Merge branch 'master' of /home/aia21/ntfs-2.6/
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
25 *
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29 * taken together; in truncation, i_mutex is taken outermost.
30 *
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock or pte_lock
36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37 * swap_lock (in swap_duplicate, swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56
57 #include <asm/tlbflush.h>
58
59 struct kmem_cache *anon_vma_cachep;
60
61 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
62 {
63 #ifdef CONFIG_DEBUG_VM
64 struct anon_vma *anon_vma = find_vma->anon_vma;
65 struct vm_area_struct *vma;
66 unsigned int mapcount = 0;
67 int found = 0;
68
69 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
70 mapcount++;
71 BUG_ON(mapcount > 100000);
72 if (vma == find_vma)
73 found = 1;
74 }
75 BUG_ON(!found);
76 #endif
77 }
78
79 /* This must be called under the mmap_sem. */
80 int anon_vma_prepare(struct vm_area_struct *vma)
81 {
82 struct anon_vma *anon_vma = vma->anon_vma;
83
84 might_sleep();
85 if (unlikely(!anon_vma)) {
86 struct mm_struct *mm = vma->vm_mm;
87 struct anon_vma *allocated, *locked;
88
89 anon_vma = find_mergeable_anon_vma(vma);
90 if (anon_vma) {
91 allocated = NULL;
92 locked = anon_vma;
93 spin_lock(&locked->lock);
94 } else {
95 anon_vma = anon_vma_alloc();
96 if (unlikely(!anon_vma))
97 return -ENOMEM;
98 allocated = anon_vma;
99 locked = NULL;
100 }
101
102 /* page_table_lock to protect against threads */
103 spin_lock(&mm->page_table_lock);
104 if (likely(!vma->anon_vma)) {
105 vma->anon_vma = anon_vma;
106 list_add(&vma->anon_vma_node, &anon_vma->head);
107 allocated = NULL;
108 }
109 spin_unlock(&mm->page_table_lock);
110
111 if (locked)
112 spin_unlock(&locked->lock);
113 if (unlikely(allocated))
114 anon_vma_free(allocated);
115 }
116 return 0;
117 }
118
119 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
120 {
121 BUG_ON(vma->anon_vma != next->anon_vma);
122 list_del(&next->anon_vma_node);
123 }
124
125 void __anon_vma_link(struct vm_area_struct *vma)
126 {
127 struct anon_vma *anon_vma = vma->anon_vma;
128
129 if (anon_vma) {
130 list_add(&vma->anon_vma_node, &anon_vma->head);
131 validate_anon_vma(vma);
132 }
133 }
134
135 void anon_vma_link(struct vm_area_struct *vma)
136 {
137 struct anon_vma *anon_vma = vma->anon_vma;
138
139 if (anon_vma) {
140 spin_lock(&anon_vma->lock);
141 list_add(&vma->anon_vma_node, &anon_vma->head);
142 validate_anon_vma(vma);
143 spin_unlock(&anon_vma->lock);
144 }
145 }
146
147 void anon_vma_unlink(struct vm_area_struct *vma)
148 {
149 struct anon_vma *anon_vma = vma->anon_vma;
150 int empty;
151
152 if (!anon_vma)
153 return;
154
155 spin_lock(&anon_vma->lock);
156 validate_anon_vma(vma);
157 list_del(&vma->anon_vma_node);
158
159 /* We must garbage collect the anon_vma if it's empty */
160 empty = list_empty(&anon_vma->head);
161 spin_unlock(&anon_vma->lock);
162
163 if (empty)
164 anon_vma_free(anon_vma);
165 }
166
167 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
168 unsigned long flags)
169 {
170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 SLAB_CTOR_CONSTRUCTOR) {
172 struct anon_vma *anon_vma = data;
173
174 spin_lock_init(&anon_vma->lock);
175 INIT_LIST_HEAD(&anon_vma->head);
176 }
177 }
178
179 void __init anon_vma_init(void)
180 {
181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
183 }
184
185 /*
186 * Getting a lock on a stable anon_vma from a page off the LRU is
187 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
188 */
189 static struct anon_vma *page_lock_anon_vma(struct page *page)
190 {
191 struct anon_vma *anon_vma = NULL;
192 unsigned long anon_mapping;
193
194 rcu_read_lock();
195 anon_mapping = (unsigned long) page->mapping;
196 if (!(anon_mapping & PAGE_MAPPING_ANON))
197 goto out;
198 if (!page_mapped(page))
199 goto out;
200
201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 spin_lock(&anon_vma->lock);
203 out:
204 rcu_read_unlock();
205 return anon_vma;
206 }
207
208 #ifdef CONFIG_MIGRATION
209 /*
210 * Remove an anonymous page from swap replacing the swap pte's
211 * through real pte's pointing to valid pages and then releasing
212 * the page from the swap cache.
213 *
214 * Must hold page lock on page and mmap_sem of one vma that contains
215 * the page.
216 */
217 void remove_from_swap(struct page *page)
218 {
219 struct anon_vma *anon_vma;
220 struct vm_area_struct *vma;
221 unsigned long mapping;
222
223 if (!PageSwapCache(page))
224 return;
225
226 mapping = (unsigned long)page->mapping;
227
228 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
229 return;
230
231 /*
232 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
233 */
234 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
235 spin_lock(&anon_vma->lock);
236
237 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
238 remove_vma_swap(vma, page);
239
240 spin_unlock(&anon_vma->lock);
241 delete_from_swap_cache(page);
242 }
243 EXPORT_SYMBOL(remove_from_swap);
244 #endif
245
246 /*
247 * At what user virtual address is page expected in vma?
248 */
249 static inline unsigned long
250 vma_address(struct page *page, struct vm_area_struct *vma)
251 {
252 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
253 unsigned long address;
254
255 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
256 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
257 /* page should be within any vma from prio_tree_next */
258 BUG_ON(!PageAnon(page));
259 return -EFAULT;
260 }
261 return address;
262 }
263
264 /*
265 * At what user virtual address is page expected in vma? checking that the
266 * page matches the vma: currently only used on anon pages, by unuse_vma;
267 */
268 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
269 {
270 if (PageAnon(page)) {
271 if ((void *)vma->anon_vma !=
272 (void *)page->mapping - PAGE_MAPPING_ANON)
273 return -EFAULT;
274 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
275 if (!vma->vm_file ||
276 vma->vm_file->f_mapping != page->mapping)
277 return -EFAULT;
278 } else
279 return -EFAULT;
280 return vma_address(page, vma);
281 }
282
283 /*
284 * Check that @page is mapped at @address into @mm.
285 *
286 * On success returns with pte mapped and locked.
287 */
288 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
289 unsigned long address, spinlock_t **ptlp)
290 {
291 pgd_t *pgd;
292 pud_t *pud;
293 pmd_t *pmd;
294 pte_t *pte;
295 spinlock_t *ptl;
296
297 pgd = pgd_offset(mm, address);
298 if (!pgd_present(*pgd))
299 return NULL;
300
301 pud = pud_offset(pgd, address);
302 if (!pud_present(*pud))
303 return NULL;
304
305 pmd = pmd_offset(pud, address);
306 if (!pmd_present(*pmd))
307 return NULL;
308
309 pte = pte_offset_map(pmd, address);
310 /* Make a quick check before getting the lock */
311 if (!pte_present(*pte)) {
312 pte_unmap(pte);
313 return NULL;
314 }
315
316 ptl = pte_lockptr(mm, pmd);
317 spin_lock(ptl);
318 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
319 *ptlp = ptl;
320 return pte;
321 }
322 pte_unmap_unlock(pte, ptl);
323 return NULL;
324 }
325
326 /*
327 * Subfunctions of page_referenced: page_referenced_one called
328 * repeatedly from either page_referenced_anon or page_referenced_file.
329 */
330 static int page_referenced_one(struct page *page,
331 struct vm_area_struct *vma, unsigned int *mapcount)
332 {
333 struct mm_struct *mm = vma->vm_mm;
334 unsigned long address;
335 pte_t *pte;
336 spinlock_t *ptl;
337 int referenced = 0;
338
339 address = vma_address(page, vma);
340 if (address == -EFAULT)
341 goto out;
342
343 pte = page_check_address(page, mm, address, &ptl);
344 if (!pte)
345 goto out;
346
347 if (ptep_clear_flush_young(vma, address, pte))
348 referenced++;
349
350 /* Pretend the page is referenced if the task has the
351 swap token and is in the middle of a page fault. */
352 if (mm != current->mm && has_swap_token(mm) &&
353 rwsem_is_locked(&mm->mmap_sem))
354 referenced++;
355
356 (*mapcount)--;
357 pte_unmap_unlock(pte, ptl);
358 out:
359 return referenced;
360 }
361
362 static int page_referenced_anon(struct page *page)
363 {
364 unsigned int mapcount;
365 struct anon_vma *anon_vma;
366 struct vm_area_struct *vma;
367 int referenced = 0;
368
369 anon_vma = page_lock_anon_vma(page);
370 if (!anon_vma)
371 return referenced;
372
373 mapcount = page_mapcount(page);
374 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
375 referenced += page_referenced_one(page, vma, &mapcount);
376 if (!mapcount)
377 break;
378 }
379 spin_unlock(&anon_vma->lock);
380 return referenced;
381 }
382
383 /**
384 * page_referenced_file - referenced check for object-based rmap
385 * @page: the page we're checking references on.
386 *
387 * For an object-based mapped page, find all the places it is mapped and
388 * check/clear the referenced flag. This is done by following the page->mapping
389 * pointer, then walking the chain of vmas it holds. It returns the number
390 * of references it found.
391 *
392 * This function is only called from page_referenced for object-based pages.
393 */
394 static int page_referenced_file(struct page *page)
395 {
396 unsigned int mapcount;
397 struct address_space *mapping = page->mapping;
398 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
399 struct vm_area_struct *vma;
400 struct prio_tree_iter iter;
401 int referenced = 0;
402
403 /*
404 * The caller's checks on page->mapping and !PageAnon have made
405 * sure that this is a file page: the check for page->mapping
406 * excludes the case just before it gets set on an anon page.
407 */
408 BUG_ON(PageAnon(page));
409
410 /*
411 * The page lock not only makes sure that page->mapping cannot
412 * suddenly be NULLified by truncation, it makes sure that the
413 * structure at mapping cannot be freed and reused yet,
414 * so we can safely take mapping->i_mmap_lock.
415 */
416 BUG_ON(!PageLocked(page));
417
418 spin_lock(&mapping->i_mmap_lock);
419
420 /*
421 * i_mmap_lock does not stabilize mapcount at all, but mapcount
422 * is more likely to be accurate if we note it after spinning.
423 */
424 mapcount = page_mapcount(page);
425
426 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
427 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
428 == (VM_LOCKED|VM_MAYSHARE)) {
429 referenced++;
430 break;
431 }
432 referenced += page_referenced_one(page, vma, &mapcount);
433 if (!mapcount)
434 break;
435 }
436
437 spin_unlock(&mapping->i_mmap_lock);
438 return referenced;
439 }
440
441 /**
442 * page_referenced - test if the page was referenced
443 * @page: the page to test
444 * @is_locked: caller holds lock on the page
445 *
446 * Quick test_and_clear_referenced for all mappings to a page,
447 * returns the number of ptes which referenced the page.
448 */
449 int page_referenced(struct page *page, int is_locked)
450 {
451 int referenced = 0;
452
453 if (page_test_and_clear_young(page))
454 referenced++;
455
456 if (TestClearPageReferenced(page))
457 referenced++;
458
459 if (page_mapped(page) && page->mapping) {
460 if (PageAnon(page))
461 referenced += page_referenced_anon(page);
462 else if (is_locked)
463 referenced += page_referenced_file(page);
464 else if (TestSetPageLocked(page))
465 referenced++;
466 else {
467 if (page->mapping)
468 referenced += page_referenced_file(page);
469 unlock_page(page);
470 }
471 }
472 return referenced;
473 }
474
475 /**
476 * page_set_anon_rmap - setup new anonymous rmap
477 * @page: the page to add the mapping to
478 * @vma: the vm area in which the mapping is added
479 * @address: the user virtual address mapped
480 */
481 static void __page_set_anon_rmap(struct page *page,
482 struct vm_area_struct *vma, unsigned long address)
483 {
484 struct anon_vma *anon_vma = vma->anon_vma;
485
486 BUG_ON(!anon_vma);
487 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
488 page->mapping = (struct address_space *) anon_vma;
489
490 page->index = linear_page_index(vma, address);
491
492 /*
493 * nr_mapped state can be updated without turning off
494 * interrupts because it is not modified via interrupt.
495 */
496 __inc_page_state(nr_mapped);
497 }
498
499 /**
500 * page_add_anon_rmap - add pte mapping to an anonymous page
501 * @page: the page to add the mapping to
502 * @vma: the vm area in which the mapping is added
503 * @address: the user virtual address mapped
504 *
505 * The caller needs to hold the pte lock.
506 */
507 void page_add_anon_rmap(struct page *page,
508 struct vm_area_struct *vma, unsigned long address)
509 {
510 if (atomic_inc_and_test(&page->_mapcount))
511 __page_set_anon_rmap(page, vma, address);
512 /* else checking page index and mapping is racy */
513 }
514
515 /*
516 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
517 * @page: the page to add the mapping to
518 * @vma: the vm area in which the mapping is added
519 * @address: the user virtual address mapped
520 *
521 * Same as page_add_anon_rmap but must only be called on *new* pages.
522 * This means the inc-and-test can be bypassed.
523 */
524 void page_add_new_anon_rmap(struct page *page,
525 struct vm_area_struct *vma, unsigned long address)
526 {
527 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
528 __page_set_anon_rmap(page, vma, address);
529 }
530
531 /**
532 * page_add_file_rmap - add pte mapping to a file page
533 * @page: the page to add the mapping to
534 *
535 * The caller needs to hold the pte lock.
536 */
537 void page_add_file_rmap(struct page *page)
538 {
539 if (atomic_inc_and_test(&page->_mapcount))
540 __inc_page_state(nr_mapped);
541 }
542
543 /**
544 * page_remove_rmap - take down pte mapping from a page
545 * @page: page to remove mapping from
546 *
547 * The caller needs to hold the pte lock.
548 */
549 void page_remove_rmap(struct page *page)
550 {
551 if (atomic_add_negative(-1, &page->_mapcount)) {
552 #ifdef CONFIG_DEBUG_VM
553 if (unlikely(page_mapcount(page) < 0)) {
554 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
555 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
556 printk (KERN_EMERG " page->count = %x\n", page_count(page));
557 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
558 }
559 #endif
560 BUG_ON(page_mapcount(page) < 0);
561 /*
562 * It would be tidy to reset the PageAnon mapping here,
563 * but that might overwrite a racing page_add_anon_rmap
564 * which increments mapcount after us but sets mapping
565 * before us: so leave the reset to free_hot_cold_page,
566 * and remember that it's only reliable while mapped.
567 * Leaving it set also helps swapoff to reinstate ptes
568 * faster for those pages still in swapcache.
569 */
570 if (page_test_and_clear_dirty(page))
571 set_page_dirty(page);
572 __dec_page_state(nr_mapped);
573 }
574 }
575
576 /*
577 * Subfunctions of try_to_unmap: try_to_unmap_one called
578 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
579 */
580 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
581 int ignore_refs)
582 {
583 struct mm_struct *mm = vma->vm_mm;
584 unsigned long address;
585 pte_t *pte;
586 pte_t pteval;
587 spinlock_t *ptl;
588 int ret = SWAP_AGAIN;
589
590 address = vma_address(page, vma);
591 if (address == -EFAULT)
592 goto out;
593
594 pte = page_check_address(page, mm, address, &ptl);
595 if (!pte)
596 goto out;
597
598 /*
599 * If the page is mlock()d, we cannot swap it out.
600 * If it's recently referenced (perhaps page_referenced
601 * skipped over this mm) then we should reactivate it.
602 */
603 if ((vma->vm_flags & VM_LOCKED) ||
604 (ptep_clear_flush_young(vma, address, pte)
605 && !ignore_refs)) {
606 ret = SWAP_FAIL;
607 goto out_unmap;
608 }
609
610 /* Nuke the page table entry. */
611 flush_cache_page(vma, address, page_to_pfn(page));
612 pteval = ptep_clear_flush(vma, address, pte);
613
614 /* Move the dirty bit to the physical page now the pte is gone. */
615 if (pte_dirty(pteval))
616 set_page_dirty(page);
617
618 /* Update high watermark before we lower rss */
619 update_hiwater_rss(mm);
620
621 if (PageAnon(page)) {
622 swp_entry_t entry = { .val = page_private(page) };
623 /*
624 * Store the swap location in the pte.
625 * See handle_pte_fault() ...
626 */
627 BUG_ON(!PageSwapCache(page));
628 swap_duplicate(entry);
629 if (list_empty(&mm->mmlist)) {
630 spin_lock(&mmlist_lock);
631 if (list_empty(&mm->mmlist))
632 list_add(&mm->mmlist, &init_mm.mmlist);
633 spin_unlock(&mmlist_lock);
634 }
635 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
636 BUG_ON(pte_file(*pte));
637 dec_mm_counter(mm, anon_rss);
638 } else
639 dec_mm_counter(mm, file_rss);
640
641 page_remove_rmap(page);
642 page_cache_release(page);
643
644 out_unmap:
645 pte_unmap_unlock(pte, ptl);
646 out:
647 return ret;
648 }
649
650 /*
651 * objrmap doesn't work for nonlinear VMAs because the assumption that
652 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
653 * Consequently, given a particular page and its ->index, we cannot locate the
654 * ptes which are mapping that page without an exhaustive linear search.
655 *
656 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
657 * maps the file to which the target page belongs. The ->vm_private_data field
658 * holds the current cursor into that scan. Successive searches will circulate
659 * around the vma's virtual address space.
660 *
661 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
662 * more scanning pressure is placed against them as well. Eventually pages
663 * will become fully unmapped and are eligible for eviction.
664 *
665 * For very sparsely populated VMAs this is a little inefficient - chances are
666 * there there won't be many ptes located within the scan cluster. In this case
667 * maybe we could scan further - to the end of the pte page, perhaps.
668 */
669 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
670 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
671
672 static void try_to_unmap_cluster(unsigned long cursor,
673 unsigned int *mapcount, struct vm_area_struct *vma)
674 {
675 struct mm_struct *mm = vma->vm_mm;
676 pgd_t *pgd;
677 pud_t *pud;
678 pmd_t *pmd;
679 pte_t *pte;
680 pte_t pteval;
681 spinlock_t *ptl;
682 struct page *page;
683 unsigned long address;
684 unsigned long end;
685
686 address = (vma->vm_start + cursor) & CLUSTER_MASK;
687 end = address + CLUSTER_SIZE;
688 if (address < vma->vm_start)
689 address = vma->vm_start;
690 if (end > vma->vm_end)
691 end = vma->vm_end;
692
693 pgd = pgd_offset(mm, address);
694 if (!pgd_present(*pgd))
695 return;
696
697 pud = pud_offset(pgd, address);
698 if (!pud_present(*pud))
699 return;
700
701 pmd = pmd_offset(pud, address);
702 if (!pmd_present(*pmd))
703 return;
704
705 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
706
707 /* Update high watermark before we lower rss */
708 update_hiwater_rss(mm);
709
710 for (; address < end; pte++, address += PAGE_SIZE) {
711 if (!pte_present(*pte))
712 continue;
713 page = vm_normal_page(vma, address, *pte);
714 BUG_ON(!page || PageAnon(page));
715
716 if (ptep_clear_flush_young(vma, address, pte))
717 continue;
718
719 /* Nuke the page table entry. */
720 flush_cache_page(vma, address, pte_pfn(*pte));
721 pteval = ptep_clear_flush(vma, address, pte);
722
723 /* If nonlinear, store the file page offset in the pte. */
724 if (page->index != linear_page_index(vma, address))
725 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
726
727 /* Move the dirty bit to the physical page now the pte is gone. */
728 if (pte_dirty(pteval))
729 set_page_dirty(page);
730
731 page_remove_rmap(page);
732 page_cache_release(page);
733 dec_mm_counter(mm, file_rss);
734 (*mapcount)--;
735 }
736 pte_unmap_unlock(pte - 1, ptl);
737 }
738
739 static int try_to_unmap_anon(struct page *page, int ignore_refs)
740 {
741 struct anon_vma *anon_vma;
742 struct vm_area_struct *vma;
743 int ret = SWAP_AGAIN;
744
745 anon_vma = page_lock_anon_vma(page);
746 if (!anon_vma)
747 return ret;
748
749 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
750 ret = try_to_unmap_one(page, vma, ignore_refs);
751 if (ret == SWAP_FAIL || !page_mapped(page))
752 break;
753 }
754 spin_unlock(&anon_vma->lock);
755 return ret;
756 }
757
758 /**
759 * try_to_unmap_file - unmap file page using the object-based rmap method
760 * @page: the page to unmap
761 *
762 * Find all the mappings of a page using the mapping pointer and the vma chains
763 * contained in the address_space struct it points to.
764 *
765 * This function is only called from try_to_unmap for object-based pages.
766 */
767 static int try_to_unmap_file(struct page *page, int ignore_refs)
768 {
769 struct address_space *mapping = page->mapping;
770 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
771 struct vm_area_struct *vma;
772 struct prio_tree_iter iter;
773 int ret = SWAP_AGAIN;
774 unsigned long cursor;
775 unsigned long max_nl_cursor = 0;
776 unsigned long max_nl_size = 0;
777 unsigned int mapcount;
778
779 spin_lock(&mapping->i_mmap_lock);
780 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
781 ret = try_to_unmap_one(page, vma, ignore_refs);
782 if (ret == SWAP_FAIL || !page_mapped(page))
783 goto out;
784 }
785
786 if (list_empty(&mapping->i_mmap_nonlinear))
787 goto out;
788
789 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
790 shared.vm_set.list) {
791 if (vma->vm_flags & VM_LOCKED)
792 continue;
793 cursor = (unsigned long) vma->vm_private_data;
794 if (cursor > max_nl_cursor)
795 max_nl_cursor = cursor;
796 cursor = vma->vm_end - vma->vm_start;
797 if (cursor > max_nl_size)
798 max_nl_size = cursor;
799 }
800
801 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
802 ret = SWAP_FAIL;
803 goto out;
804 }
805
806 /*
807 * We don't try to search for this page in the nonlinear vmas,
808 * and page_referenced wouldn't have found it anyway. Instead
809 * just walk the nonlinear vmas trying to age and unmap some.
810 * The mapcount of the page we came in with is irrelevant,
811 * but even so use it as a guide to how hard we should try?
812 */
813 mapcount = page_mapcount(page);
814 if (!mapcount)
815 goto out;
816 cond_resched_lock(&mapping->i_mmap_lock);
817
818 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
819 if (max_nl_cursor == 0)
820 max_nl_cursor = CLUSTER_SIZE;
821
822 do {
823 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
824 shared.vm_set.list) {
825 if (vma->vm_flags & VM_LOCKED)
826 continue;
827 cursor = (unsigned long) vma->vm_private_data;
828 while ( cursor < max_nl_cursor &&
829 cursor < vma->vm_end - vma->vm_start) {
830 try_to_unmap_cluster(cursor, &mapcount, vma);
831 cursor += CLUSTER_SIZE;
832 vma->vm_private_data = (void *) cursor;
833 if ((int)mapcount <= 0)
834 goto out;
835 }
836 vma->vm_private_data = (void *) max_nl_cursor;
837 }
838 cond_resched_lock(&mapping->i_mmap_lock);
839 max_nl_cursor += CLUSTER_SIZE;
840 } while (max_nl_cursor <= max_nl_size);
841
842 /*
843 * Don't loop forever (perhaps all the remaining pages are
844 * in locked vmas). Reset cursor on all unreserved nonlinear
845 * vmas, now forgetting on which ones it had fallen behind.
846 */
847 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
848 vma->vm_private_data = NULL;
849 out:
850 spin_unlock(&mapping->i_mmap_lock);
851 return ret;
852 }
853
854 /**
855 * try_to_unmap - try to remove all page table mappings to a page
856 * @page: the page to get unmapped
857 *
858 * Tries to remove all the page table entries which are mapping this
859 * page, used in the pageout path. Caller must hold the page lock.
860 * Return values are:
861 *
862 * SWAP_SUCCESS - we succeeded in removing all mappings
863 * SWAP_AGAIN - we missed a mapping, try again later
864 * SWAP_FAIL - the page is unswappable
865 */
866 int try_to_unmap(struct page *page, int ignore_refs)
867 {
868 int ret;
869
870 BUG_ON(!PageLocked(page));
871
872 if (PageAnon(page))
873 ret = try_to_unmap_anon(page, ignore_refs);
874 else
875 ret = try_to_unmap_file(page, ignore_refs);
876
877 if (!page_mapped(page))
878 ret = SWAP_SUCCESS;
879 return ret;
880 }
881
This page took 0.047798 seconds and 6 git commands to generate.