Merge branch 'omap-fixes-for-tony' of git://dev.omapzoom.org/pub/scm/saaguirre/linux...
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
44 */
45
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59
60 #include <asm/tlbflush.h>
61
62 #include "internal.h"
63
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70 }
71
72 void anon_vma_free(struct anon_vma *anon_vma)
73 {
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75 }
76
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78 {
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80 }
81
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83 {
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85 }
86
87 /**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
114 int anon_vma_prepare(struct vm_area_struct *vma)
115 {
116 struct anon_vma *anon_vma = vma->anon_vma;
117 struct anon_vma_chain *avc;
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
122 struct anon_vma *allocated;
123
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
128 anon_vma = find_mergeable_anon_vma(vma);
129 allocated = NULL;
130 if (!anon_vma) {
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
133 goto out_enomem_free_avc;
134 allocated = anon_vma;
135 }
136 spin_lock(&anon_vma->lock);
137
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
146 allocated = NULL;
147 }
148 spin_unlock(&mm->page_table_lock);
149
150 spin_unlock(&anon_vma->lock);
151 if (unlikely(allocated)) {
152 anon_vma_free(allocated);
153 anon_vma_chain_free(avc);
154 }
155 }
156 return 0;
157
158 out_enomem_free_avc:
159 anon_vma_chain_free(avc);
160 out_enomem:
161 return -ENOMEM;
162 }
163
164 static void anon_vma_chain_link(struct vm_area_struct *vma,
165 struct anon_vma_chain *avc,
166 struct anon_vma *anon_vma)
167 {
168 avc->vma = vma;
169 avc->anon_vma = anon_vma;
170 list_add(&avc->same_vma, &vma->anon_vma_chain);
171
172 spin_lock(&anon_vma->lock);
173 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
174 spin_unlock(&anon_vma->lock);
175 }
176
177 /*
178 * Attach the anon_vmas from src to dst.
179 * Returns 0 on success, -ENOMEM on failure.
180 */
181 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
182 {
183 struct anon_vma_chain *avc, *pavc;
184
185 list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
186 avc = anon_vma_chain_alloc();
187 if (!avc)
188 goto enomem_failure;
189 anon_vma_chain_link(dst, avc, pavc->anon_vma);
190 }
191 return 0;
192
193 enomem_failure:
194 unlink_anon_vmas(dst);
195 return -ENOMEM;
196 }
197
198 /*
199 * Attach vma to its own anon_vma, as well as to the anon_vmas that
200 * the corresponding VMA in the parent process is attached to.
201 * Returns 0 on success, non-zero on failure.
202 */
203 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
204 {
205 struct anon_vma_chain *avc;
206 struct anon_vma *anon_vma;
207
208 /* Don't bother if the parent process has no anon_vma here. */
209 if (!pvma->anon_vma)
210 return 0;
211
212 /*
213 * First, attach the new VMA to the parent VMA's anon_vmas,
214 * so rmap can find non-COWed pages in child processes.
215 */
216 if (anon_vma_clone(vma, pvma))
217 return -ENOMEM;
218
219 /* Then add our own anon_vma. */
220 anon_vma = anon_vma_alloc();
221 if (!anon_vma)
222 goto out_error;
223 avc = anon_vma_chain_alloc();
224 if (!avc)
225 goto out_error_free_anon_vma;
226 anon_vma_chain_link(vma, avc, anon_vma);
227 /* Mark this anon_vma as the one where our new (COWed) pages go. */
228 vma->anon_vma = anon_vma;
229
230 return 0;
231
232 out_error_free_anon_vma:
233 anon_vma_free(anon_vma);
234 out_error:
235 return -ENOMEM;
236 }
237
238 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
239 {
240 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
241 int empty;
242
243 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
244 if (!anon_vma)
245 return;
246
247 spin_lock(&anon_vma->lock);
248 list_del(&anon_vma_chain->same_anon_vma);
249
250 /* We must garbage collect the anon_vma if it's empty */
251 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
252 spin_unlock(&anon_vma->lock);
253
254 if (empty)
255 anon_vma_free(anon_vma);
256 }
257
258 void unlink_anon_vmas(struct vm_area_struct *vma)
259 {
260 struct anon_vma_chain *avc, *next;
261
262 /* Unlink each anon_vma chained to the VMA. */
263 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
264 anon_vma_unlink(avc);
265 list_del(&avc->same_vma);
266 anon_vma_chain_free(avc);
267 }
268 }
269
270 static void anon_vma_ctor(void *data)
271 {
272 struct anon_vma *anon_vma = data;
273
274 spin_lock_init(&anon_vma->lock);
275 ksm_refcount_init(anon_vma);
276 INIT_LIST_HEAD(&anon_vma->head);
277 }
278
279 void __init anon_vma_init(void)
280 {
281 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
282 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
283 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
284 }
285
286 /*
287 * Getting a lock on a stable anon_vma from a page off the LRU is
288 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
289 */
290 struct anon_vma *page_lock_anon_vma(struct page *page)
291 {
292 struct anon_vma *anon_vma;
293 unsigned long anon_mapping;
294
295 rcu_read_lock();
296 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
297 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
298 goto out;
299 if (!page_mapped(page))
300 goto out;
301
302 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
303 spin_lock(&anon_vma->lock);
304 return anon_vma;
305 out:
306 rcu_read_unlock();
307 return NULL;
308 }
309
310 void page_unlock_anon_vma(struct anon_vma *anon_vma)
311 {
312 spin_unlock(&anon_vma->lock);
313 rcu_read_unlock();
314 }
315
316 /*
317 * At what user virtual address is page expected in @vma?
318 * Returns virtual address or -EFAULT if page's index/offset is not
319 * within the range mapped the @vma.
320 */
321 static inline unsigned long
322 vma_address(struct page *page, struct vm_area_struct *vma)
323 {
324 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
325 unsigned long address;
326
327 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
328 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
329 /* page should be within @vma mapping range */
330 return -EFAULT;
331 }
332 return address;
333 }
334
335 /*
336 * At what user virtual address is page expected in vma?
337 * checking that the page matches the vma.
338 */
339 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
340 {
341 if (PageAnon(page)) {
342 if (vma->anon_vma != page_anon_vma(page))
343 return -EFAULT;
344 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
345 if (!vma->vm_file ||
346 vma->vm_file->f_mapping != page->mapping)
347 return -EFAULT;
348 } else
349 return -EFAULT;
350 return vma_address(page, vma);
351 }
352
353 /*
354 * Check that @page is mapped at @address into @mm.
355 *
356 * If @sync is false, page_check_address may perform a racy check to avoid
357 * the page table lock when the pte is not present (helpful when reclaiming
358 * highly shared pages).
359 *
360 * On success returns with pte mapped and locked.
361 */
362 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
363 unsigned long address, spinlock_t **ptlp, int sync)
364 {
365 pgd_t *pgd;
366 pud_t *pud;
367 pmd_t *pmd;
368 pte_t *pte;
369 spinlock_t *ptl;
370
371 pgd = pgd_offset(mm, address);
372 if (!pgd_present(*pgd))
373 return NULL;
374
375 pud = pud_offset(pgd, address);
376 if (!pud_present(*pud))
377 return NULL;
378
379 pmd = pmd_offset(pud, address);
380 if (!pmd_present(*pmd))
381 return NULL;
382
383 pte = pte_offset_map(pmd, address);
384 /* Make a quick check before getting the lock */
385 if (!sync && !pte_present(*pte)) {
386 pte_unmap(pte);
387 return NULL;
388 }
389
390 ptl = pte_lockptr(mm, pmd);
391 spin_lock(ptl);
392 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
393 *ptlp = ptl;
394 return pte;
395 }
396 pte_unmap_unlock(pte, ptl);
397 return NULL;
398 }
399
400 /**
401 * page_mapped_in_vma - check whether a page is really mapped in a VMA
402 * @page: the page to test
403 * @vma: the VMA to test
404 *
405 * Returns 1 if the page is mapped into the page tables of the VMA, 0
406 * if the page is not mapped into the page tables of this VMA. Only
407 * valid for normal file or anonymous VMAs.
408 */
409 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
410 {
411 unsigned long address;
412 pte_t *pte;
413 spinlock_t *ptl;
414
415 address = vma_address(page, vma);
416 if (address == -EFAULT) /* out of vma range */
417 return 0;
418 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
419 if (!pte) /* the page is not in this mm */
420 return 0;
421 pte_unmap_unlock(pte, ptl);
422
423 return 1;
424 }
425
426 /*
427 * Subfunctions of page_referenced: page_referenced_one called
428 * repeatedly from either page_referenced_anon or page_referenced_file.
429 */
430 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
431 unsigned long address, unsigned int *mapcount,
432 unsigned long *vm_flags)
433 {
434 struct mm_struct *mm = vma->vm_mm;
435 pte_t *pte;
436 spinlock_t *ptl;
437 int referenced = 0;
438
439 pte = page_check_address(page, mm, address, &ptl, 0);
440 if (!pte)
441 goto out;
442
443 /*
444 * Don't want to elevate referenced for mlocked page that gets this far,
445 * in order that it progresses to try_to_unmap and is moved to the
446 * unevictable list.
447 */
448 if (vma->vm_flags & VM_LOCKED) {
449 *mapcount = 1; /* break early from loop */
450 *vm_flags |= VM_LOCKED;
451 goto out_unmap;
452 }
453
454 if (ptep_clear_flush_young_notify(vma, address, pte)) {
455 /*
456 * Don't treat a reference through a sequentially read
457 * mapping as such. If the page has been used in
458 * another mapping, we will catch it; if this other
459 * mapping is already gone, the unmap path will have
460 * set PG_referenced or activated the page.
461 */
462 if (likely(!VM_SequentialReadHint(vma)))
463 referenced++;
464 }
465
466 /* Pretend the page is referenced if the task has the
467 swap token and is in the middle of a page fault. */
468 if (mm != current->mm && has_swap_token(mm) &&
469 rwsem_is_locked(&mm->mmap_sem))
470 referenced++;
471
472 out_unmap:
473 (*mapcount)--;
474 pte_unmap_unlock(pte, ptl);
475
476 if (referenced)
477 *vm_flags |= vma->vm_flags;
478 out:
479 return referenced;
480 }
481
482 static int page_referenced_anon(struct page *page,
483 struct mem_cgroup *mem_cont,
484 unsigned long *vm_flags)
485 {
486 unsigned int mapcount;
487 struct anon_vma *anon_vma;
488 struct anon_vma_chain *avc;
489 int referenced = 0;
490
491 anon_vma = page_lock_anon_vma(page);
492 if (!anon_vma)
493 return referenced;
494
495 mapcount = page_mapcount(page);
496 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
497 struct vm_area_struct *vma = avc->vma;
498 unsigned long address = vma_address(page, vma);
499 if (address == -EFAULT)
500 continue;
501 /*
502 * If we are reclaiming on behalf of a cgroup, skip
503 * counting on behalf of references from different
504 * cgroups
505 */
506 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
507 continue;
508 referenced += page_referenced_one(page, vma, address,
509 &mapcount, vm_flags);
510 if (!mapcount)
511 break;
512 }
513
514 page_unlock_anon_vma(anon_vma);
515 return referenced;
516 }
517
518 /**
519 * page_referenced_file - referenced check for object-based rmap
520 * @page: the page we're checking references on.
521 * @mem_cont: target memory controller
522 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
523 *
524 * For an object-based mapped page, find all the places it is mapped and
525 * check/clear the referenced flag. This is done by following the page->mapping
526 * pointer, then walking the chain of vmas it holds. It returns the number
527 * of references it found.
528 *
529 * This function is only called from page_referenced for object-based pages.
530 */
531 static int page_referenced_file(struct page *page,
532 struct mem_cgroup *mem_cont,
533 unsigned long *vm_flags)
534 {
535 unsigned int mapcount;
536 struct address_space *mapping = page->mapping;
537 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
538 struct vm_area_struct *vma;
539 struct prio_tree_iter iter;
540 int referenced = 0;
541
542 /*
543 * The caller's checks on page->mapping and !PageAnon have made
544 * sure that this is a file page: the check for page->mapping
545 * excludes the case just before it gets set on an anon page.
546 */
547 BUG_ON(PageAnon(page));
548
549 /*
550 * The page lock not only makes sure that page->mapping cannot
551 * suddenly be NULLified by truncation, it makes sure that the
552 * structure at mapping cannot be freed and reused yet,
553 * so we can safely take mapping->i_mmap_lock.
554 */
555 BUG_ON(!PageLocked(page));
556
557 spin_lock(&mapping->i_mmap_lock);
558
559 /*
560 * i_mmap_lock does not stabilize mapcount at all, but mapcount
561 * is more likely to be accurate if we note it after spinning.
562 */
563 mapcount = page_mapcount(page);
564
565 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
566 unsigned long address = vma_address(page, vma);
567 if (address == -EFAULT)
568 continue;
569 /*
570 * If we are reclaiming on behalf of a cgroup, skip
571 * counting on behalf of references from different
572 * cgroups
573 */
574 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
575 continue;
576 referenced += page_referenced_one(page, vma, address,
577 &mapcount, vm_flags);
578 if (!mapcount)
579 break;
580 }
581
582 spin_unlock(&mapping->i_mmap_lock);
583 return referenced;
584 }
585
586 /**
587 * page_referenced - test if the page was referenced
588 * @page: the page to test
589 * @is_locked: caller holds lock on the page
590 * @mem_cont: target memory controller
591 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
592 *
593 * Quick test_and_clear_referenced for all mappings to a page,
594 * returns the number of ptes which referenced the page.
595 */
596 int page_referenced(struct page *page,
597 int is_locked,
598 struct mem_cgroup *mem_cont,
599 unsigned long *vm_flags)
600 {
601 int referenced = 0;
602 int we_locked = 0;
603
604 *vm_flags = 0;
605 if (page_mapped(page) && page_rmapping(page)) {
606 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
607 we_locked = trylock_page(page);
608 if (!we_locked) {
609 referenced++;
610 goto out;
611 }
612 }
613 if (unlikely(PageKsm(page)))
614 referenced += page_referenced_ksm(page, mem_cont,
615 vm_flags);
616 else if (PageAnon(page))
617 referenced += page_referenced_anon(page, mem_cont,
618 vm_flags);
619 else if (page->mapping)
620 referenced += page_referenced_file(page, mem_cont,
621 vm_flags);
622 if (we_locked)
623 unlock_page(page);
624 }
625 out:
626 if (page_test_and_clear_young(page))
627 referenced++;
628
629 return referenced;
630 }
631
632 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
633 unsigned long address)
634 {
635 struct mm_struct *mm = vma->vm_mm;
636 pte_t *pte;
637 spinlock_t *ptl;
638 int ret = 0;
639
640 pte = page_check_address(page, mm, address, &ptl, 1);
641 if (!pte)
642 goto out;
643
644 if (pte_dirty(*pte) || pte_write(*pte)) {
645 pte_t entry;
646
647 flush_cache_page(vma, address, pte_pfn(*pte));
648 entry = ptep_clear_flush_notify(vma, address, pte);
649 entry = pte_wrprotect(entry);
650 entry = pte_mkclean(entry);
651 set_pte_at(mm, address, pte, entry);
652 ret = 1;
653 }
654
655 pte_unmap_unlock(pte, ptl);
656 out:
657 return ret;
658 }
659
660 static int page_mkclean_file(struct address_space *mapping, struct page *page)
661 {
662 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
663 struct vm_area_struct *vma;
664 struct prio_tree_iter iter;
665 int ret = 0;
666
667 BUG_ON(PageAnon(page));
668
669 spin_lock(&mapping->i_mmap_lock);
670 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
671 if (vma->vm_flags & VM_SHARED) {
672 unsigned long address = vma_address(page, vma);
673 if (address == -EFAULT)
674 continue;
675 ret += page_mkclean_one(page, vma, address);
676 }
677 }
678 spin_unlock(&mapping->i_mmap_lock);
679 return ret;
680 }
681
682 int page_mkclean(struct page *page)
683 {
684 int ret = 0;
685
686 BUG_ON(!PageLocked(page));
687
688 if (page_mapped(page)) {
689 struct address_space *mapping = page_mapping(page);
690 if (mapping) {
691 ret = page_mkclean_file(mapping, page);
692 if (page_test_dirty(page)) {
693 page_clear_dirty(page);
694 ret = 1;
695 }
696 }
697 }
698
699 return ret;
700 }
701 EXPORT_SYMBOL_GPL(page_mkclean);
702
703 /**
704 * page_move_anon_rmap - move a page to our anon_vma
705 * @page: the page to move to our anon_vma
706 * @vma: the vma the page belongs to
707 * @address: the user virtual address mapped
708 *
709 * When a page belongs exclusively to one process after a COW event,
710 * that page can be moved into the anon_vma that belongs to just that
711 * process, so the rmap code will not search the parent or sibling
712 * processes.
713 */
714 void page_move_anon_rmap(struct page *page,
715 struct vm_area_struct *vma, unsigned long address)
716 {
717 struct anon_vma *anon_vma = vma->anon_vma;
718
719 VM_BUG_ON(!PageLocked(page));
720 VM_BUG_ON(!anon_vma);
721 VM_BUG_ON(page->index != linear_page_index(vma, address));
722
723 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
724 page->mapping = (struct address_space *) anon_vma;
725 }
726
727 /**
728 * __page_set_anon_rmap - setup new anonymous rmap
729 * @page: the page to add the mapping to
730 * @vma: the vm area in which the mapping is added
731 * @address: the user virtual address mapped
732 */
733 static void __page_set_anon_rmap(struct page *page,
734 struct vm_area_struct *vma, unsigned long address)
735 {
736 struct anon_vma *anon_vma = vma->anon_vma;
737
738 BUG_ON(!anon_vma);
739 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
740 page->mapping = (struct address_space *) anon_vma;
741 page->index = linear_page_index(vma, address);
742 }
743
744 /**
745 * __page_check_anon_rmap - sanity check anonymous rmap addition
746 * @page: the page to add the mapping to
747 * @vma: the vm area in which the mapping is added
748 * @address: the user virtual address mapped
749 */
750 static void __page_check_anon_rmap(struct page *page,
751 struct vm_area_struct *vma, unsigned long address)
752 {
753 #ifdef CONFIG_DEBUG_VM
754 /*
755 * The page's anon-rmap details (mapping and index) are guaranteed to
756 * be set up correctly at this point.
757 *
758 * We have exclusion against page_add_anon_rmap because the caller
759 * always holds the page locked, except if called from page_dup_rmap,
760 * in which case the page is already known to be setup.
761 *
762 * We have exclusion against page_add_new_anon_rmap because those pages
763 * are initially only visible via the pagetables, and the pte is locked
764 * over the call to page_add_new_anon_rmap.
765 */
766 BUG_ON(page->index != linear_page_index(vma, address));
767 #endif
768 }
769
770 /**
771 * page_add_anon_rmap - add pte mapping to an anonymous page
772 * @page: the page to add the mapping to
773 * @vma: the vm area in which the mapping is added
774 * @address: the user virtual address mapped
775 *
776 * The caller needs to hold the pte lock, and the page must be locked in
777 * the anon_vma case: to serialize mapping,index checking after setting,
778 * and to ensure that PageAnon is not being upgraded racily to PageKsm
779 * (but PageKsm is never downgraded to PageAnon).
780 */
781 void page_add_anon_rmap(struct page *page,
782 struct vm_area_struct *vma, unsigned long address)
783 {
784 int first = atomic_inc_and_test(&page->_mapcount);
785 if (first)
786 __inc_zone_page_state(page, NR_ANON_PAGES);
787 if (unlikely(PageKsm(page)))
788 return;
789
790 VM_BUG_ON(!PageLocked(page));
791 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
792 if (first)
793 __page_set_anon_rmap(page, vma, address);
794 else
795 __page_check_anon_rmap(page, vma, address);
796 }
797
798 /**
799 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
800 * @page: the page to add the mapping to
801 * @vma: the vm area in which the mapping is added
802 * @address: the user virtual address mapped
803 *
804 * Same as page_add_anon_rmap but must only be called on *new* pages.
805 * This means the inc-and-test can be bypassed.
806 * Page does not have to be locked.
807 */
808 void page_add_new_anon_rmap(struct page *page,
809 struct vm_area_struct *vma, unsigned long address)
810 {
811 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
812 SetPageSwapBacked(page);
813 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
814 __inc_zone_page_state(page, NR_ANON_PAGES);
815 __page_set_anon_rmap(page, vma, address);
816 if (page_evictable(page, vma))
817 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
818 else
819 add_page_to_unevictable_list(page);
820 }
821
822 /**
823 * page_add_file_rmap - add pte mapping to a file page
824 * @page: the page to add the mapping to
825 *
826 * The caller needs to hold the pte lock.
827 */
828 void page_add_file_rmap(struct page *page)
829 {
830 if (atomic_inc_and_test(&page->_mapcount)) {
831 __inc_zone_page_state(page, NR_FILE_MAPPED);
832 mem_cgroup_update_file_mapped(page, 1);
833 }
834 }
835
836 /**
837 * page_remove_rmap - take down pte mapping from a page
838 * @page: page to remove mapping from
839 *
840 * The caller needs to hold the pte lock.
841 */
842 void page_remove_rmap(struct page *page)
843 {
844 /* page still mapped by someone else? */
845 if (!atomic_add_negative(-1, &page->_mapcount))
846 return;
847
848 /*
849 * Now that the last pte has gone, s390 must transfer dirty
850 * flag from storage key to struct page. We can usually skip
851 * this if the page is anon, so about to be freed; but perhaps
852 * not if it's in swapcache - there might be another pte slot
853 * containing the swap entry, but page not yet written to swap.
854 */
855 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
856 page_clear_dirty(page);
857 set_page_dirty(page);
858 }
859 if (PageAnon(page)) {
860 mem_cgroup_uncharge_page(page);
861 __dec_zone_page_state(page, NR_ANON_PAGES);
862 } else {
863 __dec_zone_page_state(page, NR_FILE_MAPPED);
864 mem_cgroup_update_file_mapped(page, -1);
865 }
866 /*
867 * It would be tidy to reset the PageAnon mapping here,
868 * but that might overwrite a racing page_add_anon_rmap
869 * which increments mapcount after us but sets mapping
870 * before us: so leave the reset to free_hot_cold_page,
871 * and remember that it's only reliable while mapped.
872 * Leaving it set also helps swapoff to reinstate ptes
873 * faster for those pages still in swapcache.
874 */
875 }
876
877 /*
878 * Subfunctions of try_to_unmap: try_to_unmap_one called
879 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
880 */
881 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
882 unsigned long address, enum ttu_flags flags)
883 {
884 struct mm_struct *mm = vma->vm_mm;
885 pte_t *pte;
886 pte_t pteval;
887 spinlock_t *ptl;
888 int ret = SWAP_AGAIN;
889
890 pte = page_check_address(page, mm, address, &ptl, 0);
891 if (!pte)
892 goto out;
893
894 /*
895 * If the page is mlock()d, we cannot swap it out.
896 * If it's recently referenced (perhaps page_referenced
897 * skipped over this mm) then we should reactivate it.
898 */
899 if (!(flags & TTU_IGNORE_MLOCK)) {
900 if (vma->vm_flags & VM_LOCKED)
901 goto out_mlock;
902
903 if (TTU_ACTION(flags) == TTU_MUNLOCK)
904 goto out_unmap;
905 }
906 if (!(flags & TTU_IGNORE_ACCESS)) {
907 if (ptep_clear_flush_young_notify(vma, address, pte)) {
908 ret = SWAP_FAIL;
909 goto out_unmap;
910 }
911 }
912
913 /* Nuke the page table entry. */
914 flush_cache_page(vma, address, page_to_pfn(page));
915 pteval = ptep_clear_flush_notify(vma, address, pte);
916
917 /* Move the dirty bit to the physical page now the pte is gone. */
918 if (pte_dirty(pteval))
919 set_page_dirty(page);
920
921 /* Update high watermark before we lower rss */
922 update_hiwater_rss(mm);
923
924 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
925 if (PageAnon(page))
926 dec_mm_counter(mm, MM_ANONPAGES);
927 else
928 dec_mm_counter(mm, MM_FILEPAGES);
929 set_pte_at(mm, address, pte,
930 swp_entry_to_pte(make_hwpoison_entry(page)));
931 } else if (PageAnon(page)) {
932 swp_entry_t entry = { .val = page_private(page) };
933
934 if (PageSwapCache(page)) {
935 /*
936 * Store the swap location in the pte.
937 * See handle_pte_fault() ...
938 */
939 if (swap_duplicate(entry) < 0) {
940 set_pte_at(mm, address, pte, pteval);
941 ret = SWAP_FAIL;
942 goto out_unmap;
943 }
944 if (list_empty(&mm->mmlist)) {
945 spin_lock(&mmlist_lock);
946 if (list_empty(&mm->mmlist))
947 list_add(&mm->mmlist, &init_mm.mmlist);
948 spin_unlock(&mmlist_lock);
949 }
950 dec_mm_counter(mm, MM_ANONPAGES);
951 inc_mm_counter(mm, MM_SWAPENTS);
952 } else if (PAGE_MIGRATION) {
953 /*
954 * Store the pfn of the page in a special migration
955 * pte. do_swap_page() will wait until the migration
956 * pte is removed and then restart fault handling.
957 */
958 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
959 entry = make_migration_entry(page, pte_write(pteval));
960 }
961 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
962 BUG_ON(pte_file(*pte));
963 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
964 /* Establish migration entry for a file page */
965 swp_entry_t entry;
966 entry = make_migration_entry(page, pte_write(pteval));
967 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
968 } else
969 dec_mm_counter(mm, MM_FILEPAGES);
970
971 page_remove_rmap(page);
972 page_cache_release(page);
973
974 out_unmap:
975 pte_unmap_unlock(pte, ptl);
976 out:
977 return ret;
978
979 out_mlock:
980 pte_unmap_unlock(pte, ptl);
981
982
983 /*
984 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
985 * unstable result and race. Plus, We can't wait here because
986 * we now hold anon_vma->lock or mapping->i_mmap_lock.
987 * if trylock failed, the page remain in evictable lru and later
988 * vmscan could retry to move the page to unevictable lru if the
989 * page is actually mlocked.
990 */
991 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
992 if (vma->vm_flags & VM_LOCKED) {
993 mlock_vma_page(page);
994 ret = SWAP_MLOCK;
995 }
996 up_read(&vma->vm_mm->mmap_sem);
997 }
998 return ret;
999 }
1000
1001 /*
1002 * objrmap doesn't work for nonlinear VMAs because the assumption that
1003 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1004 * Consequently, given a particular page and its ->index, we cannot locate the
1005 * ptes which are mapping that page without an exhaustive linear search.
1006 *
1007 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1008 * maps the file to which the target page belongs. The ->vm_private_data field
1009 * holds the current cursor into that scan. Successive searches will circulate
1010 * around the vma's virtual address space.
1011 *
1012 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1013 * more scanning pressure is placed against them as well. Eventually pages
1014 * will become fully unmapped and are eligible for eviction.
1015 *
1016 * For very sparsely populated VMAs this is a little inefficient - chances are
1017 * there there won't be many ptes located within the scan cluster. In this case
1018 * maybe we could scan further - to the end of the pte page, perhaps.
1019 *
1020 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1021 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1022 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1023 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1024 */
1025 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1026 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1027
1028 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1029 struct vm_area_struct *vma, struct page *check_page)
1030 {
1031 struct mm_struct *mm = vma->vm_mm;
1032 pgd_t *pgd;
1033 pud_t *pud;
1034 pmd_t *pmd;
1035 pte_t *pte;
1036 pte_t pteval;
1037 spinlock_t *ptl;
1038 struct page *page;
1039 unsigned long address;
1040 unsigned long end;
1041 int ret = SWAP_AGAIN;
1042 int locked_vma = 0;
1043
1044 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1045 end = address + CLUSTER_SIZE;
1046 if (address < vma->vm_start)
1047 address = vma->vm_start;
1048 if (end > vma->vm_end)
1049 end = vma->vm_end;
1050
1051 pgd = pgd_offset(mm, address);
1052 if (!pgd_present(*pgd))
1053 return ret;
1054
1055 pud = pud_offset(pgd, address);
1056 if (!pud_present(*pud))
1057 return ret;
1058
1059 pmd = pmd_offset(pud, address);
1060 if (!pmd_present(*pmd))
1061 return ret;
1062
1063 /*
1064 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1065 * keep the sem while scanning the cluster for mlocking pages.
1066 */
1067 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1068 locked_vma = (vma->vm_flags & VM_LOCKED);
1069 if (!locked_vma)
1070 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1071 }
1072
1073 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1074
1075 /* Update high watermark before we lower rss */
1076 update_hiwater_rss(mm);
1077
1078 for (; address < end; pte++, address += PAGE_SIZE) {
1079 if (!pte_present(*pte))
1080 continue;
1081 page = vm_normal_page(vma, address, *pte);
1082 BUG_ON(!page || PageAnon(page));
1083
1084 if (locked_vma) {
1085 mlock_vma_page(page); /* no-op if already mlocked */
1086 if (page == check_page)
1087 ret = SWAP_MLOCK;
1088 continue; /* don't unmap */
1089 }
1090
1091 if (ptep_clear_flush_young_notify(vma, address, pte))
1092 continue;
1093
1094 /* Nuke the page table entry. */
1095 flush_cache_page(vma, address, pte_pfn(*pte));
1096 pteval = ptep_clear_flush_notify(vma, address, pte);
1097
1098 /* If nonlinear, store the file page offset in the pte. */
1099 if (page->index != linear_page_index(vma, address))
1100 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1101
1102 /* Move the dirty bit to the physical page now the pte is gone. */
1103 if (pte_dirty(pteval))
1104 set_page_dirty(page);
1105
1106 page_remove_rmap(page);
1107 page_cache_release(page);
1108 dec_mm_counter(mm, MM_FILEPAGES);
1109 (*mapcount)--;
1110 }
1111 pte_unmap_unlock(pte - 1, ptl);
1112 if (locked_vma)
1113 up_read(&vma->vm_mm->mmap_sem);
1114 return ret;
1115 }
1116
1117 /**
1118 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1119 * rmap method
1120 * @page: the page to unmap/unlock
1121 * @flags: action and flags
1122 *
1123 * Find all the mappings of a page using the mapping pointer and the vma chains
1124 * contained in the anon_vma struct it points to.
1125 *
1126 * This function is only called from try_to_unmap/try_to_munlock for
1127 * anonymous pages.
1128 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1129 * where the page was found will be held for write. So, we won't recheck
1130 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1131 * 'LOCKED.
1132 */
1133 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1134 {
1135 struct anon_vma *anon_vma;
1136 struct anon_vma_chain *avc;
1137 int ret = SWAP_AGAIN;
1138
1139 anon_vma = page_lock_anon_vma(page);
1140 if (!anon_vma)
1141 return ret;
1142
1143 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1144 struct vm_area_struct *vma = avc->vma;
1145 unsigned long address = vma_address(page, vma);
1146 if (address == -EFAULT)
1147 continue;
1148 ret = try_to_unmap_one(page, vma, address, flags);
1149 if (ret != SWAP_AGAIN || !page_mapped(page))
1150 break;
1151 }
1152
1153 page_unlock_anon_vma(anon_vma);
1154 return ret;
1155 }
1156
1157 /**
1158 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1159 * @page: the page to unmap/unlock
1160 * @flags: action and flags
1161 *
1162 * Find all the mappings of a page using the mapping pointer and the vma chains
1163 * contained in the address_space struct it points to.
1164 *
1165 * This function is only called from try_to_unmap/try_to_munlock for
1166 * object-based pages.
1167 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1168 * where the page was found will be held for write. So, we won't recheck
1169 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1170 * 'LOCKED.
1171 */
1172 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1173 {
1174 struct address_space *mapping = page->mapping;
1175 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1176 struct vm_area_struct *vma;
1177 struct prio_tree_iter iter;
1178 int ret = SWAP_AGAIN;
1179 unsigned long cursor;
1180 unsigned long max_nl_cursor = 0;
1181 unsigned long max_nl_size = 0;
1182 unsigned int mapcount;
1183
1184 spin_lock(&mapping->i_mmap_lock);
1185 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1186 unsigned long address = vma_address(page, vma);
1187 if (address == -EFAULT)
1188 continue;
1189 ret = try_to_unmap_one(page, vma, address, flags);
1190 if (ret != SWAP_AGAIN || !page_mapped(page))
1191 goto out;
1192 }
1193
1194 if (list_empty(&mapping->i_mmap_nonlinear))
1195 goto out;
1196
1197 /*
1198 * We don't bother to try to find the munlocked page in nonlinears.
1199 * It's costly. Instead, later, page reclaim logic may call
1200 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1201 */
1202 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1203 goto out;
1204
1205 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1206 shared.vm_set.list) {
1207 cursor = (unsigned long) vma->vm_private_data;
1208 if (cursor > max_nl_cursor)
1209 max_nl_cursor = cursor;
1210 cursor = vma->vm_end - vma->vm_start;
1211 if (cursor > max_nl_size)
1212 max_nl_size = cursor;
1213 }
1214
1215 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1216 ret = SWAP_FAIL;
1217 goto out;
1218 }
1219
1220 /*
1221 * We don't try to search for this page in the nonlinear vmas,
1222 * and page_referenced wouldn't have found it anyway. Instead
1223 * just walk the nonlinear vmas trying to age and unmap some.
1224 * The mapcount of the page we came in with is irrelevant,
1225 * but even so use it as a guide to how hard we should try?
1226 */
1227 mapcount = page_mapcount(page);
1228 if (!mapcount)
1229 goto out;
1230 cond_resched_lock(&mapping->i_mmap_lock);
1231
1232 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1233 if (max_nl_cursor == 0)
1234 max_nl_cursor = CLUSTER_SIZE;
1235
1236 do {
1237 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1238 shared.vm_set.list) {
1239 cursor = (unsigned long) vma->vm_private_data;
1240 while ( cursor < max_nl_cursor &&
1241 cursor < vma->vm_end - vma->vm_start) {
1242 if (try_to_unmap_cluster(cursor, &mapcount,
1243 vma, page) == SWAP_MLOCK)
1244 ret = SWAP_MLOCK;
1245 cursor += CLUSTER_SIZE;
1246 vma->vm_private_data = (void *) cursor;
1247 if ((int)mapcount <= 0)
1248 goto out;
1249 }
1250 vma->vm_private_data = (void *) max_nl_cursor;
1251 }
1252 cond_resched_lock(&mapping->i_mmap_lock);
1253 max_nl_cursor += CLUSTER_SIZE;
1254 } while (max_nl_cursor <= max_nl_size);
1255
1256 /*
1257 * Don't loop forever (perhaps all the remaining pages are
1258 * in locked vmas). Reset cursor on all unreserved nonlinear
1259 * vmas, now forgetting on which ones it had fallen behind.
1260 */
1261 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1262 vma->vm_private_data = NULL;
1263 out:
1264 spin_unlock(&mapping->i_mmap_lock);
1265 return ret;
1266 }
1267
1268 /**
1269 * try_to_unmap - try to remove all page table mappings to a page
1270 * @page: the page to get unmapped
1271 * @flags: action and flags
1272 *
1273 * Tries to remove all the page table entries which are mapping this
1274 * page, used in the pageout path. Caller must hold the page lock.
1275 * Return values are:
1276 *
1277 * SWAP_SUCCESS - we succeeded in removing all mappings
1278 * SWAP_AGAIN - we missed a mapping, try again later
1279 * SWAP_FAIL - the page is unswappable
1280 * SWAP_MLOCK - page is mlocked.
1281 */
1282 int try_to_unmap(struct page *page, enum ttu_flags flags)
1283 {
1284 int ret;
1285
1286 BUG_ON(!PageLocked(page));
1287
1288 if (unlikely(PageKsm(page)))
1289 ret = try_to_unmap_ksm(page, flags);
1290 else if (PageAnon(page))
1291 ret = try_to_unmap_anon(page, flags);
1292 else
1293 ret = try_to_unmap_file(page, flags);
1294 if (ret != SWAP_MLOCK && !page_mapped(page))
1295 ret = SWAP_SUCCESS;
1296 return ret;
1297 }
1298
1299 /**
1300 * try_to_munlock - try to munlock a page
1301 * @page: the page to be munlocked
1302 *
1303 * Called from munlock code. Checks all of the VMAs mapping the page
1304 * to make sure nobody else has this page mlocked. The page will be
1305 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1306 *
1307 * Return values are:
1308 *
1309 * SWAP_AGAIN - no vma is holding page mlocked, or,
1310 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1311 * SWAP_FAIL - page cannot be located at present
1312 * SWAP_MLOCK - page is now mlocked.
1313 */
1314 int try_to_munlock(struct page *page)
1315 {
1316 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1317
1318 if (unlikely(PageKsm(page)))
1319 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1320 else if (PageAnon(page))
1321 return try_to_unmap_anon(page, TTU_MUNLOCK);
1322 else
1323 return try_to_unmap_file(page, TTU_MUNLOCK);
1324 }
1325
1326 #ifdef CONFIG_MIGRATION
1327 /*
1328 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1329 * Called by migrate.c to remove migration ptes, but might be used more later.
1330 */
1331 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1332 struct vm_area_struct *, unsigned long, void *), void *arg)
1333 {
1334 struct anon_vma *anon_vma;
1335 struct anon_vma_chain *avc;
1336 int ret = SWAP_AGAIN;
1337
1338 /*
1339 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1340 * because that depends on page_mapped(); but not all its usages
1341 * are holding mmap_sem, which also gave the necessary guarantee
1342 * (that this anon_vma's slab has not already been destroyed).
1343 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1344 * is risky, and currently limits the usefulness of rmap_walk().
1345 */
1346 anon_vma = page_anon_vma(page);
1347 if (!anon_vma)
1348 return ret;
1349 spin_lock(&anon_vma->lock);
1350 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1351 struct vm_area_struct *vma = avc->vma;
1352 unsigned long address = vma_address(page, vma);
1353 if (address == -EFAULT)
1354 continue;
1355 ret = rmap_one(page, vma, address, arg);
1356 if (ret != SWAP_AGAIN)
1357 break;
1358 }
1359 spin_unlock(&anon_vma->lock);
1360 return ret;
1361 }
1362
1363 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1364 struct vm_area_struct *, unsigned long, void *), void *arg)
1365 {
1366 struct address_space *mapping = page->mapping;
1367 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1368 struct vm_area_struct *vma;
1369 struct prio_tree_iter iter;
1370 int ret = SWAP_AGAIN;
1371
1372 if (!mapping)
1373 return ret;
1374 spin_lock(&mapping->i_mmap_lock);
1375 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1376 unsigned long address = vma_address(page, vma);
1377 if (address == -EFAULT)
1378 continue;
1379 ret = rmap_one(page, vma, address, arg);
1380 if (ret != SWAP_AGAIN)
1381 break;
1382 }
1383 /*
1384 * No nonlinear handling: being always shared, nonlinear vmas
1385 * never contain migration ptes. Decide what to do about this
1386 * limitation to linear when we need rmap_walk() on nonlinear.
1387 */
1388 spin_unlock(&mapping->i_mmap_lock);
1389 return ret;
1390 }
1391
1392 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1393 struct vm_area_struct *, unsigned long, void *), void *arg)
1394 {
1395 VM_BUG_ON(!PageLocked(page));
1396
1397 if (unlikely(PageKsm(page)))
1398 return rmap_walk_ksm(page, rmap_one, arg);
1399 else if (PageAnon(page))
1400 return rmap_walk_anon(page, rmap_one, arg);
1401 else
1402 return rmap_walk_file(page, rmap_one, arg);
1403 }
1404 #endif /* CONFIG_MIGRATION */
This page took 0.058253 seconds and 5 git commands to generate.