Merge tag 'sound-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 /*
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
84 */
85 struct shmem_falloc {
86 pgoff_t start; /* start of range currently being fallocated */
87 pgoff_t next; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
90 };
91
92 /* Flag allocation requirements to shmem_getpage */
93 enum sgp_type {
94 SGP_READ, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE, /* don't exceed i_size, may allocate page */
96 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
97 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, int *fault_type)
121 {
122 return shmem_getpage_gfp(inode, index, pagep, sgp,
123 mapping_gfp_mask(inode->i_mapping), fault_type);
124 }
125
126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127 {
128 return sb->s_fs_info;
129 }
130
131 /*
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
136 */
137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
138 {
139 return (flags & VM_NORESERVE) ?
140 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141 }
142
143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144 {
145 if (!(flags & VM_NORESERVE))
146 vm_unacct_memory(VM_ACCT(size));
147 }
148
149 /*
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154 */
155 static inline int shmem_acct_block(unsigned long flags)
156 {
157 return (flags & VM_NORESERVE) ?
158 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159 }
160
161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162 {
163 if (flags & VM_NORESERVE)
164 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165 }
166
167 static const struct super_operations shmem_ops;
168 static const struct address_space_operations shmem_aops;
169 static const struct file_operations shmem_file_operations;
170 static const struct inode_operations shmem_inode_operations;
171 static const struct inode_operations shmem_dir_inode_operations;
172 static const struct inode_operations shmem_special_inode_operations;
173 static const struct vm_operations_struct shmem_vm_ops;
174
175 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
176 .ra_pages = 0, /* No readahead */
177 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178 };
179
180 static LIST_HEAD(shmem_swaplist);
181 static DEFINE_MUTEX(shmem_swaplist_mutex);
182
183 static int shmem_reserve_inode(struct super_block *sb)
184 {
185 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186 if (sbinfo->max_inodes) {
187 spin_lock(&sbinfo->stat_lock);
188 if (!sbinfo->free_inodes) {
189 spin_unlock(&sbinfo->stat_lock);
190 return -ENOSPC;
191 }
192 sbinfo->free_inodes--;
193 spin_unlock(&sbinfo->stat_lock);
194 }
195 return 0;
196 }
197
198 static void shmem_free_inode(struct super_block *sb)
199 {
200 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 if (sbinfo->max_inodes) {
202 spin_lock(&sbinfo->stat_lock);
203 sbinfo->free_inodes++;
204 spin_unlock(&sbinfo->stat_lock);
205 }
206 }
207
208 /**
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
211 *
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
214 *
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 *
218 * It has to be called with the spinlock held.
219 */
220 static void shmem_recalc_inode(struct inode *inode)
221 {
222 struct shmem_inode_info *info = SHMEM_I(inode);
223 long freed;
224
225 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226 if (freed > 0) {
227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 if (sbinfo->max_blocks)
229 percpu_counter_add(&sbinfo->used_blocks, -freed);
230 info->alloced -= freed;
231 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232 shmem_unacct_blocks(info->flags, freed);
233 }
234 }
235
236 /*
237 * Replace item expected in radix tree by a new item, while holding tree lock.
238 */
239 static int shmem_radix_tree_replace(struct address_space *mapping,
240 pgoff_t index, void *expected, void *replacement)
241 {
242 void **pslot;
243 void *item = NULL;
244
245 VM_BUG_ON(!expected);
246 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247 if (pslot)
248 item = radix_tree_deref_slot_protected(pslot,
249 &mapping->tree_lock);
250 if (item != expected)
251 return -ENOENT;
252 if (replacement)
253 radix_tree_replace_slot(pslot, replacement);
254 else
255 radix_tree_delete(&mapping->page_tree, index);
256 return 0;
257 }
258
259 /*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268 {
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280 static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283 {
284 int error;
285
286 VM_BUG_ON(!PageLocked(page));
287 VM_BUG_ON(!PageSwapBacked(page));
288
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
294 if (!expected)
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
299 if (!error) {
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
308 }
309 return error;
310 }
311
312 /*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329 }
330
331 /*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 pgoff_t start, unsigned int nr_pages,
336 struct page **pages, pgoff_t *indices)
337 {
338 unsigned int i;
339 unsigned int ret;
340 unsigned int nr_found;
341
342 rcu_read_lock();
343 restart:
344 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345 (void ***)pages, indices, start, nr_pages);
346 ret = 0;
347 for (i = 0; i < nr_found; i++) {
348 struct page *page;
349 repeat:
350 page = radix_tree_deref_slot((void **)pages[i]);
351 if (unlikely(!page))
352 continue;
353 if (radix_tree_exception(page)) {
354 if (radix_tree_deref_retry(page))
355 goto restart;
356 /*
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
360 */
361 goto export;
362 }
363 if (!page_cache_get_speculative(page))
364 goto repeat;
365
366 /* Has the page moved? */
367 if (unlikely(page != *((void **)pages[i]))) {
368 page_cache_release(page);
369 goto repeat;
370 }
371 export:
372 indices[ret] = indices[i];
373 pages[ret] = page;
374 ret++;
375 }
376 if (unlikely(!ret && nr_found))
377 goto restart;
378 rcu_read_unlock();
379 return ret;
380 }
381
382 /*
383 * Remove swap entry from radix tree, free the swap and its page cache.
384 */
385 static int shmem_free_swap(struct address_space *mapping,
386 pgoff_t index, void *radswap)
387 {
388 int error;
389
390 spin_lock_irq(&mapping->tree_lock);
391 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392 spin_unlock_irq(&mapping->tree_lock);
393 if (!error)
394 free_swap_and_cache(radix_to_swp_entry(radswap));
395 return error;
396 }
397
398 /*
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 */
401 static void shmem_deswap_pagevec(struct pagevec *pvec)
402 {
403 int i, j;
404
405 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406 struct page *page = pvec->pages[i];
407 if (!radix_tree_exceptional_entry(page))
408 pvec->pages[j++] = page;
409 }
410 pvec->nr = j;
411 }
412
413 /*
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 */
416 void shmem_unlock_mapping(struct address_space *mapping)
417 {
418 struct pagevec pvec;
419 pgoff_t indices[PAGEVEC_SIZE];
420 pgoff_t index = 0;
421
422 pagevec_init(&pvec, 0);
423 /*
424 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425 */
426 while (!mapping_unevictable(mapping)) {
427 /*
428 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430 */
431 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432 PAGEVEC_SIZE, pvec.pages, indices);
433 if (!pvec.nr)
434 break;
435 index = indices[pvec.nr - 1] + 1;
436 shmem_deswap_pagevec(&pvec);
437 check_move_unevictable_pages(pvec.pages, pvec.nr);
438 pagevec_release(&pvec);
439 cond_resched();
440 }
441 }
442
443 /*
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446 */
447 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 bool unfalloc)
449 {
450 struct address_space *mapping = inode->i_mapping;
451 struct shmem_inode_info *info = SHMEM_I(inode);
452 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456 struct pagevec pvec;
457 pgoff_t indices[PAGEVEC_SIZE];
458 long nr_swaps_freed = 0;
459 pgoff_t index;
460 int i;
461
462 if (lend == -1)
463 end = -1; /* unsigned, so actually very big */
464
465 pagevec_init(&pvec, 0);
466 index = start;
467 while (index < end) {
468 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469 min(end - index, (pgoff_t)PAGEVEC_SIZE),
470 pvec.pages, indices);
471 if (!pvec.nr)
472 break;
473 mem_cgroup_uncharge_start();
474 for (i = 0; i < pagevec_count(&pvec); i++) {
475 struct page *page = pvec.pages[i];
476
477 index = indices[i];
478 if (index >= end)
479 break;
480
481 if (radix_tree_exceptional_entry(page)) {
482 if (unfalloc)
483 continue;
484 nr_swaps_freed += !shmem_free_swap(mapping,
485 index, page);
486 continue;
487 }
488
489 if (!trylock_page(page))
490 continue;
491 if (!unfalloc || !PageUptodate(page)) {
492 if (page->mapping == mapping) {
493 VM_BUG_ON(PageWriteback(page));
494 truncate_inode_page(mapping, page);
495 }
496 }
497 unlock_page(page);
498 }
499 shmem_deswap_pagevec(&pvec);
500 pagevec_release(&pvec);
501 mem_cgroup_uncharge_end();
502 cond_resched();
503 index++;
504 }
505
506 if (partial_start) {
507 struct page *page = NULL;
508 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509 if (page) {
510 unsigned int top = PAGE_CACHE_SIZE;
511 if (start > end) {
512 top = partial_end;
513 partial_end = 0;
514 }
515 zero_user_segment(page, partial_start, top);
516 set_page_dirty(page);
517 unlock_page(page);
518 page_cache_release(page);
519 }
520 }
521 if (partial_end) {
522 struct page *page = NULL;
523 shmem_getpage(inode, end, &page, SGP_READ, NULL);
524 if (page) {
525 zero_user_segment(page, 0, partial_end);
526 set_page_dirty(page);
527 unlock_page(page);
528 page_cache_release(page);
529 }
530 }
531 if (start >= end)
532 return;
533
534 index = start;
535 for ( ; ; ) {
536 cond_resched();
537 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538 min(end - index, (pgoff_t)PAGEVEC_SIZE),
539 pvec.pages, indices);
540 if (!pvec.nr) {
541 if (index == start || unfalloc)
542 break;
543 index = start;
544 continue;
545 }
546 if ((index == start || unfalloc) && indices[0] >= end) {
547 shmem_deswap_pagevec(&pvec);
548 pagevec_release(&pvec);
549 break;
550 }
551 mem_cgroup_uncharge_start();
552 for (i = 0; i < pagevec_count(&pvec); i++) {
553 struct page *page = pvec.pages[i];
554
555 index = indices[i];
556 if (index >= end)
557 break;
558
559 if (radix_tree_exceptional_entry(page)) {
560 if (unfalloc)
561 continue;
562 nr_swaps_freed += !shmem_free_swap(mapping,
563 index, page);
564 continue;
565 }
566
567 lock_page(page);
568 if (!unfalloc || !PageUptodate(page)) {
569 if (page->mapping == mapping) {
570 VM_BUG_ON(PageWriteback(page));
571 truncate_inode_page(mapping, page);
572 }
573 }
574 unlock_page(page);
575 }
576 shmem_deswap_pagevec(&pvec);
577 pagevec_release(&pvec);
578 mem_cgroup_uncharge_end();
579 index++;
580 }
581
582 spin_lock(&info->lock);
583 info->swapped -= nr_swaps_freed;
584 shmem_recalc_inode(inode);
585 spin_unlock(&info->lock);
586 }
587
588 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589 {
590 shmem_undo_range(inode, lstart, lend, false);
591 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592 }
593 EXPORT_SYMBOL_GPL(shmem_truncate_range);
594
595 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596 {
597 struct inode *inode = dentry->d_inode;
598 int error;
599
600 error = inode_change_ok(inode, attr);
601 if (error)
602 return error;
603
604 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605 loff_t oldsize = inode->i_size;
606 loff_t newsize = attr->ia_size;
607
608 if (newsize != oldsize) {
609 i_size_write(inode, newsize);
610 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611 }
612 if (newsize < oldsize) {
613 loff_t holebegin = round_up(newsize, PAGE_SIZE);
614 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615 shmem_truncate_range(inode, newsize, (loff_t)-1);
616 /* unmap again to remove racily COWed private pages */
617 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618 }
619 }
620
621 setattr_copy(inode, attr);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623 if (attr->ia_valid & ATTR_MODE)
624 error = generic_acl_chmod(inode);
625 #endif
626 return error;
627 }
628
629 static void shmem_evict_inode(struct inode *inode)
630 {
631 struct shmem_inode_info *info = SHMEM_I(inode);
632
633 if (inode->i_mapping->a_ops == &shmem_aops) {
634 shmem_unacct_size(info->flags, inode->i_size);
635 inode->i_size = 0;
636 shmem_truncate_range(inode, 0, (loff_t)-1);
637 if (!list_empty(&info->swaplist)) {
638 mutex_lock(&shmem_swaplist_mutex);
639 list_del_init(&info->swaplist);
640 mutex_unlock(&shmem_swaplist_mutex);
641 }
642 } else
643 kfree(info->symlink);
644
645 simple_xattrs_free(&info->xattrs);
646 WARN_ON(inode->i_blocks);
647 shmem_free_inode(inode->i_sb);
648 clear_inode(inode);
649 }
650
651 /*
652 * If swap found in inode, free it and move page from swapcache to filecache.
653 */
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655 swp_entry_t swap, struct page **pagep)
656 {
657 struct address_space *mapping = info->vfs_inode.i_mapping;
658 void *radswap;
659 pgoff_t index;
660 gfp_t gfp;
661 int error = 0;
662
663 radswap = swp_to_radix_entry(swap);
664 index = radix_tree_locate_item(&mapping->page_tree, radswap);
665 if (index == -1)
666 return 0;
667
668 /*
669 * Move _head_ to start search for next from here.
670 * But be careful: shmem_evict_inode checks list_empty without taking
671 * mutex, and there's an instant in list_move_tail when info->swaplist
672 * would appear empty, if it were the only one on shmem_swaplist.
673 */
674 if (shmem_swaplist.next != &info->swaplist)
675 list_move_tail(&shmem_swaplist, &info->swaplist);
676
677 gfp = mapping_gfp_mask(mapping);
678 if (shmem_should_replace_page(*pagep, gfp)) {
679 mutex_unlock(&shmem_swaplist_mutex);
680 error = shmem_replace_page(pagep, gfp, info, index);
681 mutex_lock(&shmem_swaplist_mutex);
682 /*
683 * We needed to drop mutex to make that restrictive page
684 * allocation, but the inode might have been freed while we
685 * dropped it: although a racing shmem_evict_inode() cannot
686 * complete without emptying the radix_tree, our page lock
687 * on this swapcache page is not enough to prevent that -
688 * free_swap_and_cache() of our swap entry will only
689 * trylock_page(), removing swap from radix_tree whatever.
690 *
691 * We must not proceed to shmem_add_to_page_cache() if the
692 * inode has been freed, but of course we cannot rely on
693 * inode or mapping or info to check that. However, we can
694 * safely check if our swap entry is still in use (and here
695 * it can't have got reused for another page): if it's still
696 * in use, then the inode cannot have been freed yet, and we
697 * can safely proceed (if it's no longer in use, that tells
698 * nothing about the inode, but we don't need to unuse swap).
699 */
700 if (!page_swapcount(*pagep))
701 error = -ENOENT;
702 }
703
704 /*
705 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 * beneath us (pagelock doesn't help until the page is in pagecache).
708 */
709 if (!error)
710 error = shmem_add_to_page_cache(*pagep, mapping, index,
711 GFP_NOWAIT, radswap);
712 if (error != -ENOMEM) {
713 /*
714 * Truncation and eviction use free_swap_and_cache(), which
715 * only does trylock page: if we raced, best clean up here.
716 */
717 delete_from_swap_cache(*pagep);
718 set_page_dirty(*pagep);
719 if (!error) {
720 spin_lock(&info->lock);
721 info->swapped--;
722 spin_unlock(&info->lock);
723 swap_free(swap);
724 }
725 error = 1; /* not an error, but entry was found */
726 }
727 return error;
728 }
729
730 /*
731 * Search through swapped inodes to find and replace swap by page.
732 */
733 int shmem_unuse(swp_entry_t swap, struct page *page)
734 {
735 struct list_head *this, *next;
736 struct shmem_inode_info *info;
737 int found = 0;
738 int error = 0;
739
740 /*
741 * There's a faint possibility that swap page was replaced before
742 * caller locked it: caller will come back later with the right page.
743 */
744 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745 goto out;
746
747 /*
748 * Charge page using GFP_KERNEL while we can wait, before taking
749 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 * Charged back to the user (not to caller) when swap account is used.
751 */
752 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753 if (error)
754 goto out;
755 /* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757 mutex_lock(&shmem_swaplist_mutex);
758 list_for_each_safe(this, next, &shmem_swaplist) {
759 info = list_entry(this, struct shmem_inode_info, swaplist);
760 if (info->swapped)
761 found = shmem_unuse_inode(info, swap, &page);
762 else
763 list_del_init(&info->swaplist);
764 cond_resched();
765 if (found)
766 break;
767 }
768 mutex_unlock(&shmem_swaplist_mutex);
769
770 if (found < 0)
771 error = found;
772 out:
773 unlock_page(page);
774 page_cache_release(page);
775 return error;
776 }
777
778 /*
779 * Move the page from the page cache to the swap cache.
780 */
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782 {
783 struct shmem_inode_info *info;
784 struct address_space *mapping;
785 struct inode *inode;
786 swp_entry_t swap;
787 pgoff_t index;
788
789 BUG_ON(!PageLocked(page));
790 mapping = page->mapping;
791 index = page->index;
792 inode = mapping->host;
793 info = SHMEM_I(inode);
794 if (info->flags & VM_LOCKED)
795 goto redirty;
796 if (!total_swap_pages)
797 goto redirty;
798
799 /*
800 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 * sync from ever calling shmem_writepage; but a stacking filesystem
802 * might use ->writepage of its underlying filesystem, in which case
803 * tmpfs should write out to swap only in response to memory pressure,
804 * and not for the writeback threads or sync.
805 */
806 if (!wbc->for_reclaim) {
807 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
808 goto redirty;
809 }
810
811 /*
812 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 * value into swapfile.c, the only way we can correctly account for a
814 * fallocated page arriving here is now to initialize it and write it.
815 *
816 * That's okay for a page already fallocated earlier, but if we have
817 * not yet completed the fallocation, then (a) we want to keep track
818 * of this page in case we have to undo it, and (b) it may not be a
819 * good idea to continue anyway, once we're pushing into swap. So
820 * reactivate the page, and let shmem_fallocate() quit when too many.
821 */
822 if (!PageUptodate(page)) {
823 if (inode->i_private) {
824 struct shmem_falloc *shmem_falloc;
825 spin_lock(&inode->i_lock);
826 shmem_falloc = inode->i_private;
827 if (shmem_falloc &&
828 index >= shmem_falloc->start &&
829 index < shmem_falloc->next)
830 shmem_falloc->nr_unswapped++;
831 else
832 shmem_falloc = NULL;
833 spin_unlock(&inode->i_lock);
834 if (shmem_falloc)
835 goto redirty;
836 }
837 clear_highpage(page);
838 flush_dcache_page(page);
839 SetPageUptodate(page);
840 }
841
842 swap = get_swap_page();
843 if (!swap.val)
844 goto redirty;
845
846 /*
847 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848 * if it's not already there. Do it now before the page is
849 * moved to swap cache, when its pagelock no longer protects
850 * the inode from eviction. But don't unlock the mutex until
851 * we've incremented swapped, because shmem_unuse_inode() will
852 * prune a !swapped inode from the swaplist under this mutex.
853 */
854 mutex_lock(&shmem_swaplist_mutex);
855 if (list_empty(&info->swaplist))
856 list_add_tail(&info->swaplist, &shmem_swaplist);
857
858 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859 swap_shmem_alloc(swap);
860 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861
862 spin_lock(&info->lock);
863 info->swapped++;
864 shmem_recalc_inode(inode);
865 spin_unlock(&info->lock);
866
867 mutex_unlock(&shmem_swaplist_mutex);
868 BUG_ON(page_mapped(page));
869 swap_writepage(page, wbc);
870 return 0;
871 }
872
873 mutex_unlock(&shmem_swaplist_mutex);
874 swapcache_free(swap, NULL);
875 redirty:
876 set_page_dirty(page);
877 if (wbc->for_reclaim)
878 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
879 unlock_page(page);
880 return 0;
881 }
882
883 #ifdef CONFIG_NUMA
884 #ifdef CONFIG_TMPFS
885 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886 {
887 char buffer[64];
888
889 if (!mpol || mpol->mode == MPOL_DEFAULT)
890 return; /* show nothing */
891
892 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893
894 seq_printf(seq, ",mpol=%s", buffer);
895 }
896
897 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898 {
899 struct mempolicy *mpol = NULL;
900 if (sbinfo->mpol) {
901 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
902 mpol = sbinfo->mpol;
903 mpol_get(mpol);
904 spin_unlock(&sbinfo->stat_lock);
905 }
906 return mpol;
907 }
908 #endif /* CONFIG_TMPFS */
909
910 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911 struct shmem_inode_info *info, pgoff_t index)
912 {
913 struct vm_area_struct pvma;
914 struct page *page;
915
916 /* Create a pseudo vma that just contains the policy */
917 pvma.vm_start = 0;
918 /* Bias interleave by inode number to distribute better across nodes */
919 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
920 pvma.vm_ops = NULL;
921 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
922
923 page = swapin_readahead(swap, gfp, &pvma, 0);
924
925 /* Drop reference taken by mpol_shared_policy_lookup() */
926 mpol_cond_put(pvma.vm_policy);
927
928 return page;
929 }
930
931 static struct page *shmem_alloc_page(gfp_t gfp,
932 struct shmem_inode_info *info, pgoff_t index)
933 {
934 struct vm_area_struct pvma;
935 struct page *page;
936
937 /* Create a pseudo vma that just contains the policy */
938 pvma.vm_start = 0;
939 /* Bias interleave by inode number to distribute better across nodes */
940 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
941 pvma.vm_ops = NULL;
942 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
943
944 page = alloc_page_vma(gfp, &pvma, 0);
945
946 /* Drop reference taken by mpol_shared_policy_lookup() */
947 mpol_cond_put(pvma.vm_policy);
948
949 return page;
950 }
951 #else /* !CONFIG_NUMA */
952 #ifdef CONFIG_TMPFS
953 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
954 {
955 }
956 #endif /* CONFIG_TMPFS */
957
958 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
959 struct shmem_inode_info *info, pgoff_t index)
960 {
961 return swapin_readahead(swap, gfp, NULL, 0);
962 }
963
964 static inline struct page *shmem_alloc_page(gfp_t gfp,
965 struct shmem_inode_info *info, pgoff_t index)
966 {
967 return alloc_page(gfp);
968 }
969 #endif /* CONFIG_NUMA */
970
971 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
972 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
973 {
974 return NULL;
975 }
976 #endif
977
978 /*
979 * When a page is moved from swapcache to shmem filecache (either by the
980 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
981 * shmem_unuse_inode()), it may have been read in earlier from swap, in
982 * ignorance of the mapping it belongs to. If that mapping has special
983 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
984 * we may need to copy to a suitable page before moving to filecache.
985 *
986 * In a future release, this may well be extended to respect cpuset and
987 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
988 * but for now it is a simple matter of zone.
989 */
990 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
991 {
992 return page_zonenum(page) > gfp_zone(gfp);
993 }
994
995 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
996 struct shmem_inode_info *info, pgoff_t index)
997 {
998 struct page *oldpage, *newpage;
999 struct address_space *swap_mapping;
1000 pgoff_t swap_index;
1001 int error;
1002
1003 oldpage = *pagep;
1004 swap_index = page_private(oldpage);
1005 swap_mapping = page_mapping(oldpage);
1006
1007 /*
1008 * We have arrived here because our zones are constrained, so don't
1009 * limit chance of success by further cpuset and node constraints.
1010 */
1011 gfp &= ~GFP_CONSTRAINT_MASK;
1012 newpage = shmem_alloc_page(gfp, info, index);
1013 if (!newpage)
1014 return -ENOMEM;
1015
1016 page_cache_get(newpage);
1017 copy_highpage(newpage, oldpage);
1018 flush_dcache_page(newpage);
1019
1020 __set_page_locked(newpage);
1021 SetPageUptodate(newpage);
1022 SetPageSwapBacked(newpage);
1023 set_page_private(newpage, swap_index);
1024 SetPageSwapCache(newpage);
1025
1026 /*
1027 * Our caller will very soon move newpage out of swapcache, but it's
1028 * a nice clean interface for us to replace oldpage by newpage there.
1029 */
1030 spin_lock_irq(&swap_mapping->tree_lock);
1031 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1032 newpage);
1033 if (!error) {
1034 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1035 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1036 }
1037 spin_unlock_irq(&swap_mapping->tree_lock);
1038
1039 if (unlikely(error)) {
1040 /*
1041 * Is this possible? I think not, now that our callers check
1042 * both PageSwapCache and page_private after getting page lock;
1043 * but be defensive. Reverse old to newpage for clear and free.
1044 */
1045 oldpage = newpage;
1046 } else {
1047 mem_cgroup_replace_page_cache(oldpage, newpage);
1048 lru_cache_add_anon(newpage);
1049 *pagep = newpage;
1050 }
1051
1052 ClearPageSwapCache(oldpage);
1053 set_page_private(oldpage, 0);
1054
1055 unlock_page(oldpage);
1056 page_cache_release(oldpage);
1057 page_cache_release(oldpage);
1058 return error;
1059 }
1060
1061 /*
1062 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1063 *
1064 * If we allocate a new one we do not mark it dirty. That's up to the
1065 * vm. If we swap it in we mark it dirty since we also free the swap
1066 * entry since a page cannot live in both the swap and page cache
1067 */
1068 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1069 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1070 {
1071 struct address_space *mapping = inode->i_mapping;
1072 struct shmem_inode_info *info;
1073 struct shmem_sb_info *sbinfo;
1074 struct page *page;
1075 swp_entry_t swap;
1076 int error;
1077 int once = 0;
1078 int alloced = 0;
1079
1080 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1081 return -EFBIG;
1082 repeat:
1083 swap.val = 0;
1084 page = find_lock_page(mapping, index);
1085 if (radix_tree_exceptional_entry(page)) {
1086 swap = radix_to_swp_entry(page);
1087 page = NULL;
1088 }
1089
1090 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1091 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1092 error = -EINVAL;
1093 goto failed;
1094 }
1095
1096 /* fallocated page? */
1097 if (page && !PageUptodate(page)) {
1098 if (sgp != SGP_READ)
1099 goto clear;
1100 unlock_page(page);
1101 page_cache_release(page);
1102 page = NULL;
1103 }
1104 if (page || (sgp == SGP_READ && !swap.val)) {
1105 *pagep = page;
1106 return 0;
1107 }
1108
1109 /*
1110 * Fast cache lookup did not find it:
1111 * bring it back from swap or allocate.
1112 */
1113 info = SHMEM_I(inode);
1114 sbinfo = SHMEM_SB(inode->i_sb);
1115
1116 if (swap.val) {
1117 /* Look it up and read it in.. */
1118 page = lookup_swap_cache(swap);
1119 if (!page) {
1120 /* here we actually do the io */
1121 if (fault_type)
1122 *fault_type |= VM_FAULT_MAJOR;
1123 page = shmem_swapin(swap, gfp, info, index);
1124 if (!page) {
1125 error = -ENOMEM;
1126 goto failed;
1127 }
1128 }
1129
1130 /* We have to do this with page locked to prevent races */
1131 lock_page(page);
1132 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1133 !shmem_confirm_swap(mapping, index, swap)) {
1134 error = -EEXIST; /* try again */
1135 goto unlock;
1136 }
1137 if (!PageUptodate(page)) {
1138 error = -EIO;
1139 goto failed;
1140 }
1141 wait_on_page_writeback(page);
1142
1143 if (shmem_should_replace_page(page, gfp)) {
1144 error = shmem_replace_page(&page, gfp, info, index);
1145 if (error)
1146 goto failed;
1147 }
1148
1149 error = mem_cgroup_cache_charge(page, current->mm,
1150 gfp & GFP_RECLAIM_MASK);
1151 if (!error) {
1152 error = shmem_add_to_page_cache(page, mapping, index,
1153 gfp, swp_to_radix_entry(swap));
1154 /*
1155 * We already confirmed swap under page lock, and make
1156 * no memory allocation here, so usually no possibility
1157 * of error; but free_swap_and_cache() only trylocks a
1158 * page, so it is just possible that the entry has been
1159 * truncated or holepunched since swap was confirmed.
1160 * shmem_undo_range() will have done some of the
1161 * unaccounting, now delete_from_swap_cache() will do
1162 * the rest (including mem_cgroup_uncharge_swapcache).
1163 * Reset swap.val? No, leave it so "failed" goes back to
1164 * "repeat": reading a hole and writing should succeed.
1165 */
1166 if (error)
1167 delete_from_swap_cache(page);
1168 }
1169 if (error)
1170 goto failed;
1171
1172 spin_lock(&info->lock);
1173 info->swapped--;
1174 shmem_recalc_inode(inode);
1175 spin_unlock(&info->lock);
1176
1177 delete_from_swap_cache(page);
1178 set_page_dirty(page);
1179 swap_free(swap);
1180
1181 } else {
1182 if (shmem_acct_block(info->flags)) {
1183 error = -ENOSPC;
1184 goto failed;
1185 }
1186 if (sbinfo->max_blocks) {
1187 if (percpu_counter_compare(&sbinfo->used_blocks,
1188 sbinfo->max_blocks) >= 0) {
1189 error = -ENOSPC;
1190 goto unacct;
1191 }
1192 percpu_counter_inc(&sbinfo->used_blocks);
1193 }
1194
1195 page = shmem_alloc_page(gfp, info, index);
1196 if (!page) {
1197 error = -ENOMEM;
1198 goto decused;
1199 }
1200
1201 SetPageSwapBacked(page);
1202 __set_page_locked(page);
1203 error = mem_cgroup_cache_charge(page, current->mm,
1204 gfp & GFP_RECLAIM_MASK);
1205 if (error)
1206 goto decused;
1207 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1208 if (!error) {
1209 error = shmem_add_to_page_cache(page, mapping, index,
1210 gfp, NULL);
1211 radix_tree_preload_end();
1212 }
1213 if (error) {
1214 mem_cgroup_uncharge_cache_page(page);
1215 goto decused;
1216 }
1217 lru_cache_add_anon(page);
1218
1219 spin_lock(&info->lock);
1220 info->alloced++;
1221 inode->i_blocks += BLOCKS_PER_PAGE;
1222 shmem_recalc_inode(inode);
1223 spin_unlock(&info->lock);
1224 alloced = true;
1225
1226 /*
1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 */
1229 if (sgp == SGP_FALLOC)
1230 sgp = SGP_WRITE;
1231 clear:
1232 /*
1233 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 * it now, lest undo on failure cancel our earlier guarantee.
1236 */
1237 if (sgp != SGP_WRITE) {
1238 clear_highpage(page);
1239 flush_dcache_page(page);
1240 SetPageUptodate(page);
1241 }
1242 if (sgp == SGP_DIRTY)
1243 set_page_dirty(page);
1244 }
1245
1246 /* Perhaps the file has been truncated since we checked */
1247 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249 error = -EINVAL;
1250 if (alloced)
1251 goto trunc;
1252 else
1253 goto failed;
1254 }
1255 *pagep = page;
1256 return 0;
1257
1258 /*
1259 * Error recovery.
1260 */
1261 trunc:
1262 info = SHMEM_I(inode);
1263 ClearPageDirty(page);
1264 delete_from_page_cache(page);
1265 spin_lock(&info->lock);
1266 info->alloced--;
1267 inode->i_blocks -= BLOCKS_PER_PAGE;
1268 spin_unlock(&info->lock);
1269 decused:
1270 sbinfo = SHMEM_SB(inode->i_sb);
1271 if (sbinfo->max_blocks)
1272 percpu_counter_add(&sbinfo->used_blocks, -1);
1273 unacct:
1274 shmem_unacct_blocks(info->flags, 1);
1275 failed:
1276 if (swap.val && error != -EINVAL &&
1277 !shmem_confirm_swap(mapping, index, swap))
1278 error = -EEXIST;
1279 unlock:
1280 if (page) {
1281 unlock_page(page);
1282 page_cache_release(page);
1283 }
1284 if (error == -ENOSPC && !once++) {
1285 info = SHMEM_I(inode);
1286 spin_lock(&info->lock);
1287 shmem_recalc_inode(inode);
1288 spin_unlock(&info->lock);
1289 goto repeat;
1290 }
1291 if (error == -EEXIST) /* from above or from radix_tree_insert */
1292 goto repeat;
1293 return error;
1294 }
1295
1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1297 {
1298 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1299 int error;
1300 int ret = VM_FAULT_LOCKED;
1301
1302 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1303 if (error)
1304 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1305
1306 if (ret & VM_FAULT_MAJOR) {
1307 count_vm_event(PGMAJFAULT);
1308 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1309 }
1310 return ret;
1311 }
1312
1313 #ifdef CONFIG_NUMA
1314 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1315 {
1316 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1318 }
1319
1320 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1321 unsigned long addr)
1322 {
1323 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1324 pgoff_t index;
1325
1326 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1327 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1328 }
1329 #endif
1330
1331 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1332 {
1333 struct inode *inode = file->f_path.dentry->d_inode;
1334 struct shmem_inode_info *info = SHMEM_I(inode);
1335 int retval = -ENOMEM;
1336
1337 spin_lock(&info->lock);
1338 if (lock && !(info->flags & VM_LOCKED)) {
1339 if (!user_shm_lock(inode->i_size, user))
1340 goto out_nomem;
1341 info->flags |= VM_LOCKED;
1342 mapping_set_unevictable(file->f_mapping);
1343 }
1344 if (!lock && (info->flags & VM_LOCKED) && user) {
1345 user_shm_unlock(inode->i_size, user);
1346 info->flags &= ~VM_LOCKED;
1347 mapping_clear_unevictable(file->f_mapping);
1348 }
1349 retval = 0;
1350
1351 out_nomem:
1352 spin_unlock(&info->lock);
1353 return retval;
1354 }
1355
1356 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358 file_accessed(file);
1359 vma->vm_ops = &shmem_vm_ops;
1360 return 0;
1361 }
1362
1363 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1364 umode_t mode, dev_t dev, unsigned long flags)
1365 {
1366 struct inode *inode;
1367 struct shmem_inode_info *info;
1368 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1369
1370 if (shmem_reserve_inode(sb))
1371 return NULL;
1372
1373 inode = new_inode(sb);
1374 if (inode) {
1375 inode->i_ino = get_next_ino();
1376 inode_init_owner(inode, dir, mode);
1377 inode->i_blocks = 0;
1378 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1379 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1380 inode->i_generation = get_seconds();
1381 info = SHMEM_I(inode);
1382 memset(info, 0, (char *)inode - (char *)info);
1383 spin_lock_init(&info->lock);
1384 info->flags = flags & VM_NORESERVE;
1385 INIT_LIST_HEAD(&info->swaplist);
1386 simple_xattrs_init(&info->xattrs);
1387 cache_no_acl(inode);
1388
1389 switch (mode & S_IFMT) {
1390 default:
1391 inode->i_op = &shmem_special_inode_operations;
1392 init_special_inode(inode, mode, dev);
1393 break;
1394 case S_IFREG:
1395 inode->i_mapping->a_ops = &shmem_aops;
1396 inode->i_op = &shmem_inode_operations;
1397 inode->i_fop = &shmem_file_operations;
1398 mpol_shared_policy_init(&info->policy,
1399 shmem_get_sbmpol(sbinfo));
1400 break;
1401 case S_IFDIR:
1402 inc_nlink(inode);
1403 /* Some things misbehave if size == 0 on a directory */
1404 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1405 inode->i_op = &shmem_dir_inode_operations;
1406 inode->i_fop = &simple_dir_operations;
1407 break;
1408 case S_IFLNK:
1409 /*
1410 * Must not load anything in the rbtree,
1411 * mpol_free_shared_policy will not be called.
1412 */
1413 mpol_shared_policy_init(&info->policy, NULL);
1414 break;
1415 }
1416 } else
1417 shmem_free_inode(sb);
1418 return inode;
1419 }
1420
1421 #ifdef CONFIG_TMPFS
1422 static const struct inode_operations shmem_symlink_inode_operations;
1423 static const struct inode_operations shmem_short_symlink_operations;
1424
1425 #ifdef CONFIG_TMPFS_XATTR
1426 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1427 #else
1428 #define shmem_initxattrs NULL
1429 #endif
1430
1431 static int
1432 shmem_write_begin(struct file *file, struct address_space *mapping,
1433 loff_t pos, unsigned len, unsigned flags,
1434 struct page **pagep, void **fsdata)
1435 {
1436 struct inode *inode = mapping->host;
1437 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1438 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1439 }
1440
1441 static int
1442 shmem_write_end(struct file *file, struct address_space *mapping,
1443 loff_t pos, unsigned len, unsigned copied,
1444 struct page *page, void *fsdata)
1445 {
1446 struct inode *inode = mapping->host;
1447
1448 if (pos + copied > inode->i_size)
1449 i_size_write(inode, pos + copied);
1450
1451 if (!PageUptodate(page)) {
1452 if (copied < PAGE_CACHE_SIZE) {
1453 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1454 zero_user_segments(page, 0, from,
1455 from + copied, PAGE_CACHE_SIZE);
1456 }
1457 SetPageUptodate(page);
1458 }
1459 set_page_dirty(page);
1460 unlock_page(page);
1461 page_cache_release(page);
1462
1463 return copied;
1464 }
1465
1466 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1467 {
1468 struct inode *inode = filp->f_path.dentry->d_inode;
1469 struct address_space *mapping = inode->i_mapping;
1470 pgoff_t index;
1471 unsigned long offset;
1472 enum sgp_type sgp = SGP_READ;
1473
1474 /*
1475 * Might this read be for a stacking filesystem? Then when reading
1476 * holes of a sparse file, we actually need to allocate those pages,
1477 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1478 */
1479 if (segment_eq(get_fs(), KERNEL_DS))
1480 sgp = SGP_DIRTY;
1481
1482 index = *ppos >> PAGE_CACHE_SHIFT;
1483 offset = *ppos & ~PAGE_CACHE_MASK;
1484
1485 for (;;) {
1486 struct page *page = NULL;
1487 pgoff_t end_index;
1488 unsigned long nr, ret;
1489 loff_t i_size = i_size_read(inode);
1490
1491 end_index = i_size >> PAGE_CACHE_SHIFT;
1492 if (index > end_index)
1493 break;
1494 if (index == end_index) {
1495 nr = i_size & ~PAGE_CACHE_MASK;
1496 if (nr <= offset)
1497 break;
1498 }
1499
1500 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1501 if (desc->error) {
1502 if (desc->error == -EINVAL)
1503 desc->error = 0;
1504 break;
1505 }
1506 if (page)
1507 unlock_page(page);
1508
1509 /*
1510 * We must evaluate after, since reads (unlike writes)
1511 * are called without i_mutex protection against truncate
1512 */
1513 nr = PAGE_CACHE_SIZE;
1514 i_size = i_size_read(inode);
1515 end_index = i_size >> PAGE_CACHE_SHIFT;
1516 if (index == end_index) {
1517 nr = i_size & ~PAGE_CACHE_MASK;
1518 if (nr <= offset) {
1519 if (page)
1520 page_cache_release(page);
1521 break;
1522 }
1523 }
1524 nr -= offset;
1525
1526 if (page) {
1527 /*
1528 * If users can be writing to this page using arbitrary
1529 * virtual addresses, take care about potential aliasing
1530 * before reading the page on the kernel side.
1531 */
1532 if (mapping_writably_mapped(mapping))
1533 flush_dcache_page(page);
1534 /*
1535 * Mark the page accessed if we read the beginning.
1536 */
1537 if (!offset)
1538 mark_page_accessed(page);
1539 } else {
1540 page = ZERO_PAGE(0);
1541 page_cache_get(page);
1542 }
1543
1544 /*
1545 * Ok, we have the page, and it's up-to-date, so
1546 * now we can copy it to user space...
1547 *
1548 * The actor routine returns how many bytes were actually used..
1549 * NOTE! This may not be the same as how much of a user buffer
1550 * we filled up (we may be padding etc), so we can only update
1551 * "pos" here (the actor routine has to update the user buffer
1552 * pointers and the remaining count).
1553 */
1554 ret = actor(desc, page, offset, nr);
1555 offset += ret;
1556 index += offset >> PAGE_CACHE_SHIFT;
1557 offset &= ~PAGE_CACHE_MASK;
1558
1559 page_cache_release(page);
1560 if (ret != nr || !desc->count)
1561 break;
1562
1563 cond_resched();
1564 }
1565
1566 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1567 file_accessed(filp);
1568 }
1569
1570 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1571 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1572 {
1573 struct file *filp = iocb->ki_filp;
1574 ssize_t retval;
1575 unsigned long seg;
1576 size_t count;
1577 loff_t *ppos = &iocb->ki_pos;
1578
1579 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1580 if (retval)
1581 return retval;
1582
1583 for (seg = 0; seg < nr_segs; seg++) {
1584 read_descriptor_t desc;
1585
1586 desc.written = 0;
1587 desc.arg.buf = iov[seg].iov_base;
1588 desc.count = iov[seg].iov_len;
1589 if (desc.count == 0)
1590 continue;
1591 desc.error = 0;
1592 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1593 retval += desc.written;
1594 if (desc.error) {
1595 retval = retval ?: desc.error;
1596 break;
1597 }
1598 if (desc.count > 0)
1599 break;
1600 }
1601 return retval;
1602 }
1603
1604 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1605 struct pipe_inode_info *pipe, size_t len,
1606 unsigned int flags)
1607 {
1608 struct address_space *mapping = in->f_mapping;
1609 struct inode *inode = mapping->host;
1610 unsigned int loff, nr_pages, req_pages;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct page *page;
1614 pgoff_t index, end_index;
1615 loff_t isize, left;
1616 int error, page_nr;
1617 struct splice_pipe_desc spd = {
1618 .pages = pages,
1619 .partial = partial,
1620 .nr_pages_max = PIPE_DEF_BUFFERS,
1621 .flags = flags,
1622 .ops = &page_cache_pipe_buf_ops,
1623 .spd_release = spd_release_page,
1624 };
1625
1626 isize = i_size_read(inode);
1627 if (unlikely(*ppos >= isize))
1628 return 0;
1629
1630 left = isize - *ppos;
1631 if (unlikely(left < len))
1632 len = left;
1633
1634 if (splice_grow_spd(pipe, &spd))
1635 return -ENOMEM;
1636
1637 index = *ppos >> PAGE_CACHE_SHIFT;
1638 loff = *ppos & ~PAGE_CACHE_MASK;
1639 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1640 nr_pages = min(req_pages, pipe->buffers);
1641
1642 spd.nr_pages = find_get_pages_contig(mapping, index,
1643 nr_pages, spd.pages);
1644 index += spd.nr_pages;
1645 error = 0;
1646
1647 while (spd.nr_pages < nr_pages) {
1648 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1649 if (error)
1650 break;
1651 unlock_page(page);
1652 spd.pages[spd.nr_pages++] = page;
1653 index++;
1654 }
1655
1656 index = *ppos >> PAGE_CACHE_SHIFT;
1657 nr_pages = spd.nr_pages;
1658 spd.nr_pages = 0;
1659
1660 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1661 unsigned int this_len;
1662
1663 if (!len)
1664 break;
1665
1666 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1667 page = spd.pages[page_nr];
1668
1669 if (!PageUptodate(page) || page->mapping != mapping) {
1670 error = shmem_getpage(inode, index, &page,
1671 SGP_CACHE, NULL);
1672 if (error)
1673 break;
1674 unlock_page(page);
1675 page_cache_release(spd.pages[page_nr]);
1676 spd.pages[page_nr] = page;
1677 }
1678
1679 isize = i_size_read(inode);
1680 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1681 if (unlikely(!isize || index > end_index))
1682 break;
1683
1684 if (end_index == index) {
1685 unsigned int plen;
1686
1687 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1688 if (plen <= loff)
1689 break;
1690
1691 this_len = min(this_len, plen - loff);
1692 len = this_len;
1693 }
1694
1695 spd.partial[page_nr].offset = loff;
1696 spd.partial[page_nr].len = this_len;
1697 len -= this_len;
1698 loff = 0;
1699 spd.nr_pages++;
1700 index++;
1701 }
1702
1703 while (page_nr < nr_pages)
1704 page_cache_release(spd.pages[page_nr++]);
1705
1706 if (spd.nr_pages)
1707 error = splice_to_pipe(pipe, &spd);
1708
1709 splice_shrink_spd(&spd);
1710
1711 if (error > 0) {
1712 *ppos += error;
1713 file_accessed(in);
1714 }
1715 return error;
1716 }
1717
1718 /*
1719 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720 */
1721 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1722 pgoff_t index, pgoff_t end, int whence)
1723 {
1724 struct page *page;
1725 struct pagevec pvec;
1726 pgoff_t indices[PAGEVEC_SIZE];
1727 bool done = false;
1728 int i;
1729
1730 pagevec_init(&pvec, 0);
1731 pvec.nr = 1; /* start small: we may be there already */
1732 while (!done) {
1733 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1734 pvec.nr, pvec.pages, indices);
1735 if (!pvec.nr) {
1736 if (whence == SEEK_DATA)
1737 index = end;
1738 break;
1739 }
1740 for (i = 0; i < pvec.nr; i++, index++) {
1741 if (index < indices[i]) {
1742 if (whence == SEEK_HOLE) {
1743 done = true;
1744 break;
1745 }
1746 index = indices[i];
1747 }
1748 page = pvec.pages[i];
1749 if (page && !radix_tree_exceptional_entry(page)) {
1750 if (!PageUptodate(page))
1751 page = NULL;
1752 }
1753 if (index >= end ||
1754 (page && whence == SEEK_DATA) ||
1755 (!page && whence == SEEK_HOLE)) {
1756 done = true;
1757 break;
1758 }
1759 }
1760 shmem_deswap_pagevec(&pvec);
1761 pagevec_release(&pvec);
1762 pvec.nr = PAGEVEC_SIZE;
1763 cond_resched();
1764 }
1765 return index;
1766 }
1767
1768 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1769 {
1770 struct address_space *mapping = file->f_mapping;
1771 struct inode *inode = mapping->host;
1772 pgoff_t start, end;
1773 loff_t new_offset;
1774
1775 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1776 return generic_file_llseek_size(file, offset, whence,
1777 MAX_LFS_FILESIZE, i_size_read(inode));
1778 mutex_lock(&inode->i_mutex);
1779 /* We're holding i_mutex so we can access i_size directly */
1780
1781 if (offset < 0)
1782 offset = -EINVAL;
1783 else if (offset >= inode->i_size)
1784 offset = -ENXIO;
1785 else {
1786 start = offset >> PAGE_CACHE_SHIFT;
1787 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1788 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1789 new_offset <<= PAGE_CACHE_SHIFT;
1790 if (new_offset > offset) {
1791 if (new_offset < inode->i_size)
1792 offset = new_offset;
1793 else if (whence == SEEK_DATA)
1794 offset = -ENXIO;
1795 else
1796 offset = inode->i_size;
1797 }
1798 }
1799
1800 if (offset >= 0 && offset != file->f_pos) {
1801 file->f_pos = offset;
1802 file->f_version = 0;
1803 }
1804 mutex_unlock(&inode->i_mutex);
1805 return offset;
1806 }
1807
1808 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1809 loff_t len)
1810 {
1811 struct inode *inode = file->f_path.dentry->d_inode;
1812 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1813 struct shmem_falloc shmem_falloc;
1814 pgoff_t start, index, end;
1815 int error;
1816
1817 mutex_lock(&inode->i_mutex);
1818
1819 if (mode & FALLOC_FL_PUNCH_HOLE) {
1820 struct address_space *mapping = file->f_mapping;
1821 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1822 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1823
1824 if ((u64)unmap_end > (u64)unmap_start)
1825 unmap_mapping_range(mapping, unmap_start,
1826 1 + unmap_end - unmap_start, 0);
1827 shmem_truncate_range(inode, offset, offset + len - 1);
1828 /* No need to unmap again: hole-punching leaves COWed pages */
1829 error = 0;
1830 goto out;
1831 }
1832
1833 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1834 error = inode_newsize_ok(inode, offset + len);
1835 if (error)
1836 goto out;
1837
1838 start = offset >> PAGE_CACHE_SHIFT;
1839 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1840 /* Try to avoid a swapstorm if len is impossible to satisfy */
1841 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1842 error = -ENOSPC;
1843 goto out;
1844 }
1845
1846 shmem_falloc.start = start;
1847 shmem_falloc.next = start;
1848 shmem_falloc.nr_falloced = 0;
1849 shmem_falloc.nr_unswapped = 0;
1850 spin_lock(&inode->i_lock);
1851 inode->i_private = &shmem_falloc;
1852 spin_unlock(&inode->i_lock);
1853
1854 for (index = start; index < end; index++) {
1855 struct page *page;
1856
1857 /*
1858 * Good, the fallocate(2) manpage permits EINTR: we may have
1859 * been interrupted because we are using up too much memory.
1860 */
1861 if (signal_pending(current))
1862 error = -EINTR;
1863 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1864 error = -ENOMEM;
1865 else
1866 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1867 NULL);
1868 if (error) {
1869 /* Remove the !PageUptodate pages we added */
1870 shmem_undo_range(inode,
1871 (loff_t)start << PAGE_CACHE_SHIFT,
1872 (loff_t)index << PAGE_CACHE_SHIFT, true);
1873 goto undone;
1874 }
1875
1876 /*
1877 * Inform shmem_writepage() how far we have reached.
1878 * No need for lock or barrier: we have the page lock.
1879 */
1880 shmem_falloc.next++;
1881 if (!PageUptodate(page))
1882 shmem_falloc.nr_falloced++;
1883
1884 /*
1885 * If !PageUptodate, leave it that way so that freeable pages
1886 * can be recognized if we need to rollback on error later.
1887 * But set_page_dirty so that memory pressure will swap rather
1888 * than free the pages we are allocating (and SGP_CACHE pages
1889 * might still be clean: we now need to mark those dirty too).
1890 */
1891 set_page_dirty(page);
1892 unlock_page(page);
1893 page_cache_release(page);
1894 cond_resched();
1895 }
1896
1897 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1898 i_size_write(inode, offset + len);
1899 inode->i_ctime = CURRENT_TIME;
1900 undone:
1901 spin_lock(&inode->i_lock);
1902 inode->i_private = NULL;
1903 spin_unlock(&inode->i_lock);
1904 out:
1905 mutex_unlock(&inode->i_mutex);
1906 return error;
1907 }
1908
1909 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1910 {
1911 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1912
1913 buf->f_type = TMPFS_MAGIC;
1914 buf->f_bsize = PAGE_CACHE_SIZE;
1915 buf->f_namelen = NAME_MAX;
1916 if (sbinfo->max_blocks) {
1917 buf->f_blocks = sbinfo->max_blocks;
1918 buf->f_bavail =
1919 buf->f_bfree = sbinfo->max_blocks -
1920 percpu_counter_sum(&sbinfo->used_blocks);
1921 }
1922 if (sbinfo->max_inodes) {
1923 buf->f_files = sbinfo->max_inodes;
1924 buf->f_ffree = sbinfo->free_inodes;
1925 }
1926 /* else leave those fields 0 like simple_statfs */
1927 return 0;
1928 }
1929
1930 /*
1931 * File creation. Allocate an inode, and we're done..
1932 */
1933 static int
1934 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1935 {
1936 struct inode *inode;
1937 int error = -ENOSPC;
1938
1939 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1940 if (inode) {
1941 error = security_inode_init_security(inode, dir,
1942 &dentry->d_name,
1943 shmem_initxattrs, NULL);
1944 if (error) {
1945 if (error != -EOPNOTSUPP) {
1946 iput(inode);
1947 return error;
1948 }
1949 }
1950 #ifdef CONFIG_TMPFS_POSIX_ACL
1951 error = generic_acl_init(inode, dir);
1952 if (error) {
1953 iput(inode);
1954 return error;
1955 }
1956 #else
1957 error = 0;
1958 #endif
1959 dir->i_size += BOGO_DIRENT_SIZE;
1960 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1961 d_instantiate(dentry, inode);
1962 dget(dentry); /* Extra count - pin the dentry in core */
1963 }
1964 return error;
1965 }
1966
1967 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1968 {
1969 int error;
1970
1971 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1972 return error;
1973 inc_nlink(dir);
1974 return 0;
1975 }
1976
1977 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1978 bool excl)
1979 {
1980 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1981 }
1982
1983 /*
1984 * Link a file..
1985 */
1986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1987 {
1988 struct inode *inode = old_dentry->d_inode;
1989 int ret;
1990
1991 /*
1992 * No ordinary (disk based) filesystem counts links as inodes;
1993 * but each new link needs a new dentry, pinning lowmem, and
1994 * tmpfs dentries cannot be pruned until they are unlinked.
1995 */
1996 ret = shmem_reserve_inode(inode->i_sb);
1997 if (ret)
1998 goto out;
1999
2000 dir->i_size += BOGO_DIRENT_SIZE;
2001 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2002 inc_nlink(inode);
2003 ihold(inode); /* New dentry reference */
2004 dget(dentry); /* Extra pinning count for the created dentry */
2005 d_instantiate(dentry, inode);
2006 out:
2007 return ret;
2008 }
2009
2010 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2011 {
2012 struct inode *inode = dentry->d_inode;
2013
2014 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2015 shmem_free_inode(inode->i_sb);
2016
2017 dir->i_size -= BOGO_DIRENT_SIZE;
2018 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019 drop_nlink(inode);
2020 dput(dentry); /* Undo the count from "create" - this does all the work */
2021 return 0;
2022 }
2023
2024 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2025 {
2026 if (!simple_empty(dentry))
2027 return -ENOTEMPTY;
2028
2029 drop_nlink(dentry->d_inode);
2030 drop_nlink(dir);
2031 return shmem_unlink(dir, dentry);
2032 }
2033
2034 /*
2035 * The VFS layer already does all the dentry stuff for rename,
2036 * we just have to decrement the usage count for the target if
2037 * it exists so that the VFS layer correctly free's it when it
2038 * gets overwritten.
2039 */
2040 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2041 {
2042 struct inode *inode = old_dentry->d_inode;
2043 int they_are_dirs = S_ISDIR(inode->i_mode);
2044
2045 if (!simple_empty(new_dentry))
2046 return -ENOTEMPTY;
2047
2048 if (new_dentry->d_inode) {
2049 (void) shmem_unlink(new_dir, new_dentry);
2050 if (they_are_dirs)
2051 drop_nlink(old_dir);
2052 } else if (they_are_dirs) {
2053 drop_nlink(old_dir);
2054 inc_nlink(new_dir);
2055 }
2056
2057 old_dir->i_size -= BOGO_DIRENT_SIZE;
2058 new_dir->i_size += BOGO_DIRENT_SIZE;
2059 old_dir->i_ctime = old_dir->i_mtime =
2060 new_dir->i_ctime = new_dir->i_mtime =
2061 inode->i_ctime = CURRENT_TIME;
2062 return 0;
2063 }
2064
2065 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2066 {
2067 int error;
2068 int len;
2069 struct inode *inode;
2070 struct page *page;
2071 char *kaddr;
2072 struct shmem_inode_info *info;
2073
2074 len = strlen(symname) + 1;
2075 if (len > PAGE_CACHE_SIZE)
2076 return -ENAMETOOLONG;
2077
2078 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2079 if (!inode)
2080 return -ENOSPC;
2081
2082 error = security_inode_init_security(inode, dir, &dentry->d_name,
2083 shmem_initxattrs, NULL);
2084 if (error) {
2085 if (error != -EOPNOTSUPP) {
2086 iput(inode);
2087 return error;
2088 }
2089 error = 0;
2090 }
2091
2092 info = SHMEM_I(inode);
2093 inode->i_size = len-1;
2094 if (len <= SHORT_SYMLINK_LEN) {
2095 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2096 if (!info->symlink) {
2097 iput(inode);
2098 return -ENOMEM;
2099 }
2100 inode->i_op = &shmem_short_symlink_operations;
2101 } else {
2102 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2103 if (error) {
2104 iput(inode);
2105 return error;
2106 }
2107 inode->i_mapping->a_ops = &shmem_aops;
2108 inode->i_op = &shmem_symlink_inode_operations;
2109 kaddr = kmap_atomic(page);
2110 memcpy(kaddr, symname, len);
2111 kunmap_atomic(kaddr);
2112 SetPageUptodate(page);
2113 set_page_dirty(page);
2114 unlock_page(page);
2115 page_cache_release(page);
2116 }
2117 dir->i_size += BOGO_DIRENT_SIZE;
2118 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2119 d_instantiate(dentry, inode);
2120 dget(dentry);
2121 return 0;
2122 }
2123
2124 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2125 {
2126 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2127 return NULL;
2128 }
2129
2130 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2131 {
2132 struct page *page = NULL;
2133 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2134 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2135 if (page)
2136 unlock_page(page);
2137 return page;
2138 }
2139
2140 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2141 {
2142 if (!IS_ERR(nd_get_link(nd))) {
2143 struct page *page = cookie;
2144 kunmap(page);
2145 mark_page_accessed(page);
2146 page_cache_release(page);
2147 }
2148 }
2149
2150 #ifdef CONFIG_TMPFS_XATTR
2151 /*
2152 * Superblocks without xattr inode operations may get some security.* xattr
2153 * support from the LSM "for free". As soon as we have any other xattrs
2154 * like ACLs, we also need to implement the security.* handlers at
2155 * filesystem level, though.
2156 */
2157
2158 /*
2159 * Callback for security_inode_init_security() for acquiring xattrs.
2160 */
2161 static int shmem_initxattrs(struct inode *inode,
2162 const struct xattr *xattr_array,
2163 void *fs_info)
2164 {
2165 struct shmem_inode_info *info = SHMEM_I(inode);
2166 const struct xattr *xattr;
2167 struct simple_xattr *new_xattr;
2168 size_t len;
2169
2170 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2171 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2172 if (!new_xattr)
2173 return -ENOMEM;
2174
2175 len = strlen(xattr->name) + 1;
2176 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2177 GFP_KERNEL);
2178 if (!new_xattr->name) {
2179 kfree(new_xattr);
2180 return -ENOMEM;
2181 }
2182
2183 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2184 XATTR_SECURITY_PREFIX_LEN);
2185 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2186 xattr->name, len);
2187
2188 simple_xattr_list_add(&info->xattrs, new_xattr);
2189 }
2190
2191 return 0;
2192 }
2193
2194 static const struct xattr_handler *shmem_xattr_handlers[] = {
2195 #ifdef CONFIG_TMPFS_POSIX_ACL
2196 &generic_acl_access_handler,
2197 &generic_acl_default_handler,
2198 #endif
2199 NULL
2200 };
2201
2202 static int shmem_xattr_validate(const char *name)
2203 {
2204 struct { const char *prefix; size_t len; } arr[] = {
2205 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2206 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2207 };
2208 int i;
2209
2210 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2211 size_t preflen = arr[i].len;
2212 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2213 if (!name[preflen])
2214 return -EINVAL;
2215 return 0;
2216 }
2217 }
2218 return -EOPNOTSUPP;
2219 }
2220
2221 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2222 void *buffer, size_t size)
2223 {
2224 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2225 int err;
2226
2227 /*
2228 * If this is a request for a synthetic attribute in the system.*
2229 * namespace use the generic infrastructure to resolve a handler
2230 * for it via sb->s_xattr.
2231 */
2232 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2233 return generic_getxattr(dentry, name, buffer, size);
2234
2235 err = shmem_xattr_validate(name);
2236 if (err)
2237 return err;
2238
2239 return simple_xattr_get(&info->xattrs, name, buffer, size);
2240 }
2241
2242 static int shmem_setxattr(struct dentry *dentry, const char *name,
2243 const void *value, size_t size, int flags)
2244 {
2245 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2246 int err;
2247
2248 /*
2249 * If this is a request for a synthetic attribute in the system.*
2250 * namespace use the generic infrastructure to resolve a handler
2251 * for it via sb->s_xattr.
2252 */
2253 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254 return generic_setxattr(dentry, name, value, size, flags);
2255
2256 err = shmem_xattr_validate(name);
2257 if (err)
2258 return err;
2259
2260 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2261 }
2262
2263 static int shmem_removexattr(struct dentry *dentry, const char *name)
2264 {
2265 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266 int err;
2267
2268 /*
2269 * If this is a request for a synthetic attribute in the system.*
2270 * namespace use the generic infrastructure to resolve a handler
2271 * for it via sb->s_xattr.
2272 */
2273 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2274 return generic_removexattr(dentry, name);
2275
2276 err = shmem_xattr_validate(name);
2277 if (err)
2278 return err;
2279
2280 return simple_xattr_remove(&info->xattrs, name);
2281 }
2282
2283 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2284 {
2285 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2286 return simple_xattr_list(&info->xattrs, buffer, size);
2287 }
2288 #endif /* CONFIG_TMPFS_XATTR */
2289
2290 static const struct inode_operations shmem_short_symlink_operations = {
2291 .readlink = generic_readlink,
2292 .follow_link = shmem_follow_short_symlink,
2293 #ifdef CONFIG_TMPFS_XATTR
2294 .setxattr = shmem_setxattr,
2295 .getxattr = shmem_getxattr,
2296 .listxattr = shmem_listxattr,
2297 .removexattr = shmem_removexattr,
2298 #endif
2299 };
2300
2301 static const struct inode_operations shmem_symlink_inode_operations = {
2302 .readlink = generic_readlink,
2303 .follow_link = shmem_follow_link,
2304 .put_link = shmem_put_link,
2305 #ifdef CONFIG_TMPFS_XATTR
2306 .setxattr = shmem_setxattr,
2307 .getxattr = shmem_getxattr,
2308 .listxattr = shmem_listxattr,
2309 .removexattr = shmem_removexattr,
2310 #endif
2311 };
2312
2313 static struct dentry *shmem_get_parent(struct dentry *child)
2314 {
2315 return ERR_PTR(-ESTALE);
2316 }
2317
2318 static int shmem_match(struct inode *ino, void *vfh)
2319 {
2320 __u32 *fh = vfh;
2321 __u64 inum = fh[2];
2322 inum = (inum << 32) | fh[1];
2323 return ino->i_ino == inum && fh[0] == ino->i_generation;
2324 }
2325
2326 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2327 struct fid *fid, int fh_len, int fh_type)
2328 {
2329 struct inode *inode;
2330 struct dentry *dentry = NULL;
2331 u64 inum;
2332
2333 if (fh_len < 3)
2334 return NULL;
2335
2336 inum = fid->raw[2];
2337 inum = (inum << 32) | fid->raw[1];
2338
2339 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2340 shmem_match, fid->raw);
2341 if (inode) {
2342 dentry = d_find_alias(inode);
2343 iput(inode);
2344 }
2345
2346 return dentry;
2347 }
2348
2349 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2350 struct inode *parent)
2351 {
2352 if (*len < 3) {
2353 *len = 3;
2354 return 255;
2355 }
2356
2357 if (inode_unhashed(inode)) {
2358 /* Unfortunately insert_inode_hash is not idempotent,
2359 * so as we hash inodes here rather than at creation
2360 * time, we need a lock to ensure we only try
2361 * to do it once
2362 */
2363 static DEFINE_SPINLOCK(lock);
2364 spin_lock(&lock);
2365 if (inode_unhashed(inode))
2366 __insert_inode_hash(inode,
2367 inode->i_ino + inode->i_generation);
2368 spin_unlock(&lock);
2369 }
2370
2371 fh[0] = inode->i_generation;
2372 fh[1] = inode->i_ino;
2373 fh[2] = ((__u64)inode->i_ino) >> 32;
2374
2375 *len = 3;
2376 return 1;
2377 }
2378
2379 static const struct export_operations shmem_export_ops = {
2380 .get_parent = shmem_get_parent,
2381 .encode_fh = shmem_encode_fh,
2382 .fh_to_dentry = shmem_fh_to_dentry,
2383 };
2384
2385 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2386 bool remount)
2387 {
2388 char *this_char, *value, *rest;
2389 uid_t uid;
2390 gid_t gid;
2391
2392 while (options != NULL) {
2393 this_char = options;
2394 for (;;) {
2395 /*
2396 * NUL-terminate this option: unfortunately,
2397 * mount options form a comma-separated list,
2398 * but mpol's nodelist may also contain commas.
2399 */
2400 options = strchr(options, ',');
2401 if (options == NULL)
2402 break;
2403 options++;
2404 if (!isdigit(*options)) {
2405 options[-1] = '\0';
2406 break;
2407 }
2408 }
2409 if (!*this_char)
2410 continue;
2411 if ((value = strchr(this_char,'=')) != NULL) {
2412 *value++ = 0;
2413 } else {
2414 printk(KERN_ERR
2415 "tmpfs: No value for mount option '%s'\n",
2416 this_char);
2417 return 1;
2418 }
2419
2420 if (!strcmp(this_char,"size")) {
2421 unsigned long long size;
2422 size = memparse(value,&rest);
2423 if (*rest == '%') {
2424 size <<= PAGE_SHIFT;
2425 size *= totalram_pages;
2426 do_div(size, 100);
2427 rest++;
2428 }
2429 if (*rest)
2430 goto bad_val;
2431 sbinfo->max_blocks =
2432 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2433 } else if (!strcmp(this_char,"nr_blocks")) {
2434 sbinfo->max_blocks = memparse(value, &rest);
2435 if (*rest)
2436 goto bad_val;
2437 } else if (!strcmp(this_char,"nr_inodes")) {
2438 sbinfo->max_inodes = memparse(value, &rest);
2439 if (*rest)
2440 goto bad_val;
2441 } else if (!strcmp(this_char,"mode")) {
2442 if (remount)
2443 continue;
2444 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2445 if (*rest)
2446 goto bad_val;
2447 } else if (!strcmp(this_char,"uid")) {
2448 if (remount)
2449 continue;
2450 uid = simple_strtoul(value, &rest, 0);
2451 if (*rest)
2452 goto bad_val;
2453 sbinfo->uid = make_kuid(current_user_ns(), uid);
2454 if (!uid_valid(sbinfo->uid))
2455 goto bad_val;
2456 } else if (!strcmp(this_char,"gid")) {
2457 if (remount)
2458 continue;
2459 gid = simple_strtoul(value, &rest, 0);
2460 if (*rest)
2461 goto bad_val;
2462 sbinfo->gid = make_kgid(current_user_ns(), gid);
2463 if (!gid_valid(sbinfo->gid))
2464 goto bad_val;
2465 } else if (!strcmp(this_char,"mpol")) {
2466 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2467 goto bad_val;
2468 } else {
2469 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2470 this_char);
2471 return 1;
2472 }
2473 }
2474 return 0;
2475
2476 bad_val:
2477 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2478 value, this_char);
2479 return 1;
2480
2481 }
2482
2483 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2484 {
2485 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2486 struct shmem_sb_info config = *sbinfo;
2487 unsigned long inodes;
2488 int error = -EINVAL;
2489
2490 if (shmem_parse_options(data, &config, true))
2491 return error;
2492
2493 spin_lock(&sbinfo->stat_lock);
2494 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2495 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2496 goto out;
2497 if (config.max_inodes < inodes)
2498 goto out;
2499 /*
2500 * Those tests disallow limited->unlimited while any are in use;
2501 * but we must separately disallow unlimited->limited, because
2502 * in that case we have no record of how much is already in use.
2503 */
2504 if (config.max_blocks && !sbinfo->max_blocks)
2505 goto out;
2506 if (config.max_inodes && !sbinfo->max_inodes)
2507 goto out;
2508
2509 error = 0;
2510 sbinfo->max_blocks = config.max_blocks;
2511 sbinfo->max_inodes = config.max_inodes;
2512 sbinfo->free_inodes = config.max_inodes - inodes;
2513
2514 mpol_put(sbinfo->mpol);
2515 sbinfo->mpol = config.mpol; /* transfers initial ref */
2516 out:
2517 spin_unlock(&sbinfo->stat_lock);
2518 return error;
2519 }
2520
2521 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2522 {
2523 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2524
2525 if (sbinfo->max_blocks != shmem_default_max_blocks())
2526 seq_printf(seq, ",size=%luk",
2527 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2528 if (sbinfo->max_inodes != shmem_default_max_inodes())
2529 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2530 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2531 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2532 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2533 seq_printf(seq, ",uid=%u",
2534 from_kuid_munged(&init_user_ns, sbinfo->uid));
2535 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2536 seq_printf(seq, ",gid=%u",
2537 from_kgid_munged(&init_user_ns, sbinfo->gid));
2538 shmem_show_mpol(seq, sbinfo->mpol);
2539 return 0;
2540 }
2541 #endif /* CONFIG_TMPFS */
2542
2543 static void shmem_put_super(struct super_block *sb)
2544 {
2545 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2546
2547 percpu_counter_destroy(&sbinfo->used_blocks);
2548 kfree(sbinfo);
2549 sb->s_fs_info = NULL;
2550 }
2551
2552 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2553 {
2554 struct inode *inode;
2555 struct shmem_sb_info *sbinfo;
2556 int err = -ENOMEM;
2557
2558 /* Round up to L1_CACHE_BYTES to resist false sharing */
2559 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2560 L1_CACHE_BYTES), GFP_KERNEL);
2561 if (!sbinfo)
2562 return -ENOMEM;
2563
2564 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2565 sbinfo->uid = current_fsuid();
2566 sbinfo->gid = current_fsgid();
2567 sb->s_fs_info = sbinfo;
2568
2569 #ifdef CONFIG_TMPFS
2570 /*
2571 * Per default we only allow half of the physical ram per
2572 * tmpfs instance, limiting inodes to one per page of lowmem;
2573 * but the internal instance is left unlimited.
2574 */
2575 if (!(sb->s_flags & MS_NOUSER)) {
2576 sbinfo->max_blocks = shmem_default_max_blocks();
2577 sbinfo->max_inodes = shmem_default_max_inodes();
2578 if (shmem_parse_options(data, sbinfo, false)) {
2579 err = -EINVAL;
2580 goto failed;
2581 }
2582 }
2583 sb->s_export_op = &shmem_export_ops;
2584 sb->s_flags |= MS_NOSEC;
2585 #else
2586 sb->s_flags |= MS_NOUSER;
2587 #endif
2588
2589 spin_lock_init(&sbinfo->stat_lock);
2590 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2591 goto failed;
2592 sbinfo->free_inodes = sbinfo->max_inodes;
2593
2594 sb->s_maxbytes = MAX_LFS_FILESIZE;
2595 sb->s_blocksize = PAGE_CACHE_SIZE;
2596 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2597 sb->s_magic = TMPFS_MAGIC;
2598 sb->s_op = &shmem_ops;
2599 sb->s_time_gran = 1;
2600 #ifdef CONFIG_TMPFS_XATTR
2601 sb->s_xattr = shmem_xattr_handlers;
2602 #endif
2603 #ifdef CONFIG_TMPFS_POSIX_ACL
2604 sb->s_flags |= MS_POSIXACL;
2605 #endif
2606
2607 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2608 if (!inode)
2609 goto failed;
2610 inode->i_uid = sbinfo->uid;
2611 inode->i_gid = sbinfo->gid;
2612 sb->s_root = d_make_root(inode);
2613 if (!sb->s_root)
2614 goto failed;
2615 return 0;
2616
2617 failed:
2618 shmem_put_super(sb);
2619 return err;
2620 }
2621
2622 static struct kmem_cache *shmem_inode_cachep;
2623
2624 static struct inode *shmem_alloc_inode(struct super_block *sb)
2625 {
2626 struct shmem_inode_info *info;
2627 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2628 if (!info)
2629 return NULL;
2630 return &info->vfs_inode;
2631 }
2632
2633 static void shmem_destroy_callback(struct rcu_head *head)
2634 {
2635 struct inode *inode = container_of(head, struct inode, i_rcu);
2636 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2637 }
2638
2639 static void shmem_destroy_inode(struct inode *inode)
2640 {
2641 if (S_ISREG(inode->i_mode))
2642 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2643 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2644 }
2645
2646 static void shmem_init_inode(void *foo)
2647 {
2648 struct shmem_inode_info *info = foo;
2649 inode_init_once(&info->vfs_inode);
2650 }
2651
2652 static int shmem_init_inodecache(void)
2653 {
2654 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2655 sizeof(struct shmem_inode_info),
2656 0, SLAB_PANIC, shmem_init_inode);
2657 return 0;
2658 }
2659
2660 static void shmem_destroy_inodecache(void)
2661 {
2662 kmem_cache_destroy(shmem_inode_cachep);
2663 }
2664
2665 static const struct address_space_operations shmem_aops = {
2666 .writepage = shmem_writepage,
2667 .set_page_dirty = __set_page_dirty_no_writeback,
2668 #ifdef CONFIG_TMPFS
2669 .write_begin = shmem_write_begin,
2670 .write_end = shmem_write_end,
2671 #endif
2672 .migratepage = migrate_page,
2673 .error_remove_page = generic_error_remove_page,
2674 };
2675
2676 static const struct file_operations shmem_file_operations = {
2677 .mmap = shmem_mmap,
2678 #ifdef CONFIG_TMPFS
2679 .llseek = shmem_file_llseek,
2680 .read = do_sync_read,
2681 .write = do_sync_write,
2682 .aio_read = shmem_file_aio_read,
2683 .aio_write = generic_file_aio_write,
2684 .fsync = noop_fsync,
2685 .splice_read = shmem_file_splice_read,
2686 .splice_write = generic_file_splice_write,
2687 .fallocate = shmem_fallocate,
2688 #endif
2689 };
2690
2691 static const struct inode_operations shmem_inode_operations = {
2692 .setattr = shmem_setattr,
2693 #ifdef CONFIG_TMPFS_XATTR
2694 .setxattr = shmem_setxattr,
2695 .getxattr = shmem_getxattr,
2696 .listxattr = shmem_listxattr,
2697 .removexattr = shmem_removexattr,
2698 #endif
2699 };
2700
2701 static const struct inode_operations shmem_dir_inode_operations = {
2702 #ifdef CONFIG_TMPFS
2703 .create = shmem_create,
2704 .lookup = simple_lookup,
2705 .link = shmem_link,
2706 .unlink = shmem_unlink,
2707 .symlink = shmem_symlink,
2708 .mkdir = shmem_mkdir,
2709 .rmdir = shmem_rmdir,
2710 .mknod = shmem_mknod,
2711 .rename = shmem_rename,
2712 #endif
2713 #ifdef CONFIG_TMPFS_XATTR
2714 .setxattr = shmem_setxattr,
2715 .getxattr = shmem_getxattr,
2716 .listxattr = shmem_listxattr,
2717 .removexattr = shmem_removexattr,
2718 #endif
2719 #ifdef CONFIG_TMPFS_POSIX_ACL
2720 .setattr = shmem_setattr,
2721 #endif
2722 };
2723
2724 static const struct inode_operations shmem_special_inode_operations = {
2725 #ifdef CONFIG_TMPFS_XATTR
2726 .setxattr = shmem_setxattr,
2727 .getxattr = shmem_getxattr,
2728 .listxattr = shmem_listxattr,
2729 .removexattr = shmem_removexattr,
2730 #endif
2731 #ifdef CONFIG_TMPFS_POSIX_ACL
2732 .setattr = shmem_setattr,
2733 #endif
2734 };
2735
2736 static const struct super_operations shmem_ops = {
2737 .alloc_inode = shmem_alloc_inode,
2738 .destroy_inode = shmem_destroy_inode,
2739 #ifdef CONFIG_TMPFS
2740 .statfs = shmem_statfs,
2741 .remount_fs = shmem_remount_fs,
2742 .show_options = shmem_show_options,
2743 #endif
2744 .evict_inode = shmem_evict_inode,
2745 .drop_inode = generic_delete_inode,
2746 .put_super = shmem_put_super,
2747 };
2748
2749 static const struct vm_operations_struct shmem_vm_ops = {
2750 .fault = shmem_fault,
2751 #ifdef CONFIG_NUMA
2752 .set_policy = shmem_set_policy,
2753 .get_policy = shmem_get_policy,
2754 #endif
2755 .remap_pages = generic_file_remap_pages,
2756 };
2757
2758 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759 int flags, const char *dev_name, void *data)
2760 {
2761 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2762 }
2763
2764 static struct file_system_type shmem_fs_type = {
2765 .owner = THIS_MODULE,
2766 .name = "tmpfs",
2767 .mount = shmem_mount,
2768 .kill_sb = kill_litter_super,
2769 };
2770
2771 int __init shmem_init(void)
2772 {
2773 int error;
2774
2775 error = bdi_init(&shmem_backing_dev_info);
2776 if (error)
2777 goto out4;
2778
2779 error = shmem_init_inodecache();
2780 if (error)
2781 goto out3;
2782
2783 error = register_filesystem(&shmem_fs_type);
2784 if (error) {
2785 printk(KERN_ERR "Could not register tmpfs\n");
2786 goto out2;
2787 }
2788
2789 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2790 shmem_fs_type.name, NULL);
2791 if (IS_ERR(shm_mnt)) {
2792 error = PTR_ERR(shm_mnt);
2793 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2794 goto out1;
2795 }
2796 return 0;
2797
2798 out1:
2799 unregister_filesystem(&shmem_fs_type);
2800 out2:
2801 shmem_destroy_inodecache();
2802 out3:
2803 bdi_destroy(&shmem_backing_dev_info);
2804 out4:
2805 shm_mnt = ERR_PTR(error);
2806 return error;
2807 }
2808
2809 #else /* !CONFIG_SHMEM */
2810
2811 /*
2812 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2813 *
2814 * This is intended for small system where the benefits of the full
2815 * shmem code (swap-backed and resource-limited) are outweighed by
2816 * their complexity. On systems without swap this code should be
2817 * effectively equivalent, but much lighter weight.
2818 */
2819
2820 #include <linux/ramfs.h>
2821
2822 static struct file_system_type shmem_fs_type = {
2823 .name = "tmpfs",
2824 .mount = ramfs_mount,
2825 .kill_sb = kill_litter_super,
2826 };
2827
2828 int __init shmem_init(void)
2829 {
2830 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2831
2832 shm_mnt = kern_mount(&shmem_fs_type);
2833 BUG_ON(IS_ERR(shm_mnt));
2834
2835 return 0;
2836 }
2837
2838 int shmem_unuse(swp_entry_t swap, struct page *page)
2839 {
2840 return 0;
2841 }
2842
2843 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2844 {
2845 return 0;
2846 }
2847
2848 void shmem_unlock_mapping(struct address_space *mapping)
2849 {
2850 }
2851
2852 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2853 {
2854 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2855 }
2856 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2857
2858 #define shmem_vm_ops generic_file_vm_ops
2859 #define shmem_file_operations ramfs_file_operations
2860 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2861 #define shmem_acct_size(flags, size) 0
2862 #define shmem_unacct_size(flags, size) do {} while (0)
2863
2864 #endif /* CONFIG_SHMEM */
2865
2866 /* common code */
2867
2868 /**
2869 * shmem_file_setup - get an unlinked file living in tmpfs
2870 * @name: name for dentry (to be seen in /proc/<pid>/maps
2871 * @size: size to be set for the file
2872 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2873 */
2874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2875 {
2876 int error;
2877 struct file *file;
2878 struct inode *inode;
2879 struct path path;
2880 struct dentry *root;
2881 struct qstr this;
2882
2883 if (IS_ERR(shm_mnt))
2884 return (void *)shm_mnt;
2885
2886 if (size < 0 || size > MAX_LFS_FILESIZE)
2887 return ERR_PTR(-EINVAL);
2888
2889 if (shmem_acct_size(flags, size))
2890 return ERR_PTR(-ENOMEM);
2891
2892 error = -ENOMEM;
2893 this.name = name;
2894 this.len = strlen(name);
2895 this.hash = 0; /* will go */
2896 root = shm_mnt->mnt_root;
2897 path.dentry = d_alloc(root, &this);
2898 if (!path.dentry)
2899 goto put_memory;
2900 path.mnt = mntget(shm_mnt);
2901
2902 error = -ENOSPC;
2903 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2904 if (!inode)
2905 goto put_dentry;
2906
2907 d_instantiate(path.dentry, inode);
2908 inode->i_size = size;
2909 clear_nlink(inode); /* It is unlinked */
2910 #ifndef CONFIG_MMU
2911 error = ramfs_nommu_expand_for_mapping(inode, size);
2912 if (error)
2913 goto put_dentry;
2914 #endif
2915
2916 error = -ENFILE;
2917 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2918 &shmem_file_operations);
2919 if (!file)
2920 goto put_dentry;
2921
2922 return file;
2923
2924 put_dentry:
2925 path_put(&path);
2926 put_memory:
2927 shmem_unacct_size(flags, size);
2928 return ERR_PTR(error);
2929 }
2930 EXPORT_SYMBOL_GPL(shmem_file_setup);
2931
2932 /**
2933 * shmem_zero_setup - setup a shared anonymous mapping
2934 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2935 */
2936 int shmem_zero_setup(struct vm_area_struct *vma)
2937 {
2938 struct file *file;
2939 loff_t size = vma->vm_end - vma->vm_start;
2940
2941 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2942 if (IS_ERR(file))
2943 return PTR_ERR(file);
2944
2945 if (vma->vm_file)
2946 fput(vma->vm_file);
2947 vma->vm_file = file;
2948 vma->vm_ops = &shmem_vm_ops;
2949 return 0;
2950 }
2951
2952 /**
2953 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2954 * @mapping: the page's address_space
2955 * @index: the page index
2956 * @gfp: the page allocator flags to use if allocating
2957 *
2958 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2959 * with any new page allocations done using the specified allocation flags.
2960 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2961 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2962 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2963 *
2964 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2965 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2966 */
2967 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2968 pgoff_t index, gfp_t gfp)
2969 {
2970 #ifdef CONFIG_SHMEM
2971 struct inode *inode = mapping->host;
2972 struct page *page;
2973 int error;
2974
2975 BUG_ON(mapping->a_ops != &shmem_aops);
2976 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2977 if (error)
2978 page = ERR_PTR(error);
2979 else
2980 unlock_page(page);
2981 return page;
2982 #else
2983 /*
2984 * The tiny !SHMEM case uses ramfs without swap
2985 */
2986 return read_cache_page_gfp(mapping, index, gfp);
2987 #endif
2988 }
2989 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.106938 seconds and 6 git commands to generate.