replace ->follow_link() with new method that could stay in RCU mode
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
385 pagevec_remove_exceptionals(&pvec);
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
390 }
391
392 /*
393 * Remove range of pages and swap entries from radix tree, and free them.
394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395 */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 struct shmem_inode_info *info = SHMEM_I(inode);
401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
410
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
413
414 pagevec_init(&pvec, 0);
415 index = start;
416 while (index < end) {
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
420 if (!pvec.nr)
421 break;
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
425 index = indices[i];
426 if (index >= end)
427 break;
428
429 if (radix_tree_exceptional_entry(page)) {
430 if (unfalloc)
431 continue;
432 nr_swaps_freed += !shmem_free_swap(mapping,
433 index, page);
434 continue;
435 }
436
437 if (!trylock_page(page))
438 continue;
439 if (!unfalloc || !PageUptodate(page)) {
440 if (page->mapping == mapping) {
441 VM_BUG_ON_PAGE(PageWriteback(page), page);
442 truncate_inode_page(mapping, page);
443 }
444 }
445 unlock_page(page);
446 }
447 pagevec_remove_exceptionals(&pvec);
448 pagevec_release(&pvec);
449 cond_resched();
450 index++;
451 }
452
453 if (partial_start) {
454 struct page *page = NULL;
455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 if (page) {
457 unsigned int top = PAGE_CACHE_SIZE;
458 if (start > end) {
459 top = partial_end;
460 partial_end = 0;
461 }
462 zero_user_segment(page, partial_start, top);
463 set_page_dirty(page);
464 unlock_page(page);
465 page_cache_release(page);
466 }
467 }
468 if (partial_end) {
469 struct page *page = NULL;
470 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 if (page) {
472 zero_user_segment(page, 0, partial_end);
473 set_page_dirty(page);
474 unlock_page(page);
475 page_cache_release(page);
476 }
477 }
478 if (start >= end)
479 return;
480
481 index = start;
482 while (index < end) {
483 cond_resched();
484
485 pvec.nr = find_get_entries(mapping, index,
486 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 pvec.pages, indices);
488 if (!pvec.nr) {
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index == start || end != -1)
491 break;
492 /* But if truncating, restart to make sure all gone */
493 index = start;
494 continue;
495 }
496 for (i = 0; i < pagevec_count(&pvec); i++) {
497 struct page *page = pvec.pages[i];
498
499 index = indices[i];
500 if (index >= end)
501 break;
502
503 if (radix_tree_exceptional_entry(page)) {
504 if (unfalloc)
505 continue;
506 if (shmem_free_swap(mapping, index, page)) {
507 /* Swap was replaced by page: retry */
508 index--;
509 break;
510 }
511 nr_swaps_freed++;
512 continue;
513 }
514
515 lock_page(page);
516 if (!unfalloc || !PageUptodate(page)) {
517 if (page->mapping == mapping) {
518 VM_BUG_ON_PAGE(PageWriteback(page), page);
519 truncate_inode_page(mapping, page);
520 } else {
521 /* Page was replaced by swap: retry */
522 unlock_page(page);
523 index--;
524 break;
525 }
526 }
527 unlock_page(page);
528 }
529 pagevec_remove_exceptionals(&pvec);
530 pagevec_release(&pvec);
531 index++;
532 }
533
534 spin_lock(&info->lock);
535 info->swapped -= nr_swaps_freed;
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
538 }
539
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542 shmem_undo_range(inode, lstart, lend, false);
543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548 struct kstat *stat)
549 {
550 struct inode *inode = dentry->d_inode;
551 struct shmem_inode_info *info = SHMEM_I(inode);
552
553 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554 spin_lock(&info->lock);
555 shmem_recalc_inode(inode);
556 spin_unlock(&info->lock);
557 }
558 generic_fillattr(inode, stat);
559 return 0;
560 }
561
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564 struct inode *inode = d_inode(dentry);
565 struct shmem_inode_info *info = SHMEM_I(inode);
566 int error;
567
568 error = inode_change_ok(inode, attr);
569 if (error)
570 return error;
571
572 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573 loff_t oldsize = inode->i_size;
574 loff_t newsize = attr->ia_size;
575
576 /* protected by i_mutex */
577 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579 return -EPERM;
580
581 if (newsize != oldsize) {
582 error = shmem_reacct_size(SHMEM_I(inode)->flags,
583 oldsize, newsize);
584 if (error)
585 return error;
586 i_size_write(inode, newsize);
587 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588 }
589 if (newsize <= oldsize) {
590 loff_t holebegin = round_up(newsize, PAGE_SIZE);
591 if (oldsize > holebegin)
592 unmap_mapping_range(inode->i_mapping,
593 holebegin, 0, 1);
594 if (info->alloced)
595 shmem_truncate_range(inode,
596 newsize, (loff_t)-1);
597 /* unmap again to remove racily COWed private pages */
598 if (oldsize > holebegin)
599 unmap_mapping_range(inode->i_mapping,
600 holebegin, 0, 1);
601 }
602 }
603
604 setattr_copy(inode, attr);
605 if (attr->ia_valid & ATTR_MODE)
606 error = posix_acl_chmod(inode, inode->i_mode);
607 return error;
608 }
609
610 static void shmem_evict_inode(struct inode *inode)
611 {
612 struct shmem_inode_info *info = SHMEM_I(inode);
613
614 if (inode->i_mapping->a_ops == &shmem_aops) {
615 shmem_unacct_size(info->flags, inode->i_size);
616 inode->i_size = 0;
617 shmem_truncate_range(inode, 0, (loff_t)-1);
618 if (!list_empty(&info->swaplist)) {
619 mutex_lock(&shmem_swaplist_mutex);
620 list_del_init(&info->swaplist);
621 mutex_unlock(&shmem_swaplist_mutex);
622 }
623 } else
624 kfree(info->symlink);
625
626 simple_xattrs_free(&info->xattrs);
627 WARN_ON(inode->i_blocks);
628 shmem_free_inode(inode->i_sb);
629 clear_inode(inode);
630 }
631
632 /*
633 * If swap found in inode, free it and move page from swapcache to filecache.
634 */
635 static int shmem_unuse_inode(struct shmem_inode_info *info,
636 swp_entry_t swap, struct page **pagep)
637 {
638 struct address_space *mapping = info->vfs_inode.i_mapping;
639 void *radswap;
640 pgoff_t index;
641 gfp_t gfp;
642 int error = 0;
643
644 radswap = swp_to_radix_entry(swap);
645 index = radix_tree_locate_item(&mapping->page_tree, radswap);
646 if (index == -1)
647 return -EAGAIN; /* tell shmem_unuse we found nothing */
648
649 /*
650 * Move _head_ to start search for next from here.
651 * But be careful: shmem_evict_inode checks list_empty without taking
652 * mutex, and there's an instant in list_move_tail when info->swaplist
653 * would appear empty, if it were the only one on shmem_swaplist.
654 */
655 if (shmem_swaplist.next != &info->swaplist)
656 list_move_tail(&shmem_swaplist, &info->swaplist);
657
658 gfp = mapping_gfp_mask(mapping);
659 if (shmem_should_replace_page(*pagep, gfp)) {
660 mutex_unlock(&shmem_swaplist_mutex);
661 error = shmem_replace_page(pagep, gfp, info, index);
662 mutex_lock(&shmem_swaplist_mutex);
663 /*
664 * We needed to drop mutex to make that restrictive page
665 * allocation, but the inode might have been freed while we
666 * dropped it: although a racing shmem_evict_inode() cannot
667 * complete without emptying the radix_tree, our page lock
668 * on this swapcache page is not enough to prevent that -
669 * free_swap_and_cache() of our swap entry will only
670 * trylock_page(), removing swap from radix_tree whatever.
671 *
672 * We must not proceed to shmem_add_to_page_cache() if the
673 * inode has been freed, but of course we cannot rely on
674 * inode or mapping or info to check that. However, we can
675 * safely check if our swap entry is still in use (and here
676 * it can't have got reused for another page): if it's still
677 * in use, then the inode cannot have been freed yet, and we
678 * can safely proceed (if it's no longer in use, that tells
679 * nothing about the inode, but we don't need to unuse swap).
680 */
681 if (!page_swapcount(*pagep))
682 error = -ENOENT;
683 }
684
685 /*
686 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687 * but also to hold up shmem_evict_inode(): so inode cannot be freed
688 * beneath us (pagelock doesn't help until the page is in pagecache).
689 */
690 if (!error)
691 error = shmem_add_to_page_cache(*pagep, mapping, index,
692 radswap);
693 if (error != -ENOMEM) {
694 /*
695 * Truncation and eviction use free_swap_and_cache(), which
696 * only does trylock page: if we raced, best clean up here.
697 */
698 delete_from_swap_cache(*pagep);
699 set_page_dirty(*pagep);
700 if (!error) {
701 spin_lock(&info->lock);
702 info->swapped--;
703 spin_unlock(&info->lock);
704 swap_free(swap);
705 }
706 }
707 return error;
708 }
709
710 /*
711 * Search through swapped inodes to find and replace swap by page.
712 */
713 int shmem_unuse(swp_entry_t swap, struct page *page)
714 {
715 struct list_head *this, *next;
716 struct shmem_inode_info *info;
717 struct mem_cgroup *memcg;
718 int error = 0;
719
720 /*
721 * There's a faint possibility that swap page was replaced before
722 * caller locked it: caller will come back later with the right page.
723 */
724 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
725 goto out;
726
727 /*
728 * Charge page using GFP_KERNEL while we can wait, before taking
729 * the shmem_swaplist_mutex which might hold up shmem_writepage().
730 * Charged back to the user (not to caller) when swap account is used.
731 */
732 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
733 if (error)
734 goto out;
735 /* No radix_tree_preload: swap entry keeps a place for page in tree */
736 error = -EAGAIN;
737
738 mutex_lock(&shmem_swaplist_mutex);
739 list_for_each_safe(this, next, &shmem_swaplist) {
740 info = list_entry(this, struct shmem_inode_info, swaplist);
741 if (info->swapped)
742 error = shmem_unuse_inode(info, swap, &page);
743 else
744 list_del_init(&info->swaplist);
745 cond_resched();
746 if (error != -EAGAIN)
747 break;
748 /* found nothing in this: move on to search the next */
749 }
750 mutex_unlock(&shmem_swaplist_mutex);
751
752 if (error) {
753 if (error != -ENOMEM)
754 error = 0;
755 mem_cgroup_cancel_charge(page, memcg);
756 } else
757 mem_cgroup_commit_charge(page, memcg, true);
758 out:
759 unlock_page(page);
760 page_cache_release(page);
761 return error;
762 }
763
764 /*
765 * Move the page from the page cache to the swap cache.
766 */
767 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
768 {
769 struct shmem_inode_info *info;
770 struct address_space *mapping;
771 struct inode *inode;
772 swp_entry_t swap;
773 pgoff_t index;
774
775 BUG_ON(!PageLocked(page));
776 mapping = page->mapping;
777 index = page->index;
778 inode = mapping->host;
779 info = SHMEM_I(inode);
780 if (info->flags & VM_LOCKED)
781 goto redirty;
782 if (!total_swap_pages)
783 goto redirty;
784
785 /*
786 * Our capabilities prevent regular writeback or sync from ever calling
787 * shmem_writepage; but a stacking filesystem might use ->writepage of
788 * its underlying filesystem, in which case tmpfs should write out to
789 * swap only in response to memory pressure, and not for the writeback
790 * threads or sync.
791 */
792 if (!wbc->for_reclaim) {
793 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
794 goto redirty;
795 }
796
797 /*
798 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799 * value into swapfile.c, the only way we can correctly account for a
800 * fallocated page arriving here is now to initialize it and write it.
801 *
802 * That's okay for a page already fallocated earlier, but if we have
803 * not yet completed the fallocation, then (a) we want to keep track
804 * of this page in case we have to undo it, and (b) it may not be a
805 * good idea to continue anyway, once we're pushing into swap. So
806 * reactivate the page, and let shmem_fallocate() quit when too many.
807 */
808 if (!PageUptodate(page)) {
809 if (inode->i_private) {
810 struct shmem_falloc *shmem_falloc;
811 spin_lock(&inode->i_lock);
812 shmem_falloc = inode->i_private;
813 if (shmem_falloc &&
814 !shmem_falloc->waitq &&
815 index >= shmem_falloc->start &&
816 index < shmem_falloc->next)
817 shmem_falloc->nr_unswapped++;
818 else
819 shmem_falloc = NULL;
820 spin_unlock(&inode->i_lock);
821 if (shmem_falloc)
822 goto redirty;
823 }
824 clear_highpage(page);
825 flush_dcache_page(page);
826 SetPageUptodate(page);
827 }
828
829 swap = get_swap_page();
830 if (!swap.val)
831 goto redirty;
832
833 /*
834 * Add inode to shmem_unuse()'s list of swapped-out inodes,
835 * if it's not already there. Do it now before the page is
836 * moved to swap cache, when its pagelock no longer protects
837 * the inode from eviction. But don't unlock the mutex until
838 * we've incremented swapped, because shmem_unuse_inode() will
839 * prune a !swapped inode from the swaplist under this mutex.
840 */
841 mutex_lock(&shmem_swaplist_mutex);
842 if (list_empty(&info->swaplist))
843 list_add_tail(&info->swaplist, &shmem_swaplist);
844
845 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
846 swap_shmem_alloc(swap);
847 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
848
849 spin_lock(&info->lock);
850 info->swapped++;
851 shmem_recalc_inode(inode);
852 spin_unlock(&info->lock);
853
854 mutex_unlock(&shmem_swaplist_mutex);
855 BUG_ON(page_mapped(page));
856 swap_writepage(page, wbc);
857 return 0;
858 }
859
860 mutex_unlock(&shmem_swaplist_mutex);
861 swapcache_free(swap);
862 redirty:
863 set_page_dirty(page);
864 if (wbc->for_reclaim)
865 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
866 unlock_page(page);
867 return 0;
868 }
869
870 #ifdef CONFIG_NUMA
871 #ifdef CONFIG_TMPFS
872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
873 {
874 char buffer[64];
875
876 if (!mpol || mpol->mode == MPOL_DEFAULT)
877 return; /* show nothing */
878
879 mpol_to_str(buffer, sizeof(buffer), mpol);
880
881 seq_printf(seq, ",mpol=%s", buffer);
882 }
883
884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
885 {
886 struct mempolicy *mpol = NULL;
887 if (sbinfo->mpol) {
888 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
889 mpol = sbinfo->mpol;
890 mpol_get(mpol);
891 spin_unlock(&sbinfo->stat_lock);
892 }
893 return mpol;
894 }
895 #endif /* CONFIG_TMPFS */
896
897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
898 struct shmem_inode_info *info, pgoff_t index)
899 {
900 struct vm_area_struct pvma;
901 struct page *page;
902
903 /* Create a pseudo vma that just contains the policy */
904 pvma.vm_start = 0;
905 /* Bias interleave by inode number to distribute better across nodes */
906 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
907 pvma.vm_ops = NULL;
908 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
909
910 page = swapin_readahead(swap, gfp, &pvma, 0);
911
912 /* Drop reference taken by mpol_shared_policy_lookup() */
913 mpol_cond_put(pvma.vm_policy);
914
915 return page;
916 }
917
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
920 {
921 struct vm_area_struct pvma;
922 struct page *page;
923
924 /* Create a pseudo vma that just contains the policy */
925 pvma.vm_start = 0;
926 /* Bias interleave by inode number to distribute better across nodes */
927 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
928 pvma.vm_ops = NULL;
929 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
930
931 page = alloc_page_vma(gfp, &pvma, 0);
932
933 /* Drop reference taken by mpol_shared_policy_lookup() */
934 mpol_cond_put(pvma.vm_policy);
935
936 return page;
937 }
938 #else /* !CONFIG_NUMA */
939 #ifdef CONFIG_TMPFS
940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
941 {
942 }
943 #endif /* CONFIG_TMPFS */
944
945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
946 struct shmem_inode_info *info, pgoff_t index)
947 {
948 return swapin_readahead(swap, gfp, NULL, 0);
949 }
950
951 static inline struct page *shmem_alloc_page(gfp_t gfp,
952 struct shmem_inode_info *info, pgoff_t index)
953 {
954 return alloc_page(gfp);
955 }
956 #endif /* CONFIG_NUMA */
957
958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
960 {
961 return NULL;
962 }
963 #endif
964
965 /*
966 * When a page is moved from swapcache to shmem filecache (either by the
967 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968 * shmem_unuse_inode()), it may have been read in earlier from swap, in
969 * ignorance of the mapping it belongs to. If that mapping has special
970 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971 * we may need to copy to a suitable page before moving to filecache.
972 *
973 * In a future release, this may well be extended to respect cpuset and
974 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975 * but for now it is a simple matter of zone.
976 */
977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
978 {
979 return page_zonenum(page) > gfp_zone(gfp);
980 }
981
982 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
983 struct shmem_inode_info *info, pgoff_t index)
984 {
985 struct page *oldpage, *newpage;
986 struct address_space *swap_mapping;
987 pgoff_t swap_index;
988 int error;
989
990 oldpage = *pagep;
991 swap_index = page_private(oldpage);
992 swap_mapping = page_mapping(oldpage);
993
994 /*
995 * We have arrived here because our zones are constrained, so don't
996 * limit chance of success by further cpuset and node constraints.
997 */
998 gfp &= ~GFP_CONSTRAINT_MASK;
999 newpage = shmem_alloc_page(gfp, info, index);
1000 if (!newpage)
1001 return -ENOMEM;
1002
1003 page_cache_get(newpage);
1004 copy_highpage(newpage, oldpage);
1005 flush_dcache_page(newpage);
1006
1007 __set_page_locked(newpage);
1008 SetPageUptodate(newpage);
1009 SetPageSwapBacked(newpage);
1010 set_page_private(newpage, swap_index);
1011 SetPageSwapCache(newpage);
1012
1013 /*
1014 * Our caller will very soon move newpage out of swapcache, but it's
1015 * a nice clean interface for us to replace oldpage by newpage there.
1016 */
1017 spin_lock_irq(&swap_mapping->tree_lock);
1018 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1019 newpage);
1020 if (!error) {
1021 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1022 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1023 }
1024 spin_unlock_irq(&swap_mapping->tree_lock);
1025
1026 if (unlikely(error)) {
1027 /*
1028 * Is this possible? I think not, now that our callers check
1029 * both PageSwapCache and page_private after getting page lock;
1030 * but be defensive. Reverse old to newpage for clear and free.
1031 */
1032 oldpage = newpage;
1033 } else {
1034 mem_cgroup_replace_page(oldpage, newpage);
1035 lru_cache_add_anon(newpage);
1036 *pagep = newpage;
1037 }
1038
1039 ClearPageSwapCache(oldpage);
1040 set_page_private(oldpage, 0);
1041
1042 unlock_page(oldpage);
1043 page_cache_release(oldpage);
1044 page_cache_release(oldpage);
1045 return error;
1046 }
1047
1048 /*
1049 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1050 *
1051 * If we allocate a new one we do not mark it dirty. That's up to the
1052 * vm. If we swap it in we mark it dirty since we also free the swap
1053 * entry since a page cannot live in both the swap and page cache
1054 */
1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1056 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1057 {
1058 struct address_space *mapping = inode->i_mapping;
1059 struct shmem_inode_info *info;
1060 struct shmem_sb_info *sbinfo;
1061 struct mem_cgroup *memcg;
1062 struct page *page;
1063 swp_entry_t swap;
1064 int error;
1065 int once = 0;
1066 int alloced = 0;
1067
1068 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1069 return -EFBIG;
1070 repeat:
1071 swap.val = 0;
1072 page = find_lock_entry(mapping, index);
1073 if (radix_tree_exceptional_entry(page)) {
1074 swap = radix_to_swp_entry(page);
1075 page = NULL;
1076 }
1077
1078 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1079 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1080 error = -EINVAL;
1081 goto failed;
1082 }
1083
1084 if (page && sgp == SGP_WRITE)
1085 mark_page_accessed(page);
1086
1087 /* fallocated page? */
1088 if (page && !PageUptodate(page)) {
1089 if (sgp != SGP_READ)
1090 goto clear;
1091 unlock_page(page);
1092 page_cache_release(page);
1093 page = NULL;
1094 }
1095 if (page || (sgp == SGP_READ && !swap.val)) {
1096 *pagep = page;
1097 return 0;
1098 }
1099
1100 /*
1101 * Fast cache lookup did not find it:
1102 * bring it back from swap or allocate.
1103 */
1104 info = SHMEM_I(inode);
1105 sbinfo = SHMEM_SB(inode->i_sb);
1106
1107 if (swap.val) {
1108 /* Look it up and read it in.. */
1109 page = lookup_swap_cache(swap);
1110 if (!page) {
1111 /* here we actually do the io */
1112 if (fault_type)
1113 *fault_type |= VM_FAULT_MAJOR;
1114 page = shmem_swapin(swap, gfp, info, index);
1115 if (!page) {
1116 error = -ENOMEM;
1117 goto failed;
1118 }
1119 }
1120
1121 /* We have to do this with page locked to prevent races */
1122 lock_page(page);
1123 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1124 !shmem_confirm_swap(mapping, index, swap)) {
1125 error = -EEXIST; /* try again */
1126 goto unlock;
1127 }
1128 if (!PageUptodate(page)) {
1129 error = -EIO;
1130 goto failed;
1131 }
1132 wait_on_page_writeback(page);
1133
1134 if (shmem_should_replace_page(page, gfp)) {
1135 error = shmem_replace_page(&page, gfp, info, index);
1136 if (error)
1137 goto failed;
1138 }
1139
1140 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1141 if (!error) {
1142 error = shmem_add_to_page_cache(page, mapping, index,
1143 swp_to_radix_entry(swap));
1144 /*
1145 * We already confirmed swap under page lock, and make
1146 * no memory allocation here, so usually no possibility
1147 * of error; but free_swap_and_cache() only trylocks a
1148 * page, so it is just possible that the entry has been
1149 * truncated or holepunched since swap was confirmed.
1150 * shmem_undo_range() will have done some of the
1151 * unaccounting, now delete_from_swap_cache() will do
1152 * the rest.
1153 * Reset swap.val? No, leave it so "failed" goes back to
1154 * "repeat": reading a hole and writing should succeed.
1155 */
1156 if (error) {
1157 mem_cgroup_cancel_charge(page, memcg);
1158 delete_from_swap_cache(page);
1159 }
1160 }
1161 if (error)
1162 goto failed;
1163
1164 mem_cgroup_commit_charge(page, memcg, true);
1165
1166 spin_lock(&info->lock);
1167 info->swapped--;
1168 shmem_recalc_inode(inode);
1169 spin_unlock(&info->lock);
1170
1171 if (sgp == SGP_WRITE)
1172 mark_page_accessed(page);
1173
1174 delete_from_swap_cache(page);
1175 set_page_dirty(page);
1176 swap_free(swap);
1177
1178 } else {
1179 if (shmem_acct_block(info->flags)) {
1180 error = -ENOSPC;
1181 goto failed;
1182 }
1183 if (sbinfo->max_blocks) {
1184 if (percpu_counter_compare(&sbinfo->used_blocks,
1185 sbinfo->max_blocks) >= 0) {
1186 error = -ENOSPC;
1187 goto unacct;
1188 }
1189 percpu_counter_inc(&sbinfo->used_blocks);
1190 }
1191
1192 page = shmem_alloc_page(gfp, info, index);
1193 if (!page) {
1194 error = -ENOMEM;
1195 goto decused;
1196 }
1197
1198 __SetPageSwapBacked(page);
1199 __set_page_locked(page);
1200 if (sgp == SGP_WRITE)
1201 __SetPageReferenced(page);
1202
1203 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1204 if (error)
1205 goto decused;
1206 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207 if (!error) {
1208 error = shmem_add_to_page_cache(page, mapping, index,
1209 NULL);
1210 radix_tree_preload_end();
1211 }
1212 if (error) {
1213 mem_cgroup_cancel_charge(page, memcg);
1214 goto decused;
1215 }
1216 mem_cgroup_commit_charge(page, memcg, false);
1217 lru_cache_add_anon(page);
1218
1219 spin_lock(&info->lock);
1220 info->alloced++;
1221 inode->i_blocks += BLOCKS_PER_PAGE;
1222 shmem_recalc_inode(inode);
1223 spin_unlock(&info->lock);
1224 alloced = true;
1225
1226 /*
1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 */
1229 if (sgp == SGP_FALLOC)
1230 sgp = SGP_WRITE;
1231 clear:
1232 /*
1233 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 * it now, lest undo on failure cancel our earlier guarantee.
1236 */
1237 if (sgp != SGP_WRITE) {
1238 clear_highpage(page);
1239 flush_dcache_page(page);
1240 SetPageUptodate(page);
1241 }
1242 if (sgp == SGP_DIRTY)
1243 set_page_dirty(page);
1244 }
1245
1246 /* Perhaps the file has been truncated since we checked */
1247 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 error = -EINVAL;
1250 if (alloced)
1251 goto trunc;
1252 else
1253 goto failed;
1254 }
1255 *pagep = page;
1256 return 0;
1257
1258 /*
1259 * Error recovery.
1260 */
1261 trunc:
1262 info = SHMEM_I(inode);
1263 ClearPageDirty(page);
1264 delete_from_page_cache(page);
1265 spin_lock(&info->lock);
1266 info->alloced--;
1267 inode->i_blocks -= BLOCKS_PER_PAGE;
1268 spin_unlock(&info->lock);
1269 decused:
1270 sbinfo = SHMEM_SB(inode->i_sb);
1271 if (sbinfo->max_blocks)
1272 percpu_counter_add(&sbinfo->used_blocks, -1);
1273 unacct:
1274 shmem_unacct_blocks(info->flags, 1);
1275 failed:
1276 if (swap.val && error != -EINVAL &&
1277 !shmem_confirm_swap(mapping, index, swap))
1278 error = -EEXIST;
1279 unlock:
1280 if (page) {
1281 unlock_page(page);
1282 page_cache_release(page);
1283 }
1284 if (error == -ENOSPC && !once++) {
1285 info = SHMEM_I(inode);
1286 spin_lock(&info->lock);
1287 shmem_recalc_inode(inode);
1288 spin_unlock(&info->lock);
1289 goto repeat;
1290 }
1291 if (error == -EEXIST) /* from above or from radix_tree_insert */
1292 goto repeat;
1293 return error;
1294 }
1295
1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1297 {
1298 struct inode *inode = file_inode(vma->vm_file);
1299 int error;
1300 int ret = VM_FAULT_LOCKED;
1301
1302 /*
1303 * Trinity finds that probing a hole which tmpfs is punching can
1304 * prevent the hole-punch from ever completing: which in turn
1305 * locks writers out with its hold on i_mutex. So refrain from
1306 * faulting pages into the hole while it's being punched. Although
1307 * shmem_undo_range() does remove the additions, it may be unable to
1308 * keep up, as each new page needs its own unmap_mapping_range() call,
1309 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1310 *
1311 * It does not matter if we sometimes reach this check just before the
1312 * hole-punch begins, so that one fault then races with the punch:
1313 * we just need to make racing faults a rare case.
1314 *
1315 * The implementation below would be much simpler if we just used a
1316 * standard mutex or completion: but we cannot take i_mutex in fault,
1317 * and bloating every shmem inode for this unlikely case would be sad.
1318 */
1319 if (unlikely(inode->i_private)) {
1320 struct shmem_falloc *shmem_falloc;
1321
1322 spin_lock(&inode->i_lock);
1323 shmem_falloc = inode->i_private;
1324 if (shmem_falloc &&
1325 shmem_falloc->waitq &&
1326 vmf->pgoff >= shmem_falloc->start &&
1327 vmf->pgoff < shmem_falloc->next) {
1328 wait_queue_head_t *shmem_falloc_waitq;
1329 DEFINE_WAIT(shmem_fault_wait);
1330
1331 ret = VM_FAULT_NOPAGE;
1332 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1333 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1334 /* It's polite to up mmap_sem if we can */
1335 up_read(&vma->vm_mm->mmap_sem);
1336 ret = VM_FAULT_RETRY;
1337 }
1338
1339 shmem_falloc_waitq = shmem_falloc->waitq;
1340 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1341 TASK_UNINTERRUPTIBLE);
1342 spin_unlock(&inode->i_lock);
1343 schedule();
1344
1345 /*
1346 * shmem_falloc_waitq points into the shmem_fallocate()
1347 * stack of the hole-punching task: shmem_falloc_waitq
1348 * is usually invalid by the time we reach here, but
1349 * finish_wait() does not dereference it in that case;
1350 * though i_lock needed lest racing with wake_up_all().
1351 */
1352 spin_lock(&inode->i_lock);
1353 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1354 spin_unlock(&inode->i_lock);
1355 return ret;
1356 }
1357 spin_unlock(&inode->i_lock);
1358 }
1359
1360 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1361 if (error)
1362 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1363
1364 if (ret & VM_FAULT_MAJOR) {
1365 count_vm_event(PGMAJFAULT);
1366 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1367 }
1368 return ret;
1369 }
1370
1371 #ifdef CONFIG_NUMA
1372 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1373 {
1374 struct inode *inode = file_inode(vma->vm_file);
1375 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1376 }
1377
1378 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1379 unsigned long addr)
1380 {
1381 struct inode *inode = file_inode(vma->vm_file);
1382 pgoff_t index;
1383
1384 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1385 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1386 }
1387 #endif
1388
1389 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1390 {
1391 struct inode *inode = file_inode(file);
1392 struct shmem_inode_info *info = SHMEM_I(inode);
1393 int retval = -ENOMEM;
1394
1395 spin_lock(&info->lock);
1396 if (lock && !(info->flags & VM_LOCKED)) {
1397 if (!user_shm_lock(inode->i_size, user))
1398 goto out_nomem;
1399 info->flags |= VM_LOCKED;
1400 mapping_set_unevictable(file->f_mapping);
1401 }
1402 if (!lock && (info->flags & VM_LOCKED) && user) {
1403 user_shm_unlock(inode->i_size, user);
1404 info->flags &= ~VM_LOCKED;
1405 mapping_clear_unevictable(file->f_mapping);
1406 }
1407 retval = 0;
1408
1409 out_nomem:
1410 spin_unlock(&info->lock);
1411 return retval;
1412 }
1413
1414 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1415 {
1416 file_accessed(file);
1417 vma->vm_ops = &shmem_vm_ops;
1418 return 0;
1419 }
1420
1421 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1422 umode_t mode, dev_t dev, unsigned long flags)
1423 {
1424 struct inode *inode;
1425 struct shmem_inode_info *info;
1426 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1427
1428 if (shmem_reserve_inode(sb))
1429 return NULL;
1430
1431 inode = new_inode(sb);
1432 if (inode) {
1433 inode->i_ino = get_next_ino();
1434 inode_init_owner(inode, dir, mode);
1435 inode->i_blocks = 0;
1436 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1437 inode->i_generation = get_seconds();
1438 info = SHMEM_I(inode);
1439 memset(info, 0, (char *)inode - (char *)info);
1440 spin_lock_init(&info->lock);
1441 info->seals = F_SEAL_SEAL;
1442 info->flags = flags & VM_NORESERVE;
1443 INIT_LIST_HEAD(&info->swaplist);
1444 simple_xattrs_init(&info->xattrs);
1445 cache_no_acl(inode);
1446
1447 switch (mode & S_IFMT) {
1448 default:
1449 inode->i_op = &shmem_special_inode_operations;
1450 init_special_inode(inode, mode, dev);
1451 break;
1452 case S_IFREG:
1453 inode->i_mapping->a_ops = &shmem_aops;
1454 inode->i_op = &shmem_inode_operations;
1455 inode->i_fop = &shmem_file_operations;
1456 mpol_shared_policy_init(&info->policy,
1457 shmem_get_sbmpol(sbinfo));
1458 break;
1459 case S_IFDIR:
1460 inc_nlink(inode);
1461 /* Some things misbehave if size == 0 on a directory */
1462 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1463 inode->i_op = &shmem_dir_inode_operations;
1464 inode->i_fop = &simple_dir_operations;
1465 break;
1466 case S_IFLNK:
1467 /*
1468 * Must not load anything in the rbtree,
1469 * mpol_free_shared_policy will not be called.
1470 */
1471 mpol_shared_policy_init(&info->policy, NULL);
1472 break;
1473 }
1474 } else
1475 shmem_free_inode(sb);
1476 return inode;
1477 }
1478
1479 bool shmem_mapping(struct address_space *mapping)
1480 {
1481 if (!mapping->host)
1482 return false;
1483
1484 return mapping->host->i_sb->s_op == &shmem_ops;
1485 }
1486
1487 #ifdef CONFIG_TMPFS
1488 static const struct inode_operations shmem_symlink_inode_operations;
1489 static const struct inode_operations shmem_short_symlink_operations;
1490
1491 #ifdef CONFIG_TMPFS_XATTR
1492 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1493 #else
1494 #define shmem_initxattrs NULL
1495 #endif
1496
1497 static int
1498 shmem_write_begin(struct file *file, struct address_space *mapping,
1499 loff_t pos, unsigned len, unsigned flags,
1500 struct page **pagep, void **fsdata)
1501 {
1502 struct inode *inode = mapping->host;
1503 struct shmem_inode_info *info = SHMEM_I(inode);
1504 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1505
1506 /* i_mutex is held by caller */
1507 if (unlikely(info->seals)) {
1508 if (info->seals & F_SEAL_WRITE)
1509 return -EPERM;
1510 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1511 return -EPERM;
1512 }
1513
1514 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1515 }
1516
1517 static int
1518 shmem_write_end(struct file *file, struct address_space *mapping,
1519 loff_t pos, unsigned len, unsigned copied,
1520 struct page *page, void *fsdata)
1521 {
1522 struct inode *inode = mapping->host;
1523
1524 if (pos + copied > inode->i_size)
1525 i_size_write(inode, pos + copied);
1526
1527 if (!PageUptodate(page)) {
1528 if (copied < PAGE_CACHE_SIZE) {
1529 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1530 zero_user_segments(page, 0, from,
1531 from + copied, PAGE_CACHE_SIZE);
1532 }
1533 SetPageUptodate(page);
1534 }
1535 set_page_dirty(page);
1536 unlock_page(page);
1537 page_cache_release(page);
1538
1539 return copied;
1540 }
1541
1542 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1543 {
1544 struct file *file = iocb->ki_filp;
1545 struct inode *inode = file_inode(file);
1546 struct address_space *mapping = inode->i_mapping;
1547 pgoff_t index;
1548 unsigned long offset;
1549 enum sgp_type sgp = SGP_READ;
1550 int error = 0;
1551 ssize_t retval = 0;
1552 loff_t *ppos = &iocb->ki_pos;
1553
1554 /*
1555 * Might this read be for a stacking filesystem? Then when reading
1556 * holes of a sparse file, we actually need to allocate those pages,
1557 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1558 */
1559 if (!iter_is_iovec(to))
1560 sgp = SGP_DIRTY;
1561
1562 index = *ppos >> PAGE_CACHE_SHIFT;
1563 offset = *ppos & ~PAGE_CACHE_MASK;
1564
1565 for (;;) {
1566 struct page *page = NULL;
1567 pgoff_t end_index;
1568 unsigned long nr, ret;
1569 loff_t i_size = i_size_read(inode);
1570
1571 end_index = i_size >> PAGE_CACHE_SHIFT;
1572 if (index > end_index)
1573 break;
1574 if (index == end_index) {
1575 nr = i_size & ~PAGE_CACHE_MASK;
1576 if (nr <= offset)
1577 break;
1578 }
1579
1580 error = shmem_getpage(inode, index, &page, sgp, NULL);
1581 if (error) {
1582 if (error == -EINVAL)
1583 error = 0;
1584 break;
1585 }
1586 if (page)
1587 unlock_page(page);
1588
1589 /*
1590 * We must evaluate after, since reads (unlike writes)
1591 * are called without i_mutex protection against truncate
1592 */
1593 nr = PAGE_CACHE_SIZE;
1594 i_size = i_size_read(inode);
1595 end_index = i_size >> PAGE_CACHE_SHIFT;
1596 if (index == end_index) {
1597 nr = i_size & ~PAGE_CACHE_MASK;
1598 if (nr <= offset) {
1599 if (page)
1600 page_cache_release(page);
1601 break;
1602 }
1603 }
1604 nr -= offset;
1605
1606 if (page) {
1607 /*
1608 * If users can be writing to this page using arbitrary
1609 * virtual addresses, take care about potential aliasing
1610 * before reading the page on the kernel side.
1611 */
1612 if (mapping_writably_mapped(mapping))
1613 flush_dcache_page(page);
1614 /*
1615 * Mark the page accessed if we read the beginning.
1616 */
1617 if (!offset)
1618 mark_page_accessed(page);
1619 } else {
1620 page = ZERO_PAGE(0);
1621 page_cache_get(page);
1622 }
1623
1624 /*
1625 * Ok, we have the page, and it's up-to-date, so
1626 * now we can copy it to user space...
1627 */
1628 ret = copy_page_to_iter(page, offset, nr, to);
1629 retval += ret;
1630 offset += ret;
1631 index += offset >> PAGE_CACHE_SHIFT;
1632 offset &= ~PAGE_CACHE_MASK;
1633
1634 page_cache_release(page);
1635 if (!iov_iter_count(to))
1636 break;
1637 if (ret < nr) {
1638 error = -EFAULT;
1639 break;
1640 }
1641 cond_resched();
1642 }
1643
1644 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1645 file_accessed(file);
1646 return retval ? retval : error;
1647 }
1648
1649 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1650 struct pipe_inode_info *pipe, size_t len,
1651 unsigned int flags)
1652 {
1653 struct address_space *mapping = in->f_mapping;
1654 struct inode *inode = mapping->host;
1655 unsigned int loff, nr_pages, req_pages;
1656 struct page *pages[PIPE_DEF_BUFFERS];
1657 struct partial_page partial[PIPE_DEF_BUFFERS];
1658 struct page *page;
1659 pgoff_t index, end_index;
1660 loff_t isize, left;
1661 int error, page_nr;
1662 struct splice_pipe_desc spd = {
1663 .pages = pages,
1664 .partial = partial,
1665 .nr_pages_max = PIPE_DEF_BUFFERS,
1666 .flags = flags,
1667 .ops = &page_cache_pipe_buf_ops,
1668 .spd_release = spd_release_page,
1669 };
1670
1671 isize = i_size_read(inode);
1672 if (unlikely(*ppos >= isize))
1673 return 0;
1674
1675 left = isize - *ppos;
1676 if (unlikely(left < len))
1677 len = left;
1678
1679 if (splice_grow_spd(pipe, &spd))
1680 return -ENOMEM;
1681
1682 index = *ppos >> PAGE_CACHE_SHIFT;
1683 loff = *ppos & ~PAGE_CACHE_MASK;
1684 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1685 nr_pages = min(req_pages, spd.nr_pages_max);
1686
1687 spd.nr_pages = find_get_pages_contig(mapping, index,
1688 nr_pages, spd.pages);
1689 index += spd.nr_pages;
1690 error = 0;
1691
1692 while (spd.nr_pages < nr_pages) {
1693 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1694 if (error)
1695 break;
1696 unlock_page(page);
1697 spd.pages[spd.nr_pages++] = page;
1698 index++;
1699 }
1700
1701 index = *ppos >> PAGE_CACHE_SHIFT;
1702 nr_pages = spd.nr_pages;
1703 spd.nr_pages = 0;
1704
1705 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1706 unsigned int this_len;
1707
1708 if (!len)
1709 break;
1710
1711 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1712 page = spd.pages[page_nr];
1713
1714 if (!PageUptodate(page) || page->mapping != mapping) {
1715 error = shmem_getpage(inode, index, &page,
1716 SGP_CACHE, NULL);
1717 if (error)
1718 break;
1719 unlock_page(page);
1720 page_cache_release(spd.pages[page_nr]);
1721 spd.pages[page_nr] = page;
1722 }
1723
1724 isize = i_size_read(inode);
1725 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1726 if (unlikely(!isize || index > end_index))
1727 break;
1728
1729 if (end_index == index) {
1730 unsigned int plen;
1731
1732 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1733 if (plen <= loff)
1734 break;
1735
1736 this_len = min(this_len, plen - loff);
1737 len = this_len;
1738 }
1739
1740 spd.partial[page_nr].offset = loff;
1741 spd.partial[page_nr].len = this_len;
1742 len -= this_len;
1743 loff = 0;
1744 spd.nr_pages++;
1745 index++;
1746 }
1747
1748 while (page_nr < nr_pages)
1749 page_cache_release(spd.pages[page_nr++]);
1750
1751 if (spd.nr_pages)
1752 error = splice_to_pipe(pipe, &spd);
1753
1754 splice_shrink_spd(&spd);
1755
1756 if (error > 0) {
1757 *ppos += error;
1758 file_accessed(in);
1759 }
1760 return error;
1761 }
1762
1763 /*
1764 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1765 */
1766 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1767 pgoff_t index, pgoff_t end, int whence)
1768 {
1769 struct page *page;
1770 struct pagevec pvec;
1771 pgoff_t indices[PAGEVEC_SIZE];
1772 bool done = false;
1773 int i;
1774
1775 pagevec_init(&pvec, 0);
1776 pvec.nr = 1; /* start small: we may be there already */
1777 while (!done) {
1778 pvec.nr = find_get_entries(mapping, index,
1779 pvec.nr, pvec.pages, indices);
1780 if (!pvec.nr) {
1781 if (whence == SEEK_DATA)
1782 index = end;
1783 break;
1784 }
1785 for (i = 0; i < pvec.nr; i++, index++) {
1786 if (index < indices[i]) {
1787 if (whence == SEEK_HOLE) {
1788 done = true;
1789 break;
1790 }
1791 index = indices[i];
1792 }
1793 page = pvec.pages[i];
1794 if (page && !radix_tree_exceptional_entry(page)) {
1795 if (!PageUptodate(page))
1796 page = NULL;
1797 }
1798 if (index >= end ||
1799 (page && whence == SEEK_DATA) ||
1800 (!page && whence == SEEK_HOLE)) {
1801 done = true;
1802 break;
1803 }
1804 }
1805 pagevec_remove_exceptionals(&pvec);
1806 pagevec_release(&pvec);
1807 pvec.nr = PAGEVEC_SIZE;
1808 cond_resched();
1809 }
1810 return index;
1811 }
1812
1813 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1814 {
1815 struct address_space *mapping = file->f_mapping;
1816 struct inode *inode = mapping->host;
1817 pgoff_t start, end;
1818 loff_t new_offset;
1819
1820 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1821 return generic_file_llseek_size(file, offset, whence,
1822 MAX_LFS_FILESIZE, i_size_read(inode));
1823 mutex_lock(&inode->i_mutex);
1824 /* We're holding i_mutex so we can access i_size directly */
1825
1826 if (offset < 0)
1827 offset = -EINVAL;
1828 else if (offset >= inode->i_size)
1829 offset = -ENXIO;
1830 else {
1831 start = offset >> PAGE_CACHE_SHIFT;
1832 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1833 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1834 new_offset <<= PAGE_CACHE_SHIFT;
1835 if (new_offset > offset) {
1836 if (new_offset < inode->i_size)
1837 offset = new_offset;
1838 else if (whence == SEEK_DATA)
1839 offset = -ENXIO;
1840 else
1841 offset = inode->i_size;
1842 }
1843 }
1844
1845 if (offset >= 0)
1846 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1847 mutex_unlock(&inode->i_mutex);
1848 return offset;
1849 }
1850
1851 /*
1852 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1853 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1854 */
1855 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1856 #define LAST_SCAN 4 /* about 150ms max */
1857
1858 static void shmem_tag_pins(struct address_space *mapping)
1859 {
1860 struct radix_tree_iter iter;
1861 void **slot;
1862 pgoff_t start;
1863 struct page *page;
1864
1865 lru_add_drain();
1866 start = 0;
1867 rcu_read_lock();
1868
1869 restart:
1870 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1871 page = radix_tree_deref_slot(slot);
1872 if (!page || radix_tree_exception(page)) {
1873 if (radix_tree_deref_retry(page))
1874 goto restart;
1875 } else if (page_count(page) - page_mapcount(page) > 1) {
1876 spin_lock_irq(&mapping->tree_lock);
1877 radix_tree_tag_set(&mapping->page_tree, iter.index,
1878 SHMEM_TAG_PINNED);
1879 spin_unlock_irq(&mapping->tree_lock);
1880 }
1881
1882 if (need_resched()) {
1883 cond_resched_rcu();
1884 start = iter.index + 1;
1885 goto restart;
1886 }
1887 }
1888 rcu_read_unlock();
1889 }
1890
1891 /*
1892 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1893 * via get_user_pages(), drivers might have some pending I/O without any active
1894 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1895 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1896 * them to be dropped.
1897 * The caller must guarantee that no new user will acquire writable references
1898 * to those pages to avoid races.
1899 */
1900 static int shmem_wait_for_pins(struct address_space *mapping)
1901 {
1902 struct radix_tree_iter iter;
1903 void **slot;
1904 pgoff_t start;
1905 struct page *page;
1906 int error, scan;
1907
1908 shmem_tag_pins(mapping);
1909
1910 error = 0;
1911 for (scan = 0; scan <= LAST_SCAN; scan++) {
1912 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1913 break;
1914
1915 if (!scan)
1916 lru_add_drain_all();
1917 else if (schedule_timeout_killable((HZ << scan) / 200))
1918 scan = LAST_SCAN;
1919
1920 start = 0;
1921 rcu_read_lock();
1922 restart:
1923 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1924 start, SHMEM_TAG_PINNED) {
1925
1926 page = radix_tree_deref_slot(slot);
1927 if (radix_tree_exception(page)) {
1928 if (radix_tree_deref_retry(page))
1929 goto restart;
1930
1931 page = NULL;
1932 }
1933
1934 if (page &&
1935 page_count(page) - page_mapcount(page) != 1) {
1936 if (scan < LAST_SCAN)
1937 goto continue_resched;
1938
1939 /*
1940 * On the last scan, we clean up all those tags
1941 * we inserted; but make a note that we still
1942 * found pages pinned.
1943 */
1944 error = -EBUSY;
1945 }
1946
1947 spin_lock_irq(&mapping->tree_lock);
1948 radix_tree_tag_clear(&mapping->page_tree,
1949 iter.index, SHMEM_TAG_PINNED);
1950 spin_unlock_irq(&mapping->tree_lock);
1951 continue_resched:
1952 if (need_resched()) {
1953 cond_resched_rcu();
1954 start = iter.index + 1;
1955 goto restart;
1956 }
1957 }
1958 rcu_read_unlock();
1959 }
1960
1961 return error;
1962 }
1963
1964 #define F_ALL_SEALS (F_SEAL_SEAL | \
1965 F_SEAL_SHRINK | \
1966 F_SEAL_GROW | \
1967 F_SEAL_WRITE)
1968
1969 int shmem_add_seals(struct file *file, unsigned int seals)
1970 {
1971 struct inode *inode = file_inode(file);
1972 struct shmem_inode_info *info = SHMEM_I(inode);
1973 int error;
1974
1975 /*
1976 * SEALING
1977 * Sealing allows multiple parties to share a shmem-file but restrict
1978 * access to a specific subset of file operations. Seals can only be
1979 * added, but never removed. This way, mutually untrusted parties can
1980 * share common memory regions with a well-defined policy. A malicious
1981 * peer can thus never perform unwanted operations on a shared object.
1982 *
1983 * Seals are only supported on special shmem-files and always affect
1984 * the whole underlying inode. Once a seal is set, it may prevent some
1985 * kinds of access to the file. Currently, the following seals are
1986 * defined:
1987 * SEAL_SEAL: Prevent further seals from being set on this file
1988 * SEAL_SHRINK: Prevent the file from shrinking
1989 * SEAL_GROW: Prevent the file from growing
1990 * SEAL_WRITE: Prevent write access to the file
1991 *
1992 * As we don't require any trust relationship between two parties, we
1993 * must prevent seals from being removed. Therefore, sealing a file
1994 * only adds a given set of seals to the file, it never touches
1995 * existing seals. Furthermore, the "setting seals"-operation can be
1996 * sealed itself, which basically prevents any further seal from being
1997 * added.
1998 *
1999 * Semantics of sealing are only defined on volatile files. Only
2000 * anonymous shmem files support sealing. More importantly, seals are
2001 * never written to disk. Therefore, there's no plan to support it on
2002 * other file types.
2003 */
2004
2005 if (file->f_op != &shmem_file_operations)
2006 return -EINVAL;
2007 if (!(file->f_mode & FMODE_WRITE))
2008 return -EPERM;
2009 if (seals & ~(unsigned int)F_ALL_SEALS)
2010 return -EINVAL;
2011
2012 mutex_lock(&inode->i_mutex);
2013
2014 if (info->seals & F_SEAL_SEAL) {
2015 error = -EPERM;
2016 goto unlock;
2017 }
2018
2019 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2020 error = mapping_deny_writable(file->f_mapping);
2021 if (error)
2022 goto unlock;
2023
2024 error = shmem_wait_for_pins(file->f_mapping);
2025 if (error) {
2026 mapping_allow_writable(file->f_mapping);
2027 goto unlock;
2028 }
2029 }
2030
2031 info->seals |= seals;
2032 error = 0;
2033
2034 unlock:
2035 mutex_unlock(&inode->i_mutex);
2036 return error;
2037 }
2038 EXPORT_SYMBOL_GPL(shmem_add_seals);
2039
2040 int shmem_get_seals(struct file *file)
2041 {
2042 if (file->f_op != &shmem_file_operations)
2043 return -EINVAL;
2044
2045 return SHMEM_I(file_inode(file))->seals;
2046 }
2047 EXPORT_SYMBOL_GPL(shmem_get_seals);
2048
2049 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2050 {
2051 long error;
2052
2053 switch (cmd) {
2054 case F_ADD_SEALS:
2055 /* disallow upper 32bit */
2056 if (arg > UINT_MAX)
2057 return -EINVAL;
2058
2059 error = shmem_add_seals(file, arg);
2060 break;
2061 case F_GET_SEALS:
2062 error = shmem_get_seals(file);
2063 break;
2064 default:
2065 error = -EINVAL;
2066 break;
2067 }
2068
2069 return error;
2070 }
2071
2072 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2073 loff_t len)
2074 {
2075 struct inode *inode = file_inode(file);
2076 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2077 struct shmem_inode_info *info = SHMEM_I(inode);
2078 struct shmem_falloc shmem_falloc;
2079 pgoff_t start, index, end;
2080 int error;
2081
2082 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2083 return -EOPNOTSUPP;
2084
2085 mutex_lock(&inode->i_mutex);
2086
2087 if (mode & FALLOC_FL_PUNCH_HOLE) {
2088 struct address_space *mapping = file->f_mapping;
2089 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2090 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2091 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2092
2093 /* protected by i_mutex */
2094 if (info->seals & F_SEAL_WRITE) {
2095 error = -EPERM;
2096 goto out;
2097 }
2098
2099 shmem_falloc.waitq = &shmem_falloc_waitq;
2100 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2101 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2102 spin_lock(&inode->i_lock);
2103 inode->i_private = &shmem_falloc;
2104 spin_unlock(&inode->i_lock);
2105
2106 if ((u64)unmap_end > (u64)unmap_start)
2107 unmap_mapping_range(mapping, unmap_start,
2108 1 + unmap_end - unmap_start, 0);
2109 shmem_truncate_range(inode, offset, offset + len - 1);
2110 /* No need to unmap again: hole-punching leaves COWed pages */
2111
2112 spin_lock(&inode->i_lock);
2113 inode->i_private = NULL;
2114 wake_up_all(&shmem_falloc_waitq);
2115 spin_unlock(&inode->i_lock);
2116 error = 0;
2117 goto out;
2118 }
2119
2120 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2121 error = inode_newsize_ok(inode, offset + len);
2122 if (error)
2123 goto out;
2124
2125 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2126 error = -EPERM;
2127 goto out;
2128 }
2129
2130 start = offset >> PAGE_CACHE_SHIFT;
2131 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2132 /* Try to avoid a swapstorm if len is impossible to satisfy */
2133 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2134 error = -ENOSPC;
2135 goto out;
2136 }
2137
2138 shmem_falloc.waitq = NULL;
2139 shmem_falloc.start = start;
2140 shmem_falloc.next = start;
2141 shmem_falloc.nr_falloced = 0;
2142 shmem_falloc.nr_unswapped = 0;
2143 spin_lock(&inode->i_lock);
2144 inode->i_private = &shmem_falloc;
2145 spin_unlock(&inode->i_lock);
2146
2147 for (index = start; index < end; index++) {
2148 struct page *page;
2149
2150 /*
2151 * Good, the fallocate(2) manpage permits EINTR: we may have
2152 * been interrupted because we are using up too much memory.
2153 */
2154 if (signal_pending(current))
2155 error = -EINTR;
2156 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2157 error = -ENOMEM;
2158 else
2159 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2160 NULL);
2161 if (error) {
2162 /* Remove the !PageUptodate pages we added */
2163 shmem_undo_range(inode,
2164 (loff_t)start << PAGE_CACHE_SHIFT,
2165 (loff_t)index << PAGE_CACHE_SHIFT, true);
2166 goto undone;
2167 }
2168
2169 /*
2170 * Inform shmem_writepage() how far we have reached.
2171 * No need for lock or barrier: we have the page lock.
2172 */
2173 shmem_falloc.next++;
2174 if (!PageUptodate(page))
2175 shmem_falloc.nr_falloced++;
2176
2177 /*
2178 * If !PageUptodate, leave it that way so that freeable pages
2179 * can be recognized if we need to rollback on error later.
2180 * But set_page_dirty so that memory pressure will swap rather
2181 * than free the pages we are allocating (and SGP_CACHE pages
2182 * might still be clean: we now need to mark those dirty too).
2183 */
2184 set_page_dirty(page);
2185 unlock_page(page);
2186 page_cache_release(page);
2187 cond_resched();
2188 }
2189
2190 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2191 i_size_write(inode, offset + len);
2192 inode->i_ctime = CURRENT_TIME;
2193 undone:
2194 spin_lock(&inode->i_lock);
2195 inode->i_private = NULL;
2196 spin_unlock(&inode->i_lock);
2197 out:
2198 mutex_unlock(&inode->i_mutex);
2199 return error;
2200 }
2201
2202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2203 {
2204 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2205
2206 buf->f_type = TMPFS_MAGIC;
2207 buf->f_bsize = PAGE_CACHE_SIZE;
2208 buf->f_namelen = NAME_MAX;
2209 if (sbinfo->max_blocks) {
2210 buf->f_blocks = sbinfo->max_blocks;
2211 buf->f_bavail =
2212 buf->f_bfree = sbinfo->max_blocks -
2213 percpu_counter_sum(&sbinfo->used_blocks);
2214 }
2215 if (sbinfo->max_inodes) {
2216 buf->f_files = sbinfo->max_inodes;
2217 buf->f_ffree = sbinfo->free_inodes;
2218 }
2219 /* else leave those fields 0 like simple_statfs */
2220 return 0;
2221 }
2222
2223 /*
2224 * File creation. Allocate an inode, and we're done..
2225 */
2226 static int
2227 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2228 {
2229 struct inode *inode;
2230 int error = -ENOSPC;
2231
2232 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2233 if (inode) {
2234 error = simple_acl_create(dir, inode);
2235 if (error)
2236 goto out_iput;
2237 error = security_inode_init_security(inode, dir,
2238 &dentry->d_name,
2239 shmem_initxattrs, NULL);
2240 if (error && error != -EOPNOTSUPP)
2241 goto out_iput;
2242
2243 error = 0;
2244 dir->i_size += BOGO_DIRENT_SIZE;
2245 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2246 d_instantiate(dentry, inode);
2247 dget(dentry); /* Extra count - pin the dentry in core */
2248 }
2249 return error;
2250 out_iput:
2251 iput(inode);
2252 return error;
2253 }
2254
2255 static int
2256 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2257 {
2258 struct inode *inode;
2259 int error = -ENOSPC;
2260
2261 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2262 if (inode) {
2263 error = security_inode_init_security(inode, dir,
2264 NULL,
2265 shmem_initxattrs, NULL);
2266 if (error && error != -EOPNOTSUPP)
2267 goto out_iput;
2268 error = simple_acl_create(dir, inode);
2269 if (error)
2270 goto out_iput;
2271 d_tmpfile(dentry, inode);
2272 }
2273 return error;
2274 out_iput:
2275 iput(inode);
2276 return error;
2277 }
2278
2279 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2280 {
2281 int error;
2282
2283 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2284 return error;
2285 inc_nlink(dir);
2286 return 0;
2287 }
2288
2289 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2290 bool excl)
2291 {
2292 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2293 }
2294
2295 /*
2296 * Link a file..
2297 */
2298 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2299 {
2300 struct inode *inode = d_inode(old_dentry);
2301 int ret;
2302
2303 /*
2304 * No ordinary (disk based) filesystem counts links as inodes;
2305 * but each new link needs a new dentry, pinning lowmem, and
2306 * tmpfs dentries cannot be pruned until they are unlinked.
2307 */
2308 ret = shmem_reserve_inode(inode->i_sb);
2309 if (ret)
2310 goto out;
2311
2312 dir->i_size += BOGO_DIRENT_SIZE;
2313 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2314 inc_nlink(inode);
2315 ihold(inode); /* New dentry reference */
2316 dget(dentry); /* Extra pinning count for the created dentry */
2317 d_instantiate(dentry, inode);
2318 out:
2319 return ret;
2320 }
2321
2322 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2323 {
2324 struct inode *inode = d_inode(dentry);
2325
2326 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2327 shmem_free_inode(inode->i_sb);
2328
2329 dir->i_size -= BOGO_DIRENT_SIZE;
2330 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2331 drop_nlink(inode);
2332 dput(dentry); /* Undo the count from "create" - this does all the work */
2333 return 0;
2334 }
2335
2336 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2337 {
2338 if (!simple_empty(dentry))
2339 return -ENOTEMPTY;
2340
2341 drop_nlink(d_inode(dentry));
2342 drop_nlink(dir);
2343 return shmem_unlink(dir, dentry);
2344 }
2345
2346 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2347 {
2348 bool old_is_dir = d_is_dir(old_dentry);
2349 bool new_is_dir = d_is_dir(new_dentry);
2350
2351 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2352 if (old_is_dir) {
2353 drop_nlink(old_dir);
2354 inc_nlink(new_dir);
2355 } else {
2356 drop_nlink(new_dir);
2357 inc_nlink(old_dir);
2358 }
2359 }
2360 old_dir->i_ctime = old_dir->i_mtime =
2361 new_dir->i_ctime = new_dir->i_mtime =
2362 d_inode(old_dentry)->i_ctime =
2363 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2364
2365 return 0;
2366 }
2367
2368 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2369 {
2370 struct dentry *whiteout;
2371 int error;
2372
2373 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2374 if (!whiteout)
2375 return -ENOMEM;
2376
2377 error = shmem_mknod(old_dir, whiteout,
2378 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2379 dput(whiteout);
2380 if (error)
2381 return error;
2382
2383 /*
2384 * Cheat and hash the whiteout while the old dentry is still in
2385 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2386 *
2387 * d_lookup() will consistently find one of them at this point,
2388 * not sure which one, but that isn't even important.
2389 */
2390 d_rehash(whiteout);
2391 return 0;
2392 }
2393
2394 /*
2395 * The VFS layer already does all the dentry stuff for rename,
2396 * we just have to decrement the usage count for the target if
2397 * it exists so that the VFS layer correctly free's it when it
2398 * gets overwritten.
2399 */
2400 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2401 {
2402 struct inode *inode = d_inode(old_dentry);
2403 int they_are_dirs = S_ISDIR(inode->i_mode);
2404
2405 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2406 return -EINVAL;
2407
2408 if (flags & RENAME_EXCHANGE)
2409 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2410
2411 if (!simple_empty(new_dentry))
2412 return -ENOTEMPTY;
2413
2414 if (flags & RENAME_WHITEOUT) {
2415 int error;
2416
2417 error = shmem_whiteout(old_dir, old_dentry);
2418 if (error)
2419 return error;
2420 }
2421
2422 if (d_really_is_positive(new_dentry)) {
2423 (void) shmem_unlink(new_dir, new_dentry);
2424 if (they_are_dirs) {
2425 drop_nlink(d_inode(new_dentry));
2426 drop_nlink(old_dir);
2427 }
2428 } else if (they_are_dirs) {
2429 drop_nlink(old_dir);
2430 inc_nlink(new_dir);
2431 }
2432
2433 old_dir->i_size -= BOGO_DIRENT_SIZE;
2434 new_dir->i_size += BOGO_DIRENT_SIZE;
2435 old_dir->i_ctime = old_dir->i_mtime =
2436 new_dir->i_ctime = new_dir->i_mtime =
2437 inode->i_ctime = CURRENT_TIME;
2438 return 0;
2439 }
2440
2441 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2442 {
2443 int error;
2444 int len;
2445 struct inode *inode;
2446 struct page *page;
2447 struct shmem_inode_info *info;
2448
2449 len = strlen(symname) + 1;
2450 if (len > PAGE_CACHE_SIZE)
2451 return -ENAMETOOLONG;
2452
2453 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2454 if (!inode)
2455 return -ENOSPC;
2456
2457 error = security_inode_init_security(inode, dir, &dentry->d_name,
2458 shmem_initxattrs, NULL);
2459 if (error) {
2460 if (error != -EOPNOTSUPP) {
2461 iput(inode);
2462 return error;
2463 }
2464 error = 0;
2465 }
2466
2467 info = SHMEM_I(inode);
2468 inode->i_size = len-1;
2469 if (len <= SHORT_SYMLINK_LEN) {
2470 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2471 if (!info->symlink) {
2472 iput(inode);
2473 return -ENOMEM;
2474 }
2475 inode->i_op = &shmem_short_symlink_operations;
2476 inode->i_link = info->symlink;
2477 } else {
2478 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2479 if (error) {
2480 iput(inode);
2481 return error;
2482 }
2483 inode->i_mapping->a_ops = &shmem_aops;
2484 inode->i_op = &shmem_symlink_inode_operations;
2485 inode_nohighmem(inode);
2486 memcpy(page_address(page), symname, len);
2487 SetPageUptodate(page);
2488 set_page_dirty(page);
2489 unlock_page(page);
2490 page_cache_release(page);
2491 }
2492 dir->i_size += BOGO_DIRENT_SIZE;
2493 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2494 d_instantiate(dentry, inode);
2495 dget(dentry);
2496 return 0;
2497 }
2498
2499 static const char *shmem_get_link(struct dentry *dentry,
2500 struct inode *inode, void **cookie)
2501 {
2502 struct page *page = NULL;
2503 int error;
2504 if (!dentry)
2505 return ERR_PTR(-ECHILD);
2506 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2507 if (error)
2508 return ERR_PTR(error);
2509 unlock_page(page);
2510 *cookie = page;
2511 return page_address(page);
2512 }
2513
2514 static void shmem_put_link(struct inode *unused, void *cookie)
2515 {
2516 struct page *page = cookie;
2517 mark_page_accessed(page);
2518 page_cache_release(page);
2519 }
2520
2521 #ifdef CONFIG_TMPFS_XATTR
2522 /*
2523 * Superblocks without xattr inode operations may get some security.* xattr
2524 * support from the LSM "for free". As soon as we have any other xattrs
2525 * like ACLs, we also need to implement the security.* handlers at
2526 * filesystem level, though.
2527 */
2528
2529 /*
2530 * Callback for security_inode_init_security() for acquiring xattrs.
2531 */
2532 static int shmem_initxattrs(struct inode *inode,
2533 const struct xattr *xattr_array,
2534 void *fs_info)
2535 {
2536 struct shmem_inode_info *info = SHMEM_I(inode);
2537 const struct xattr *xattr;
2538 struct simple_xattr *new_xattr;
2539 size_t len;
2540
2541 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2542 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2543 if (!new_xattr)
2544 return -ENOMEM;
2545
2546 len = strlen(xattr->name) + 1;
2547 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2548 GFP_KERNEL);
2549 if (!new_xattr->name) {
2550 kfree(new_xattr);
2551 return -ENOMEM;
2552 }
2553
2554 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2555 XATTR_SECURITY_PREFIX_LEN);
2556 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2557 xattr->name, len);
2558
2559 simple_xattr_list_add(&info->xattrs, new_xattr);
2560 }
2561
2562 return 0;
2563 }
2564
2565 static const struct xattr_handler *shmem_xattr_handlers[] = {
2566 #ifdef CONFIG_TMPFS_POSIX_ACL
2567 &posix_acl_access_xattr_handler,
2568 &posix_acl_default_xattr_handler,
2569 #endif
2570 NULL
2571 };
2572
2573 static int shmem_xattr_validate(const char *name)
2574 {
2575 struct { const char *prefix; size_t len; } arr[] = {
2576 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2577 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2578 };
2579 int i;
2580
2581 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2582 size_t preflen = arr[i].len;
2583 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2584 if (!name[preflen])
2585 return -EINVAL;
2586 return 0;
2587 }
2588 }
2589 return -EOPNOTSUPP;
2590 }
2591
2592 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2593 void *buffer, size_t size)
2594 {
2595 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2596 int err;
2597
2598 /*
2599 * If this is a request for a synthetic attribute in the system.*
2600 * namespace use the generic infrastructure to resolve a handler
2601 * for it via sb->s_xattr.
2602 */
2603 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2604 return generic_getxattr(dentry, name, buffer, size);
2605
2606 err = shmem_xattr_validate(name);
2607 if (err)
2608 return err;
2609
2610 return simple_xattr_get(&info->xattrs, name, buffer, size);
2611 }
2612
2613 static int shmem_setxattr(struct dentry *dentry, const char *name,
2614 const void *value, size_t size, int flags)
2615 {
2616 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2617 int err;
2618
2619 /*
2620 * If this is a request for a synthetic attribute in the system.*
2621 * namespace use the generic infrastructure to resolve a handler
2622 * for it via sb->s_xattr.
2623 */
2624 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2625 return generic_setxattr(dentry, name, value, size, flags);
2626
2627 err = shmem_xattr_validate(name);
2628 if (err)
2629 return err;
2630
2631 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2632 }
2633
2634 static int shmem_removexattr(struct dentry *dentry, const char *name)
2635 {
2636 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2637 int err;
2638
2639 /*
2640 * If this is a request for a synthetic attribute in the system.*
2641 * namespace use the generic infrastructure to resolve a handler
2642 * for it via sb->s_xattr.
2643 */
2644 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2645 return generic_removexattr(dentry, name);
2646
2647 err = shmem_xattr_validate(name);
2648 if (err)
2649 return err;
2650
2651 return simple_xattr_remove(&info->xattrs, name);
2652 }
2653
2654 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2655 {
2656 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2657 return simple_xattr_list(&info->xattrs, buffer, size);
2658 }
2659 #endif /* CONFIG_TMPFS_XATTR */
2660
2661 static const struct inode_operations shmem_short_symlink_operations = {
2662 .readlink = generic_readlink,
2663 .get_link = simple_get_link,
2664 #ifdef CONFIG_TMPFS_XATTR
2665 .setxattr = shmem_setxattr,
2666 .getxattr = shmem_getxattr,
2667 .listxattr = shmem_listxattr,
2668 .removexattr = shmem_removexattr,
2669 #endif
2670 };
2671
2672 static const struct inode_operations shmem_symlink_inode_operations = {
2673 .readlink = generic_readlink,
2674 .get_link = shmem_get_link,
2675 .put_link = shmem_put_link,
2676 #ifdef CONFIG_TMPFS_XATTR
2677 .setxattr = shmem_setxattr,
2678 .getxattr = shmem_getxattr,
2679 .listxattr = shmem_listxattr,
2680 .removexattr = shmem_removexattr,
2681 #endif
2682 };
2683
2684 static struct dentry *shmem_get_parent(struct dentry *child)
2685 {
2686 return ERR_PTR(-ESTALE);
2687 }
2688
2689 static int shmem_match(struct inode *ino, void *vfh)
2690 {
2691 __u32 *fh = vfh;
2692 __u64 inum = fh[2];
2693 inum = (inum << 32) | fh[1];
2694 return ino->i_ino == inum && fh[0] == ino->i_generation;
2695 }
2696
2697 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2698 struct fid *fid, int fh_len, int fh_type)
2699 {
2700 struct inode *inode;
2701 struct dentry *dentry = NULL;
2702 u64 inum;
2703
2704 if (fh_len < 3)
2705 return NULL;
2706
2707 inum = fid->raw[2];
2708 inum = (inum << 32) | fid->raw[1];
2709
2710 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2711 shmem_match, fid->raw);
2712 if (inode) {
2713 dentry = d_find_alias(inode);
2714 iput(inode);
2715 }
2716
2717 return dentry;
2718 }
2719
2720 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2721 struct inode *parent)
2722 {
2723 if (*len < 3) {
2724 *len = 3;
2725 return FILEID_INVALID;
2726 }
2727
2728 if (inode_unhashed(inode)) {
2729 /* Unfortunately insert_inode_hash is not idempotent,
2730 * so as we hash inodes here rather than at creation
2731 * time, we need a lock to ensure we only try
2732 * to do it once
2733 */
2734 static DEFINE_SPINLOCK(lock);
2735 spin_lock(&lock);
2736 if (inode_unhashed(inode))
2737 __insert_inode_hash(inode,
2738 inode->i_ino + inode->i_generation);
2739 spin_unlock(&lock);
2740 }
2741
2742 fh[0] = inode->i_generation;
2743 fh[1] = inode->i_ino;
2744 fh[2] = ((__u64)inode->i_ino) >> 32;
2745
2746 *len = 3;
2747 return 1;
2748 }
2749
2750 static const struct export_operations shmem_export_ops = {
2751 .get_parent = shmem_get_parent,
2752 .encode_fh = shmem_encode_fh,
2753 .fh_to_dentry = shmem_fh_to_dentry,
2754 };
2755
2756 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2757 bool remount)
2758 {
2759 char *this_char, *value, *rest;
2760 struct mempolicy *mpol = NULL;
2761 uid_t uid;
2762 gid_t gid;
2763
2764 while (options != NULL) {
2765 this_char = options;
2766 for (;;) {
2767 /*
2768 * NUL-terminate this option: unfortunately,
2769 * mount options form a comma-separated list,
2770 * but mpol's nodelist may also contain commas.
2771 */
2772 options = strchr(options, ',');
2773 if (options == NULL)
2774 break;
2775 options++;
2776 if (!isdigit(*options)) {
2777 options[-1] = '\0';
2778 break;
2779 }
2780 }
2781 if (!*this_char)
2782 continue;
2783 if ((value = strchr(this_char,'=')) != NULL) {
2784 *value++ = 0;
2785 } else {
2786 printk(KERN_ERR
2787 "tmpfs: No value for mount option '%s'\n",
2788 this_char);
2789 goto error;
2790 }
2791
2792 if (!strcmp(this_char,"size")) {
2793 unsigned long long size;
2794 size = memparse(value,&rest);
2795 if (*rest == '%') {
2796 size <<= PAGE_SHIFT;
2797 size *= totalram_pages;
2798 do_div(size, 100);
2799 rest++;
2800 }
2801 if (*rest)
2802 goto bad_val;
2803 sbinfo->max_blocks =
2804 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2805 } else if (!strcmp(this_char,"nr_blocks")) {
2806 sbinfo->max_blocks = memparse(value, &rest);
2807 if (*rest)
2808 goto bad_val;
2809 } else if (!strcmp(this_char,"nr_inodes")) {
2810 sbinfo->max_inodes = memparse(value, &rest);
2811 if (*rest)
2812 goto bad_val;
2813 } else if (!strcmp(this_char,"mode")) {
2814 if (remount)
2815 continue;
2816 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2817 if (*rest)
2818 goto bad_val;
2819 } else if (!strcmp(this_char,"uid")) {
2820 if (remount)
2821 continue;
2822 uid = simple_strtoul(value, &rest, 0);
2823 if (*rest)
2824 goto bad_val;
2825 sbinfo->uid = make_kuid(current_user_ns(), uid);
2826 if (!uid_valid(sbinfo->uid))
2827 goto bad_val;
2828 } else if (!strcmp(this_char,"gid")) {
2829 if (remount)
2830 continue;
2831 gid = simple_strtoul(value, &rest, 0);
2832 if (*rest)
2833 goto bad_val;
2834 sbinfo->gid = make_kgid(current_user_ns(), gid);
2835 if (!gid_valid(sbinfo->gid))
2836 goto bad_val;
2837 } else if (!strcmp(this_char,"mpol")) {
2838 mpol_put(mpol);
2839 mpol = NULL;
2840 if (mpol_parse_str(value, &mpol))
2841 goto bad_val;
2842 } else {
2843 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2844 this_char);
2845 goto error;
2846 }
2847 }
2848 sbinfo->mpol = mpol;
2849 return 0;
2850
2851 bad_val:
2852 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2853 value, this_char);
2854 error:
2855 mpol_put(mpol);
2856 return 1;
2857
2858 }
2859
2860 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2861 {
2862 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2863 struct shmem_sb_info config = *sbinfo;
2864 unsigned long inodes;
2865 int error = -EINVAL;
2866
2867 config.mpol = NULL;
2868 if (shmem_parse_options(data, &config, true))
2869 return error;
2870
2871 spin_lock(&sbinfo->stat_lock);
2872 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2873 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2874 goto out;
2875 if (config.max_inodes < inodes)
2876 goto out;
2877 /*
2878 * Those tests disallow limited->unlimited while any are in use;
2879 * but we must separately disallow unlimited->limited, because
2880 * in that case we have no record of how much is already in use.
2881 */
2882 if (config.max_blocks && !sbinfo->max_blocks)
2883 goto out;
2884 if (config.max_inodes && !sbinfo->max_inodes)
2885 goto out;
2886
2887 error = 0;
2888 sbinfo->max_blocks = config.max_blocks;
2889 sbinfo->max_inodes = config.max_inodes;
2890 sbinfo->free_inodes = config.max_inodes - inodes;
2891
2892 /*
2893 * Preserve previous mempolicy unless mpol remount option was specified.
2894 */
2895 if (config.mpol) {
2896 mpol_put(sbinfo->mpol);
2897 sbinfo->mpol = config.mpol; /* transfers initial ref */
2898 }
2899 out:
2900 spin_unlock(&sbinfo->stat_lock);
2901 return error;
2902 }
2903
2904 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2905 {
2906 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2907
2908 if (sbinfo->max_blocks != shmem_default_max_blocks())
2909 seq_printf(seq, ",size=%luk",
2910 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2911 if (sbinfo->max_inodes != shmem_default_max_inodes())
2912 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2913 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2914 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2915 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2916 seq_printf(seq, ",uid=%u",
2917 from_kuid_munged(&init_user_ns, sbinfo->uid));
2918 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2919 seq_printf(seq, ",gid=%u",
2920 from_kgid_munged(&init_user_ns, sbinfo->gid));
2921 shmem_show_mpol(seq, sbinfo->mpol);
2922 return 0;
2923 }
2924
2925 #define MFD_NAME_PREFIX "memfd:"
2926 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2927 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2928
2929 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2930
2931 SYSCALL_DEFINE2(memfd_create,
2932 const char __user *, uname,
2933 unsigned int, flags)
2934 {
2935 struct shmem_inode_info *info;
2936 struct file *file;
2937 int fd, error;
2938 char *name;
2939 long len;
2940
2941 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2942 return -EINVAL;
2943
2944 /* length includes terminating zero */
2945 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2946 if (len <= 0)
2947 return -EFAULT;
2948 if (len > MFD_NAME_MAX_LEN + 1)
2949 return -EINVAL;
2950
2951 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2952 if (!name)
2953 return -ENOMEM;
2954
2955 strcpy(name, MFD_NAME_PREFIX);
2956 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2957 error = -EFAULT;
2958 goto err_name;
2959 }
2960
2961 /* terminating-zero may have changed after strnlen_user() returned */
2962 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2963 error = -EFAULT;
2964 goto err_name;
2965 }
2966
2967 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2968 if (fd < 0) {
2969 error = fd;
2970 goto err_name;
2971 }
2972
2973 file = shmem_file_setup(name, 0, VM_NORESERVE);
2974 if (IS_ERR(file)) {
2975 error = PTR_ERR(file);
2976 goto err_fd;
2977 }
2978 info = SHMEM_I(file_inode(file));
2979 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2980 file->f_flags |= O_RDWR | O_LARGEFILE;
2981 if (flags & MFD_ALLOW_SEALING)
2982 info->seals &= ~F_SEAL_SEAL;
2983
2984 fd_install(fd, file);
2985 kfree(name);
2986 return fd;
2987
2988 err_fd:
2989 put_unused_fd(fd);
2990 err_name:
2991 kfree(name);
2992 return error;
2993 }
2994
2995 #endif /* CONFIG_TMPFS */
2996
2997 static void shmem_put_super(struct super_block *sb)
2998 {
2999 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3000
3001 percpu_counter_destroy(&sbinfo->used_blocks);
3002 mpol_put(sbinfo->mpol);
3003 kfree(sbinfo);
3004 sb->s_fs_info = NULL;
3005 }
3006
3007 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3008 {
3009 struct inode *inode;
3010 struct shmem_sb_info *sbinfo;
3011 int err = -ENOMEM;
3012
3013 /* Round up to L1_CACHE_BYTES to resist false sharing */
3014 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3015 L1_CACHE_BYTES), GFP_KERNEL);
3016 if (!sbinfo)
3017 return -ENOMEM;
3018
3019 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3020 sbinfo->uid = current_fsuid();
3021 sbinfo->gid = current_fsgid();
3022 sb->s_fs_info = sbinfo;
3023
3024 #ifdef CONFIG_TMPFS
3025 /*
3026 * Per default we only allow half of the physical ram per
3027 * tmpfs instance, limiting inodes to one per page of lowmem;
3028 * but the internal instance is left unlimited.
3029 */
3030 if (!(sb->s_flags & MS_KERNMOUNT)) {
3031 sbinfo->max_blocks = shmem_default_max_blocks();
3032 sbinfo->max_inodes = shmem_default_max_inodes();
3033 if (shmem_parse_options(data, sbinfo, false)) {
3034 err = -EINVAL;
3035 goto failed;
3036 }
3037 } else {
3038 sb->s_flags |= MS_NOUSER;
3039 }
3040 sb->s_export_op = &shmem_export_ops;
3041 sb->s_flags |= MS_NOSEC;
3042 #else
3043 sb->s_flags |= MS_NOUSER;
3044 #endif
3045
3046 spin_lock_init(&sbinfo->stat_lock);
3047 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3048 goto failed;
3049 sbinfo->free_inodes = sbinfo->max_inodes;
3050
3051 sb->s_maxbytes = MAX_LFS_FILESIZE;
3052 sb->s_blocksize = PAGE_CACHE_SIZE;
3053 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3054 sb->s_magic = TMPFS_MAGIC;
3055 sb->s_op = &shmem_ops;
3056 sb->s_time_gran = 1;
3057 #ifdef CONFIG_TMPFS_XATTR
3058 sb->s_xattr = shmem_xattr_handlers;
3059 #endif
3060 #ifdef CONFIG_TMPFS_POSIX_ACL
3061 sb->s_flags |= MS_POSIXACL;
3062 #endif
3063
3064 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3065 if (!inode)
3066 goto failed;
3067 inode->i_uid = sbinfo->uid;
3068 inode->i_gid = sbinfo->gid;
3069 sb->s_root = d_make_root(inode);
3070 if (!sb->s_root)
3071 goto failed;
3072 return 0;
3073
3074 failed:
3075 shmem_put_super(sb);
3076 return err;
3077 }
3078
3079 static struct kmem_cache *shmem_inode_cachep;
3080
3081 static struct inode *shmem_alloc_inode(struct super_block *sb)
3082 {
3083 struct shmem_inode_info *info;
3084 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3085 if (!info)
3086 return NULL;
3087 return &info->vfs_inode;
3088 }
3089
3090 static void shmem_destroy_callback(struct rcu_head *head)
3091 {
3092 struct inode *inode = container_of(head, struct inode, i_rcu);
3093 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3094 }
3095
3096 static void shmem_destroy_inode(struct inode *inode)
3097 {
3098 if (S_ISREG(inode->i_mode))
3099 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3100 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3101 }
3102
3103 static void shmem_init_inode(void *foo)
3104 {
3105 struct shmem_inode_info *info = foo;
3106 inode_init_once(&info->vfs_inode);
3107 }
3108
3109 static int shmem_init_inodecache(void)
3110 {
3111 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3112 sizeof(struct shmem_inode_info),
3113 0, SLAB_PANIC, shmem_init_inode);
3114 return 0;
3115 }
3116
3117 static void shmem_destroy_inodecache(void)
3118 {
3119 kmem_cache_destroy(shmem_inode_cachep);
3120 }
3121
3122 static const struct address_space_operations shmem_aops = {
3123 .writepage = shmem_writepage,
3124 .set_page_dirty = __set_page_dirty_no_writeback,
3125 #ifdef CONFIG_TMPFS
3126 .write_begin = shmem_write_begin,
3127 .write_end = shmem_write_end,
3128 #endif
3129 #ifdef CONFIG_MIGRATION
3130 .migratepage = migrate_page,
3131 #endif
3132 .error_remove_page = generic_error_remove_page,
3133 };
3134
3135 static const struct file_operations shmem_file_operations = {
3136 .mmap = shmem_mmap,
3137 #ifdef CONFIG_TMPFS
3138 .llseek = shmem_file_llseek,
3139 .read_iter = shmem_file_read_iter,
3140 .write_iter = generic_file_write_iter,
3141 .fsync = noop_fsync,
3142 .splice_read = shmem_file_splice_read,
3143 .splice_write = iter_file_splice_write,
3144 .fallocate = shmem_fallocate,
3145 #endif
3146 };
3147
3148 static const struct inode_operations shmem_inode_operations = {
3149 .getattr = shmem_getattr,
3150 .setattr = shmem_setattr,
3151 #ifdef CONFIG_TMPFS_XATTR
3152 .setxattr = shmem_setxattr,
3153 .getxattr = shmem_getxattr,
3154 .listxattr = shmem_listxattr,
3155 .removexattr = shmem_removexattr,
3156 .set_acl = simple_set_acl,
3157 #endif
3158 };
3159
3160 static const struct inode_operations shmem_dir_inode_operations = {
3161 #ifdef CONFIG_TMPFS
3162 .create = shmem_create,
3163 .lookup = simple_lookup,
3164 .link = shmem_link,
3165 .unlink = shmem_unlink,
3166 .symlink = shmem_symlink,
3167 .mkdir = shmem_mkdir,
3168 .rmdir = shmem_rmdir,
3169 .mknod = shmem_mknod,
3170 .rename2 = shmem_rename2,
3171 .tmpfile = shmem_tmpfile,
3172 #endif
3173 #ifdef CONFIG_TMPFS_XATTR
3174 .setxattr = shmem_setxattr,
3175 .getxattr = shmem_getxattr,
3176 .listxattr = shmem_listxattr,
3177 .removexattr = shmem_removexattr,
3178 #endif
3179 #ifdef CONFIG_TMPFS_POSIX_ACL
3180 .setattr = shmem_setattr,
3181 .set_acl = simple_set_acl,
3182 #endif
3183 };
3184
3185 static const struct inode_operations shmem_special_inode_operations = {
3186 #ifdef CONFIG_TMPFS_XATTR
3187 .setxattr = shmem_setxattr,
3188 .getxattr = shmem_getxattr,
3189 .listxattr = shmem_listxattr,
3190 .removexattr = shmem_removexattr,
3191 #endif
3192 #ifdef CONFIG_TMPFS_POSIX_ACL
3193 .setattr = shmem_setattr,
3194 .set_acl = simple_set_acl,
3195 #endif
3196 };
3197
3198 static const struct super_operations shmem_ops = {
3199 .alloc_inode = shmem_alloc_inode,
3200 .destroy_inode = shmem_destroy_inode,
3201 #ifdef CONFIG_TMPFS
3202 .statfs = shmem_statfs,
3203 .remount_fs = shmem_remount_fs,
3204 .show_options = shmem_show_options,
3205 #endif
3206 .evict_inode = shmem_evict_inode,
3207 .drop_inode = generic_delete_inode,
3208 .put_super = shmem_put_super,
3209 };
3210
3211 static const struct vm_operations_struct shmem_vm_ops = {
3212 .fault = shmem_fault,
3213 .map_pages = filemap_map_pages,
3214 #ifdef CONFIG_NUMA
3215 .set_policy = shmem_set_policy,
3216 .get_policy = shmem_get_policy,
3217 #endif
3218 };
3219
3220 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3221 int flags, const char *dev_name, void *data)
3222 {
3223 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3224 }
3225
3226 static struct file_system_type shmem_fs_type = {
3227 .owner = THIS_MODULE,
3228 .name = "tmpfs",
3229 .mount = shmem_mount,
3230 .kill_sb = kill_litter_super,
3231 .fs_flags = FS_USERNS_MOUNT,
3232 };
3233
3234 int __init shmem_init(void)
3235 {
3236 int error;
3237
3238 /* If rootfs called this, don't re-init */
3239 if (shmem_inode_cachep)
3240 return 0;
3241
3242 error = shmem_init_inodecache();
3243 if (error)
3244 goto out3;
3245
3246 error = register_filesystem(&shmem_fs_type);
3247 if (error) {
3248 printk(KERN_ERR "Could not register tmpfs\n");
3249 goto out2;
3250 }
3251
3252 shm_mnt = kern_mount(&shmem_fs_type);
3253 if (IS_ERR(shm_mnt)) {
3254 error = PTR_ERR(shm_mnt);
3255 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3256 goto out1;
3257 }
3258 return 0;
3259
3260 out1:
3261 unregister_filesystem(&shmem_fs_type);
3262 out2:
3263 shmem_destroy_inodecache();
3264 out3:
3265 shm_mnt = ERR_PTR(error);
3266 return error;
3267 }
3268
3269 #else /* !CONFIG_SHMEM */
3270
3271 /*
3272 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3273 *
3274 * This is intended for small system where the benefits of the full
3275 * shmem code (swap-backed and resource-limited) are outweighed by
3276 * their complexity. On systems without swap this code should be
3277 * effectively equivalent, but much lighter weight.
3278 */
3279
3280 static struct file_system_type shmem_fs_type = {
3281 .name = "tmpfs",
3282 .mount = ramfs_mount,
3283 .kill_sb = kill_litter_super,
3284 .fs_flags = FS_USERNS_MOUNT,
3285 };
3286
3287 int __init shmem_init(void)
3288 {
3289 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3290
3291 shm_mnt = kern_mount(&shmem_fs_type);
3292 BUG_ON(IS_ERR(shm_mnt));
3293
3294 return 0;
3295 }
3296
3297 int shmem_unuse(swp_entry_t swap, struct page *page)
3298 {
3299 return 0;
3300 }
3301
3302 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3303 {
3304 return 0;
3305 }
3306
3307 void shmem_unlock_mapping(struct address_space *mapping)
3308 {
3309 }
3310
3311 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3312 {
3313 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3314 }
3315 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3316
3317 #define shmem_vm_ops generic_file_vm_ops
3318 #define shmem_file_operations ramfs_file_operations
3319 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3320 #define shmem_acct_size(flags, size) 0
3321 #define shmem_unacct_size(flags, size) do {} while (0)
3322
3323 #endif /* CONFIG_SHMEM */
3324
3325 /* common code */
3326
3327 static struct dentry_operations anon_ops = {
3328 .d_dname = simple_dname
3329 };
3330
3331 static struct file *__shmem_file_setup(const char *name, loff_t size,
3332 unsigned long flags, unsigned int i_flags)
3333 {
3334 struct file *res;
3335 struct inode *inode;
3336 struct path path;
3337 struct super_block *sb;
3338 struct qstr this;
3339
3340 if (IS_ERR(shm_mnt))
3341 return ERR_CAST(shm_mnt);
3342
3343 if (size < 0 || size > MAX_LFS_FILESIZE)
3344 return ERR_PTR(-EINVAL);
3345
3346 if (shmem_acct_size(flags, size))
3347 return ERR_PTR(-ENOMEM);
3348
3349 res = ERR_PTR(-ENOMEM);
3350 this.name = name;
3351 this.len = strlen(name);
3352 this.hash = 0; /* will go */
3353 sb = shm_mnt->mnt_sb;
3354 path.mnt = mntget(shm_mnt);
3355 path.dentry = d_alloc_pseudo(sb, &this);
3356 if (!path.dentry)
3357 goto put_memory;
3358 d_set_d_op(path.dentry, &anon_ops);
3359
3360 res = ERR_PTR(-ENOSPC);
3361 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3362 if (!inode)
3363 goto put_memory;
3364
3365 inode->i_flags |= i_flags;
3366 d_instantiate(path.dentry, inode);
3367 inode->i_size = size;
3368 clear_nlink(inode); /* It is unlinked */
3369 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3370 if (IS_ERR(res))
3371 goto put_path;
3372
3373 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3374 &shmem_file_operations);
3375 if (IS_ERR(res))
3376 goto put_path;
3377
3378 return res;
3379
3380 put_memory:
3381 shmem_unacct_size(flags, size);
3382 put_path:
3383 path_put(&path);
3384 return res;
3385 }
3386
3387 /**
3388 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3389 * kernel internal. There will be NO LSM permission checks against the
3390 * underlying inode. So users of this interface must do LSM checks at a
3391 * higher layer. The users are the big_key and shm implementations. LSM
3392 * checks are provided at the key or shm level rather than the inode.
3393 * @name: name for dentry (to be seen in /proc/<pid>/maps
3394 * @size: size to be set for the file
3395 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3396 */
3397 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3398 {
3399 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3400 }
3401
3402 /**
3403 * shmem_file_setup - get an unlinked file living in tmpfs
3404 * @name: name for dentry (to be seen in /proc/<pid>/maps
3405 * @size: size to be set for the file
3406 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3407 */
3408 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3409 {
3410 return __shmem_file_setup(name, size, flags, 0);
3411 }
3412 EXPORT_SYMBOL_GPL(shmem_file_setup);
3413
3414 /**
3415 * shmem_zero_setup - setup a shared anonymous mapping
3416 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3417 */
3418 int shmem_zero_setup(struct vm_area_struct *vma)
3419 {
3420 struct file *file;
3421 loff_t size = vma->vm_end - vma->vm_start;
3422
3423 /*
3424 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3425 * between XFS directory reading and selinux: since this file is only
3426 * accessible to the user through its mapping, use S_PRIVATE flag to
3427 * bypass file security, in the same way as shmem_kernel_file_setup().
3428 */
3429 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3430 if (IS_ERR(file))
3431 return PTR_ERR(file);
3432
3433 if (vma->vm_file)
3434 fput(vma->vm_file);
3435 vma->vm_file = file;
3436 vma->vm_ops = &shmem_vm_ops;
3437 return 0;
3438 }
3439
3440 /**
3441 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3442 * @mapping: the page's address_space
3443 * @index: the page index
3444 * @gfp: the page allocator flags to use if allocating
3445 *
3446 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3447 * with any new page allocations done using the specified allocation flags.
3448 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3449 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3450 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3451 *
3452 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3453 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3454 */
3455 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3456 pgoff_t index, gfp_t gfp)
3457 {
3458 #ifdef CONFIG_SHMEM
3459 struct inode *inode = mapping->host;
3460 struct page *page;
3461 int error;
3462
3463 BUG_ON(mapping->a_ops != &shmem_aops);
3464 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3465 if (error)
3466 page = ERR_PTR(error);
3467 else
3468 unlock_page(page);
3469 return page;
3470 #else
3471 /*
3472 * The tiny !SHMEM case uses ramfs without swap
3473 */
3474 return read_cache_page_gfp(mapping, index, gfp);
3475 #endif
3476 }
3477 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.140251 seconds and 5 git commands to generate.