
2636 K(zone_page_state(zone, NR_FILE_MAPPED)),
2637 K(zone_page_state(zone, NR_SHMEM)),
2638 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2639 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2640 zone_page_state(zone, NR_KERNEL_STACK) *
2641 THREAD_SIZE / 1024,
2642 K(zone_page_state(zone, NR_PAGETABLE)),
2643 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2644 K(zone_page_state(zone, NR_BOUNCE)),
2645 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2646 zone->pages_scanned,
2647 (zone->all_unreclaimable ? "yes" : "no")
2648 );
2649 printk("lowmem_reserve[]:");
2650 for (i = 0; i < MAX_NR_ZONES; i++)
2651 printk(" %lu", zone->lowmem_reserve[i]);
2652 printk("\n");
2653 }
2654
2655 for_each_populated_zone(zone) {
2656 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2657
2658 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2659 continue;
2660 show_node(zone);
2661 printk("%s: ", zone->name);
2662
2663 spin_lock_irqsave(&zone->lock, flags);
2664 for (order = 0; order < MAX_ORDER; order++) {
2665 nr[order] = zone->free_area[order].nr_free;
2666 total += nr[order] << order;
2667 }
2668 spin_unlock_irqrestore(&zone->lock, flags);
2669 for (order = 0; order < MAX_ORDER; order++)
2670 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2671 printk("= %lukB\n", K(total));
2672 }
2673
2674 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2675
2676 show_swap_cache_info();
2677 }
2678
2679 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2680 {
2681 zoneref->zone = zone;
2682 zoneref->zone_idx = zone_idx(zone);
2683 }
2684
2685 /*
2686 * Builds allocation fallback zone lists.
2687 *
2688 * Add all populated zones of a node to the zonelist.
2689 */
2690 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2691 int nr_zones, enum zone_type zone_type)
2692 {
2693 struct zone *zone;
2694
2695 BUG_ON(zone_type >= MAX_NR_ZONES);
2696 zone_type++;
2697
2698 do {
2699 zone_type--;
2700 zone = pgdat->node_zones + zone_type;
2701 if (populated_zone(zone)) {
2702 zoneref_set_zone(zone,
2703 &zonelist->_zonerefs[nr_zones++]);
2704 check_highest_zone(zone_type);
2705 }
2706
2707 } while (zone_type);
2708 return nr_zones;
2709 }
2710
2711
2712 /*
2713 * zonelist_order:
2714 * 0 = automatic detection of better ordering.
2715 * 1 = order by ([node] distance, -zonetype)
2716 * 2 = order by (-zonetype, [node] distance)
2717 *
2718 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2719 * the same zonelist. So only NUMA can configure this param.
2720 */
2721 #define ZONELIST_ORDER_DEFAULT 0
2722 #define ZONELIST_ORDER_NODE 1
2723 #define ZONELIST_ORDER_ZONE 2
2724
2725 /* zonelist order in the kernel.
2726 * set_zonelist_order() will set this to NODE or ZONE.
2727 */
2728 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2729 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2730
2731
2732 #ifdef CONFIG_NUMA
2733 /* The value user specified ....changed by config */
2734 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2735 /* string for sysctl */
2736 #define NUMA_ZONELIST_ORDER_LEN 16
2737 char numa_zonelist_order[16] = "default";
2738
2739 /*
2740 * interface for configure zonelist ordering.
2741 * command line option "numa_zonelist_order"
2742 * = "[dD]efault - default, automatic configuration.
2743 * = "[nN]ode - order by node locality, then by zone within node
2744 * = "[zZ]one - order by zone, then by locality within zone
2745 */
2746
2747 static int __parse_numa_zonelist_order(char *s)
2748 {
2749 if (*s == 'd' || *s == 'D') {
2750 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2751 } else if (*s == 'n' || *s == 'N') {
2752 user_zonelist_order = ZONELIST_ORDER_NODE;
2753 } else if (*s == 'z' || *s == 'Z') {
2754 user_zonelist_order = ZONELIST_ORDER_ZONE;
2755 } else {
2756 printk(KERN_WARNING
2757 "Ignoring invalid numa_zonelist_order value: "
2758 "%s\n", s);
2759 return -EINVAL;
2760 }
2761 return 0;
2762 }
2763
2764 static __init int setup_numa_zonelist_order(char *s)
2765 {
2766 int ret;
2767
2768 if (!s)
2769 return 0;
2770
2771 ret = __parse_numa_zonelist_order(s);
2772 if (ret == 0)
2773 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2774
2775 return ret;
2776 }
2777 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2778
2779 /*
2780 * sysctl handler for numa_zonelist_order
2781 */
2782 int numa_zonelist_order_handler(ctl_table *table, int write,
2783 void __user *buffer, size_t *length,
2784 loff_t *ppos)
2785 {
2786 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2787 int ret;
2788 static DEFINE_MUTEX(zl_order_mutex);
2789
2790 mutex_lock(&zl_order_mutex);
2791 if (write)
2792 strcpy(saved_string, (char*)table->data);
2793 ret = proc_dostring(table, write, buffer, length, ppos);
2794 if (ret)
2795 goto out;
2796 if (write) {
2797 int oldval = user_zonelist_order;
2798 if (__parse_numa_zonelist_order((char*)table->data)) {
2799 /*
2800 * bogus value. restore saved string
2801 */
2802 strncpy((char*)table->data, saved_string,
2803 NUMA_ZONELIST_ORDER_LEN);
2804 user_zonelist_order = oldval;
2805 } else if (oldval != user_zonelist_order) {
2806 mutex_lock(&zonelists_mutex);
2807 build_all_zonelists(NULL);
2808 mutex_unlock(&zonelists_mutex);
2809 }
2810 }
2811 out:
2812 mutex_unlock(&zl_order_mutex);
2813 return ret;
2814 }
2815
2816
2817 #define MAX_NODE_LOAD (nr_online_nodes)
2818 static int node_load[MAX_NUMNODES];
2819
2820 /**
2821 * find_next_best_node - find the next node that should appear in a given node's fallback list
2822 * @node: node whose fallback list we're appending
2823 * @used_node_mask: nodemask_t of already used nodes
2824 *
2825 * We use a number of factors to determine which is the next node that should
2826 * appear on a given node's fallback list. The node should not have appeared
2827 * already in @node's fallback list, and it should be the next closest node
2828 * according to the distance array (which contains arbitrary distance values
2829 * from each node to each node in the system), and should also prefer nodes
2830 * with no CPUs, since presumably they'll have very little allocation pressure
2831 * on them otherwise.
2832 * It returns -1 if no node is found.
2833 */
2834 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2835 {
2836 int n, val;
2837 int min_val = INT_MAX;
2838 int best_node = -1;
2839 const struct cpumask *tmp = cpumask_of_node(0);
2840
2841 /* Use the local node if we haven't already */
2842 if (!node_isset(node, *used_node_mask)) {
2843 node_set(node, *used_node_mask);
2844 return node;
2845 }
2846
2847 for_each_node_state(n, N_HIGH_MEMORY) {
2848
2849 /* Don't want a node to appear more than once */
2850 if (node_isset(n, *used_node_mask))
2851 continue;
2852
2853 /* Use the distance array to find the distance */
2854 val = node_distance(node, n);
2855
2856 /* Penalize nodes under us ("prefer the next node") */
2857 val += (n < node);
2858
2859 /* Give preference to headless and unused nodes */
2860 tmp = cpumask_of_node(n);
2861 if (!cpumask_empty(tmp))
2862 val += PENALTY_FOR_NODE_WITH_CPUS;
2863
2864 /* Slight preference for less loaded node */
2865 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2866 val += node_load[n];
2867
2868 if (val < min_val) {
2869 min_val = val;
2870 best_node = n;
2871 }
2872 }
2873
2874 if (best_node >= 0)
2875 node_set(best_node, *used_node_mask);
2876
2877 return best_node;
2878 }
2879
2880
2881 /*
2882 * Build zonelists ordered by node and zones within node.
2883 * This results in maximum locality--normal zone overflows into local
2884 * DMA zone, if any--but risks exhausting DMA zone.
2885 */
2886 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2887 {
2888 int j;
2889 struct zonelist *zonelist;
2890
2891 zonelist = &pgdat->node_zonelists[0];
2892 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2893 ;
2894 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2895 MAX_NR_ZONES - 1);
2896 zonelist->_zonerefs[j].zone = NULL;
2897 zonelist->_zonerefs[j].zone_idx = 0;
2898 }
2899
2900 /*
2901 * Build gfp_thisnode zonelists
2902 */
2903 static void build_thisnode_zonelists(pg_data_t *pgdat)
2904 {
2905 int j;
2906 struct zonelist *zonelist;
2907
2908 zonelist = &pgdat->node_zonelists[1];
2909 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2910 zonelist->_zonerefs[j].zone = NULL;
2911 zonelist->_zonerefs[j].zone_idx = 0;
2912 }
2913
2914 /*
2915 * Build zonelists ordered by zone and nodes within zones.
2916 * This results in conserving DMA zone[s] until all Normal memory is
2917 * exhausted, but results in overflowing to remote node while memory
2918 * may still exist in local DMA zone.
2919 */
2920 static int node_order[MAX_NUMNODES];
2921
2922 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2923 {
2924 int pos, j, node;
2925 int zone_type; /* needs to be signed */
2926 struct zone *z;
2927 struct zonelist *zonelist;
2928
2929 zonelist = &pgdat->node_zonelists[0];
2930 pos = 0;
2931 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2932 for (j = 0; j < nr_nodes; j++) {
2933 node = node_order[j];
2934 z = &NODE_DATA(node)->node_zones[zone_type];
2935 if (populated_zone(z)) {
2936 zoneref_set_zone(z,
2937 &zonelist->_zonerefs[pos++]);
2938 check_highest_zone(zone_type);
2939 }
2940 }
2941 }
2942 zonelist->_zonerefs[pos].zone = NULL;
2943 zonelist->_zonerefs[pos].zone_idx = 0;
2944 }
2945
2946 static int default_zonelist_order(void)
2947 {
2948 int nid, zone_type;
2949 unsigned long low_kmem_size,total_size;
2950 struct zone *z;
2951 int average_size;
2952 /*
2953 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2954 * If they are really small and used heavily, the system can fall
2955 * into OOM very easily.
2956 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2957 */
2958 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2959 low_kmem_size = 0;
2960 total_size = 0;
2961 for_each_online_node(nid) {
2962 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2963 z = &NODE_DATA(nid)->node_zones[zone_type];
2964 if (populated_zone(z)) {
2965 if (zone_type < ZONE_NORMAL)
2966 low_kmem_size += z->present_pages;
2967 total_size += z->present_pages;
2968 } else if (zone_type == ZONE_NORMAL) {
2969 /*
2970 * If any node has only lowmem, then node order
2971 * is preferred to allow kernel allocations
2972 * locally; otherwise, they can easily infringe
2973 * on other nodes when there is an abundance of
2974 * lowmem available to allocate from.
2975 */
2976 return ZONELIST_ORDER_NODE;
2977 }
2978 }
2979 }
2980 if (!low_kmem_size || /* there are no DMA area. */
2981 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2982 return ZONELIST_ORDER_NODE;
2983 /*
2984 * look into each node's config.
2985 * If there is a node whose DMA/DMA32 memory is very big area on
2986 * local memory, NODE_ORDER may be suitable.
2987 */
2988 average_size = total_size /
2989 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2990 for_each_online_node(nid) {
2991 low_kmem_size = 0;
2992 total_size = 0;
2993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2994 z = &NODE_DATA(nid)->node_zones[zone_type];
2995 if (populated_zone(z)) {
2996 if (zone_type < ZONE_NORMAL)
2997 low_kmem_size += z->present_pages;
2998 total_size += z->present_pages;
2999 }
3000 }
3001 if (low_kmem_size &&
3002 total_size > average_size && /* ignore small node */
3003 low_kmem_size > total_size * 70/100)
3004 return ZONELIST_ORDER_NODE;
3005 }
3006 return ZONELIST_ORDER_ZONE;
3007 }
3008
3009 static void set_zonelist_order(void)
3010 {
3011 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3012 current_zonelist_order = default_zonelist_order();
3013 else
3014 current_zonelist_order = user_zonelist_order;
3015 }
3016
3017 static void build_zonelists(pg_data_t *pgdat)
3018 {
3019 int j, node, load;
3020 enum zone_type i;
3021 nodemask_t used_mask;
3022 int local_node, prev_node;
3023 struct zonelist *zonelist;
3024 int order = current_zonelist_order;
3025
3026 /* initialize zonelists */
3027 for (i = 0; i < MAX_ZONELISTS; i++) {
3028 zonelist = pgdat->node_zonelists + i;
3029 zonelist->_zonerefs[0].zone = NULL;
3030 zonelist->_zonerefs[0].zone_idx = 0;
3031 }
3032
3033 /* NUMA-aware ordering of nodes */
3034 local_node = pgdat->node_id;
3035 load = nr_online_nodes;
3036 prev_node = local_node;
3037 nodes_clear(used_mask);
3038
3039 memset(node_order, 0, sizeof(node_order));
3040 j = 0;
3041
3042 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3043 int distance = node_distance(local_node, node);
3044
3045 /*
3046 * If another node is sufficiently far away then it is better
3047 * to reclaim pages in a zone before going off node.
3048 */
3049 if (distance > RECLAIM_DISTANCE)
3050 zone_reclaim_mode = 1;
3051
3052 /*
3053 * We don't want to pressure a particular node.
3054 * So adding penalty to the first node in same
3055 * distance group to make it round-robin.
3056 */
3057 if (distance != node_distance(local_node, prev_node))
3058 node_load[node] = load;
3059
3060 prev_node = node;
3061 load--;
3062 if (order == ZONELIST_ORDER_NODE)
3063 build_zonelists_in_node_order(pgdat, node);
3064 else
3065 node_order[j++] = node; /* remember order */
3066 }
3067
3068 if (order == ZONELIST_ORDER_ZONE) {
3069 /* calculate node order -- i.e., DMA last! */
3070 build_zonelists_in_zone_order(pgdat, j);
3071 }
3072
3073 build_thisnode_zonelists(pgdat);
3074 }
3075
3076 /* Construct the zonelist performance cache - see further mmzone.h */
3077 static void build_zonelist_cache(pg_data_t *pgdat)
3078 {
3079 struct zonelist *zonelist;
3080 struct zonelist_cache *zlc;
3081 struct zoneref *z;
3082
3083 zonelist = &pgdat->node_zonelists[0];
3084 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3085 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3086 for (z = zonelist->_zonerefs; z->zone; z++)
3087 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3088 }
3089
3090 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3091 /*
3092 * Return node id of node used for "local" allocations.
3093 * I.e., first node id of first zone in arg node's generic zonelist.
3094 * Used for initializing percpu 'numa_mem', which is used primarily
3095 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3096 */
3097 int local_memory_node(int node)
3098 {
3099 struct zone *zone;
3100
3101 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3102 gfp_zone(GFP_KERNEL),
3103 NULL,
3104 &zone);
3105 return zone->node;
3106 }
3107 #endif
3108
3109 #else /* CONFIG_NUMA */
3110
3111 static void set_zonelist_order(void)
3112 {
3113 current_zonelist_order = ZONELIST_ORDER_ZONE;
3114 }
3115
3116 static void build_zonelists(pg_data_t *pgdat)
3117 {
3118 int node, local_node;
3119 enum zone_type j;
3120 struct zonelist *zonelist;
3121
3122 local_node = pgdat->node_id;
3123
3124 zonelist = &pgdat->node_zonelists[0];
3125 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3126
3127 /*
3128 * Now we build the zonelist so that it contains the zones
3129 * of all the other nodes.
3130 * We don't want to pressure a particular node, so when
3131 * building the zones for node N, we make sure that the
3132 * zones coming right after the local ones are those from
3133 * node N+1 (modulo N)
3134 */
3135 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3136 if (!node_online(node))
3137 continue;
3138 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3139 MAX_NR_ZONES - 1);
3140 }
3141 for (node = 0; node < local_node; node++) {
3142 if (!node_online(node))
3143 continue;
3144 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3145 MAX_NR_ZONES - 1);
3146 }
3147
3148 zonelist->_zonerefs[j].zone = NULL;
3149 zonelist->_zonerefs[j].zone_idx = 0;
3150 }
3151
3152 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3153 static void build_zonelist_cache(pg_data_t *pgdat)
3154 {
3155 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3156 }
3157
3158 #endif /* CONFIG_NUMA */
3159
3160 /*
3161 * Boot pageset table. One per cpu which is going to be used for all
3162 * zones and all nodes. The parameters will be set in such a way
3163 * that an item put on a list will immediately be handed over to
3164 * the buddy list. This is safe since pageset manipulation is done
3165 * with interrupts disabled.
3166 *
3167 * The boot_pagesets must be kept even after bootup is complete for
3168 * unused processors and/or zones. They do play a role for bootstrapping
3169 * hotplugged processors.
3170 *
3171 * zoneinfo_show() and maybe other functions do
3172 * not check if the processor is online before following the pageset pointer.
3173 * Other parts of the kernel may not check if the zone is available.
3174 */
3175 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3176 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3177 static void setup_zone_pageset(struct zone *zone);
3178
3179 /*
3180 * Global mutex to protect against size modification of zonelists
3181 * as well as to serialize pageset setup for the new populated zone.
3182 */
3183 DEFINE_MUTEX(zonelists_mutex);
3184
3185 /* return values int ....just for stop_machine() */
3186 static __init_refok int __build_all_zonelists(void *data)
3187 {
3188 int nid;
3189 int cpu;
3190
3191 #ifdef CONFIG_NUMA
3192 memset(node_load, 0, sizeof(node_load));
3193 #endif
3194 for_each_online_node(nid) {
3195 pg_data_t *pgdat = NODE_DATA(nid);
3196
3197 build_zonelists(pgdat);
3198 build_zonelist_cache(pgdat);
3199 }
3200
3201 /*
3202 * Initialize the boot_pagesets that are going to be used
3203 * for bootstrapping processors. The real pagesets for
3204 * each zone will be allocated later when the per cpu
3205 * allocator is available.
3206 *
3207 * boot_pagesets are used also for bootstrapping offline
3208 * cpus if the system is already booted because the pagesets
3209 * are needed to initialize allocators on a specific cpu too.
3210 * F.e. the percpu allocator needs the page allocator which
3211 * needs the percpu allocator in order to allocate its pagesets
3212 * (a chicken-egg dilemma).
3213 */
3214 for_each_possible_cpu(cpu) {
3215 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3216
3217 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3218 /*
3219 * We now know the "local memory node" for each node--
3220 * i.e., the node of the first zone in the generic zonelist.
3221 * Set up numa_mem percpu variable for on-line cpus. During
3222 * boot, only the boot cpu should be on-line; we'll init the
3223 * secondary cpus' numa_mem as they come on-line. During
3224 * node/memory hotplug, we'll fixup all on-line cpus.
3225 */
3226 if (cpu_online(cpu))
3227 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3228 #endif
3229 }
3230
3231 return 0;
3232 }
3233
3234 /*
3235 * Called with zonelists_mutex held always
3236 * unless system_state == SYSTEM_BOOTING.
3237 */
3238 void __ref build_all_zonelists(void *data)
3239 {
3240 set_zonelist_order();
3241
3242 if (system_state == SYSTEM_BOOTING) {
3243 __build_all_zonelists(NULL);
3244 mminit_verify_zonelist();
3245 cpuset_init_current_mems_allowed();
3246 } else {
3247 /* we have to stop all cpus to guarantee there is no user
3248 of zonelist */
3249 #ifdef CONFIG_MEMORY_HOTPLUG
3250 if (data)
3251 setup_zone_pageset((struct zone *)data);
3252 #endif
3253 stop_machine(__build_all_zonelists, NULL, NULL);
3254 /* cpuset refresh routine should be here */
3255 }
3256 vm_total_pages = nr_free_pagecache_pages();
3257 /*
3258 * Disable grouping by mobility if the number of pages in the
3259 * system is too low to allow the mechanism to work. It would be
3260 * more accurate, but expensive to check per-zone. This check is
3261 * made on memory-hotadd so a system can start with mobility
3262 * disabled and enable it later
3263 */
3264 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3265 page_group_by_mobility_disabled = 1;
3266 else
3267 page_group_by_mobility_disabled = 0;
3268
3269 printk("Built %i zonelists in %s order, mobility grouping %s. "
3270 "Total pages: %ld\n",
3271 nr_online_nodes,
3272 zonelist_order_name[current_zonelist_order],
3273 page_group_by_mobility_disabled ? "off" : "on",
3274 vm_total_pages);
3275 #ifdef CONFIG_NUMA
3276 printk("Policy zone: %s\n", zone_names[policy_zone]);
3277 #endif
3278 }
3279
3280 /*
3281 * Helper functions to size the waitqueue hash table.
3282 * Essentially these want to choose hash table sizes sufficiently
3283 * large so that collisions trying to wait on pages are rare.
3284 * But in fact, the number of active page waitqueues on typical
3285 * systems is ridiculously low, less than 200. So this is even
3286 * conservative, even though it seems large.
3287 *
3288 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3289 * waitqueues, i.e. the size of the waitq table given the number of pages.
3290 */
3291 #define PAGES_PER_WAITQUEUE 256
3292
3293 #ifndef CONFIG_MEMORY_HOTPLUG
3294 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3295 {
3296 unsigned long size = 1;
3297
3298 pages /= PAGES_PER_WAITQUEUE;
3299
3300 while (size < pages)
3301 size <<= 1;
3302
3303 /*
3304 * Once we have dozens or even hundreds of threads sleeping
3305 * on IO we've got bigger problems than wait queue collision.
3306 * Limit the size of the wait table to a reasonable size.
3307 */
3308 size = min(size, 4096UL);
3309
3310 return max(size, 4UL);
3311 }
3312 #else
3313 /*
3314 * A zone's size might be changed by hot-add, so it is not possible to determine
3315 * a suitable size for its wait_table. So we use the maximum size now.
3316 *
3317 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3318 *
3319 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3320 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3321 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3322 *
3323 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3324 * or more by the traditional way. (See above). It equals:
3325 *
3326 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3327 * ia64(16K page size) : = ( 8G + 4M)byte.
3328 * powerpc (64K page size) : = (32G +16M)byte.
3329 */
3330 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3331 {
3332 return 4096UL;
3333 }
3334 #endif
3335
3336 /*
3337 * This is an integer logarithm so that shifts can be used later
3338 * to extract the more random high bits from the multiplicative
3339 * hash function before the remainder is taken.
3340 */
3341 static inline unsigned long wait_table_bits(unsigned long size)
3342 {
3343 return ffz(~size);
3344 }
3345
3346 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3347
3348 /*
3349 * Check if a pageblock contains reserved pages
3350 */
3351 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3352 {
3353 unsigned long pfn;
3354
3355 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3356 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3357 return 1;
3358 }
3359 return 0;
3360 }
3361
3362 /*
3363 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3364 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3365 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3366 * higher will lead to a bigger reserve which will get freed as contiguous
3367 * blocks as reclaim kicks in
3368 */
3369 static void setup_zone_migrate_reserve(struct zone *zone)
3370 {
3371 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3372 struct page *page;
3373 unsigned long block_migratetype;
3374 int reserve;
3375
3376 /* Get the start pfn, end pfn and the number of blocks to reserve */
3377 start_pfn = zone->zone_start_pfn;
3378 end_pfn = start_pfn + zone->spanned_pages;
3379 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3380 pageblock_order;
3381
3382 /*
3383 * Reserve blocks are generally in place to help high-order atomic
3384 * allocations that are short-lived. A min_free_kbytes value that
3385 * would result in more than 2 reserve blocks for atomic allocations
3386 * is assumed to be in place to help anti-fragmentation for the
3387 * future allocation of hugepages at runtime.
3388 */
3389 reserve = min(2, reserve);
3390
3391 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3392 if (!pfn_valid(pfn))
3393 continue;
3394 page = pfn_to_page(pfn);
3395
3396 /* Watch out for overlapping nodes */
3397 if (page_to_nid(page) != zone_to_nid(zone))
3398 continue;
3399
3400 /* Blocks with reserved pages will never free, skip them. */
3401 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3402 if (pageblock_is_reserved(pfn, block_end_pfn))
3403 continue;
3404
3405 block_migratetype = get_pageblock_migratetype(page);
3406
3407 /* If this block is reserved, account for it */
3408 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3409 reserve--;
3410 continue;
3411 }
3412
3413 /* Suitable for reserving if this block is movable */
3414 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3415 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3416 move_freepages_block(zone, page, MIGRATE_RESERVE);
3417 reserve--;
3418 continue;
3419 }
3420
3421 /*
3422 * If the reserve is met and this is a previous reserved block,
3423 * take it back
3424 */
3425 if (block_migratetype == MIGRATE_RESERVE) {
3426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3427 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3428 }
3429 }
3430 }
3431
3432 /*
3433 * Initially all pages are reserved - free ones are freed
3434 * up by free_all_bootmem() once the early boot process is
3435 * done. Non-atomic initialization, single-pass.
3436 */
3437 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3438 unsigned long start_pfn, enum memmap_context context)
3439 {
3440 struct page *page;
3441 unsigned long end_pfn = start_pfn + size;
3442 unsigned long pfn;
3443 struct zone *z;
3444
3445 if (highest_memmap_pfn < end_pfn - 1)
3446 highest_memmap_pfn = end_pfn - 1;
3447
3448 z = &NODE_DATA(nid)->node_zones[zone];
3449 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3450 /*
3451 * There can be holes in boot-time mem_map[]s
3452 * handed to this function. They do not
3453 * exist on hotplugged memory.
3454 */
3455 if (context == MEMMAP_EARLY) {
3456 if (!early_pfn_valid(pfn))
3457 continue;
3458 if (!early_pfn_in_nid(pfn, nid))
3459 continue;
3460 }
3461 page = pfn_to_page(pfn);
3462 set_page_links(page, zone, nid, pfn);
3463 mminit_verify_page_links(page, zone, nid, pfn);
3464 init_page_count(page);
3465 reset_page_mapcount(page);
3466 SetPageReserved(page);
3467 /*
3468 * Mark the block movable so that blocks are reserved for
3469 * movable at startup. This will force kernel allocations
3470 * to reserve their blocks rather than leaking throughout
3471 * the address space during boot when many long-lived
3472 * kernel allocations are made. Later some blocks near
3473 * the start are marked MIGRATE_RESERVE by
3474 * setup_zone_migrate_reserve()
3475 *
3476 * bitmap is created for zone's valid pfn range. but memmap
3477 * can be created for invalid pages (for alignment)
3478 * check here not to call set_pageblock_migratetype() against
3479 * pfn out of zone.
3480 */
3481 if ((z->zone_start_pfn <= pfn)
3482 && (pfn < z->zone_start_pfn + z->spanned_pages)
3483 && !(pfn & (pageblock_nr_pages - 1)))
3484 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3485
3486 INIT_LIST_HEAD(&page->lru);
3487 #ifdef WANT_PAGE_VIRTUAL
3488 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3489 if (!is_highmem_idx(zone))
3490 set_page_address(page, __va(pfn << PAGE_SHIFT));
3491 #endif
3492 }
3493 }
3494
3495 static void __meminit zone_init_free_lists(struct zone *zone)
3496 {
3497 int order, t;
3498 for_each_migratetype_order(order, t) {
3499 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3500 zone->free_area[order].nr_free = 0;
3501 }
3502 }
3503
3504 #ifndef __HAVE_ARCH_MEMMAP_INIT
3505 #define memmap_init(size, nid, zone, start_pfn) \
3506 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3507 #endif
3508
3509 static int zone_batchsize(struct zone *zone)
3510 {
3511 #ifdef CONFIG_MMU
3512 int batch;
3513
3514 /*
3515 * The per-cpu-pages pools are set to around 1000th of the
3516 * size of the zone. But no more than 1/2 of a meg.
3517 *
3518 * OK, so we don't know how big the cache is. So guess.
3519 */
3520 batch = zone->present_pages / 1024;
3521 if (batch * PAGE_SIZE > 512 * 1024)
3522 batch = (512 * 1024) / PAGE_SIZE;
3523 batch /= 4; /* We effectively *= 4 below */
3524 if (batch < 1)
3525 batch = 1;
3526
3527 /*
3528 * Clamp the batch to a 2^n - 1 value. Having a power
3529 * of 2 value was found to be more likely to have
3530 * suboptimal cache aliasing properties in some cases.
3531 *
3532 * For example if 2 tasks are alternately allocating
3533 * batches of pages, one task can end up with a lot
3534 * of pages of one half of the possible page colors
3535 * and the other with pages of the other colors.
3536 */
3537 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3538
3539 return batch;
3540
3541 #else
3542 /* The deferral and batching of frees should be suppressed under NOMMU
3543 * conditions.
3544 *
3545 * The problem is that NOMMU needs to be able to allocate large chunks
3546 * of contiguous memory as there's no hardware page translation to
3547 * assemble apparent contiguous memory from discontiguous pages.
3548 *
3549 * Queueing large contiguous runs of pages for batching, however,
3550 * causes the pages to actually be freed in smaller chunks. As there
3551 * can be a significant delay between the individual batches being
3552 * recycled, this leads to the once large chunks of space being
3553 * fragmented and becoming unavailable for high-order allocations.
3554 */
3555 return 0;
3556 #endif
3557 }
3558
3559 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3560 {
3561 struct per_cpu_pages *pcp;
3562 int migratetype;
3563
3564 memset(p, 0, sizeof(*p));
3565
3566 pcp = &p->pcp;
3567 pcp->count = 0;
3568 pcp->high = 6 * batch;
3569 pcp->batch = max(1UL, 1 * batch);
3570 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3571 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3572 }
3573
3574 /*
3575 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3576 * to the value high for the pageset p.
3577 */
3578
3579 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3580 unsigned long high)
3581 {
3582 struct per_cpu_pages *pcp;
3583
3584 pcp = &p->pcp;
3585 pcp->high = high;
3586 pcp->batch = max(1UL, high/4);
3587 if ((high/4) > (PAGE_SHIFT * 8))
3588 pcp->batch = PAGE_SHIFT * 8;
3589 }
3590
3591 static void setup_zone_pageset(struct zone *zone)
3592 {
3593 int cpu;
3594
3595 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3596
3597 for_each_possible_cpu(cpu) {
3598 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3599
3600 setup_pageset(pcp, zone_batchsize(zone));
3601
3602 if (percpu_pagelist_fraction)
3603 setup_pagelist_highmark(pcp,
3604 (zone->present_pages /
3605 percpu_pagelist_fraction));
3606 }
3607 }
3608
3609 /*
3610 * Allocate per cpu pagesets and initialize them.
3611 * Before this call only boot pagesets were available.
3612 */
3613 void __init setup_per_cpu_pageset(void)
3614 {
3615 struct zone *zone;
3616
3617 for_each_populated_zone(zone)
3618 setup_zone_pageset(zone);
3619 }
3620
3621 static noinline __init_refok
3622 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3623 {
3624 int i;
3625 struct pglist_data *pgdat = zone->zone_pgdat;
3626 size_t alloc_size;
3627
3628 /*
3629 * The per-page waitqueue mechanism uses hashed waitqueues
3630 * per zone.
3631 */
3632 zone->wait_table_hash_nr_entries =
3633 wait_table_hash_nr_entries(zone_size_pages);
3634 zone->wait_table_bits =
3635 wait_table_bits(zone->wait_table_hash_nr_entries);
3636 alloc_size = zone->wait_table_hash_nr_entries
3637 * sizeof(wait_queue_head_t);
3638
3639 if (!slab_is_available()) {
3640 zone->wait_table = (wait_queue_head_t *)
3641 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3642 } else {
3643 /*
3644 * This case means that a zone whose size was 0 gets new memory
3645 * via memory hot-add.
3646 * But it may be the case that a new node was hot-added. In
3647 * this case vmalloc() will not be able to use this new node's
3648 * memory - this wait_table must be initialized to use this new
3649 * node itself as well.
3650 * To use this new node's memory, further consideration will be
3651 * necessary.
3652 */
3653 zone->wait_table = vmalloc(alloc_size);
3654 }
3655 if (!zone->wait_table)
3656 return -ENOMEM;
3657
3658 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3659 init_waitqueue_head(zone->wait_table + i);
3660
3661 return 0;
3662 }
3663
3664 static int __zone_pcp_update(void *data)
3665 {
3666 struct zone *zone = data;
3667 int cpu;
3668 unsigned long batch = zone_batchsize(zone), flags;
3669
3670 for_each_possible_cpu(cpu) {
3671 struct per_cpu_pageset *pset;
3672 struct per_cpu_pages *pcp;
3673
3674 pset = per_cpu_ptr(zone->pageset, cpu);
3675 pcp = &pset->pcp;
3676
3677 local_irq_save(flags);
3678 free_pcppages_bulk(zone, pcp->count, pcp);
3679 setup_pageset(pset, batch);
3680 local_irq_restore(flags);
3681 }
3682 return 0;
3683 }
3684
3685 void zone_pcp_update(struct zone *zone)
3686 {
3687 stop_machine(__zone_pcp_update, zone, NULL);
3688 }
3689
3690 static __meminit void zone_pcp_init(struct zone *zone)
3691 {
3692 /*
3693 * per cpu subsystem is not up at this point. The following code
3694 * relies on the ability of the linker to provide the
3695 * offset of a (static) per cpu variable into the per cpu area.
3696 */
3697 zone->pageset = &boot_pageset;
3698
3699 if (zone->present_pages)
3700 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3701 zone->name, zone->present_pages,
3702 zone_batchsize(zone));
3703 }
3704
3705 __meminit int init_currently_empty_zone(struct zone *zone,
3706 unsigned long zone_start_pfn,
3707 unsigned long size,
3708 enum memmap_context context)
3709 {
3710 struct pglist_data *pgdat = zone->zone_pgdat;
3711 int ret;
3712 ret = zone_wait_table_init(zone, size);
3713 if (ret)
3714 return ret;
3715 pgdat->nr_zones = zone_idx(zone) + 1;
3716
3717 zone->zone_start_pfn = zone_start_pfn;
3718
3719 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3720 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3721 pgdat->node_id,
3722 (unsigned long)zone_idx(zone),
3723 zone_start_pfn, (zone_start_pfn + size));
3724
3725 zone_init_free_lists(zone);
3726
3727 return 0;
3728 }
3729
3730 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3731 /*
3732 * Basic iterator support. Return the first range of PFNs for a node
3733 * Note: nid == MAX_NUMNODES returns first region regardless of node
3734 */
3735 static int __meminit first_active_region_index_in_nid(int nid)
3736 {
3737 int i;
3738
3739 for (i = 0; i < nr_nodemap_entries; i++)
3740 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3741 return i;
3742
3743 return -1;
3744 }
3745
3746 /*
3747 * Basic iterator support. Return the next active range of PFNs for a node
3748 * Note: nid == MAX_NUMNODES returns next region regardless of node
3749 */
3750 static int __meminit next_active_region_index_in_nid(int index, int nid)
3751 {
3752 for (index = index + 1; index < nr_nodemap_entries; index++)
3753 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3754 return index;
3755
3756 return -1;
3757 }
3758
3759 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3760 /*
3761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3762 * Architectures may implement their own version but if add_active_range()
3763 * was used and there are no special requirements, this is a convenient
3764 * alternative
3765 */
3766 int __meminit __early_pfn_to_nid(unsigned long pfn)
3767 {
3768 int i;
3769
3770 for (i = 0; i < nr_nodemap_entries; i++) {
3771 unsigned long start_pfn = early_node_map[i].start_pfn;
3772 unsigned long end_pfn = early_node_map[i].end_pfn;
3773
3774 if (start_pfn <= pfn && pfn < end_pfn)
3775 return early_node_map[i].nid;
3776 }
3777 /* This is a memory hole */
3778 return -1;
3779 }
3780 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3781
3782 int __meminit early_pfn_to_nid(unsigned long pfn)
3783 {
3784 int nid;
3785
3786 nid = __early_pfn_to_nid(pfn);
3787 if (nid >= 0)
3788 return nid;
3789 /* just returns 0 */
3790 return 0;
3791 }
3792
3793 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3794 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3795 {
3796 int nid;
3797
3798 nid = __early_pfn_to_nid(pfn);
3799 if (nid >= 0 && nid != node)
3800 return false;
3801 return true;
3802 }
3803 #endif
3804
3805 /* Basic iterator support to walk early_node_map[] */
3806 #define for_each_active_range_index_in_nid(i, nid) \
3807 for (i = first_active_region_index_in_nid(nid); i != -1; \
3808 i = next_active_region_index_in_nid(i, nid))
3809
3810 /**
3811 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3812 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3813 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3814 *
3815 * If an architecture guarantees that all ranges registered with
3816 * add_active_ranges() contain no holes and may be freed, this
3817 * this function may be used instead of calling free_bootmem() manually.
3818 */
3819 void __init free_bootmem_with_active_regions(int nid,
3820 unsigned long max_low_pfn)
3821 {
3822 int i;
3823
3824 for_each_active_range_index_in_nid(i, nid) {
3825 unsigned long size_pages = 0;
3826 unsigned long end_pfn = early_node_map[i].end_pfn;
3827
3828 if (early_node_map[i].start_pfn >= max_low_pfn)
3829 continue;
3830
3831 if (end_pfn > max_low_pfn)
3832 end_pfn = max_low_pfn;
3833
3834 size_pages = end_pfn - early_node_map[i].start_pfn;
3835 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3836 PFN_PHYS(early_node_map[i].start_pfn),
3837 size_pages << PAGE_SHIFT);
3838 }
3839 }
3840
3841 #ifdef CONFIG_HAVE_MEMBLOCK
3842 /*
3843 * Basic iterator support. Return the last range of PFNs for a node
3844 * Note: nid == MAX_NUMNODES returns last region regardless of node
3845 */
3846 static int __meminit last_active_region_index_in_nid(int nid)
3847 {
3848 int i;
3849
3850 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3851 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3852 return i;
3853
3854 return -1;
3855 }
3856
3857 /*
3858 * Basic iterator support. Return the previous active range of PFNs for a node
3859 * Note: nid == MAX_NUMNODES returns next region regardless of node
3860 */
3861 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3862 {
3863 for (index = index - 1; index >= 0; index--)
3864 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3865 return index;
3866
3867 return -1;
3868 }
3869
3870 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3871 for (i = last_active_region_index_in_nid(nid); i != -1; \
3872 i = previous_active_region_index_in_nid(i, nid))
3873
3874 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3875 u64 goal, u64 limit)
3876 {
3877 int i;
3878
3879 /* Need to go over early_node_map to find out good range for node */
3880 for_each_active_range_index_in_nid_reverse(i, nid) {
3881 u64 addr;
3882 u64 ei_start, ei_last;
3883 u64 final_start, final_end;
3884
3885 ei_last = early_node_map[i].end_pfn;
3886 ei_last <<= PAGE_SHIFT;
3887 ei_start = early_node_map[i].start_pfn;
3888 ei_start <<= PAGE_SHIFT;
3889
3890 final_start = max(ei_start, goal);
3891 final_end = min(ei_last, limit);
3892
3893 if (final_start >= final_end)
3894 continue;
3895
3896 addr = memblock_find_in_range(final_start, final_end, size, align);
3897
3898 if (addr == MEMBLOCK_ERROR)
3899 continue;
3900
3901 return addr;
3902 }
3903
3904 return MEMBLOCK_ERROR;
3905 }
3906 #endif
3907
3908 int __init add_from_early_node_map(struct range *range, int az,
3909 int nr_range, int nid)
3910 {
3911 int i;
3912 u64 start, end;
3913
3914 /* need to go over early_node_map to find out good range for node */
3915 for_each_active_range_index_in_nid(i, nid) {
3916 start = early_node_map[i].start_pfn;
3917 end = early_node_map[i].end_pfn;
3918 nr_range = add_range(range, az, nr_range, start, end);
3919 }
3920 return nr_range;
3921 }
3922
3923 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3924 {
3925 int i;
3926 int ret;
3927
3928 for_each_active_range_index_in_nid(i, nid) {
3929 ret = work_fn(early_node_map[i].start_pfn,
3930 early_node_map[i].end_pfn, data);
3931 if (ret)
3932 break;
3933 }
3934 }
3935 /**
3936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3938 *
3939 * If an architecture guarantees that all ranges registered with
3940 * add_active_ranges() contain no holes and may be freed, this
3941 * function may be used instead of calling memory_present() manually.
3942 */
3943 void __init sparse_memory_present_with_active_regions(int nid)
3944 {
3945 int i;
3946
3947 for_each_active_range_index_in_nid(i, nid)
3948 memory_present(early_node_map[i].nid,
3949 early_node_map[i].start_pfn,
3950 early_node_map[i].end_pfn);
3951 }
3952
3953 /**
3954 * get_pfn_range_for_nid - Return the start and end page frames for a node
3955 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3956 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3957 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3958 *
3959 * It returns the start and end page frame of a node based on information
3960 * provided by an arch calling add_active_range(). If called for a node
3961 * with no available memory, a warning is printed and the start and end
3962 * PFNs will be 0.
3963 */
3964 void __meminit get_pfn_range_for_nid(unsigned int nid,
3965 unsigned long *start_pfn, unsigned long *end_pfn)
3966 {
3967 int i;
3968 *start_pfn = -1UL;
3969 *end_pfn = 0;
3970
3971 for_each_active_range_index_in_nid(i, nid) {
3972 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3973 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3974 }
3975
3976 if (*start_pfn == -1UL)
3977 *start_pfn = 0;
3978 }
3979
3980 /*
3981 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3982 * assumption is made that zones within a node are ordered in monotonic
3983 * increasing memory addresses so that the "highest" populated zone is used
3984 */
3985 static void __init find_usable_zone_for_movable(void)
3986 {
3987 int zone_index;
3988 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3989 if (zone_index == ZONE_MOVABLE)
3990 continue;
3991
3992 if (arch_zone_highest_possible_pfn[zone_index] >
3993 arch_zone_lowest_possible_pfn[zone_index])
3994 break;
3995 }
3996
3997 VM_BUG_ON(zone_index == -1);
3998 movable_zone = zone_index;
3999 }
4000
4001 /*
4002 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4003 * because it is sized independent of architecture. Unlike the other zones,
4004 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4005 * in each node depending on the size of each node and how evenly kernelcore
4006 * is distributed. This helper function adjusts the zone ranges
4007 * provided by the architecture for a given node by using the end of the
4008 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4009 * zones within a node are in order of monotonic increases memory addresses
4010 */
4011 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4012 unsigned long zone_type,
4013 unsigned long node_start_pfn,
4014 unsigned long node_end_pfn,
4015 unsigned long *zone_start_pfn,
4016 unsigned long *zone_end_pfn)
4017 {
4018 /* Only adjust if ZONE_MOVABLE is on this node */
4019 if (zone_movable_pfn[nid]) {
4020 /* Size ZONE_MOVABLE */
4021 if (zone_type == ZONE_MOVABLE) {
4022 *zone_start_pfn = zone_movable_pfn[nid];
4023 *zone_end_pfn = min(node_end_pfn,
4024 arch_zone_highest_possible_pfn[movable_zone]);
4025
4026 /* Adjust for ZONE_MOVABLE starting within this range */
4027 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4028 *zone_end_pfn > zone_movable_pfn[nid]) {
4029 *zone_end_pfn = zone_movable_pfn[nid];
4030
4031 /* Check if this whole range is within ZONE_MOVABLE */
4032 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4033 *zone_start_pfn = *zone_end_pfn;
4034 }
4035 }
4036
4037 /*
4038 * Return the number of pages a zone spans in a node, including holes
4039 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4040 */
4041 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4042 unsigned long zone_type,
4043 unsigned long *ignored)
4044 {
4045 unsigned long node_start_pfn, node_end_pfn;
4046 unsigned long zone_start_pfn, zone_end_pfn;
4047
4048 /* Get the start and end of the node and zone */
4049 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4050 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4051 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4052 adjust_zone_range_for_zone_movable(nid, zone_type,
4053 node_start_pfn, node_end_pfn,
4054 &zone_start_pfn, &zone_end_pfn);
4055
4056 /* Check that this node has pages within the zone's required range */
4057 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4058 return 0;
4059
4060 /* Move the zone boundaries inside the node if necessary */
4061 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4062 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4063
4064 /* Return the spanned pages */
4065 return zone_end_pfn - zone_start_pfn;
4066 }
4067
4068 /*
4069 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4070 * then all holes in the requested range will be accounted for.
4071 */
4072 unsigned long __meminit __absent_pages_in_range(int nid,
4073 unsigned long range_start_pfn,
4074 unsigned long range_end_pfn)
4075 {
4076 int i = 0;
4077 unsigned long prev_end_pfn = 0, hole_pages = 0;
4078 unsigned long start_pfn;
4079
4080 /* Find the end_pfn of the first active range of pfns in the node */
4081 i = first_active_region_index_in_nid(nid);
4082 if (i == -1)
4083 return 0;
4084
4085 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4086
4087 /* Account for ranges before physical memory on this node */
4088 if (early_node_map[i].start_pfn > range_start_pfn)
4089 hole_pages = prev_end_pfn - range_start_pfn;
4090
4091 /* Find all holes for the zone within the node */
4092 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4093
4094 /* No need to continue if prev_end_pfn is outside the zone */
4095 if (prev_end_pfn >= range_end_pfn)
4096 break;
4097
4098 /* Make sure the end of the zone is not within the hole */
4099 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4100 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4101
4102 /* Update the hole size cound and move on */
4103 if (start_pfn > range_start_pfn) {
4104 BUG_ON(prev_end_pfn > start_pfn);
4105 hole_pages += start_pfn - prev_end_pfn;
4106 }
4107 prev_end_pfn = early_node_map[i].end_pfn;
4108 }
4109
4110 /* Account for ranges past physical memory on this node */
4111 if (range_end_pfn > prev_end_pfn)
4112 hole_pages += range_end_pfn -
4113 max(range_start_pfn, prev_end_pfn);
4114
4115 return hole_pages;
4116 }
4117
4118 /**
4119 * absent_pages_in_range - Return number of page frames in holes within a range
4120 * @start_pfn: The start PFN to start searching for holes
4121 * @end_pfn: The end PFN to stop searching for holes
4122 *
4123 * It returns the number of pages frames in memory holes within a range.
4124 */
4125 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4126 unsigned long end_pfn)
4127 {
4128 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4129 }
4130
4131 /* Return the number of page frames in holes in a zone on a node */
4132 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4133 unsigned long zone_type,
4134 unsigned long *ignored)
4135 {
4136 unsigned long node_start_pfn, node_end_pfn;
4137 unsigned long zone_start_pfn, zone_end_pfn;
4138
4139 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4140 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4141 node_start_pfn);
4142 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4143 node_end_pfn);
4144
4145 adjust_zone_range_for_zone_movable(nid, zone_type,
4146 node_start_pfn, node_end_pfn,
4147 &zone_start_pfn, &zone_end_pfn);
4148 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4149 }
4150
4151 #else
4152 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4153 unsigned long zone_type,
4154 unsigned long *zones_size)
4155 {
4156 return zones_size[zone_type];
4157 }
4158
4159 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4160 unsigned long zone_type,
4161 unsigned long *zholes_size)
4162 {
4163 if (!zholes_size)
4164 return 0;
4165
4166 return zholes_size[zone_type];
4167 }
4168
4169 #endif
4170
4171 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4172 unsigned long *zones_size, unsigned long *zholes_size)
4173 {
4174 unsigned long realtotalpages, totalpages = 0;
4175 enum zone_type i;
4176
4177 for (i = 0; i < MAX_NR_ZONES; i++)
4178 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4179 zones_size);
4180 pgdat->node_spanned_pages = totalpages;
4181
4182 realtotalpages = totalpages;
4183 for (i = 0; i < MAX_NR_ZONES; i++)
4184 realtotalpages -=
4185 zone_absent_pages_in_node(pgdat->node_id, i,
4186 zholes_size);
4187 pgdat->node_present_pages = realtotalpages;
4188 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4189 realtotalpages);
4190 }
4191
4192 #ifndef CONFIG_SPARSEMEM
4193 /*
4194 * Calculate the size of the zone->blockflags rounded to an unsigned long
4195 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4196 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4197 * round what is now in bits to nearest long in bits, then return it in
4198 * bytes.
4199 */
4200 static unsigned long __init usemap_size(unsigned long zonesize)
4201 {
4202 unsigned long usemapsize;
4203
4204 usemapsize = roundup(zonesize, pageblock_nr_pages);
4205 usemapsize = usemapsize >> pageblock_order;
4206 usemapsize *= NR_PAGEBLOCK_BITS;
4207 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4208
4209 return usemapsize / 8;
4210 }
4211
4212 static void __init setup_usemap(struct pglist_data *pgdat,
4213 struct zone *zone, unsigned long zonesize)
4214 {
4215 unsigned long usemapsize = usemap_size(zonesize);
4216 zone->pageblock_flags = NULL;
4217 if (usemapsize)
4218 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4219 usemapsize);
4220 }
4221 #else
4222 static inline void setup_usemap(struct pglist_data *pgdat,
4223 struct zone *zone, unsigned long zonesize) {}
4224 #endif /* CONFIG_SPARSEMEM */
4225
4226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4227
4228 /* Return a sensible default order for the pageblock size. */
4229 static inline int pageblock_default_order(void)
4230 {
4231 if (HPAGE_SHIFT > PAGE_SHIFT)
4232 return HUGETLB_PAGE_ORDER;
4233
4234 return MAX_ORDER-1;
4235 }
4236
4237 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4238 static inline void __init set_pageblock_order(unsigned int order)
4239 {
4240 /* Check that pageblock_nr_pages has not already been setup */
4241 if (pageblock_order)
4242 return;
4243
4244 /*
4245 * Assume the largest contiguous order of interest is a huge page.
4246 * This value may be variable depending on boot parameters on IA64
4247 */
4248 pageblock_order = order;
4249 }
4250 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4251
4252 /*
4253 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4254 * and pageblock_default_order() are unused as pageblock_order is set
4255 * at compile-time. See include/linux/pageblock-flags.h for the values of
4256 * pageblock_order based on the kernel config
4257 */
4258 static inline int pageblock_default_order(unsigned int order)
4259 {
4260 return MAX_ORDER-1;
4261 }
4262 #define set_pageblock_order(x) do {} while (0)
4263
4264 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4265
4266 /*
4267 * Set up the zone data structures:
4268 * - mark all pages reserved
4269 * - mark all memory queues empty
4270 * - clear the memory bitmaps
4271 */
4272 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4273 unsigned long *zones_size, unsigned long *zholes_size)
4274 {
4275 enum zone_type j;
4276 int nid = pgdat->node_id;
4277 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4278 int ret;
4279
4280 pgdat_resize_init(pgdat);
4281 pgdat->nr_zones = 0;
4282 init_waitqueue_head(&pgdat->kswapd_wait);
4283 pgdat->kswapd_max_order = 0;
4284 pgdat_page_cgroup_init(pgdat);
4285
4286 for (j = 0; j < MAX_NR_ZONES; j++) {
4287 struct zone *zone = pgdat->node_zones + j;
4288 unsigned long size, realsize, memmap_pages;
4289 enum lru_list l;
4290
4291 size = zone_spanned_pages_in_node(nid, j, zones_size);
4292 realsize = size - zone_absent_pages_in_node(nid, j,
4293 zholes_size);
4294
4295 /*
4296 * Adjust realsize so that it accounts for how much memory
4297 * is used by this zone for memmap. This affects the watermark
4298 * and per-cpu initialisations
4299 */
4300 memmap_pages =
4301 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4302 if (realsize >= memmap_pages) {
4303 realsize -= memmap_pages;
4304 if (memmap_pages)
4305 printk(KERN_DEBUG
4306 " %s zone: %lu pages used for memmap\n",
4307 zone_names[j], memmap_pages);
4308 } else
4309 printk(KERN_WARNING
4310 " %s zone: %lu pages exceeds realsize %lu\n",
4311 zone_names[j], memmap_pages, realsize);
4312
4313 /* Account for reserved pages */
4314 if (j == 0 && realsize > dma_reserve) {
4315 realsize -= dma_reserve;
4316 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4317 zone_names[0], dma_reserve);
4318 }
4319
4320 if (!is_highmem_idx(j))
4321 nr_kernel_pages += realsize;
4322 nr_all_pages += realsize;
4323
4324 zone->spanned_pages = size;
4325 zone->present_pages = realsize;
4326 #ifdef CONFIG_NUMA
4327 zone->node = nid;
4328 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4329 / 100;
4330 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4331 #endif
4332 zone->name = zone_names[j];
4333 spin_lock_init(&zone->lock);
4334 spin_lock_init(&zone->lru_lock);
4335 zone_seqlock_init(zone);
4336 zone->zone_pgdat = pgdat;
4337
4338 zone_pcp_init(zone);
4339 for_each_lru(l)
4340 INIT_LIST_HEAD(&zone->lru[l].list);
4341 zone->reclaim_stat.recent_rotated[0] = 0;
4342 zone->reclaim_stat.recent_rotated[1] = 0;
4343 zone->reclaim_stat.recent_scanned[0] = 0;
4344 zone->reclaim_stat.recent_scanned[1] = 0;
4345 zap_zone_vm_stats(zone);
4346 zone->flags = 0;
4347 if (!size)
4348 continue;
4349
4350 set_pageblock_order(pageblock_default_order());
4351 setup_usemap(pgdat, zone, size);
4352 ret = init_currently_empty_zone(zone, zone_start_pfn,
4353 size, MEMMAP_EARLY);
4354 BUG_ON(ret);
4355 memmap_init(size, nid, j, zone_start_pfn);
4356 zone_start_pfn += size;
4357 }
4358 }
4359
4360 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4361 {
4362 /* Skip empty nodes */
4363 if (!pgdat->node_spanned_pages)
4364 return;
4365
4366 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4367 /* ia64 gets its own node_mem_map, before this, without bootmem */
4368 if (!pgdat->node_mem_map) {
4369 unsigned long size, start, end;
4370 struct page *map;
4371
4372 /*
4373 * The zone's endpoints aren't required to be MAX_ORDER
4374 * aligned but the node_mem_map endpoints must be in order
4375 * for the buddy allocator to function correctly.
4376 */
4377 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4378 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4379 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4380 size = (end - start) * sizeof(struct page);
4381 map = alloc_remap(pgdat->node_id, size);
4382 if (!map)
4383 map = alloc_bootmem_node_nopanic(pgdat, size);
4384 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4385 }
4386 #ifndef CONFIG_NEED_MULTIPLE_NODES
4387 /*
4388 * With no DISCONTIG, the global mem_map is just set as node 0's
4389 */
4390 if (pgdat == NODE_DATA(0)) {
4391 mem_map = NODE_DATA(0)->node_mem_map;
4392 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4393 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4394 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4395 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4396 }
4397 #endif
4398 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4399 }
4400
4401 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4402 unsigned long node_start_pfn, unsigned long *zholes_size)
4403 {
4404 pg_data_t *pgdat = NODE_DATA(nid);
4405
4406 pgdat->node_id = nid;
4407 pgdat->node_start_pfn = node_start_pfn;
4408 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4409
4410 alloc_node_mem_map(pgdat);
4411 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4412 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4413 nid, (unsigned long)pgdat,
4414 (unsigned long)pgdat->node_mem_map);
4415 #endif
4416
4417 free_area_init_core(pgdat, zones_size, zholes_size);
4418 }
4419
4420 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4421
4422 #if MAX_NUMNODES > 1
4423 /*
4424 * Figure out the number of possible node ids.
4425 */
4426 static void __init setup_nr_node_ids(void)
4427 {
4428 unsigned int node;
4429 unsigned int highest = 0;
4430
4431 for_each_node_mask(node, node_possible_map)
4432 highest = node;
4433 nr_node_ids = highest + 1;
4434 }
4435 #else
4436 static inline void setup_nr_node_ids(void)
4437 {
4438 }
4439 #endif
4440
4441 /**
4442 * add_active_range - Register a range of PFNs backed by physical memory
4443 * @nid: The node ID the range resides on
4444 * @start_pfn: The start PFN of the available physical memory
4445 * @end_pfn: The end PFN of the available physical memory
4446 *
4447 * These ranges are stored in an early_node_map[] and later used by
4448 * free_area_init_nodes() to calculate zone sizes and holes. If the
4449 * range spans a memory hole, it is up to the architecture to ensure
4450 * the memory is not freed by the bootmem allocator. If possible
4451 * the range being registered will be merged with existing ranges.
4452 */
4453 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4454 unsigned long end_pfn)
4455 {
4456 int i;
4457
4458 mminit_dprintk(MMINIT_TRACE, "memory_register",
4459 "Entering add_active_range(%d, %#lx, %#lx) "
4460 "%d entries of %d used\n",
4461 nid, start_pfn, end_pfn,
4462 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4463
4464 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4465
4466 /* Merge with existing active regions if possible */
4467 for (i = 0; i < nr_nodemap_entries; i++) {
4468 if (early_node_map[i].nid != nid)
4469 continue;
4470
4471 /* Skip if an existing region covers this new one */
4472 if (start_pfn >= early_node_map[i].start_pfn &&
4473 end_pfn <= early_node_map[i].end_pfn)
4474 return;
4475
4476 /* Merge forward if suitable */
4477 if (start_pfn <= early_node_map[i].end_pfn &&
4478 end_pfn > early_node_map[i].end_pfn) {
4479 early_node_map[i].end_pfn = end_pfn;
4480 return;
4481 }
4482
4483 /* Merge backward if suitable */
4484 if (start_pfn < early_node_map[i].start_pfn &&
4485 end_pfn >= early_node_map[i].start_pfn) {
4486 early_node_map[i].start_pfn = start_pfn;
4487 return;
4488 }
4489 }
4490
4491 /* Check that early_node_map is large enough */
4492 if (i >= MAX_ACTIVE_REGIONS) {
4493 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4494 MAX_ACTIVE_REGIONS);
4495 return;
4496 }
4497
4498 early_node_map[i].nid = nid;
4499 early_node_map[i].start_pfn = start_pfn;
4500 early_node_map[i].end_pfn = end_pfn;
4501 nr_nodemap_entries = i + 1;
4502 }
4503
4504 /**
4505 * remove_active_range - Shrink an existing registered range of PFNs
4506 * @nid: The node id the range is on that should be shrunk
4507 * @start_pfn: The new PFN of the range
4508 * @end_pfn: The new PFN of the range
4509 *
4510 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4511 * The map is kept near the end physical page range that has already been
4512 * registered. This function allows an arch to shrink an existing registered
4513 * range.
4514 */
4515 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4516 unsigned long end_pfn)
4517 {
4518 int i, j;
4519 int removed = 0;
4520
4521 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4522 nid, start_pfn, end_pfn);
4523
4524 /* Find the old active region end and shrink */
4525 for_each_active_range_index_in_nid(i, nid) {
4526 if (early_node_map[i].start_pfn >= start_pfn &&
4527 early_node_map[i].end_pfn <= end_pfn) {
4528 /* clear it */
4529 early_node_map[i].start_pfn = 0;
4530 early_node_map[i].end_pfn = 0;
4531 removed = 1;
4532 continue;
4533 }
4534 if (early_node_map[i].start_pfn < start_pfn &&
4535 early_node_map[i].end_pfn > start_pfn) {
4536 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4537 early_node_map[i].end_pfn = start_pfn;
4538 if (temp_end_pfn > end_pfn)
4539 add_active_range(nid, end_pfn, temp_end_pfn);
4540 continue;
4541 }
4542 if (early_node_map[i].start_pfn >= start_pfn &&
4543 early_node_map[i].end_pfn > end_pfn &&
4544 early_node_map[i].start_pfn < end_pfn) {
4545 early_node_map[i].start_pfn = end_pfn;
4546 continue;
4547 }
4548 }
4549
4550 if (!removed)
4551 return;
4552
4553 /* remove the blank ones */
4554 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4555 if (early_node_map[i].nid != nid)
4556 continue;
4557 if (early_node_map[i].end_pfn)
4558 continue;
4559 /* we found it, get rid of it */
4560 for (j = i; j < nr_nodemap_entries - 1; j++)
4561 memcpy(&early_node_map[j], &early_node_map[j+1],
4562 sizeof(early_node_map[j]));
4563 j = nr_nodemap_entries - 1;
4564 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4565 nr_nodemap_entries--;
4566 }
4567 }
4568
4569 /**
4570 * remove_all_active_ranges - Remove all currently registered regions
4571 *
4572 * During discovery, it may be found that a table like SRAT is invalid
4573 * and an alternative discovery method must be used. This function removes
4574 * all currently registered regions.
4575 */
4576 void __init remove_all_active_ranges(void)
4577 {
4578 memset(early_node_map, 0, sizeof(early_node_map));
4579 nr_nodemap_entries = 0;
4580 }
4581
4582 /* Compare two active node_active_regions */
4583 static int __init cmp_node_active_region(const void *a, const void *b)
4584 {
4585 struct node_active_region *arange = (struct node_active_region *)a;
4586 struct node_active_region *brange = (struct node_active_region *)b;
4587
4588 /* Done this way to avoid overflows */
4589 if (arange->start_pfn > brange->start_pfn)
4590 return 1;
4591 if (arange->start_pfn < brange->start_pfn)
4592 return -1;
4593
4594 return 0;
4595 }
4596
4597 /* sort the node_map by start_pfn */
4598 void __init sort_node_map(void)
4599 {
4600 sort(early_node_map, (size_t)nr_nodemap_entries,
4601 sizeof(struct node_active_region),
4602 cmp_node_active_region, NULL);
4603 }
4604
4605 /**
4606 * node_map_pfn_alignment - determine the maximum internode alignment
4607 *
4608 * This function should be called after node map is populated and sorted.
4609 * It calculates the maximum power of two alignment which can distinguish
4610 * all the nodes.
4611 *
4612 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4613 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4614 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4615 * shifted, 1GiB is enough and this function will indicate so.
4616 *
4617 * This is used to test whether pfn -> nid mapping of the chosen memory
4618 * model has fine enough granularity to avoid incorrect mapping for the
4619 * populated node map.
4620 *
4621 * Returns the determined alignment in pfn's. 0 if there is no alignment
4622 * requirement (single node).
4623 */
4624 unsigned long __init node_map_pfn_alignment(void)
4625 {
4626 unsigned long accl_mask = 0, last_end = 0;
4627 int last_nid = -1;
4628 int i;
4629
4630 for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4631 int nid = early_node_map[i].nid;
4632 unsigned long start = early_node_map[i].start_pfn;
4633 unsigned long end = early_node_map[i].end_pfn;
4634 unsigned long mask;
4635
4636 if (!start || last_nid < 0 || last_nid == nid) {
4637 last_nid = nid;
4638 last_end = end;
4639 continue;
4640 }
4641
4642 /*
4643 * Start with a mask granular enough to pin-point to the
4644 * start pfn and tick off bits one-by-one until it becomes
4645 * too coarse to separate the current node from the last.
4646 */
4647 mask = ~((1 << __ffs(start)) - 1);
4648 while (mask && last_end <= (start & (mask << 1)))
4649 mask <<= 1;
4650
4651 /* accumulate all internode masks */
4652 accl_mask |= mask;
4653 }
4654
4655 /* convert mask to number of pages */
4656 return ~accl_mask + 1;
4657 }
4658
4659 /* Find the lowest pfn for a node */
4660 static unsigned long __init find_min_pfn_for_node(int nid)
4661 {
4662 int i;
4663 unsigned long min_pfn = ULONG_MAX;
4664
4665 /* Assuming a sorted map, the first range found has the starting pfn */
4666 for_each_active_range_index_in_nid(i, nid)
4667 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4668
4669 if (min_pfn == ULONG_MAX) {
4670 printk(KERN_WARNING
4671 "Could not find start_pfn for node %d\n", nid);
4672 return 0;
4673 }
4674
4675 return min_pfn;
4676 }
4677
4678 /**
4679 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4680 *
4681 * It returns the minimum PFN based on information provided via
4682 * add_active_range().
4683 */
4684 unsigned long __init find_min_pfn_with_active_regions(void)
4685 {
4686 return find_min_pfn_for_node(MAX_NUMNODES);
4687 }
4688
4689 /*
4690 * early_calculate_totalpages()
4691 * Sum pages in active regions for movable zone.
4692 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4693 */
4694 static unsigned long __init early_calculate_totalpages(void)
4695 {
4696 int i;
4697 unsigned long totalpages = 0;
4698
4699 for (i = 0; i < nr_nodemap_entries; i++) {
4700 unsigned long pages = early_node_map[i].end_pfn -
4701 early_node_map[i].start_pfn;
4702 totalpages += pages;
4703 if (pages)
4704 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4705 }
4706 return totalpages;
4707 }
4708
4709 /*
4710 * Find the PFN the Movable zone begins in each node. Kernel memory
4711 * is spread evenly between nodes as long as the nodes have enough
4712 * memory. When they don't, some nodes will have more kernelcore than
4713 * others
4714 */
4715 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4716 {
4717 int i, nid;
4718 unsigned long usable_startpfn;
4719 unsigned long kernelcore_node, kernelcore_remaining;
4720 /* save the state before borrow the nodemask */
4721 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4722 unsigned long totalpages = early_calculate_totalpages();
4723 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4724
4725 /*
4726 * If movablecore was specified, calculate what size of
4727 * kernelcore that corresponds so that memory usable for
4728 * any allocation type is evenly spread. If both kernelcore
4729 * and movablecore are specified, then the value of kernelcore
4730 * will be used for required_kernelcore if it's greater than
4731 * what movablecore would have allowed.
4732 */
4733 if (required_movablecore) {
4734 unsigned long corepages;
4735
4736 /*
4737 * Round-up so that ZONE_MOVABLE is at least as large as what
4738 * was requested by the user
4739 */
4740 required_movablecore =
4741 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4742 corepages = totalpages - required_movablecore;
4743
4744 required_kernelcore = max(required_kernelcore, corepages);
4745 }
4746
4747 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4748 if (!required_kernelcore)
4749 goto out;
4750
4751 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4752 find_usable_zone_for_movable();
4753 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4754
4755 restart:
4756 /* Spread kernelcore memory as evenly as possible throughout nodes */
4757 kernelcore_node = required_kernelcore / usable_nodes;
4758 for_each_node_state(nid, N_HIGH_MEMORY) {
4759 /*
4760 * Recalculate kernelcore_node if the division per node
4761 * now exceeds what is necessary to satisfy the requested
4762 * amount of memory for the kernel
4763 */
4764 if (required_kernelcore < kernelcore_node)
4765 kernelcore_node = required_kernelcore / usable_nodes;
4766
4767 /*
4768 * As the map is walked, we track how much memory is usable
4769 * by the kernel using kernelcore_remaining. When it is
4770 * 0, the rest of the node is usable by ZONE_MOVABLE
4771 */
4772 kernelcore_remaining = kernelcore_node;
4773
4774 /* Go through each range of PFNs within this node */
4775 for_each_active_range_index_in_nid(i, nid) {
4776 unsigned long start_pfn, end_pfn;
4777 unsigned long size_pages;
4778
4779 start_pfn = max(early_node_map[i].start_pfn,
4780 zone_movable_pfn[nid]);
4781 end_pfn = early_node_map[i].end_pfn;
4782 if (start_pfn >= end_pfn)
4783 continue;
4784
4785 /* Account for what is only usable for kernelcore */
4786 if (start_pfn < usable_startpfn) {
4787 unsigned long kernel_pages;
4788 kernel_pages = min(end_pfn, usable_startpfn)
4789 - start_pfn;
4790
4791 kernelcore_remaining -= min(kernel_pages,
4792 kernelcore_remaining);
4793 required_kernelcore -= min(kernel_pages,
4794 required_kernelcore);
4795
4796 /* Continue if range is now fully accounted */
4797 if (end_pfn <= usable_startpfn) {
4798
4799 /*
4800 * Push zone_movable_pfn to the end so
4801 * that if we have to rebalance
4802 * kernelcore across nodes, we will
4803 * not double account here
4804 */
4805 zone_movable_pfn[nid] = end_pfn;
4806 continue;
4807 }
4808 start_pfn = usable_startpfn;
4809 }
4810
4811 /*
4812 * The usable PFN range for ZONE_MOVABLE is from
4813 * start_pfn->end_pfn. Calculate size_pages as the
4814 * number of pages used as kernelcore
4815 */
4816 size_pages = end_pfn - start_pfn;
4817 if (size_pages > kernelcore_remaining)
4818 size_pages = kernelcore_remaining;
4819 zone_movable_pfn[nid] = start_pfn + size_pages;
4820
4821 /*
4822 * Some kernelcore has been met, update counts and
4823 * break if the kernelcore for this node has been
4824 * satisified
4825 */
4826 required_kernelcore -= min(required_kernelcore,
4827 size_pages);
4828 kernelcore_remaining -= size_pages;
4829 if (!kernelcore_remaining)
4830 break;
4831 }
4832 }
4833
4834 /*
4835 * If there is still required_kernelcore, we do another pass with one
4836 * less node in the count. This will push zone_movable_pfn[nid] further
4837 * along on the nodes that still have memory until kernelcore is
4838 * satisified
4839 */
4840 usable_nodes--;
4841 if (usable_nodes && required_kernelcore > usable_nodes)
4842 goto restart;
4843
4844 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4845 for (nid = 0; nid < MAX_NUMNODES; nid++)
4846 zone_movable_pfn[nid] =
4847 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4848
4849 out:
4850 /* restore the node_state */
4851 node_states[N_HIGH_MEMORY] = saved_node_state;
4852 }
4853
4854 /* Any regular memory on that node ? */
4855 static void check_for_regular_memory(pg_data_t *pgdat)
4856 {
4857 #ifdef CONFIG_HIGHMEM
4858 enum zone_type zone_type;
4859
4860 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4861 struct zone *zone = &pgdat->node_zones[zone_type];
4862 if (zone->present_pages)
4863 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4864 }
4865 #endif
4866 }
4867
4868 /**
4869 * free_area_init_nodes - Initialise all pg_data_t and zone data
4870 * @max_zone_pfn: an array of max PFNs for each zone
4871 *
4872 * This will call free_area_init_node() for each active node in the system.
4873 * Using the page ranges provided by add_active_range(), the size of each
4874 * zone in each node and their holes is calculated. If the maximum PFN
4875 * between two adjacent zones match, it is assumed that the zone is empty.
4876 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4877 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4878 * starts where the previous one ended. For example, ZONE_DMA32 starts
4879 * at arch_max_dma_pfn.
4880 */
4881 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4882 {
4883 unsigned long nid;
4884 int i;
4885
4886 /* Sort early_node_map as initialisation assumes it is sorted */
4887 sort_node_map();
4888
4889 /* Record where the zone boundaries are */
4890 memset(arch_zone_lowest_possible_pfn, 0,
4891 sizeof(arch_zone_lowest_possible_pfn));
4892 memset(arch_zone_highest_possible_pfn, 0,
4893 sizeof(arch_zone_highest_possible_pfn));
4894 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4895 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4896 for (i = 1; i < MAX_NR_ZONES; i++) {
4897 if (i == ZONE_MOVABLE)
4898 continue;
4899 arch_zone_lowest_possible_pfn[i] =
4900 arch_zone_highest_possible_pfn[i-1];
4901 arch_zone_highest_possible_pfn[i] =
4902 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4903 }
4904 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4905 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4906
4907 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4908 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4909 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4910
4911 /* Print out the zone ranges */
4912 printk("Zone PFN ranges:\n");
4913 for (i = 0; i < MAX_NR_ZONES; i++) {
4914 if (i == ZONE_MOVABLE)
4915 continue;
4916 printk(" %-8s ", zone_names[i]);
4917 if (arch_zone_lowest_possible_pfn[i] ==
4918 arch_zone_highest_possible_pfn[i])
4919 printk("empty\n");
4920 else
4921 printk("%0#10lx -> %0#10lx\n",
4922 arch_zone_lowest_possible_pfn[i],
4923 arch_zone_highest_possible_pfn[i]);
4924 }
4925
4926 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4927 printk("Movable zone start PFN for each node\n");
4928 for (i = 0; i < MAX_NUMNODES; i++) {
4929 if (zone_movable_pfn[i])
4930 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4931 }
4932
4933 /* Print out the early_node_map[] */
4934 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4935 for (i = 0; i < nr_nodemap_entries; i++)
4936 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4937 early_node_map[i].start_pfn,
4938 early_node_map[i].end_pfn);
4939
4940 /* Initialise every node */
4941 mminit_verify_pageflags_layout();
4942 setup_nr_node_ids();
4943 for_each_online_node(nid) {
4944 pg_data_t *pgdat = NODE_DATA(nid);
4945 free_area_init_node(nid, NULL,
4946 find_min_pfn_for_node(nid), NULL);
4947
4948 /* Any memory on that node */
4949 if (pgdat->node_present_pages)
4950 node_set_state(nid, N_HIGH_MEMORY);
4951 check_for_regular_memory(pgdat);
4952 }
4953 }
4954
4955 static int __init cmdline_parse_core(char *p, unsigned long *core)
4956 {
4957 unsigned long long coremem;
4958 if (!p)
4959 return -EINVAL;
4960
4961 coremem = memparse(p, &p);
4962 *core = coremem >> PAGE_SHIFT;
4963
4964 /* Paranoid check that UL is enough for the coremem value */
4965 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4966
4967 return 0;
4968 }
4969
4970 /*
4971 * kernelcore=size sets the amount of memory for use for allocations that
4972 * cannot be reclaimed or migrated.
4973 */
4974 static int __init cmdline_parse_kernelcore(char *p)
4975 {
4976 return cmdline_parse_core(p, &required_kernelcore);
4977 }
4978
4979 /*
4980 * movablecore=size sets the amount of memory for use for allocations that
4981 * can be reclaimed or migrated.
4982 */
4983 static int __init cmdline_parse_movablecore(char *p)
4984 {
4985 return cmdline_parse_core(p, &required_movablecore);
4986 }
4987
4988 early_param("kernelcore", cmdline_parse_kernelcore);
4989 early_param("movablecore", cmdline_parse_movablecore);
4990
4991 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4992
4993 /**
4994 * set_dma_reserve - set the specified number of pages reserved in the first zone
4995 * @new_dma_reserve: The number of pages to mark reserved
4996 *
4997 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4998 * In the DMA zone, a significant percentage may be consumed by kernel image
4999 * and other unfreeable allocations which can skew the watermarks badly. This
5000 * function may optionally be used to account for unfreeable pages in the
5001 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5002 * smaller per-cpu batchsize.
5003 */
5004 void __init set_dma_reserve(unsigned long new_dma_reserve)
5005 {
5006 dma_reserve = new_dma_reserve;
5007 }
5008
5009 void __init free_area_init(unsigned long *zones_size)
5010 {
5011 free_area_init_node(0, zones_size,
5012 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5013 }
5014
5015 static int page_alloc_cpu_notify(struct notifier_block *self,
5016 unsigned long action, void *hcpu)
5017 {
5018 int cpu = (unsigned long)hcpu;
5019
5020 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5021 drain_pages(cpu);
5022
5023 /*
5024 * Spill the event counters of the dead processor
5025 * into the current processors event counters.
5026 * This artificially elevates the count of the current
5027 * processor.
5028 */
5029 vm_events_fold_cpu(cpu);
5030
5031 /*
5032 * Zero the differential counters of the dead processor
5033 * so that the vm statistics are consistent.
5034 *
5035 * This is only okay since the processor is dead and cannot
5036 * race with what we are doing.
5037 */
5038 refresh_cpu_vm_stats(cpu);
5039 }
5040 return NOTIFY_OK;
5041 }
5042
5043 void __init page_alloc_init(void)
5044 {
5045 hotcpu_notifier(page_alloc_cpu_notify, 0);
5046 }
5047
5048 /*
5049 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5050 * or min_free_kbytes changes.
5051 */
5052 static void calculate_totalreserve_pages(void)
5053 {
5054 struct pglist_data *pgdat;
5055 unsigned long reserve_pages = 0;
5056 enum zone_type i, j;
5057
5058 for_each_online_pgdat(pgdat) {
5059 for (i = 0; i < MAX_NR_ZONES; i++) {
5060 struct zone *zone = pgdat->node_zones + i;
5061 unsigned long max = 0;
5062
5063 /* Find valid and maximum lowmem_reserve in the zone */
5064 for (j = i; j < MAX_NR_ZONES; j++) {
5065 if (zone->lowmem_reserve[j] > max)
5066 max = zone->lowmem_reserve[j];
5067 }
5068
5069 /* we treat the high watermark as reserved pages. */
5070 max += high_wmark_pages(zone);
5071
5072 if (max > zone->present_pages)
5073 max = zone->present_pages;
5074 reserve_pages += max;
5075 }
5076 }
5077 totalreserve_pages = reserve_pages;
5078 }
5079
5080 /*
5081 * setup_per_zone_lowmem_reserve - called whenever
5082 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5083 * has a correct pages reserved value, so an adequate number of
5084 * pages are left in the zone after a successful __alloc_pages().
5085 */
5086 static void setup_per_zone_lowmem_reserve(void)
5087 {
5088 struct pglist_data *pgdat;
5089 enum zone_type j, idx;
5090
5091 for_each_online_pgdat(pgdat) {
5092 for (j = 0; j < MAX_NR_ZONES; j++) {
5093 struct zone *zone = pgdat->node_zones + j;
5094 unsigned long present_pages = zone->present_pages;
5095
5096 zone->lowmem_reserve[j] = 0;
5097
5098 idx = j;
5099 while (idx) {
5100 struct zone *lower_zone;
5101
5102 idx--;
5103
5104 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5105 sysctl_lowmem_reserve_ratio[idx] = 1;
5106
5107 lower_zone = pgdat->node_zones + idx;
5108 lower_zone->lowmem_reserve[j] = present_pages /
5109 sysctl_lowmem_reserve_ratio[idx];
5110 present_pages += lower_zone->present_pages;
5111 }
5112 }
5113 }
5114
5115 /* update totalreserve_pages */
5116 calculate_totalreserve_pages();
5117 }
5118
5119 /**
5120 * setup_per_zone_wmarks - called when min_free_kbytes changes
5121 * or when memory is hot-{added|removed}
5122 *
5123 * Ensures that the watermark[min,low,high] values for each zone are set
5124 * correctly with respect to min_free_kbytes.
5125 */
5126 void setup_per_zone_wmarks(void)
5127 {
5128 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5129 unsigned long lowmem_pages = 0;
5130 struct zone *zone;
5131 unsigned long flags;
5132
5133 /* Calculate total number of !ZONE_HIGHMEM pages */
5134 for_each_zone(zone) {
5135 if (!is_highmem(zone))
5136 lowmem_pages += zone->present_pages;
5137 }
5138
5139 for_each_zone(zone) {
5140 u64 tmp;
5141
5142 spin_lock_irqsave(&zone->lock, flags);
5143 tmp = (u64)pages_min * zone->present_pages;
5144 do_div(tmp, lowmem_pages);
5145 if (is_highmem(zone)) {
5146 /*
5147 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5148 * need highmem pages, so cap pages_min to a small
5149 * value here.
5150 *
5151 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5152 * deltas controls asynch page reclaim, and so should
5153 * not be capped for highmem.
5154 */
5155 int min_pages;
5156
5157 min_pages = zone->present_pages / 1024;
5158 if (min_pages < SWAP_CLUSTER_MAX)
5159 min_pages = SWAP_CLUSTER_MAX;
5160 if (min_pages > 128)
5161 min_pages = 128;
5162 zone->watermark[WMARK_MIN] = min_pages;
5163 } else {
5164 /*
5165 * If it's a lowmem zone, reserve a number of pages
5166 * proportionate to the zone's size.
5167 */
5168 zone->watermark[WMARK_MIN] = tmp;
5169 }
5170
5171 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5172 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5173 setup_zone_migrate_reserve(zone);
5174 spin_unlock_irqrestore(&zone->lock, flags);
5175 }
5176
5177 /* update totalreserve_pages */
5178 calculate_totalreserve_pages();
5179 }
5180
5181 /*
5182 * The inactive anon list should be small enough that the VM never has to
5183 * do too much work, but large enough that each inactive page has a chance
5184 * to be referenced again before it is swapped out.
5185 *
5186 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5187 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5188 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5189 * the anonymous pages are kept on the inactive list.
5190 *
5191 * total target max
5192 * memory ratio inactive anon
5193 * -------------------------------------
5194 * 10MB 1 5MB
5195 * 100MB 1 50MB
5196 * 1GB 3 250MB
5197 * 10GB 10 0.9GB
5198 * 100GB 31 3GB
5199 * 1TB 101 10GB
5200 * 10TB 320 32GB
5201 */
5202 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5203 {
5204 unsigned int gb, ratio;
5205
5206 /* Zone size in gigabytes */
5207 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5208 if (gb)
5209 ratio = int_sqrt(10 * gb);
5210 else
5211 ratio = 1;
5212
5213 zone->inactive_ratio = ratio;
5214 }
5215
5216 static void __meminit setup_per_zone_inactive_ratio(void)
5217 {
5218 struct zone *zone;
5219
5220 for_each_zone(zone)
5221 calculate_zone_inactive_ratio(zone);
5222 }
5223
5224 /*
5225 * Initialise min_free_kbytes.
5226 *
5227 * For small machines we want it small (128k min). For large machines
5228 * we want it large (64MB max). But it is not linear, because network
5229 * bandwidth does not increase linearly with machine size. We use
5230 *
5231 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5232 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5233 *
5234 * which yields
5235 *
5236 * 16MB: 512k
5237 * 32MB: 724k
5238 * 64MB: 1024k
5239 * 128MB: 1448k
5240 * 256MB: 2048k
5241 * 512MB: 2896k
5242 * 1024MB: 4096k
5243 * 2048MB: 5792k
5244 * 4096MB: 8192k
5245 * 8192MB: 11584k
5246 * 16384MB: 16384k
5247 */
5248 int __meminit init_per_zone_wmark_min(void)
5249 {
5250 unsigned long lowmem_kbytes;
5251
5252 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5253
5254 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5255 if (min_free_kbytes < 128)
5256 min_free_kbytes = 128;
5257 if (min_free_kbytes > 65536)
5258 min_free_kbytes = 65536;
5259 setup_per_zone_wmarks();
5260 refresh_zone_stat_thresholds();
5261 setup_per_zone_lowmem_reserve();
5262 setup_per_zone_inactive_ratio();
5263 return 0;
5264 }
5265 module_init(init_per_zone_wmark_min)
5266
5267 /*
5268 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5269 * that we can call two helper functions whenever min_free_kbytes
5270 * changes.
5271 */
5272 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5273 void __user *buffer, size_t *length, loff_t *ppos)
5274 {
5275 proc_dointvec(table, write, buffer, length, ppos);
5276 if (write)
5277 setup_per_zone_wmarks();
5278 return 0;
5279 }
5280
5281 #ifdef CONFIG_NUMA
5282 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5283 void __user *buffer, size_t *length, loff_t *ppos)
5284 {
5285 struct zone *zone;
5286 int rc;
5287
5288 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5289 if (rc)
5290 return rc;
5291
5292 for_each_zone(zone)
5293 zone->min_unmapped_pages = (zone->present_pages *
5294 sysctl_min_unmapped_ratio) / 100;
5295 return 0;
5296 }
5297
5298 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5299 void __user *buffer, size_t *length, loff_t *ppos)
5300 {
5301 struct zone *zone;
5302 int rc;
5303
5304 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5305 if (rc)
5306 return rc;
5307
5308 for_each_zone(zone)
5309 zone->min_slab_pages = (zone->present_pages *
5310 sysctl_min_slab_ratio) / 100;
5311 return 0;
5312 }
5313 #endif
5314
5315 /*
5316 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5317 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5318 * whenever sysctl_lowmem_reserve_ratio changes.
5319 *
5320 * The reserve ratio obviously has absolutely no relation with the
5321 * minimum watermarks. The lowmem reserve ratio can only make sense
5322 * if in function of the boot time zone sizes.
5323 */
5324 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5325 void __user *buffer, size_t *length, loff_t *ppos)
5326 {
5327 proc_dointvec_minmax(table, write, buffer, length, ppos);
5328 setup_per_zone_lowmem_reserve();
5329 return 0;
5330 }
5331
5332 /*
5333 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5334 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5335 * can have before it gets flushed back to buddy allocator.
5336 */
5337
5338 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5339 void __user *buffer, size_t *length, loff_t *ppos)
5340 {
5341 struct zone *zone;
5342 unsigned int cpu;
5343 int ret;
5344
5345 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5346 if (!write || (ret == -EINVAL))
5347 return ret;
5348 for_each_populated_zone(zone) {
5349 for_each_possible_cpu(cpu) {
5350 unsigned long high;
5351 high = zone->present_pages / percpu_pagelist_fraction;
5352 setup_pagelist_highmark(
5353 per_cpu_ptr(zone->pageset, cpu), high);
5354 }
5355 }
5356 return 0;
5357 }
5358
5359 int hashdist = HASHDIST_DEFAULT;
5360
5361 #ifdef CONFIG_NUMA
5362 static int __init set_hashdist(char *str)
5363 {
5364 if (!str)
5365 return 0;
5366 hashdist = simple_strtoul(str, &str, 0);
5367 return 1;
5368 }
5369 __setup("hashdist=", set_hashdist);
5370 #endif
5371
5372 /*
5373 * allocate a large system hash table from bootmem
5374 * - it is assumed that the hash table must contain an exact power-of-2
5375 * quantity of entries
5376 * - limit is the number of hash buckets, not the total allocation size
5377 */
5378 void *__init alloc_large_system_hash(const char *tablename,
5379 unsigned long bucketsize,
5380 unsigned long numentries,
5381 int scale,
5382 int flags,
5383 unsigned int *_hash_shift,
5384 unsigned int *_hash_mask,
5385 unsigned long limit)
5386 {
5387 unsigned long long max = limit;
5388 unsigned long log2qty, size;
5389 void *table = NULL;
5390
5391 /* allow the kernel cmdline to have a say */
5392 if (!numentries) {
5393 /* round applicable memory size up to nearest megabyte */
5394 numentries = nr_kernel_pages;
5395 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5396 numentries >>= 20 - PAGE_SHIFT;
5397 numentries <<= 20 - PAGE_SHIFT;
5398
5399 /* limit to 1 bucket per 2^scale bytes of low memory */
5400 if (scale > PAGE_SHIFT)
5401 numentries >>= (scale - PAGE_SHIFT);
5402 else
5403 numentries <<= (PAGE_SHIFT - scale);
5404
5405 /* Make sure we've got at least a 0-order allocation.. */
5406 if (unlikely(flags & HASH_SMALL)) {
5407 /* Makes no sense without HASH_EARLY */
5408 WARN_ON(!(flags & HASH_EARLY));
5409 if (!(numentries >> *_hash_shift)) {
5410 numentries = 1UL << *_hash_shift;
5411 BUG_ON(!numentries);
5412 }
5413 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5414 numentries = PAGE_SIZE / bucketsize;
5415 }
5416 numentries = roundup_pow_of_two(numentries);
5417
5418 /* limit allocation size to 1/16 total memory by default */
5419 if (max == 0) {
5420 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5421 do_div(max, bucketsize);
5422 }
5423
5424 if (numentries > max)
5425 numentries = max;
5426
5427 log2qty = ilog2(numentries);
5428
5429 do {
5430 size = bucketsize << log2qty;
5431 if (flags & HASH_EARLY)
5432 table = alloc_bootmem_nopanic(size);
5433 else if (hashdist)
5434 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5435 else {
5436 /*
5437 * If bucketsize is not a power-of-two, we may free
5438 * some pages at the end of hash table which
5439 * alloc_pages_exact() automatically does
5440 */
5441 if (get_order(size) < MAX_ORDER) {
5442 table = alloc_pages_exact(size, GFP_ATOMIC);
5443 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5444 }
5445 }
5446 } while (!table && size > PAGE_SIZE && --log2qty);
5447
5448 if (!table)
5449 panic("Failed to allocate %s hash table\n", tablename);
5450
5451 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5452 tablename,
5453 (1UL << log2qty),
5454 ilog2(size) - PAGE_SHIFT,
5455 size);
5456
5457 if (_hash_shift)
5458 *_hash_shift = log2qty;
5459 if (_hash_mask)
5460 *_hash_mask = (1 << log2qty) - 1;
5461
5462 return table;
5463 }
5464
5465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5466 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5467 unsigned long pfn)
5468 {
5469 #ifdef CONFIG_SPARSEMEM
5470 return __pfn_to_section(pfn)->pageblock_flags;
5471 #else
5472 return zone->pageblock_flags;
5473 #endif /* CONFIG_SPARSEMEM */
5474 }
5475
5476 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5477 {
5478 #ifdef CONFIG_SPARSEMEM
5479 pfn &= (PAGES_PER_SECTION-1);
5480 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5481 #else
5482 pfn = pfn - zone->zone_start_pfn;
5483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5484 #endif /* CONFIG_SPARSEMEM */
5485 }
5486
5487 /**
5488 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5489 * @page: The page within the block of interest
5490 * @start_bitidx: The first bit of interest to retrieve
5491 * @end_bitidx: The last bit of interest
5492 * returns pageblock_bits flags
5493 */
5494 unsigned long get_pageblock_flags_group(struct page *page,
5495 int start_bitidx, int end_bitidx)
5496 {
5497 struct zone *zone;
5498 unsigned long *bitmap;
5499 unsigned long pfn, bitidx;
5500 unsigned long flags = 0;
5501 unsigned long value = 1;
5502
5503 zone = page_zone(page);
5504 pfn = page_to_pfn(page);
5505 bitmap = get_pageblock_bitmap(zone, pfn);
5506 bitidx = pfn_to_bitidx(zone, pfn);
5507
5508 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5509 if (test_bit(bitidx + start_bitidx, bitmap))
5510 flags |= value;
5511
5512 return flags;
5513 }
5514
5515 /**
5516 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5517 * @page: The page within the block of interest
5518 * @start_bitidx: The first bit of interest
5519 * @end_bitidx: The last bit of interest
5520 * @flags: The flags to set
5521 */
5522 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5523 int start_bitidx, int end_bitidx)
5524 {
5525 struct zone *zone;
5526 unsigned long *bitmap;
5527 unsigned long pfn, bitidx;
5528 unsigned long value = 1;
5529
5530 zone = page_zone(page);
5531 pfn = page_to_pfn(page);
5532 bitmap = get_pageblock_bitmap(zone, pfn);
5533 bitidx = pfn_to_bitidx(zone, pfn);
5534 VM_BUG_ON(pfn < zone->zone_start_pfn);
5535 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5536
5537 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5538 if (flags & value)
5539 __set_bit(bitidx + start_bitidx, bitmap);
5540 else
5541 __clear_bit(bitidx + start_bitidx, bitmap);
5542 }
5543
5544 /*
5545 * This is designed as sub function...plz see page_isolation.c also.
5546 * set/clear page block's type to be ISOLATE.
5547 * page allocater never alloc memory from ISOLATE block.
5548 */
5549
5550 static int
5551 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5552 {
5553 unsigned long pfn, iter, found;
5554 /*
5555 * For avoiding noise data, lru_add_drain_all() should be called
5556 * If ZONE_MOVABLE, the zone never contains immobile pages
5557 */
5558 if (zone_idx(zone) == ZONE_MOVABLE)
5559 return true;
5560
5561 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5562 return true;
5563
5564 pfn = page_to_pfn(page);
5565 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5566 unsigned long check = pfn + iter;
5567
5568 if (!pfn_valid_within(check))
5569 continue;
5570
5571 page = pfn_to_page(check);
5572 if (!page_count(page)) {
5573 if (PageBuddy(page))
5574 iter += (1 << page_order(page)) - 1;
5575 continue;
5576 }
5577 if (!PageLRU(page))
5578 found++;
5579 /*
5580 * If there are RECLAIMABLE pages, we need to check it.
5581 * But now, memory offline itself doesn't call shrink_slab()
5582 * and it still to be fixed.
5583 */
5584 /*
5585 * If the page is not RAM, page_count()should be 0.
5586 * we don't need more check. This is an _used_ not-movable page.
5587 *
5588 * The problematic thing here is PG_reserved pages. PG_reserved
5589 * is set to both of a memory hole page and a _used_ kernel
5590 * page at boot.
5591 */
5592 if (found > count)
5593 return false;
5594 }
5595 return true;
5596 }
5597
5598 bool is_pageblock_removable_nolock(struct page *page)
5599 {
5600 struct zone *zone = page_zone(page);
5601 return __count_immobile_pages(zone, page, 0);
5602 }
5603
5604 int set_migratetype_isolate(struct page *page)
5605 {
5606 struct zone *zone;
5607 unsigned long flags, pfn;
5608 struct memory_isolate_notify arg;
5609 int notifier_ret;
5610 int ret = -EBUSY;
5611
5612 zone = page_zone(page);
5613
5614 spin_lock_irqsave(&zone->lock, flags);
5615
5616 pfn = page_to_pfn(page);
5617 arg.start_pfn = pfn;
5618 arg.nr_pages = pageblock_nr_pages;
5619 arg.pages_found = 0;
5620
5621 /*
5622 * It may be possible to isolate a pageblock even if the
5623 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5624 * notifier chain is used by balloon drivers to return the
5625 * number of pages in a range that are held by the balloon
5626 * driver to shrink memory. If all the pages are accounted for
5627 * by balloons, are free, or on the LRU, isolation can continue.
5628 * Later, for example, when memory hotplug notifier runs, these
5629 * pages reported as "can be isolated" should be isolated(freed)
5630 * by the balloon driver through the memory notifier chain.
5631 */
5632 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5633 notifier_ret = notifier_to_errno(notifier_ret);
5634 if (notifier_ret)
5635 goto out;
5636 /*
5637 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5638 * We just check MOVABLE pages.
5639 */
5640 if (__count_immobile_pages(zone, page, arg.pages_found))
5641 ret = 0;
5642
5643 /*
5644 * immobile means "not-on-lru" paes. If immobile is larger than
5645 * removable-by-driver pages reported by notifier, we'll fail.
5646 */
5647
5648 out:
5649 if (!ret) {
5650 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5651 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5652 }
5653
5654 spin_unlock_irqrestore(&zone->lock, flags);
5655 if (!ret)
5656 drain_all_pages();
5657 return ret;
5658 }
5659
5660 void unset_migratetype_isolate(struct page *page)
5661 {
5662 struct zone *zone;
5663 unsigned long flags;
5664 zone = page_zone(page);
5665 spin_lock_irqsave(&zone->lock, flags);
5666 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5667 goto out;
5668 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5669 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5670 out:
5671 spin_unlock_irqrestore(&zone->lock, flags);
5672 }
5673
5674 #ifdef CONFIG_MEMORY_HOTREMOVE
5675 /*
5676 * All pages in the range must be isolated before calling this.
5677 */
5678 void
5679 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5680 {
5681 struct page *page;
5682 struct zone *zone;
5683 int order, i;
5684 unsigned long pfn;
5685 unsigned long flags;
5686 /* find the first valid pfn */
5687 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5688 if (pfn_valid(pfn))
5689 break;
5690 if (pfn == end_pfn)
5691 return;
5692 zone = page_zone(pfn_to_page(pfn));
5693 spin_lock_irqsave(&zone->lock, flags);
5694 pfn = start_pfn;
5695 while (pfn < end_pfn) {
5696 if (!pfn_valid(pfn)) {
5697 pfn++;
5698 continue;
5699 }
5700 page = pfn_to_page(pfn);
5701 BUG_ON(page_count(page));
5702 BUG_ON(!PageBuddy(page));
5703 order = page_order(page);
5704 #ifdef CONFIG_DEBUG_VM
5705 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5706 pfn, 1 << order, end_pfn);
5707 #endif
5708 list_del(&page->lru);
5709 rmv_page_order(page);
5710 zone->free_area[order].nr_free--;
5711 __mod_zone_page_state(zone, NR_FREE_PAGES,
5712 - (1UL << order));
5713 for (i = 0; i < (1 << order); i++)
5714 SetPageReserved((page+i));
5715 pfn += (1 << order);
5716 }
5717 spin_unlock_irqrestore(&zone->lock, flags);
5718 }
5719 #endif
5720
5721 #ifdef CONFIG_MEMORY_FAILURE
5722 bool is_free_buddy_page(struct page *page)
5723 {
5724 struct zone *zone = page_zone(page);
5725 unsigned long pfn = page_to_pfn(page);
5726 unsigned long flags;
5727 int order;
5728
5729 spin_lock_irqsave(&zone->lock, flags);
5730 for (order = 0; order < MAX_ORDER; order++) {
5731 struct page *page_head = page - (pfn & ((1 << order) - 1));
5732
5733 if (PageBuddy(page_head) && page_order(page_head) >= order)
5734 break;
5735 }
5736 spin_unlock_irqrestore(&zone->lock, flags);
5737
5738 return order < MAX_ORDER;
5739 }
5740 #endif
5741
5742 static struct trace_print_flags pageflag_names[] = {
5743 {1UL << PG_locked, "locked" },
5744 {1UL << PG_error, "error" },
5745 {1UL << PG_referenced, "referenced" },
5746 {1UL << PG_uptodate, "uptodate" },
5747 {1UL << PG_dirty, "dirty" },
5748 {1UL << PG_lru, "lru" },
5749 {1UL << PG_active, "active" },
5750 {1UL << PG_slab, "slab" },
5751 {1UL << PG_owner_priv_1, "owner_priv_1" },
5752 {1UL << PG_arch_1, "arch_1" },
5753 {1UL << PG_reserved, "reserved" },
5754 {1UL << PG_private, "private" },
5755 {1UL << PG_private_2, "private_2" },
5756 {1UL << PG_writeback, "writeback" },
5757 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5758 {1UL << PG_head, "head" },
5759 {1UL << PG_tail, "tail" },
5760 #else
5761 {1UL << PG_compound, "compound" },
5762 #endif
5763 {1UL << PG_swapcache, "swapcache" },
5764 {1UL << PG_mappedtodisk, "mappedtodisk" },
5765 {1UL << PG_reclaim, "reclaim" },
5766 {1UL << PG_swapbacked, "swapbacked" },
5767 {1UL << PG_unevictable, "unevictable" },
5768 #ifdef CONFIG_MMU
5769 {1UL << PG_mlocked, "mlocked" },
5770 #endif
5771 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5772 {1UL << PG_uncached, "uncached" },
5773 #endif
5774 #ifdef CONFIG_MEMORY_FAILURE
5775 {1UL << PG_hwpoison, "hwpoison" },
5776 #endif
5777 {-1UL, NULL },
5778 };
5779
5780 static void dump_page_flags(unsigned long flags)
5781 {
5782 const char *delim = "";
5783 unsigned long mask;
5784 int i;
5785
5786 printk(KERN_ALERT "page flags: %#lx(", flags);
5787
5788 /* remove zone id */
5789 flags &= (1UL << NR_PAGEFLAGS) - 1;
5790
5791 for (i = 0; pageflag_names[i].name && flags; i++) {
5792
5793 mask = pageflag_names[i].mask;
5794 if ((flags & mask) != mask)
5795 continue;
5796
5797 flags &= ~mask;
5798 printk("%s%s", delim, pageflag_names[i].name);
5799 delim = "|";
5800 }
5801
5802 /* check for left over flags */
5803 if (flags)
5804 printk("%s%#lx", delim, flags);
5805
5806 printk(")\n");
5807 }
5808
5809 void dump_page(struct page *page)
5810 {
5811 printk(KERN_ALERT
5812 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5813 page, atomic_read(&page->_count), page_mapcount(page),
5814 page->mapping, page->index);
5815 dump_page_flags(page->flags);
5816 mem_cgroup_print_bad_page(page);
5817 }
This page took 0.289006 seconds and 6 git commands to generate.