mm: consider all swapped back pages in used-once logic
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85 };
86
87 /*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97 };
98
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 return sb->s_fs_info;
136 }
137
138 /*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 /*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203 }
204
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213 }
214
215 /**
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
240 }
241 }
242
243 /*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248 {
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264 }
265
266 /*
267 * Like add_to_page_cache_locked, but error if expected item has gone.
268 */
269 static int shmem_add_to_page_cache(struct page *page,
270 struct address_space *mapping,
271 pgoff_t index, gfp_t gfp, void *expected)
272 {
273 int error = 0;
274
275 VM_BUG_ON(!PageLocked(page));
276 VM_BUG_ON(!PageSwapBacked(page));
277
278 if (!expected)
279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 if (!error) {
281 page_cache_get(page);
282 page->mapping = mapping;
283 page->index = index;
284
285 spin_lock_irq(&mapping->tree_lock);
286 if (!expected)
287 error = radix_tree_insert(&mapping->page_tree,
288 index, page);
289 else
290 error = shmem_radix_tree_replace(mapping, index,
291 expected, page);
292 if (!error) {
293 mapping->nrpages++;
294 __inc_zone_page_state(page, NR_FILE_PAGES);
295 __inc_zone_page_state(page, NR_SHMEM);
296 spin_unlock_irq(&mapping->tree_lock);
297 } else {
298 page->mapping = NULL;
299 spin_unlock_irq(&mapping->tree_lock);
300 page_cache_release(page);
301 }
302 if (!expected)
303 radix_tree_preload_end();
304 }
305 if (error)
306 mem_cgroup_uncharge_cache_page(page);
307 return error;
308 }
309
310 /*
311 * Like delete_from_page_cache, but substitutes swap for page.
312 */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 struct address_space *mapping = page->mapping;
316 int error;
317
318 spin_lock_irq(&mapping->tree_lock);
319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 page->mapping = NULL;
321 mapping->nrpages--;
322 __dec_zone_page_state(page, NR_FILE_PAGES);
323 __dec_zone_page_state(page, NR_SHMEM);
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
326 BUG_ON(error);
327 }
328
329 /*
330 * Like find_get_pages, but collecting swap entries as well as pages.
331 */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 pgoff_t start, unsigned int nr_pages,
334 struct page **pages, pgoff_t *indices)
335 {
336 unsigned int i;
337 unsigned int ret;
338 unsigned int nr_found;
339
340 rcu_read_lock();
341 restart:
342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 (void ***)pages, indices, start, nr_pages);
344 ret = 0;
345 for (i = 0; i < nr_found; i++) {
346 struct page *page;
347 repeat:
348 page = radix_tree_deref_slot((void **)pages[i]);
349 if (unlikely(!page))
350 continue;
351 if (radix_tree_exception(page)) {
352 if (radix_tree_deref_retry(page))
353 goto restart;
354 /*
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
358 */
359 goto export;
360 }
361 if (!page_cache_get_speculative(page))
362 goto repeat;
363
364 /* Has the page moved? */
365 if (unlikely(page != *((void **)pages[i]))) {
366 page_cache_release(page);
367 goto repeat;
368 }
369 export:
370 indices[ret] = indices[i];
371 pages[ret] = page;
372 ret++;
373 }
374 if (unlikely(!ret && nr_found))
375 goto restart;
376 rcu_read_unlock();
377 return ret;
378 }
379
380 /*
381 * Remove swap entry from radix tree, free the swap and its page cache.
382 */
383 static int shmem_free_swap(struct address_space *mapping,
384 pgoff_t index, void *radswap)
385 {
386 int error;
387
388 spin_lock_irq(&mapping->tree_lock);
389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 spin_unlock_irq(&mapping->tree_lock);
391 if (!error)
392 free_swap_and_cache(radix_to_swp_entry(radswap));
393 return error;
394 }
395
396 /*
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
398 */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 int i, j;
402
403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 struct page *page = pvec->pages[i];
405 if (!radix_tree_exceptional_entry(page))
406 pvec->pages[j++] = page;
407 }
408 pvec->nr = j;
409 }
410
411 /*
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413 */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 struct pagevec pvec;
417 pgoff_t indices[PAGEVEC_SIZE];
418 pgoff_t index = 0;
419
420 pagevec_init(&pvec, 0);
421 /*
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 */
424 while (!mapping_unevictable(mapping)) {
425 /*
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 */
429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 PAGEVEC_SIZE, pvec.pages, indices);
431 if (!pvec.nr)
432 break;
433 index = indices[pvec.nr - 1] + 1;
434 shmem_deswap_pagevec(&pvec);
435 check_move_unevictable_pages(pvec.pages, pvec.nr);
436 pagevec_release(&pvec);
437 cond_resched();
438 }
439 }
440
441 /*
442 * Remove range of pages and swap entries from radix tree, and free them.
443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444 */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 bool unfalloc)
447 {
448 struct address_space *mapping = inode->i_mapping;
449 struct shmem_inode_info *info = SHMEM_I(inode);
450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 struct pagevec pvec;
455 pgoff_t indices[PAGEVEC_SIZE];
456 long nr_swaps_freed = 0;
457 pgoff_t index;
458 int i;
459
460 if (lend == -1)
461 end = -1; /* unsigned, so actually very big */
462
463 pagevec_init(&pvec, 0);
464 index = start;
465 while (index < end) {
466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 pvec.pages, indices);
469 if (!pvec.nr)
470 break;
471 mem_cgroup_uncharge_start();
472 for (i = 0; i < pagevec_count(&pvec); i++) {
473 struct page *page = pvec.pages[i];
474
475 index = indices[i];
476 if (index >= end)
477 break;
478
479 if (radix_tree_exceptional_entry(page)) {
480 if (unfalloc)
481 continue;
482 nr_swaps_freed += !shmem_free_swap(mapping,
483 index, page);
484 continue;
485 }
486
487 if (!trylock_page(page))
488 continue;
489 if (!unfalloc || !PageUptodate(page)) {
490 if (page->mapping == mapping) {
491 VM_BUG_ON(PageWriteback(page));
492 truncate_inode_page(mapping, page);
493 }
494 }
495 unlock_page(page);
496 }
497 shmem_deswap_pagevec(&pvec);
498 pagevec_release(&pvec);
499 mem_cgroup_uncharge_end();
500 cond_resched();
501 index++;
502 }
503
504 if (partial_start) {
505 struct page *page = NULL;
506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 if (page) {
508 unsigned int top = PAGE_CACHE_SIZE;
509 if (start > end) {
510 top = partial_end;
511 partial_end = 0;
512 }
513 zero_user_segment(page, partial_start, top);
514 set_page_dirty(page);
515 unlock_page(page);
516 page_cache_release(page);
517 }
518 }
519 if (partial_end) {
520 struct page *page = NULL;
521 shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 if (page) {
523 zero_user_segment(page, 0, partial_end);
524 set_page_dirty(page);
525 unlock_page(page);
526 page_cache_release(page);
527 }
528 }
529 if (start >= end)
530 return;
531
532 index = start;
533 for ( ; ; ) {
534 cond_resched();
535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 pvec.pages, indices);
538 if (!pvec.nr) {
539 if (index == start || unfalloc)
540 break;
541 index = start;
542 continue;
543 }
544 if ((index == start || unfalloc) && indices[0] >= end) {
545 shmem_deswap_pagevec(&pvec);
546 pagevec_release(&pvec);
547 break;
548 }
549 mem_cgroup_uncharge_start();
550 for (i = 0; i < pagevec_count(&pvec); i++) {
551 struct page *page = pvec.pages[i];
552
553 index = indices[i];
554 if (index >= end)
555 break;
556
557 if (radix_tree_exceptional_entry(page)) {
558 if (unfalloc)
559 continue;
560 nr_swaps_freed += !shmem_free_swap(mapping,
561 index, page);
562 continue;
563 }
564
565 lock_page(page);
566 if (!unfalloc || !PageUptodate(page)) {
567 if (page->mapping == mapping) {
568 VM_BUG_ON(PageWriteback(page));
569 truncate_inode_page(mapping, page);
570 }
571 }
572 unlock_page(page);
573 }
574 shmem_deswap_pagevec(&pvec);
575 pagevec_release(&pvec);
576 mem_cgroup_uncharge_end();
577 index++;
578 }
579
580 spin_lock(&info->lock);
581 info->swapped -= nr_swaps_freed;
582 shmem_recalc_inode(inode);
583 spin_unlock(&info->lock);
584 }
585
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 shmem_undo_range(inode, lstart, lend, false);
589 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 struct inode *inode = dentry->d_inode;
596 int error;
597
598 error = inode_change_ok(inode, attr);
599 if (error)
600 return error;
601
602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 loff_t oldsize = inode->i_size;
604 loff_t newsize = attr->ia_size;
605
606 if (newsize != oldsize) {
607 i_size_write(inode, newsize);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 }
610 if (newsize < oldsize) {
611 loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 shmem_truncate_range(inode, newsize, (loff_t)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 }
617 }
618
619 setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 if (attr->ia_valid & ATTR_MODE)
622 error = generic_acl_chmod(inode);
623 #endif
624 return error;
625 }
626
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 struct shmem_inode_info *info = SHMEM_I(inode);
630 struct shmem_xattr *xattr, *nxattr;
631
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
640 }
641 } else
642 kfree(info->symlink);
643
644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 kfree(xattr->name);
646 kfree(xattr);
647 }
648 BUG_ON(inode->i_blocks);
649 shmem_free_inode(inode->i_sb);
650 clear_inode(inode);
651 }
652
653 /*
654 * If swap found in inode, free it and move page from swapcache to filecache.
655 */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 swp_entry_t swap, struct page **pagep)
658 {
659 struct address_space *mapping = info->vfs_inode.i_mapping;
660 void *radswap;
661 pgoff_t index;
662 gfp_t gfp;
663 int error = 0;
664
665 radswap = swp_to_radix_entry(swap);
666 index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 if (index == -1)
668 return 0;
669
670 /*
671 * Move _head_ to start search for next from here.
672 * But be careful: shmem_evict_inode checks list_empty without taking
673 * mutex, and there's an instant in list_move_tail when info->swaplist
674 * would appear empty, if it were the only one on shmem_swaplist.
675 */
676 if (shmem_swaplist.next != &info->swaplist)
677 list_move_tail(&shmem_swaplist, &info->swaplist);
678
679 gfp = mapping_gfp_mask(mapping);
680 if (shmem_should_replace_page(*pagep, gfp)) {
681 mutex_unlock(&shmem_swaplist_mutex);
682 error = shmem_replace_page(pagep, gfp, info, index);
683 mutex_lock(&shmem_swaplist_mutex);
684 /*
685 * We needed to drop mutex to make that restrictive page
686 * allocation; but the inode might already be freed by now,
687 * and we cannot refer to inode or mapping or info to check.
688 * However, we do hold page lock on the PageSwapCache page,
689 * so can check if that still has our reference remaining.
690 */
691 if (!page_swapcount(*pagep))
692 error = -ENOENT;
693 }
694
695 /*
696 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
697 * but also to hold up shmem_evict_inode(): so inode cannot be freed
698 * beneath us (pagelock doesn't help until the page is in pagecache).
699 */
700 if (!error)
701 error = shmem_add_to_page_cache(*pagep, mapping, index,
702 GFP_NOWAIT, radswap);
703 if (error != -ENOMEM) {
704 /*
705 * Truncation and eviction use free_swap_and_cache(), which
706 * only does trylock page: if we raced, best clean up here.
707 */
708 delete_from_swap_cache(*pagep);
709 set_page_dirty(*pagep);
710 if (!error) {
711 spin_lock(&info->lock);
712 info->swapped--;
713 spin_unlock(&info->lock);
714 swap_free(swap);
715 }
716 error = 1; /* not an error, but entry was found */
717 }
718 return error;
719 }
720
721 /*
722 * Search through swapped inodes to find and replace swap by page.
723 */
724 int shmem_unuse(swp_entry_t swap, struct page *page)
725 {
726 struct list_head *this, *next;
727 struct shmem_inode_info *info;
728 int found = 0;
729 int error = 0;
730
731 /*
732 * There's a faint possibility that swap page was replaced before
733 * caller locked it: it will come back later with the right page.
734 */
735 if (unlikely(!PageSwapCache(page)))
736 goto out;
737
738 /*
739 * Charge page using GFP_KERNEL while we can wait, before taking
740 * the shmem_swaplist_mutex which might hold up shmem_writepage().
741 * Charged back to the user (not to caller) when swap account is used.
742 */
743 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
744 if (error)
745 goto out;
746 /* No radix_tree_preload: swap entry keeps a place for page in tree */
747
748 mutex_lock(&shmem_swaplist_mutex);
749 list_for_each_safe(this, next, &shmem_swaplist) {
750 info = list_entry(this, struct shmem_inode_info, swaplist);
751 if (info->swapped)
752 found = shmem_unuse_inode(info, swap, &page);
753 else
754 list_del_init(&info->swaplist);
755 cond_resched();
756 if (found)
757 break;
758 }
759 mutex_unlock(&shmem_swaplist_mutex);
760
761 if (found < 0)
762 error = found;
763 out:
764 unlock_page(page);
765 page_cache_release(page);
766 return error;
767 }
768
769 /*
770 * Move the page from the page cache to the swap cache.
771 */
772 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
773 {
774 struct shmem_inode_info *info;
775 struct address_space *mapping;
776 struct inode *inode;
777 swp_entry_t swap;
778 pgoff_t index;
779
780 BUG_ON(!PageLocked(page));
781 mapping = page->mapping;
782 index = page->index;
783 inode = mapping->host;
784 info = SHMEM_I(inode);
785 if (info->flags & VM_LOCKED)
786 goto redirty;
787 if (!total_swap_pages)
788 goto redirty;
789
790 /*
791 * shmem_backing_dev_info's capabilities prevent regular writeback or
792 * sync from ever calling shmem_writepage; but a stacking filesystem
793 * might use ->writepage of its underlying filesystem, in which case
794 * tmpfs should write out to swap only in response to memory pressure,
795 * and not for the writeback threads or sync.
796 */
797 if (!wbc->for_reclaim) {
798 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
799 goto redirty;
800 }
801
802 /*
803 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
804 * value into swapfile.c, the only way we can correctly account for a
805 * fallocated page arriving here is now to initialize it and write it.
806 *
807 * That's okay for a page already fallocated earlier, but if we have
808 * not yet completed the fallocation, then (a) we want to keep track
809 * of this page in case we have to undo it, and (b) it may not be a
810 * good idea to continue anyway, once we're pushing into swap. So
811 * reactivate the page, and let shmem_fallocate() quit when too many.
812 */
813 if (!PageUptodate(page)) {
814 if (inode->i_private) {
815 struct shmem_falloc *shmem_falloc;
816 spin_lock(&inode->i_lock);
817 shmem_falloc = inode->i_private;
818 if (shmem_falloc &&
819 index >= shmem_falloc->start &&
820 index < shmem_falloc->next)
821 shmem_falloc->nr_unswapped++;
822 else
823 shmem_falloc = NULL;
824 spin_unlock(&inode->i_lock);
825 if (shmem_falloc)
826 goto redirty;
827 }
828 clear_highpage(page);
829 flush_dcache_page(page);
830 SetPageUptodate(page);
831 }
832
833 swap = get_swap_page();
834 if (!swap.val)
835 goto redirty;
836
837 /*
838 * Add inode to shmem_unuse()'s list of swapped-out inodes,
839 * if it's not already there. Do it now before the page is
840 * moved to swap cache, when its pagelock no longer protects
841 * the inode from eviction. But don't unlock the mutex until
842 * we've incremented swapped, because shmem_unuse_inode() will
843 * prune a !swapped inode from the swaplist under this mutex.
844 */
845 mutex_lock(&shmem_swaplist_mutex);
846 if (list_empty(&info->swaplist))
847 list_add_tail(&info->swaplist, &shmem_swaplist);
848
849 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
850 swap_shmem_alloc(swap);
851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
852
853 spin_lock(&info->lock);
854 info->swapped++;
855 shmem_recalc_inode(inode);
856 spin_unlock(&info->lock);
857
858 mutex_unlock(&shmem_swaplist_mutex);
859 BUG_ON(page_mapped(page));
860 swap_writepage(page, wbc);
861 return 0;
862 }
863
864 mutex_unlock(&shmem_swaplist_mutex);
865 swapcache_free(swap, NULL);
866 redirty:
867 set_page_dirty(page);
868 if (wbc->for_reclaim)
869 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
870 unlock_page(page);
871 return 0;
872 }
873
874 #ifdef CONFIG_NUMA
875 #ifdef CONFIG_TMPFS
876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
877 {
878 char buffer[64];
879
880 if (!mpol || mpol->mode == MPOL_DEFAULT)
881 return; /* show nothing */
882
883 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
884
885 seq_printf(seq, ",mpol=%s", buffer);
886 }
887
888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
889 {
890 struct mempolicy *mpol = NULL;
891 if (sbinfo->mpol) {
892 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
893 mpol = sbinfo->mpol;
894 mpol_get(mpol);
895 spin_unlock(&sbinfo->stat_lock);
896 }
897 return mpol;
898 }
899 #endif /* CONFIG_TMPFS */
900
901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
902 struct shmem_inode_info *info, pgoff_t index)
903 {
904 struct mempolicy mpol, *spol;
905 struct vm_area_struct pvma;
906
907 spol = mpol_cond_copy(&mpol,
908 mpol_shared_policy_lookup(&info->policy, index));
909
910 /* Create a pseudo vma that just contains the policy */
911 pvma.vm_start = 0;
912 pvma.vm_pgoff = index;
913 pvma.vm_ops = NULL;
914 pvma.vm_policy = spol;
915 return swapin_readahead(swap, gfp, &pvma, 0);
916 }
917
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
920 {
921 struct vm_area_struct pvma;
922
923 /* Create a pseudo vma that just contains the policy */
924 pvma.vm_start = 0;
925 pvma.vm_pgoff = index;
926 pvma.vm_ops = NULL;
927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928
929 /*
930 * alloc_page_vma() will drop the shared policy reference
931 */
932 return alloc_page_vma(gfp, &pvma, 0);
933 }
934 #else /* !CONFIG_NUMA */
935 #ifdef CONFIG_TMPFS
936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
937 {
938 }
939 #endif /* CONFIG_TMPFS */
940
941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
942 struct shmem_inode_info *info, pgoff_t index)
943 {
944 return swapin_readahead(swap, gfp, NULL, 0);
945 }
946
947 static inline struct page *shmem_alloc_page(gfp_t gfp,
948 struct shmem_inode_info *info, pgoff_t index)
949 {
950 return alloc_page(gfp);
951 }
952 #endif /* CONFIG_NUMA */
953
954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
956 {
957 return NULL;
958 }
959 #endif
960
961 /*
962 * When a page is moved from swapcache to shmem filecache (either by the
963 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
964 * shmem_unuse_inode()), it may have been read in earlier from swap, in
965 * ignorance of the mapping it belongs to. If that mapping has special
966 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
967 * we may need to copy to a suitable page before moving to filecache.
968 *
969 * In a future release, this may well be extended to respect cpuset and
970 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
971 * but for now it is a simple matter of zone.
972 */
973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
974 {
975 return page_zonenum(page) > gfp_zone(gfp);
976 }
977
978 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
979 struct shmem_inode_info *info, pgoff_t index)
980 {
981 struct page *oldpage, *newpage;
982 struct address_space *swap_mapping;
983 pgoff_t swap_index;
984 int error;
985
986 oldpage = *pagep;
987 swap_index = page_private(oldpage);
988 swap_mapping = page_mapping(oldpage);
989
990 /*
991 * We have arrived here because our zones are constrained, so don't
992 * limit chance of success by further cpuset and node constraints.
993 */
994 gfp &= ~GFP_CONSTRAINT_MASK;
995 newpage = shmem_alloc_page(gfp, info, index);
996 if (!newpage)
997 return -ENOMEM;
998 VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
999
1000 *pagep = newpage;
1001 page_cache_get(newpage);
1002 copy_highpage(newpage, oldpage);
1003
1004 VM_BUG_ON(!PageLocked(oldpage));
1005 __set_page_locked(newpage);
1006 VM_BUG_ON(!PageUptodate(oldpage));
1007 SetPageUptodate(newpage);
1008 VM_BUG_ON(!PageSwapBacked(oldpage));
1009 SetPageSwapBacked(newpage);
1010 VM_BUG_ON(!swap_index);
1011 set_page_private(newpage, swap_index);
1012 VM_BUG_ON(!PageSwapCache(oldpage));
1013 SetPageSwapCache(newpage);
1014
1015 /*
1016 * Our caller will very soon move newpage out of swapcache, but it's
1017 * a nice clean interface for us to replace oldpage by newpage there.
1018 */
1019 spin_lock_irq(&swap_mapping->tree_lock);
1020 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1021 newpage);
1022 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1023 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1024 spin_unlock_irq(&swap_mapping->tree_lock);
1025 BUG_ON(error);
1026
1027 mem_cgroup_replace_page_cache(oldpage, newpage);
1028 lru_cache_add_anon(newpage);
1029
1030 ClearPageSwapCache(oldpage);
1031 set_page_private(oldpage, 0);
1032
1033 unlock_page(oldpage);
1034 page_cache_release(oldpage);
1035 page_cache_release(oldpage);
1036 return 0;
1037 }
1038
1039 /*
1040 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1041 *
1042 * If we allocate a new one we do not mark it dirty. That's up to the
1043 * vm. If we swap it in we mark it dirty since we also free the swap
1044 * entry since a page cannot live in both the swap and page cache
1045 */
1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1047 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1048 {
1049 struct address_space *mapping = inode->i_mapping;
1050 struct shmem_inode_info *info;
1051 struct shmem_sb_info *sbinfo;
1052 struct page *page;
1053 swp_entry_t swap;
1054 int error;
1055 int once = 0;
1056 int alloced = 0;
1057
1058 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1059 return -EFBIG;
1060 repeat:
1061 swap.val = 0;
1062 page = find_lock_page(mapping, index);
1063 if (radix_tree_exceptional_entry(page)) {
1064 swap = radix_to_swp_entry(page);
1065 page = NULL;
1066 }
1067
1068 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1069 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1070 error = -EINVAL;
1071 goto failed;
1072 }
1073
1074 /* fallocated page? */
1075 if (page && !PageUptodate(page)) {
1076 if (sgp != SGP_READ)
1077 goto clear;
1078 unlock_page(page);
1079 page_cache_release(page);
1080 page = NULL;
1081 }
1082 if (page || (sgp == SGP_READ && !swap.val)) {
1083 *pagep = page;
1084 return 0;
1085 }
1086
1087 /*
1088 * Fast cache lookup did not find it:
1089 * bring it back from swap or allocate.
1090 */
1091 info = SHMEM_I(inode);
1092 sbinfo = SHMEM_SB(inode->i_sb);
1093
1094 if (swap.val) {
1095 /* Look it up and read it in.. */
1096 page = lookup_swap_cache(swap);
1097 if (!page) {
1098 /* here we actually do the io */
1099 if (fault_type)
1100 *fault_type |= VM_FAULT_MAJOR;
1101 page = shmem_swapin(swap, gfp, info, index);
1102 if (!page) {
1103 error = -ENOMEM;
1104 goto failed;
1105 }
1106 }
1107
1108 /* We have to do this with page locked to prevent races */
1109 lock_page(page);
1110 if (!PageSwapCache(page) || page->mapping) {
1111 error = -EEXIST; /* try again */
1112 goto failed;
1113 }
1114 if (!PageUptodate(page)) {
1115 error = -EIO;
1116 goto failed;
1117 }
1118 wait_on_page_writeback(page);
1119
1120 if (shmem_should_replace_page(page, gfp)) {
1121 error = shmem_replace_page(&page, gfp, info, index);
1122 if (error)
1123 goto failed;
1124 }
1125
1126 error = mem_cgroup_cache_charge(page, current->mm,
1127 gfp & GFP_RECLAIM_MASK);
1128 if (!error)
1129 error = shmem_add_to_page_cache(page, mapping, index,
1130 gfp, swp_to_radix_entry(swap));
1131 if (error)
1132 goto failed;
1133
1134 spin_lock(&info->lock);
1135 info->swapped--;
1136 shmem_recalc_inode(inode);
1137 spin_unlock(&info->lock);
1138
1139 delete_from_swap_cache(page);
1140 set_page_dirty(page);
1141 swap_free(swap);
1142
1143 } else {
1144 if (shmem_acct_block(info->flags)) {
1145 error = -ENOSPC;
1146 goto failed;
1147 }
1148 if (sbinfo->max_blocks) {
1149 if (percpu_counter_compare(&sbinfo->used_blocks,
1150 sbinfo->max_blocks) >= 0) {
1151 error = -ENOSPC;
1152 goto unacct;
1153 }
1154 percpu_counter_inc(&sbinfo->used_blocks);
1155 }
1156
1157 page = shmem_alloc_page(gfp, info, index);
1158 if (!page) {
1159 error = -ENOMEM;
1160 goto decused;
1161 }
1162
1163 SetPageSwapBacked(page);
1164 __set_page_locked(page);
1165 error = mem_cgroup_cache_charge(page, current->mm,
1166 gfp & GFP_RECLAIM_MASK);
1167 if (!error)
1168 error = shmem_add_to_page_cache(page, mapping, index,
1169 gfp, NULL);
1170 if (error)
1171 goto decused;
1172 lru_cache_add_anon(page);
1173
1174 spin_lock(&info->lock);
1175 info->alloced++;
1176 inode->i_blocks += BLOCKS_PER_PAGE;
1177 shmem_recalc_inode(inode);
1178 spin_unlock(&info->lock);
1179 alloced = true;
1180
1181 /*
1182 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1183 */
1184 if (sgp == SGP_FALLOC)
1185 sgp = SGP_WRITE;
1186 clear:
1187 /*
1188 * Let SGP_WRITE caller clear ends if write does not fill page;
1189 * but SGP_FALLOC on a page fallocated earlier must initialize
1190 * it now, lest undo on failure cancel our earlier guarantee.
1191 */
1192 if (sgp != SGP_WRITE) {
1193 clear_highpage(page);
1194 flush_dcache_page(page);
1195 SetPageUptodate(page);
1196 }
1197 if (sgp == SGP_DIRTY)
1198 set_page_dirty(page);
1199 }
1200
1201 /* Perhaps the file has been truncated since we checked */
1202 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1203 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1204 error = -EINVAL;
1205 if (alloced)
1206 goto trunc;
1207 else
1208 goto failed;
1209 }
1210 *pagep = page;
1211 return 0;
1212
1213 /*
1214 * Error recovery.
1215 */
1216 trunc:
1217 info = SHMEM_I(inode);
1218 ClearPageDirty(page);
1219 delete_from_page_cache(page);
1220 spin_lock(&info->lock);
1221 info->alloced--;
1222 inode->i_blocks -= BLOCKS_PER_PAGE;
1223 spin_unlock(&info->lock);
1224 decused:
1225 sbinfo = SHMEM_SB(inode->i_sb);
1226 if (sbinfo->max_blocks)
1227 percpu_counter_add(&sbinfo->used_blocks, -1);
1228 unacct:
1229 shmem_unacct_blocks(info->flags, 1);
1230 failed:
1231 if (swap.val && error != -EINVAL) {
1232 struct page *test = find_get_page(mapping, index);
1233 if (test && !radix_tree_exceptional_entry(test))
1234 page_cache_release(test);
1235 /* Have another try if the entry has changed */
1236 if (test != swp_to_radix_entry(swap))
1237 error = -EEXIST;
1238 }
1239 if (page) {
1240 unlock_page(page);
1241 page_cache_release(page);
1242 }
1243 if (error == -ENOSPC && !once++) {
1244 info = SHMEM_I(inode);
1245 spin_lock(&info->lock);
1246 shmem_recalc_inode(inode);
1247 spin_unlock(&info->lock);
1248 goto repeat;
1249 }
1250 if (error == -EEXIST)
1251 goto repeat;
1252 return error;
1253 }
1254
1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1256 {
1257 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1258 int error;
1259 int ret = VM_FAULT_LOCKED;
1260
1261 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1262 if (error)
1263 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1264
1265 if (ret & VM_FAULT_MAJOR) {
1266 count_vm_event(PGMAJFAULT);
1267 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1268 }
1269 return ret;
1270 }
1271
1272 #ifdef CONFIG_NUMA
1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1274 {
1275 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1276 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1277 }
1278
1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1280 unsigned long addr)
1281 {
1282 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1283 pgoff_t index;
1284
1285 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1286 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1287 }
1288 #endif
1289
1290 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1291 {
1292 struct inode *inode = file->f_path.dentry->d_inode;
1293 struct shmem_inode_info *info = SHMEM_I(inode);
1294 int retval = -ENOMEM;
1295
1296 spin_lock(&info->lock);
1297 if (lock && !(info->flags & VM_LOCKED)) {
1298 if (!user_shm_lock(inode->i_size, user))
1299 goto out_nomem;
1300 info->flags |= VM_LOCKED;
1301 mapping_set_unevictable(file->f_mapping);
1302 }
1303 if (!lock && (info->flags & VM_LOCKED) && user) {
1304 user_shm_unlock(inode->i_size, user);
1305 info->flags &= ~VM_LOCKED;
1306 mapping_clear_unevictable(file->f_mapping);
1307 }
1308 retval = 0;
1309
1310 out_nomem:
1311 spin_unlock(&info->lock);
1312 return retval;
1313 }
1314
1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1316 {
1317 file_accessed(file);
1318 vma->vm_ops = &shmem_vm_ops;
1319 vma->vm_flags |= VM_CAN_NONLINEAR;
1320 return 0;
1321 }
1322
1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1324 umode_t mode, dev_t dev, unsigned long flags)
1325 {
1326 struct inode *inode;
1327 struct shmem_inode_info *info;
1328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1329
1330 if (shmem_reserve_inode(sb))
1331 return NULL;
1332
1333 inode = new_inode(sb);
1334 if (inode) {
1335 inode->i_ino = get_next_ino();
1336 inode_init_owner(inode, dir, mode);
1337 inode->i_blocks = 0;
1338 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1339 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1340 inode->i_generation = get_seconds();
1341 info = SHMEM_I(inode);
1342 memset(info, 0, (char *)inode - (char *)info);
1343 spin_lock_init(&info->lock);
1344 info->flags = flags & VM_NORESERVE;
1345 INIT_LIST_HEAD(&info->swaplist);
1346 INIT_LIST_HEAD(&info->xattr_list);
1347 cache_no_acl(inode);
1348
1349 switch (mode & S_IFMT) {
1350 default:
1351 inode->i_op = &shmem_special_inode_operations;
1352 init_special_inode(inode, mode, dev);
1353 break;
1354 case S_IFREG:
1355 inode->i_mapping->a_ops = &shmem_aops;
1356 inode->i_op = &shmem_inode_operations;
1357 inode->i_fop = &shmem_file_operations;
1358 mpol_shared_policy_init(&info->policy,
1359 shmem_get_sbmpol(sbinfo));
1360 break;
1361 case S_IFDIR:
1362 inc_nlink(inode);
1363 /* Some things misbehave if size == 0 on a directory */
1364 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1365 inode->i_op = &shmem_dir_inode_operations;
1366 inode->i_fop = &simple_dir_operations;
1367 break;
1368 case S_IFLNK:
1369 /*
1370 * Must not load anything in the rbtree,
1371 * mpol_free_shared_policy will not be called.
1372 */
1373 mpol_shared_policy_init(&info->policy, NULL);
1374 break;
1375 }
1376 } else
1377 shmem_free_inode(sb);
1378 return inode;
1379 }
1380
1381 #ifdef CONFIG_TMPFS
1382 static const struct inode_operations shmem_symlink_inode_operations;
1383 static const struct inode_operations shmem_short_symlink_operations;
1384
1385 #ifdef CONFIG_TMPFS_XATTR
1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1387 #else
1388 #define shmem_initxattrs NULL
1389 #endif
1390
1391 static int
1392 shmem_write_begin(struct file *file, struct address_space *mapping,
1393 loff_t pos, unsigned len, unsigned flags,
1394 struct page **pagep, void **fsdata)
1395 {
1396 struct inode *inode = mapping->host;
1397 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1398 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1399 }
1400
1401 static int
1402 shmem_write_end(struct file *file, struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
1405 {
1406 struct inode *inode = mapping->host;
1407
1408 if (pos + copied > inode->i_size)
1409 i_size_write(inode, pos + copied);
1410
1411 if (!PageUptodate(page)) {
1412 if (copied < PAGE_CACHE_SIZE) {
1413 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1414 zero_user_segments(page, 0, from,
1415 from + copied, PAGE_CACHE_SIZE);
1416 }
1417 SetPageUptodate(page);
1418 }
1419 set_page_dirty(page);
1420 unlock_page(page);
1421 page_cache_release(page);
1422
1423 return copied;
1424 }
1425
1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1427 {
1428 struct inode *inode = filp->f_path.dentry->d_inode;
1429 struct address_space *mapping = inode->i_mapping;
1430 pgoff_t index;
1431 unsigned long offset;
1432 enum sgp_type sgp = SGP_READ;
1433
1434 /*
1435 * Might this read be for a stacking filesystem? Then when reading
1436 * holes of a sparse file, we actually need to allocate those pages,
1437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1438 */
1439 if (segment_eq(get_fs(), KERNEL_DS))
1440 sgp = SGP_DIRTY;
1441
1442 index = *ppos >> PAGE_CACHE_SHIFT;
1443 offset = *ppos & ~PAGE_CACHE_MASK;
1444
1445 for (;;) {
1446 struct page *page = NULL;
1447 pgoff_t end_index;
1448 unsigned long nr, ret;
1449 loff_t i_size = i_size_read(inode);
1450
1451 end_index = i_size >> PAGE_CACHE_SHIFT;
1452 if (index > end_index)
1453 break;
1454 if (index == end_index) {
1455 nr = i_size & ~PAGE_CACHE_MASK;
1456 if (nr <= offset)
1457 break;
1458 }
1459
1460 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1461 if (desc->error) {
1462 if (desc->error == -EINVAL)
1463 desc->error = 0;
1464 break;
1465 }
1466 if (page)
1467 unlock_page(page);
1468
1469 /*
1470 * We must evaluate after, since reads (unlike writes)
1471 * are called without i_mutex protection against truncate
1472 */
1473 nr = PAGE_CACHE_SIZE;
1474 i_size = i_size_read(inode);
1475 end_index = i_size >> PAGE_CACHE_SHIFT;
1476 if (index == end_index) {
1477 nr = i_size & ~PAGE_CACHE_MASK;
1478 if (nr <= offset) {
1479 if (page)
1480 page_cache_release(page);
1481 break;
1482 }
1483 }
1484 nr -= offset;
1485
1486 if (page) {
1487 /*
1488 * If users can be writing to this page using arbitrary
1489 * virtual addresses, take care about potential aliasing
1490 * before reading the page on the kernel side.
1491 */
1492 if (mapping_writably_mapped(mapping))
1493 flush_dcache_page(page);
1494 /*
1495 * Mark the page accessed if we read the beginning.
1496 */
1497 if (!offset)
1498 mark_page_accessed(page);
1499 } else {
1500 page = ZERO_PAGE(0);
1501 page_cache_get(page);
1502 }
1503
1504 /*
1505 * Ok, we have the page, and it's up-to-date, so
1506 * now we can copy it to user space...
1507 *
1508 * The actor routine returns how many bytes were actually used..
1509 * NOTE! This may not be the same as how much of a user buffer
1510 * we filled up (we may be padding etc), so we can only update
1511 * "pos" here (the actor routine has to update the user buffer
1512 * pointers and the remaining count).
1513 */
1514 ret = actor(desc, page, offset, nr);
1515 offset += ret;
1516 index += offset >> PAGE_CACHE_SHIFT;
1517 offset &= ~PAGE_CACHE_MASK;
1518
1519 page_cache_release(page);
1520 if (ret != nr || !desc->count)
1521 break;
1522
1523 cond_resched();
1524 }
1525
1526 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1527 file_accessed(filp);
1528 }
1529
1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1531 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1532 {
1533 struct file *filp = iocb->ki_filp;
1534 ssize_t retval;
1535 unsigned long seg;
1536 size_t count;
1537 loff_t *ppos = &iocb->ki_pos;
1538
1539 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1540 if (retval)
1541 return retval;
1542
1543 for (seg = 0; seg < nr_segs; seg++) {
1544 read_descriptor_t desc;
1545
1546 desc.written = 0;
1547 desc.arg.buf = iov[seg].iov_base;
1548 desc.count = iov[seg].iov_len;
1549 if (desc.count == 0)
1550 continue;
1551 desc.error = 0;
1552 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1553 retval += desc.written;
1554 if (desc.error) {
1555 retval = retval ?: desc.error;
1556 break;
1557 }
1558 if (desc.count > 0)
1559 break;
1560 }
1561 return retval;
1562 }
1563
1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1565 struct pipe_inode_info *pipe, size_t len,
1566 unsigned int flags)
1567 {
1568 struct address_space *mapping = in->f_mapping;
1569 struct inode *inode = mapping->host;
1570 unsigned int loff, nr_pages, req_pages;
1571 struct page *pages[PIPE_DEF_BUFFERS];
1572 struct partial_page partial[PIPE_DEF_BUFFERS];
1573 struct page *page;
1574 pgoff_t index, end_index;
1575 loff_t isize, left;
1576 int error, page_nr;
1577 struct splice_pipe_desc spd = {
1578 .pages = pages,
1579 .partial = partial,
1580 .flags = flags,
1581 .ops = &page_cache_pipe_buf_ops,
1582 .spd_release = spd_release_page,
1583 };
1584
1585 isize = i_size_read(inode);
1586 if (unlikely(*ppos >= isize))
1587 return 0;
1588
1589 left = isize - *ppos;
1590 if (unlikely(left < len))
1591 len = left;
1592
1593 if (splice_grow_spd(pipe, &spd))
1594 return -ENOMEM;
1595
1596 index = *ppos >> PAGE_CACHE_SHIFT;
1597 loff = *ppos & ~PAGE_CACHE_MASK;
1598 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1599 nr_pages = min(req_pages, pipe->buffers);
1600
1601 spd.nr_pages = find_get_pages_contig(mapping, index,
1602 nr_pages, spd.pages);
1603 index += spd.nr_pages;
1604 error = 0;
1605
1606 while (spd.nr_pages < nr_pages) {
1607 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1608 if (error)
1609 break;
1610 unlock_page(page);
1611 spd.pages[spd.nr_pages++] = page;
1612 index++;
1613 }
1614
1615 index = *ppos >> PAGE_CACHE_SHIFT;
1616 nr_pages = spd.nr_pages;
1617 spd.nr_pages = 0;
1618
1619 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1620 unsigned int this_len;
1621
1622 if (!len)
1623 break;
1624
1625 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1626 page = spd.pages[page_nr];
1627
1628 if (!PageUptodate(page) || page->mapping != mapping) {
1629 error = shmem_getpage(inode, index, &page,
1630 SGP_CACHE, NULL);
1631 if (error)
1632 break;
1633 unlock_page(page);
1634 page_cache_release(spd.pages[page_nr]);
1635 spd.pages[page_nr] = page;
1636 }
1637
1638 isize = i_size_read(inode);
1639 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1640 if (unlikely(!isize || index > end_index))
1641 break;
1642
1643 if (end_index == index) {
1644 unsigned int plen;
1645
1646 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1647 if (plen <= loff)
1648 break;
1649
1650 this_len = min(this_len, plen - loff);
1651 len = this_len;
1652 }
1653
1654 spd.partial[page_nr].offset = loff;
1655 spd.partial[page_nr].len = this_len;
1656 len -= this_len;
1657 loff = 0;
1658 spd.nr_pages++;
1659 index++;
1660 }
1661
1662 while (page_nr < nr_pages)
1663 page_cache_release(spd.pages[page_nr++]);
1664
1665 if (spd.nr_pages)
1666 error = splice_to_pipe(pipe, &spd);
1667
1668 splice_shrink_spd(pipe, &spd);
1669
1670 if (error > 0) {
1671 *ppos += error;
1672 file_accessed(in);
1673 }
1674 return error;
1675 }
1676
1677 /*
1678 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1679 */
1680 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1681 pgoff_t index, pgoff_t end, int origin)
1682 {
1683 struct page *page;
1684 struct pagevec pvec;
1685 pgoff_t indices[PAGEVEC_SIZE];
1686 bool done = false;
1687 int i;
1688
1689 pagevec_init(&pvec, 0);
1690 pvec.nr = 1; /* start small: we may be there already */
1691 while (!done) {
1692 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1693 pvec.nr, pvec.pages, indices);
1694 if (!pvec.nr) {
1695 if (origin == SEEK_DATA)
1696 index = end;
1697 break;
1698 }
1699 for (i = 0; i < pvec.nr; i++, index++) {
1700 if (index < indices[i]) {
1701 if (origin == SEEK_HOLE) {
1702 done = true;
1703 break;
1704 }
1705 index = indices[i];
1706 }
1707 page = pvec.pages[i];
1708 if (page && !radix_tree_exceptional_entry(page)) {
1709 if (!PageUptodate(page))
1710 page = NULL;
1711 }
1712 if (index >= end ||
1713 (page && origin == SEEK_DATA) ||
1714 (!page && origin == SEEK_HOLE)) {
1715 done = true;
1716 break;
1717 }
1718 }
1719 shmem_deswap_pagevec(&pvec);
1720 pagevec_release(&pvec);
1721 pvec.nr = PAGEVEC_SIZE;
1722 cond_resched();
1723 }
1724 return index;
1725 }
1726
1727 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1728 {
1729 struct address_space *mapping;
1730 struct inode *inode;
1731 pgoff_t start, end;
1732 loff_t new_offset;
1733
1734 if (origin != SEEK_DATA && origin != SEEK_HOLE)
1735 return generic_file_llseek_size(file, offset, origin,
1736 MAX_LFS_FILESIZE);
1737 mapping = file->f_mapping;
1738 inode = mapping->host;
1739 mutex_lock(&inode->i_mutex);
1740 /* We're holding i_mutex so we can access i_size directly */
1741
1742 if (offset < 0)
1743 offset = -EINVAL;
1744 else if (offset >= inode->i_size)
1745 offset = -ENXIO;
1746 else {
1747 start = offset >> PAGE_CACHE_SHIFT;
1748 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1749 new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1750 new_offset <<= PAGE_CACHE_SHIFT;
1751 if (new_offset > offset) {
1752 if (new_offset < inode->i_size)
1753 offset = new_offset;
1754 else if (origin == SEEK_DATA)
1755 offset = -ENXIO;
1756 else
1757 offset = inode->i_size;
1758 }
1759 }
1760
1761 if (offset >= 0 && offset != file->f_pos) {
1762 file->f_pos = offset;
1763 file->f_version = 0;
1764 }
1765 mutex_unlock(&inode->i_mutex);
1766 return offset;
1767 }
1768
1769 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1770 loff_t len)
1771 {
1772 struct inode *inode = file->f_path.dentry->d_inode;
1773 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1774 struct shmem_falloc shmem_falloc;
1775 pgoff_t start, index, end;
1776 int error;
1777
1778 mutex_lock(&inode->i_mutex);
1779
1780 if (mode & FALLOC_FL_PUNCH_HOLE) {
1781 struct address_space *mapping = file->f_mapping;
1782 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1783 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1784
1785 if ((u64)unmap_end > (u64)unmap_start)
1786 unmap_mapping_range(mapping, unmap_start,
1787 1 + unmap_end - unmap_start, 0);
1788 shmem_truncate_range(inode, offset, offset + len - 1);
1789 /* No need to unmap again: hole-punching leaves COWed pages */
1790 error = 0;
1791 goto out;
1792 }
1793
1794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795 error = inode_newsize_ok(inode, offset + len);
1796 if (error)
1797 goto out;
1798
1799 start = offset >> PAGE_CACHE_SHIFT;
1800 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801 /* Try to avoid a swapstorm if len is impossible to satisfy */
1802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1803 error = -ENOSPC;
1804 goto out;
1805 }
1806
1807 shmem_falloc.start = start;
1808 shmem_falloc.next = start;
1809 shmem_falloc.nr_falloced = 0;
1810 shmem_falloc.nr_unswapped = 0;
1811 spin_lock(&inode->i_lock);
1812 inode->i_private = &shmem_falloc;
1813 spin_unlock(&inode->i_lock);
1814
1815 for (index = start; index < end; index++) {
1816 struct page *page;
1817
1818 /*
1819 * Good, the fallocate(2) manpage permits EINTR: we may have
1820 * been interrupted because we are using up too much memory.
1821 */
1822 if (signal_pending(current))
1823 error = -EINTR;
1824 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1825 error = -ENOMEM;
1826 else
1827 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1828 NULL);
1829 if (error) {
1830 /* Remove the !PageUptodate pages we added */
1831 shmem_undo_range(inode,
1832 (loff_t)start << PAGE_CACHE_SHIFT,
1833 (loff_t)index << PAGE_CACHE_SHIFT, true);
1834 goto undone;
1835 }
1836
1837 /*
1838 * Inform shmem_writepage() how far we have reached.
1839 * No need for lock or barrier: we have the page lock.
1840 */
1841 shmem_falloc.next++;
1842 if (!PageUptodate(page))
1843 shmem_falloc.nr_falloced++;
1844
1845 /*
1846 * If !PageUptodate, leave it that way so that freeable pages
1847 * can be recognized if we need to rollback on error later.
1848 * But set_page_dirty so that memory pressure will swap rather
1849 * than free the pages we are allocating (and SGP_CACHE pages
1850 * might still be clean: we now need to mark those dirty too).
1851 */
1852 set_page_dirty(page);
1853 unlock_page(page);
1854 page_cache_release(page);
1855 cond_resched();
1856 }
1857
1858 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859 i_size_write(inode, offset + len);
1860 inode->i_ctime = CURRENT_TIME;
1861 undone:
1862 spin_lock(&inode->i_lock);
1863 inode->i_private = NULL;
1864 spin_unlock(&inode->i_lock);
1865 out:
1866 mutex_unlock(&inode->i_mutex);
1867 return error;
1868 }
1869
1870 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1871 {
1872 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1873
1874 buf->f_type = TMPFS_MAGIC;
1875 buf->f_bsize = PAGE_CACHE_SIZE;
1876 buf->f_namelen = NAME_MAX;
1877 if (sbinfo->max_blocks) {
1878 buf->f_blocks = sbinfo->max_blocks;
1879 buf->f_bavail =
1880 buf->f_bfree = sbinfo->max_blocks -
1881 percpu_counter_sum(&sbinfo->used_blocks);
1882 }
1883 if (sbinfo->max_inodes) {
1884 buf->f_files = sbinfo->max_inodes;
1885 buf->f_ffree = sbinfo->free_inodes;
1886 }
1887 /* else leave those fields 0 like simple_statfs */
1888 return 0;
1889 }
1890
1891 /*
1892 * File creation. Allocate an inode, and we're done..
1893 */
1894 static int
1895 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1896 {
1897 struct inode *inode;
1898 int error = -ENOSPC;
1899
1900 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1901 if (inode) {
1902 error = security_inode_init_security(inode, dir,
1903 &dentry->d_name,
1904 shmem_initxattrs, NULL);
1905 if (error) {
1906 if (error != -EOPNOTSUPP) {
1907 iput(inode);
1908 return error;
1909 }
1910 }
1911 #ifdef CONFIG_TMPFS_POSIX_ACL
1912 error = generic_acl_init(inode, dir);
1913 if (error) {
1914 iput(inode);
1915 return error;
1916 }
1917 #else
1918 error = 0;
1919 #endif
1920 dir->i_size += BOGO_DIRENT_SIZE;
1921 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 d_instantiate(dentry, inode);
1923 dget(dentry); /* Extra count - pin the dentry in core */
1924 }
1925 return error;
1926 }
1927
1928 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1929 {
1930 int error;
1931
1932 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1933 return error;
1934 inc_nlink(dir);
1935 return 0;
1936 }
1937
1938 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1939 struct nameidata *nd)
1940 {
1941 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1942 }
1943
1944 /*
1945 * Link a file..
1946 */
1947 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1948 {
1949 struct inode *inode = old_dentry->d_inode;
1950 int ret;
1951
1952 /*
1953 * No ordinary (disk based) filesystem counts links as inodes;
1954 * but each new link needs a new dentry, pinning lowmem, and
1955 * tmpfs dentries cannot be pruned until they are unlinked.
1956 */
1957 ret = shmem_reserve_inode(inode->i_sb);
1958 if (ret)
1959 goto out;
1960
1961 dir->i_size += BOGO_DIRENT_SIZE;
1962 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1963 inc_nlink(inode);
1964 ihold(inode); /* New dentry reference */
1965 dget(dentry); /* Extra pinning count for the created dentry */
1966 d_instantiate(dentry, inode);
1967 out:
1968 return ret;
1969 }
1970
1971 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1972 {
1973 struct inode *inode = dentry->d_inode;
1974
1975 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1976 shmem_free_inode(inode->i_sb);
1977
1978 dir->i_size -= BOGO_DIRENT_SIZE;
1979 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1980 drop_nlink(inode);
1981 dput(dentry); /* Undo the count from "create" - this does all the work */
1982 return 0;
1983 }
1984
1985 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1986 {
1987 if (!simple_empty(dentry))
1988 return -ENOTEMPTY;
1989
1990 drop_nlink(dentry->d_inode);
1991 drop_nlink(dir);
1992 return shmem_unlink(dir, dentry);
1993 }
1994
1995 /*
1996 * The VFS layer already does all the dentry stuff for rename,
1997 * we just have to decrement the usage count for the target if
1998 * it exists so that the VFS layer correctly free's it when it
1999 * gets overwritten.
2000 */
2001 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2002 {
2003 struct inode *inode = old_dentry->d_inode;
2004 int they_are_dirs = S_ISDIR(inode->i_mode);
2005
2006 if (!simple_empty(new_dentry))
2007 return -ENOTEMPTY;
2008
2009 if (new_dentry->d_inode) {
2010 (void) shmem_unlink(new_dir, new_dentry);
2011 if (they_are_dirs)
2012 drop_nlink(old_dir);
2013 } else if (they_are_dirs) {
2014 drop_nlink(old_dir);
2015 inc_nlink(new_dir);
2016 }
2017
2018 old_dir->i_size -= BOGO_DIRENT_SIZE;
2019 new_dir->i_size += BOGO_DIRENT_SIZE;
2020 old_dir->i_ctime = old_dir->i_mtime =
2021 new_dir->i_ctime = new_dir->i_mtime =
2022 inode->i_ctime = CURRENT_TIME;
2023 return 0;
2024 }
2025
2026 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2027 {
2028 int error;
2029 int len;
2030 struct inode *inode;
2031 struct page *page;
2032 char *kaddr;
2033 struct shmem_inode_info *info;
2034
2035 len = strlen(symname) + 1;
2036 if (len > PAGE_CACHE_SIZE)
2037 return -ENAMETOOLONG;
2038
2039 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2040 if (!inode)
2041 return -ENOSPC;
2042
2043 error = security_inode_init_security(inode, dir, &dentry->d_name,
2044 shmem_initxattrs, NULL);
2045 if (error) {
2046 if (error != -EOPNOTSUPP) {
2047 iput(inode);
2048 return error;
2049 }
2050 error = 0;
2051 }
2052
2053 info = SHMEM_I(inode);
2054 inode->i_size = len-1;
2055 if (len <= SHORT_SYMLINK_LEN) {
2056 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2057 if (!info->symlink) {
2058 iput(inode);
2059 return -ENOMEM;
2060 }
2061 inode->i_op = &shmem_short_symlink_operations;
2062 } else {
2063 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2064 if (error) {
2065 iput(inode);
2066 return error;
2067 }
2068 inode->i_mapping->a_ops = &shmem_aops;
2069 inode->i_op = &shmem_symlink_inode_operations;
2070 kaddr = kmap_atomic(page);
2071 memcpy(kaddr, symname, len);
2072 kunmap_atomic(kaddr);
2073 SetPageUptodate(page);
2074 set_page_dirty(page);
2075 unlock_page(page);
2076 page_cache_release(page);
2077 }
2078 dir->i_size += BOGO_DIRENT_SIZE;
2079 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2080 d_instantiate(dentry, inode);
2081 dget(dentry);
2082 return 0;
2083 }
2084
2085 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2086 {
2087 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2088 return NULL;
2089 }
2090
2091 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2092 {
2093 struct page *page = NULL;
2094 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2095 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2096 if (page)
2097 unlock_page(page);
2098 return page;
2099 }
2100
2101 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2102 {
2103 if (!IS_ERR(nd_get_link(nd))) {
2104 struct page *page = cookie;
2105 kunmap(page);
2106 mark_page_accessed(page);
2107 page_cache_release(page);
2108 }
2109 }
2110
2111 #ifdef CONFIG_TMPFS_XATTR
2112 /*
2113 * Superblocks without xattr inode operations may get some security.* xattr
2114 * support from the LSM "for free". As soon as we have any other xattrs
2115 * like ACLs, we also need to implement the security.* handlers at
2116 * filesystem level, though.
2117 */
2118
2119 /*
2120 * Allocate new xattr and copy in the value; but leave the name to callers.
2121 */
2122 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2123 {
2124 struct shmem_xattr *new_xattr;
2125 size_t len;
2126
2127 /* wrap around? */
2128 len = sizeof(*new_xattr) + size;
2129 if (len <= sizeof(*new_xattr))
2130 return NULL;
2131
2132 new_xattr = kmalloc(len, GFP_KERNEL);
2133 if (!new_xattr)
2134 return NULL;
2135
2136 new_xattr->size = size;
2137 memcpy(new_xattr->value, value, size);
2138 return new_xattr;
2139 }
2140
2141 /*
2142 * Callback for security_inode_init_security() for acquiring xattrs.
2143 */
2144 static int shmem_initxattrs(struct inode *inode,
2145 const struct xattr *xattr_array,
2146 void *fs_info)
2147 {
2148 struct shmem_inode_info *info = SHMEM_I(inode);
2149 const struct xattr *xattr;
2150 struct shmem_xattr *new_xattr;
2151 size_t len;
2152
2153 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2154 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2155 if (!new_xattr)
2156 return -ENOMEM;
2157
2158 len = strlen(xattr->name) + 1;
2159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2160 GFP_KERNEL);
2161 if (!new_xattr->name) {
2162 kfree(new_xattr);
2163 return -ENOMEM;
2164 }
2165
2166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2167 XATTR_SECURITY_PREFIX_LEN);
2168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2169 xattr->name, len);
2170
2171 spin_lock(&info->lock);
2172 list_add(&new_xattr->list, &info->xattr_list);
2173 spin_unlock(&info->lock);
2174 }
2175
2176 return 0;
2177 }
2178
2179 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2180 void *buffer, size_t size)
2181 {
2182 struct shmem_inode_info *info;
2183 struct shmem_xattr *xattr;
2184 int ret = -ENODATA;
2185
2186 info = SHMEM_I(dentry->d_inode);
2187
2188 spin_lock(&info->lock);
2189 list_for_each_entry(xattr, &info->xattr_list, list) {
2190 if (strcmp(name, xattr->name))
2191 continue;
2192
2193 ret = xattr->size;
2194 if (buffer) {
2195 if (size < xattr->size)
2196 ret = -ERANGE;
2197 else
2198 memcpy(buffer, xattr->value, xattr->size);
2199 }
2200 break;
2201 }
2202 spin_unlock(&info->lock);
2203 return ret;
2204 }
2205
2206 static int shmem_xattr_set(struct inode *inode, const char *name,
2207 const void *value, size_t size, int flags)
2208 {
2209 struct shmem_inode_info *info = SHMEM_I(inode);
2210 struct shmem_xattr *xattr;
2211 struct shmem_xattr *new_xattr = NULL;
2212 int err = 0;
2213
2214 /* value == NULL means remove */
2215 if (value) {
2216 new_xattr = shmem_xattr_alloc(value, size);
2217 if (!new_xattr)
2218 return -ENOMEM;
2219
2220 new_xattr->name = kstrdup(name, GFP_KERNEL);
2221 if (!new_xattr->name) {
2222 kfree(new_xattr);
2223 return -ENOMEM;
2224 }
2225 }
2226
2227 spin_lock(&info->lock);
2228 list_for_each_entry(xattr, &info->xattr_list, list) {
2229 if (!strcmp(name, xattr->name)) {
2230 if (flags & XATTR_CREATE) {
2231 xattr = new_xattr;
2232 err = -EEXIST;
2233 } else if (new_xattr) {
2234 list_replace(&xattr->list, &new_xattr->list);
2235 } else {
2236 list_del(&xattr->list);
2237 }
2238 goto out;
2239 }
2240 }
2241 if (flags & XATTR_REPLACE) {
2242 xattr = new_xattr;
2243 err = -ENODATA;
2244 } else {
2245 list_add(&new_xattr->list, &info->xattr_list);
2246 xattr = NULL;
2247 }
2248 out:
2249 spin_unlock(&info->lock);
2250 if (xattr)
2251 kfree(xattr->name);
2252 kfree(xattr);
2253 return err;
2254 }
2255
2256 static const struct xattr_handler *shmem_xattr_handlers[] = {
2257 #ifdef CONFIG_TMPFS_POSIX_ACL
2258 &generic_acl_access_handler,
2259 &generic_acl_default_handler,
2260 #endif
2261 NULL
2262 };
2263
2264 static int shmem_xattr_validate(const char *name)
2265 {
2266 struct { const char *prefix; size_t len; } arr[] = {
2267 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2268 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2269 };
2270 int i;
2271
2272 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2273 size_t preflen = arr[i].len;
2274 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2275 if (!name[preflen])
2276 return -EINVAL;
2277 return 0;
2278 }
2279 }
2280 return -EOPNOTSUPP;
2281 }
2282
2283 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2284 void *buffer, size_t size)
2285 {
2286 int err;
2287
2288 /*
2289 * If this is a request for a synthetic attribute in the system.*
2290 * namespace use the generic infrastructure to resolve a handler
2291 * for it via sb->s_xattr.
2292 */
2293 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2294 return generic_getxattr(dentry, name, buffer, size);
2295
2296 err = shmem_xattr_validate(name);
2297 if (err)
2298 return err;
2299
2300 return shmem_xattr_get(dentry, name, buffer, size);
2301 }
2302
2303 static int shmem_setxattr(struct dentry *dentry, const char *name,
2304 const void *value, size_t size, int flags)
2305 {
2306 int err;
2307
2308 /*
2309 * If this is a request for a synthetic attribute in the system.*
2310 * namespace use the generic infrastructure to resolve a handler
2311 * for it via sb->s_xattr.
2312 */
2313 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2314 return generic_setxattr(dentry, name, value, size, flags);
2315
2316 err = shmem_xattr_validate(name);
2317 if (err)
2318 return err;
2319
2320 if (size == 0)
2321 value = ""; /* empty EA, do not remove */
2322
2323 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2324
2325 }
2326
2327 static int shmem_removexattr(struct dentry *dentry, const char *name)
2328 {
2329 int err;
2330
2331 /*
2332 * If this is a request for a synthetic attribute in the system.*
2333 * namespace use the generic infrastructure to resolve a handler
2334 * for it via sb->s_xattr.
2335 */
2336 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2337 return generic_removexattr(dentry, name);
2338
2339 err = shmem_xattr_validate(name);
2340 if (err)
2341 return err;
2342
2343 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2344 }
2345
2346 static bool xattr_is_trusted(const char *name)
2347 {
2348 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2349 }
2350
2351 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2352 {
2353 bool trusted = capable(CAP_SYS_ADMIN);
2354 struct shmem_xattr *xattr;
2355 struct shmem_inode_info *info;
2356 size_t used = 0;
2357
2358 info = SHMEM_I(dentry->d_inode);
2359
2360 spin_lock(&info->lock);
2361 list_for_each_entry(xattr, &info->xattr_list, list) {
2362 size_t len;
2363
2364 /* skip "trusted." attributes for unprivileged callers */
2365 if (!trusted && xattr_is_trusted(xattr->name))
2366 continue;
2367
2368 len = strlen(xattr->name) + 1;
2369 used += len;
2370 if (buffer) {
2371 if (size < used) {
2372 used = -ERANGE;
2373 break;
2374 }
2375 memcpy(buffer, xattr->name, len);
2376 buffer += len;
2377 }
2378 }
2379 spin_unlock(&info->lock);
2380
2381 return used;
2382 }
2383 #endif /* CONFIG_TMPFS_XATTR */
2384
2385 static const struct inode_operations shmem_short_symlink_operations = {
2386 .readlink = generic_readlink,
2387 .follow_link = shmem_follow_short_symlink,
2388 #ifdef CONFIG_TMPFS_XATTR
2389 .setxattr = shmem_setxattr,
2390 .getxattr = shmem_getxattr,
2391 .listxattr = shmem_listxattr,
2392 .removexattr = shmem_removexattr,
2393 #endif
2394 };
2395
2396 static const struct inode_operations shmem_symlink_inode_operations = {
2397 .readlink = generic_readlink,
2398 .follow_link = shmem_follow_link,
2399 .put_link = shmem_put_link,
2400 #ifdef CONFIG_TMPFS_XATTR
2401 .setxattr = shmem_setxattr,
2402 .getxattr = shmem_getxattr,
2403 .listxattr = shmem_listxattr,
2404 .removexattr = shmem_removexattr,
2405 #endif
2406 };
2407
2408 static struct dentry *shmem_get_parent(struct dentry *child)
2409 {
2410 return ERR_PTR(-ESTALE);
2411 }
2412
2413 static int shmem_match(struct inode *ino, void *vfh)
2414 {
2415 __u32 *fh = vfh;
2416 __u64 inum = fh[2];
2417 inum = (inum << 32) | fh[1];
2418 return ino->i_ino == inum && fh[0] == ino->i_generation;
2419 }
2420
2421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2422 struct fid *fid, int fh_len, int fh_type)
2423 {
2424 struct inode *inode;
2425 struct dentry *dentry = NULL;
2426 u64 inum = fid->raw[2];
2427 inum = (inum << 32) | fid->raw[1];
2428
2429 if (fh_len < 3)
2430 return NULL;
2431
2432 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2433 shmem_match, fid->raw);
2434 if (inode) {
2435 dentry = d_find_alias(inode);
2436 iput(inode);
2437 }
2438
2439 return dentry;
2440 }
2441
2442 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2443 int connectable)
2444 {
2445 struct inode *inode = dentry->d_inode;
2446
2447 if (*len < 3) {
2448 *len = 3;
2449 return 255;
2450 }
2451
2452 if (inode_unhashed(inode)) {
2453 /* Unfortunately insert_inode_hash is not idempotent,
2454 * so as we hash inodes here rather than at creation
2455 * time, we need a lock to ensure we only try
2456 * to do it once
2457 */
2458 static DEFINE_SPINLOCK(lock);
2459 spin_lock(&lock);
2460 if (inode_unhashed(inode))
2461 __insert_inode_hash(inode,
2462 inode->i_ino + inode->i_generation);
2463 spin_unlock(&lock);
2464 }
2465
2466 fh[0] = inode->i_generation;
2467 fh[1] = inode->i_ino;
2468 fh[2] = ((__u64)inode->i_ino) >> 32;
2469
2470 *len = 3;
2471 return 1;
2472 }
2473
2474 static const struct export_operations shmem_export_ops = {
2475 .get_parent = shmem_get_parent,
2476 .encode_fh = shmem_encode_fh,
2477 .fh_to_dentry = shmem_fh_to_dentry,
2478 };
2479
2480 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2481 bool remount)
2482 {
2483 char *this_char, *value, *rest;
2484 uid_t uid;
2485 gid_t gid;
2486
2487 while (options != NULL) {
2488 this_char = options;
2489 for (;;) {
2490 /*
2491 * NUL-terminate this option: unfortunately,
2492 * mount options form a comma-separated list,
2493 * but mpol's nodelist may also contain commas.
2494 */
2495 options = strchr(options, ',');
2496 if (options == NULL)
2497 break;
2498 options++;
2499 if (!isdigit(*options)) {
2500 options[-1] = '\0';
2501 break;
2502 }
2503 }
2504 if (!*this_char)
2505 continue;
2506 if ((value = strchr(this_char,'=')) != NULL) {
2507 *value++ = 0;
2508 } else {
2509 printk(KERN_ERR
2510 "tmpfs: No value for mount option '%s'\n",
2511 this_char);
2512 return 1;
2513 }
2514
2515 if (!strcmp(this_char,"size")) {
2516 unsigned long long size;
2517 size = memparse(value,&rest);
2518 if (*rest == '%') {
2519 size <<= PAGE_SHIFT;
2520 size *= totalram_pages;
2521 do_div(size, 100);
2522 rest++;
2523 }
2524 if (*rest)
2525 goto bad_val;
2526 sbinfo->max_blocks =
2527 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2528 } else if (!strcmp(this_char,"nr_blocks")) {
2529 sbinfo->max_blocks = memparse(value, &rest);
2530 if (*rest)
2531 goto bad_val;
2532 } else if (!strcmp(this_char,"nr_inodes")) {
2533 sbinfo->max_inodes = memparse(value, &rest);
2534 if (*rest)
2535 goto bad_val;
2536 } else if (!strcmp(this_char,"mode")) {
2537 if (remount)
2538 continue;
2539 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2540 if (*rest)
2541 goto bad_val;
2542 } else if (!strcmp(this_char,"uid")) {
2543 if (remount)
2544 continue;
2545 uid = simple_strtoul(value, &rest, 0);
2546 if (*rest)
2547 goto bad_val;
2548 sbinfo->uid = make_kuid(current_user_ns(), uid);
2549 if (!uid_valid(sbinfo->uid))
2550 goto bad_val;
2551 } else if (!strcmp(this_char,"gid")) {
2552 if (remount)
2553 continue;
2554 gid = simple_strtoul(value, &rest, 0);
2555 if (*rest)
2556 goto bad_val;
2557 sbinfo->gid = make_kgid(current_user_ns(), gid);
2558 if (!gid_valid(sbinfo->gid))
2559 goto bad_val;
2560 } else if (!strcmp(this_char,"mpol")) {
2561 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2562 goto bad_val;
2563 } else {
2564 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2565 this_char);
2566 return 1;
2567 }
2568 }
2569 return 0;
2570
2571 bad_val:
2572 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2573 value, this_char);
2574 return 1;
2575
2576 }
2577
2578 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2579 {
2580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2581 struct shmem_sb_info config = *sbinfo;
2582 unsigned long inodes;
2583 int error = -EINVAL;
2584
2585 if (shmem_parse_options(data, &config, true))
2586 return error;
2587
2588 spin_lock(&sbinfo->stat_lock);
2589 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2590 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2591 goto out;
2592 if (config.max_inodes < inodes)
2593 goto out;
2594 /*
2595 * Those tests disallow limited->unlimited while any are in use;
2596 * but we must separately disallow unlimited->limited, because
2597 * in that case we have no record of how much is already in use.
2598 */
2599 if (config.max_blocks && !sbinfo->max_blocks)
2600 goto out;
2601 if (config.max_inodes && !sbinfo->max_inodes)
2602 goto out;
2603
2604 error = 0;
2605 sbinfo->max_blocks = config.max_blocks;
2606 sbinfo->max_inodes = config.max_inodes;
2607 sbinfo->free_inodes = config.max_inodes - inodes;
2608
2609 mpol_put(sbinfo->mpol);
2610 sbinfo->mpol = config.mpol; /* transfers initial ref */
2611 out:
2612 spin_unlock(&sbinfo->stat_lock);
2613 return error;
2614 }
2615
2616 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2617 {
2618 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2619
2620 if (sbinfo->max_blocks != shmem_default_max_blocks())
2621 seq_printf(seq, ",size=%luk",
2622 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2623 if (sbinfo->max_inodes != shmem_default_max_inodes())
2624 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2625 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2626 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2627 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2628 seq_printf(seq, ",uid=%u",
2629 from_kuid_munged(&init_user_ns, sbinfo->uid));
2630 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2631 seq_printf(seq, ",gid=%u",
2632 from_kgid_munged(&init_user_ns, sbinfo->gid));
2633 shmem_show_mpol(seq, sbinfo->mpol);
2634 return 0;
2635 }
2636 #endif /* CONFIG_TMPFS */
2637
2638 static void shmem_put_super(struct super_block *sb)
2639 {
2640 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2641
2642 percpu_counter_destroy(&sbinfo->used_blocks);
2643 kfree(sbinfo);
2644 sb->s_fs_info = NULL;
2645 }
2646
2647 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2648 {
2649 struct inode *inode;
2650 struct shmem_sb_info *sbinfo;
2651 int err = -ENOMEM;
2652
2653 /* Round up to L1_CACHE_BYTES to resist false sharing */
2654 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2655 L1_CACHE_BYTES), GFP_KERNEL);
2656 if (!sbinfo)
2657 return -ENOMEM;
2658
2659 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2660 sbinfo->uid = current_fsuid();
2661 sbinfo->gid = current_fsgid();
2662 sb->s_fs_info = sbinfo;
2663
2664 #ifdef CONFIG_TMPFS
2665 /*
2666 * Per default we only allow half of the physical ram per
2667 * tmpfs instance, limiting inodes to one per page of lowmem;
2668 * but the internal instance is left unlimited.
2669 */
2670 if (!(sb->s_flags & MS_NOUSER)) {
2671 sbinfo->max_blocks = shmem_default_max_blocks();
2672 sbinfo->max_inodes = shmem_default_max_inodes();
2673 if (shmem_parse_options(data, sbinfo, false)) {
2674 err = -EINVAL;
2675 goto failed;
2676 }
2677 }
2678 sb->s_export_op = &shmem_export_ops;
2679 sb->s_flags |= MS_NOSEC;
2680 #else
2681 sb->s_flags |= MS_NOUSER;
2682 #endif
2683
2684 spin_lock_init(&sbinfo->stat_lock);
2685 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2686 goto failed;
2687 sbinfo->free_inodes = sbinfo->max_inodes;
2688
2689 sb->s_maxbytes = MAX_LFS_FILESIZE;
2690 sb->s_blocksize = PAGE_CACHE_SIZE;
2691 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2692 sb->s_magic = TMPFS_MAGIC;
2693 sb->s_op = &shmem_ops;
2694 sb->s_time_gran = 1;
2695 #ifdef CONFIG_TMPFS_XATTR
2696 sb->s_xattr = shmem_xattr_handlers;
2697 #endif
2698 #ifdef CONFIG_TMPFS_POSIX_ACL
2699 sb->s_flags |= MS_POSIXACL;
2700 #endif
2701
2702 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2703 if (!inode)
2704 goto failed;
2705 inode->i_uid = sbinfo->uid;
2706 inode->i_gid = sbinfo->gid;
2707 sb->s_root = d_make_root(inode);
2708 if (!sb->s_root)
2709 goto failed;
2710 return 0;
2711
2712 failed:
2713 shmem_put_super(sb);
2714 return err;
2715 }
2716
2717 static struct kmem_cache *shmem_inode_cachep;
2718
2719 static struct inode *shmem_alloc_inode(struct super_block *sb)
2720 {
2721 struct shmem_inode_info *info;
2722 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2723 if (!info)
2724 return NULL;
2725 return &info->vfs_inode;
2726 }
2727
2728 static void shmem_destroy_callback(struct rcu_head *head)
2729 {
2730 struct inode *inode = container_of(head, struct inode, i_rcu);
2731 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2732 }
2733
2734 static void shmem_destroy_inode(struct inode *inode)
2735 {
2736 if (S_ISREG(inode->i_mode))
2737 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2738 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2739 }
2740
2741 static void shmem_init_inode(void *foo)
2742 {
2743 struct shmem_inode_info *info = foo;
2744 inode_init_once(&info->vfs_inode);
2745 }
2746
2747 static int shmem_init_inodecache(void)
2748 {
2749 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2750 sizeof(struct shmem_inode_info),
2751 0, SLAB_PANIC, shmem_init_inode);
2752 return 0;
2753 }
2754
2755 static void shmem_destroy_inodecache(void)
2756 {
2757 kmem_cache_destroy(shmem_inode_cachep);
2758 }
2759
2760 static const struct address_space_operations shmem_aops = {
2761 .writepage = shmem_writepage,
2762 .set_page_dirty = __set_page_dirty_no_writeback,
2763 #ifdef CONFIG_TMPFS
2764 .write_begin = shmem_write_begin,
2765 .write_end = shmem_write_end,
2766 #endif
2767 .migratepage = migrate_page,
2768 .error_remove_page = generic_error_remove_page,
2769 };
2770
2771 static const struct file_operations shmem_file_operations = {
2772 .mmap = shmem_mmap,
2773 #ifdef CONFIG_TMPFS
2774 .llseek = shmem_file_llseek,
2775 .read = do_sync_read,
2776 .write = do_sync_write,
2777 .aio_read = shmem_file_aio_read,
2778 .aio_write = generic_file_aio_write,
2779 .fsync = noop_fsync,
2780 .splice_read = shmem_file_splice_read,
2781 .splice_write = generic_file_splice_write,
2782 .fallocate = shmem_fallocate,
2783 #endif
2784 };
2785
2786 static const struct inode_operations shmem_inode_operations = {
2787 .setattr = shmem_setattr,
2788 #ifdef CONFIG_TMPFS_XATTR
2789 .setxattr = shmem_setxattr,
2790 .getxattr = shmem_getxattr,
2791 .listxattr = shmem_listxattr,
2792 .removexattr = shmem_removexattr,
2793 #endif
2794 };
2795
2796 static const struct inode_operations shmem_dir_inode_operations = {
2797 #ifdef CONFIG_TMPFS
2798 .create = shmem_create,
2799 .lookup = simple_lookup,
2800 .link = shmem_link,
2801 .unlink = shmem_unlink,
2802 .symlink = shmem_symlink,
2803 .mkdir = shmem_mkdir,
2804 .rmdir = shmem_rmdir,
2805 .mknod = shmem_mknod,
2806 .rename = shmem_rename,
2807 #endif
2808 #ifdef CONFIG_TMPFS_XATTR
2809 .setxattr = shmem_setxattr,
2810 .getxattr = shmem_getxattr,
2811 .listxattr = shmem_listxattr,
2812 .removexattr = shmem_removexattr,
2813 #endif
2814 #ifdef CONFIG_TMPFS_POSIX_ACL
2815 .setattr = shmem_setattr,
2816 #endif
2817 };
2818
2819 static const struct inode_operations shmem_special_inode_operations = {
2820 #ifdef CONFIG_TMPFS_XATTR
2821 .setxattr = shmem_setxattr,
2822 .getxattr = shmem_getxattr,
2823 .listxattr = shmem_listxattr,
2824 .removexattr = shmem_removexattr,
2825 #endif
2826 #ifdef CONFIG_TMPFS_POSIX_ACL
2827 .setattr = shmem_setattr,
2828 #endif
2829 };
2830
2831 static const struct super_operations shmem_ops = {
2832 .alloc_inode = shmem_alloc_inode,
2833 .destroy_inode = shmem_destroy_inode,
2834 #ifdef CONFIG_TMPFS
2835 .statfs = shmem_statfs,
2836 .remount_fs = shmem_remount_fs,
2837 .show_options = shmem_show_options,
2838 #endif
2839 .evict_inode = shmem_evict_inode,
2840 .drop_inode = generic_delete_inode,
2841 .put_super = shmem_put_super,
2842 };
2843
2844 static const struct vm_operations_struct shmem_vm_ops = {
2845 .fault = shmem_fault,
2846 #ifdef CONFIG_NUMA
2847 .set_policy = shmem_set_policy,
2848 .get_policy = shmem_get_policy,
2849 #endif
2850 };
2851
2852 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2853 int flags, const char *dev_name, void *data)
2854 {
2855 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2856 }
2857
2858 static struct file_system_type shmem_fs_type = {
2859 .owner = THIS_MODULE,
2860 .name = "tmpfs",
2861 .mount = shmem_mount,
2862 .kill_sb = kill_litter_super,
2863 };
2864
2865 int __init shmem_init(void)
2866 {
2867 int error;
2868
2869 error = bdi_init(&shmem_backing_dev_info);
2870 if (error)
2871 goto out4;
2872
2873 error = shmem_init_inodecache();
2874 if (error)
2875 goto out3;
2876
2877 error = register_filesystem(&shmem_fs_type);
2878 if (error) {
2879 printk(KERN_ERR "Could not register tmpfs\n");
2880 goto out2;
2881 }
2882
2883 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2884 shmem_fs_type.name, NULL);
2885 if (IS_ERR(shm_mnt)) {
2886 error = PTR_ERR(shm_mnt);
2887 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2888 goto out1;
2889 }
2890 return 0;
2891
2892 out1:
2893 unregister_filesystem(&shmem_fs_type);
2894 out2:
2895 shmem_destroy_inodecache();
2896 out3:
2897 bdi_destroy(&shmem_backing_dev_info);
2898 out4:
2899 shm_mnt = ERR_PTR(error);
2900 return error;
2901 }
2902
2903 #else /* !CONFIG_SHMEM */
2904
2905 /*
2906 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2907 *
2908 * This is intended for small system where the benefits of the full
2909 * shmem code (swap-backed and resource-limited) are outweighed by
2910 * their complexity. On systems without swap this code should be
2911 * effectively equivalent, but much lighter weight.
2912 */
2913
2914 #include <linux/ramfs.h>
2915
2916 static struct file_system_type shmem_fs_type = {
2917 .name = "tmpfs",
2918 .mount = ramfs_mount,
2919 .kill_sb = kill_litter_super,
2920 };
2921
2922 int __init shmem_init(void)
2923 {
2924 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2925
2926 shm_mnt = kern_mount(&shmem_fs_type);
2927 BUG_ON(IS_ERR(shm_mnt));
2928
2929 return 0;
2930 }
2931
2932 int shmem_unuse(swp_entry_t swap, struct page *page)
2933 {
2934 return 0;
2935 }
2936
2937 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2938 {
2939 return 0;
2940 }
2941
2942 void shmem_unlock_mapping(struct address_space *mapping)
2943 {
2944 }
2945
2946 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2947 {
2948 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2949 }
2950 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2951
2952 #define shmem_vm_ops generic_file_vm_ops
2953 #define shmem_file_operations ramfs_file_operations
2954 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2955 #define shmem_acct_size(flags, size) 0
2956 #define shmem_unacct_size(flags, size) do {} while (0)
2957
2958 #endif /* CONFIG_SHMEM */
2959
2960 /* common code */
2961
2962 /**
2963 * shmem_file_setup - get an unlinked file living in tmpfs
2964 * @name: name for dentry (to be seen in /proc/<pid>/maps
2965 * @size: size to be set for the file
2966 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2967 */
2968 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2969 {
2970 int error;
2971 struct file *file;
2972 struct inode *inode;
2973 struct path path;
2974 struct dentry *root;
2975 struct qstr this;
2976
2977 if (IS_ERR(shm_mnt))
2978 return (void *)shm_mnt;
2979
2980 if (size < 0 || size > MAX_LFS_FILESIZE)
2981 return ERR_PTR(-EINVAL);
2982
2983 if (shmem_acct_size(flags, size))
2984 return ERR_PTR(-ENOMEM);
2985
2986 error = -ENOMEM;
2987 this.name = name;
2988 this.len = strlen(name);
2989 this.hash = 0; /* will go */
2990 root = shm_mnt->mnt_root;
2991 path.dentry = d_alloc(root, &this);
2992 if (!path.dentry)
2993 goto put_memory;
2994 path.mnt = mntget(shm_mnt);
2995
2996 error = -ENOSPC;
2997 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2998 if (!inode)
2999 goto put_dentry;
3000
3001 d_instantiate(path.dentry, inode);
3002 inode->i_size = size;
3003 clear_nlink(inode); /* It is unlinked */
3004 #ifndef CONFIG_MMU
3005 error = ramfs_nommu_expand_for_mapping(inode, size);
3006 if (error)
3007 goto put_dentry;
3008 #endif
3009
3010 error = -ENFILE;
3011 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3012 &shmem_file_operations);
3013 if (!file)
3014 goto put_dentry;
3015
3016 return file;
3017
3018 put_dentry:
3019 path_put(&path);
3020 put_memory:
3021 shmem_unacct_size(flags, size);
3022 return ERR_PTR(error);
3023 }
3024 EXPORT_SYMBOL_GPL(shmem_file_setup);
3025
3026 /**
3027 * shmem_zero_setup - setup a shared anonymous mapping
3028 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3029 */
3030 int shmem_zero_setup(struct vm_area_struct *vma)
3031 {
3032 struct file *file;
3033 loff_t size = vma->vm_end - vma->vm_start;
3034
3035 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3036 if (IS_ERR(file))
3037 return PTR_ERR(file);
3038
3039 if (vma->vm_file)
3040 fput(vma->vm_file);
3041 vma->vm_file = file;
3042 vma->vm_ops = &shmem_vm_ops;
3043 vma->vm_flags |= VM_CAN_NONLINEAR;
3044 return 0;
3045 }
3046
3047 /**
3048 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3049 * @mapping: the page's address_space
3050 * @index: the page index
3051 * @gfp: the page allocator flags to use if allocating
3052 *
3053 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3054 * with any new page allocations done using the specified allocation flags.
3055 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3056 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3057 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3058 *
3059 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3060 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3061 */
3062 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3063 pgoff_t index, gfp_t gfp)
3064 {
3065 #ifdef CONFIG_SHMEM
3066 struct inode *inode = mapping->host;
3067 struct page *page;
3068 int error;
3069
3070 BUG_ON(mapping->a_ops != &shmem_aops);
3071 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3072 if (error)
3073 page = ERR_PTR(error);
3074 else
3075 unlock_page(page);
3076 return page;
3077 #else
3078 /*
3079 * The tiny !SHMEM case uses ramfs without swap
3080 */
3081 return read_cache_page_gfp(mapping, index, gfp);
3082 #endif
3083 }
3084 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.094737 seconds and 5 git commands to generate.