Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 anon_vma_lock_write(anon_vma);
108 anon_vma_unlock_write(anon_vma);
109 }
110
111 kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 struct anon_vma_chain *avc,
126 struct anon_vma *anon_vma)
127 {
128 avc->vma = vma;
129 avc->anon_vma = anon_vma;
130 list_add(&avc->same_vma, &vma->anon_vma_chain);
131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133
134 /**
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
137 *
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
141 *
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
147 *
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
153 *
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
158 *
159 * This must be called with the mmap_sem held for reading.
160 */
161 int anon_vma_prepare(struct vm_area_struct *vma)
162 {
163 struct anon_vma *anon_vma = vma->anon_vma;
164 struct anon_vma_chain *avc;
165
166 might_sleep();
167 if (unlikely(!anon_vma)) {
168 struct mm_struct *mm = vma->vm_mm;
169 struct anon_vma *allocated;
170
171 avc = anon_vma_chain_alloc(GFP_KERNEL);
172 if (!avc)
173 goto out_enomem;
174
175 anon_vma = find_mergeable_anon_vma(vma);
176 allocated = NULL;
177 if (!anon_vma) {
178 anon_vma = anon_vma_alloc();
179 if (unlikely(!anon_vma))
180 goto out_enomem_free_avc;
181 allocated = anon_vma;
182 }
183
184 anon_vma_lock_write(anon_vma);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm->page_table_lock);
187 if (likely(!vma->anon_vma)) {
188 vma->anon_vma = anon_vma;
189 anon_vma_chain_link(vma, avc, anon_vma);
190 allocated = NULL;
191 avc = NULL;
192 }
193 spin_unlock(&mm->page_table_lock);
194 anon_vma_unlock_write(anon_vma);
195
196 if (unlikely(allocated))
197 put_anon_vma(allocated);
198 if (unlikely(avc))
199 anon_vma_chain_free(avc);
200 }
201 return 0;
202
203 out_enomem_free_avc:
204 anon_vma_chain_free(avc);
205 out_enomem:
206 return -ENOMEM;
207 }
208
209 /*
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
213 *
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
216 */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219 struct anon_vma *new_root = anon_vma->root;
220 if (new_root != root) {
221 if (WARN_ON_ONCE(root))
222 up_write(&root->rwsem);
223 root = new_root;
224 down_write(&root->rwsem);
225 }
226 return root;
227 }
228
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231 if (root)
232 up_write(&root->rwsem);
233 }
234
235 /*
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
238 */
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 {
241 struct anon_vma_chain *avc, *pavc;
242 struct anon_vma *root = NULL;
243
244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 struct anon_vma *anon_vma;
246
247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 if (unlikely(!avc)) {
249 unlock_anon_vma_root(root);
250 root = NULL;
251 avc = anon_vma_chain_alloc(GFP_KERNEL);
252 if (!avc)
253 goto enomem_failure;
254 }
255 anon_vma = pavc->anon_vma;
256 root = lock_anon_vma_root(root, anon_vma);
257 anon_vma_chain_link(dst, avc, anon_vma);
258 }
259 unlock_anon_vma_root(root);
260 return 0;
261
262 enomem_failure:
263 unlink_anon_vmas(dst);
264 return -ENOMEM;
265 }
266
267 /*
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
271 */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274 struct anon_vma_chain *avc;
275 struct anon_vma *anon_vma;
276
277 /* Don't bother if the parent process has no anon_vma here. */
278 if (!pvma->anon_vma)
279 return 0;
280
281 /*
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
284 */
285 if (anon_vma_clone(vma, pvma))
286 return -ENOMEM;
287
288 /* Then add our own anon_vma. */
289 anon_vma = anon_vma_alloc();
290 if (!anon_vma)
291 goto out_error;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto out_error_free_anon_vma;
295
296 /*
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
299 */
300 anon_vma->root = pvma->anon_vma->root;
301 /*
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
305 */
306 get_anon_vma(anon_vma->root);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma->anon_vma = anon_vma;
309 anon_vma_lock_write(anon_vma);
310 anon_vma_chain_link(vma, avc, anon_vma);
311 anon_vma_unlock_write(anon_vma);
312
313 return 0;
314
315 out_error_free_anon_vma:
316 put_anon_vma(anon_vma);
317 out_error:
318 unlink_anon_vmas(vma);
319 return -ENOMEM;
320 }
321
322 void unlink_anon_vmas(struct vm_area_struct *vma)
323 {
324 struct anon_vma_chain *avc, *next;
325 struct anon_vma *root = NULL;
326
327 /*
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 */
331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 struct anon_vma *anon_vma = avc->anon_vma;
333
334 root = lock_anon_vma_root(root, anon_vma);
335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336
337 /*
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
340 */
341 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 continue;
343
344 list_del(&avc->same_vma);
345 anon_vma_chain_free(avc);
346 }
347 unlock_anon_vma_root(root);
348
349 /*
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to write-acquire the anon_vma->root->rwsem.
353 */
354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 struct anon_vma *anon_vma = avc->anon_vma;
356
357 put_anon_vma(anon_vma);
358
359 list_del(&avc->same_vma);
360 anon_vma_chain_free(avc);
361 }
362 }
363
364 static void anon_vma_ctor(void *data)
365 {
366 struct anon_vma *anon_vma = data;
367
368 init_rwsem(&anon_vma->rwsem);
369 atomic_set(&anon_vma->refcount, 0);
370 anon_vma->rb_root = RB_ROOT;
371 }
372
373 void __init anon_vma_init(void)
374 {
375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379
380 /*
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 *
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
386 *
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
389 *
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 *
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
398 *
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
402 */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405 struct anon_vma *anon_vma = NULL;
406 unsigned long anon_mapping;
407
408 rcu_read_lock();
409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 goto out;
412 if (!page_mapped(page))
413 goto out;
414
415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 anon_vma = NULL;
418 goto out;
419 }
420
421 /*
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
427 */
428 if (!page_mapped(page)) {
429 put_anon_vma(anon_vma);
430 anon_vma = NULL;
431 }
432 out:
433 rcu_read_unlock();
434
435 return anon_vma;
436 }
437
438 /*
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 *
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
444 */
445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
446 {
447 struct anon_vma *anon_vma = NULL;
448 struct anon_vma *root_anon_vma;
449 unsigned long anon_mapping;
450
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 if (down_read_trylock(&root_anon_vma->rwsem)) {
461 /*
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
465 */
466 if (!page_mapped(page)) {
467 up_read(&root_anon_vma->rwsem);
468 anon_vma = NULL;
469 }
470 goto out;
471 }
472
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
478
479 if (!page_mapped(page)) {
480 put_anon_vma(anon_vma);
481 anon_vma = NULL;
482 goto out;
483 }
484
485 /* we pinned the anon_vma, its safe to sleep */
486 rcu_read_unlock();
487 anon_vma_lock_read(anon_vma);
488
489 if (atomic_dec_and_test(&anon_vma->refcount)) {
490 /*
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock_write() recursion.
494 */
495 anon_vma_unlock_read(anon_vma);
496 __put_anon_vma(anon_vma);
497 anon_vma = NULL;
498 }
499
500 return anon_vma;
501
502 out:
503 rcu_read_unlock();
504 return anon_vma;
505 }
506
507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508 {
509 anon_vma_unlock_read(anon_vma);
510 }
511
512 /*
513 * At what user virtual address is page expected in @vma?
514 */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519
520 if (unlikely(is_vm_hugetlb_page(vma)))
521 pgoff = page->index << huge_page_order(page_hstate(page));
522
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533
534 return address;
535 }
536
537 /*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 unsigned long address;
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
563 }
564
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
570
571 pgd = pgd_offset(mm, address);
572 if (!pgd_present(*pgd))
573 goto out;
574
575 pud = pud_offset(pgd, address);
576 if (!pud_present(*pud))
577 goto out;
578
579 pmd = pmd_offset(pud, address);
580 if (!pmd_present(*pmd))
581 pmd = NULL;
582 out:
583 return pmd;
584 }
585
586 /*
587 * Check that @page is mapped at @address into @mm.
588 *
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
592 *
593 * On success returns with pte mapped and locked.
594 */
595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 unsigned long address, spinlock_t **ptlp, int sync)
597 {
598 pmd_t *pmd;
599 pte_t *pte;
600 spinlock_t *ptl;
601
602 if (unlikely(PageHuge(page))) {
603 /* when pud is not present, pte will be NULL */
604 pte = huge_pte_offset(mm, address);
605 if (!pte)
606 return NULL;
607
608 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
609 goto check;
610 }
611
612 pmd = mm_find_pmd(mm, address);
613 if (!pmd)
614 return NULL;
615
616 if (pmd_trans_huge(*pmd))
617 return NULL;
618
619 pte = pte_offset_map(pmd, address);
620 /* Make a quick check before getting the lock */
621 if (!sync && !pte_present(*pte)) {
622 pte_unmap(pte);
623 return NULL;
624 }
625
626 ptl = pte_lockptr(mm, pmd);
627 check:
628 spin_lock(ptl);
629 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
630 *ptlp = ptl;
631 return pte;
632 }
633 pte_unmap_unlock(pte, ptl);
634 return NULL;
635 }
636
637 /**
638 * page_mapped_in_vma - check whether a page is really mapped in a VMA
639 * @page: the page to test
640 * @vma: the VMA to test
641 *
642 * Returns 1 if the page is mapped into the page tables of the VMA, 0
643 * if the page is not mapped into the page tables of this VMA. Only
644 * valid for normal file or anonymous VMAs.
645 */
646 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
647 {
648 unsigned long address;
649 pte_t *pte;
650 spinlock_t *ptl;
651
652 address = __vma_address(page, vma);
653 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
654 return 0;
655 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
656 if (!pte) /* the page is not in this mm */
657 return 0;
658 pte_unmap_unlock(pte, ptl);
659
660 return 1;
661 }
662
663 struct page_referenced_arg {
664 int mapcount;
665 int referenced;
666 unsigned long vm_flags;
667 struct mem_cgroup *memcg;
668 };
669 /*
670 * arg: page_referenced_arg will be passed
671 */
672 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
673 unsigned long address, void *arg)
674 {
675 struct mm_struct *mm = vma->vm_mm;
676 spinlock_t *ptl;
677 int referenced = 0;
678 struct page_referenced_arg *pra = arg;
679
680 if (unlikely(PageTransHuge(page))) {
681 pmd_t *pmd;
682
683 /*
684 * rmap might return false positives; we must filter
685 * these out using page_check_address_pmd().
686 */
687 pmd = page_check_address_pmd(page, mm, address,
688 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
689 if (!pmd)
690 return SWAP_AGAIN;
691
692 if (vma->vm_flags & VM_LOCKED) {
693 spin_unlock(ptl);
694 pra->vm_flags |= VM_LOCKED;
695 return SWAP_FAIL; /* To break the loop */
696 }
697
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma, address, pmd))
700 referenced++;
701 spin_unlock(ptl);
702 } else {
703 pte_t *pte;
704
705 /*
706 * rmap might return false positives; we must filter
707 * these out using page_check_address().
708 */
709 pte = page_check_address(page, mm, address, &ptl, 0);
710 if (!pte)
711 return SWAP_AGAIN;
712
713 if (vma->vm_flags & VM_LOCKED) {
714 pte_unmap_unlock(pte, ptl);
715 pra->vm_flags |= VM_LOCKED;
716 return SWAP_FAIL; /* To break the loop */
717 }
718
719 if (ptep_clear_flush_young_notify(vma, address, pte)) {
720 /*
721 * Don't treat a reference through a sequentially read
722 * mapping as such. If the page has been used in
723 * another mapping, we will catch it; if this other
724 * mapping is already gone, the unmap path will have
725 * set PG_referenced or activated the page.
726 */
727 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
728 referenced++;
729 }
730 pte_unmap_unlock(pte, ptl);
731 }
732
733 if (referenced) {
734 pra->referenced++;
735 pra->vm_flags |= vma->vm_flags;
736 }
737
738 pra->mapcount--;
739 if (!pra->mapcount)
740 return SWAP_SUCCESS; /* To break the loop */
741
742 return SWAP_AGAIN;
743 }
744
745 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
746 {
747 struct page_referenced_arg *pra = arg;
748 struct mem_cgroup *memcg = pra->memcg;
749
750 if (!mm_match_cgroup(vma->vm_mm, memcg))
751 return true;
752
753 return false;
754 }
755
756 /**
757 * page_referenced - test if the page was referenced
758 * @page: the page to test
759 * @is_locked: caller holds lock on the page
760 * @memcg: target memory cgroup
761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
762 *
763 * Quick test_and_clear_referenced for all mappings to a page,
764 * returns the number of ptes which referenced the page.
765 */
766 int page_referenced(struct page *page,
767 int is_locked,
768 struct mem_cgroup *memcg,
769 unsigned long *vm_flags)
770 {
771 int ret;
772 int we_locked = 0;
773 struct page_referenced_arg pra = {
774 .mapcount = page_mapcount(page),
775 .memcg = memcg,
776 };
777 struct rmap_walk_control rwc = {
778 .rmap_one = page_referenced_one,
779 .arg = (void *)&pra,
780 .anon_lock = page_lock_anon_vma_read,
781 };
782
783 *vm_flags = 0;
784 if (!page_mapped(page))
785 return 0;
786
787 if (!page_rmapping(page))
788 return 0;
789
790 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
791 we_locked = trylock_page(page);
792 if (!we_locked)
793 return 1;
794 }
795
796 /*
797 * If we are reclaiming on behalf of a cgroup, skip
798 * counting on behalf of references from different
799 * cgroups
800 */
801 if (memcg) {
802 rwc.invalid_vma = invalid_page_referenced_vma;
803 }
804
805 ret = rmap_walk(page, &rwc);
806 *vm_flags = pra.vm_flags;
807
808 if (we_locked)
809 unlock_page(page);
810
811 return pra.referenced;
812 }
813
814 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
815 unsigned long address, void *arg)
816 {
817 struct mm_struct *mm = vma->vm_mm;
818 pte_t *pte;
819 spinlock_t *ptl;
820 int ret = 0;
821 int *cleaned = arg;
822
823 pte = page_check_address(page, mm, address, &ptl, 1);
824 if (!pte)
825 goto out;
826
827 if (pte_dirty(*pte) || pte_write(*pte)) {
828 pte_t entry;
829
830 flush_cache_page(vma, address, pte_pfn(*pte));
831 entry = ptep_clear_flush(vma, address, pte);
832 entry = pte_wrprotect(entry);
833 entry = pte_mkclean(entry);
834 set_pte_at(mm, address, pte, entry);
835 ret = 1;
836 }
837
838 pte_unmap_unlock(pte, ptl);
839
840 if (ret) {
841 mmu_notifier_invalidate_page(mm, address);
842 (*cleaned)++;
843 }
844 out:
845 return SWAP_AGAIN;
846 }
847
848 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
849 {
850 if (vma->vm_flags & VM_SHARED)
851 return false;
852
853 return true;
854 }
855
856 int page_mkclean(struct page *page)
857 {
858 int cleaned = 0;
859 struct address_space *mapping;
860 struct rmap_walk_control rwc = {
861 .arg = (void *)&cleaned,
862 .rmap_one = page_mkclean_one,
863 .invalid_vma = invalid_mkclean_vma,
864 };
865
866 BUG_ON(!PageLocked(page));
867
868 if (!page_mapped(page))
869 return 0;
870
871 mapping = page_mapping(page);
872 if (!mapping)
873 return 0;
874
875 rmap_walk(page, &rwc);
876
877 return cleaned;
878 }
879 EXPORT_SYMBOL_GPL(page_mkclean);
880
881 /**
882 * page_move_anon_rmap - move a page to our anon_vma
883 * @page: the page to move to our anon_vma
884 * @vma: the vma the page belongs to
885 * @address: the user virtual address mapped
886 *
887 * When a page belongs exclusively to one process after a COW event,
888 * that page can be moved into the anon_vma that belongs to just that
889 * process, so the rmap code will not search the parent or sibling
890 * processes.
891 */
892 void page_move_anon_rmap(struct page *page,
893 struct vm_area_struct *vma, unsigned long address)
894 {
895 struct anon_vma *anon_vma = vma->anon_vma;
896
897 VM_BUG_ON_PAGE(!PageLocked(page), page);
898 VM_BUG_ON(!anon_vma);
899 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
900
901 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
902 page->mapping = (struct address_space *) anon_vma;
903 }
904
905 /**
906 * __page_set_anon_rmap - set up new anonymous rmap
907 * @page: Page to add to rmap
908 * @vma: VM area to add page to.
909 * @address: User virtual address of the mapping
910 * @exclusive: the page is exclusively owned by the current process
911 */
912 static void __page_set_anon_rmap(struct page *page,
913 struct vm_area_struct *vma, unsigned long address, int exclusive)
914 {
915 struct anon_vma *anon_vma = vma->anon_vma;
916
917 BUG_ON(!anon_vma);
918
919 if (PageAnon(page))
920 return;
921
922 /*
923 * If the page isn't exclusively mapped into this vma,
924 * we must use the _oldest_ possible anon_vma for the
925 * page mapping!
926 */
927 if (!exclusive)
928 anon_vma = anon_vma->root;
929
930 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
931 page->mapping = (struct address_space *) anon_vma;
932 page->index = linear_page_index(vma, address);
933 }
934
935 /**
936 * __page_check_anon_rmap - sanity check anonymous rmap addition
937 * @page: the page to add the mapping to
938 * @vma: the vm area in which the mapping is added
939 * @address: the user virtual address mapped
940 */
941 static void __page_check_anon_rmap(struct page *page,
942 struct vm_area_struct *vma, unsigned long address)
943 {
944 #ifdef CONFIG_DEBUG_VM
945 /*
946 * The page's anon-rmap details (mapping and index) are guaranteed to
947 * be set up correctly at this point.
948 *
949 * We have exclusion against page_add_anon_rmap because the caller
950 * always holds the page locked, except if called from page_dup_rmap,
951 * in which case the page is already known to be setup.
952 *
953 * We have exclusion against page_add_new_anon_rmap because those pages
954 * are initially only visible via the pagetables, and the pte is locked
955 * over the call to page_add_new_anon_rmap.
956 */
957 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
958 BUG_ON(page->index != linear_page_index(vma, address));
959 #endif
960 }
961
962 /**
963 * page_add_anon_rmap - add pte mapping to an anonymous page
964 * @page: the page to add the mapping to
965 * @vma: the vm area in which the mapping is added
966 * @address: the user virtual address mapped
967 *
968 * The caller needs to hold the pte lock, and the page must be locked in
969 * the anon_vma case: to serialize mapping,index checking after setting,
970 * and to ensure that PageAnon is not being upgraded racily to PageKsm
971 * (but PageKsm is never downgraded to PageAnon).
972 */
973 void page_add_anon_rmap(struct page *page,
974 struct vm_area_struct *vma, unsigned long address)
975 {
976 do_page_add_anon_rmap(page, vma, address, 0);
977 }
978
979 /*
980 * Special version of the above for do_swap_page, which often runs
981 * into pages that are exclusively owned by the current process.
982 * Everybody else should continue to use page_add_anon_rmap above.
983 */
984 void do_page_add_anon_rmap(struct page *page,
985 struct vm_area_struct *vma, unsigned long address, int exclusive)
986 {
987 int first = atomic_inc_and_test(&page->_mapcount);
988 if (first) {
989 if (PageTransHuge(page))
990 __inc_zone_page_state(page,
991 NR_ANON_TRANSPARENT_HUGEPAGES);
992 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
993 hpage_nr_pages(page));
994 }
995 if (unlikely(PageKsm(page)))
996 return;
997
998 VM_BUG_ON_PAGE(!PageLocked(page), page);
999 /* address might be in next vma when migration races vma_adjust */
1000 if (first)
1001 __page_set_anon_rmap(page, vma, address, exclusive);
1002 else
1003 __page_check_anon_rmap(page, vma, address);
1004 }
1005
1006 /**
1007 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1008 * @page: the page to add the mapping to
1009 * @vma: the vm area in which the mapping is added
1010 * @address: the user virtual address mapped
1011 *
1012 * Same as page_add_anon_rmap but must only be called on *new* pages.
1013 * This means the inc-and-test can be bypassed.
1014 * Page does not have to be locked.
1015 */
1016 void page_add_new_anon_rmap(struct page *page,
1017 struct vm_area_struct *vma, unsigned long address)
1018 {
1019 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1020 SetPageSwapBacked(page);
1021 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1022 if (PageTransHuge(page))
1023 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1024 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1025 hpage_nr_pages(page));
1026 __page_set_anon_rmap(page, vma, address, 1);
1027 if (!mlocked_vma_newpage(vma, page)) {
1028 SetPageActive(page);
1029 lru_cache_add(page);
1030 } else
1031 add_page_to_unevictable_list(page);
1032 }
1033
1034 /**
1035 * page_add_file_rmap - add pte mapping to a file page
1036 * @page: the page to add the mapping to
1037 *
1038 * The caller needs to hold the pte lock.
1039 */
1040 void page_add_file_rmap(struct page *page)
1041 {
1042 bool locked;
1043 unsigned long flags;
1044
1045 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1046 if (atomic_inc_and_test(&page->_mapcount)) {
1047 __inc_zone_page_state(page, NR_FILE_MAPPED);
1048 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1049 }
1050 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1051 }
1052
1053 /**
1054 * page_remove_rmap - take down pte mapping from a page
1055 * @page: page to remove mapping from
1056 *
1057 * The caller needs to hold the pte lock.
1058 */
1059 void page_remove_rmap(struct page *page)
1060 {
1061 bool anon = PageAnon(page);
1062 bool locked;
1063 unsigned long flags;
1064
1065 /*
1066 * The anon case has no mem_cgroup page_stat to update; but may
1067 * uncharge_page() below, where the lock ordering can deadlock if
1068 * we hold the lock against page_stat move: so avoid it on anon.
1069 */
1070 if (!anon)
1071 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072
1073 /* page still mapped by someone else? */
1074 if (!atomic_add_negative(-1, &page->_mapcount))
1075 goto out;
1076
1077 /*
1078 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1079 * and not charged by memcg for now.
1080 */
1081 if (unlikely(PageHuge(page)))
1082 goto out;
1083 if (anon) {
1084 mem_cgroup_uncharge_page(page);
1085 if (PageTransHuge(page))
1086 __dec_zone_page_state(page,
1087 NR_ANON_TRANSPARENT_HUGEPAGES);
1088 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089 -hpage_nr_pages(page));
1090 } else {
1091 __dec_zone_page_state(page, NR_FILE_MAPPED);
1092 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1093 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1094 }
1095 if (unlikely(PageMlocked(page)))
1096 clear_page_mlock(page);
1097 /*
1098 * It would be tidy to reset the PageAnon mapping here,
1099 * but that might overwrite a racing page_add_anon_rmap
1100 * which increments mapcount after us but sets mapping
1101 * before us: so leave the reset to free_hot_cold_page,
1102 * and remember that it's only reliable while mapped.
1103 * Leaving it set also helps swapoff to reinstate ptes
1104 * faster for those pages still in swapcache.
1105 */
1106 return;
1107 out:
1108 if (!anon)
1109 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1110 }
1111
1112 /*
1113 * @arg: enum ttu_flags will be passed to this argument
1114 */
1115 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1116 unsigned long address, void *arg)
1117 {
1118 struct mm_struct *mm = vma->vm_mm;
1119 pte_t *pte;
1120 pte_t pteval;
1121 spinlock_t *ptl;
1122 int ret = SWAP_AGAIN;
1123 enum ttu_flags flags = (enum ttu_flags)arg;
1124
1125 pte = page_check_address(page, mm, address, &ptl, 0);
1126 if (!pte)
1127 goto out;
1128
1129 /*
1130 * If the page is mlock()d, we cannot swap it out.
1131 * If it's recently referenced (perhaps page_referenced
1132 * skipped over this mm) then we should reactivate it.
1133 */
1134 if (!(flags & TTU_IGNORE_MLOCK)) {
1135 if (vma->vm_flags & VM_LOCKED)
1136 goto out_mlock;
1137
1138 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1139 goto out_unmap;
1140 }
1141 if (!(flags & TTU_IGNORE_ACCESS)) {
1142 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1143 ret = SWAP_FAIL;
1144 goto out_unmap;
1145 }
1146 }
1147
1148 /* Nuke the page table entry. */
1149 flush_cache_page(vma, address, page_to_pfn(page));
1150 pteval = ptep_clear_flush(vma, address, pte);
1151
1152 /* Move the dirty bit to the physical page now the pte is gone. */
1153 if (pte_dirty(pteval))
1154 set_page_dirty(page);
1155
1156 /* Update high watermark before we lower rss */
1157 update_hiwater_rss(mm);
1158
1159 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1160 if (!PageHuge(page)) {
1161 if (PageAnon(page))
1162 dec_mm_counter(mm, MM_ANONPAGES);
1163 else
1164 dec_mm_counter(mm, MM_FILEPAGES);
1165 }
1166 set_pte_at(mm, address, pte,
1167 swp_entry_to_pte(make_hwpoison_entry(page)));
1168 } else if (pte_unused(pteval)) {
1169 /*
1170 * The guest indicated that the page content is of no
1171 * interest anymore. Simply discard the pte, vmscan
1172 * will take care of the rest.
1173 */
1174 if (PageAnon(page))
1175 dec_mm_counter(mm, MM_ANONPAGES);
1176 else
1177 dec_mm_counter(mm, MM_FILEPAGES);
1178 } else if (PageAnon(page)) {
1179 swp_entry_t entry = { .val = page_private(page) };
1180 pte_t swp_pte;
1181
1182 if (PageSwapCache(page)) {
1183 /*
1184 * Store the swap location in the pte.
1185 * See handle_pte_fault() ...
1186 */
1187 if (swap_duplicate(entry) < 0) {
1188 set_pte_at(mm, address, pte, pteval);
1189 ret = SWAP_FAIL;
1190 goto out_unmap;
1191 }
1192 if (list_empty(&mm->mmlist)) {
1193 spin_lock(&mmlist_lock);
1194 if (list_empty(&mm->mmlist))
1195 list_add(&mm->mmlist, &init_mm.mmlist);
1196 spin_unlock(&mmlist_lock);
1197 }
1198 dec_mm_counter(mm, MM_ANONPAGES);
1199 inc_mm_counter(mm, MM_SWAPENTS);
1200 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1201 /*
1202 * Store the pfn of the page in a special migration
1203 * pte. do_swap_page() will wait until the migration
1204 * pte is removed and then restart fault handling.
1205 */
1206 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1207 entry = make_migration_entry(page, pte_write(pteval));
1208 }
1209 swp_pte = swp_entry_to_pte(entry);
1210 if (pte_soft_dirty(pteval))
1211 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1212 set_pte_at(mm, address, pte, swp_pte);
1213 BUG_ON(pte_file(*pte));
1214 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1215 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1216 /* Establish migration entry for a file page */
1217 swp_entry_t entry;
1218 entry = make_migration_entry(page, pte_write(pteval));
1219 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1220 } else
1221 dec_mm_counter(mm, MM_FILEPAGES);
1222
1223 page_remove_rmap(page);
1224 page_cache_release(page);
1225
1226 out_unmap:
1227 pte_unmap_unlock(pte, ptl);
1228 if (ret != SWAP_FAIL)
1229 mmu_notifier_invalidate_page(mm, address);
1230 out:
1231 return ret;
1232
1233 out_mlock:
1234 pte_unmap_unlock(pte, ptl);
1235
1236
1237 /*
1238 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1239 * unstable result and race. Plus, We can't wait here because
1240 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1241 * if trylock failed, the page remain in evictable lru and later
1242 * vmscan could retry to move the page to unevictable lru if the
1243 * page is actually mlocked.
1244 */
1245 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1246 if (vma->vm_flags & VM_LOCKED) {
1247 mlock_vma_page(page);
1248 ret = SWAP_MLOCK;
1249 }
1250 up_read(&vma->vm_mm->mmap_sem);
1251 }
1252 return ret;
1253 }
1254
1255 /*
1256 * objrmap doesn't work for nonlinear VMAs because the assumption that
1257 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1258 * Consequently, given a particular page and its ->index, we cannot locate the
1259 * ptes which are mapping that page without an exhaustive linear search.
1260 *
1261 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1262 * maps the file to which the target page belongs. The ->vm_private_data field
1263 * holds the current cursor into that scan. Successive searches will circulate
1264 * around the vma's virtual address space.
1265 *
1266 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1267 * more scanning pressure is placed against them as well. Eventually pages
1268 * will become fully unmapped and are eligible for eviction.
1269 *
1270 * For very sparsely populated VMAs this is a little inefficient - chances are
1271 * there there won't be many ptes located within the scan cluster. In this case
1272 * maybe we could scan further - to the end of the pte page, perhaps.
1273 *
1274 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1275 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1276 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1277 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1278 */
1279 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1280 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1281
1282 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1283 struct vm_area_struct *vma, struct page *check_page)
1284 {
1285 struct mm_struct *mm = vma->vm_mm;
1286 pmd_t *pmd;
1287 pte_t *pte;
1288 pte_t pteval;
1289 spinlock_t *ptl;
1290 struct page *page;
1291 unsigned long address;
1292 unsigned long mmun_start; /* For mmu_notifiers */
1293 unsigned long mmun_end; /* For mmu_notifiers */
1294 unsigned long end;
1295 int ret = SWAP_AGAIN;
1296 int locked_vma = 0;
1297
1298 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1299 end = address + CLUSTER_SIZE;
1300 if (address < vma->vm_start)
1301 address = vma->vm_start;
1302 if (end > vma->vm_end)
1303 end = vma->vm_end;
1304
1305 pmd = mm_find_pmd(mm, address);
1306 if (!pmd)
1307 return ret;
1308
1309 mmun_start = address;
1310 mmun_end = end;
1311 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1312
1313 /*
1314 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1315 * keep the sem while scanning the cluster for mlocking pages.
1316 */
1317 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1318 locked_vma = (vma->vm_flags & VM_LOCKED);
1319 if (!locked_vma)
1320 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1321 }
1322
1323 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1324
1325 /* Update high watermark before we lower rss */
1326 update_hiwater_rss(mm);
1327
1328 for (; address < end; pte++, address += PAGE_SIZE) {
1329 if (!pte_present(*pte))
1330 continue;
1331 page = vm_normal_page(vma, address, *pte);
1332 BUG_ON(!page || PageAnon(page));
1333
1334 if (locked_vma) {
1335 mlock_vma_page(page); /* no-op if already mlocked */
1336 if (page == check_page)
1337 ret = SWAP_MLOCK;
1338 continue; /* don't unmap */
1339 }
1340
1341 if (ptep_clear_flush_young_notify(vma, address, pte))
1342 continue;
1343
1344 /* Nuke the page table entry. */
1345 flush_cache_page(vma, address, pte_pfn(*pte));
1346 pteval = ptep_clear_flush(vma, address, pte);
1347
1348 /* If nonlinear, store the file page offset in the pte. */
1349 if (page->index != linear_page_index(vma, address)) {
1350 pte_t ptfile = pgoff_to_pte(page->index);
1351 if (pte_soft_dirty(pteval))
1352 pte_file_mksoft_dirty(ptfile);
1353 set_pte_at(mm, address, pte, ptfile);
1354 }
1355
1356 /* Move the dirty bit to the physical page now the pte is gone. */
1357 if (pte_dirty(pteval))
1358 set_page_dirty(page);
1359
1360 page_remove_rmap(page);
1361 page_cache_release(page);
1362 dec_mm_counter(mm, MM_FILEPAGES);
1363 (*mapcount)--;
1364 }
1365 pte_unmap_unlock(pte - 1, ptl);
1366 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1367 if (locked_vma)
1368 up_read(&vma->vm_mm->mmap_sem);
1369 return ret;
1370 }
1371
1372 static int try_to_unmap_nonlinear(struct page *page,
1373 struct address_space *mapping, void *arg)
1374 {
1375 struct vm_area_struct *vma;
1376 int ret = SWAP_AGAIN;
1377 unsigned long cursor;
1378 unsigned long max_nl_cursor = 0;
1379 unsigned long max_nl_size = 0;
1380 unsigned int mapcount;
1381
1382 list_for_each_entry(vma,
1383 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1384
1385 cursor = (unsigned long) vma->vm_private_data;
1386 if (cursor > max_nl_cursor)
1387 max_nl_cursor = cursor;
1388 cursor = vma->vm_end - vma->vm_start;
1389 if (cursor > max_nl_size)
1390 max_nl_size = cursor;
1391 }
1392
1393 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1394 return SWAP_FAIL;
1395 }
1396
1397 /*
1398 * We don't try to search for this page in the nonlinear vmas,
1399 * and page_referenced wouldn't have found it anyway. Instead
1400 * just walk the nonlinear vmas trying to age and unmap some.
1401 * The mapcount of the page we came in with is irrelevant,
1402 * but even so use it as a guide to how hard we should try?
1403 */
1404 mapcount = page_mapcount(page);
1405 if (!mapcount)
1406 return ret;
1407
1408 cond_resched();
1409
1410 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1411 if (max_nl_cursor == 0)
1412 max_nl_cursor = CLUSTER_SIZE;
1413
1414 do {
1415 list_for_each_entry(vma,
1416 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1417
1418 cursor = (unsigned long) vma->vm_private_data;
1419 while (cursor < max_nl_cursor &&
1420 cursor < vma->vm_end - vma->vm_start) {
1421 if (try_to_unmap_cluster(cursor, &mapcount,
1422 vma, page) == SWAP_MLOCK)
1423 ret = SWAP_MLOCK;
1424 cursor += CLUSTER_SIZE;
1425 vma->vm_private_data = (void *) cursor;
1426 if ((int)mapcount <= 0)
1427 return ret;
1428 }
1429 vma->vm_private_data = (void *) max_nl_cursor;
1430 }
1431 cond_resched();
1432 max_nl_cursor += CLUSTER_SIZE;
1433 } while (max_nl_cursor <= max_nl_size);
1434
1435 /*
1436 * Don't loop forever (perhaps all the remaining pages are
1437 * in locked vmas). Reset cursor on all unreserved nonlinear
1438 * vmas, now forgetting on which ones it had fallen behind.
1439 */
1440 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1441 vma->vm_private_data = NULL;
1442
1443 return ret;
1444 }
1445
1446 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1447 {
1448 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1449
1450 if (!maybe_stack)
1451 return false;
1452
1453 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1454 VM_STACK_INCOMPLETE_SETUP)
1455 return true;
1456
1457 return false;
1458 }
1459
1460 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1461 {
1462 return is_vma_temporary_stack(vma);
1463 }
1464
1465 static int page_not_mapped(struct page *page)
1466 {
1467 return !page_mapped(page);
1468 };
1469
1470 /**
1471 * try_to_unmap - try to remove all page table mappings to a page
1472 * @page: the page to get unmapped
1473 * @flags: action and flags
1474 *
1475 * Tries to remove all the page table entries which are mapping this
1476 * page, used in the pageout path. Caller must hold the page lock.
1477 * Return values are:
1478 *
1479 * SWAP_SUCCESS - we succeeded in removing all mappings
1480 * SWAP_AGAIN - we missed a mapping, try again later
1481 * SWAP_FAIL - the page is unswappable
1482 * SWAP_MLOCK - page is mlocked.
1483 */
1484 int try_to_unmap(struct page *page, enum ttu_flags flags)
1485 {
1486 int ret;
1487 struct rmap_walk_control rwc = {
1488 .rmap_one = try_to_unmap_one,
1489 .arg = (void *)flags,
1490 .done = page_not_mapped,
1491 .file_nonlinear = try_to_unmap_nonlinear,
1492 .anon_lock = page_lock_anon_vma_read,
1493 };
1494
1495 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1496
1497 /*
1498 * During exec, a temporary VMA is setup and later moved.
1499 * The VMA is moved under the anon_vma lock but not the
1500 * page tables leading to a race where migration cannot
1501 * find the migration ptes. Rather than increasing the
1502 * locking requirements of exec(), migration skips
1503 * temporary VMAs until after exec() completes.
1504 */
1505 if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
1506 rwc.invalid_vma = invalid_migration_vma;
1507
1508 ret = rmap_walk(page, &rwc);
1509
1510 if (ret != SWAP_MLOCK && !page_mapped(page))
1511 ret = SWAP_SUCCESS;
1512 return ret;
1513 }
1514
1515 /**
1516 * try_to_munlock - try to munlock a page
1517 * @page: the page to be munlocked
1518 *
1519 * Called from munlock code. Checks all of the VMAs mapping the page
1520 * to make sure nobody else has this page mlocked. The page will be
1521 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1522 *
1523 * Return values are:
1524 *
1525 * SWAP_AGAIN - no vma is holding page mlocked, or,
1526 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1527 * SWAP_FAIL - page cannot be located at present
1528 * SWAP_MLOCK - page is now mlocked.
1529 */
1530 int try_to_munlock(struct page *page)
1531 {
1532 int ret;
1533 struct rmap_walk_control rwc = {
1534 .rmap_one = try_to_unmap_one,
1535 .arg = (void *)TTU_MUNLOCK,
1536 .done = page_not_mapped,
1537 /*
1538 * We don't bother to try to find the munlocked page in
1539 * nonlinears. It's costly. Instead, later, page reclaim logic
1540 * may call try_to_unmap() and recover PG_mlocked lazily.
1541 */
1542 .file_nonlinear = NULL,
1543 .anon_lock = page_lock_anon_vma_read,
1544
1545 };
1546
1547 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1548
1549 ret = rmap_walk(page, &rwc);
1550 return ret;
1551 }
1552
1553 void __put_anon_vma(struct anon_vma *anon_vma)
1554 {
1555 struct anon_vma *root = anon_vma->root;
1556
1557 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1558 anon_vma_free(root);
1559
1560 anon_vma_free(anon_vma);
1561 }
1562
1563 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1564 struct rmap_walk_control *rwc)
1565 {
1566 struct anon_vma *anon_vma;
1567
1568 if (rwc->anon_lock)
1569 return rwc->anon_lock(page);
1570
1571 /*
1572 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1573 * because that depends on page_mapped(); but not all its usages
1574 * are holding mmap_sem. Users without mmap_sem are required to
1575 * take a reference count to prevent the anon_vma disappearing
1576 */
1577 anon_vma = page_anon_vma(page);
1578 if (!anon_vma)
1579 return NULL;
1580
1581 anon_vma_lock_read(anon_vma);
1582 return anon_vma;
1583 }
1584
1585 /*
1586 * rmap_walk_anon - do something to anonymous page using the object-based
1587 * rmap method
1588 * @page: the page to be handled
1589 * @rwc: control variable according to each walk type
1590 *
1591 * Find all the mappings of a page using the mapping pointer and the vma chains
1592 * contained in the anon_vma struct it points to.
1593 *
1594 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1595 * where the page was found will be held for write. So, we won't recheck
1596 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1597 * LOCKED.
1598 */
1599 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1600 {
1601 struct anon_vma *anon_vma;
1602 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1603 struct anon_vma_chain *avc;
1604 int ret = SWAP_AGAIN;
1605
1606 anon_vma = rmap_walk_anon_lock(page, rwc);
1607 if (!anon_vma)
1608 return ret;
1609
1610 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1611 struct vm_area_struct *vma = avc->vma;
1612 unsigned long address = vma_address(page, vma);
1613
1614 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1615 continue;
1616
1617 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1618 if (ret != SWAP_AGAIN)
1619 break;
1620 if (rwc->done && rwc->done(page))
1621 break;
1622 }
1623 anon_vma_unlock_read(anon_vma);
1624 return ret;
1625 }
1626
1627 /*
1628 * rmap_walk_file - do something to file page using the object-based rmap method
1629 * @page: the page to be handled
1630 * @rwc: control variable according to each walk type
1631 *
1632 * Find all the mappings of a page using the mapping pointer and the vma chains
1633 * contained in the address_space struct it points to.
1634 *
1635 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1636 * where the page was found will be held for write. So, we won't recheck
1637 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1638 * LOCKED.
1639 */
1640 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1641 {
1642 struct address_space *mapping = page->mapping;
1643 pgoff_t pgoff = page->index << compound_order(page);
1644 struct vm_area_struct *vma;
1645 int ret = SWAP_AGAIN;
1646
1647 /*
1648 * The page lock not only makes sure that page->mapping cannot
1649 * suddenly be NULLified by truncation, it makes sure that the
1650 * structure at mapping cannot be freed and reused yet,
1651 * so we can safely take mapping->i_mmap_mutex.
1652 */
1653 VM_BUG_ON(!PageLocked(page));
1654
1655 if (!mapping)
1656 return ret;
1657 mutex_lock(&mapping->i_mmap_mutex);
1658 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1659 unsigned long address = vma_address(page, vma);
1660
1661 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1662 continue;
1663
1664 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1665 if (ret != SWAP_AGAIN)
1666 goto done;
1667 if (rwc->done && rwc->done(page))
1668 goto done;
1669 }
1670
1671 if (!rwc->file_nonlinear)
1672 goto done;
1673
1674 if (list_empty(&mapping->i_mmap_nonlinear))
1675 goto done;
1676
1677 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1678
1679 done:
1680 mutex_unlock(&mapping->i_mmap_mutex);
1681 return ret;
1682 }
1683
1684 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1685 {
1686 if (unlikely(PageKsm(page)))
1687 return rmap_walk_ksm(page, rwc);
1688 else if (PageAnon(page))
1689 return rmap_walk_anon(page, rwc);
1690 else
1691 return rmap_walk_file(page, rwc);
1692 }
1693
1694 #ifdef CONFIG_HUGETLB_PAGE
1695 /*
1696 * The following three functions are for anonymous (private mapped) hugepages.
1697 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1698 * and no lru code, because we handle hugepages differently from common pages.
1699 */
1700 static void __hugepage_set_anon_rmap(struct page *page,
1701 struct vm_area_struct *vma, unsigned long address, int exclusive)
1702 {
1703 struct anon_vma *anon_vma = vma->anon_vma;
1704
1705 BUG_ON(!anon_vma);
1706
1707 if (PageAnon(page))
1708 return;
1709 if (!exclusive)
1710 anon_vma = anon_vma->root;
1711
1712 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1713 page->mapping = (struct address_space *) anon_vma;
1714 page->index = linear_page_index(vma, address);
1715 }
1716
1717 void hugepage_add_anon_rmap(struct page *page,
1718 struct vm_area_struct *vma, unsigned long address)
1719 {
1720 struct anon_vma *anon_vma = vma->anon_vma;
1721 int first;
1722
1723 BUG_ON(!PageLocked(page));
1724 BUG_ON(!anon_vma);
1725 /* address might be in next vma when migration races vma_adjust */
1726 first = atomic_inc_and_test(&page->_mapcount);
1727 if (first)
1728 __hugepage_set_anon_rmap(page, vma, address, 0);
1729 }
1730
1731 void hugepage_add_new_anon_rmap(struct page *page,
1732 struct vm_area_struct *vma, unsigned long address)
1733 {
1734 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1735 atomic_set(&page->_mapcount, 0);
1736 __hugepage_set_anon_rmap(page, vma, address, 1);
1737 }
1738 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.07133 seconds and 6 git commands to generate.