Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67
68 /*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
95
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
98
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103 enum sgp_type {
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE, /* may exceed i_size, may allocate page */
108 };
109
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 return totalram_pages / 2;
114 }
115
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 }
120 #endif
121
122 static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
124
125 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126 {
127 /*
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
131 *
132 * Mobility flags are masked out as swap vectors cannot move
133 */
134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
136 }
137
138 static inline void shmem_dir_free(struct page *page)
139 {
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141 }
142
143 static struct page **shmem_dir_map(struct page *page)
144 {
145 return (struct page **)kmap_atomic(page, KM_USER0);
146 }
147
148 static inline void shmem_dir_unmap(struct page **dir)
149 {
150 kunmap_atomic(dir, KM_USER0);
151 }
152
153 static swp_entry_t *shmem_swp_map(struct page *page)
154 {
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156 }
157
158 static inline void shmem_swp_balance_unmap(void)
159 {
160 /*
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
166 */
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168 }
169
170 static inline void shmem_swp_unmap(swp_entry_t *entry)
171 {
172 kunmap_atomic(entry, KM_USER1);
173 }
174
175 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176 {
177 return sb->s_fs_info;
178 }
179
180 /*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186 static inline int shmem_acct_size(unsigned long flags, loff_t size)
187 {
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
190 }
191
192 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193 {
194 if (!(flags & VM_NORESERVE))
195 vm_unacct_memory(VM_ACCT(size));
196 }
197
198 /*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204 static inline int shmem_acct_block(unsigned long flags)
205 {
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214 }
215
216 static const struct super_operations shmem_ops;
217 static const struct address_space_operations shmem_aops;
218 static const struct file_operations shmem_file_operations;
219 static const struct inode_operations shmem_inode_operations;
220 static const struct inode_operations shmem_dir_inode_operations;
221 static const struct inode_operations shmem_special_inode_operations;
222 static const struct vm_operations_struct shmem_vm_ops;
223
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227 .unplug_io_fn = default_unplug_io_fn,
228 };
229
230 static LIST_HEAD(shmem_swaplist);
231 static DEFINE_MUTEX(shmem_swaplist_mutex);
232
233 static void shmem_free_blocks(struct inode *inode, long pages)
234 {
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 if (sbinfo->max_blocks) {
237 percpu_counter_add(&sbinfo->used_blocks, -pages);
238 spin_lock(&inode->i_lock);
239 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240 spin_unlock(&inode->i_lock);
241 }
242 }
243
244 static int shmem_reserve_inode(struct super_block *sb)
245 {
246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 if (sbinfo->max_inodes) {
248 spin_lock(&sbinfo->stat_lock);
249 if (!sbinfo->free_inodes) {
250 spin_unlock(&sbinfo->stat_lock);
251 return -ENOSPC;
252 }
253 sbinfo->free_inodes--;
254 spin_unlock(&sbinfo->stat_lock);
255 }
256 return 0;
257 }
258
259 static void shmem_free_inode(struct super_block *sb)
260 {
261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262 if (sbinfo->max_inodes) {
263 spin_lock(&sbinfo->stat_lock);
264 sbinfo->free_inodes++;
265 spin_unlock(&sbinfo->stat_lock);
266 }
267 }
268
269 /**
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
272 *
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
275 *
276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 *
279 * It has to be called with the spinlock held.
280 */
281 static void shmem_recalc_inode(struct inode *inode)
282 {
283 struct shmem_inode_info *info = SHMEM_I(inode);
284 long freed;
285
286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287 if (freed > 0) {
288 info->alloced -= freed;
289 shmem_unacct_blocks(info->flags, freed);
290 shmem_free_blocks(inode, freed);
291 }
292 }
293
294 /**
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info: info structure for the inode
297 * @index: index of the page to find
298 * @page: optional page to add to the structure. Has to be preset to
299 * all zeros
300 *
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
304 *
305 * The swap vector is organized the following way:
306 *
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
309 * allocation.
310 *
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
314 *
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
317 *
318 * i_indirect -> dir --> 16-19
319 * | +-> 20-23
320 * |
321 * +-->dir2 --> 24-27
322 * | +-> 28-31
323 * | +-> 32-35
324 * | +-> 36-39
325 * |
326 * +-->dir3 --> 40-43
327 * +-> 44-47
328 * +-> 48-51
329 * +-> 52-55
330 */
331 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332 {
333 unsigned long offset;
334 struct page **dir;
335 struct page *subdir;
336
337 if (index < SHMEM_NR_DIRECT) {
338 shmem_swp_balance_unmap();
339 return info->i_direct+index;
340 }
341 if (!info->i_indirect) {
342 if (page) {
343 info->i_indirect = *page;
344 *page = NULL;
345 }
346 return NULL; /* need another page */
347 }
348
349 index -= SHMEM_NR_DIRECT;
350 offset = index % ENTRIES_PER_PAGE;
351 index /= ENTRIES_PER_PAGE;
352 dir = shmem_dir_map(info->i_indirect);
353
354 if (index >= ENTRIES_PER_PAGE/2) {
355 index -= ENTRIES_PER_PAGE/2;
356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357 index %= ENTRIES_PER_PAGE;
358 subdir = *dir;
359 if (!subdir) {
360 if (page) {
361 *dir = *page;
362 *page = NULL;
363 }
364 shmem_dir_unmap(dir);
365 return NULL; /* need another page */
366 }
367 shmem_dir_unmap(dir);
368 dir = shmem_dir_map(subdir);
369 }
370
371 dir += index;
372 subdir = *dir;
373 if (!subdir) {
374 if (!page || !(subdir = *page)) {
375 shmem_dir_unmap(dir);
376 return NULL; /* need a page */
377 }
378 *dir = subdir;
379 *page = NULL;
380 }
381 shmem_dir_unmap(dir);
382 return shmem_swp_map(subdir) + offset;
383 }
384
385 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386 {
387 long incdec = value? 1: -1;
388
389 entry->val = value;
390 info->swapped += incdec;
391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392 struct page *page = kmap_atomic_to_page(entry);
393 set_page_private(page, page_private(page) + incdec);
394 }
395 }
396
397 /**
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info: info structure for the inode
400 * @index: index of the page to find
401 * @sgp: check and recheck i_size? skip allocation?
402 *
403 * If the entry does not exist, allocate it.
404 */
405 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406 {
407 struct inode *inode = &info->vfs_inode;
408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409 struct page *page = NULL;
410 swp_entry_t *entry;
411
412 if (sgp != SGP_WRITE &&
413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414 return ERR_PTR(-EINVAL);
415
416 while (!(entry = shmem_swp_entry(info, index, &page))) {
417 if (sgp == SGP_READ)
418 return shmem_swp_map(ZERO_PAGE(0));
419 /*
420 * Test used_blocks against 1 less max_blocks, since we have 1 data
421 * page (and perhaps indirect index pages) yet to allocate:
422 * a waste to allocate index if we cannot allocate data.
423 */
424 if (sbinfo->max_blocks) {
425 if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
426 return ERR_PTR(-ENOSPC);
427 percpu_counter_inc(&sbinfo->used_blocks);
428 spin_lock(&inode->i_lock);
429 inode->i_blocks += BLOCKS_PER_PAGE;
430 spin_unlock(&inode->i_lock);
431 }
432
433 spin_unlock(&info->lock);
434 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
435 spin_lock(&info->lock);
436
437 if (!page) {
438 shmem_free_blocks(inode, 1);
439 return ERR_PTR(-ENOMEM);
440 }
441 if (sgp != SGP_WRITE &&
442 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443 entry = ERR_PTR(-EINVAL);
444 break;
445 }
446 if (info->next_index <= index)
447 info->next_index = index + 1;
448 }
449 if (page) {
450 /* another task gave its page, or truncated the file */
451 shmem_free_blocks(inode, 1);
452 shmem_dir_free(page);
453 }
454 if (info->next_index <= index && !IS_ERR(entry))
455 info->next_index = index + 1;
456 return entry;
457 }
458
459 /**
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir: pointer to the directory
462 * @edir: pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
464 */
465 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466 spinlock_t *punch_lock)
467 {
468 spinlock_t *punch_unlock = NULL;
469 swp_entry_t *ptr;
470 int freed = 0;
471
472 for (ptr = dir; ptr < edir; ptr++) {
473 if (ptr->val) {
474 if (unlikely(punch_lock)) {
475 punch_unlock = punch_lock;
476 punch_lock = NULL;
477 spin_lock(punch_unlock);
478 if (!ptr->val)
479 continue;
480 }
481 free_swap_and_cache(*ptr);
482 *ptr = (swp_entry_t){0};
483 freed++;
484 }
485 }
486 if (punch_unlock)
487 spin_unlock(punch_unlock);
488 return freed;
489 }
490
491 static int shmem_map_and_free_swp(struct page *subdir, int offset,
492 int limit, struct page ***dir, spinlock_t *punch_lock)
493 {
494 swp_entry_t *ptr;
495 int freed = 0;
496
497 ptr = shmem_swp_map(subdir);
498 for (; offset < limit; offset += LATENCY_LIMIT) {
499 int size = limit - offset;
500 if (size > LATENCY_LIMIT)
501 size = LATENCY_LIMIT;
502 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503 punch_lock);
504 if (need_resched()) {
505 shmem_swp_unmap(ptr);
506 if (*dir) {
507 shmem_dir_unmap(*dir);
508 *dir = NULL;
509 }
510 cond_resched();
511 ptr = shmem_swp_map(subdir);
512 }
513 }
514 shmem_swp_unmap(ptr);
515 return freed;
516 }
517
518 static void shmem_free_pages(struct list_head *next)
519 {
520 struct page *page;
521 int freed = 0;
522
523 do {
524 page = container_of(next, struct page, lru);
525 next = next->next;
526 shmem_dir_free(page);
527 freed++;
528 if (freed >= LATENCY_LIMIT) {
529 cond_resched();
530 freed = 0;
531 }
532 } while (next);
533 }
534
535 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
536 {
537 struct shmem_inode_info *info = SHMEM_I(inode);
538 unsigned long idx;
539 unsigned long size;
540 unsigned long limit;
541 unsigned long stage;
542 unsigned long diroff;
543 struct page **dir;
544 struct page *topdir;
545 struct page *middir;
546 struct page *subdir;
547 swp_entry_t *ptr;
548 LIST_HEAD(pages_to_free);
549 long nr_pages_to_free = 0;
550 long nr_swaps_freed = 0;
551 int offset;
552 int freed;
553 int punch_hole;
554 spinlock_t *needs_lock;
555 spinlock_t *punch_lock;
556 unsigned long upper_limit;
557
558 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
560 if (idx >= info->next_index)
561 return;
562
563 spin_lock(&info->lock);
564 info->flags |= SHMEM_TRUNCATE;
565 if (likely(end == (loff_t) -1)) {
566 limit = info->next_index;
567 upper_limit = SHMEM_MAX_INDEX;
568 info->next_index = idx;
569 needs_lock = NULL;
570 punch_hole = 0;
571 } else {
572 if (end + 1 >= inode->i_size) { /* we may free a little more */
573 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574 PAGE_CACHE_SHIFT;
575 upper_limit = SHMEM_MAX_INDEX;
576 } else {
577 limit = (end + 1) >> PAGE_CACHE_SHIFT;
578 upper_limit = limit;
579 }
580 needs_lock = &info->lock;
581 punch_hole = 1;
582 }
583
584 topdir = info->i_indirect;
585 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
586 info->i_indirect = NULL;
587 nr_pages_to_free++;
588 list_add(&topdir->lru, &pages_to_free);
589 }
590 spin_unlock(&info->lock);
591
592 if (info->swapped && idx < SHMEM_NR_DIRECT) {
593 ptr = info->i_direct;
594 size = limit;
595 if (size > SHMEM_NR_DIRECT)
596 size = SHMEM_NR_DIRECT;
597 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
598 }
599
600 /*
601 * If there are no indirect blocks or we are punching a hole
602 * below indirect blocks, nothing to be done.
603 */
604 if (!topdir || limit <= SHMEM_NR_DIRECT)
605 goto done2;
606
607 /*
608 * The truncation case has already dropped info->lock, and we're safe
609 * because i_size and next_index have already been lowered, preventing
610 * access beyond. But in the punch_hole case, we still need to take
611 * the lock when updating the swap directory, because there might be
612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 * shmem_writepage. However, whenever we find we can remove a whole
614 * directory page (not at the misaligned start or end of the range),
615 * we first NULLify its pointer in the level above, and then have no
616 * need to take the lock when updating its contents: needs_lock and
617 * punch_lock (either pointing to info->lock or NULL) manage this.
618 */
619
620 upper_limit -= SHMEM_NR_DIRECT;
621 limit -= SHMEM_NR_DIRECT;
622 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623 offset = idx % ENTRIES_PER_PAGE;
624 idx -= offset;
625
626 dir = shmem_dir_map(topdir);
627 stage = ENTRIES_PER_PAGEPAGE/2;
628 if (idx < ENTRIES_PER_PAGEPAGE/2) {
629 middir = topdir;
630 diroff = idx/ENTRIES_PER_PAGE;
631 } else {
632 dir += ENTRIES_PER_PAGE/2;
633 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634 while (stage <= idx)
635 stage += ENTRIES_PER_PAGEPAGE;
636 middir = *dir;
637 if (*dir) {
638 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
640 if (!diroff && !offset && upper_limit >= stage) {
641 if (needs_lock) {
642 spin_lock(needs_lock);
643 *dir = NULL;
644 spin_unlock(needs_lock);
645 needs_lock = NULL;
646 } else
647 *dir = NULL;
648 nr_pages_to_free++;
649 list_add(&middir->lru, &pages_to_free);
650 }
651 shmem_dir_unmap(dir);
652 dir = shmem_dir_map(middir);
653 } else {
654 diroff = 0;
655 offset = 0;
656 idx = stage;
657 }
658 }
659
660 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661 if (unlikely(idx == stage)) {
662 shmem_dir_unmap(dir);
663 dir = shmem_dir_map(topdir) +
664 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665 while (!*dir) {
666 dir++;
667 idx += ENTRIES_PER_PAGEPAGE;
668 if (idx >= limit)
669 goto done1;
670 }
671 stage = idx + ENTRIES_PER_PAGEPAGE;
672 middir = *dir;
673 if (punch_hole)
674 needs_lock = &info->lock;
675 if (upper_limit >= stage) {
676 if (needs_lock) {
677 spin_lock(needs_lock);
678 *dir = NULL;
679 spin_unlock(needs_lock);
680 needs_lock = NULL;
681 } else
682 *dir = NULL;
683 nr_pages_to_free++;
684 list_add(&middir->lru, &pages_to_free);
685 }
686 shmem_dir_unmap(dir);
687 cond_resched();
688 dir = shmem_dir_map(middir);
689 diroff = 0;
690 }
691 punch_lock = needs_lock;
692 subdir = dir[diroff];
693 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694 if (needs_lock) {
695 spin_lock(needs_lock);
696 dir[diroff] = NULL;
697 spin_unlock(needs_lock);
698 punch_lock = NULL;
699 } else
700 dir[diroff] = NULL;
701 nr_pages_to_free++;
702 list_add(&subdir->lru, &pages_to_free);
703 }
704 if (subdir && page_private(subdir) /* has swap entries */) {
705 size = limit - idx;
706 if (size > ENTRIES_PER_PAGE)
707 size = ENTRIES_PER_PAGE;
708 freed = shmem_map_and_free_swp(subdir,
709 offset, size, &dir, punch_lock);
710 if (!dir)
711 dir = shmem_dir_map(middir);
712 nr_swaps_freed += freed;
713 if (offset || punch_lock) {
714 spin_lock(&info->lock);
715 set_page_private(subdir,
716 page_private(subdir) - freed);
717 spin_unlock(&info->lock);
718 } else
719 BUG_ON(page_private(subdir) != freed);
720 }
721 offset = 0;
722 }
723 done1:
724 shmem_dir_unmap(dir);
725 done2:
726 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727 /*
728 * Call truncate_inode_pages again: racing shmem_unuse_inode
729 * may have swizzled a page in from swap since
730 * truncate_pagecache or generic_delete_inode did it, before we
731 * lowered next_index. Also, though shmem_getpage checks
732 * i_size before adding to cache, no recheck after: so fix the
733 * narrow window there too.
734 *
735 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 * every time for punch_hole (which never got a chance to clear
737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 * yet hardly ever necessary: try to optimize them out later.
739 */
740 truncate_inode_pages_range(inode->i_mapping, start, end);
741 if (punch_hole)
742 unmap_mapping_range(inode->i_mapping, start,
743 end - start, 1);
744 }
745
746 spin_lock(&info->lock);
747 info->flags &= ~SHMEM_TRUNCATE;
748 info->swapped -= nr_swaps_freed;
749 if (nr_pages_to_free)
750 shmem_free_blocks(inode, nr_pages_to_free);
751 shmem_recalc_inode(inode);
752 spin_unlock(&info->lock);
753
754 /*
755 * Empty swap vector directory pages to be freed?
756 */
757 if (!list_empty(&pages_to_free)) {
758 pages_to_free.prev->next = NULL;
759 shmem_free_pages(pages_to_free.next);
760 }
761 }
762
763 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764 {
765 struct inode *inode = dentry->d_inode;
766 loff_t newsize = attr->ia_size;
767 int error;
768
769 error = inode_change_ok(inode, attr);
770 if (error)
771 return error;
772
773 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
774 && newsize != inode->i_size) {
775 struct page *page = NULL;
776
777 if (newsize < inode->i_size) {
778 /*
779 * If truncating down to a partial page, then
780 * if that page is already allocated, hold it
781 * in memory until the truncation is over, so
782 * truncate_partial_page cannnot miss it were
783 * it assigned to swap.
784 */
785 if (newsize & (PAGE_CACHE_SIZE-1)) {
786 (void) shmem_getpage(inode,
787 newsize >> PAGE_CACHE_SHIFT,
788 &page, SGP_READ, NULL);
789 if (page)
790 unlock_page(page);
791 }
792 /*
793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 * detect if any pages might have been added to cache
795 * after truncate_inode_pages. But we needn't bother
796 * if it's being fully truncated to zero-length: the
797 * nrpages check is efficient enough in that case.
798 */
799 if (newsize) {
800 struct shmem_inode_info *info = SHMEM_I(inode);
801 spin_lock(&info->lock);
802 info->flags &= ~SHMEM_PAGEIN;
803 spin_unlock(&info->lock);
804 }
805 }
806
807 /* XXX(truncate): truncate_setsize should be called last */
808 truncate_setsize(inode, newsize);
809 if (page)
810 page_cache_release(page);
811 shmem_truncate_range(inode, newsize, (loff_t)-1);
812 }
813
814 setattr_copy(inode, attr);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816 if (attr->ia_valid & ATTR_MODE)
817 error = generic_acl_chmod(inode);
818 #endif
819 return error;
820 }
821
822 static void shmem_evict_inode(struct inode *inode)
823 {
824 struct shmem_inode_info *info = SHMEM_I(inode);
825
826 if (inode->i_mapping->a_ops == &shmem_aops) {
827 truncate_inode_pages(inode->i_mapping, 0);
828 shmem_unacct_size(info->flags, inode->i_size);
829 inode->i_size = 0;
830 shmem_truncate_range(inode, 0, (loff_t)-1);
831 if (!list_empty(&info->swaplist)) {
832 mutex_lock(&shmem_swaplist_mutex);
833 list_del_init(&info->swaplist);
834 mutex_unlock(&shmem_swaplist_mutex);
835 }
836 }
837 BUG_ON(inode->i_blocks);
838 shmem_free_inode(inode->i_sb);
839 end_writeback(inode);
840 }
841
842 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
843 {
844 swp_entry_t *ptr;
845
846 for (ptr = dir; ptr < edir; ptr++) {
847 if (ptr->val == entry.val)
848 return ptr - dir;
849 }
850 return -1;
851 }
852
853 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
854 {
855 struct inode *inode;
856 unsigned long idx;
857 unsigned long size;
858 unsigned long limit;
859 unsigned long stage;
860 struct page **dir;
861 struct page *subdir;
862 swp_entry_t *ptr;
863 int offset;
864 int error;
865
866 idx = 0;
867 ptr = info->i_direct;
868 spin_lock(&info->lock);
869 if (!info->swapped) {
870 list_del_init(&info->swaplist);
871 goto lost2;
872 }
873 limit = info->next_index;
874 size = limit;
875 if (size > SHMEM_NR_DIRECT)
876 size = SHMEM_NR_DIRECT;
877 offset = shmem_find_swp(entry, ptr, ptr+size);
878 if (offset >= 0)
879 goto found;
880 if (!info->i_indirect)
881 goto lost2;
882
883 dir = shmem_dir_map(info->i_indirect);
884 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
885
886 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
887 if (unlikely(idx == stage)) {
888 shmem_dir_unmap(dir-1);
889 if (cond_resched_lock(&info->lock)) {
890 /* check it has not been truncated */
891 if (limit > info->next_index) {
892 limit = info->next_index;
893 if (idx >= limit)
894 goto lost2;
895 }
896 }
897 dir = shmem_dir_map(info->i_indirect) +
898 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
899 while (!*dir) {
900 dir++;
901 idx += ENTRIES_PER_PAGEPAGE;
902 if (idx >= limit)
903 goto lost1;
904 }
905 stage = idx + ENTRIES_PER_PAGEPAGE;
906 subdir = *dir;
907 shmem_dir_unmap(dir);
908 dir = shmem_dir_map(subdir);
909 }
910 subdir = *dir;
911 if (subdir && page_private(subdir)) {
912 ptr = shmem_swp_map(subdir);
913 size = limit - idx;
914 if (size > ENTRIES_PER_PAGE)
915 size = ENTRIES_PER_PAGE;
916 offset = shmem_find_swp(entry, ptr, ptr+size);
917 shmem_swp_unmap(ptr);
918 if (offset >= 0) {
919 shmem_dir_unmap(dir);
920 goto found;
921 }
922 }
923 }
924 lost1:
925 shmem_dir_unmap(dir-1);
926 lost2:
927 spin_unlock(&info->lock);
928 return 0;
929 found:
930 idx += offset;
931 inode = igrab(&info->vfs_inode);
932 spin_unlock(&info->lock);
933
934 /*
935 * Move _head_ to start search for next from here.
936 * But be careful: shmem_evict_inode checks list_empty without taking
937 * mutex, and there's an instant in list_move_tail when info->swaplist
938 * would appear empty, if it were the only one on shmem_swaplist. We
939 * could avoid doing it if inode NULL; or use this minor optimization.
940 */
941 if (shmem_swaplist.next != &info->swaplist)
942 list_move_tail(&shmem_swaplist, &info->swaplist);
943 mutex_unlock(&shmem_swaplist_mutex);
944
945 error = 1;
946 if (!inode)
947 goto out;
948 /*
949 * Charge page using GFP_KERNEL while we can wait.
950 * Charged back to the user(not to caller) when swap account is used.
951 * add_to_page_cache() will be called with GFP_NOWAIT.
952 */
953 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
954 if (error)
955 goto out;
956 error = radix_tree_preload(GFP_KERNEL);
957 if (error) {
958 mem_cgroup_uncharge_cache_page(page);
959 goto out;
960 }
961 error = 1;
962
963 spin_lock(&info->lock);
964 ptr = shmem_swp_entry(info, idx, NULL);
965 if (ptr && ptr->val == entry.val) {
966 error = add_to_page_cache_locked(page, inode->i_mapping,
967 idx, GFP_NOWAIT);
968 /* does mem_cgroup_uncharge_cache_page on error */
969 } else /* we must compensate for our precharge above */
970 mem_cgroup_uncharge_cache_page(page);
971
972 if (error == -EEXIST) {
973 struct page *filepage = find_get_page(inode->i_mapping, idx);
974 error = 1;
975 if (filepage) {
976 /*
977 * There might be a more uptodate page coming down
978 * from a stacked writepage: forget our swappage if so.
979 */
980 if (PageUptodate(filepage))
981 error = 0;
982 page_cache_release(filepage);
983 }
984 }
985 if (!error) {
986 delete_from_swap_cache(page);
987 set_page_dirty(page);
988 info->flags |= SHMEM_PAGEIN;
989 shmem_swp_set(info, ptr, 0);
990 swap_free(entry);
991 error = 1; /* not an error, but entry was found */
992 }
993 if (ptr)
994 shmem_swp_unmap(ptr);
995 spin_unlock(&info->lock);
996 radix_tree_preload_end();
997 out:
998 unlock_page(page);
999 page_cache_release(page);
1000 iput(inode); /* allows for NULL */
1001 return error;
1002 }
1003
1004 /*
1005 * shmem_unuse() search for an eventually swapped out shmem page.
1006 */
1007 int shmem_unuse(swp_entry_t entry, struct page *page)
1008 {
1009 struct list_head *p, *next;
1010 struct shmem_inode_info *info;
1011 int found = 0;
1012
1013 mutex_lock(&shmem_swaplist_mutex);
1014 list_for_each_safe(p, next, &shmem_swaplist) {
1015 info = list_entry(p, struct shmem_inode_info, swaplist);
1016 found = shmem_unuse_inode(info, entry, page);
1017 cond_resched();
1018 if (found)
1019 goto out;
1020 }
1021 mutex_unlock(&shmem_swaplist_mutex);
1022 /*
1023 * Can some race bring us here? We've been holding page lock,
1024 * so I think not; but would rather try again later than BUG()
1025 */
1026 unlock_page(page);
1027 page_cache_release(page);
1028 out:
1029 return (found < 0) ? found : 0;
1030 }
1031
1032 /*
1033 * Move the page from the page cache to the swap cache.
1034 */
1035 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1036 {
1037 struct shmem_inode_info *info;
1038 swp_entry_t *entry, swap;
1039 struct address_space *mapping;
1040 unsigned long index;
1041 struct inode *inode;
1042
1043 BUG_ON(!PageLocked(page));
1044 mapping = page->mapping;
1045 index = page->index;
1046 inode = mapping->host;
1047 info = SHMEM_I(inode);
1048 if (info->flags & VM_LOCKED)
1049 goto redirty;
1050 if (!total_swap_pages)
1051 goto redirty;
1052
1053 /*
1054 * shmem_backing_dev_info's capabilities prevent regular writeback or
1055 * sync from ever calling shmem_writepage; but a stacking filesystem
1056 * may use the ->writepage of its underlying filesystem, in which case
1057 * tmpfs should write out to swap only in response to memory pressure,
1058 * and not for the writeback threads or sync. However, in those cases,
1059 * we do still want to check if there's a redundant swappage to be
1060 * discarded.
1061 */
1062 if (wbc->for_reclaim)
1063 swap = get_swap_page();
1064 else
1065 swap.val = 0;
1066
1067 spin_lock(&info->lock);
1068 if (index >= info->next_index) {
1069 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1070 goto unlock;
1071 }
1072 entry = shmem_swp_entry(info, index, NULL);
1073 if (entry->val) {
1074 /*
1075 * The more uptodate page coming down from a stacked
1076 * writepage should replace our old swappage.
1077 */
1078 free_swap_and_cache(*entry);
1079 shmem_swp_set(info, entry, 0);
1080 }
1081 shmem_recalc_inode(inode);
1082
1083 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1084 remove_from_page_cache(page);
1085 shmem_swp_set(info, entry, swap.val);
1086 shmem_swp_unmap(entry);
1087 if (list_empty(&info->swaplist))
1088 inode = igrab(inode);
1089 else
1090 inode = NULL;
1091 spin_unlock(&info->lock);
1092 swap_shmem_alloc(swap);
1093 BUG_ON(page_mapped(page));
1094 page_cache_release(page); /* pagecache ref */
1095 swap_writepage(page, wbc);
1096 if (inode) {
1097 mutex_lock(&shmem_swaplist_mutex);
1098 /* move instead of add in case we're racing */
1099 list_move_tail(&info->swaplist, &shmem_swaplist);
1100 mutex_unlock(&shmem_swaplist_mutex);
1101 iput(inode);
1102 }
1103 return 0;
1104 }
1105
1106 shmem_swp_unmap(entry);
1107 unlock:
1108 spin_unlock(&info->lock);
1109 /*
1110 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1111 * clear SWAP_HAS_CACHE flag.
1112 */
1113 swapcache_free(swap, NULL);
1114 redirty:
1115 set_page_dirty(page);
1116 if (wbc->for_reclaim)
1117 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1118 unlock_page(page);
1119 return 0;
1120 }
1121
1122 #ifdef CONFIG_NUMA
1123 #ifdef CONFIG_TMPFS
1124 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1125 {
1126 char buffer[64];
1127
1128 if (!mpol || mpol->mode == MPOL_DEFAULT)
1129 return; /* show nothing */
1130
1131 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1132
1133 seq_printf(seq, ",mpol=%s", buffer);
1134 }
1135
1136 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1137 {
1138 struct mempolicy *mpol = NULL;
1139 if (sbinfo->mpol) {
1140 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1141 mpol = sbinfo->mpol;
1142 mpol_get(mpol);
1143 spin_unlock(&sbinfo->stat_lock);
1144 }
1145 return mpol;
1146 }
1147 #endif /* CONFIG_TMPFS */
1148
1149 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1150 struct shmem_inode_info *info, unsigned long idx)
1151 {
1152 struct mempolicy mpol, *spol;
1153 struct vm_area_struct pvma;
1154 struct page *page;
1155
1156 spol = mpol_cond_copy(&mpol,
1157 mpol_shared_policy_lookup(&info->policy, idx));
1158
1159 /* Create a pseudo vma that just contains the policy */
1160 pvma.vm_start = 0;
1161 pvma.vm_pgoff = idx;
1162 pvma.vm_ops = NULL;
1163 pvma.vm_policy = spol;
1164 page = swapin_readahead(entry, gfp, &pvma, 0);
1165 return page;
1166 }
1167
1168 static struct page *shmem_alloc_page(gfp_t gfp,
1169 struct shmem_inode_info *info, unsigned long idx)
1170 {
1171 struct vm_area_struct pvma;
1172
1173 /* Create a pseudo vma that just contains the policy */
1174 pvma.vm_start = 0;
1175 pvma.vm_pgoff = idx;
1176 pvma.vm_ops = NULL;
1177 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1178
1179 /*
1180 * alloc_page_vma() will drop the shared policy reference
1181 */
1182 return alloc_page_vma(gfp, &pvma, 0);
1183 }
1184 #else /* !CONFIG_NUMA */
1185 #ifdef CONFIG_TMPFS
1186 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1187 {
1188 }
1189 #endif /* CONFIG_TMPFS */
1190
1191 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1192 struct shmem_inode_info *info, unsigned long idx)
1193 {
1194 return swapin_readahead(entry, gfp, NULL, 0);
1195 }
1196
1197 static inline struct page *shmem_alloc_page(gfp_t gfp,
1198 struct shmem_inode_info *info, unsigned long idx)
1199 {
1200 return alloc_page(gfp);
1201 }
1202 #endif /* CONFIG_NUMA */
1203
1204 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1205 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1206 {
1207 return NULL;
1208 }
1209 #endif
1210
1211 /*
1212 * shmem_getpage - either get the page from swap or allocate a new one
1213 *
1214 * If we allocate a new one we do not mark it dirty. That's up to the
1215 * vm. If we swap it in we mark it dirty since we also free the swap
1216 * entry since a page cannot live in both the swap and page cache
1217 */
1218 static int shmem_getpage(struct inode *inode, unsigned long idx,
1219 struct page **pagep, enum sgp_type sgp, int *type)
1220 {
1221 struct address_space *mapping = inode->i_mapping;
1222 struct shmem_inode_info *info = SHMEM_I(inode);
1223 struct shmem_sb_info *sbinfo;
1224 struct page *filepage = *pagep;
1225 struct page *swappage;
1226 struct page *prealloc_page = NULL;
1227 swp_entry_t *entry;
1228 swp_entry_t swap;
1229 gfp_t gfp;
1230 int error;
1231
1232 if (idx >= SHMEM_MAX_INDEX)
1233 return -EFBIG;
1234
1235 if (type)
1236 *type = 0;
1237
1238 /*
1239 * Normally, filepage is NULL on entry, and either found
1240 * uptodate immediately, or allocated and zeroed, or read
1241 * in under swappage, which is then assigned to filepage.
1242 * But shmem_readpage (required for splice) passes in a locked
1243 * filepage, which may be found not uptodate by other callers
1244 * too, and may need to be copied from the swappage read in.
1245 */
1246 repeat:
1247 if (!filepage)
1248 filepage = find_lock_page(mapping, idx);
1249 if (filepage && PageUptodate(filepage))
1250 goto done;
1251 gfp = mapping_gfp_mask(mapping);
1252 if (!filepage) {
1253 /*
1254 * Try to preload while we can wait, to not make a habit of
1255 * draining atomic reserves; but don't latch on to this cpu.
1256 */
1257 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1258 if (error)
1259 goto failed;
1260 radix_tree_preload_end();
1261 if (sgp != SGP_READ && !prealloc_page) {
1262 /* We don't care if this fails */
1263 prealloc_page = shmem_alloc_page(gfp, info, idx);
1264 if (prealloc_page) {
1265 if (mem_cgroup_cache_charge(prealloc_page,
1266 current->mm, GFP_KERNEL)) {
1267 page_cache_release(prealloc_page);
1268 prealloc_page = NULL;
1269 }
1270 }
1271 }
1272 }
1273 error = 0;
1274
1275 spin_lock(&info->lock);
1276 shmem_recalc_inode(inode);
1277 entry = shmem_swp_alloc(info, idx, sgp);
1278 if (IS_ERR(entry)) {
1279 spin_unlock(&info->lock);
1280 error = PTR_ERR(entry);
1281 goto failed;
1282 }
1283 swap = *entry;
1284
1285 if (swap.val) {
1286 /* Look it up and read it in.. */
1287 swappage = lookup_swap_cache(swap);
1288 if (!swappage) {
1289 shmem_swp_unmap(entry);
1290 /* here we actually do the io */
1291 if (type && !(*type & VM_FAULT_MAJOR)) {
1292 __count_vm_event(PGMAJFAULT);
1293 *type |= VM_FAULT_MAJOR;
1294 }
1295 spin_unlock(&info->lock);
1296 swappage = shmem_swapin(swap, gfp, info, idx);
1297 if (!swappage) {
1298 spin_lock(&info->lock);
1299 entry = shmem_swp_alloc(info, idx, sgp);
1300 if (IS_ERR(entry))
1301 error = PTR_ERR(entry);
1302 else {
1303 if (entry->val == swap.val)
1304 error = -ENOMEM;
1305 shmem_swp_unmap(entry);
1306 }
1307 spin_unlock(&info->lock);
1308 if (error)
1309 goto failed;
1310 goto repeat;
1311 }
1312 wait_on_page_locked(swappage);
1313 page_cache_release(swappage);
1314 goto repeat;
1315 }
1316
1317 /* We have to do this with page locked to prevent races */
1318 if (!trylock_page(swappage)) {
1319 shmem_swp_unmap(entry);
1320 spin_unlock(&info->lock);
1321 wait_on_page_locked(swappage);
1322 page_cache_release(swappage);
1323 goto repeat;
1324 }
1325 if (PageWriteback(swappage)) {
1326 shmem_swp_unmap(entry);
1327 spin_unlock(&info->lock);
1328 wait_on_page_writeback(swappage);
1329 unlock_page(swappage);
1330 page_cache_release(swappage);
1331 goto repeat;
1332 }
1333 if (!PageUptodate(swappage)) {
1334 shmem_swp_unmap(entry);
1335 spin_unlock(&info->lock);
1336 unlock_page(swappage);
1337 page_cache_release(swappage);
1338 error = -EIO;
1339 goto failed;
1340 }
1341
1342 if (filepage) {
1343 shmem_swp_set(info, entry, 0);
1344 shmem_swp_unmap(entry);
1345 delete_from_swap_cache(swappage);
1346 spin_unlock(&info->lock);
1347 copy_highpage(filepage, swappage);
1348 unlock_page(swappage);
1349 page_cache_release(swappage);
1350 flush_dcache_page(filepage);
1351 SetPageUptodate(filepage);
1352 set_page_dirty(filepage);
1353 swap_free(swap);
1354 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1355 idx, GFP_NOWAIT))) {
1356 info->flags |= SHMEM_PAGEIN;
1357 shmem_swp_set(info, entry, 0);
1358 shmem_swp_unmap(entry);
1359 delete_from_swap_cache(swappage);
1360 spin_unlock(&info->lock);
1361 filepage = swappage;
1362 set_page_dirty(filepage);
1363 swap_free(swap);
1364 } else {
1365 shmem_swp_unmap(entry);
1366 spin_unlock(&info->lock);
1367 if (error == -ENOMEM) {
1368 /*
1369 * reclaim from proper memory cgroup and
1370 * call memcg's OOM if needed.
1371 */
1372 error = mem_cgroup_shmem_charge_fallback(
1373 swappage,
1374 current->mm,
1375 gfp);
1376 if (error) {
1377 unlock_page(swappage);
1378 page_cache_release(swappage);
1379 goto failed;
1380 }
1381 }
1382 unlock_page(swappage);
1383 page_cache_release(swappage);
1384 goto repeat;
1385 }
1386 } else if (sgp == SGP_READ && !filepage) {
1387 shmem_swp_unmap(entry);
1388 filepage = find_get_page(mapping, idx);
1389 if (filepage &&
1390 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1391 spin_unlock(&info->lock);
1392 wait_on_page_locked(filepage);
1393 page_cache_release(filepage);
1394 filepage = NULL;
1395 goto repeat;
1396 }
1397 spin_unlock(&info->lock);
1398 } else {
1399 shmem_swp_unmap(entry);
1400 sbinfo = SHMEM_SB(inode->i_sb);
1401 if (sbinfo->max_blocks) {
1402 if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1403 shmem_acct_block(info->flags)) {
1404 spin_unlock(&info->lock);
1405 error = -ENOSPC;
1406 goto failed;
1407 }
1408 percpu_counter_inc(&sbinfo->used_blocks);
1409 spin_lock(&inode->i_lock);
1410 inode->i_blocks += BLOCKS_PER_PAGE;
1411 spin_unlock(&inode->i_lock);
1412 } else if (shmem_acct_block(info->flags)) {
1413 spin_unlock(&info->lock);
1414 error = -ENOSPC;
1415 goto failed;
1416 }
1417
1418 if (!filepage) {
1419 int ret;
1420
1421 if (!prealloc_page) {
1422 spin_unlock(&info->lock);
1423 filepage = shmem_alloc_page(gfp, info, idx);
1424 if (!filepage) {
1425 shmem_unacct_blocks(info->flags, 1);
1426 shmem_free_blocks(inode, 1);
1427 error = -ENOMEM;
1428 goto failed;
1429 }
1430 SetPageSwapBacked(filepage);
1431
1432 /*
1433 * Precharge page while we can wait, compensate
1434 * after
1435 */
1436 error = mem_cgroup_cache_charge(filepage,
1437 current->mm, GFP_KERNEL);
1438 if (error) {
1439 page_cache_release(filepage);
1440 shmem_unacct_blocks(info->flags, 1);
1441 shmem_free_blocks(inode, 1);
1442 filepage = NULL;
1443 goto failed;
1444 }
1445
1446 spin_lock(&info->lock);
1447 } else {
1448 filepage = prealloc_page;
1449 prealloc_page = NULL;
1450 SetPageSwapBacked(filepage);
1451 }
1452
1453 entry = shmem_swp_alloc(info, idx, sgp);
1454 if (IS_ERR(entry))
1455 error = PTR_ERR(entry);
1456 else {
1457 swap = *entry;
1458 shmem_swp_unmap(entry);
1459 }
1460 ret = error || swap.val;
1461 if (ret)
1462 mem_cgroup_uncharge_cache_page(filepage);
1463 else
1464 ret = add_to_page_cache_lru(filepage, mapping,
1465 idx, GFP_NOWAIT);
1466 /*
1467 * At add_to_page_cache_lru() failure, uncharge will
1468 * be done automatically.
1469 */
1470 if (ret) {
1471 spin_unlock(&info->lock);
1472 page_cache_release(filepage);
1473 shmem_unacct_blocks(info->flags, 1);
1474 shmem_free_blocks(inode, 1);
1475 filepage = NULL;
1476 if (error)
1477 goto failed;
1478 goto repeat;
1479 }
1480 info->flags |= SHMEM_PAGEIN;
1481 }
1482
1483 info->alloced++;
1484 spin_unlock(&info->lock);
1485 clear_highpage(filepage);
1486 flush_dcache_page(filepage);
1487 SetPageUptodate(filepage);
1488 if (sgp == SGP_DIRTY)
1489 set_page_dirty(filepage);
1490 }
1491 done:
1492 *pagep = filepage;
1493 error = 0;
1494 goto out;
1495
1496 failed:
1497 if (*pagep != filepage) {
1498 unlock_page(filepage);
1499 page_cache_release(filepage);
1500 }
1501 out:
1502 if (prealloc_page) {
1503 mem_cgroup_uncharge_cache_page(prealloc_page);
1504 page_cache_release(prealloc_page);
1505 }
1506 return error;
1507 }
1508
1509 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1510 {
1511 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1512 int error;
1513 int ret;
1514
1515 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1516 return VM_FAULT_SIGBUS;
1517
1518 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1519 if (error)
1520 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1521
1522 return ret | VM_FAULT_LOCKED;
1523 }
1524
1525 #ifdef CONFIG_NUMA
1526 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1527 {
1528 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1529 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1530 }
1531
1532 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1533 unsigned long addr)
1534 {
1535 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1536 unsigned long idx;
1537
1538 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1539 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1540 }
1541 #endif
1542
1543 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1544 {
1545 struct inode *inode = file->f_path.dentry->d_inode;
1546 struct shmem_inode_info *info = SHMEM_I(inode);
1547 int retval = -ENOMEM;
1548
1549 spin_lock(&info->lock);
1550 if (lock && !(info->flags & VM_LOCKED)) {
1551 if (!user_shm_lock(inode->i_size, user))
1552 goto out_nomem;
1553 info->flags |= VM_LOCKED;
1554 mapping_set_unevictable(file->f_mapping);
1555 }
1556 if (!lock && (info->flags & VM_LOCKED) && user) {
1557 user_shm_unlock(inode->i_size, user);
1558 info->flags &= ~VM_LOCKED;
1559 mapping_clear_unevictable(file->f_mapping);
1560 scan_mapping_unevictable_pages(file->f_mapping);
1561 }
1562 retval = 0;
1563
1564 out_nomem:
1565 spin_unlock(&info->lock);
1566 return retval;
1567 }
1568
1569 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1570 {
1571 file_accessed(file);
1572 vma->vm_ops = &shmem_vm_ops;
1573 vma->vm_flags |= VM_CAN_NONLINEAR;
1574 return 0;
1575 }
1576
1577 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1578 int mode, dev_t dev, unsigned long flags)
1579 {
1580 struct inode *inode;
1581 struct shmem_inode_info *info;
1582 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1583
1584 if (shmem_reserve_inode(sb))
1585 return NULL;
1586
1587 inode = new_inode(sb);
1588 if (inode) {
1589 inode_init_owner(inode, dir, mode);
1590 inode->i_blocks = 0;
1591 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1592 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1593 inode->i_generation = get_seconds();
1594 info = SHMEM_I(inode);
1595 memset(info, 0, (char *)inode - (char *)info);
1596 spin_lock_init(&info->lock);
1597 info->flags = flags & VM_NORESERVE;
1598 INIT_LIST_HEAD(&info->swaplist);
1599 cache_no_acl(inode);
1600
1601 switch (mode & S_IFMT) {
1602 default:
1603 inode->i_op = &shmem_special_inode_operations;
1604 init_special_inode(inode, mode, dev);
1605 break;
1606 case S_IFREG:
1607 inode->i_mapping->a_ops = &shmem_aops;
1608 inode->i_op = &shmem_inode_operations;
1609 inode->i_fop = &shmem_file_operations;
1610 mpol_shared_policy_init(&info->policy,
1611 shmem_get_sbmpol(sbinfo));
1612 break;
1613 case S_IFDIR:
1614 inc_nlink(inode);
1615 /* Some things misbehave if size == 0 on a directory */
1616 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1617 inode->i_op = &shmem_dir_inode_operations;
1618 inode->i_fop = &simple_dir_operations;
1619 break;
1620 case S_IFLNK:
1621 /*
1622 * Must not load anything in the rbtree,
1623 * mpol_free_shared_policy will not be called.
1624 */
1625 mpol_shared_policy_init(&info->policy, NULL);
1626 break;
1627 }
1628 } else
1629 shmem_free_inode(sb);
1630 return inode;
1631 }
1632
1633 #ifdef CONFIG_TMPFS
1634 static const struct inode_operations shmem_symlink_inode_operations;
1635 static const struct inode_operations shmem_symlink_inline_operations;
1636
1637 /*
1638 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1639 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1640 * below the loop driver, in the generic fashion that many filesystems support.
1641 */
1642 static int shmem_readpage(struct file *file, struct page *page)
1643 {
1644 struct inode *inode = page->mapping->host;
1645 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1646 unlock_page(page);
1647 return error;
1648 }
1649
1650 static int
1651 shmem_write_begin(struct file *file, struct address_space *mapping,
1652 loff_t pos, unsigned len, unsigned flags,
1653 struct page **pagep, void **fsdata)
1654 {
1655 struct inode *inode = mapping->host;
1656 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1657 *pagep = NULL;
1658 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1659 }
1660
1661 static int
1662 shmem_write_end(struct file *file, struct address_space *mapping,
1663 loff_t pos, unsigned len, unsigned copied,
1664 struct page *page, void *fsdata)
1665 {
1666 struct inode *inode = mapping->host;
1667
1668 if (pos + copied > inode->i_size)
1669 i_size_write(inode, pos + copied);
1670
1671 set_page_dirty(page);
1672 unlock_page(page);
1673 page_cache_release(page);
1674
1675 return copied;
1676 }
1677
1678 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1679 {
1680 struct inode *inode = filp->f_path.dentry->d_inode;
1681 struct address_space *mapping = inode->i_mapping;
1682 unsigned long index, offset;
1683 enum sgp_type sgp = SGP_READ;
1684
1685 /*
1686 * Might this read be for a stacking filesystem? Then when reading
1687 * holes of a sparse file, we actually need to allocate those pages,
1688 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1689 */
1690 if (segment_eq(get_fs(), KERNEL_DS))
1691 sgp = SGP_DIRTY;
1692
1693 index = *ppos >> PAGE_CACHE_SHIFT;
1694 offset = *ppos & ~PAGE_CACHE_MASK;
1695
1696 for (;;) {
1697 struct page *page = NULL;
1698 unsigned long end_index, nr, ret;
1699 loff_t i_size = i_size_read(inode);
1700
1701 end_index = i_size >> PAGE_CACHE_SHIFT;
1702 if (index > end_index)
1703 break;
1704 if (index == end_index) {
1705 nr = i_size & ~PAGE_CACHE_MASK;
1706 if (nr <= offset)
1707 break;
1708 }
1709
1710 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1711 if (desc->error) {
1712 if (desc->error == -EINVAL)
1713 desc->error = 0;
1714 break;
1715 }
1716 if (page)
1717 unlock_page(page);
1718
1719 /*
1720 * We must evaluate after, since reads (unlike writes)
1721 * are called without i_mutex protection against truncate
1722 */
1723 nr = PAGE_CACHE_SIZE;
1724 i_size = i_size_read(inode);
1725 end_index = i_size >> PAGE_CACHE_SHIFT;
1726 if (index == end_index) {
1727 nr = i_size & ~PAGE_CACHE_MASK;
1728 if (nr <= offset) {
1729 if (page)
1730 page_cache_release(page);
1731 break;
1732 }
1733 }
1734 nr -= offset;
1735
1736 if (page) {
1737 /*
1738 * If users can be writing to this page using arbitrary
1739 * virtual addresses, take care about potential aliasing
1740 * before reading the page on the kernel side.
1741 */
1742 if (mapping_writably_mapped(mapping))
1743 flush_dcache_page(page);
1744 /*
1745 * Mark the page accessed if we read the beginning.
1746 */
1747 if (!offset)
1748 mark_page_accessed(page);
1749 } else {
1750 page = ZERO_PAGE(0);
1751 page_cache_get(page);
1752 }
1753
1754 /*
1755 * Ok, we have the page, and it's up-to-date, so
1756 * now we can copy it to user space...
1757 *
1758 * The actor routine returns how many bytes were actually used..
1759 * NOTE! This may not be the same as how much of a user buffer
1760 * we filled up (we may be padding etc), so we can only update
1761 * "pos" here (the actor routine has to update the user buffer
1762 * pointers and the remaining count).
1763 */
1764 ret = actor(desc, page, offset, nr);
1765 offset += ret;
1766 index += offset >> PAGE_CACHE_SHIFT;
1767 offset &= ~PAGE_CACHE_MASK;
1768
1769 page_cache_release(page);
1770 if (ret != nr || !desc->count)
1771 break;
1772
1773 cond_resched();
1774 }
1775
1776 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1777 file_accessed(filp);
1778 }
1779
1780 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1781 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1782 {
1783 struct file *filp = iocb->ki_filp;
1784 ssize_t retval;
1785 unsigned long seg;
1786 size_t count;
1787 loff_t *ppos = &iocb->ki_pos;
1788
1789 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1790 if (retval)
1791 return retval;
1792
1793 for (seg = 0; seg < nr_segs; seg++) {
1794 read_descriptor_t desc;
1795
1796 desc.written = 0;
1797 desc.arg.buf = iov[seg].iov_base;
1798 desc.count = iov[seg].iov_len;
1799 if (desc.count == 0)
1800 continue;
1801 desc.error = 0;
1802 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1803 retval += desc.written;
1804 if (desc.error) {
1805 retval = retval ?: desc.error;
1806 break;
1807 }
1808 if (desc.count > 0)
1809 break;
1810 }
1811 return retval;
1812 }
1813
1814 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1815 {
1816 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1817
1818 buf->f_type = TMPFS_MAGIC;
1819 buf->f_bsize = PAGE_CACHE_SIZE;
1820 buf->f_namelen = NAME_MAX;
1821 if (sbinfo->max_blocks) {
1822 buf->f_blocks = sbinfo->max_blocks;
1823 buf->f_bavail = buf->f_bfree =
1824 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1825 }
1826 if (sbinfo->max_inodes) {
1827 buf->f_files = sbinfo->max_inodes;
1828 buf->f_ffree = sbinfo->free_inodes;
1829 }
1830 /* else leave those fields 0 like simple_statfs */
1831 return 0;
1832 }
1833
1834 /*
1835 * File creation. Allocate an inode, and we're done..
1836 */
1837 static int
1838 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1839 {
1840 struct inode *inode;
1841 int error = -ENOSPC;
1842
1843 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844 if (inode) {
1845 error = security_inode_init_security(inode, dir, NULL, NULL,
1846 NULL);
1847 if (error) {
1848 if (error != -EOPNOTSUPP) {
1849 iput(inode);
1850 return error;
1851 }
1852 }
1853 #ifdef CONFIG_TMPFS_POSIX_ACL
1854 error = generic_acl_init(inode, dir);
1855 if (error) {
1856 iput(inode);
1857 return error;
1858 }
1859 #else
1860 error = 0;
1861 #endif
1862 dir->i_size += BOGO_DIRENT_SIZE;
1863 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864 d_instantiate(dentry, inode);
1865 dget(dentry); /* Extra count - pin the dentry in core */
1866 }
1867 return error;
1868 }
1869
1870 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1871 {
1872 int error;
1873
1874 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1875 return error;
1876 inc_nlink(dir);
1877 return 0;
1878 }
1879
1880 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1881 struct nameidata *nd)
1882 {
1883 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1884 }
1885
1886 /*
1887 * Link a file..
1888 */
1889 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1890 {
1891 struct inode *inode = old_dentry->d_inode;
1892 int ret;
1893
1894 /*
1895 * No ordinary (disk based) filesystem counts links as inodes;
1896 * but each new link needs a new dentry, pinning lowmem, and
1897 * tmpfs dentries cannot be pruned until they are unlinked.
1898 */
1899 ret = shmem_reserve_inode(inode->i_sb);
1900 if (ret)
1901 goto out;
1902
1903 dir->i_size += BOGO_DIRENT_SIZE;
1904 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1905 inc_nlink(inode);
1906 atomic_inc(&inode->i_count); /* New dentry reference */
1907 dget(dentry); /* Extra pinning count for the created dentry */
1908 d_instantiate(dentry, inode);
1909 out:
1910 return ret;
1911 }
1912
1913 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1914 {
1915 struct inode *inode = dentry->d_inode;
1916
1917 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1918 shmem_free_inode(inode->i_sb);
1919
1920 dir->i_size -= BOGO_DIRENT_SIZE;
1921 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 drop_nlink(inode);
1923 dput(dentry); /* Undo the count from "create" - this does all the work */
1924 return 0;
1925 }
1926
1927 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1928 {
1929 if (!simple_empty(dentry))
1930 return -ENOTEMPTY;
1931
1932 drop_nlink(dentry->d_inode);
1933 drop_nlink(dir);
1934 return shmem_unlink(dir, dentry);
1935 }
1936
1937 /*
1938 * The VFS layer already does all the dentry stuff for rename,
1939 * we just have to decrement the usage count for the target if
1940 * it exists so that the VFS layer correctly free's it when it
1941 * gets overwritten.
1942 */
1943 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1944 {
1945 struct inode *inode = old_dentry->d_inode;
1946 int they_are_dirs = S_ISDIR(inode->i_mode);
1947
1948 if (!simple_empty(new_dentry))
1949 return -ENOTEMPTY;
1950
1951 if (new_dentry->d_inode) {
1952 (void) shmem_unlink(new_dir, new_dentry);
1953 if (they_are_dirs)
1954 drop_nlink(old_dir);
1955 } else if (they_are_dirs) {
1956 drop_nlink(old_dir);
1957 inc_nlink(new_dir);
1958 }
1959
1960 old_dir->i_size -= BOGO_DIRENT_SIZE;
1961 new_dir->i_size += BOGO_DIRENT_SIZE;
1962 old_dir->i_ctime = old_dir->i_mtime =
1963 new_dir->i_ctime = new_dir->i_mtime =
1964 inode->i_ctime = CURRENT_TIME;
1965 return 0;
1966 }
1967
1968 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1969 {
1970 int error;
1971 int len;
1972 struct inode *inode;
1973 struct page *page = NULL;
1974 char *kaddr;
1975 struct shmem_inode_info *info;
1976
1977 len = strlen(symname) + 1;
1978 if (len > PAGE_CACHE_SIZE)
1979 return -ENAMETOOLONG;
1980
1981 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1982 if (!inode)
1983 return -ENOSPC;
1984
1985 error = security_inode_init_security(inode, dir, NULL, NULL,
1986 NULL);
1987 if (error) {
1988 if (error != -EOPNOTSUPP) {
1989 iput(inode);
1990 return error;
1991 }
1992 error = 0;
1993 }
1994
1995 info = SHMEM_I(inode);
1996 inode->i_size = len-1;
1997 if (len <= (char *)inode - (char *)info) {
1998 /* do it inline */
1999 memcpy(info, symname, len);
2000 inode->i_op = &shmem_symlink_inline_operations;
2001 } else {
2002 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2003 if (error) {
2004 iput(inode);
2005 return error;
2006 }
2007 inode->i_mapping->a_ops = &shmem_aops;
2008 inode->i_op = &shmem_symlink_inode_operations;
2009 kaddr = kmap_atomic(page, KM_USER0);
2010 memcpy(kaddr, symname, len);
2011 kunmap_atomic(kaddr, KM_USER0);
2012 set_page_dirty(page);
2013 unlock_page(page);
2014 page_cache_release(page);
2015 }
2016 dir->i_size += BOGO_DIRENT_SIZE;
2017 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018 d_instantiate(dentry, inode);
2019 dget(dentry);
2020 return 0;
2021 }
2022
2023 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2024 {
2025 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2026 return NULL;
2027 }
2028
2029 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2030 {
2031 struct page *page = NULL;
2032 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2033 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2034 if (page)
2035 unlock_page(page);
2036 return page;
2037 }
2038
2039 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2040 {
2041 if (!IS_ERR(nd_get_link(nd))) {
2042 struct page *page = cookie;
2043 kunmap(page);
2044 mark_page_accessed(page);
2045 page_cache_release(page);
2046 }
2047 }
2048
2049 static const struct inode_operations shmem_symlink_inline_operations = {
2050 .readlink = generic_readlink,
2051 .follow_link = shmem_follow_link_inline,
2052 };
2053
2054 static const struct inode_operations shmem_symlink_inode_operations = {
2055 .readlink = generic_readlink,
2056 .follow_link = shmem_follow_link,
2057 .put_link = shmem_put_link,
2058 };
2059
2060 #ifdef CONFIG_TMPFS_POSIX_ACL
2061 /*
2062 * Superblocks without xattr inode operations will get security.* xattr
2063 * support from the VFS "for free". As soon as we have any other xattrs
2064 * like ACLs, we also need to implement the security.* handlers at
2065 * filesystem level, though.
2066 */
2067
2068 static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2069 size_t list_len, const char *name,
2070 size_t name_len, int handler_flags)
2071 {
2072 return security_inode_listsecurity(dentry->d_inode, list, list_len);
2073 }
2074
2075 static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2076 void *buffer, size_t size, int handler_flags)
2077 {
2078 if (strcmp(name, "") == 0)
2079 return -EINVAL;
2080 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2081 }
2082
2083 static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2084 const void *value, size_t size, int flags, int handler_flags)
2085 {
2086 if (strcmp(name, "") == 0)
2087 return -EINVAL;
2088 return security_inode_setsecurity(dentry->d_inode, name, value,
2089 size, flags);
2090 }
2091
2092 static const struct xattr_handler shmem_xattr_security_handler = {
2093 .prefix = XATTR_SECURITY_PREFIX,
2094 .list = shmem_xattr_security_list,
2095 .get = shmem_xattr_security_get,
2096 .set = shmem_xattr_security_set,
2097 };
2098
2099 static const struct xattr_handler *shmem_xattr_handlers[] = {
2100 &generic_acl_access_handler,
2101 &generic_acl_default_handler,
2102 &shmem_xattr_security_handler,
2103 NULL
2104 };
2105 #endif
2106
2107 static struct dentry *shmem_get_parent(struct dentry *child)
2108 {
2109 return ERR_PTR(-ESTALE);
2110 }
2111
2112 static int shmem_match(struct inode *ino, void *vfh)
2113 {
2114 __u32 *fh = vfh;
2115 __u64 inum = fh[2];
2116 inum = (inum << 32) | fh[1];
2117 return ino->i_ino == inum && fh[0] == ino->i_generation;
2118 }
2119
2120 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2121 struct fid *fid, int fh_len, int fh_type)
2122 {
2123 struct inode *inode;
2124 struct dentry *dentry = NULL;
2125 u64 inum = fid->raw[2];
2126 inum = (inum << 32) | fid->raw[1];
2127
2128 if (fh_len < 3)
2129 return NULL;
2130
2131 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2132 shmem_match, fid->raw);
2133 if (inode) {
2134 dentry = d_find_alias(inode);
2135 iput(inode);
2136 }
2137
2138 return dentry;
2139 }
2140
2141 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2142 int connectable)
2143 {
2144 struct inode *inode = dentry->d_inode;
2145
2146 if (*len < 3)
2147 return 255;
2148
2149 if (hlist_unhashed(&inode->i_hash)) {
2150 /* Unfortunately insert_inode_hash is not idempotent,
2151 * so as we hash inodes here rather than at creation
2152 * time, we need a lock to ensure we only try
2153 * to do it once
2154 */
2155 static DEFINE_SPINLOCK(lock);
2156 spin_lock(&lock);
2157 if (hlist_unhashed(&inode->i_hash))
2158 __insert_inode_hash(inode,
2159 inode->i_ino + inode->i_generation);
2160 spin_unlock(&lock);
2161 }
2162
2163 fh[0] = inode->i_generation;
2164 fh[1] = inode->i_ino;
2165 fh[2] = ((__u64)inode->i_ino) >> 32;
2166
2167 *len = 3;
2168 return 1;
2169 }
2170
2171 static const struct export_operations shmem_export_ops = {
2172 .get_parent = shmem_get_parent,
2173 .encode_fh = shmem_encode_fh,
2174 .fh_to_dentry = shmem_fh_to_dentry,
2175 };
2176
2177 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2178 bool remount)
2179 {
2180 char *this_char, *value, *rest;
2181
2182 while (options != NULL) {
2183 this_char = options;
2184 for (;;) {
2185 /*
2186 * NUL-terminate this option: unfortunately,
2187 * mount options form a comma-separated list,
2188 * but mpol's nodelist may also contain commas.
2189 */
2190 options = strchr(options, ',');
2191 if (options == NULL)
2192 break;
2193 options++;
2194 if (!isdigit(*options)) {
2195 options[-1] = '\0';
2196 break;
2197 }
2198 }
2199 if (!*this_char)
2200 continue;
2201 if ((value = strchr(this_char,'=')) != NULL) {
2202 *value++ = 0;
2203 } else {
2204 printk(KERN_ERR
2205 "tmpfs: No value for mount option '%s'\n",
2206 this_char);
2207 return 1;
2208 }
2209
2210 if (!strcmp(this_char,"size")) {
2211 unsigned long long size;
2212 size = memparse(value,&rest);
2213 if (*rest == '%') {
2214 size <<= PAGE_SHIFT;
2215 size *= totalram_pages;
2216 do_div(size, 100);
2217 rest++;
2218 }
2219 if (*rest)
2220 goto bad_val;
2221 sbinfo->max_blocks =
2222 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2223 } else if (!strcmp(this_char,"nr_blocks")) {
2224 sbinfo->max_blocks = memparse(value, &rest);
2225 if (*rest)
2226 goto bad_val;
2227 } else if (!strcmp(this_char,"nr_inodes")) {
2228 sbinfo->max_inodes = memparse(value, &rest);
2229 if (*rest)
2230 goto bad_val;
2231 } else if (!strcmp(this_char,"mode")) {
2232 if (remount)
2233 continue;
2234 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2235 if (*rest)
2236 goto bad_val;
2237 } else if (!strcmp(this_char,"uid")) {
2238 if (remount)
2239 continue;
2240 sbinfo->uid = simple_strtoul(value, &rest, 0);
2241 if (*rest)
2242 goto bad_val;
2243 } else if (!strcmp(this_char,"gid")) {
2244 if (remount)
2245 continue;
2246 sbinfo->gid = simple_strtoul(value, &rest, 0);
2247 if (*rest)
2248 goto bad_val;
2249 } else if (!strcmp(this_char,"mpol")) {
2250 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2251 goto bad_val;
2252 } else {
2253 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2254 this_char);
2255 return 1;
2256 }
2257 }
2258 return 0;
2259
2260 bad_val:
2261 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2262 value, this_char);
2263 return 1;
2264
2265 }
2266
2267 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2268 {
2269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2270 struct shmem_sb_info config = *sbinfo;
2271 unsigned long inodes;
2272 int error = -EINVAL;
2273
2274 if (shmem_parse_options(data, &config, true))
2275 return error;
2276
2277 spin_lock(&sbinfo->stat_lock);
2278 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2279 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2280 goto out;
2281 if (config.max_inodes < inodes)
2282 goto out;
2283 /*
2284 * Those tests also disallow limited->unlimited while any are in
2285 * use, so i_blocks will always be zero when max_blocks is zero;
2286 * but we must separately disallow unlimited->limited, because
2287 * in that case we have no record of how much is already in use.
2288 */
2289 if (config.max_blocks && !sbinfo->max_blocks)
2290 goto out;
2291 if (config.max_inodes && !sbinfo->max_inodes)
2292 goto out;
2293
2294 error = 0;
2295 sbinfo->max_blocks = config.max_blocks;
2296 sbinfo->max_inodes = config.max_inodes;
2297 sbinfo->free_inodes = config.max_inodes - inodes;
2298
2299 mpol_put(sbinfo->mpol);
2300 sbinfo->mpol = config.mpol; /* transfers initial ref */
2301 out:
2302 spin_unlock(&sbinfo->stat_lock);
2303 return error;
2304 }
2305
2306 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2307 {
2308 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2309
2310 if (sbinfo->max_blocks != shmem_default_max_blocks())
2311 seq_printf(seq, ",size=%luk",
2312 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2313 if (sbinfo->max_inodes != shmem_default_max_inodes())
2314 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2315 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2316 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2317 if (sbinfo->uid != 0)
2318 seq_printf(seq, ",uid=%u", sbinfo->uid);
2319 if (sbinfo->gid != 0)
2320 seq_printf(seq, ",gid=%u", sbinfo->gid);
2321 shmem_show_mpol(seq, sbinfo->mpol);
2322 return 0;
2323 }
2324 #endif /* CONFIG_TMPFS */
2325
2326 static void shmem_put_super(struct super_block *sb)
2327 {
2328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2329
2330 percpu_counter_destroy(&sbinfo->used_blocks);
2331 kfree(sbinfo);
2332 sb->s_fs_info = NULL;
2333 }
2334
2335 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2336 {
2337 struct inode *inode;
2338 struct dentry *root;
2339 struct shmem_sb_info *sbinfo;
2340 int err = -ENOMEM;
2341
2342 /* Round up to L1_CACHE_BYTES to resist false sharing */
2343 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2344 L1_CACHE_BYTES), GFP_KERNEL);
2345 if (!sbinfo)
2346 return -ENOMEM;
2347
2348 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2349 sbinfo->uid = current_fsuid();
2350 sbinfo->gid = current_fsgid();
2351 sb->s_fs_info = sbinfo;
2352
2353 #ifdef CONFIG_TMPFS
2354 /*
2355 * Per default we only allow half of the physical ram per
2356 * tmpfs instance, limiting inodes to one per page of lowmem;
2357 * but the internal instance is left unlimited.
2358 */
2359 if (!(sb->s_flags & MS_NOUSER)) {
2360 sbinfo->max_blocks = shmem_default_max_blocks();
2361 sbinfo->max_inodes = shmem_default_max_inodes();
2362 if (shmem_parse_options(data, sbinfo, false)) {
2363 err = -EINVAL;
2364 goto failed;
2365 }
2366 }
2367 sb->s_export_op = &shmem_export_ops;
2368 #else
2369 sb->s_flags |= MS_NOUSER;
2370 #endif
2371
2372 spin_lock_init(&sbinfo->stat_lock);
2373 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2374 goto failed;
2375 sbinfo->free_inodes = sbinfo->max_inodes;
2376
2377 sb->s_maxbytes = SHMEM_MAX_BYTES;
2378 sb->s_blocksize = PAGE_CACHE_SIZE;
2379 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2380 sb->s_magic = TMPFS_MAGIC;
2381 sb->s_op = &shmem_ops;
2382 sb->s_time_gran = 1;
2383 #ifdef CONFIG_TMPFS_POSIX_ACL
2384 sb->s_xattr = shmem_xattr_handlers;
2385 sb->s_flags |= MS_POSIXACL;
2386 #endif
2387
2388 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2389 if (!inode)
2390 goto failed;
2391 inode->i_uid = sbinfo->uid;
2392 inode->i_gid = sbinfo->gid;
2393 root = d_alloc_root(inode);
2394 if (!root)
2395 goto failed_iput;
2396 sb->s_root = root;
2397 return 0;
2398
2399 failed_iput:
2400 iput(inode);
2401 failed:
2402 shmem_put_super(sb);
2403 return err;
2404 }
2405
2406 static struct kmem_cache *shmem_inode_cachep;
2407
2408 static struct inode *shmem_alloc_inode(struct super_block *sb)
2409 {
2410 struct shmem_inode_info *p;
2411 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2412 if (!p)
2413 return NULL;
2414 return &p->vfs_inode;
2415 }
2416
2417 static void shmem_destroy_inode(struct inode *inode)
2418 {
2419 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2420 /* only struct inode is valid if it's an inline symlink */
2421 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2422 }
2423 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2424 }
2425
2426 static void init_once(void *foo)
2427 {
2428 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2429
2430 inode_init_once(&p->vfs_inode);
2431 }
2432
2433 static int init_inodecache(void)
2434 {
2435 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2436 sizeof(struct shmem_inode_info),
2437 0, SLAB_PANIC, init_once);
2438 return 0;
2439 }
2440
2441 static void destroy_inodecache(void)
2442 {
2443 kmem_cache_destroy(shmem_inode_cachep);
2444 }
2445
2446 static const struct address_space_operations shmem_aops = {
2447 .writepage = shmem_writepage,
2448 .set_page_dirty = __set_page_dirty_no_writeback,
2449 #ifdef CONFIG_TMPFS
2450 .readpage = shmem_readpage,
2451 .write_begin = shmem_write_begin,
2452 .write_end = shmem_write_end,
2453 #endif
2454 .migratepage = migrate_page,
2455 .error_remove_page = generic_error_remove_page,
2456 };
2457
2458 static const struct file_operations shmem_file_operations = {
2459 .mmap = shmem_mmap,
2460 #ifdef CONFIG_TMPFS
2461 .llseek = generic_file_llseek,
2462 .read = do_sync_read,
2463 .write = do_sync_write,
2464 .aio_read = shmem_file_aio_read,
2465 .aio_write = generic_file_aio_write,
2466 .fsync = noop_fsync,
2467 .splice_read = generic_file_splice_read,
2468 .splice_write = generic_file_splice_write,
2469 #endif
2470 };
2471
2472 static const struct inode_operations shmem_inode_operations = {
2473 .setattr = shmem_notify_change,
2474 .truncate_range = shmem_truncate_range,
2475 #ifdef CONFIG_TMPFS_POSIX_ACL
2476 .setxattr = generic_setxattr,
2477 .getxattr = generic_getxattr,
2478 .listxattr = generic_listxattr,
2479 .removexattr = generic_removexattr,
2480 .check_acl = generic_check_acl,
2481 #endif
2482
2483 };
2484
2485 static const struct inode_operations shmem_dir_inode_operations = {
2486 #ifdef CONFIG_TMPFS
2487 .create = shmem_create,
2488 .lookup = simple_lookup,
2489 .link = shmem_link,
2490 .unlink = shmem_unlink,
2491 .symlink = shmem_symlink,
2492 .mkdir = shmem_mkdir,
2493 .rmdir = shmem_rmdir,
2494 .mknod = shmem_mknod,
2495 .rename = shmem_rename,
2496 #endif
2497 #ifdef CONFIG_TMPFS_POSIX_ACL
2498 .setattr = shmem_notify_change,
2499 .setxattr = generic_setxattr,
2500 .getxattr = generic_getxattr,
2501 .listxattr = generic_listxattr,
2502 .removexattr = generic_removexattr,
2503 .check_acl = generic_check_acl,
2504 #endif
2505 };
2506
2507 static const struct inode_operations shmem_special_inode_operations = {
2508 #ifdef CONFIG_TMPFS_POSIX_ACL
2509 .setattr = shmem_notify_change,
2510 .setxattr = generic_setxattr,
2511 .getxattr = generic_getxattr,
2512 .listxattr = generic_listxattr,
2513 .removexattr = generic_removexattr,
2514 .check_acl = generic_check_acl,
2515 #endif
2516 };
2517
2518 static const struct super_operations shmem_ops = {
2519 .alloc_inode = shmem_alloc_inode,
2520 .destroy_inode = shmem_destroy_inode,
2521 #ifdef CONFIG_TMPFS
2522 .statfs = shmem_statfs,
2523 .remount_fs = shmem_remount_fs,
2524 .show_options = shmem_show_options,
2525 #endif
2526 .evict_inode = shmem_evict_inode,
2527 .drop_inode = generic_delete_inode,
2528 .put_super = shmem_put_super,
2529 };
2530
2531 static const struct vm_operations_struct shmem_vm_ops = {
2532 .fault = shmem_fault,
2533 #ifdef CONFIG_NUMA
2534 .set_policy = shmem_set_policy,
2535 .get_policy = shmem_get_policy,
2536 #endif
2537 };
2538
2539
2540 static int shmem_get_sb(struct file_system_type *fs_type,
2541 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2542 {
2543 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2544 }
2545
2546 static struct file_system_type tmpfs_fs_type = {
2547 .owner = THIS_MODULE,
2548 .name = "tmpfs",
2549 .get_sb = shmem_get_sb,
2550 .kill_sb = kill_litter_super,
2551 };
2552
2553 int __init init_tmpfs(void)
2554 {
2555 int error;
2556
2557 error = bdi_init(&shmem_backing_dev_info);
2558 if (error)
2559 goto out4;
2560
2561 error = init_inodecache();
2562 if (error)
2563 goto out3;
2564
2565 error = register_filesystem(&tmpfs_fs_type);
2566 if (error) {
2567 printk(KERN_ERR "Could not register tmpfs\n");
2568 goto out2;
2569 }
2570
2571 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2572 tmpfs_fs_type.name, NULL);
2573 if (IS_ERR(shm_mnt)) {
2574 error = PTR_ERR(shm_mnt);
2575 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2576 goto out1;
2577 }
2578 return 0;
2579
2580 out1:
2581 unregister_filesystem(&tmpfs_fs_type);
2582 out2:
2583 destroy_inodecache();
2584 out3:
2585 bdi_destroy(&shmem_backing_dev_info);
2586 out4:
2587 shm_mnt = ERR_PTR(error);
2588 return error;
2589 }
2590
2591 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2592 /**
2593 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2594 * @inode: the inode to be searched
2595 * @pgoff: the offset to be searched
2596 * @pagep: the pointer for the found page to be stored
2597 * @ent: the pointer for the found swap entry to be stored
2598 *
2599 * If a page is found, refcount of it is incremented. Callers should handle
2600 * these refcount.
2601 */
2602 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2603 struct page **pagep, swp_entry_t *ent)
2604 {
2605 swp_entry_t entry = { .val = 0 }, *ptr;
2606 struct page *page = NULL;
2607 struct shmem_inode_info *info = SHMEM_I(inode);
2608
2609 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2610 goto out;
2611
2612 spin_lock(&info->lock);
2613 ptr = shmem_swp_entry(info, pgoff, NULL);
2614 #ifdef CONFIG_SWAP
2615 if (ptr && ptr->val) {
2616 entry.val = ptr->val;
2617 page = find_get_page(&swapper_space, entry.val);
2618 } else
2619 #endif
2620 page = find_get_page(inode->i_mapping, pgoff);
2621 if (ptr)
2622 shmem_swp_unmap(ptr);
2623 spin_unlock(&info->lock);
2624 out:
2625 *pagep = page;
2626 *ent = entry;
2627 }
2628 #endif
2629
2630 #else /* !CONFIG_SHMEM */
2631
2632 /*
2633 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2634 *
2635 * This is intended for small system where the benefits of the full
2636 * shmem code (swap-backed and resource-limited) are outweighed by
2637 * their complexity. On systems without swap this code should be
2638 * effectively equivalent, but much lighter weight.
2639 */
2640
2641 #include <linux/ramfs.h>
2642
2643 static struct file_system_type tmpfs_fs_type = {
2644 .name = "tmpfs",
2645 .get_sb = ramfs_get_sb,
2646 .kill_sb = kill_litter_super,
2647 };
2648
2649 int __init init_tmpfs(void)
2650 {
2651 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2652
2653 shm_mnt = kern_mount(&tmpfs_fs_type);
2654 BUG_ON(IS_ERR(shm_mnt));
2655
2656 return 0;
2657 }
2658
2659 int shmem_unuse(swp_entry_t entry, struct page *page)
2660 {
2661 return 0;
2662 }
2663
2664 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2665 {
2666 return 0;
2667 }
2668
2669 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2670 /**
2671 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2672 * @inode: the inode to be searched
2673 * @pgoff: the offset to be searched
2674 * @pagep: the pointer for the found page to be stored
2675 * @ent: the pointer for the found swap entry to be stored
2676 *
2677 * If a page is found, refcount of it is incremented. Callers should handle
2678 * these refcount.
2679 */
2680 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2681 struct page **pagep, swp_entry_t *ent)
2682 {
2683 struct page *page = NULL;
2684
2685 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2686 goto out;
2687 page = find_get_page(inode->i_mapping, pgoff);
2688 out:
2689 *pagep = page;
2690 *ent = (swp_entry_t){ .val = 0 };
2691 }
2692 #endif
2693
2694 #define shmem_vm_ops generic_file_vm_ops
2695 #define shmem_file_operations ramfs_file_operations
2696 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2697 #define shmem_acct_size(flags, size) 0
2698 #define shmem_unacct_size(flags, size) do {} while (0)
2699 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2700
2701 #endif /* CONFIG_SHMEM */
2702
2703 /* common code */
2704
2705 /**
2706 * shmem_file_setup - get an unlinked file living in tmpfs
2707 * @name: name for dentry (to be seen in /proc/<pid>/maps
2708 * @size: size to be set for the file
2709 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2710 */
2711 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2712 {
2713 int error;
2714 struct file *file;
2715 struct inode *inode;
2716 struct path path;
2717 struct dentry *root;
2718 struct qstr this;
2719
2720 if (IS_ERR(shm_mnt))
2721 return (void *)shm_mnt;
2722
2723 if (size < 0 || size > SHMEM_MAX_BYTES)
2724 return ERR_PTR(-EINVAL);
2725
2726 if (shmem_acct_size(flags, size))
2727 return ERR_PTR(-ENOMEM);
2728
2729 error = -ENOMEM;
2730 this.name = name;
2731 this.len = strlen(name);
2732 this.hash = 0; /* will go */
2733 root = shm_mnt->mnt_root;
2734 path.dentry = d_alloc(root, &this);
2735 if (!path.dentry)
2736 goto put_memory;
2737 path.mnt = mntget(shm_mnt);
2738
2739 error = -ENOSPC;
2740 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2741 if (!inode)
2742 goto put_dentry;
2743
2744 d_instantiate(path.dentry, inode);
2745 inode->i_size = size;
2746 inode->i_nlink = 0; /* It is unlinked */
2747 #ifndef CONFIG_MMU
2748 error = ramfs_nommu_expand_for_mapping(inode, size);
2749 if (error)
2750 goto put_dentry;
2751 #endif
2752
2753 error = -ENFILE;
2754 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2755 &shmem_file_operations);
2756 if (!file)
2757 goto put_dentry;
2758
2759 return file;
2760
2761 put_dentry:
2762 path_put(&path);
2763 put_memory:
2764 shmem_unacct_size(flags, size);
2765 return ERR_PTR(error);
2766 }
2767 EXPORT_SYMBOL_GPL(shmem_file_setup);
2768
2769 /**
2770 * shmem_zero_setup - setup a shared anonymous mapping
2771 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2772 */
2773 int shmem_zero_setup(struct vm_area_struct *vma)
2774 {
2775 struct file *file;
2776 loff_t size = vma->vm_end - vma->vm_start;
2777
2778 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2779 if (IS_ERR(file))
2780 return PTR_ERR(file);
2781
2782 if (vma->vm_file)
2783 fput(vma->vm_file);
2784 vma->vm_file = file;
2785 vma->vm_ops = &shmem_vm_ops;
2786 return 0;
2787 }
This page took 0.134104 seconds and 6 git commands to generate.