Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61
62 static void __free_pages_ok(struct page *page, unsigned int order);
63
64 /*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 256,
77 #ifdef CONFIG_ZONE_DMA32
78 256,
79 #endif
80 #ifdef CONFIG_HIGHMEM
81 32
82 #endif
83 };
84
85 EXPORT_SYMBOL(totalram_pages);
86
87 static char * const zone_names[MAX_NR_ZONES] = {
88 "DMA",
89 #ifdef CONFIG_ZONE_DMA32
90 "DMA32",
91 #endif
92 "Normal",
93 #ifdef CONFIG_HIGHMEM
94 "HighMem"
95 #endif
96 };
97
98 int min_free_kbytes = 1024;
99
100 unsigned long __meminitdata nr_kernel_pages;
101 unsigned long __meminitdata nr_all_pages;
102 static unsigned long __initdata dma_reserve;
103
104 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105 /*
106 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107 * ranges of memory (RAM) that may be registered with add_active_range().
108 * Ranges passed to add_active_range() will be merged if possible
109 * so the number of times add_active_range() can be called is
110 * related to the number of nodes and the number of holes
111 */
112 #ifdef CONFIG_MAX_ACTIVE_REGIONS
113 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115 #else
116 #if MAX_NUMNODES >= 32
117 /* If there can be many nodes, allow up to 50 holes per node */
118 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119 #else
120 /* By default, allow up to 256 distinct regions */
121 #define MAX_ACTIVE_REGIONS 256
122 #endif
123 #endif
124
125 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126 int __initdata nr_nodemap_entries;
127 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
129 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
133 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
135 #ifdef CONFIG_DEBUG_VM
136 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
137 {
138 int ret = 0;
139 unsigned seq;
140 unsigned long pfn = page_to_pfn(page);
141
142 do {
143 seq = zone_span_seqbegin(zone);
144 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145 ret = 1;
146 else if (pfn < zone->zone_start_pfn)
147 ret = 1;
148 } while (zone_span_seqretry(zone, seq));
149
150 return ret;
151 }
152
153 static int page_is_consistent(struct zone *zone, struct page *page)
154 {
155 #ifdef CONFIG_HOLES_IN_ZONE
156 if (!pfn_valid(page_to_pfn(page)))
157 return 0;
158 #endif
159 if (zone != page_zone(page))
160 return 0;
161
162 return 1;
163 }
164 /*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167 static int bad_range(struct zone *zone, struct page *page)
168 {
169 if (page_outside_zone_boundaries(zone, page))
170 return 1;
171 if (!page_is_consistent(zone, page))
172 return 1;
173
174 return 0;
175 }
176 #else
177 static inline int bad_range(struct zone *zone, struct page *page)
178 {
179 return 0;
180 }
181 #endif
182
183 static void bad_page(struct page *page)
184 {
185 printk(KERN_EMERG "Bad page state in process '%s'\n"
186 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188 KERN_EMERG "Backtrace:\n",
189 current->comm, page, (int)(2*sizeof(unsigned long)),
190 (unsigned long)page->flags, page->mapping,
191 page_mapcount(page), page_count(page));
192 dump_stack();
193 page->flags &= ~(1 << PG_lru |
194 1 << PG_private |
195 1 << PG_locked |
196 1 << PG_active |
197 1 << PG_dirty |
198 1 << PG_reclaim |
199 1 << PG_slab |
200 1 << PG_swapcache |
201 1 << PG_writeback |
202 1 << PG_buddy );
203 set_page_count(page, 0);
204 reset_page_mapcount(page);
205 page->mapping = NULL;
206 add_taint(TAINT_BAD_PAGE);
207 }
208
209 /*
210 * Higher-order pages are called "compound pages". They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set. All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function. Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
222 */
223
224 static void free_compound_page(struct page *page)
225 {
226 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
227 }
228
229 static void prep_compound_page(struct page *page, unsigned long order)
230 {
231 int i;
232 int nr_pages = 1 << order;
233
234 set_compound_page_dtor(page, free_compound_page);
235 page[1].lru.prev = (void *)order;
236 for (i = 0; i < nr_pages; i++) {
237 struct page *p = page + i;
238
239 __SetPageCompound(p);
240 set_page_private(p, (unsigned long)page);
241 }
242 }
243
244 static void destroy_compound_page(struct page *page, unsigned long order)
245 {
246 int i;
247 int nr_pages = 1 << order;
248
249 if (unlikely((unsigned long)page[1].lru.prev != order))
250 bad_page(page);
251
252 for (i = 0; i < nr_pages; i++) {
253 struct page *p = page + i;
254
255 if (unlikely(!PageCompound(p) |
256 (page_private(p) != (unsigned long)page)))
257 bad_page(page);
258 __ClearPageCompound(p);
259 }
260 }
261
262 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263 {
264 int i;
265
266 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
267 /*
268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269 * and __GFP_HIGHMEM from hard or soft interrupt context.
270 */
271 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
272 for (i = 0; i < (1 << order); i++)
273 clear_highpage(page + i);
274 }
275
276 /*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
281 static inline unsigned long page_order(struct page *page)
282 {
283 return page_private(page);
284 }
285
286 static inline void set_page_order(struct page *page, int order)
287 {
288 set_page_private(page, order);
289 __SetPageBuddy(page);
290 }
291
292 static inline void rmv_page_order(struct page *page)
293 {
294 __ClearPageBuddy(page);
295 set_page_private(page, 0);
296 }
297
298 /*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 * B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 * P = B & ~(1 << O)
312 *
313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
314 */
315 static inline struct page *
316 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317 {
318 unsigned long buddy_idx = page_idx ^ (1 << order);
319
320 return page + (buddy_idx - page_idx);
321 }
322
323 static inline unsigned long
324 __find_combined_index(unsigned long page_idx, unsigned int order)
325 {
326 return (page_idx & ~(1 << order));
327 }
328
329 /*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
332 * (a) the buddy is not in a hole &&
333 * (b) the buddy is in the buddy system &&
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
339 *
340 * For recording page's order, we use page_private(page).
341 */
342 static inline int page_is_buddy(struct page *page, struct page *buddy,
343 int order)
344 {
345 #ifdef CONFIG_HOLES_IN_ZONE
346 if (!pfn_valid(page_to_pfn(buddy)))
347 return 0;
348 #endif
349
350 if (page_zone_id(page) != page_zone_id(buddy))
351 return 0;
352
353 if (PageBuddy(buddy) && page_order(buddy) == order) {
354 BUG_ON(page_count(buddy) != 0);
355 return 1;
356 }
357 return 0;
358 }
359
360 /*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other. That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
384 static inline void __free_one_page(struct page *page,
385 struct zone *zone, unsigned int order)
386 {
387 unsigned long page_idx;
388 int order_size = 1 << order;
389
390 if (unlikely(PageCompound(page)))
391 destroy_compound_page(page, order);
392
393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
395 VM_BUG_ON(page_idx & (order_size - 1));
396 VM_BUG_ON(bad_range(zone, page));
397
398 zone->free_pages += order_size;
399 while (order < MAX_ORDER-1) {
400 unsigned long combined_idx;
401 struct free_area *area;
402 struct page *buddy;
403
404 buddy = __page_find_buddy(page, page_idx, order);
405 if (!page_is_buddy(page, buddy, order))
406 break; /* Move the buddy up one level. */
407
408 list_del(&buddy->lru);
409 area = zone->free_area + order;
410 area->nr_free--;
411 rmv_page_order(buddy);
412 combined_idx = __find_combined_index(page_idx, order);
413 page = page + (combined_idx - page_idx);
414 page_idx = combined_idx;
415 order++;
416 }
417 set_page_order(page, order);
418 list_add(&page->lru, &zone->free_area[order].free_list);
419 zone->free_area[order].nr_free++;
420 }
421
422 static inline int free_pages_check(struct page *page)
423 {
424 if (unlikely(page_mapcount(page) |
425 (page->mapping != NULL) |
426 (page_count(page) != 0) |
427 (page->flags & (
428 1 << PG_lru |
429 1 << PG_private |
430 1 << PG_locked |
431 1 << PG_active |
432 1 << PG_reclaim |
433 1 << PG_slab |
434 1 << PG_swapcache |
435 1 << PG_writeback |
436 1 << PG_reserved |
437 1 << PG_buddy ))))
438 bad_page(page);
439 if (PageDirty(page))
440 __ClearPageDirty(page);
441 /*
442 * For now, we report if PG_reserved was found set, but do not
443 * clear it, and do not free the page. But we shall soon need
444 * to do more, for when the ZERO_PAGE count wraps negative.
445 */
446 return PageReserved(page);
447 }
448
449 /*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
460 static void free_pages_bulk(struct zone *zone, int count,
461 struct list_head *list, int order)
462 {
463 spin_lock(&zone->lock);
464 zone->all_unreclaimable = 0;
465 zone->pages_scanned = 0;
466 while (count--) {
467 struct page *page;
468
469 VM_BUG_ON(list_empty(list));
470 page = list_entry(list->prev, struct page, lru);
471 /* have to delete it as __free_one_page list manipulates */
472 list_del(&page->lru);
473 __free_one_page(page, zone, order);
474 }
475 spin_unlock(&zone->lock);
476 }
477
478 static void free_one_page(struct zone *zone, struct page *page, int order)
479 {
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
483 __free_one_page(page, zone, order);
484 spin_unlock(&zone->lock);
485 }
486
487 static void __free_pages_ok(struct page *page, unsigned int order)
488 {
489 unsigned long flags;
490 int i;
491 int reserved = 0;
492
493 for (i = 0 ; i < (1 << order) ; ++i)
494 reserved += free_pages_check(page + i);
495 if (reserved)
496 return;
497
498 if (!PageHighMem(page))
499 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500 arch_free_page(page, order);
501 kernel_map_pages(page, 1 << order, 0);
502
503 local_irq_save(flags);
504 __count_vm_events(PGFREE, 1 << order);
505 free_one_page(page_zone(page), page, order);
506 local_irq_restore(flags);
507 }
508
509 /*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513 {
514 if (order == 0) {
515 __ClearPageReserved(page);
516 set_page_count(page, 0);
517 set_page_refcounted(page);
518 __free_page(page);
519 } else {
520 int loop;
521
522 prefetchw(page);
523 for (loop = 0; loop < BITS_PER_LONG; loop++) {
524 struct page *p = &page[loop];
525
526 if (loop + 1 < BITS_PER_LONG)
527 prefetchw(p + 1);
528 __ClearPageReserved(p);
529 set_page_count(p, 0);
530 }
531
532 set_page_refcounted(page);
533 __free_pages(page, order);
534 }
535 }
536
537
538 /*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
552 static inline void expand(struct zone *zone, struct page *page,
553 int low, int high, struct free_area *area)
554 {
555 unsigned long size = 1 << high;
556
557 while (high > low) {
558 area--;
559 high--;
560 size >>= 1;
561 VM_BUG_ON(bad_range(zone, &page[size]));
562 list_add(&page[size].lru, &area->free_list);
563 area->nr_free++;
564 set_page_order(&page[size], high);
565 }
566 }
567
568 /*
569 * This page is about to be returned from the page allocator
570 */
571 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572 {
573 if (unlikely(page_mapcount(page) |
574 (page->mapping != NULL) |
575 (page_count(page) != 0) |
576 (page->flags & (
577 1 << PG_lru |
578 1 << PG_private |
579 1 << PG_locked |
580 1 << PG_active |
581 1 << PG_dirty |
582 1 << PG_reclaim |
583 1 << PG_slab |
584 1 << PG_swapcache |
585 1 << PG_writeback |
586 1 << PG_reserved |
587 1 << PG_buddy ))))
588 bad_page(page);
589
590 /*
591 * For now, we report if PG_reserved was found set, but do not
592 * clear it, and do not allocate the page: as a safety net.
593 */
594 if (PageReserved(page))
595 return 1;
596
597 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_arch_1 |
599 1 << PG_checked | 1 << PG_mappedtodisk);
600 set_page_private(page, 0);
601 set_page_refcounted(page);
602
603 arch_alloc_page(page, order);
604 kernel_map_pages(page, 1 << order, 1);
605
606 if (gfp_flags & __GFP_ZERO)
607 prep_zero_page(page, order, gfp_flags);
608
609 if (order && (gfp_flags & __GFP_COMP))
610 prep_compound_page(page, order);
611
612 return 0;
613 }
614
615 /*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619 static struct page *__rmqueue(struct zone *zone, unsigned int order)
620 {
621 struct free_area * area;
622 unsigned int current_order;
623 struct page *page;
624
625 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626 area = zone->free_area + current_order;
627 if (list_empty(&area->free_list))
628 continue;
629
630 page = list_entry(area->free_list.next, struct page, lru);
631 list_del(&page->lru);
632 rmv_page_order(page);
633 area->nr_free--;
634 zone->free_pages -= 1UL << order;
635 expand(zone, page, order, current_order, area);
636 return page;
637 }
638
639 return NULL;
640 }
641
642 /*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency. Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647 static int rmqueue_bulk(struct zone *zone, unsigned int order,
648 unsigned long count, struct list_head *list)
649 {
650 int i;
651
652 spin_lock(&zone->lock);
653 for (i = 0; i < count; ++i) {
654 struct page *page = __rmqueue(zone, order);
655 if (unlikely(page == NULL))
656 break;
657 list_add_tail(&page->lru, list);
658 }
659 spin_unlock(&zone->lock);
660 return i;
661 }
662
663 #ifdef CONFIG_NUMA
664 /*
665 * Called from the slab reaper to drain pagesets on a particular node that
666 * belongs to the currently executing processor.
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
669 */
670 void drain_node_pages(int nodeid)
671 {
672 int i;
673 enum zone_type z;
674 unsigned long flags;
675
676 for (z = 0; z < MAX_NR_ZONES; z++) {
677 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
678 struct per_cpu_pageset *pset;
679
680 if (!populated_zone(zone))
681 continue;
682
683 pset = zone_pcp(zone, smp_processor_id());
684 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685 struct per_cpu_pages *pcp;
686
687 pcp = &pset->pcp[i];
688 if (pcp->count) {
689 int to_drain;
690
691 local_irq_save(flags);
692 if (pcp->count >= pcp->batch)
693 to_drain = pcp->batch;
694 else
695 to_drain = pcp->count;
696 free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 pcp->count -= to_drain;
698 local_irq_restore(flags);
699 }
700 }
701 }
702 }
703 #endif
704
705 static void __drain_pages(unsigned int cpu)
706 {
707 unsigned long flags;
708 struct zone *zone;
709 int i;
710
711 for_each_zone(zone) {
712 struct per_cpu_pageset *pset;
713
714 if (!populated_zone(zone))
715 continue;
716
717 pset = zone_pcp(zone, cpu);
718 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
719 struct per_cpu_pages *pcp;
720
721 pcp = &pset->pcp[i];
722 local_irq_save(flags);
723 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
724 pcp->count = 0;
725 local_irq_restore(flags);
726 }
727 }
728 }
729
730 #ifdef CONFIG_PM
731
732 void mark_free_pages(struct zone *zone)
733 {
734 unsigned long pfn, max_zone_pfn;
735 unsigned long flags;
736 int order;
737 struct list_head *curr;
738
739 if (!zone->spanned_pages)
740 return;
741
742 spin_lock_irqsave(&zone->lock, flags);
743
744 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
745 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
746 if (pfn_valid(pfn)) {
747 struct page *page = pfn_to_page(pfn);
748
749 if (!PageNosave(page))
750 ClearPageNosaveFree(page);
751 }
752
753 for (order = MAX_ORDER - 1; order >= 0; --order)
754 list_for_each(curr, &zone->free_area[order].free_list) {
755 unsigned long i;
756
757 pfn = page_to_pfn(list_entry(curr, struct page, lru));
758 for (i = 0; i < (1UL << order); i++)
759 SetPageNosaveFree(pfn_to_page(pfn + i));
760 }
761
762 spin_unlock_irqrestore(&zone->lock, flags);
763 }
764
765 /*
766 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767 */
768 void drain_local_pages(void)
769 {
770 unsigned long flags;
771
772 local_irq_save(flags);
773 __drain_pages(smp_processor_id());
774 local_irq_restore(flags);
775 }
776 #endif /* CONFIG_PM */
777
778 /*
779 * Free a 0-order page
780 */
781 static void fastcall free_hot_cold_page(struct page *page, int cold)
782 {
783 struct zone *zone = page_zone(page);
784 struct per_cpu_pages *pcp;
785 unsigned long flags;
786
787 if (PageAnon(page))
788 page->mapping = NULL;
789 if (free_pages_check(page))
790 return;
791
792 if (!PageHighMem(page))
793 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
794 arch_free_page(page, 0);
795 kernel_map_pages(page, 1, 0);
796
797 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
798 local_irq_save(flags);
799 __count_vm_event(PGFREE);
800 list_add(&page->lru, &pcp->list);
801 pcp->count++;
802 if (pcp->count >= pcp->high) {
803 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
804 pcp->count -= pcp->batch;
805 }
806 local_irq_restore(flags);
807 put_cpu();
808 }
809
810 void fastcall free_hot_page(struct page *page)
811 {
812 free_hot_cold_page(page, 0);
813 }
814
815 void fastcall free_cold_page(struct page *page)
816 {
817 free_hot_cold_page(page, 1);
818 }
819
820 /*
821 * split_page takes a non-compound higher-order page, and splits it into
822 * n (1<<order) sub-pages: page[0..n]
823 * Each sub-page must be freed individually.
824 *
825 * Note: this is probably too low level an operation for use in drivers.
826 * Please consult with lkml before using this in your driver.
827 */
828 void split_page(struct page *page, unsigned int order)
829 {
830 int i;
831
832 VM_BUG_ON(PageCompound(page));
833 VM_BUG_ON(!page_count(page));
834 for (i = 1; i < (1 << order); i++)
835 set_page_refcounted(page + i);
836 }
837
838 /*
839 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
840 * we cheat by calling it from here, in the order > 0 path. Saves a branch
841 * or two.
842 */
843 static struct page *buffered_rmqueue(struct zonelist *zonelist,
844 struct zone *zone, int order, gfp_t gfp_flags)
845 {
846 unsigned long flags;
847 struct page *page;
848 int cold = !!(gfp_flags & __GFP_COLD);
849 int cpu;
850
851 again:
852 cpu = get_cpu();
853 if (likely(order == 0)) {
854 struct per_cpu_pages *pcp;
855
856 pcp = &zone_pcp(zone, cpu)->pcp[cold];
857 local_irq_save(flags);
858 if (!pcp->count) {
859 pcp->count = rmqueue_bulk(zone, 0,
860 pcp->batch, &pcp->list);
861 if (unlikely(!pcp->count))
862 goto failed;
863 }
864 page = list_entry(pcp->list.next, struct page, lru);
865 list_del(&page->lru);
866 pcp->count--;
867 } else {
868 spin_lock_irqsave(&zone->lock, flags);
869 page = __rmqueue(zone, order);
870 spin_unlock(&zone->lock);
871 if (!page)
872 goto failed;
873 }
874
875 __count_zone_vm_events(PGALLOC, zone, 1 << order);
876 zone_statistics(zonelist, zone);
877 local_irq_restore(flags);
878 put_cpu();
879
880 VM_BUG_ON(bad_range(zone, page));
881 if (prep_new_page(page, order, gfp_flags))
882 goto again;
883 return page;
884
885 failed:
886 local_irq_restore(flags);
887 put_cpu();
888 return NULL;
889 }
890
891 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
892 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
893 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
894 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
895 #define ALLOC_HARDER 0x10 /* try to alloc harder */
896 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
897 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
898
899 #ifdef CONFIG_FAIL_PAGE_ALLOC
900
901 static struct fail_page_alloc_attr {
902 struct fault_attr attr;
903
904 u32 ignore_gfp_highmem;
905 u32 ignore_gfp_wait;
906
907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909 struct dentry *ignore_gfp_highmem_file;
910 struct dentry *ignore_gfp_wait_file;
911
912 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913
914 } fail_page_alloc = {
915 .attr = FAULT_ATTR_INITIALIZER,
916 .ignore_gfp_wait = 1,
917 .ignore_gfp_highmem = 1,
918 };
919
920 static int __init setup_fail_page_alloc(char *str)
921 {
922 return setup_fault_attr(&fail_page_alloc.attr, str);
923 }
924 __setup("fail_page_alloc=", setup_fail_page_alloc);
925
926 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927 {
928 if (gfp_mask & __GFP_NOFAIL)
929 return 0;
930 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
931 return 0;
932 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
933 return 0;
934
935 return should_fail(&fail_page_alloc.attr, 1 << order);
936 }
937
938 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939
940 static int __init fail_page_alloc_debugfs(void)
941 {
942 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
943 struct dentry *dir;
944 int err;
945
946 err = init_fault_attr_dentries(&fail_page_alloc.attr,
947 "fail_page_alloc");
948 if (err)
949 return err;
950 dir = fail_page_alloc.attr.dentries.dir;
951
952 fail_page_alloc.ignore_gfp_wait_file =
953 debugfs_create_bool("ignore-gfp-wait", mode, dir,
954 &fail_page_alloc.ignore_gfp_wait);
955
956 fail_page_alloc.ignore_gfp_highmem_file =
957 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
958 &fail_page_alloc.ignore_gfp_highmem);
959
960 if (!fail_page_alloc.ignore_gfp_wait_file ||
961 !fail_page_alloc.ignore_gfp_highmem_file) {
962 err = -ENOMEM;
963 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
964 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
965 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
966 }
967
968 return err;
969 }
970
971 late_initcall(fail_page_alloc_debugfs);
972
973 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
974
975 #else /* CONFIG_FAIL_PAGE_ALLOC */
976
977 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
978 {
979 return 0;
980 }
981
982 #endif /* CONFIG_FAIL_PAGE_ALLOC */
983
984 /*
985 * Return 1 if free pages are above 'mark'. This takes into account the order
986 * of the allocation.
987 */
988 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
989 int classzone_idx, int alloc_flags)
990 {
991 /* free_pages my go negative - that's OK */
992 unsigned long min = mark;
993 long free_pages = z->free_pages - (1 << order) + 1;
994 int o;
995
996 if (alloc_flags & ALLOC_HIGH)
997 min -= min / 2;
998 if (alloc_flags & ALLOC_HARDER)
999 min -= min / 4;
1000
1001 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1002 return 0;
1003 for (o = 0; o < order; o++) {
1004 /* At the next order, this order's pages become unavailable */
1005 free_pages -= z->free_area[o].nr_free << o;
1006
1007 /* Require fewer higher order pages to be free */
1008 min >>= 1;
1009
1010 if (free_pages <= min)
1011 return 0;
1012 }
1013 return 1;
1014 }
1015
1016 #ifdef CONFIG_NUMA
1017 /*
1018 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1019 * skip over zones that are not allowed by the cpuset, or that have
1020 * been recently (in last second) found to be nearly full. See further
1021 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1022 * that have to skip over alot of full or unallowed zones.
1023 *
1024 * If the zonelist cache is present in the passed in zonelist, then
1025 * returns a pointer to the allowed node mask (either the current
1026 * tasks mems_allowed, or node_online_map.)
1027 *
1028 * If the zonelist cache is not available for this zonelist, does
1029 * nothing and returns NULL.
1030 *
1031 * If the fullzones BITMAP in the zonelist cache is stale (more than
1032 * a second since last zap'd) then we zap it out (clear its bits.)
1033 *
1034 * We hold off even calling zlc_setup, until after we've checked the
1035 * first zone in the zonelist, on the theory that most allocations will
1036 * be satisfied from that first zone, so best to examine that zone as
1037 * quickly as we can.
1038 */
1039 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1040 {
1041 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1042 nodemask_t *allowednodes; /* zonelist_cache approximation */
1043
1044 zlc = zonelist->zlcache_ptr;
1045 if (!zlc)
1046 return NULL;
1047
1048 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1049 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1050 zlc->last_full_zap = jiffies;
1051 }
1052
1053 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1054 &cpuset_current_mems_allowed :
1055 &node_online_map;
1056 return allowednodes;
1057 }
1058
1059 /*
1060 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1061 * if it is worth looking at further for free memory:
1062 * 1) Check that the zone isn't thought to be full (doesn't have its
1063 * bit set in the zonelist_cache fullzones BITMAP).
1064 * 2) Check that the zones node (obtained from the zonelist_cache
1065 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1066 * Return true (non-zero) if zone is worth looking at further, or
1067 * else return false (zero) if it is not.
1068 *
1069 * This check -ignores- the distinction between various watermarks,
1070 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1071 * found to be full for any variation of these watermarks, it will
1072 * be considered full for up to one second by all requests, unless
1073 * we are so low on memory on all allowed nodes that we are forced
1074 * into the second scan of the zonelist.
1075 *
1076 * In the second scan we ignore this zonelist cache and exactly
1077 * apply the watermarks to all zones, even it is slower to do so.
1078 * We are low on memory in the second scan, and should leave no stone
1079 * unturned looking for a free page.
1080 */
1081 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1082 nodemask_t *allowednodes)
1083 {
1084 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1085 int i; /* index of *z in zonelist zones */
1086 int n; /* node that zone *z is on */
1087
1088 zlc = zonelist->zlcache_ptr;
1089 if (!zlc)
1090 return 1;
1091
1092 i = z - zonelist->zones;
1093 n = zlc->z_to_n[i];
1094
1095 /* This zone is worth trying if it is allowed but not full */
1096 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1097 }
1098
1099 /*
1100 * Given 'z' scanning a zonelist, set the corresponding bit in
1101 * zlc->fullzones, so that subsequent attempts to allocate a page
1102 * from that zone don't waste time re-examining it.
1103 */
1104 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1105 {
1106 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1107 int i; /* index of *z in zonelist zones */
1108
1109 zlc = zonelist->zlcache_ptr;
1110 if (!zlc)
1111 return;
1112
1113 i = z - zonelist->zones;
1114
1115 set_bit(i, zlc->fullzones);
1116 }
1117
1118 #else /* CONFIG_NUMA */
1119
1120 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1121 {
1122 return NULL;
1123 }
1124
1125 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1126 nodemask_t *allowednodes)
1127 {
1128 return 1;
1129 }
1130
1131 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1132 {
1133 }
1134 #endif /* CONFIG_NUMA */
1135
1136 /*
1137 * get_page_from_freelist goes through the zonelist trying to allocate
1138 * a page.
1139 */
1140 static struct page *
1141 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1142 struct zonelist *zonelist, int alloc_flags)
1143 {
1144 struct zone **z;
1145 struct page *page = NULL;
1146 int classzone_idx = zone_idx(zonelist->zones[0]);
1147 struct zone *zone;
1148 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1149 int zlc_active = 0; /* set if using zonelist_cache */
1150 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1151
1152 zonelist_scan:
1153 /*
1154 * Scan zonelist, looking for a zone with enough free.
1155 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1156 */
1157 z = zonelist->zones;
1158
1159 do {
1160 if (NUMA_BUILD && zlc_active &&
1161 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1162 continue;
1163 zone = *z;
1164 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1165 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1166 break;
1167 if ((alloc_flags & ALLOC_CPUSET) &&
1168 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1169 goto try_next_zone;
1170
1171 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1172 unsigned long mark;
1173 if (alloc_flags & ALLOC_WMARK_MIN)
1174 mark = zone->pages_min;
1175 else if (alloc_flags & ALLOC_WMARK_LOW)
1176 mark = zone->pages_low;
1177 else
1178 mark = zone->pages_high;
1179 if (!zone_watermark_ok(zone, order, mark,
1180 classzone_idx, alloc_flags)) {
1181 if (!zone_reclaim_mode ||
1182 !zone_reclaim(zone, gfp_mask, order))
1183 goto this_zone_full;
1184 }
1185 }
1186
1187 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1188 if (page)
1189 break;
1190 this_zone_full:
1191 if (NUMA_BUILD)
1192 zlc_mark_zone_full(zonelist, z);
1193 try_next_zone:
1194 if (NUMA_BUILD && !did_zlc_setup) {
1195 /* we do zlc_setup after the first zone is tried */
1196 allowednodes = zlc_setup(zonelist, alloc_flags);
1197 zlc_active = 1;
1198 did_zlc_setup = 1;
1199 }
1200 } while (*(++z) != NULL);
1201
1202 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1203 /* Disable zlc cache for second zonelist scan */
1204 zlc_active = 0;
1205 goto zonelist_scan;
1206 }
1207 return page;
1208 }
1209
1210 /*
1211 * This is the 'heart' of the zoned buddy allocator.
1212 */
1213 struct page * fastcall
1214 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1215 struct zonelist *zonelist)
1216 {
1217 const gfp_t wait = gfp_mask & __GFP_WAIT;
1218 struct zone **z;
1219 struct page *page;
1220 struct reclaim_state reclaim_state;
1221 struct task_struct *p = current;
1222 int do_retry;
1223 int alloc_flags;
1224 int did_some_progress;
1225
1226 might_sleep_if(wait);
1227
1228 if (should_fail_alloc_page(gfp_mask, order))
1229 return NULL;
1230
1231 restart:
1232 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1233
1234 if (unlikely(*z == NULL)) {
1235 /* Should this ever happen?? */
1236 return NULL;
1237 }
1238
1239 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1240 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1241 if (page)
1242 goto got_pg;
1243
1244 /*
1245 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1246 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1247 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1248 * using a larger set of nodes after it has established that the
1249 * allowed per node queues are empty and that nodes are
1250 * over allocated.
1251 */
1252 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1253 goto nopage;
1254
1255 for (z = zonelist->zones; *z; z++)
1256 wakeup_kswapd(*z, order);
1257
1258 /*
1259 * OK, we're below the kswapd watermark and have kicked background
1260 * reclaim. Now things get more complex, so set up alloc_flags according
1261 * to how we want to proceed.
1262 *
1263 * The caller may dip into page reserves a bit more if the caller
1264 * cannot run direct reclaim, or if the caller has realtime scheduling
1265 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1266 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1267 */
1268 alloc_flags = ALLOC_WMARK_MIN;
1269 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1270 alloc_flags |= ALLOC_HARDER;
1271 if (gfp_mask & __GFP_HIGH)
1272 alloc_flags |= ALLOC_HIGH;
1273 if (wait)
1274 alloc_flags |= ALLOC_CPUSET;
1275
1276 /*
1277 * Go through the zonelist again. Let __GFP_HIGH and allocations
1278 * coming from realtime tasks go deeper into reserves.
1279 *
1280 * This is the last chance, in general, before the goto nopage.
1281 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1282 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1283 */
1284 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1285 if (page)
1286 goto got_pg;
1287
1288 /* This allocation should allow future memory freeing. */
1289
1290 rebalance:
1291 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1292 && !in_interrupt()) {
1293 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1294 nofail_alloc:
1295 /* go through the zonelist yet again, ignoring mins */
1296 page = get_page_from_freelist(gfp_mask, order,
1297 zonelist, ALLOC_NO_WATERMARKS);
1298 if (page)
1299 goto got_pg;
1300 if (gfp_mask & __GFP_NOFAIL) {
1301 congestion_wait(WRITE, HZ/50);
1302 goto nofail_alloc;
1303 }
1304 }
1305 goto nopage;
1306 }
1307
1308 /* Atomic allocations - we can't balance anything */
1309 if (!wait)
1310 goto nopage;
1311
1312 cond_resched();
1313
1314 /* We now go into synchronous reclaim */
1315 cpuset_memory_pressure_bump();
1316 p->flags |= PF_MEMALLOC;
1317 reclaim_state.reclaimed_slab = 0;
1318 p->reclaim_state = &reclaim_state;
1319
1320 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1321
1322 p->reclaim_state = NULL;
1323 p->flags &= ~PF_MEMALLOC;
1324
1325 cond_resched();
1326
1327 if (likely(did_some_progress)) {
1328 page = get_page_from_freelist(gfp_mask, order,
1329 zonelist, alloc_flags);
1330 if (page)
1331 goto got_pg;
1332 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1333 /*
1334 * Go through the zonelist yet one more time, keep
1335 * very high watermark here, this is only to catch
1336 * a parallel oom killing, we must fail if we're still
1337 * under heavy pressure.
1338 */
1339 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1340 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1341 if (page)
1342 goto got_pg;
1343
1344 out_of_memory(zonelist, gfp_mask, order);
1345 goto restart;
1346 }
1347
1348 /*
1349 * Don't let big-order allocations loop unless the caller explicitly
1350 * requests that. Wait for some write requests to complete then retry.
1351 *
1352 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1353 * <= 3, but that may not be true in other implementations.
1354 */
1355 do_retry = 0;
1356 if (!(gfp_mask & __GFP_NORETRY)) {
1357 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1358 do_retry = 1;
1359 if (gfp_mask & __GFP_NOFAIL)
1360 do_retry = 1;
1361 }
1362 if (do_retry) {
1363 congestion_wait(WRITE, HZ/50);
1364 goto rebalance;
1365 }
1366
1367 nopage:
1368 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1369 printk(KERN_WARNING "%s: page allocation failure."
1370 " order:%d, mode:0x%x\n",
1371 p->comm, order, gfp_mask);
1372 dump_stack();
1373 show_mem();
1374 }
1375 got_pg:
1376 return page;
1377 }
1378
1379 EXPORT_SYMBOL(__alloc_pages);
1380
1381 /*
1382 * Common helper functions.
1383 */
1384 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1385 {
1386 struct page * page;
1387 page = alloc_pages(gfp_mask, order);
1388 if (!page)
1389 return 0;
1390 return (unsigned long) page_address(page);
1391 }
1392
1393 EXPORT_SYMBOL(__get_free_pages);
1394
1395 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1396 {
1397 struct page * page;
1398
1399 /*
1400 * get_zeroed_page() returns a 32-bit address, which cannot represent
1401 * a highmem page
1402 */
1403 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1404
1405 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1406 if (page)
1407 return (unsigned long) page_address(page);
1408 return 0;
1409 }
1410
1411 EXPORT_SYMBOL(get_zeroed_page);
1412
1413 void __pagevec_free(struct pagevec *pvec)
1414 {
1415 int i = pagevec_count(pvec);
1416
1417 while (--i >= 0)
1418 free_hot_cold_page(pvec->pages[i], pvec->cold);
1419 }
1420
1421 fastcall void __free_pages(struct page *page, unsigned int order)
1422 {
1423 if (put_page_testzero(page)) {
1424 if (order == 0)
1425 free_hot_page(page);
1426 else
1427 __free_pages_ok(page, order);
1428 }
1429 }
1430
1431 EXPORT_SYMBOL(__free_pages);
1432
1433 fastcall void free_pages(unsigned long addr, unsigned int order)
1434 {
1435 if (addr != 0) {
1436 VM_BUG_ON(!virt_addr_valid((void *)addr));
1437 __free_pages(virt_to_page((void *)addr), order);
1438 }
1439 }
1440
1441 EXPORT_SYMBOL(free_pages);
1442
1443 /*
1444 * Total amount of free (allocatable) RAM:
1445 */
1446 unsigned int nr_free_pages(void)
1447 {
1448 unsigned int sum = 0;
1449 struct zone *zone;
1450
1451 for_each_zone(zone)
1452 sum += zone->free_pages;
1453
1454 return sum;
1455 }
1456
1457 EXPORT_SYMBOL(nr_free_pages);
1458
1459 #ifdef CONFIG_NUMA
1460 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1461 {
1462 unsigned int sum = 0;
1463 enum zone_type i;
1464
1465 for (i = 0; i < MAX_NR_ZONES; i++)
1466 sum += pgdat->node_zones[i].free_pages;
1467
1468 return sum;
1469 }
1470 #endif
1471
1472 static unsigned int nr_free_zone_pages(int offset)
1473 {
1474 /* Just pick one node, since fallback list is circular */
1475 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1476 unsigned int sum = 0;
1477
1478 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1479 struct zone **zonep = zonelist->zones;
1480 struct zone *zone;
1481
1482 for (zone = *zonep++; zone; zone = *zonep++) {
1483 unsigned long size = zone->present_pages;
1484 unsigned long high = zone->pages_high;
1485 if (size > high)
1486 sum += size - high;
1487 }
1488
1489 return sum;
1490 }
1491
1492 /*
1493 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1494 */
1495 unsigned int nr_free_buffer_pages(void)
1496 {
1497 return nr_free_zone_pages(gfp_zone(GFP_USER));
1498 }
1499
1500 /*
1501 * Amount of free RAM allocatable within all zones
1502 */
1503 unsigned int nr_free_pagecache_pages(void)
1504 {
1505 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1506 }
1507
1508 static inline void show_node(struct zone *zone)
1509 {
1510 if (NUMA_BUILD)
1511 printk("Node %d ", zone_to_nid(zone));
1512 }
1513
1514 void si_meminfo(struct sysinfo *val)
1515 {
1516 val->totalram = totalram_pages;
1517 val->sharedram = 0;
1518 val->freeram = nr_free_pages();
1519 val->bufferram = nr_blockdev_pages();
1520 val->totalhigh = totalhigh_pages;
1521 val->freehigh = nr_free_highpages();
1522 val->mem_unit = PAGE_SIZE;
1523 }
1524
1525 EXPORT_SYMBOL(si_meminfo);
1526
1527 #ifdef CONFIG_NUMA
1528 void si_meminfo_node(struct sysinfo *val, int nid)
1529 {
1530 pg_data_t *pgdat = NODE_DATA(nid);
1531
1532 val->totalram = pgdat->node_present_pages;
1533 val->freeram = nr_free_pages_pgdat(pgdat);
1534 #ifdef CONFIG_HIGHMEM
1535 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1536 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1537 #else
1538 val->totalhigh = 0;
1539 val->freehigh = 0;
1540 #endif
1541 val->mem_unit = PAGE_SIZE;
1542 }
1543 #endif
1544
1545 #define K(x) ((x) << (PAGE_SHIFT-10))
1546
1547 /*
1548 * Show free area list (used inside shift_scroll-lock stuff)
1549 * We also calculate the percentage fragmentation. We do this by counting the
1550 * memory on each free list with the exception of the first item on the list.
1551 */
1552 void show_free_areas(void)
1553 {
1554 int cpu;
1555 unsigned long active;
1556 unsigned long inactive;
1557 unsigned long free;
1558 struct zone *zone;
1559
1560 for_each_zone(zone) {
1561 if (!populated_zone(zone))
1562 continue;
1563
1564 show_node(zone);
1565 printk("%s per-cpu:\n", zone->name);
1566
1567 for_each_online_cpu(cpu) {
1568 struct per_cpu_pageset *pageset;
1569
1570 pageset = zone_pcp(zone, cpu);
1571
1572 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1573 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1574 cpu, pageset->pcp[0].high,
1575 pageset->pcp[0].batch, pageset->pcp[0].count,
1576 pageset->pcp[1].high, pageset->pcp[1].batch,
1577 pageset->pcp[1].count);
1578 }
1579 }
1580
1581 get_zone_counts(&active, &inactive, &free);
1582
1583 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1584 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1585 active,
1586 inactive,
1587 global_page_state(NR_FILE_DIRTY),
1588 global_page_state(NR_WRITEBACK),
1589 global_page_state(NR_UNSTABLE_NFS),
1590 nr_free_pages(),
1591 global_page_state(NR_SLAB_RECLAIMABLE) +
1592 global_page_state(NR_SLAB_UNRECLAIMABLE),
1593 global_page_state(NR_FILE_MAPPED),
1594 global_page_state(NR_PAGETABLE));
1595
1596 for_each_zone(zone) {
1597 int i;
1598
1599 if (!populated_zone(zone))
1600 continue;
1601
1602 show_node(zone);
1603 printk("%s"
1604 " free:%lukB"
1605 " min:%lukB"
1606 " low:%lukB"
1607 " high:%lukB"
1608 " active:%lukB"
1609 " inactive:%lukB"
1610 " present:%lukB"
1611 " pages_scanned:%lu"
1612 " all_unreclaimable? %s"
1613 "\n",
1614 zone->name,
1615 K(zone->free_pages),
1616 K(zone->pages_min),
1617 K(zone->pages_low),
1618 K(zone->pages_high),
1619 K(zone->nr_active),
1620 K(zone->nr_inactive),
1621 K(zone->present_pages),
1622 zone->pages_scanned,
1623 (zone->all_unreclaimable ? "yes" : "no")
1624 );
1625 printk("lowmem_reserve[]:");
1626 for (i = 0; i < MAX_NR_ZONES; i++)
1627 printk(" %lu", zone->lowmem_reserve[i]);
1628 printk("\n");
1629 }
1630
1631 for_each_zone(zone) {
1632 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1633
1634 if (!populated_zone(zone))
1635 continue;
1636
1637 show_node(zone);
1638 printk("%s: ", zone->name);
1639
1640 spin_lock_irqsave(&zone->lock, flags);
1641 for (order = 0; order < MAX_ORDER; order++) {
1642 nr[order] = zone->free_area[order].nr_free;
1643 total += nr[order] << order;
1644 }
1645 spin_unlock_irqrestore(&zone->lock, flags);
1646 for (order = 0; order < MAX_ORDER; order++)
1647 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1648 printk("= %lukB\n", K(total));
1649 }
1650
1651 show_swap_cache_info();
1652 }
1653
1654 /*
1655 * Builds allocation fallback zone lists.
1656 *
1657 * Add all populated zones of a node to the zonelist.
1658 */
1659 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1660 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1661 {
1662 struct zone *zone;
1663
1664 BUG_ON(zone_type >= MAX_NR_ZONES);
1665 zone_type++;
1666
1667 do {
1668 zone_type--;
1669 zone = pgdat->node_zones + zone_type;
1670 if (populated_zone(zone)) {
1671 zonelist->zones[nr_zones++] = zone;
1672 check_highest_zone(zone_type);
1673 }
1674
1675 } while (zone_type);
1676 return nr_zones;
1677 }
1678
1679 #ifdef CONFIG_NUMA
1680 #define MAX_NODE_LOAD (num_online_nodes())
1681 static int __meminitdata node_load[MAX_NUMNODES];
1682 /**
1683 * find_next_best_node - find the next node that should appear in a given node's fallback list
1684 * @node: node whose fallback list we're appending
1685 * @used_node_mask: nodemask_t of already used nodes
1686 *
1687 * We use a number of factors to determine which is the next node that should
1688 * appear on a given node's fallback list. The node should not have appeared
1689 * already in @node's fallback list, and it should be the next closest node
1690 * according to the distance array (which contains arbitrary distance values
1691 * from each node to each node in the system), and should also prefer nodes
1692 * with no CPUs, since presumably they'll have very little allocation pressure
1693 * on them otherwise.
1694 * It returns -1 if no node is found.
1695 */
1696 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1697 {
1698 int n, val;
1699 int min_val = INT_MAX;
1700 int best_node = -1;
1701
1702 /* Use the local node if we haven't already */
1703 if (!node_isset(node, *used_node_mask)) {
1704 node_set(node, *used_node_mask);
1705 return node;
1706 }
1707
1708 for_each_online_node(n) {
1709 cpumask_t tmp;
1710
1711 /* Don't want a node to appear more than once */
1712 if (node_isset(n, *used_node_mask))
1713 continue;
1714
1715 /* Use the distance array to find the distance */
1716 val = node_distance(node, n);
1717
1718 /* Penalize nodes under us ("prefer the next node") */
1719 val += (n < node);
1720
1721 /* Give preference to headless and unused nodes */
1722 tmp = node_to_cpumask(n);
1723 if (!cpus_empty(tmp))
1724 val += PENALTY_FOR_NODE_WITH_CPUS;
1725
1726 /* Slight preference for less loaded node */
1727 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1728 val += node_load[n];
1729
1730 if (val < min_val) {
1731 min_val = val;
1732 best_node = n;
1733 }
1734 }
1735
1736 if (best_node >= 0)
1737 node_set(best_node, *used_node_mask);
1738
1739 return best_node;
1740 }
1741
1742 static void __meminit build_zonelists(pg_data_t *pgdat)
1743 {
1744 int j, node, local_node;
1745 enum zone_type i;
1746 int prev_node, load;
1747 struct zonelist *zonelist;
1748 nodemask_t used_mask;
1749
1750 /* initialize zonelists */
1751 for (i = 0; i < MAX_NR_ZONES; i++) {
1752 zonelist = pgdat->node_zonelists + i;
1753 zonelist->zones[0] = NULL;
1754 }
1755
1756 /* NUMA-aware ordering of nodes */
1757 local_node = pgdat->node_id;
1758 load = num_online_nodes();
1759 prev_node = local_node;
1760 nodes_clear(used_mask);
1761 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1762 int distance = node_distance(local_node, node);
1763
1764 /*
1765 * If another node is sufficiently far away then it is better
1766 * to reclaim pages in a zone before going off node.
1767 */
1768 if (distance > RECLAIM_DISTANCE)
1769 zone_reclaim_mode = 1;
1770
1771 /*
1772 * We don't want to pressure a particular node.
1773 * So adding penalty to the first node in same
1774 * distance group to make it round-robin.
1775 */
1776
1777 if (distance != node_distance(local_node, prev_node))
1778 node_load[node] += load;
1779 prev_node = node;
1780 load--;
1781 for (i = 0; i < MAX_NR_ZONES; i++) {
1782 zonelist = pgdat->node_zonelists + i;
1783 for (j = 0; zonelist->zones[j] != NULL; j++);
1784
1785 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1786 zonelist->zones[j] = NULL;
1787 }
1788 }
1789 }
1790
1791 /* Construct the zonelist performance cache - see further mmzone.h */
1792 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1793 {
1794 int i;
1795
1796 for (i = 0; i < MAX_NR_ZONES; i++) {
1797 struct zonelist *zonelist;
1798 struct zonelist_cache *zlc;
1799 struct zone **z;
1800
1801 zonelist = pgdat->node_zonelists + i;
1802 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1803 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1804 for (z = zonelist->zones; *z; z++)
1805 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1806 }
1807 }
1808
1809 #else /* CONFIG_NUMA */
1810
1811 static void __meminit build_zonelists(pg_data_t *pgdat)
1812 {
1813 int node, local_node;
1814 enum zone_type i,j;
1815
1816 local_node = pgdat->node_id;
1817 for (i = 0; i < MAX_NR_ZONES; i++) {
1818 struct zonelist *zonelist;
1819
1820 zonelist = pgdat->node_zonelists + i;
1821
1822 j = build_zonelists_node(pgdat, zonelist, 0, i);
1823 /*
1824 * Now we build the zonelist so that it contains the zones
1825 * of all the other nodes.
1826 * We don't want to pressure a particular node, so when
1827 * building the zones for node N, we make sure that the
1828 * zones coming right after the local ones are those from
1829 * node N+1 (modulo N)
1830 */
1831 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1832 if (!node_online(node))
1833 continue;
1834 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1835 }
1836 for (node = 0; node < local_node; node++) {
1837 if (!node_online(node))
1838 continue;
1839 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1840 }
1841
1842 zonelist->zones[j] = NULL;
1843 }
1844 }
1845
1846 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1847 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1848 {
1849 int i;
1850
1851 for (i = 0; i < MAX_NR_ZONES; i++)
1852 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1853 }
1854
1855 #endif /* CONFIG_NUMA */
1856
1857 /* return values int ....just for stop_machine_run() */
1858 static int __meminit __build_all_zonelists(void *dummy)
1859 {
1860 int nid;
1861
1862 for_each_online_node(nid) {
1863 build_zonelists(NODE_DATA(nid));
1864 build_zonelist_cache(NODE_DATA(nid));
1865 }
1866 return 0;
1867 }
1868
1869 void __meminit build_all_zonelists(void)
1870 {
1871 if (system_state == SYSTEM_BOOTING) {
1872 __build_all_zonelists(NULL);
1873 cpuset_init_current_mems_allowed();
1874 } else {
1875 /* we have to stop all cpus to guaranntee there is no user
1876 of zonelist */
1877 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1878 /* cpuset refresh routine should be here */
1879 }
1880 vm_total_pages = nr_free_pagecache_pages();
1881 printk("Built %i zonelists. Total pages: %ld\n",
1882 num_online_nodes(), vm_total_pages);
1883 }
1884
1885 /*
1886 * Helper functions to size the waitqueue hash table.
1887 * Essentially these want to choose hash table sizes sufficiently
1888 * large so that collisions trying to wait on pages are rare.
1889 * But in fact, the number of active page waitqueues on typical
1890 * systems is ridiculously low, less than 200. So this is even
1891 * conservative, even though it seems large.
1892 *
1893 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1894 * waitqueues, i.e. the size of the waitq table given the number of pages.
1895 */
1896 #define PAGES_PER_WAITQUEUE 256
1897
1898 #ifndef CONFIG_MEMORY_HOTPLUG
1899 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1900 {
1901 unsigned long size = 1;
1902
1903 pages /= PAGES_PER_WAITQUEUE;
1904
1905 while (size < pages)
1906 size <<= 1;
1907
1908 /*
1909 * Once we have dozens or even hundreds of threads sleeping
1910 * on IO we've got bigger problems than wait queue collision.
1911 * Limit the size of the wait table to a reasonable size.
1912 */
1913 size = min(size, 4096UL);
1914
1915 return max(size, 4UL);
1916 }
1917 #else
1918 /*
1919 * A zone's size might be changed by hot-add, so it is not possible to determine
1920 * a suitable size for its wait_table. So we use the maximum size now.
1921 *
1922 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1923 *
1924 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1925 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1926 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1927 *
1928 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1929 * or more by the traditional way. (See above). It equals:
1930 *
1931 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1932 * ia64(16K page size) : = ( 8G + 4M)byte.
1933 * powerpc (64K page size) : = (32G +16M)byte.
1934 */
1935 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1936 {
1937 return 4096UL;
1938 }
1939 #endif
1940
1941 /*
1942 * This is an integer logarithm so that shifts can be used later
1943 * to extract the more random high bits from the multiplicative
1944 * hash function before the remainder is taken.
1945 */
1946 static inline unsigned long wait_table_bits(unsigned long size)
1947 {
1948 return ffz(~size);
1949 }
1950
1951 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1952
1953 /*
1954 * Initially all pages are reserved - free ones are freed
1955 * up by free_all_bootmem() once the early boot process is
1956 * done. Non-atomic initialization, single-pass.
1957 */
1958 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1959 unsigned long start_pfn, enum memmap_context context)
1960 {
1961 struct page *page;
1962 unsigned long end_pfn = start_pfn + size;
1963 unsigned long pfn;
1964
1965 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1966 /*
1967 * There can be holes in boot-time mem_map[]s
1968 * handed to this function. They do not
1969 * exist on hotplugged memory.
1970 */
1971 if (context == MEMMAP_EARLY) {
1972 if (!early_pfn_valid(pfn))
1973 continue;
1974 if (!early_pfn_in_nid(pfn, nid))
1975 continue;
1976 }
1977 page = pfn_to_page(pfn);
1978 set_page_links(page, zone, nid, pfn);
1979 init_page_count(page);
1980 reset_page_mapcount(page);
1981 SetPageReserved(page);
1982 INIT_LIST_HEAD(&page->lru);
1983 #ifdef WANT_PAGE_VIRTUAL
1984 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1985 if (!is_highmem_idx(zone))
1986 set_page_address(page, __va(pfn << PAGE_SHIFT));
1987 #endif
1988 }
1989 }
1990
1991 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1992 unsigned long size)
1993 {
1994 int order;
1995 for (order = 0; order < MAX_ORDER ; order++) {
1996 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1997 zone->free_area[order].nr_free = 0;
1998 }
1999 }
2000
2001 #ifndef __HAVE_ARCH_MEMMAP_INIT
2002 #define memmap_init(size, nid, zone, start_pfn) \
2003 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2004 #endif
2005
2006 static int __cpuinit zone_batchsize(struct zone *zone)
2007 {
2008 int batch;
2009
2010 /*
2011 * The per-cpu-pages pools are set to around 1000th of the
2012 * size of the zone. But no more than 1/2 of a meg.
2013 *
2014 * OK, so we don't know how big the cache is. So guess.
2015 */
2016 batch = zone->present_pages / 1024;
2017 if (batch * PAGE_SIZE > 512 * 1024)
2018 batch = (512 * 1024) / PAGE_SIZE;
2019 batch /= 4; /* We effectively *= 4 below */
2020 if (batch < 1)
2021 batch = 1;
2022
2023 /*
2024 * Clamp the batch to a 2^n - 1 value. Having a power
2025 * of 2 value was found to be more likely to have
2026 * suboptimal cache aliasing properties in some cases.
2027 *
2028 * For example if 2 tasks are alternately allocating
2029 * batches of pages, one task can end up with a lot
2030 * of pages of one half of the possible page colors
2031 * and the other with pages of the other colors.
2032 */
2033 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2034
2035 return batch;
2036 }
2037
2038 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2039 {
2040 struct per_cpu_pages *pcp;
2041
2042 memset(p, 0, sizeof(*p));
2043
2044 pcp = &p->pcp[0]; /* hot */
2045 pcp->count = 0;
2046 pcp->high = 6 * batch;
2047 pcp->batch = max(1UL, 1 * batch);
2048 INIT_LIST_HEAD(&pcp->list);
2049
2050 pcp = &p->pcp[1]; /* cold*/
2051 pcp->count = 0;
2052 pcp->high = 2 * batch;
2053 pcp->batch = max(1UL, batch/2);
2054 INIT_LIST_HEAD(&pcp->list);
2055 }
2056
2057 /*
2058 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2059 * to the value high for the pageset p.
2060 */
2061
2062 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2063 unsigned long high)
2064 {
2065 struct per_cpu_pages *pcp;
2066
2067 pcp = &p->pcp[0]; /* hot list */
2068 pcp->high = high;
2069 pcp->batch = max(1UL, high/4);
2070 if ((high/4) > (PAGE_SHIFT * 8))
2071 pcp->batch = PAGE_SHIFT * 8;
2072 }
2073
2074
2075 #ifdef CONFIG_NUMA
2076 /*
2077 * Boot pageset table. One per cpu which is going to be used for all
2078 * zones and all nodes. The parameters will be set in such a way
2079 * that an item put on a list will immediately be handed over to
2080 * the buddy list. This is safe since pageset manipulation is done
2081 * with interrupts disabled.
2082 *
2083 * Some NUMA counter updates may also be caught by the boot pagesets.
2084 *
2085 * The boot_pagesets must be kept even after bootup is complete for
2086 * unused processors and/or zones. They do play a role for bootstrapping
2087 * hotplugged processors.
2088 *
2089 * zoneinfo_show() and maybe other functions do
2090 * not check if the processor is online before following the pageset pointer.
2091 * Other parts of the kernel may not check if the zone is available.
2092 */
2093 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2094
2095 /*
2096 * Dynamically allocate memory for the
2097 * per cpu pageset array in struct zone.
2098 */
2099 static int __cpuinit process_zones(int cpu)
2100 {
2101 struct zone *zone, *dzone;
2102
2103 for_each_zone(zone) {
2104
2105 if (!populated_zone(zone))
2106 continue;
2107
2108 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2109 GFP_KERNEL, cpu_to_node(cpu));
2110 if (!zone_pcp(zone, cpu))
2111 goto bad;
2112
2113 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2114
2115 if (percpu_pagelist_fraction)
2116 setup_pagelist_highmark(zone_pcp(zone, cpu),
2117 (zone->present_pages / percpu_pagelist_fraction));
2118 }
2119
2120 return 0;
2121 bad:
2122 for_each_zone(dzone) {
2123 if (dzone == zone)
2124 break;
2125 kfree(zone_pcp(dzone, cpu));
2126 zone_pcp(dzone, cpu) = NULL;
2127 }
2128 return -ENOMEM;
2129 }
2130
2131 static inline void free_zone_pagesets(int cpu)
2132 {
2133 struct zone *zone;
2134
2135 for_each_zone(zone) {
2136 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2137
2138 /* Free per_cpu_pageset if it is slab allocated */
2139 if (pset != &boot_pageset[cpu])
2140 kfree(pset);
2141 zone_pcp(zone, cpu) = NULL;
2142 }
2143 }
2144
2145 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2146 unsigned long action,
2147 void *hcpu)
2148 {
2149 int cpu = (long)hcpu;
2150 int ret = NOTIFY_OK;
2151
2152 switch (action) {
2153 case CPU_UP_PREPARE:
2154 if (process_zones(cpu))
2155 ret = NOTIFY_BAD;
2156 break;
2157 case CPU_UP_CANCELED:
2158 case CPU_DEAD:
2159 free_zone_pagesets(cpu);
2160 break;
2161 default:
2162 break;
2163 }
2164 return ret;
2165 }
2166
2167 static struct notifier_block __cpuinitdata pageset_notifier =
2168 { &pageset_cpuup_callback, NULL, 0 };
2169
2170 void __init setup_per_cpu_pageset(void)
2171 {
2172 int err;
2173
2174 /* Initialize per_cpu_pageset for cpu 0.
2175 * A cpuup callback will do this for every cpu
2176 * as it comes online
2177 */
2178 err = process_zones(smp_processor_id());
2179 BUG_ON(err);
2180 register_cpu_notifier(&pageset_notifier);
2181 }
2182
2183 #endif
2184
2185 static __meminit
2186 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2187 {
2188 int i;
2189 struct pglist_data *pgdat = zone->zone_pgdat;
2190 size_t alloc_size;
2191
2192 /*
2193 * The per-page waitqueue mechanism uses hashed waitqueues
2194 * per zone.
2195 */
2196 zone->wait_table_hash_nr_entries =
2197 wait_table_hash_nr_entries(zone_size_pages);
2198 zone->wait_table_bits =
2199 wait_table_bits(zone->wait_table_hash_nr_entries);
2200 alloc_size = zone->wait_table_hash_nr_entries
2201 * sizeof(wait_queue_head_t);
2202
2203 if (system_state == SYSTEM_BOOTING) {
2204 zone->wait_table = (wait_queue_head_t *)
2205 alloc_bootmem_node(pgdat, alloc_size);
2206 } else {
2207 /*
2208 * This case means that a zone whose size was 0 gets new memory
2209 * via memory hot-add.
2210 * But it may be the case that a new node was hot-added. In
2211 * this case vmalloc() will not be able to use this new node's
2212 * memory - this wait_table must be initialized to use this new
2213 * node itself as well.
2214 * To use this new node's memory, further consideration will be
2215 * necessary.
2216 */
2217 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2218 }
2219 if (!zone->wait_table)
2220 return -ENOMEM;
2221
2222 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2223 init_waitqueue_head(zone->wait_table + i);
2224
2225 return 0;
2226 }
2227
2228 static __meminit void zone_pcp_init(struct zone *zone)
2229 {
2230 int cpu;
2231 unsigned long batch = zone_batchsize(zone);
2232
2233 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2234 #ifdef CONFIG_NUMA
2235 /* Early boot. Slab allocator not functional yet */
2236 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2237 setup_pageset(&boot_pageset[cpu],0);
2238 #else
2239 setup_pageset(zone_pcp(zone,cpu), batch);
2240 #endif
2241 }
2242 if (zone->present_pages)
2243 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2244 zone->name, zone->present_pages, batch);
2245 }
2246
2247 __meminit int init_currently_empty_zone(struct zone *zone,
2248 unsigned long zone_start_pfn,
2249 unsigned long size,
2250 enum memmap_context context)
2251 {
2252 struct pglist_data *pgdat = zone->zone_pgdat;
2253 int ret;
2254 ret = zone_wait_table_init(zone, size);
2255 if (ret)
2256 return ret;
2257 pgdat->nr_zones = zone_idx(zone) + 1;
2258
2259 zone->zone_start_pfn = zone_start_pfn;
2260
2261 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2262
2263 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2264
2265 return 0;
2266 }
2267
2268 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2269 /*
2270 * Basic iterator support. Return the first range of PFNs for a node
2271 * Note: nid == MAX_NUMNODES returns first region regardless of node
2272 */
2273 static int __init first_active_region_index_in_nid(int nid)
2274 {
2275 int i;
2276
2277 for (i = 0; i < nr_nodemap_entries; i++)
2278 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2279 return i;
2280
2281 return -1;
2282 }
2283
2284 /*
2285 * Basic iterator support. Return the next active range of PFNs for a node
2286 * Note: nid == MAX_NUMNODES returns next region regardles of node
2287 */
2288 static int __init next_active_region_index_in_nid(int index, int nid)
2289 {
2290 for (index = index + 1; index < nr_nodemap_entries; index++)
2291 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2292 return index;
2293
2294 return -1;
2295 }
2296
2297 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2298 /*
2299 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2300 * Architectures may implement their own version but if add_active_range()
2301 * was used and there are no special requirements, this is a convenient
2302 * alternative
2303 */
2304 int __init early_pfn_to_nid(unsigned long pfn)
2305 {
2306 int i;
2307
2308 for (i = 0; i < nr_nodemap_entries; i++) {
2309 unsigned long start_pfn = early_node_map[i].start_pfn;
2310 unsigned long end_pfn = early_node_map[i].end_pfn;
2311
2312 if (start_pfn <= pfn && pfn < end_pfn)
2313 return early_node_map[i].nid;
2314 }
2315
2316 return 0;
2317 }
2318 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2319
2320 /* Basic iterator support to walk early_node_map[] */
2321 #define for_each_active_range_index_in_nid(i, nid) \
2322 for (i = first_active_region_index_in_nid(nid); i != -1; \
2323 i = next_active_region_index_in_nid(i, nid))
2324
2325 /**
2326 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2327 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2328 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2329 *
2330 * If an architecture guarantees that all ranges registered with
2331 * add_active_ranges() contain no holes and may be freed, this
2332 * this function may be used instead of calling free_bootmem() manually.
2333 */
2334 void __init free_bootmem_with_active_regions(int nid,
2335 unsigned long max_low_pfn)
2336 {
2337 int i;
2338
2339 for_each_active_range_index_in_nid(i, nid) {
2340 unsigned long size_pages = 0;
2341 unsigned long end_pfn = early_node_map[i].end_pfn;
2342
2343 if (early_node_map[i].start_pfn >= max_low_pfn)
2344 continue;
2345
2346 if (end_pfn > max_low_pfn)
2347 end_pfn = max_low_pfn;
2348
2349 size_pages = end_pfn - early_node_map[i].start_pfn;
2350 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2351 PFN_PHYS(early_node_map[i].start_pfn),
2352 size_pages << PAGE_SHIFT);
2353 }
2354 }
2355
2356 /**
2357 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2358 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2359 *
2360 * If an architecture guarantees that all ranges registered with
2361 * add_active_ranges() contain no holes and may be freed, this
2362 * function may be used instead of calling memory_present() manually.
2363 */
2364 void __init sparse_memory_present_with_active_regions(int nid)
2365 {
2366 int i;
2367
2368 for_each_active_range_index_in_nid(i, nid)
2369 memory_present(early_node_map[i].nid,
2370 early_node_map[i].start_pfn,
2371 early_node_map[i].end_pfn);
2372 }
2373
2374 /**
2375 * push_node_boundaries - Push node boundaries to at least the requested boundary
2376 * @nid: The nid of the node to push the boundary for
2377 * @start_pfn: The start pfn of the node
2378 * @end_pfn: The end pfn of the node
2379 *
2380 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2381 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2382 * be hotplugged even though no physical memory exists. This function allows
2383 * an arch to push out the node boundaries so mem_map is allocated that can
2384 * be used later.
2385 */
2386 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2387 void __init push_node_boundaries(unsigned int nid,
2388 unsigned long start_pfn, unsigned long end_pfn)
2389 {
2390 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2391 nid, start_pfn, end_pfn);
2392
2393 /* Initialise the boundary for this node if necessary */
2394 if (node_boundary_end_pfn[nid] == 0)
2395 node_boundary_start_pfn[nid] = -1UL;
2396
2397 /* Update the boundaries */
2398 if (node_boundary_start_pfn[nid] > start_pfn)
2399 node_boundary_start_pfn[nid] = start_pfn;
2400 if (node_boundary_end_pfn[nid] < end_pfn)
2401 node_boundary_end_pfn[nid] = end_pfn;
2402 }
2403
2404 /* If necessary, push the node boundary out for reserve hotadd */
2405 static void __init account_node_boundary(unsigned int nid,
2406 unsigned long *start_pfn, unsigned long *end_pfn)
2407 {
2408 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2409 nid, *start_pfn, *end_pfn);
2410
2411 /* Return if boundary information has not been provided */
2412 if (node_boundary_end_pfn[nid] == 0)
2413 return;
2414
2415 /* Check the boundaries and update if necessary */
2416 if (node_boundary_start_pfn[nid] < *start_pfn)
2417 *start_pfn = node_boundary_start_pfn[nid];
2418 if (node_boundary_end_pfn[nid] > *end_pfn)
2419 *end_pfn = node_boundary_end_pfn[nid];
2420 }
2421 #else
2422 void __init push_node_boundaries(unsigned int nid,
2423 unsigned long start_pfn, unsigned long end_pfn) {}
2424
2425 static void __init account_node_boundary(unsigned int nid,
2426 unsigned long *start_pfn, unsigned long *end_pfn) {}
2427 #endif
2428
2429
2430 /**
2431 * get_pfn_range_for_nid - Return the start and end page frames for a node
2432 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2433 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2434 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2435 *
2436 * It returns the start and end page frame of a node based on information
2437 * provided by an arch calling add_active_range(). If called for a node
2438 * with no available memory, a warning is printed and the start and end
2439 * PFNs will be 0.
2440 */
2441 void __init get_pfn_range_for_nid(unsigned int nid,
2442 unsigned long *start_pfn, unsigned long *end_pfn)
2443 {
2444 int i;
2445 *start_pfn = -1UL;
2446 *end_pfn = 0;
2447
2448 for_each_active_range_index_in_nid(i, nid) {
2449 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2450 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2451 }
2452
2453 if (*start_pfn == -1UL) {
2454 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2455 *start_pfn = 0;
2456 }
2457
2458 /* Push the node boundaries out if requested */
2459 account_node_boundary(nid, start_pfn, end_pfn);
2460 }
2461
2462 /*
2463 * Return the number of pages a zone spans in a node, including holes
2464 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2465 */
2466 unsigned long __init zone_spanned_pages_in_node(int nid,
2467 unsigned long zone_type,
2468 unsigned long *ignored)
2469 {
2470 unsigned long node_start_pfn, node_end_pfn;
2471 unsigned long zone_start_pfn, zone_end_pfn;
2472
2473 /* Get the start and end of the node and zone */
2474 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2475 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2476 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2477
2478 /* Check that this node has pages within the zone's required range */
2479 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2480 return 0;
2481
2482 /* Move the zone boundaries inside the node if necessary */
2483 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2484 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2485
2486 /* Return the spanned pages */
2487 return zone_end_pfn - zone_start_pfn;
2488 }
2489
2490 /*
2491 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2492 * then all holes in the requested range will be accounted for.
2493 */
2494 unsigned long __init __absent_pages_in_range(int nid,
2495 unsigned long range_start_pfn,
2496 unsigned long range_end_pfn)
2497 {
2498 int i = 0;
2499 unsigned long prev_end_pfn = 0, hole_pages = 0;
2500 unsigned long start_pfn;
2501
2502 /* Find the end_pfn of the first active range of pfns in the node */
2503 i = first_active_region_index_in_nid(nid);
2504 if (i == -1)
2505 return 0;
2506
2507 /* Account for ranges before physical memory on this node */
2508 if (early_node_map[i].start_pfn > range_start_pfn)
2509 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2510
2511 prev_end_pfn = early_node_map[i].start_pfn;
2512
2513 /* Find all holes for the zone within the node */
2514 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2515
2516 /* No need to continue if prev_end_pfn is outside the zone */
2517 if (prev_end_pfn >= range_end_pfn)
2518 break;
2519
2520 /* Make sure the end of the zone is not within the hole */
2521 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2522 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2523
2524 /* Update the hole size cound and move on */
2525 if (start_pfn > range_start_pfn) {
2526 BUG_ON(prev_end_pfn > start_pfn);
2527 hole_pages += start_pfn - prev_end_pfn;
2528 }
2529 prev_end_pfn = early_node_map[i].end_pfn;
2530 }
2531
2532 /* Account for ranges past physical memory on this node */
2533 if (range_end_pfn > prev_end_pfn)
2534 hole_pages += range_end_pfn -
2535 max(range_start_pfn, prev_end_pfn);
2536
2537 return hole_pages;
2538 }
2539
2540 /**
2541 * absent_pages_in_range - Return number of page frames in holes within a range
2542 * @start_pfn: The start PFN to start searching for holes
2543 * @end_pfn: The end PFN to stop searching for holes
2544 *
2545 * It returns the number of pages frames in memory holes within a range.
2546 */
2547 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2548 unsigned long end_pfn)
2549 {
2550 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2551 }
2552
2553 /* Return the number of page frames in holes in a zone on a node */
2554 unsigned long __init zone_absent_pages_in_node(int nid,
2555 unsigned long zone_type,
2556 unsigned long *ignored)
2557 {
2558 unsigned long node_start_pfn, node_end_pfn;
2559 unsigned long zone_start_pfn, zone_end_pfn;
2560
2561 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2562 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2563 node_start_pfn);
2564 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2565 node_end_pfn);
2566
2567 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2568 }
2569
2570 #else
2571 static inline unsigned long zone_spanned_pages_in_node(int nid,
2572 unsigned long zone_type,
2573 unsigned long *zones_size)
2574 {
2575 return zones_size[zone_type];
2576 }
2577
2578 static inline unsigned long zone_absent_pages_in_node(int nid,
2579 unsigned long zone_type,
2580 unsigned long *zholes_size)
2581 {
2582 if (!zholes_size)
2583 return 0;
2584
2585 return zholes_size[zone_type];
2586 }
2587
2588 #endif
2589
2590 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2591 unsigned long *zones_size, unsigned long *zholes_size)
2592 {
2593 unsigned long realtotalpages, totalpages = 0;
2594 enum zone_type i;
2595
2596 for (i = 0; i < MAX_NR_ZONES; i++)
2597 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2598 zones_size);
2599 pgdat->node_spanned_pages = totalpages;
2600
2601 realtotalpages = totalpages;
2602 for (i = 0; i < MAX_NR_ZONES; i++)
2603 realtotalpages -=
2604 zone_absent_pages_in_node(pgdat->node_id, i,
2605 zholes_size);
2606 pgdat->node_present_pages = realtotalpages;
2607 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2608 realtotalpages);
2609 }
2610
2611 /*
2612 * Set up the zone data structures:
2613 * - mark all pages reserved
2614 * - mark all memory queues empty
2615 * - clear the memory bitmaps
2616 */
2617 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2618 unsigned long *zones_size, unsigned long *zholes_size)
2619 {
2620 enum zone_type j;
2621 int nid = pgdat->node_id;
2622 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2623 int ret;
2624
2625 pgdat_resize_init(pgdat);
2626 pgdat->nr_zones = 0;
2627 init_waitqueue_head(&pgdat->kswapd_wait);
2628 pgdat->kswapd_max_order = 0;
2629
2630 for (j = 0; j < MAX_NR_ZONES; j++) {
2631 struct zone *zone = pgdat->node_zones + j;
2632 unsigned long size, realsize, memmap_pages;
2633
2634 size = zone_spanned_pages_in_node(nid, j, zones_size);
2635 realsize = size - zone_absent_pages_in_node(nid, j,
2636 zholes_size);
2637
2638 /*
2639 * Adjust realsize so that it accounts for how much memory
2640 * is used by this zone for memmap. This affects the watermark
2641 * and per-cpu initialisations
2642 */
2643 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2644 if (realsize >= memmap_pages) {
2645 realsize -= memmap_pages;
2646 printk(KERN_DEBUG
2647 " %s zone: %lu pages used for memmap\n",
2648 zone_names[j], memmap_pages);
2649 } else
2650 printk(KERN_WARNING
2651 " %s zone: %lu pages exceeds realsize %lu\n",
2652 zone_names[j], memmap_pages, realsize);
2653
2654 /* Account for reserved DMA pages */
2655 if (j == ZONE_DMA && realsize > dma_reserve) {
2656 realsize -= dma_reserve;
2657 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2658 dma_reserve);
2659 }
2660
2661 if (!is_highmem_idx(j))
2662 nr_kernel_pages += realsize;
2663 nr_all_pages += realsize;
2664
2665 zone->spanned_pages = size;
2666 zone->present_pages = realsize;
2667 #ifdef CONFIG_NUMA
2668 zone->node = nid;
2669 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2670 / 100;
2671 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2672 #endif
2673 zone->name = zone_names[j];
2674 spin_lock_init(&zone->lock);
2675 spin_lock_init(&zone->lru_lock);
2676 zone_seqlock_init(zone);
2677 zone->zone_pgdat = pgdat;
2678 zone->free_pages = 0;
2679
2680 zone->prev_priority = DEF_PRIORITY;
2681
2682 zone_pcp_init(zone);
2683 INIT_LIST_HEAD(&zone->active_list);
2684 INIT_LIST_HEAD(&zone->inactive_list);
2685 zone->nr_scan_active = 0;
2686 zone->nr_scan_inactive = 0;
2687 zone->nr_active = 0;
2688 zone->nr_inactive = 0;
2689 zap_zone_vm_stats(zone);
2690 atomic_set(&zone->reclaim_in_progress, 0);
2691 if (!size)
2692 continue;
2693
2694 ret = init_currently_empty_zone(zone, zone_start_pfn,
2695 size, MEMMAP_EARLY);
2696 BUG_ON(ret);
2697 zone_start_pfn += size;
2698 }
2699 }
2700
2701 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2702 {
2703 /* Skip empty nodes */
2704 if (!pgdat->node_spanned_pages)
2705 return;
2706
2707 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2708 /* ia64 gets its own node_mem_map, before this, without bootmem */
2709 if (!pgdat->node_mem_map) {
2710 unsigned long size, start, end;
2711 struct page *map;
2712
2713 /*
2714 * The zone's endpoints aren't required to be MAX_ORDER
2715 * aligned but the node_mem_map endpoints must be in order
2716 * for the buddy allocator to function correctly.
2717 */
2718 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2719 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2720 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2721 size = (end - start) * sizeof(struct page);
2722 map = alloc_remap(pgdat->node_id, size);
2723 if (!map)
2724 map = alloc_bootmem_node(pgdat, size);
2725 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2726 }
2727 #ifdef CONFIG_FLATMEM
2728 /*
2729 * With no DISCONTIG, the global mem_map is just set as node 0's
2730 */
2731 if (pgdat == NODE_DATA(0)) {
2732 mem_map = NODE_DATA(0)->node_mem_map;
2733 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2734 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2735 mem_map -= pgdat->node_start_pfn;
2736 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2737 }
2738 #endif
2739 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2740 }
2741
2742 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2743 unsigned long *zones_size, unsigned long node_start_pfn,
2744 unsigned long *zholes_size)
2745 {
2746 pgdat->node_id = nid;
2747 pgdat->node_start_pfn = node_start_pfn;
2748 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2749
2750 alloc_node_mem_map(pgdat);
2751
2752 free_area_init_core(pgdat, zones_size, zholes_size);
2753 }
2754
2755 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2756 /**
2757 * add_active_range - Register a range of PFNs backed by physical memory
2758 * @nid: The node ID the range resides on
2759 * @start_pfn: The start PFN of the available physical memory
2760 * @end_pfn: The end PFN of the available physical memory
2761 *
2762 * These ranges are stored in an early_node_map[] and later used by
2763 * free_area_init_nodes() to calculate zone sizes and holes. If the
2764 * range spans a memory hole, it is up to the architecture to ensure
2765 * the memory is not freed by the bootmem allocator. If possible
2766 * the range being registered will be merged with existing ranges.
2767 */
2768 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2769 unsigned long end_pfn)
2770 {
2771 int i;
2772
2773 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2774 "%d entries of %d used\n",
2775 nid, start_pfn, end_pfn,
2776 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2777
2778 /* Merge with existing active regions if possible */
2779 for (i = 0; i < nr_nodemap_entries; i++) {
2780 if (early_node_map[i].nid != nid)
2781 continue;
2782
2783 /* Skip if an existing region covers this new one */
2784 if (start_pfn >= early_node_map[i].start_pfn &&
2785 end_pfn <= early_node_map[i].end_pfn)
2786 return;
2787
2788 /* Merge forward if suitable */
2789 if (start_pfn <= early_node_map[i].end_pfn &&
2790 end_pfn > early_node_map[i].end_pfn) {
2791 early_node_map[i].end_pfn = end_pfn;
2792 return;
2793 }
2794
2795 /* Merge backward if suitable */
2796 if (start_pfn < early_node_map[i].end_pfn &&
2797 end_pfn >= early_node_map[i].start_pfn) {
2798 early_node_map[i].start_pfn = start_pfn;
2799 return;
2800 }
2801 }
2802
2803 /* Check that early_node_map is large enough */
2804 if (i >= MAX_ACTIVE_REGIONS) {
2805 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2806 MAX_ACTIVE_REGIONS);
2807 return;
2808 }
2809
2810 early_node_map[i].nid = nid;
2811 early_node_map[i].start_pfn = start_pfn;
2812 early_node_map[i].end_pfn = end_pfn;
2813 nr_nodemap_entries = i + 1;
2814 }
2815
2816 /**
2817 * shrink_active_range - Shrink an existing registered range of PFNs
2818 * @nid: The node id the range is on that should be shrunk
2819 * @old_end_pfn: The old end PFN of the range
2820 * @new_end_pfn: The new PFN of the range
2821 *
2822 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2823 * The map is kept at the end physical page range that has already been
2824 * registered with add_active_range(). This function allows an arch to shrink
2825 * an existing registered range.
2826 */
2827 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2828 unsigned long new_end_pfn)
2829 {
2830 int i;
2831
2832 /* Find the old active region end and shrink */
2833 for_each_active_range_index_in_nid(i, nid)
2834 if (early_node_map[i].end_pfn == old_end_pfn) {
2835 early_node_map[i].end_pfn = new_end_pfn;
2836 break;
2837 }
2838 }
2839
2840 /**
2841 * remove_all_active_ranges - Remove all currently registered regions
2842 *
2843 * During discovery, it may be found that a table like SRAT is invalid
2844 * and an alternative discovery method must be used. This function removes
2845 * all currently registered regions.
2846 */
2847 void __init remove_all_active_ranges(void)
2848 {
2849 memset(early_node_map, 0, sizeof(early_node_map));
2850 nr_nodemap_entries = 0;
2851 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2852 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2853 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2854 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2855 }
2856
2857 /* Compare two active node_active_regions */
2858 static int __init cmp_node_active_region(const void *a, const void *b)
2859 {
2860 struct node_active_region *arange = (struct node_active_region *)a;
2861 struct node_active_region *brange = (struct node_active_region *)b;
2862
2863 /* Done this way to avoid overflows */
2864 if (arange->start_pfn > brange->start_pfn)
2865 return 1;
2866 if (arange->start_pfn < brange->start_pfn)
2867 return -1;
2868
2869 return 0;
2870 }
2871
2872 /* sort the node_map by start_pfn */
2873 static void __init sort_node_map(void)
2874 {
2875 sort(early_node_map, (size_t)nr_nodemap_entries,
2876 sizeof(struct node_active_region),
2877 cmp_node_active_region, NULL);
2878 }
2879
2880 /* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2881 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2882 {
2883 int i;
2884
2885 /* Regions in the early_node_map can be in any order */
2886 sort_node_map();
2887
2888 /* Assuming a sorted map, the first range found has the starting pfn */
2889 for_each_active_range_index_in_nid(i, nid)
2890 return early_node_map[i].start_pfn;
2891
2892 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2893 return 0;
2894 }
2895
2896 /**
2897 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2898 *
2899 * It returns the minimum PFN based on information provided via
2900 * add_active_range().
2901 */
2902 unsigned long __init find_min_pfn_with_active_regions(void)
2903 {
2904 return find_min_pfn_for_node(MAX_NUMNODES);
2905 }
2906
2907 /**
2908 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2909 *
2910 * It returns the maximum PFN based on information provided via
2911 * add_active_range().
2912 */
2913 unsigned long __init find_max_pfn_with_active_regions(void)
2914 {
2915 int i;
2916 unsigned long max_pfn = 0;
2917
2918 for (i = 0; i < nr_nodemap_entries; i++)
2919 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2920
2921 return max_pfn;
2922 }
2923
2924 /**
2925 * free_area_init_nodes - Initialise all pg_data_t and zone data
2926 * @max_zone_pfn: an array of max PFNs for each zone
2927 *
2928 * This will call free_area_init_node() for each active node in the system.
2929 * Using the page ranges provided by add_active_range(), the size of each
2930 * zone in each node and their holes is calculated. If the maximum PFN
2931 * between two adjacent zones match, it is assumed that the zone is empty.
2932 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2933 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2934 * starts where the previous one ended. For example, ZONE_DMA32 starts
2935 * at arch_max_dma_pfn.
2936 */
2937 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2938 {
2939 unsigned long nid;
2940 enum zone_type i;
2941
2942 /* Record where the zone boundaries are */
2943 memset(arch_zone_lowest_possible_pfn, 0,
2944 sizeof(arch_zone_lowest_possible_pfn));
2945 memset(arch_zone_highest_possible_pfn, 0,
2946 sizeof(arch_zone_highest_possible_pfn));
2947 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2948 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2949 for (i = 1; i < MAX_NR_ZONES; i++) {
2950 arch_zone_lowest_possible_pfn[i] =
2951 arch_zone_highest_possible_pfn[i-1];
2952 arch_zone_highest_possible_pfn[i] =
2953 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2954 }
2955
2956 /* Print out the zone ranges */
2957 printk("Zone PFN ranges:\n");
2958 for (i = 0; i < MAX_NR_ZONES; i++)
2959 printk(" %-8s %8lu -> %8lu\n",
2960 zone_names[i],
2961 arch_zone_lowest_possible_pfn[i],
2962 arch_zone_highest_possible_pfn[i]);
2963
2964 /* Print out the early_node_map[] */
2965 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2966 for (i = 0; i < nr_nodemap_entries; i++)
2967 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2968 early_node_map[i].start_pfn,
2969 early_node_map[i].end_pfn);
2970
2971 /* Initialise every node */
2972 for_each_online_node(nid) {
2973 pg_data_t *pgdat = NODE_DATA(nid);
2974 free_area_init_node(nid, pgdat, NULL,
2975 find_min_pfn_for_node(nid), NULL);
2976 }
2977 }
2978 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2979
2980 /**
2981 * set_dma_reserve - set the specified number of pages reserved in the first zone
2982 * @new_dma_reserve: The number of pages to mark reserved
2983 *
2984 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2985 * In the DMA zone, a significant percentage may be consumed by kernel image
2986 * and other unfreeable allocations which can skew the watermarks badly. This
2987 * function may optionally be used to account for unfreeable pages in the
2988 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2989 * smaller per-cpu batchsize.
2990 */
2991 void __init set_dma_reserve(unsigned long new_dma_reserve)
2992 {
2993 dma_reserve = new_dma_reserve;
2994 }
2995
2996 #ifndef CONFIG_NEED_MULTIPLE_NODES
2997 static bootmem_data_t contig_bootmem_data;
2998 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2999
3000 EXPORT_SYMBOL(contig_page_data);
3001 #endif
3002
3003 void __init free_area_init(unsigned long *zones_size)
3004 {
3005 free_area_init_node(0, NODE_DATA(0), zones_size,
3006 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3007 }
3008
3009 static int page_alloc_cpu_notify(struct notifier_block *self,
3010 unsigned long action, void *hcpu)
3011 {
3012 int cpu = (unsigned long)hcpu;
3013
3014 if (action == CPU_DEAD) {
3015 local_irq_disable();
3016 __drain_pages(cpu);
3017 vm_events_fold_cpu(cpu);
3018 local_irq_enable();
3019 refresh_cpu_vm_stats(cpu);
3020 }
3021 return NOTIFY_OK;
3022 }
3023
3024 void __init page_alloc_init(void)
3025 {
3026 hotcpu_notifier(page_alloc_cpu_notify, 0);
3027 }
3028
3029 /*
3030 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3031 * or min_free_kbytes changes.
3032 */
3033 static void calculate_totalreserve_pages(void)
3034 {
3035 struct pglist_data *pgdat;
3036 unsigned long reserve_pages = 0;
3037 enum zone_type i, j;
3038
3039 for_each_online_pgdat(pgdat) {
3040 for (i = 0; i < MAX_NR_ZONES; i++) {
3041 struct zone *zone = pgdat->node_zones + i;
3042 unsigned long max = 0;
3043
3044 /* Find valid and maximum lowmem_reserve in the zone */
3045 for (j = i; j < MAX_NR_ZONES; j++) {
3046 if (zone->lowmem_reserve[j] > max)
3047 max = zone->lowmem_reserve[j];
3048 }
3049
3050 /* we treat pages_high as reserved pages. */
3051 max += zone->pages_high;
3052
3053 if (max > zone->present_pages)
3054 max = zone->present_pages;
3055 reserve_pages += max;
3056 }
3057 }
3058 totalreserve_pages = reserve_pages;
3059 }
3060
3061 /*
3062 * setup_per_zone_lowmem_reserve - called whenever
3063 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3064 * has a correct pages reserved value, so an adequate number of
3065 * pages are left in the zone after a successful __alloc_pages().
3066 */
3067 static void setup_per_zone_lowmem_reserve(void)
3068 {
3069 struct pglist_data *pgdat;
3070 enum zone_type j, idx;
3071
3072 for_each_online_pgdat(pgdat) {
3073 for (j = 0; j < MAX_NR_ZONES; j++) {
3074 struct zone *zone = pgdat->node_zones + j;
3075 unsigned long present_pages = zone->present_pages;
3076
3077 zone->lowmem_reserve[j] = 0;
3078
3079 idx = j;
3080 while (idx) {
3081 struct zone *lower_zone;
3082
3083 idx--;
3084
3085 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3086 sysctl_lowmem_reserve_ratio[idx] = 1;
3087
3088 lower_zone = pgdat->node_zones + idx;
3089 lower_zone->lowmem_reserve[j] = present_pages /
3090 sysctl_lowmem_reserve_ratio[idx];
3091 present_pages += lower_zone->present_pages;
3092 }
3093 }
3094 }
3095
3096 /* update totalreserve_pages */
3097 calculate_totalreserve_pages();
3098 }
3099
3100 /**
3101 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3102 *
3103 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3104 * with respect to min_free_kbytes.
3105 */
3106 void setup_per_zone_pages_min(void)
3107 {
3108 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3109 unsigned long lowmem_pages = 0;
3110 struct zone *zone;
3111 unsigned long flags;
3112
3113 /* Calculate total number of !ZONE_HIGHMEM pages */
3114 for_each_zone(zone) {
3115 if (!is_highmem(zone))
3116 lowmem_pages += zone->present_pages;
3117 }
3118
3119 for_each_zone(zone) {
3120 u64 tmp;
3121
3122 spin_lock_irqsave(&zone->lru_lock, flags);
3123 tmp = (u64)pages_min * zone->present_pages;
3124 do_div(tmp, lowmem_pages);
3125 if (is_highmem(zone)) {
3126 /*
3127 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3128 * need highmem pages, so cap pages_min to a small
3129 * value here.
3130 *
3131 * The (pages_high-pages_low) and (pages_low-pages_min)
3132 * deltas controls asynch page reclaim, and so should
3133 * not be capped for highmem.
3134 */
3135 int min_pages;
3136
3137 min_pages = zone->present_pages / 1024;
3138 if (min_pages < SWAP_CLUSTER_MAX)
3139 min_pages = SWAP_CLUSTER_MAX;
3140 if (min_pages > 128)
3141 min_pages = 128;
3142 zone->pages_min = min_pages;
3143 } else {
3144 /*
3145 * If it's a lowmem zone, reserve a number of pages
3146 * proportionate to the zone's size.
3147 */
3148 zone->pages_min = tmp;
3149 }
3150
3151 zone->pages_low = zone->pages_min + (tmp >> 2);
3152 zone->pages_high = zone->pages_min + (tmp >> 1);
3153 spin_unlock_irqrestore(&zone->lru_lock, flags);
3154 }
3155
3156 /* update totalreserve_pages */
3157 calculate_totalreserve_pages();
3158 }
3159
3160 /*
3161 * Initialise min_free_kbytes.
3162 *
3163 * For small machines we want it small (128k min). For large machines
3164 * we want it large (64MB max). But it is not linear, because network
3165 * bandwidth does not increase linearly with machine size. We use
3166 *
3167 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3168 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3169 *
3170 * which yields
3171 *
3172 * 16MB: 512k
3173 * 32MB: 724k
3174 * 64MB: 1024k
3175 * 128MB: 1448k
3176 * 256MB: 2048k
3177 * 512MB: 2896k
3178 * 1024MB: 4096k
3179 * 2048MB: 5792k
3180 * 4096MB: 8192k
3181 * 8192MB: 11584k
3182 * 16384MB: 16384k
3183 */
3184 static int __init init_per_zone_pages_min(void)
3185 {
3186 unsigned long lowmem_kbytes;
3187
3188 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3189
3190 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3191 if (min_free_kbytes < 128)
3192 min_free_kbytes = 128;
3193 if (min_free_kbytes > 65536)
3194 min_free_kbytes = 65536;
3195 setup_per_zone_pages_min();
3196 setup_per_zone_lowmem_reserve();
3197 return 0;
3198 }
3199 module_init(init_per_zone_pages_min)
3200
3201 /*
3202 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3203 * that we can call two helper functions whenever min_free_kbytes
3204 * changes.
3205 */
3206 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3207 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3208 {
3209 proc_dointvec(table, write, file, buffer, length, ppos);
3210 setup_per_zone_pages_min();
3211 return 0;
3212 }
3213
3214 #ifdef CONFIG_NUMA
3215 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3216 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3217 {
3218 struct zone *zone;
3219 int rc;
3220
3221 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3222 if (rc)
3223 return rc;
3224
3225 for_each_zone(zone)
3226 zone->min_unmapped_pages = (zone->present_pages *
3227 sysctl_min_unmapped_ratio) / 100;
3228 return 0;
3229 }
3230
3231 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3232 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3233 {
3234 struct zone *zone;
3235 int rc;
3236
3237 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3238 if (rc)
3239 return rc;
3240
3241 for_each_zone(zone)
3242 zone->min_slab_pages = (zone->present_pages *
3243 sysctl_min_slab_ratio) / 100;
3244 return 0;
3245 }
3246 #endif
3247
3248 /*
3249 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3250 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3251 * whenever sysctl_lowmem_reserve_ratio changes.
3252 *
3253 * The reserve ratio obviously has absolutely no relation with the
3254 * pages_min watermarks. The lowmem reserve ratio can only make sense
3255 * if in function of the boot time zone sizes.
3256 */
3257 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3258 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3259 {
3260 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3261 setup_per_zone_lowmem_reserve();
3262 return 0;
3263 }
3264
3265 /*
3266 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3267 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3268 * can have before it gets flushed back to buddy allocator.
3269 */
3270
3271 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3272 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3273 {
3274 struct zone *zone;
3275 unsigned int cpu;
3276 int ret;
3277
3278 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3279 if (!write || (ret == -EINVAL))
3280 return ret;
3281 for_each_zone(zone) {
3282 for_each_online_cpu(cpu) {
3283 unsigned long high;
3284 high = zone->present_pages / percpu_pagelist_fraction;
3285 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3286 }
3287 }
3288 return 0;
3289 }
3290
3291 int hashdist = HASHDIST_DEFAULT;
3292
3293 #ifdef CONFIG_NUMA
3294 static int __init set_hashdist(char *str)
3295 {
3296 if (!str)
3297 return 0;
3298 hashdist = simple_strtoul(str, &str, 0);
3299 return 1;
3300 }
3301 __setup("hashdist=", set_hashdist);
3302 #endif
3303
3304 /*
3305 * allocate a large system hash table from bootmem
3306 * - it is assumed that the hash table must contain an exact power-of-2
3307 * quantity of entries
3308 * - limit is the number of hash buckets, not the total allocation size
3309 */
3310 void *__init alloc_large_system_hash(const char *tablename,
3311 unsigned long bucketsize,
3312 unsigned long numentries,
3313 int scale,
3314 int flags,
3315 unsigned int *_hash_shift,
3316 unsigned int *_hash_mask,
3317 unsigned long limit)
3318 {
3319 unsigned long long max = limit;
3320 unsigned long log2qty, size;
3321 void *table = NULL;
3322
3323 /* allow the kernel cmdline to have a say */
3324 if (!numentries) {
3325 /* round applicable memory size up to nearest megabyte */
3326 numentries = nr_kernel_pages;
3327 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3328 numentries >>= 20 - PAGE_SHIFT;
3329 numentries <<= 20 - PAGE_SHIFT;
3330
3331 /* limit to 1 bucket per 2^scale bytes of low memory */
3332 if (scale > PAGE_SHIFT)
3333 numentries >>= (scale - PAGE_SHIFT);
3334 else
3335 numentries <<= (PAGE_SHIFT - scale);
3336
3337 /* Make sure we've got at least a 0-order allocation.. */
3338 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3339 numentries = PAGE_SIZE / bucketsize;
3340 }
3341 numentries = roundup_pow_of_two(numentries);
3342
3343 /* limit allocation size to 1/16 total memory by default */
3344 if (max == 0) {
3345 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3346 do_div(max, bucketsize);
3347 }
3348
3349 if (numentries > max)
3350 numentries = max;
3351
3352 log2qty = ilog2(numentries);
3353
3354 do {
3355 size = bucketsize << log2qty;
3356 if (flags & HASH_EARLY)
3357 table = alloc_bootmem(size);
3358 else if (hashdist)
3359 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3360 else {
3361 unsigned long order;
3362 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3363 ;
3364 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3365 }
3366 } while (!table && size > PAGE_SIZE && --log2qty);
3367
3368 if (!table)
3369 panic("Failed to allocate %s hash table\n", tablename);
3370
3371 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3372 tablename,
3373 (1U << log2qty),
3374 ilog2(size) - PAGE_SHIFT,
3375 size);
3376
3377 if (_hash_shift)
3378 *_hash_shift = log2qty;
3379 if (_hash_mask)
3380 *_hash_mask = (1 << log2qty) - 1;
3381
3382 return table;
3383 }
3384
3385 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3386 struct page *pfn_to_page(unsigned long pfn)
3387 {
3388 return __pfn_to_page(pfn);
3389 }
3390 unsigned long page_to_pfn(struct page *page)
3391 {
3392 return __page_to_pfn(page);
3393 }
3394 EXPORT_SYMBOL(pfn_to_page);
3395 EXPORT_SYMBOL(page_to_pfn);
3396 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3397
3398 #if MAX_NUMNODES > 1
3399 /*
3400 * Find the highest possible node id.
3401 */
3402 int highest_possible_node_id(void)
3403 {
3404 unsigned int node;
3405 unsigned int highest = 0;
3406
3407 for_each_node_mask(node, node_possible_map)
3408 highest = node;
3409 return highest;
3410 }
3411 EXPORT_SYMBOL(highest_possible_node_id);
3412 #endif
This page took 0.097783 seconds and 6 git commands to generate.