mm: honor min_free_kbytes set by user
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106 return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130 return sb->s_fs_info;
131 }
132
133 /*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141 return (flags & VM_NORESERVE) ?
142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147 if (!(flags & VM_NORESERVE))
148 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159 return (flags & VM_NORESERVE) ?
160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165 if (flags & VM_NORESERVE)
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
178 .ra_pages = 0, /* No readahead */
179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 }
209
210 /**
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
232 info->alloced -= freed;
233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234 shmem_unacct_blocks(info->flags, freed);
235 }
236 }
237
238 /*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243 {
244 void **pslot;
245 void *item = NULL;
246
247 VM_BUG_ON(!expected);
248 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249 if (pslot)
250 item = radix_tree_deref_slot_protected(pslot,
251 &mapping->tree_lock);
252 if (item != expected)
253 return -ENOENT;
254 if (replacement)
255 radix_tree_replace_slot(pslot, replacement);
256 else
257 radix_tree_delete(&mapping->page_tree, index);
258 return 0;
259 }
260
261 /*
262 * Sometimes, before we decide whether to proceed or to fail, we must check
263 * that an entry was not already brought back from swap by a racing thread.
264 *
265 * Checking page is not enough: by the time a SwapCache page is locked, it
266 * might be reused, and again be SwapCache, using the same swap as before.
267 */
268 static bool shmem_confirm_swap(struct address_space *mapping,
269 pgoff_t index, swp_entry_t swap)
270 {
271 void *item;
272
273 rcu_read_lock();
274 item = radix_tree_lookup(&mapping->page_tree, index);
275 rcu_read_unlock();
276 return item == swp_to_radix_entry(swap);
277 }
278
279 /*
280 * Like add_to_page_cache_locked, but error if expected item has gone.
281 */
282 static int shmem_add_to_page_cache(struct page *page,
283 struct address_space *mapping,
284 pgoff_t index, gfp_t gfp, void *expected)
285 {
286 int error;
287
288 VM_BUG_ON(!PageLocked(page));
289 VM_BUG_ON(!PageSwapBacked(page));
290
291 page_cache_get(page);
292 page->mapping = mapping;
293 page->index = index;
294
295 spin_lock_irq(&mapping->tree_lock);
296 if (!expected)
297 error = radix_tree_insert(&mapping->page_tree, index, page);
298 else
299 error = shmem_radix_tree_replace(mapping, index, expected,
300 page);
301 if (!error) {
302 mapping->nrpages++;
303 __inc_zone_page_state(page, NR_FILE_PAGES);
304 __inc_zone_page_state(page, NR_SHMEM);
305 spin_unlock_irq(&mapping->tree_lock);
306 } else {
307 page->mapping = NULL;
308 spin_unlock_irq(&mapping->tree_lock);
309 page_cache_release(page);
310 }
311 return error;
312 }
313
314 /*
315 * Like delete_from_page_cache, but substitutes swap for page.
316 */
317 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318 {
319 struct address_space *mapping = page->mapping;
320 int error;
321
322 spin_lock_irq(&mapping->tree_lock);
323 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324 page->mapping = NULL;
325 mapping->nrpages--;
326 __dec_zone_page_state(page, NR_FILE_PAGES);
327 __dec_zone_page_state(page, NR_SHMEM);
328 spin_unlock_irq(&mapping->tree_lock);
329 page_cache_release(page);
330 BUG_ON(error);
331 }
332
333 /*
334 * Like find_get_pages, but collecting swap entries as well as pages.
335 */
336 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337 pgoff_t start, unsigned int nr_pages,
338 struct page **pages, pgoff_t *indices)
339 {
340 void **slot;
341 unsigned int ret = 0;
342 struct radix_tree_iter iter;
343
344 if (!nr_pages)
345 return 0;
346
347 rcu_read_lock();
348 restart:
349 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350 struct page *page;
351 repeat:
352 page = radix_tree_deref_slot(slot);
353 if (unlikely(!page))
354 continue;
355 if (radix_tree_exception(page)) {
356 if (radix_tree_deref_retry(page))
357 goto restart;
358 /*
359 * Otherwise, we must be storing a swap entry
360 * here as an exceptional entry: so return it
361 * without attempting to raise page count.
362 */
363 goto export;
364 }
365 if (!page_cache_get_speculative(page))
366 goto repeat;
367
368 /* Has the page moved? */
369 if (unlikely(page != *slot)) {
370 page_cache_release(page);
371 goto repeat;
372 }
373 export:
374 indices[ret] = iter.index;
375 pages[ret] = page;
376 if (++ret == nr_pages)
377 break;
378 }
379 rcu_read_unlock();
380 return ret;
381 }
382
383 /*
384 * Remove swap entry from radix tree, free the swap and its page cache.
385 */
386 static int shmem_free_swap(struct address_space *mapping,
387 pgoff_t index, void *radswap)
388 {
389 int error;
390
391 spin_lock_irq(&mapping->tree_lock);
392 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393 spin_unlock_irq(&mapping->tree_lock);
394 if (!error)
395 free_swap_and_cache(radix_to_swp_entry(radswap));
396 return error;
397 }
398
399 /*
400 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 */
402 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 {
404 int i, j;
405
406 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407 struct page *page = pvec->pages[i];
408 if (!radix_tree_exceptional_entry(page))
409 pvec->pages[j++] = page;
410 }
411 pvec->nr = j;
412 }
413
414 /*
415 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 */
417 void shmem_unlock_mapping(struct address_space *mapping)
418 {
419 struct pagevec pvec;
420 pgoff_t indices[PAGEVEC_SIZE];
421 pgoff_t index = 0;
422
423 pagevec_init(&pvec, 0);
424 /*
425 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426 */
427 while (!mapping_unevictable(mapping)) {
428 /*
429 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431 */
432 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433 PAGEVEC_SIZE, pvec.pages, indices);
434 if (!pvec.nr)
435 break;
436 index = indices[pvec.nr - 1] + 1;
437 shmem_deswap_pagevec(&pvec);
438 check_move_unevictable_pages(pvec.pages, pvec.nr);
439 pagevec_release(&pvec);
440 cond_resched();
441 }
442 }
443
444 /*
445 * Remove range of pages and swap entries from radix tree, and free them.
446 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 */
448 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449 bool unfalloc)
450 {
451 struct address_space *mapping = inode->i_mapping;
452 struct shmem_inode_info *info = SHMEM_I(inode);
453 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457 struct pagevec pvec;
458 pgoff_t indices[PAGEVEC_SIZE];
459 long nr_swaps_freed = 0;
460 pgoff_t index;
461 int i;
462
463 if (lend == -1)
464 end = -1; /* unsigned, so actually very big */
465
466 pagevec_init(&pvec, 0);
467 index = start;
468 while (index < end) {
469 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470 min(end - index, (pgoff_t)PAGEVEC_SIZE),
471 pvec.pages, indices);
472 if (!pvec.nr)
473 break;
474 mem_cgroup_uncharge_start();
475 for (i = 0; i < pagevec_count(&pvec); i++) {
476 struct page *page = pvec.pages[i];
477
478 index = indices[i];
479 if (index >= end)
480 break;
481
482 if (radix_tree_exceptional_entry(page)) {
483 if (unfalloc)
484 continue;
485 nr_swaps_freed += !shmem_free_swap(mapping,
486 index, page);
487 continue;
488 }
489
490 if (!trylock_page(page))
491 continue;
492 if (!unfalloc || !PageUptodate(page)) {
493 if (page->mapping == mapping) {
494 VM_BUG_ON(PageWriteback(page));
495 truncate_inode_page(mapping, page);
496 }
497 }
498 unlock_page(page);
499 }
500 shmem_deswap_pagevec(&pvec);
501 pagevec_release(&pvec);
502 mem_cgroup_uncharge_end();
503 cond_resched();
504 index++;
505 }
506
507 if (partial_start) {
508 struct page *page = NULL;
509 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510 if (page) {
511 unsigned int top = PAGE_CACHE_SIZE;
512 if (start > end) {
513 top = partial_end;
514 partial_end = 0;
515 }
516 zero_user_segment(page, partial_start, top);
517 set_page_dirty(page);
518 unlock_page(page);
519 page_cache_release(page);
520 }
521 }
522 if (partial_end) {
523 struct page *page = NULL;
524 shmem_getpage(inode, end, &page, SGP_READ, NULL);
525 if (page) {
526 zero_user_segment(page, 0, partial_end);
527 set_page_dirty(page);
528 unlock_page(page);
529 page_cache_release(page);
530 }
531 }
532 if (start >= end)
533 return;
534
535 index = start;
536 for ( ; ; ) {
537 cond_resched();
538 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539 min(end - index, (pgoff_t)PAGEVEC_SIZE),
540 pvec.pages, indices);
541 if (!pvec.nr) {
542 if (index == start || unfalloc)
543 break;
544 index = start;
545 continue;
546 }
547 if ((index == start || unfalloc) && indices[0] >= end) {
548 shmem_deswap_pagevec(&pvec);
549 pagevec_release(&pvec);
550 break;
551 }
552 mem_cgroup_uncharge_start();
553 for (i = 0; i < pagevec_count(&pvec); i++) {
554 struct page *page = pvec.pages[i];
555
556 index = indices[i];
557 if (index >= end)
558 break;
559
560 if (radix_tree_exceptional_entry(page)) {
561 if (unfalloc)
562 continue;
563 nr_swaps_freed += !shmem_free_swap(mapping,
564 index, page);
565 continue;
566 }
567
568 lock_page(page);
569 if (!unfalloc || !PageUptodate(page)) {
570 if (page->mapping == mapping) {
571 VM_BUG_ON(PageWriteback(page));
572 truncate_inode_page(mapping, page);
573 }
574 }
575 unlock_page(page);
576 }
577 shmem_deswap_pagevec(&pvec);
578 pagevec_release(&pvec);
579 mem_cgroup_uncharge_end();
580 index++;
581 }
582
583 spin_lock(&info->lock);
584 info->swapped -= nr_swaps_freed;
585 shmem_recalc_inode(inode);
586 spin_unlock(&info->lock);
587 }
588
589 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590 {
591 shmem_undo_range(inode, lstart, lend, false);
592 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593 }
594 EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597 {
598 struct inode *inode = dentry->d_inode;
599 int error;
600
601 error = inode_change_ok(inode, attr);
602 if (error)
603 return error;
604
605 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606 loff_t oldsize = inode->i_size;
607 loff_t newsize = attr->ia_size;
608
609 if (newsize != oldsize) {
610 i_size_write(inode, newsize);
611 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612 }
613 if (newsize < oldsize) {
614 loff_t holebegin = round_up(newsize, PAGE_SIZE);
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 shmem_truncate_range(inode, newsize, (loff_t)-1);
617 /* unmap again to remove racily COWed private pages */
618 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619 }
620 }
621
622 setattr_copy(inode, attr);
623 #ifdef CONFIG_TMPFS_POSIX_ACL
624 if (attr->ia_valid & ATTR_MODE)
625 error = generic_acl_chmod(inode);
626 #endif
627 return error;
628 }
629
630 static void shmem_evict_inode(struct inode *inode)
631 {
632 struct shmem_inode_info *info = SHMEM_I(inode);
633
634 if (inode->i_mapping->a_ops == &shmem_aops) {
635 shmem_unacct_size(info->flags, inode->i_size);
636 inode->i_size = 0;
637 shmem_truncate_range(inode, 0, (loff_t)-1);
638 if (!list_empty(&info->swaplist)) {
639 mutex_lock(&shmem_swaplist_mutex);
640 list_del_init(&info->swaplist);
641 mutex_unlock(&shmem_swaplist_mutex);
642 }
643 } else
644 kfree(info->symlink);
645
646 simple_xattrs_free(&info->xattrs);
647 WARN_ON(inode->i_blocks);
648 shmem_free_inode(inode->i_sb);
649 clear_inode(inode);
650 }
651
652 /*
653 * If swap found in inode, free it and move page from swapcache to filecache.
654 */
655 static int shmem_unuse_inode(struct shmem_inode_info *info,
656 swp_entry_t swap, struct page **pagep)
657 {
658 struct address_space *mapping = info->vfs_inode.i_mapping;
659 void *radswap;
660 pgoff_t index;
661 gfp_t gfp;
662 int error = 0;
663
664 radswap = swp_to_radix_entry(swap);
665 index = radix_tree_locate_item(&mapping->page_tree, radswap);
666 if (index == -1)
667 return 0;
668
669 /*
670 * Move _head_ to start search for next from here.
671 * But be careful: shmem_evict_inode checks list_empty without taking
672 * mutex, and there's an instant in list_move_tail when info->swaplist
673 * would appear empty, if it were the only one on shmem_swaplist.
674 */
675 if (shmem_swaplist.next != &info->swaplist)
676 list_move_tail(&shmem_swaplist, &info->swaplist);
677
678 gfp = mapping_gfp_mask(mapping);
679 if (shmem_should_replace_page(*pagep, gfp)) {
680 mutex_unlock(&shmem_swaplist_mutex);
681 error = shmem_replace_page(pagep, gfp, info, index);
682 mutex_lock(&shmem_swaplist_mutex);
683 /*
684 * We needed to drop mutex to make that restrictive page
685 * allocation, but the inode might have been freed while we
686 * dropped it: although a racing shmem_evict_inode() cannot
687 * complete without emptying the radix_tree, our page lock
688 * on this swapcache page is not enough to prevent that -
689 * free_swap_and_cache() of our swap entry will only
690 * trylock_page(), removing swap from radix_tree whatever.
691 *
692 * We must not proceed to shmem_add_to_page_cache() if the
693 * inode has been freed, but of course we cannot rely on
694 * inode or mapping or info to check that. However, we can
695 * safely check if our swap entry is still in use (and here
696 * it can't have got reused for another page): if it's still
697 * in use, then the inode cannot have been freed yet, and we
698 * can safely proceed (if it's no longer in use, that tells
699 * nothing about the inode, but we don't need to unuse swap).
700 */
701 if (!page_swapcount(*pagep))
702 error = -ENOENT;
703 }
704
705 /*
706 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
707 * but also to hold up shmem_evict_inode(): so inode cannot be freed
708 * beneath us (pagelock doesn't help until the page is in pagecache).
709 */
710 if (!error)
711 error = shmem_add_to_page_cache(*pagep, mapping, index,
712 GFP_NOWAIT, radswap);
713 if (error != -ENOMEM) {
714 /*
715 * Truncation and eviction use free_swap_and_cache(), which
716 * only does trylock page: if we raced, best clean up here.
717 */
718 delete_from_swap_cache(*pagep);
719 set_page_dirty(*pagep);
720 if (!error) {
721 spin_lock(&info->lock);
722 info->swapped--;
723 spin_unlock(&info->lock);
724 swap_free(swap);
725 }
726 error = 1; /* not an error, but entry was found */
727 }
728 return error;
729 }
730
731 /*
732 * Search through swapped inodes to find and replace swap by page.
733 */
734 int shmem_unuse(swp_entry_t swap, struct page *page)
735 {
736 struct list_head *this, *next;
737 struct shmem_inode_info *info;
738 int found = 0;
739 int error = 0;
740
741 /*
742 * There's a faint possibility that swap page was replaced before
743 * caller locked it: caller will come back later with the right page.
744 */
745 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
746 goto out;
747
748 /*
749 * Charge page using GFP_KERNEL while we can wait, before taking
750 * the shmem_swaplist_mutex which might hold up shmem_writepage().
751 * Charged back to the user (not to caller) when swap account is used.
752 */
753 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
754 if (error)
755 goto out;
756 /* No radix_tree_preload: swap entry keeps a place for page in tree */
757
758 mutex_lock(&shmem_swaplist_mutex);
759 list_for_each_safe(this, next, &shmem_swaplist) {
760 info = list_entry(this, struct shmem_inode_info, swaplist);
761 if (info->swapped)
762 found = shmem_unuse_inode(info, swap, &page);
763 else
764 list_del_init(&info->swaplist);
765 cond_resched();
766 if (found)
767 break;
768 }
769 mutex_unlock(&shmem_swaplist_mutex);
770
771 if (found < 0)
772 error = found;
773 out:
774 unlock_page(page);
775 page_cache_release(page);
776 return error;
777 }
778
779 /*
780 * Move the page from the page cache to the swap cache.
781 */
782 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
783 {
784 struct shmem_inode_info *info;
785 struct address_space *mapping;
786 struct inode *inode;
787 swp_entry_t swap;
788 pgoff_t index;
789
790 BUG_ON(!PageLocked(page));
791 mapping = page->mapping;
792 index = page->index;
793 inode = mapping->host;
794 info = SHMEM_I(inode);
795 if (info->flags & VM_LOCKED)
796 goto redirty;
797 if (!total_swap_pages)
798 goto redirty;
799
800 /*
801 * shmem_backing_dev_info's capabilities prevent regular writeback or
802 * sync from ever calling shmem_writepage; but a stacking filesystem
803 * might use ->writepage of its underlying filesystem, in which case
804 * tmpfs should write out to swap only in response to memory pressure,
805 * and not for the writeback threads or sync.
806 */
807 if (!wbc->for_reclaim) {
808 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
809 goto redirty;
810 }
811
812 /*
813 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
814 * value into swapfile.c, the only way we can correctly account for a
815 * fallocated page arriving here is now to initialize it and write it.
816 *
817 * That's okay for a page already fallocated earlier, but if we have
818 * not yet completed the fallocation, then (a) we want to keep track
819 * of this page in case we have to undo it, and (b) it may not be a
820 * good idea to continue anyway, once we're pushing into swap. So
821 * reactivate the page, and let shmem_fallocate() quit when too many.
822 */
823 if (!PageUptodate(page)) {
824 if (inode->i_private) {
825 struct shmem_falloc *shmem_falloc;
826 spin_lock(&inode->i_lock);
827 shmem_falloc = inode->i_private;
828 if (shmem_falloc &&
829 index >= shmem_falloc->start &&
830 index < shmem_falloc->next)
831 shmem_falloc->nr_unswapped++;
832 else
833 shmem_falloc = NULL;
834 spin_unlock(&inode->i_lock);
835 if (shmem_falloc)
836 goto redirty;
837 }
838 clear_highpage(page);
839 flush_dcache_page(page);
840 SetPageUptodate(page);
841 }
842
843 swap = get_swap_page();
844 if (!swap.val)
845 goto redirty;
846
847 /*
848 * Add inode to shmem_unuse()'s list of swapped-out inodes,
849 * if it's not already there. Do it now before the page is
850 * moved to swap cache, when its pagelock no longer protects
851 * the inode from eviction. But don't unlock the mutex until
852 * we've incremented swapped, because shmem_unuse_inode() will
853 * prune a !swapped inode from the swaplist under this mutex.
854 */
855 mutex_lock(&shmem_swaplist_mutex);
856 if (list_empty(&info->swaplist))
857 list_add_tail(&info->swaplist, &shmem_swaplist);
858
859 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
860 swap_shmem_alloc(swap);
861 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862
863 spin_lock(&info->lock);
864 info->swapped++;
865 shmem_recalc_inode(inode);
866 spin_unlock(&info->lock);
867
868 mutex_unlock(&shmem_swaplist_mutex);
869 BUG_ON(page_mapped(page));
870 swap_writepage(page, wbc);
871 return 0;
872 }
873
874 mutex_unlock(&shmem_swaplist_mutex);
875 swapcache_free(swap, NULL);
876 redirty:
877 set_page_dirty(page);
878 if (wbc->for_reclaim)
879 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
880 unlock_page(page);
881 return 0;
882 }
883
884 #ifdef CONFIG_NUMA
885 #ifdef CONFIG_TMPFS
886 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887 {
888 char buffer[64];
889
890 if (!mpol || mpol->mode == MPOL_DEFAULT)
891 return; /* show nothing */
892
893 mpol_to_str(buffer, sizeof(buffer), mpol);
894
895 seq_printf(seq, ",mpol=%s", buffer);
896 }
897
898 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899 {
900 struct mempolicy *mpol = NULL;
901 if (sbinfo->mpol) {
902 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
903 mpol = sbinfo->mpol;
904 mpol_get(mpol);
905 spin_unlock(&sbinfo->stat_lock);
906 }
907 return mpol;
908 }
909 #endif /* CONFIG_TMPFS */
910
911 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912 struct shmem_inode_info *info, pgoff_t index)
913 {
914 struct vm_area_struct pvma;
915 struct page *page;
916
917 /* Create a pseudo vma that just contains the policy */
918 pvma.vm_start = 0;
919 /* Bias interleave by inode number to distribute better across nodes */
920 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
921 pvma.vm_ops = NULL;
922 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
923
924 page = swapin_readahead(swap, gfp, &pvma, 0);
925
926 /* Drop reference taken by mpol_shared_policy_lookup() */
927 mpol_cond_put(pvma.vm_policy);
928
929 return page;
930 }
931
932 static struct page *shmem_alloc_page(gfp_t gfp,
933 struct shmem_inode_info *info, pgoff_t index)
934 {
935 struct vm_area_struct pvma;
936 struct page *page;
937
938 /* Create a pseudo vma that just contains the policy */
939 pvma.vm_start = 0;
940 /* Bias interleave by inode number to distribute better across nodes */
941 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
942 pvma.vm_ops = NULL;
943 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
944
945 page = alloc_page_vma(gfp, &pvma, 0);
946
947 /* Drop reference taken by mpol_shared_policy_lookup() */
948 mpol_cond_put(pvma.vm_policy);
949
950 return page;
951 }
952 #else /* !CONFIG_NUMA */
953 #ifdef CONFIG_TMPFS
954 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956 }
957 #endif /* CONFIG_TMPFS */
958
959 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
960 struct shmem_inode_info *info, pgoff_t index)
961 {
962 return swapin_readahead(swap, gfp, NULL, 0);
963 }
964
965 static inline struct page *shmem_alloc_page(gfp_t gfp,
966 struct shmem_inode_info *info, pgoff_t index)
967 {
968 return alloc_page(gfp);
969 }
970 #endif /* CONFIG_NUMA */
971
972 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
973 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
974 {
975 return NULL;
976 }
977 #endif
978
979 /*
980 * When a page is moved from swapcache to shmem filecache (either by the
981 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
982 * shmem_unuse_inode()), it may have been read in earlier from swap, in
983 * ignorance of the mapping it belongs to. If that mapping has special
984 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
985 * we may need to copy to a suitable page before moving to filecache.
986 *
987 * In a future release, this may well be extended to respect cpuset and
988 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
989 * but for now it is a simple matter of zone.
990 */
991 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
992 {
993 return page_zonenum(page) > gfp_zone(gfp);
994 }
995
996 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
997 struct shmem_inode_info *info, pgoff_t index)
998 {
999 struct page *oldpage, *newpage;
1000 struct address_space *swap_mapping;
1001 pgoff_t swap_index;
1002 int error;
1003
1004 oldpage = *pagep;
1005 swap_index = page_private(oldpage);
1006 swap_mapping = page_mapping(oldpage);
1007
1008 /*
1009 * We have arrived here because our zones are constrained, so don't
1010 * limit chance of success by further cpuset and node constraints.
1011 */
1012 gfp &= ~GFP_CONSTRAINT_MASK;
1013 newpage = shmem_alloc_page(gfp, info, index);
1014 if (!newpage)
1015 return -ENOMEM;
1016
1017 page_cache_get(newpage);
1018 copy_highpage(newpage, oldpage);
1019 flush_dcache_page(newpage);
1020
1021 __set_page_locked(newpage);
1022 SetPageUptodate(newpage);
1023 SetPageSwapBacked(newpage);
1024 set_page_private(newpage, swap_index);
1025 SetPageSwapCache(newpage);
1026
1027 /*
1028 * Our caller will very soon move newpage out of swapcache, but it's
1029 * a nice clean interface for us to replace oldpage by newpage there.
1030 */
1031 spin_lock_irq(&swap_mapping->tree_lock);
1032 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1033 newpage);
1034 if (!error) {
1035 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1036 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1037 }
1038 spin_unlock_irq(&swap_mapping->tree_lock);
1039
1040 if (unlikely(error)) {
1041 /*
1042 * Is this possible? I think not, now that our callers check
1043 * both PageSwapCache and page_private after getting page lock;
1044 * but be defensive. Reverse old to newpage for clear and free.
1045 */
1046 oldpage = newpage;
1047 } else {
1048 mem_cgroup_replace_page_cache(oldpage, newpage);
1049 lru_cache_add_anon(newpage);
1050 *pagep = newpage;
1051 }
1052
1053 ClearPageSwapCache(oldpage);
1054 set_page_private(oldpage, 0);
1055
1056 unlock_page(oldpage);
1057 page_cache_release(oldpage);
1058 page_cache_release(oldpage);
1059 return error;
1060 }
1061
1062 /*
1063 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064 *
1065 * If we allocate a new one we do not mark it dirty. That's up to the
1066 * vm. If we swap it in we mark it dirty since we also free the swap
1067 * entry since a page cannot live in both the swap and page cache
1068 */
1069 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1070 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1071 {
1072 struct address_space *mapping = inode->i_mapping;
1073 struct shmem_inode_info *info;
1074 struct shmem_sb_info *sbinfo;
1075 struct page *page;
1076 swp_entry_t swap;
1077 int error;
1078 int once = 0;
1079 int alloced = 0;
1080
1081 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1082 return -EFBIG;
1083 repeat:
1084 swap.val = 0;
1085 page = find_lock_page(mapping, index);
1086 if (radix_tree_exceptional_entry(page)) {
1087 swap = radix_to_swp_entry(page);
1088 page = NULL;
1089 }
1090
1091 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1092 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1093 error = -EINVAL;
1094 goto failed;
1095 }
1096
1097 /* fallocated page? */
1098 if (page && !PageUptodate(page)) {
1099 if (sgp != SGP_READ)
1100 goto clear;
1101 unlock_page(page);
1102 page_cache_release(page);
1103 page = NULL;
1104 }
1105 if (page || (sgp == SGP_READ && !swap.val)) {
1106 *pagep = page;
1107 return 0;
1108 }
1109
1110 /*
1111 * Fast cache lookup did not find it:
1112 * bring it back from swap or allocate.
1113 */
1114 info = SHMEM_I(inode);
1115 sbinfo = SHMEM_SB(inode->i_sb);
1116
1117 if (swap.val) {
1118 /* Look it up and read it in.. */
1119 page = lookup_swap_cache(swap);
1120 if (!page) {
1121 /* here we actually do the io */
1122 if (fault_type)
1123 *fault_type |= VM_FAULT_MAJOR;
1124 page = shmem_swapin(swap, gfp, info, index);
1125 if (!page) {
1126 error = -ENOMEM;
1127 goto failed;
1128 }
1129 }
1130
1131 /* We have to do this with page locked to prevent races */
1132 lock_page(page);
1133 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1134 !shmem_confirm_swap(mapping, index, swap)) {
1135 error = -EEXIST; /* try again */
1136 goto unlock;
1137 }
1138 if (!PageUptodate(page)) {
1139 error = -EIO;
1140 goto failed;
1141 }
1142 wait_on_page_writeback(page);
1143
1144 if (shmem_should_replace_page(page, gfp)) {
1145 error = shmem_replace_page(&page, gfp, info, index);
1146 if (error)
1147 goto failed;
1148 }
1149
1150 error = mem_cgroup_cache_charge(page, current->mm,
1151 gfp & GFP_RECLAIM_MASK);
1152 if (!error) {
1153 error = shmem_add_to_page_cache(page, mapping, index,
1154 gfp, swp_to_radix_entry(swap));
1155 /*
1156 * We already confirmed swap under page lock, and make
1157 * no memory allocation here, so usually no possibility
1158 * of error; but free_swap_and_cache() only trylocks a
1159 * page, so it is just possible that the entry has been
1160 * truncated or holepunched since swap was confirmed.
1161 * shmem_undo_range() will have done some of the
1162 * unaccounting, now delete_from_swap_cache() will do
1163 * the rest (including mem_cgroup_uncharge_swapcache).
1164 * Reset swap.val? No, leave it so "failed" goes back to
1165 * "repeat": reading a hole and writing should succeed.
1166 */
1167 if (error)
1168 delete_from_swap_cache(page);
1169 }
1170 if (error)
1171 goto failed;
1172
1173 spin_lock(&info->lock);
1174 info->swapped--;
1175 shmem_recalc_inode(inode);
1176 spin_unlock(&info->lock);
1177
1178 delete_from_swap_cache(page);
1179 set_page_dirty(page);
1180 swap_free(swap);
1181
1182 } else {
1183 if (shmem_acct_block(info->flags)) {
1184 error = -ENOSPC;
1185 goto failed;
1186 }
1187 if (sbinfo->max_blocks) {
1188 if (percpu_counter_compare(&sbinfo->used_blocks,
1189 sbinfo->max_blocks) >= 0) {
1190 error = -ENOSPC;
1191 goto unacct;
1192 }
1193 percpu_counter_inc(&sbinfo->used_blocks);
1194 }
1195
1196 page = shmem_alloc_page(gfp, info, index);
1197 if (!page) {
1198 error = -ENOMEM;
1199 goto decused;
1200 }
1201
1202 SetPageSwapBacked(page);
1203 __set_page_locked(page);
1204 error = mem_cgroup_cache_charge(page, current->mm,
1205 gfp & GFP_RECLAIM_MASK);
1206 if (error)
1207 goto decused;
1208 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1209 if (!error) {
1210 error = shmem_add_to_page_cache(page, mapping, index,
1211 gfp, NULL);
1212 radix_tree_preload_end();
1213 }
1214 if (error) {
1215 mem_cgroup_uncharge_cache_page(page);
1216 goto decused;
1217 }
1218 lru_cache_add_anon(page);
1219
1220 spin_lock(&info->lock);
1221 info->alloced++;
1222 inode->i_blocks += BLOCKS_PER_PAGE;
1223 shmem_recalc_inode(inode);
1224 spin_unlock(&info->lock);
1225 alloced = true;
1226
1227 /*
1228 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229 */
1230 if (sgp == SGP_FALLOC)
1231 sgp = SGP_WRITE;
1232 clear:
1233 /*
1234 * Let SGP_WRITE caller clear ends if write does not fill page;
1235 * but SGP_FALLOC on a page fallocated earlier must initialize
1236 * it now, lest undo on failure cancel our earlier guarantee.
1237 */
1238 if (sgp != SGP_WRITE) {
1239 clear_highpage(page);
1240 flush_dcache_page(page);
1241 SetPageUptodate(page);
1242 }
1243 if (sgp == SGP_DIRTY)
1244 set_page_dirty(page);
1245 }
1246
1247 /* Perhaps the file has been truncated since we checked */
1248 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1249 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1250 error = -EINVAL;
1251 if (alloced)
1252 goto trunc;
1253 else
1254 goto failed;
1255 }
1256 *pagep = page;
1257 return 0;
1258
1259 /*
1260 * Error recovery.
1261 */
1262 trunc:
1263 info = SHMEM_I(inode);
1264 ClearPageDirty(page);
1265 delete_from_page_cache(page);
1266 spin_lock(&info->lock);
1267 info->alloced--;
1268 inode->i_blocks -= BLOCKS_PER_PAGE;
1269 spin_unlock(&info->lock);
1270 decused:
1271 sbinfo = SHMEM_SB(inode->i_sb);
1272 if (sbinfo->max_blocks)
1273 percpu_counter_add(&sbinfo->used_blocks, -1);
1274 unacct:
1275 shmem_unacct_blocks(info->flags, 1);
1276 failed:
1277 if (swap.val && error != -EINVAL &&
1278 !shmem_confirm_swap(mapping, index, swap))
1279 error = -EEXIST;
1280 unlock:
1281 if (page) {
1282 unlock_page(page);
1283 page_cache_release(page);
1284 }
1285 if (error == -ENOSPC && !once++) {
1286 info = SHMEM_I(inode);
1287 spin_lock(&info->lock);
1288 shmem_recalc_inode(inode);
1289 spin_unlock(&info->lock);
1290 goto repeat;
1291 }
1292 if (error == -EEXIST) /* from above or from radix_tree_insert */
1293 goto repeat;
1294 return error;
1295 }
1296
1297 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1298 {
1299 struct inode *inode = file_inode(vma->vm_file);
1300 int error;
1301 int ret = VM_FAULT_LOCKED;
1302
1303 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1304 if (error)
1305 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1306
1307 if (ret & VM_FAULT_MAJOR) {
1308 count_vm_event(PGMAJFAULT);
1309 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1310 }
1311 return ret;
1312 }
1313
1314 #ifdef CONFIG_NUMA
1315 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1316 {
1317 struct inode *inode = file_inode(vma->vm_file);
1318 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1319 }
1320
1321 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1322 unsigned long addr)
1323 {
1324 struct inode *inode = file_inode(vma->vm_file);
1325 pgoff_t index;
1326
1327 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1328 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1329 }
1330 #endif
1331
1332 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1333 {
1334 struct inode *inode = file_inode(file);
1335 struct shmem_inode_info *info = SHMEM_I(inode);
1336 int retval = -ENOMEM;
1337
1338 spin_lock(&info->lock);
1339 if (lock && !(info->flags & VM_LOCKED)) {
1340 if (!user_shm_lock(inode->i_size, user))
1341 goto out_nomem;
1342 info->flags |= VM_LOCKED;
1343 mapping_set_unevictable(file->f_mapping);
1344 }
1345 if (!lock && (info->flags & VM_LOCKED) && user) {
1346 user_shm_unlock(inode->i_size, user);
1347 info->flags &= ~VM_LOCKED;
1348 mapping_clear_unevictable(file->f_mapping);
1349 }
1350 retval = 0;
1351
1352 out_nomem:
1353 spin_unlock(&info->lock);
1354 return retval;
1355 }
1356
1357 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1358 {
1359 file_accessed(file);
1360 vma->vm_ops = &shmem_vm_ops;
1361 return 0;
1362 }
1363
1364 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1365 umode_t mode, dev_t dev, unsigned long flags)
1366 {
1367 struct inode *inode;
1368 struct shmem_inode_info *info;
1369 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1370
1371 if (shmem_reserve_inode(sb))
1372 return NULL;
1373
1374 inode = new_inode(sb);
1375 if (inode) {
1376 inode->i_ino = get_next_ino();
1377 inode_init_owner(inode, dir, mode);
1378 inode->i_blocks = 0;
1379 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1380 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1381 inode->i_generation = get_seconds();
1382 info = SHMEM_I(inode);
1383 memset(info, 0, (char *)inode - (char *)info);
1384 spin_lock_init(&info->lock);
1385 info->flags = flags & VM_NORESERVE;
1386 INIT_LIST_HEAD(&info->swaplist);
1387 simple_xattrs_init(&info->xattrs);
1388 cache_no_acl(inode);
1389
1390 switch (mode & S_IFMT) {
1391 default:
1392 inode->i_op = &shmem_special_inode_operations;
1393 init_special_inode(inode, mode, dev);
1394 break;
1395 case S_IFREG:
1396 inode->i_mapping->a_ops = &shmem_aops;
1397 inode->i_op = &shmem_inode_operations;
1398 inode->i_fop = &shmem_file_operations;
1399 mpol_shared_policy_init(&info->policy,
1400 shmem_get_sbmpol(sbinfo));
1401 break;
1402 case S_IFDIR:
1403 inc_nlink(inode);
1404 /* Some things misbehave if size == 0 on a directory */
1405 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1406 inode->i_op = &shmem_dir_inode_operations;
1407 inode->i_fop = &simple_dir_operations;
1408 break;
1409 case S_IFLNK:
1410 /*
1411 * Must not load anything in the rbtree,
1412 * mpol_free_shared_policy will not be called.
1413 */
1414 mpol_shared_policy_init(&info->policy, NULL);
1415 break;
1416 }
1417 } else
1418 shmem_free_inode(sb);
1419 return inode;
1420 }
1421
1422 #ifdef CONFIG_TMPFS
1423 static const struct inode_operations shmem_symlink_inode_operations;
1424 static const struct inode_operations shmem_short_symlink_operations;
1425
1426 #ifdef CONFIG_TMPFS_XATTR
1427 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1428 #else
1429 #define shmem_initxattrs NULL
1430 #endif
1431
1432 static int
1433 shmem_write_begin(struct file *file, struct address_space *mapping,
1434 loff_t pos, unsigned len, unsigned flags,
1435 struct page **pagep, void **fsdata)
1436 {
1437 struct inode *inode = mapping->host;
1438 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1439 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1440 }
1441
1442 static int
1443 shmem_write_end(struct file *file, struct address_space *mapping,
1444 loff_t pos, unsigned len, unsigned copied,
1445 struct page *page, void *fsdata)
1446 {
1447 struct inode *inode = mapping->host;
1448
1449 if (pos + copied > inode->i_size)
1450 i_size_write(inode, pos + copied);
1451
1452 if (!PageUptodate(page)) {
1453 if (copied < PAGE_CACHE_SIZE) {
1454 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1455 zero_user_segments(page, 0, from,
1456 from + copied, PAGE_CACHE_SIZE);
1457 }
1458 SetPageUptodate(page);
1459 }
1460 set_page_dirty(page);
1461 unlock_page(page);
1462 page_cache_release(page);
1463
1464 return copied;
1465 }
1466
1467 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1468 {
1469 struct inode *inode = file_inode(filp);
1470 struct address_space *mapping = inode->i_mapping;
1471 pgoff_t index;
1472 unsigned long offset;
1473 enum sgp_type sgp = SGP_READ;
1474
1475 /*
1476 * Might this read be for a stacking filesystem? Then when reading
1477 * holes of a sparse file, we actually need to allocate those pages,
1478 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1479 */
1480 if (segment_eq(get_fs(), KERNEL_DS))
1481 sgp = SGP_DIRTY;
1482
1483 index = *ppos >> PAGE_CACHE_SHIFT;
1484 offset = *ppos & ~PAGE_CACHE_MASK;
1485
1486 for (;;) {
1487 struct page *page = NULL;
1488 pgoff_t end_index;
1489 unsigned long nr, ret;
1490 loff_t i_size = i_size_read(inode);
1491
1492 end_index = i_size >> PAGE_CACHE_SHIFT;
1493 if (index > end_index)
1494 break;
1495 if (index == end_index) {
1496 nr = i_size & ~PAGE_CACHE_MASK;
1497 if (nr <= offset)
1498 break;
1499 }
1500
1501 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1502 if (desc->error) {
1503 if (desc->error == -EINVAL)
1504 desc->error = 0;
1505 break;
1506 }
1507 if (page)
1508 unlock_page(page);
1509
1510 /*
1511 * We must evaluate after, since reads (unlike writes)
1512 * are called without i_mutex protection against truncate
1513 */
1514 nr = PAGE_CACHE_SIZE;
1515 i_size = i_size_read(inode);
1516 end_index = i_size >> PAGE_CACHE_SHIFT;
1517 if (index == end_index) {
1518 nr = i_size & ~PAGE_CACHE_MASK;
1519 if (nr <= offset) {
1520 if (page)
1521 page_cache_release(page);
1522 break;
1523 }
1524 }
1525 nr -= offset;
1526
1527 if (page) {
1528 /*
1529 * If users can be writing to this page using arbitrary
1530 * virtual addresses, take care about potential aliasing
1531 * before reading the page on the kernel side.
1532 */
1533 if (mapping_writably_mapped(mapping))
1534 flush_dcache_page(page);
1535 /*
1536 * Mark the page accessed if we read the beginning.
1537 */
1538 if (!offset)
1539 mark_page_accessed(page);
1540 } else {
1541 page = ZERO_PAGE(0);
1542 page_cache_get(page);
1543 }
1544
1545 /*
1546 * Ok, we have the page, and it's up-to-date, so
1547 * now we can copy it to user space...
1548 *
1549 * The actor routine returns how many bytes were actually used..
1550 * NOTE! This may not be the same as how much of a user buffer
1551 * we filled up (we may be padding etc), so we can only update
1552 * "pos" here (the actor routine has to update the user buffer
1553 * pointers and the remaining count).
1554 */
1555 ret = actor(desc, page, offset, nr);
1556 offset += ret;
1557 index += offset >> PAGE_CACHE_SHIFT;
1558 offset &= ~PAGE_CACHE_MASK;
1559
1560 page_cache_release(page);
1561 if (ret != nr || !desc->count)
1562 break;
1563
1564 cond_resched();
1565 }
1566
1567 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1568 file_accessed(filp);
1569 }
1570
1571 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1572 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1573 {
1574 struct file *filp = iocb->ki_filp;
1575 ssize_t retval;
1576 unsigned long seg;
1577 size_t count;
1578 loff_t *ppos = &iocb->ki_pos;
1579
1580 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1581 if (retval)
1582 return retval;
1583
1584 for (seg = 0; seg < nr_segs; seg++) {
1585 read_descriptor_t desc;
1586
1587 desc.written = 0;
1588 desc.arg.buf = iov[seg].iov_base;
1589 desc.count = iov[seg].iov_len;
1590 if (desc.count == 0)
1591 continue;
1592 desc.error = 0;
1593 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1594 retval += desc.written;
1595 if (desc.error) {
1596 retval = retval ?: desc.error;
1597 break;
1598 }
1599 if (desc.count > 0)
1600 break;
1601 }
1602 return retval;
1603 }
1604
1605 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1606 struct pipe_inode_info *pipe, size_t len,
1607 unsigned int flags)
1608 {
1609 struct address_space *mapping = in->f_mapping;
1610 struct inode *inode = mapping->host;
1611 unsigned int loff, nr_pages, req_pages;
1612 struct page *pages[PIPE_DEF_BUFFERS];
1613 struct partial_page partial[PIPE_DEF_BUFFERS];
1614 struct page *page;
1615 pgoff_t index, end_index;
1616 loff_t isize, left;
1617 int error, page_nr;
1618 struct splice_pipe_desc spd = {
1619 .pages = pages,
1620 .partial = partial,
1621 .nr_pages_max = PIPE_DEF_BUFFERS,
1622 .flags = flags,
1623 .ops = &page_cache_pipe_buf_ops,
1624 .spd_release = spd_release_page,
1625 };
1626
1627 isize = i_size_read(inode);
1628 if (unlikely(*ppos >= isize))
1629 return 0;
1630
1631 left = isize - *ppos;
1632 if (unlikely(left < len))
1633 len = left;
1634
1635 if (splice_grow_spd(pipe, &spd))
1636 return -ENOMEM;
1637
1638 index = *ppos >> PAGE_CACHE_SHIFT;
1639 loff = *ppos & ~PAGE_CACHE_MASK;
1640 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1641 nr_pages = min(req_pages, pipe->buffers);
1642
1643 spd.nr_pages = find_get_pages_contig(mapping, index,
1644 nr_pages, spd.pages);
1645 index += spd.nr_pages;
1646 error = 0;
1647
1648 while (spd.nr_pages < nr_pages) {
1649 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1650 if (error)
1651 break;
1652 unlock_page(page);
1653 spd.pages[spd.nr_pages++] = page;
1654 index++;
1655 }
1656
1657 index = *ppos >> PAGE_CACHE_SHIFT;
1658 nr_pages = spd.nr_pages;
1659 spd.nr_pages = 0;
1660
1661 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1662 unsigned int this_len;
1663
1664 if (!len)
1665 break;
1666
1667 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1668 page = spd.pages[page_nr];
1669
1670 if (!PageUptodate(page) || page->mapping != mapping) {
1671 error = shmem_getpage(inode, index, &page,
1672 SGP_CACHE, NULL);
1673 if (error)
1674 break;
1675 unlock_page(page);
1676 page_cache_release(spd.pages[page_nr]);
1677 spd.pages[page_nr] = page;
1678 }
1679
1680 isize = i_size_read(inode);
1681 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1682 if (unlikely(!isize || index > end_index))
1683 break;
1684
1685 if (end_index == index) {
1686 unsigned int plen;
1687
1688 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1689 if (plen <= loff)
1690 break;
1691
1692 this_len = min(this_len, plen - loff);
1693 len = this_len;
1694 }
1695
1696 spd.partial[page_nr].offset = loff;
1697 spd.partial[page_nr].len = this_len;
1698 len -= this_len;
1699 loff = 0;
1700 spd.nr_pages++;
1701 index++;
1702 }
1703
1704 while (page_nr < nr_pages)
1705 page_cache_release(spd.pages[page_nr++]);
1706
1707 if (spd.nr_pages)
1708 error = splice_to_pipe(pipe, &spd);
1709
1710 splice_shrink_spd(&spd);
1711
1712 if (error > 0) {
1713 *ppos += error;
1714 file_accessed(in);
1715 }
1716 return error;
1717 }
1718
1719 /*
1720 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1721 */
1722 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1723 pgoff_t index, pgoff_t end, int whence)
1724 {
1725 struct page *page;
1726 struct pagevec pvec;
1727 pgoff_t indices[PAGEVEC_SIZE];
1728 bool done = false;
1729 int i;
1730
1731 pagevec_init(&pvec, 0);
1732 pvec.nr = 1; /* start small: we may be there already */
1733 while (!done) {
1734 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1735 pvec.nr, pvec.pages, indices);
1736 if (!pvec.nr) {
1737 if (whence == SEEK_DATA)
1738 index = end;
1739 break;
1740 }
1741 for (i = 0; i < pvec.nr; i++, index++) {
1742 if (index < indices[i]) {
1743 if (whence == SEEK_HOLE) {
1744 done = true;
1745 break;
1746 }
1747 index = indices[i];
1748 }
1749 page = pvec.pages[i];
1750 if (page && !radix_tree_exceptional_entry(page)) {
1751 if (!PageUptodate(page))
1752 page = NULL;
1753 }
1754 if (index >= end ||
1755 (page && whence == SEEK_DATA) ||
1756 (!page && whence == SEEK_HOLE)) {
1757 done = true;
1758 break;
1759 }
1760 }
1761 shmem_deswap_pagevec(&pvec);
1762 pagevec_release(&pvec);
1763 pvec.nr = PAGEVEC_SIZE;
1764 cond_resched();
1765 }
1766 return index;
1767 }
1768
1769 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1770 {
1771 struct address_space *mapping = file->f_mapping;
1772 struct inode *inode = mapping->host;
1773 pgoff_t start, end;
1774 loff_t new_offset;
1775
1776 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1777 return generic_file_llseek_size(file, offset, whence,
1778 MAX_LFS_FILESIZE, i_size_read(inode));
1779 mutex_lock(&inode->i_mutex);
1780 /* We're holding i_mutex so we can access i_size directly */
1781
1782 if (offset < 0)
1783 offset = -EINVAL;
1784 else if (offset >= inode->i_size)
1785 offset = -ENXIO;
1786 else {
1787 start = offset >> PAGE_CACHE_SHIFT;
1788 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1789 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1790 new_offset <<= PAGE_CACHE_SHIFT;
1791 if (new_offset > offset) {
1792 if (new_offset < inode->i_size)
1793 offset = new_offset;
1794 else if (whence == SEEK_DATA)
1795 offset = -ENXIO;
1796 else
1797 offset = inode->i_size;
1798 }
1799 }
1800
1801 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1802 mutex_unlock(&inode->i_mutex);
1803 return offset;
1804 }
1805
1806 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1807 loff_t len)
1808 {
1809 struct inode *inode = file_inode(file);
1810 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1811 struct shmem_falloc shmem_falloc;
1812 pgoff_t start, index, end;
1813 int error;
1814
1815 mutex_lock(&inode->i_mutex);
1816
1817 if (mode & FALLOC_FL_PUNCH_HOLE) {
1818 struct address_space *mapping = file->f_mapping;
1819 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1820 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1821
1822 if ((u64)unmap_end > (u64)unmap_start)
1823 unmap_mapping_range(mapping, unmap_start,
1824 1 + unmap_end - unmap_start, 0);
1825 shmem_truncate_range(inode, offset, offset + len - 1);
1826 /* No need to unmap again: hole-punching leaves COWed pages */
1827 error = 0;
1828 goto out;
1829 }
1830
1831 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1832 error = inode_newsize_ok(inode, offset + len);
1833 if (error)
1834 goto out;
1835
1836 start = offset >> PAGE_CACHE_SHIFT;
1837 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1838 /* Try to avoid a swapstorm if len is impossible to satisfy */
1839 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1840 error = -ENOSPC;
1841 goto out;
1842 }
1843
1844 shmem_falloc.start = start;
1845 shmem_falloc.next = start;
1846 shmem_falloc.nr_falloced = 0;
1847 shmem_falloc.nr_unswapped = 0;
1848 spin_lock(&inode->i_lock);
1849 inode->i_private = &shmem_falloc;
1850 spin_unlock(&inode->i_lock);
1851
1852 for (index = start; index < end; index++) {
1853 struct page *page;
1854
1855 /*
1856 * Good, the fallocate(2) manpage permits EINTR: we may have
1857 * been interrupted because we are using up too much memory.
1858 */
1859 if (signal_pending(current))
1860 error = -EINTR;
1861 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1862 error = -ENOMEM;
1863 else
1864 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1865 NULL);
1866 if (error) {
1867 /* Remove the !PageUptodate pages we added */
1868 shmem_undo_range(inode,
1869 (loff_t)start << PAGE_CACHE_SHIFT,
1870 (loff_t)index << PAGE_CACHE_SHIFT, true);
1871 goto undone;
1872 }
1873
1874 /*
1875 * Inform shmem_writepage() how far we have reached.
1876 * No need for lock or barrier: we have the page lock.
1877 */
1878 shmem_falloc.next++;
1879 if (!PageUptodate(page))
1880 shmem_falloc.nr_falloced++;
1881
1882 /*
1883 * If !PageUptodate, leave it that way so that freeable pages
1884 * can be recognized if we need to rollback on error later.
1885 * But set_page_dirty so that memory pressure will swap rather
1886 * than free the pages we are allocating (and SGP_CACHE pages
1887 * might still be clean: we now need to mark those dirty too).
1888 */
1889 set_page_dirty(page);
1890 unlock_page(page);
1891 page_cache_release(page);
1892 cond_resched();
1893 }
1894
1895 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1896 i_size_write(inode, offset + len);
1897 inode->i_ctime = CURRENT_TIME;
1898 undone:
1899 spin_lock(&inode->i_lock);
1900 inode->i_private = NULL;
1901 spin_unlock(&inode->i_lock);
1902 out:
1903 mutex_unlock(&inode->i_mutex);
1904 return error;
1905 }
1906
1907 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1908 {
1909 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1910
1911 buf->f_type = TMPFS_MAGIC;
1912 buf->f_bsize = PAGE_CACHE_SIZE;
1913 buf->f_namelen = NAME_MAX;
1914 if (sbinfo->max_blocks) {
1915 buf->f_blocks = sbinfo->max_blocks;
1916 buf->f_bavail =
1917 buf->f_bfree = sbinfo->max_blocks -
1918 percpu_counter_sum(&sbinfo->used_blocks);
1919 }
1920 if (sbinfo->max_inodes) {
1921 buf->f_files = sbinfo->max_inodes;
1922 buf->f_ffree = sbinfo->free_inodes;
1923 }
1924 /* else leave those fields 0 like simple_statfs */
1925 return 0;
1926 }
1927
1928 /*
1929 * File creation. Allocate an inode, and we're done..
1930 */
1931 static int
1932 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1933 {
1934 struct inode *inode;
1935 int error = -ENOSPC;
1936
1937 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1938 if (inode) {
1939 #ifdef CONFIG_TMPFS_POSIX_ACL
1940 error = generic_acl_init(inode, dir);
1941 if (error) {
1942 iput(inode);
1943 return error;
1944 }
1945 #endif
1946 error = security_inode_init_security(inode, dir,
1947 &dentry->d_name,
1948 shmem_initxattrs, NULL);
1949 if (error) {
1950 if (error != -EOPNOTSUPP) {
1951 iput(inode);
1952 return error;
1953 }
1954 }
1955
1956 error = 0;
1957 dir->i_size += BOGO_DIRENT_SIZE;
1958 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1959 d_instantiate(dentry, inode);
1960 dget(dentry); /* Extra count - pin the dentry in core */
1961 }
1962 return error;
1963 }
1964
1965 static int
1966 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1967 {
1968 struct inode *inode;
1969 int error = -ENOSPC;
1970
1971 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1972 if (inode) {
1973 error = security_inode_init_security(inode, dir,
1974 NULL,
1975 shmem_initxattrs, NULL);
1976 if (error) {
1977 if (error != -EOPNOTSUPP) {
1978 iput(inode);
1979 return error;
1980 }
1981 }
1982 #ifdef CONFIG_TMPFS_POSIX_ACL
1983 error = generic_acl_init(inode, dir);
1984 if (error) {
1985 iput(inode);
1986 return error;
1987 }
1988 #else
1989 error = 0;
1990 #endif
1991 d_tmpfile(dentry, inode);
1992 }
1993 return error;
1994 }
1995
1996 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1997 {
1998 int error;
1999
2000 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2001 return error;
2002 inc_nlink(dir);
2003 return 0;
2004 }
2005
2006 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2007 bool excl)
2008 {
2009 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2010 }
2011
2012 /*
2013 * Link a file..
2014 */
2015 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2016 {
2017 struct inode *inode = old_dentry->d_inode;
2018 int ret;
2019
2020 /*
2021 * No ordinary (disk based) filesystem counts links as inodes;
2022 * but each new link needs a new dentry, pinning lowmem, and
2023 * tmpfs dentries cannot be pruned until they are unlinked.
2024 */
2025 ret = shmem_reserve_inode(inode->i_sb);
2026 if (ret)
2027 goto out;
2028
2029 dir->i_size += BOGO_DIRENT_SIZE;
2030 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2031 inc_nlink(inode);
2032 ihold(inode); /* New dentry reference */
2033 dget(dentry); /* Extra pinning count for the created dentry */
2034 d_instantiate(dentry, inode);
2035 out:
2036 return ret;
2037 }
2038
2039 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2040 {
2041 struct inode *inode = dentry->d_inode;
2042
2043 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2044 shmem_free_inode(inode->i_sb);
2045
2046 dir->i_size -= BOGO_DIRENT_SIZE;
2047 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2048 drop_nlink(inode);
2049 dput(dentry); /* Undo the count from "create" - this does all the work */
2050 return 0;
2051 }
2052
2053 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2054 {
2055 if (!simple_empty(dentry))
2056 return -ENOTEMPTY;
2057
2058 drop_nlink(dentry->d_inode);
2059 drop_nlink(dir);
2060 return shmem_unlink(dir, dentry);
2061 }
2062
2063 /*
2064 * The VFS layer already does all the dentry stuff for rename,
2065 * we just have to decrement the usage count for the target if
2066 * it exists so that the VFS layer correctly free's it when it
2067 * gets overwritten.
2068 */
2069 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2070 {
2071 struct inode *inode = old_dentry->d_inode;
2072 int they_are_dirs = S_ISDIR(inode->i_mode);
2073
2074 if (!simple_empty(new_dentry))
2075 return -ENOTEMPTY;
2076
2077 if (new_dentry->d_inode) {
2078 (void) shmem_unlink(new_dir, new_dentry);
2079 if (they_are_dirs)
2080 drop_nlink(old_dir);
2081 } else if (they_are_dirs) {
2082 drop_nlink(old_dir);
2083 inc_nlink(new_dir);
2084 }
2085
2086 old_dir->i_size -= BOGO_DIRENT_SIZE;
2087 new_dir->i_size += BOGO_DIRENT_SIZE;
2088 old_dir->i_ctime = old_dir->i_mtime =
2089 new_dir->i_ctime = new_dir->i_mtime =
2090 inode->i_ctime = CURRENT_TIME;
2091 return 0;
2092 }
2093
2094 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2095 {
2096 int error;
2097 int len;
2098 struct inode *inode;
2099 struct page *page;
2100 char *kaddr;
2101 struct shmem_inode_info *info;
2102
2103 len = strlen(symname) + 1;
2104 if (len > PAGE_CACHE_SIZE)
2105 return -ENAMETOOLONG;
2106
2107 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2108 if (!inode)
2109 return -ENOSPC;
2110
2111 error = security_inode_init_security(inode, dir, &dentry->d_name,
2112 shmem_initxattrs, NULL);
2113 if (error) {
2114 if (error != -EOPNOTSUPP) {
2115 iput(inode);
2116 return error;
2117 }
2118 error = 0;
2119 }
2120
2121 info = SHMEM_I(inode);
2122 inode->i_size = len-1;
2123 if (len <= SHORT_SYMLINK_LEN) {
2124 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2125 if (!info->symlink) {
2126 iput(inode);
2127 return -ENOMEM;
2128 }
2129 inode->i_op = &shmem_short_symlink_operations;
2130 } else {
2131 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2132 if (error) {
2133 iput(inode);
2134 return error;
2135 }
2136 inode->i_mapping->a_ops = &shmem_aops;
2137 inode->i_op = &shmem_symlink_inode_operations;
2138 kaddr = kmap_atomic(page);
2139 memcpy(kaddr, symname, len);
2140 kunmap_atomic(kaddr);
2141 SetPageUptodate(page);
2142 set_page_dirty(page);
2143 unlock_page(page);
2144 page_cache_release(page);
2145 }
2146 dir->i_size += BOGO_DIRENT_SIZE;
2147 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2148 d_instantiate(dentry, inode);
2149 dget(dentry);
2150 return 0;
2151 }
2152
2153 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2154 {
2155 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2156 return NULL;
2157 }
2158
2159 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2160 {
2161 struct page *page = NULL;
2162 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2163 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2164 if (page)
2165 unlock_page(page);
2166 return page;
2167 }
2168
2169 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2170 {
2171 if (!IS_ERR(nd_get_link(nd))) {
2172 struct page *page = cookie;
2173 kunmap(page);
2174 mark_page_accessed(page);
2175 page_cache_release(page);
2176 }
2177 }
2178
2179 #ifdef CONFIG_TMPFS_XATTR
2180 /*
2181 * Superblocks without xattr inode operations may get some security.* xattr
2182 * support from the LSM "for free". As soon as we have any other xattrs
2183 * like ACLs, we also need to implement the security.* handlers at
2184 * filesystem level, though.
2185 */
2186
2187 /*
2188 * Callback for security_inode_init_security() for acquiring xattrs.
2189 */
2190 static int shmem_initxattrs(struct inode *inode,
2191 const struct xattr *xattr_array,
2192 void *fs_info)
2193 {
2194 struct shmem_inode_info *info = SHMEM_I(inode);
2195 const struct xattr *xattr;
2196 struct simple_xattr *new_xattr;
2197 size_t len;
2198
2199 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2200 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2201 if (!new_xattr)
2202 return -ENOMEM;
2203
2204 len = strlen(xattr->name) + 1;
2205 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2206 GFP_KERNEL);
2207 if (!new_xattr->name) {
2208 kfree(new_xattr);
2209 return -ENOMEM;
2210 }
2211
2212 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2213 XATTR_SECURITY_PREFIX_LEN);
2214 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2215 xattr->name, len);
2216
2217 simple_xattr_list_add(&info->xattrs, new_xattr);
2218 }
2219
2220 return 0;
2221 }
2222
2223 static const struct xattr_handler *shmem_xattr_handlers[] = {
2224 #ifdef CONFIG_TMPFS_POSIX_ACL
2225 &generic_acl_access_handler,
2226 &generic_acl_default_handler,
2227 #endif
2228 NULL
2229 };
2230
2231 static int shmem_xattr_validate(const char *name)
2232 {
2233 struct { const char *prefix; size_t len; } arr[] = {
2234 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2235 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2236 };
2237 int i;
2238
2239 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2240 size_t preflen = arr[i].len;
2241 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2242 if (!name[preflen])
2243 return -EINVAL;
2244 return 0;
2245 }
2246 }
2247 return -EOPNOTSUPP;
2248 }
2249
2250 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2251 void *buffer, size_t size)
2252 {
2253 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2254 int err;
2255
2256 /*
2257 * If this is a request for a synthetic attribute in the system.*
2258 * namespace use the generic infrastructure to resolve a handler
2259 * for it via sb->s_xattr.
2260 */
2261 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2262 return generic_getxattr(dentry, name, buffer, size);
2263
2264 err = shmem_xattr_validate(name);
2265 if (err)
2266 return err;
2267
2268 return simple_xattr_get(&info->xattrs, name, buffer, size);
2269 }
2270
2271 static int shmem_setxattr(struct dentry *dentry, const char *name,
2272 const void *value, size_t size, int flags)
2273 {
2274 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2275 int err;
2276
2277 /*
2278 * If this is a request for a synthetic attribute in the system.*
2279 * namespace use the generic infrastructure to resolve a handler
2280 * for it via sb->s_xattr.
2281 */
2282 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2283 return generic_setxattr(dentry, name, value, size, flags);
2284
2285 err = shmem_xattr_validate(name);
2286 if (err)
2287 return err;
2288
2289 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2290 }
2291
2292 static int shmem_removexattr(struct dentry *dentry, const char *name)
2293 {
2294 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2295 int err;
2296
2297 /*
2298 * If this is a request for a synthetic attribute in the system.*
2299 * namespace use the generic infrastructure to resolve a handler
2300 * for it via sb->s_xattr.
2301 */
2302 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2303 return generic_removexattr(dentry, name);
2304
2305 err = shmem_xattr_validate(name);
2306 if (err)
2307 return err;
2308
2309 return simple_xattr_remove(&info->xattrs, name);
2310 }
2311
2312 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2313 {
2314 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2315 return simple_xattr_list(&info->xattrs, buffer, size);
2316 }
2317 #endif /* CONFIG_TMPFS_XATTR */
2318
2319 static const struct inode_operations shmem_short_symlink_operations = {
2320 .readlink = generic_readlink,
2321 .follow_link = shmem_follow_short_symlink,
2322 #ifdef CONFIG_TMPFS_XATTR
2323 .setxattr = shmem_setxattr,
2324 .getxattr = shmem_getxattr,
2325 .listxattr = shmem_listxattr,
2326 .removexattr = shmem_removexattr,
2327 #endif
2328 };
2329
2330 static const struct inode_operations shmem_symlink_inode_operations = {
2331 .readlink = generic_readlink,
2332 .follow_link = shmem_follow_link,
2333 .put_link = shmem_put_link,
2334 #ifdef CONFIG_TMPFS_XATTR
2335 .setxattr = shmem_setxattr,
2336 .getxattr = shmem_getxattr,
2337 .listxattr = shmem_listxattr,
2338 .removexattr = shmem_removexattr,
2339 #endif
2340 };
2341
2342 static struct dentry *shmem_get_parent(struct dentry *child)
2343 {
2344 return ERR_PTR(-ESTALE);
2345 }
2346
2347 static int shmem_match(struct inode *ino, void *vfh)
2348 {
2349 __u32 *fh = vfh;
2350 __u64 inum = fh[2];
2351 inum = (inum << 32) | fh[1];
2352 return ino->i_ino == inum && fh[0] == ino->i_generation;
2353 }
2354
2355 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2356 struct fid *fid, int fh_len, int fh_type)
2357 {
2358 struct inode *inode;
2359 struct dentry *dentry = NULL;
2360 u64 inum;
2361
2362 if (fh_len < 3)
2363 return NULL;
2364
2365 inum = fid->raw[2];
2366 inum = (inum << 32) | fid->raw[1];
2367
2368 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2369 shmem_match, fid->raw);
2370 if (inode) {
2371 dentry = d_find_alias(inode);
2372 iput(inode);
2373 }
2374
2375 return dentry;
2376 }
2377
2378 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2379 struct inode *parent)
2380 {
2381 if (*len < 3) {
2382 *len = 3;
2383 return FILEID_INVALID;
2384 }
2385
2386 if (inode_unhashed(inode)) {
2387 /* Unfortunately insert_inode_hash is not idempotent,
2388 * so as we hash inodes here rather than at creation
2389 * time, we need a lock to ensure we only try
2390 * to do it once
2391 */
2392 static DEFINE_SPINLOCK(lock);
2393 spin_lock(&lock);
2394 if (inode_unhashed(inode))
2395 __insert_inode_hash(inode,
2396 inode->i_ino + inode->i_generation);
2397 spin_unlock(&lock);
2398 }
2399
2400 fh[0] = inode->i_generation;
2401 fh[1] = inode->i_ino;
2402 fh[2] = ((__u64)inode->i_ino) >> 32;
2403
2404 *len = 3;
2405 return 1;
2406 }
2407
2408 static const struct export_operations shmem_export_ops = {
2409 .get_parent = shmem_get_parent,
2410 .encode_fh = shmem_encode_fh,
2411 .fh_to_dentry = shmem_fh_to_dentry,
2412 };
2413
2414 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2415 bool remount)
2416 {
2417 char *this_char, *value, *rest;
2418 struct mempolicy *mpol = NULL;
2419 uid_t uid;
2420 gid_t gid;
2421
2422 while (options != NULL) {
2423 this_char = options;
2424 for (;;) {
2425 /*
2426 * NUL-terminate this option: unfortunately,
2427 * mount options form a comma-separated list,
2428 * but mpol's nodelist may also contain commas.
2429 */
2430 options = strchr(options, ',');
2431 if (options == NULL)
2432 break;
2433 options++;
2434 if (!isdigit(*options)) {
2435 options[-1] = '\0';
2436 break;
2437 }
2438 }
2439 if (!*this_char)
2440 continue;
2441 if ((value = strchr(this_char,'=')) != NULL) {
2442 *value++ = 0;
2443 } else {
2444 printk(KERN_ERR
2445 "tmpfs: No value for mount option '%s'\n",
2446 this_char);
2447 goto error;
2448 }
2449
2450 if (!strcmp(this_char,"size")) {
2451 unsigned long long size;
2452 size = memparse(value,&rest);
2453 if (*rest == '%') {
2454 size <<= PAGE_SHIFT;
2455 size *= totalram_pages;
2456 do_div(size, 100);
2457 rest++;
2458 }
2459 if (*rest)
2460 goto bad_val;
2461 sbinfo->max_blocks =
2462 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2463 } else if (!strcmp(this_char,"nr_blocks")) {
2464 sbinfo->max_blocks = memparse(value, &rest);
2465 if (*rest)
2466 goto bad_val;
2467 } else if (!strcmp(this_char,"nr_inodes")) {
2468 sbinfo->max_inodes = memparse(value, &rest);
2469 if (*rest)
2470 goto bad_val;
2471 } else if (!strcmp(this_char,"mode")) {
2472 if (remount)
2473 continue;
2474 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2475 if (*rest)
2476 goto bad_val;
2477 } else if (!strcmp(this_char,"uid")) {
2478 if (remount)
2479 continue;
2480 uid = simple_strtoul(value, &rest, 0);
2481 if (*rest)
2482 goto bad_val;
2483 sbinfo->uid = make_kuid(current_user_ns(), uid);
2484 if (!uid_valid(sbinfo->uid))
2485 goto bad_val;
2486 } else if (!strcmp(this_char,"gid")) {
2487 if (remount)
2488 continue;
2489 gid = simple_strtoul(value, &rest, 0);
2490 if (*rest)
2491 goto bad_val;
2492 sbinfo->gid = make_kgid(current_user_ns(), gid);
2493 if (!gid_valid(sbinfo->gid))
2494 goto bad_val;
2495 } else if (!strcmp(this_char,"mpol")) {
2496 mpol_put(mpol);
2497 mpol = NULL;
2498 if (mpol_parse_str(value, &mpol))
2499 goto bad_val;
2500 } else {
2501 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2502 this_char);
2503 goto error;
2504 }
2505 }
2506 sbinfo->mpol = mpol;
2507 return 0;
2508
2509 bad_val:
2510 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2511 value, this_char);
2512 error:
2513 mpol_put(mpol);
2514 return 1;
2515
2516 }
2517
2518 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2519 {
2520 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2521 struct shmem_sb_info config = *sbinfo;
2522 unsigned long inodes;
2523 int error = -EINVAL;
2524
2525 config.mpol = NULL;
2526 if (shmem_parse_options(data, &config, true))
2527 return error;
2528
2529 spin_lock(&sbinfo->stat_lock);
2530 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2531 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2532 goto out;
2533 if (config.max_inodes < inodes)
2534 goto out;
2535 /*
2536 * Those tests disallow limited->unlimited while any are in use;
2537 * but we must separately disallow unlimited->limited, because
2538 * in that case we have no record of how much is already in use.
2539 */
2540 if (config.max_blocks && !sbinfo->max_blocks)
2541 goto out;
2542 if (config.max_inodes && !sbinfo->max_inodes)
2543 goto out;
2544
2545 error = 0;
2546 sbinfo->max_blocks = config.max_blocks;
2547 sbinfo->max_inodes = config.max_inodes;
2548 sbinfo->free_inodes = config.max_inodes - inodes;
2549
2550 /*
2551 * Preserve previous mempolicy unless mpol remount option was specified.
2552 */
2553 if (config.mpol) {
2554 mpol_put(sbinfo->mpol);
2555 sbinfo->mpol = config.mpol; /* transfers initial ref */
2556 }
2557 out:
2558 spin_unlock(&sbinfo->stat_lock);
2559 return error;
2560 }
2561
2562 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2563 {
2564 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2565
2566 if (sbinfo->max_blocks != shmem_default_max_blocks())
2567 seq_printf(seq, ",size=%luk",
2568 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2569 if (sbinfo->max_inodes != shmem_default_max_inodes())
2570 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2571 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2572 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2573 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2574 seq_printf(seq, ",uid=%u",
2575 from_kuid_munged(&init_user_ns, sbinfo->uid));
2576 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2577 seq_printf(seq, ",gid=%u",
2578 from_kgid_munged(&init_user_ns, sbinfo->gid));
2579 shmem_show_mpol(seq, sbinfo->mpol);
2580 return 0;
2581 }
2582 #endif /* CONFIG_TMPFS */
2583
2584 static void shmem_put_super(struct super_block *sb)
2585 {
2586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2587
2588 percpu_counter_destroy(&sbinfo->used_blocks);
2589 mpol_put(sbinfo->mpol);
2590 kfree(sbinfo);
2591 sb->s_fs_info = NULL;
2592 }
2593
2594 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2595 {
2596 struct inode *inode;
2597 struct shmem_sb_info *sbinfo;
2598 int err = -ENOMEM;
2599
2600 /* Round up to L1_CACHE_BYTES to resist false sharing */
2601 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2602 L1_CACHE_BYTES), GFP_KERNEL);
2603 if (!sbinfo)
2604 return -ENOMEM;
2605
2606 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2607 sbinfo->uid = current_fsuid();
2608 sbinfo->gid = current_fsgid();
2609 sb->s_fs_info = sbinfo;
2610
2611 #ifdef CONFIG_TMPFS
2612 /*
2613 * Per default we only allow half of the physical ram per
2614 * tmpfs instance, limiting inodes to one per page of lowmem;
2615 * but the internal instance is left unlimited.
2616 */
2617 if (!(sb->s_flags & MS_NOUSER)) {
2618 sbinfo->max_blocks = shmem_default_max_blocks();
2619 sbinfo->max_inodes = shmem_default_max_inodes();
2620 if (shmem_parse_options(data, sbinfo, false)) {
2621 err = -EINVAL;
2622 goto failed;
2623 }
2624 }
2625 sb->s_export_op = &shmem_export_ops;
2626 sb->s_flags |= MS_NOSEC;
2627 #else
2628 sb->s_flags |= MS_NOUSER;
2629 #endif
2630
2631 spin_lock_init(&sbinfo->stat_lock);
2632 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2633 goto failed;
2634 sbinfo->free_inodes = sbinfo->max_inodes;
2635
2636 sb->s_maxbytes = MAX_LFS_FILESIZE;
2637 sb->s_blocksize = PAGE_CACHE_SIZE;
2638 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2639 sb->s_magic = TMPFS_MAGIC;
2640 sb->s_op = &shmem_ops;
2641 sb->s_time_gran = 1;
2642 #ifdef CONFIG_TMPFS_XATTR
2643 sb->s_xattr = shmem_xattr_handlers;
2644 #endif
2645 #ifdef CONFIG_TMPFS_POSIX_ACL
2646 sb->s_flags |= MS_POSIXACL;
2647 #endif
2648
2649 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2650 if (!inode)
2651 goto failed;
2652 inode->i_uid = sbinfo->uid;
2653 inode->i_gid = sbinfo->gid;
2654 sb->s_root = d_make_root(inode);
2655 if (!sb->s_root)
2656 goto failed;
2657 return 0;
2658
2659 failed:
2660 shmem_put_super(sb);
2661 return err;
2662 }
2663
2664 static struct kmem_cache *shmem_inode_cachep;
2665
2666 static struct inode *shmem_alloc_inode(struct super_block *sb)
2667 {
2668 struct shmem_inode_info *info;
2669 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2670 if (!info)
2671 return NULL;
2672 return &info->vfs_inode;
2673 }
2674
2675 static void shmem_destroy_callback(struct rcu_head *head)
2676 {
2677 struct inode *inode = container_of(head, struct inode, i_rcu);
2678 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2679 }
2680
2681 static void shmem_destroy_inode(struct inode *inode)
2682 {
2683 if (S_ISREG(inode->i_mode))
2684 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2685 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2686 }
2687
2688 static void shmem_init_inode(void *foo)
2689 {
2690 struct shmem_inode_info *info = foo;
2691 inode_init_once(&info->vfs_inode);
2692 }
2693
2694 static int shmem_init_inodecache(void)
2695 {
2696 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2697 sizeof(struct shmem_inode_info),
2698 0, SLAB_PANIC, shmem_init_inode);
2699 return 0;
2700 }
2701
2702 static void shmem_destroy_inodecache(void)
2703 {
2704 kmem_cache_destroy(shmem_inode_cachep);
2705 }
2706
2707 static const struct address_space_operations shmem_aops = {
2708 .writepage = shmem_writepage,
2709 .set_page_dirty = __set_page_dirty_no_writeback,
2710 #ifdef CONFIG_TMPFS
2711 .write_begin = shmem_write_begin,
2712 .write_end = shmem_write_end,
2713 #endif
2714 .migratepage = migrate_page,
2715 .error_remove_page = generic_error_remove_page,
2716 };
2717
2718 static const struct file_operations shmem_file_operations = {
2719 .mmap = shmem_mmap,
2720 #ifdef CONFIG_TMPFS
2721 .llseek = shmem_file_llseek,
2722 .read = do_sync_read,
2723 .write = do_sync_write,
2724 .aio_read = shmem_file_aio_read,
2725 .aio_write = generic_file_aio_write,
2726 .fsync = noop_fsync,
2727 .splice_read = shmem_file_splice_read,
2728 .splice_write = generic_file_splice_write,
2729 .fallocate = shmem_fallocate,
2730 #endif
2731 };
2732
2733 static const struct inode_operations shmem_inode_operations = {
2734 .setattr = shmem_setattr,
2735 #ifdef CONFIG_TMPFS_XATTR
2736 .setxattr = shmem_setxattr,
2737 .getxattr = shmem_getxattr,
2738 .listxattr = shmem_listxattr,
2739 .removexattr = shmem_removexattr,
2740 #endif
2741 };
2742
2743 static const struct inode_operations shmem_dir_inode_operations = {
2744 #ifdef CONFIG_TMPFS
2745 .create = shmem_create,
2746 .lookup = simple_lookup,
2747 .link = shmem_link,
2748 .unlink = shmem_unlink,
2749 .symlink = shmem_symlink,
2750 .mkdir = shmem_mkdir,
2751 .rmdir = shmem_rmdir,
2752 .mknod = shmem_mknod,
2753 .rename = shmem_rename,
2754 .tmpfile = shmem_tmpfile,
2755 #endif
2756 #ifdef CONFIG_TMPFS_XATTR
2757 .setxattr = shmem_setxattr,
2758 .getxattr = shmem_getxattr,
2759 .listxattr = shmem_listxattr,
2760 .removexattr = shmem_removexattr,
2761 #endif
2762 #ifdef CONFIG_TMPFS_POSIX_ACL
2763 .setattr = shmem_setattr,
2764 #endif
2765 };
2766
2767 static const struct inode_operations shmem_special_inode_operations = {
2768 #ifdef CONFIG_TMPFS_XATTR
2769 .setxattr = shmem_setxattr,
2770 .getxattr = shmem_getxattr,
2771 .listxattr = shmem_listxattr,
2772 .removexattr = shmem_removexattr,
2773 #endif
2774 #ifdef CONFIG_TMPFS_POSIX_ACL
2775 .setattr = shmem_setattr,
2776 #endif
2777 };
2778
2779 static const struct super_operations shmem_ops = {
2780 .alloc_inode = shmem_alloc_inode,
2781 .destroy_inode = shmem_destroy_inode,
2782 #ifdef CONFIG_TMPFS
2783 .statfs = shmem_statfs,
2784 .remount_fs = shmem_remount_fs,
2785 .show_options = shmem_show_options,
2786 #endif
2787 .evict_inode = shmem_evict_inode,
2788 .drop_inode = generic_delete_inode,
2789 .put_super = shmem_put_super,
2790 };
2791
2792 static const struct vm_operations_struct shmem_vm_ops = {
2793 .fault = shmem_fault,
2794 #ifdef CONFIG_NUMA
2795 .set_policy = shmem_set_policy,
2796 .get_policy = shmem_get_policy,
2797 #endif
2798 .remap_pages = generic_file_remap_pages,
2799 };
2800
2801 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2802 int flags, const char *dev_name, void *data)
2803 {
2804 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2805 }
2806
2807 static struct file_system_type shmem_fs_type = {
2808 .owner = THIS_MODULE,
2809 .name = "tmpfs",
2810 .mount = shmem_mount,
2811 .kill_sb = kill_litter_super,
2812 .fs_flags = FS_USERNS_MOUNT,
2813 };
2814
2815 int __init shmem_init(void)
2816 {
2817 int error;
2818
2819 error = bdi_init(&shmem_backing_dev_info);
2820 if (error)
2821 goto out4;
2822
2823 error = shmem_init_inodecache();
2824 if (error)
2825 goto out3;
2826
2827 error = register_filesystem(&shmem_fs_type);
2828 if (error) {
2829 printk(KERN_ERR "Could not register tmpfs\n");
2830 goto out2;
2831 }
2832
2833 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2834 shmem_fs_type.name, NULL);
2835 if (IS_ERR(shm_mnt)) {
2836 error = PTR_ERR(shm_mnt);
2837 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2838 goto out1;
2839 }
2840 return 0;
2841
2842 out1:
2843 unregister_filesystem(&shmem_fs_type);
2844 out2:
2845 shmem_destroy_inodecache();
2846 out3:
2847 bdi_destroy(&shmem_backing_dev_info);
2848 out4:
2849 shm_mnt = ERR_PTR(error);
2850 return error;
2851 }
2852
2853 #else /* !CONFIG_SHMEM */
2854
2855 /*
2856 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2857 *
2858 * This is intended for small system where the benefits of the full
2859 * shmem code (swap-backed and resource-limited) are outweighed by
2860 * their complexity. On systems without swap this code should be
2861 * effectively equivalent, but much lighter weight.
2862 */
2863
2864 static struct file_system_type shmem_fs_type = {
2865 .name = "tmpfs",
2866 .mount = ramfs_mount,
2867 .kill_sb = kill_litter_super,
2868 .fs_flags = FS_USERNS_MOUNT,
2869 };
2870
2871 int __init shmem_init(void)
2872 {
2873 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2874
2875 shm_mnt = kern_mount(&shmem_fs_type);
2876 BUG_ON(IS_ERR(shm_mnt));
2877
2878 return 0;
2879 }
2880
2881 int shmem_unuse(swp_entry_t swap, struct page *page)
2882 {
2883 return 0;
2884 }
2885
2886 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2887 {
2888 return 0;
2889 }
2890
2891 void shmem_unlock_mapping(struct address_space *mapping)
2892 {
2893 }
2894
2895 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2896 {
2897 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2898 }
2899 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2900
2901 #define shmem_vm_ops generic_file_vm_ops
2902 #define shmem_file_operations ramfs_file_operations
2903 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2904 #define shmem_acct_size(flags, size) 0
2905 #define shmem_unacct_size(flags, size) do {} while (0)
2906
2907 #endif /* CONFIG_SHMEM */
2908
2909 /* common code */
2910
2911 static char *shmem_dname(struct dentry *dentry, char *buffer, int buflen)
2912 {
2913 return dynamic_dname(dentry, buffer, buflen, "/%s (deleted)",
2914 dentry->d_name.name);
2915 }
2916
2917 static struct dentry_operations anon_ops = {
2918 .d_dname = shmem_dname
2919 };
2920
2921 /**
2922 * shmem_file_setup - get an unlinked file living in tmpfs
2923 * @name: name for dentry (to be seen in /proc/<pid>/maps
2924 * @size: size to be set for the file
2925 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2926 */
2927 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2928 {
2929 struct file *res;
2930 struct inode *inode;
2931 struct path path;
2932 struct super_block *sb;
2933 struct qstr this;
2934
2935 if (IS_ERR(shm_mnt))
2936 return ERR_CAST(shm_mnt);
2937
2938 if (size < 0 || size > MAX_LFS_FILESIZE)
2939 return ERR_PTR(-EINVAL);
2940
2941 if (shmem_acct_size(flags, size))
2942 return ERR_PTR(-ENOMEM);
2943
2944 res = ERR_PTR(-ENOMEM);
2945 this.name = name;
2946 this.len = strlen(name);
2947 this.hash = 0; /* will go */
2948 sb = shm_mnt->mnt_sb;
2949 path.dentry = d_alloc_pseudo(sb, &this);
2950 if (!path.dentry)
2951 goto put_memory;
2952 d_set_d_op(path.dentry, &anon_ops);
2953 path.mnt = mntget(shm_mnt);
2954
2955 res = ERR_PTR(-ENOSPC);
2956 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2957 if (!inode)
2958 goto put_dentry;
2959
2960 d_instantiate(path.dentry, inode);
2961 inode->i_size = size;
2962 clear_nlink(inode); /* It is unlinked */
2963 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2964 if (IS_ERR(res))
2965 goto put_dentry;
2966
2967 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2968 &shmem_file_operations);
2969 if (IS_ERR(res))
2970 goto put_dentry;
2971
2972 return res;
2973
2974 put_dentry:
2975 path_put(&path);
2976 put_memory:
2977 shmem_unacct_size(flags, size);
2978 return res;
2979 }
2980 EXPORT_SYMBOL_GPL(shmem_file_setup);
2981
2982 /**
2983 * shmem_zero_setup - setup a shared anonymous mapping
2984 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2985 */
2986 int shmem_zero_setup(struct vm_area_struct *vma)
2987 {
2988 struct file *file;
2989 loff_t size = vma->vm_end - vma->vm_start;
2990
2991 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2992 if (IS_ERR(file))
2993 return PTR_ERR(file);
2994
2995 if (vma->vm_file)
2996 fput(vma->vm_file);
2997 vma->vm_file = file;
2998 vma->vm_ops = &shmem_vm_ops;
2999 return 0;
3000 }
3001
3002 /**
3003 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3004 * @mapping: the page's address_space
3005 * @index: the page index
3006 * @gfp: the page allocator flags to use if allocating
3007 *
3008 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3009 * with any new page allocations done using the specified allocation flags.
3010 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3011 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3012 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3013 *
3014 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3015 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3016 */
3017 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3018 pgoff_t index, gfp_t gfp)
3019 {
3020 #ifdef CONFIG_SHMEM
3021 struct inode *inode = mapping->host;
3022 struct page *page;
3023 int error;
3024
3025 BUG_ON(mapping->a_ops != &shmem_aops);
3026 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3027 if (error)
3028 page = ERR_PTR(error);
3029 else
3030 unlock_page(page);
3031 return page;
3032 #else
3033 /*
3034 * The tiny !SHMEM case uses ramfs without swap
3035 */
3036 return read_cache_page_gfp(mapping, index, gfp);
3037 #endif
3038 }
3039 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.091787 seconds and 5 git commands to generate.