Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
137
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
144
145 #ifndef ARCH_KMALLOC_MINALIGN
146 /*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
395
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
399
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
402
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
408
409 /* constructor func */
410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411
412 /* 5) cache creation/removal */
413 const char *name;
414 struct list_head next;
415
416 /* 6) statistics */
417 #if STATS
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
427 unsigned long node_overflow;
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
432 #endif
433 #if DEBUG
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
442 #endif
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
454 };
455
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459 #define BATCHREFILL_LIMIT 16
460 /*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
463 *
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
466 */
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
469
470 #if STATS
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494 #else
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
510 #endif
511
512 #if DEBUG
513
514 /*
515 * memory layout of objects:
516 * 0 : objp
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * redzone word.
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
526 */
527 static int obj_offset(struct kmem_cache *cachep)
528 {
529 return cachep->obj_offset;
530 }
531
532 static int obj_size(struct kmem_cache *cachep)
533 {
534 return cachep->obj_size;
535 }
536
537 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
538 {
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
542 }
543
544 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
545 {
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
553 }
554
555 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
556 {
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
559 }
560
561 #else
562
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569 #endif
570
571 /*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
578 /*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
582 */
583 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584 {
585 page->lru.next = (struct list_head *)cache;
586 }
587
588 static inline struct kmem_cache *page_get_cache(struct page *page)
589 {
590 page = compound_head(page);
591 BUG_ON(!PageSlab(page));
592 return (struct kmem_cache *)page->lru.next;
593 }
594
595 static inline void page_set_slab(struct page *page, struct slab *slab)
596 {
597 page->lru.prev = (struct list_head *)slab;
598 }
599
600 static inline struct slab *page_get_slab(struct page *page)
601 {
602 BUG_ON(!PageSlab(page));
603 return (struct slab *)page->lru.prev;
604 }
605
606 static inline struct kmem_cache *virt_to_cache(const void *obj)
607 {
608 struct page *page = virt_to_head_page(obj);
609 return page_get_cache(page);
610 }
611
612 static inline struct slab *virt_to_slab(const void *obj)
613 {
614 struct page *page = virt_to_head_page(obj);
615 return page_get_slab(page);
616 }
617
618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620 {
621 return slab->s_mem + cache->buffer_size * idx;
622 }
623
624 /*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
632 {
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635 }
636
637 /*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
640 struct cache_sizes malloc_sizes[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644 #undef CACHE
645 };
646 EXPORT_SYMBOL(malloc_sizes);
647
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
649 struct cache_names {
650 char *name;
651 char *name_dma;
652 };
653
654 static struct cache_names __initdata cache_names[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
657 {NULL,}
658 #undef CACHE
659 };
660
661 static struct arraycache_init initarray_cache __initdata =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663 static struct arraycache_init initarray_generic =
664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache = {
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
671 .buffer_size = sizeof(struct kmem_cache),
672 .name = "kmem_cache",
673 };
674
675 #define BAD_ALIEN_MAGIC 0x01020304ul
676
677 #ifdef CONFIG_LOCKDEP
678
679 /*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
689 */
690 static struct lock_class_key on_slab_l3_key;
691 static struct lock_class_key on_slab_alc_key;
692
693 static inline void init_lock_keys(void)
694
695 {
696 int q;
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
724 }
725 }
726 #else
727 static inline void init_lock_keys(void)
728 {
729 }
730 #endif
731
732 /*
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
735 */
736 static DEFINE_MUTEX(cache_chain_mutex);
737 static struct list_head cache_chain;
738
739 /*
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
742 */
743 static enum {
744 NONE,
745 PARTIAL_AC,
746 PARTIAL_L3,
747 FULL
748 } g_cpucache_up;
749
750 /*
751 * used by boot code to determine if it can use slab based allocator
752 */
753 int slab_is_available(void)
754 {
755 return g_cpucache_up == FULL;
756 }
757
758 static DEFINE_PER_CPU(struct delayed_work, reap_work);
759
760 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
761 {
762 return cachep->array[smp_processor_id()];
763 }
764
765 static inline struct kmem_cache *__find_general_cachep(size_t size,
766 gfp_t gfpflags)
767 {
768 struct cache_sizes *csizep = malloc_sizes;
769
770 #if DEBUG
771 /* This happens if someone tries to call
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
774 */
775 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
776 #endif
777 WARN_ON_ONCE(size == 0);
778 while (size > csizep->cs_size)
779 csizep++;
780
781 /*
782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
785 */
786 #ifdef CONFIG_ZONE_DMA
787 if (unlikely(gfpflags & GFP_DMA))
788 return csizep->cs_dmacachep;
789 #endif
790 return csizep->cs_cachep;
791 }
792
793 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
794 {
795 return __find_general_cachep(size, gfpflags);
796 }
797
798 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
799 {
800 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
801 }
802
803 /*
804 * Calculate the number of objects and left-over bytes for a given buffer size.
805 */
806 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
807 size_t align, int flags, size_t *left_over,
808 unsigned int *num)
809 {
810 int nr_objs;
811 size_t mgmt_size;
812 size_t slab_size = PAGE_SIZE << gfporder;
813
814 /*
815 * The slab management structure can be either off the slab or
816 * on it. For the latter case, the memory allocated for a
817 * slab is used for:
818 *
819 * - The struct slab
820 * - One kmem_bufctl_t for each object
821 * - Padding to respect alignment of @align
822 * - @buffer_size bytes for each object
823 *
824 * If the slab management structure is off the slab, then the
825 * alignment will already be calculated into the size. Because
826 * the slabs are all pages aligned, the objects will be at the
827 * correct alignment when allocated.
828 */
829 if (flags & CFLGS_OFF_SLAB) {
830 mgmt_size = 0;
831 nr_objs = slab_size / buffer_size;
832
833 if (nr_objs > SLAB_LIMIT)
834 nr_objs = SLAB_LIMIT;
835 } else {
836 /*
837 * Ignore padding for the initial guess. The padding
838 * is at most @align-1 bytes, and @buffer_size is at
839 * least @align. In the worst case, this result will
840 * be one greater than the number of objects that fit
841 * into the memory allocation when taking the padding
842 * into account.
843 */
844 nr_objs = (slab_size - sizeof(struct slab)) /
845 (buffer_size + sizeof(kmem_bufctl_t));
846
847 /*
848 * This calculated number will be either the right
849 * amount, or one greater than what we want.
850 */
851 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
852 > slab_size)
853 nr_objs--;
854
855 if (nr_objs > SLAB_LIMIT)
856 nr_objs = SLAB_LIMIT;
857
858 mgmt_size = slab_mgmt_size(nr_objs, align);
859 }
860 *num = nr_objs;
861 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
862 }
863
864 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
865
866 static void __slab_error(const char *function, struct kmem_cache *cachep,
867 char *msg)
868 {
869 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
870 function, cachep->name, msg);
871 dump_stack();
872 }
873
874 /*
875 * By default on NUMA we use alien caches to stage the freeing of
876 * objects allocated from other nodes. This causes massive memory
877 * inefficiencies when using fake NUMA setup to split memory into a
878 * large number of small nodes, so it can be disabled on the command
879 * line
880 */
881
882 static int use_alien_caches __read_mostly = 1;
883 static int __init noaliencache_setup(char *s)
884 {
885 use_alien_caches = 0;
886 return 1;
887 }
888 __setup("noaliencache", noaliencache_setup);
889
890 #ifdef CONFIG_NUMA
891 /*
892 * Special reaping functions for NUMA systems called from cache_reap().
893 * These take care of doing round robin flushing of alien caches (containing
894 * objects freed on different nodes from which they were allocated) and the
895 * flushing of remote pcps by calling drain_node_pages.
896 */
897 static DEFINE_PER_CPU(unsigned long, reap_node);
898
899 static void init_reap_node(int cpu)
900 {
901 int node;
902
903 node = next_node(cpu_to_node(cpu), node_online_map);
904 if (node == MAX_NUMNODES)
905 node = first_node(node_online_map);
906
907 per_cpu(reap_node, cpu) = node;
908 }
909
910 static void next_reap_node(void)
911 {
912 int node = __get_cpu_var(reap_node);
913
914 node = next_node(node, node_online_map);
915 if (unlikely(node >= MAX_NUMNODES))
916 node = first_node(node_online_map);
917 __get_cpu_var(reap_node) = node;
918 }
919
920 #else
921 #define init_reap_node(cpu) do { } while (0)
922 #define next_reap_node(void) do { } while (0)
923 #endif
924
925 /*
926 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
927 * via the workqueue/eventd.
928 * Add the CPU number into the expiration time to minimize the possibility of
929 * the CPUs getting into lockstep and contending for the global cache chain
930 * lock.
931 */
932 static void __devinit start_cpu_timer(int cpu)
933 {
934 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
935
936 /*
937 * When this gets called from do_initcalls via cpucache_init(),
938 * init_workqueues() has already run, so keventd will be setup
939 * at that time.
940 */
941 if (keventd_up() && reap_work->work.func == NULL) {
942 init_reap_node(cpu);
943 INIT_DELAYED_WORK(reap_work, cache_reap);
944 schedule_delayed_work_on(cpu, reap_work,
945 __round_jiffies_relative(HZ, cpu));
946 }
947 }
948
949 static struct array_cache *alloc_arraycache(int node, int entries,
950 int batchcount)
951 {
952 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
953 struct array_cache *nc = NULL;
954
955 nc = kmalloc_node(memsize, GFP_KERNEL, node);
956 if (nc) {
957 nc->avail = 0;
958 nc->limit = entries;
959 nc->batchcount = batchcount;
960 nc->touched = 0;
961 spin_lock_init(&nc->lock);
962 }
963 return nc;
964 }
965
966 /*
967 * Transfer objects in one arraycache to another.
968 * Locking must be handled by the caller.
969 *
970 * Return the number of entries transferred.
971 */
972 static int transfer_objects(struct array_cache *to,
973 struct array_cache *from, unsigned int max)
974 {
975 /* Figure out how many entries to transfer */
976 int nr = min(min(from->avail, max), to->limit - to->avail);
977
978 if (!nr)
979 return 0;
980
981 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
982 sizeof(void *) *nr);
983
984 from->avail -= nr;
985 to->avail += nr;
986 to->touched = 1;
987 return nr;
988 }
989
990 #ifndef CONFIG_NUMA
991
992 #define drain_alien_cache(cachep, alien) do { } while (0)
993 #define reap_alien(cachep, l3) do { } while (0)
994
995 static inline struct array_cache **alloc_alien_cache(int node, int limit)
996 {
997 return (struct array_cache **)BAD_ALIEN_MAGIC;
998 }
999
1000 static inline void free_alien_cache(struct array_cache **ac_ptr)
1001 {
1002 }
1003
1004 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1005 {
1006 return 0;
1007 }
1008
1009 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1010 gfp_t flags)
1011 {
1012 return NULL;
1013 }
1014
1015 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1016 gfp_t flags, int nodeid)
1017 {
1018 return NULL;
1019 }
1020
1021 #else /* CONFIG_NUMA */
1022
1023 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1024 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1025
1026 static struct array_cache **alloc_alien_cache(int node, int limit)
1027 {
1028 struct array_cache **ac_ptr;
1029 int memsize = sizeof(void *) * nr_node_ids;
1030 int i;
1031
1032 if (limit > 1)
1033 limit = 12;
1034 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1035 if (ac_ptr) {
1036 for_each_node(i) {
1037 if (i == node || !node_online(i)) {
1038 ac_ptr[i] = NULL;
1039 continue;
1040 }
1041 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1042 if (!ac_ptr[i]) {
1043 for (i--; i <= 0; i--)
1044 kfree(ac_ptr[i]);
1045 kfree(ac_ptr);
1046 return NULL;
1047 }
1048 }
1049 }
1050 return ac_ptr;
1051 }
1052
1053 static void free_alien_cache(struct array_cache **ac_ptr)
1054 {
1055 int i;
1056
1057 if (!ac_ptr)
1058 return;
1059 for_each_node(i)
1060 kfree(ac_ptr[i]);
1061 kfree(ac_ptr);
1062 }
1063
1064 static void __drain_alien_cache(struct kmem_cache *cachep,
1065 struct array_cache *ac, int node)
1066 {
1067 struct kmem_list3 *rl3 = cachep->nodelists[node];
1068
1069 if (ac->avail) {
1070 spin_lock(&rl3->list_lock);
1071 /*
1072 * Stuff objects into the remote nodes shared array first.
1073 * That way we could avoid the overhead of putting the objects
1074 * into the free lists and getting them back later.
1075 */
1076 if (rl3->shared)
1077 transfer_objects(rl3->shared, ac, ac->limit);
1078
1079 free_block(cachep, ac->entry, ac->avail, node);
1080 ac->avail = 0;
1081 spin_unlock(&rl3->list_lock);
1082 }
1083 }
1084
1085 /*
1086 * Called from cache_reap() to regularly drain alien caches round robin.
1087 */
1088 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1089 {
1090 int node = __get_cpu_var(reap_node);
1091
1092 if (l3->alien) {
1093 struct array_cache *ac = l3->alien[node];
1094
1095 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1096 __drain_alien_cache(cachep, ac, node);
1097 spin_unlock_irq(&ac->lock);
1098 }
1099 }
1100 }
1101
1102 static void drain_alien_cache(struct kmem_cache *cachep,
1103 struct array_cache **alien)
1104 {
1105 int i = 0;
1106 struct array_cache *ac;
1107 unsigned long flags;
1108
1109 for_each_online_node(i) {
1110 ac = alien[i];
1111 if (ac) {
1112 spin_lock_irqsave(&ac->lock, flags);
1113 __drain_alien_cache(cachep, ac, i);
1114 spin_unlock_irqrestore(&ac->lock, flags);
1115 }
1116 }
1117 }
1118
1119 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1120 {
1121 struct slab *slabp = virt_to_slab(objp);
1122 int nodeid = slabp->nodeid;
1123 struct kmem_list3 *l3;
1124 struct array_cache *alien = NULL;
1125 int node;
1126
1127 node = numa_node_id();
1128
1129 /*
1130 * Make sure we are not freeing a object from another node to the array
1131 * cache on this cpu.
1132 */
1133 if (likely(slabp->nodeid == node))
1134 return 0;
1135
1136 l3 = cachep->nodelists[node];
1137 STATS_INC_NODEFREES(cachep);
1138 if (l3->alien && l3->alien[nodeid]) {
1139 alien = l3->alien[nodeid];
1140 spin_lock(&alien->lock);
1141 if (unlikely(alien->avail == alien->limit)) {
1142 STATS_INC_ACOVERFLOW(cachep);
1143 __drain_alien_cache(cachep, alien, nodeid);
1144 }
1145 alien->entry[alien->avail++] = objp;
1146 spin_unlock(&alien->lock);
1147 } else {
1148 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1149 free_block(cachep, &objp, 1, nodeid);
1150 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1151 }
1152 return 1;
1153 }
1154 #endif
1155
1156 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1157 unsigned long action, void *hcpu)
1158 {
1159 long cpu = (long)hcpu;
1160 struct kmem_cache *cachep;
1161 struct kmem_list3 *l3 = NULL;
1162 int node = cpu_to_node(cpu);
1163 int memsize = sizeof(struct kmem_list3);
1164
1165 switch (action) {
1166 case CPU_LOCK_ACQUIRE:
1167 mutex_lock(&cache_chain_mutex);
1168 break;
1169 case CPU_UP_PREPARE:
1170 case CPU_UP_PREPARE_FROZEN:
1171 /*
1172 * We need to do this right in the beginning since
1173 * alloc_arraycache's are going to use this list.
1174 * kmalloc_node allows us to add the slab to the right
1175 * kmem_list3 and not this cpu's kmem_list3
1176 */
1177
1178 list_for_each_entry(cachep, &cache_chain, next) {
1179 /*
1180 * Set up the size64 kmemlist for cpu before we can
1181 * begin anything. Make sure some other cpu on this
1182 * node has not already allocated this
1183 */
1184 if (!cachep->nodelists[node]) {
1185 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1186 if (!l3)
1187 goto bad;
1188 kmem_list3_init(l3);
1189 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191
1192 /*
1193 * The l3s don't come and go as CPUs come and
1194 * go. cache_chain_mutex is sufficient
1195 * protection here.
1196 */
1197 cachep->nodelists[node] = l3;
1198 }
1199
1200 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1201 cachep->nodelists[node]->free_limit =
1202 (1 + nr_cpus_node(node)) *
1203 cachep->batchcount + cachep->num;
1204 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1205 }
1206
1207 /*
1208 * Now we can go ahead with allocating the shared arrays and
1209 * array caches
1210 */
1211 list_for_each_entry(cachep, &cache_chain, next) {
1212 struct array_cache *nc;
1213 struct array_cache *shared = NULL;
1214 struct array_cache **alien = NULL;
1215
1216 nc = alloc_arraycache(node, cachep->limit,
1217 cachep->batchcount);
1218 if (!nc)
1219 goto bad;
1220 if (cachep->shared) {
1221 shared = alloc_arraycache(node,
1222 cachep->shared * cachep->batchcount,
1223 0xbaadf00d);
1224 if (!shared)
1225 goto bad;
1226 }
1227 if (use_alien_caches) {
1228 alien = alloc_alien_cache(node, cachep->limit);
1229 if (!alien)
1230 goto bad;
1231 }
1232 cachep->array[cpu] = nc;
1233 l3 = cachep->nodelists[node];
1234 BUG_ON(!l3);
1235
1236 spin_lock_irq(&l3->list_lock);
1237 if (!l3->shared) {
1238 /*
1239 * We are serialised from CPU_DEAD or
1240 * CPU_UP_CANCELLED by the cpucontrol lock
1241 */
1242 l3->shared = shared;
1243 shared = NULL;
1244 }
1245 #ifdef CONFIG_NUMA
1246 if (!l3->alien) {
1247 l3->alien = alien;
1248 alien = NULL;
1249 }
1250 #endif
1251 spin_unlock_irq(&l3->list_lock);
1252 kfree(shared);
1253 free_alien_cache(alien);
1254 }
1255 break;
1256 case CPU_ONLINE:
1257 case CPU_ONLINE_FROZEN:
1258 start_cpu_timer(cpu);
1259 break;
1260 #ifdef CONFIG_HOTPLUG_CPU
1261 case CPU_DOWN_PREPARE:
1262 case CPU_DOWN_PREPARE_FROZEN:
1263 /*
1264 * Shutdown cache reaper. Note that the cache_chain_mutex is
1265 * held so that if cache_reap() is invoked it cannot do
1266 * anything expensive but will only modify reap_work
1267 * and reschedule the timer.
1268 */
1269 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1270 /* Now the cache_reaper is guaranteed to be not running. */
1271 per_cpu(reap_work, cpu).work.func = NULL;
1272 break;
1273 case CPU_DOWN_FAILED:
1274 case CPU_DOWN_FAILED_FROZEN:
1275 start_cpu_timer(cpu);
1276 break;
1277 case CPU_DEAD:
1278 case CPU_DEAD_FROZEN:
1279 /*
1280 * Even if all the cpus of a node are down, we don't free the
1281 * kmem_list3 of any cache. This to avoid a race between
1282 * cpu_down, and a kmalloc allocation from another cpu for
1283 * memory from the node of the cpu going down. The list3
1284 * structure is usually allocated from kmem_cache_create() and
1285 * gets destroyed at kmem_cache_destroy().
1286 */
1287 /* fall thru */
1288 #endif
1289 case CPU_UP_CANCELED:
1290 case CPU_UP_CANCELED_FROZEN:
1291 list_for_each_entry(cachep, &cache_chain, next) {
1292 struct array_cache *nc;
1293 struct array_cache *shared;
1294 struct array_cache **alien;
1295 cpumask_t mask;
1296
1297 mask = node_to_cpumask(node);
1298 /* cpu is dead; no one can alloc from it. */
1299 nc = cachep->array[cpu];
1300 cachep->array[cpu] = NULL;
1301 l3 = cachep->nodelists[node];
1302
1303 if (!l3)
1304 goto free_array_cache;
1305
1306 spin_lock_irq(&l3->list_lock);
1307
1308 /* Free limit for this kmem_list3 */
1309 l3->free_limit -= cachep->batchcount;
1310 if (nc)
1311 free_block(cachep, nc->entry, nc->avail, node);
1312
1313 if (!cpus_empty(mask)) {
1314 spin_unlock_irq(&l3->list_lock);
1315 goto free_array_cache;
1316 }
1317
1318 shared = l3->shared;
1319 if (shared) {
1320 free_block(cachep, shared->entry,
1321 shared->avail, node);
1322 l3->shared = NULL;
1323 }
1324
1325 alien = l3->alien;
1326 l3->alien = NULL;
1327
1328 spin_unlock_irq(&l3->list_lock);
1329
1330 kfree(shared);
1331 if (alien) {
1332 drain_alien_cache(cachep, alien);
1333 free_alien_cache(alien);
1334 }
1335 free_array_cache:
1336 kfree(nc);
1337 }
1338 /*
1339 * In the previous loop, all the objects were freed to
1340 * the respective cache's slabs, now we can go ahead and
1341 * shrink each nodelist to its limit.
1342 */
1343 list_for_each_entry(cachep, &cache_chain, next) {
1344 l3 = cachep->nodelists[node];
1345 if (!l3)
1346 continue;
1347 drain_freelist(cachep, l3, l3->free_objects);
1348 }
1349 break;
1350 case CPU_LOCK_RELEASE:
1351 mutex_unlock(&cache_chain_mutex);
1352 break;
1353 }
1354 return NOTIFY_OK;
1355 bad:
1356 return NOTIFY_BAD;
1357 }
1358
1359 static struct notifier_block __cpuinitdata cpucache_notifier = {
1360 &cpuup_callback, NULL, 0
1361 };
1362
1363 /*
1364 * swap the static kmem_list3 with kmalloced memory
1365 */
1366 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1367 int nodeid)
1368 {
1369 struct kmem_list3 *ptr;
1370
1371 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1372 BUG_ON(!ptr);
1373
1374 local_irq_disable();
1375 memcpy(ptr, list, sizeof(struct kmem_list3));
1376 /*
1377 * Do not assume that spinlocks can be initialized via memcpy:
1378 */
1379 spin_lock_init(&ptr->list_lock);
1380
1381 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1382 cachep->nodelists[nodeid] = ptr;
1383 local_irq_enable();
1384 }
1385
1386 /*
1387 * Initialisation. Called after the page allocator have been initialised and
1388 * before smp_init().
1389 */
1390 void __init kmem_cache_init(void)
1391 {
1392 size_t left_over;
1393 struct cache_sizes *sizes;
1394 struct cache_names *names;
1395 int i;
1396 int order;
1397 int node;
1398
1399 if (num_possible_nodes() == 1)
1400 use_alien_caches = 0;
1401
1402 for (i = 0; i < NUM_INIT_LISTS; i++) {
1403 kmem_list3_init(&initkmem_list3[i]);
1404 if (i < MAX_NUMNODES)
1405 cache_cache.nodelists[i] = NULL;
1406 }
1407
1408 /*
1409 * Fragmentation resistance on low memory - only use bigger
1410 * page orders on machines with more than 32MB of memory.
1411 */
1412 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1413 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1414
1415 /* Bootstrap is tricky, because several objects are allocated
1416 * from caches that do not exist yet:
1417 * 1) initialize the cache_cache cache: it contains the struct
1418 * kmem_cache structures of all caches, except cache_cache itself:
1419 * cache_cache is statically allocated.
1420 * Initially an __init data area is used for the head array and the
1421 * kmem_list3 structures, it's replaced with a kmalloc allocated
1422 * array at the end of the bootstrap.
1423 * 2) Create the first kmalloc cache.
1424 * The struct kmem_cache for the new cache is allocated normally.
1425 * An __init data area is used for the head array.
1426 * 3) Create the remaining kmalloc caches, with minimally sized
1427 * head arrays.
1428 * 4) Replace the __init data head arrays for cache_cache and the first
1429 * kmalloc cache with kmalloc allocated arrays.
1430 * 5) Replace the __init data for kmem_list3 for cache_cache and
1431 * the other cache's with kmalloc allocated memory.
1432 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1433 */
1434
1435 node = numa_node_id();
1436
1437 /* 1) create the cache_cache */
1438 INIT_LIST_HEAD(&cache_chain);
1439 list_add(&cache_cache.next, &cache_chain);
1440 cache_cache.colour_off = cache_line_size();
1441 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1442 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1443
1444 /*
1445 * struct kmem_cache size depends on nr_node_ids, which
1446 * can be less than MAX_NUMNODES.
1447 */
1448 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1449 nr_node_ids * sizeof(struct kmem_list3 *);
1450 #if DEBUG
1451 cache_cache.obj_size = cache_cache.buffer_size;
1452 #endif
1453 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1454 cache_line_size());
1455 cache_cache.reciprocal_buffer_size =
1456 reciprocal_value(cache_cache.buffer_size);
1457
1458 for (order = 0; order < MAX_ORDER; order++) {
1459 cache_estimate(order, cache_cache.buffer_size,
1460 cache_line_size(), 0, &left_over, &cache_cache.num);
1461 if (cache_cache.num)
1462 break;
1463 }
1464 BUG_ON(!cache_cache.num);
1465 cache_cache.gfporder = order;
1466 cache_cache.colour = left_over / cache_cache.colour_off;
1467 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1468 sizeof(struct slab), cache_line_size());
1469
1470 /* 2+3) create the kmalloc caches */
1471 sizes = malloc_sizes;
1472 names = cache_names;
1473
1474 /*
1475 * Initialize the caches that provide memory for the array cache and the
1476 * kmem_list3 structures first. Without this, further allocations will
1477 * bug.
1478 */
1479
1480 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1481 sizes[INDEX_AC].cs_size,
1482 ARCH_KMALLOC_MINALIGN,
1483 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1484 NULL, NULL);
1485
1486 if (INDEX_AC != INDEX_L3) {
1487 sizes[INDEX_L3].cs_cachep =
1488 kmem_cache_create(names[INDEX_L3].name,
1489 sizes[INDEX_L3].cs_size,
1490 ARCH_KMALLOC_MINALIGN,
1491 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1492 NULL, NULL);
1493 }
1494
1495 slab_early_init = 0;
1496
1497 while (sizes->cs_size != ULONG_MAX) {
1498 /*
1499 * For performance, all the general caches are L1 aligned.
1500 * This should be particularly beneficial on SMP boxes, as it
1501 * eliminates "false sharing".
1502 * Note for systems short on memory removing the alignment will
1503 * allow tighter packing of the smaller caches.
1504 */
1505 if (!sizes->cs_cachep) {
1506 sizes->cs_cachep = kmem_cache_create(names->name,
1507 sizes->cs_size,
1508 ARCH_KMALLOC_MINALIGN,
1509 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1510 NULL, NULL);
1511 }
1512 #ifdef CONFIG_ZONE_DMA
1513 sizes->cs_dmacachep = kmem_cache_create(
1514 names->name_dma,
1515 sizes->cs_size,
1516 ARCH_KMALLOC_MINALIGN,
1517 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1518 SLAB_PANIC,
1519 NULL, NULL);
1520 #endif
1521 sizes++;
1522 names++;
1523 }
1524 /* 4) Replace the bootstrap head arrays */
1525 {
1526 struct array_cache *ptr;
1527
1528 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1529
1530 local_irq_disable();
1531 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1532 memcpy(ptr, cpu_cache_get(&cache_cache),
1533 sizeof(struct arraycache_init));
1534 /*
1535 * Do not assume that spinlocks can be initialized via memcpy:
1536 */
1537 spin_lock_init(&ptr->lock);
1538
1539 cache_cache.array[smp_processor_id()] = ptr;
1540 local_irq_enable();
1541
1542 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1543
1544 local_irq_disable();
1545 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1546 != &initarray_generic.cache);
1547 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1548 sizeof(struct arraycache_init));
1549 /*
1550 * Do not assume that spinlocks can be initialized via memcpy:
1551 */
1552 spin_lock_init(&ptr->lock);
1553
1554 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1555 ptr;
1556 local_irq_enable();
1557 }
1558 /* 5) Replace the bootstrap kmem_list3's */
1559 {
1560 int nid;
1561
1562 /* Replace the static kmem_list3 structures for the boot cpu */
1563 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1564
1565 for_each_online_node(nid) {
1566 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1567 &initkmem_list3[SIZE_AC + nid], nid);
1568
1569 if (INDEX_AC != INDEX_L3) {
1570 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1571 &initkmem_list3[SIZE_L3 + nid], nid);
1572 }
1573 }
1574 }
1575
1576 /* 6) resize the head arrays to their final sizes */
1577 {
1578 struct kmem_cache *cachep;
1579 mutex_lock(&cache_chain_mutex);
1580 list_for_each_entry(cachep, &cache_chain, next)
1581 if (enable_cpucache(cachep))
1582 BUG();
1583 mutex_unlock(&cache_chain_mutex);
1584 }
1585
1586 /* Annotate slab for lockdep -- annotate the malloc caches */
1587 init_lock_keys();
1588
1589
1590 /* Done! */
1591 g_cpucache_up = FULL;
1592
1593 /*
1594 * Register a cpu startup notifier callback that initializes
1595 * cpu_cache_get for all new cpus
1596 */
1597 register_cpu_notifier(&cpucache_notifier);
1598
1599 /*
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1602 */
1603 }
1604
1605 static int __init cpucache_init(void)
1606 {
1607 int cpu;
1608
1609 /*
1610 * Register the timers that return unneeded pages to the page allocator
1611 */
1612 for_each_online_cpu(cpu)
1613 start_cpu_timer(cpu);
1614 return 0;
1615 }
1616 __initcall(cpucache_init);
1617
1618 /*
1619 * Interface to system's page allocator. No need to hold the cache-lock.
1620 *
1621 * If we requested dmaable memory, we will get it. Even if we
1622 * did not request dmaable memory, we might get it, but that
1623 * would be relatively rare and ignorable.
1624 */
1625 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1626 {
1627 struct page *page;
1628 int nr_pages;
1629 int i;
1630
1631 #ifndef CONFIG_MMU
1632 /*
1633 * Nommu uses slab's for process anonymous memory allocations, and thus
1634 * requires __GFP_COMP to properly refcount higher order allocations
1635 */
1636 flags |= __GFP_COMP;
1637 #endif
1638
1639 flags |= cachep->gfpflags;
1640
1641 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1642 if (!page)
1643 return NULL;
1644
1645 nr_pages = (1 << cachep->gfporder);
1646 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647 add_zone_page_state(page_zone(page),
1648 NR_SLAB_RECLAIMABLE, nr_pages);
1649 else
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_UNRECLAIMABLE, nr_pages);
1652 for (i = 0; i < nr_pages; i++)
1653 __SetPageSlab(page + i);
1654 return page_address(page);
1655 }
1656
1657 /*
1658 * Interface to system's page release.
1659 */
1660 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1661 {
1662 unsigned long i = (1 << cachep->gfporder);
1663 struct page *page = virt_to_page(addr);
1664 const unsigned long nr_freed = i;
1665
1666 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1667 sub_zone_page_state(page_zone(page),
1668 NR_SLAB_RECLAIMABLE, nr_freed);
1669 else
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_UNRECLAIMABLE, nr_freed);
1672 while (i--) {
1673 BUG_ON(!PageSlab(page));
1674 __ClearPageSlab(page);
1675 page++;
1676 }
1677 if (current->reclaim_state)
1678 current->reclaim_state->reclaimed_slab += nr_freed;
1679 free_pages((unsigned long)addr, cachep->gfporder);
1680 }
1681
1682 static void kmem_rcu_free(struct rcu_head *head)
1683 {
1684 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1685 struct kmem_cache *cachep = slab_rcu->cachep;
1686
1687 kmem_freepages(cachep, slab_rcu->addr);
1688 if (OFF_SLAB(cachep))
1689 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1690 }
1691
1692 #if DEBUG
1693
1694 #ifdef CONFIG_DEBUG_PAGEALLOC
1695 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1696 unsigned long caller)
1697 {
1698 int size = obj_size(cachep);
1699
1700 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1701
1702 if (size < 5 * sizeof(unsigned long))
1703 return;
1704
1705 *addr++ = 0x12345678;
1706 *addr++ = caller;
1707 *addr++ = smp_processor_id();
1708 size -= 3 * sizeof(unsigned long);
1709 {
1710 unsigned long *sptr = &caller;
1711 unsigned long svalue;
1712
1713 while (!kstack_end(sptr)) {
1714 svalue = *sptr++;
1715 if (kernel_text_address(svalue)) {
1716 *addr++ = svalue;
1717 size -= sizeof(unsigned long);
1718 if (size <= sizeof(unsigned long))
1719 break;
1720 }
1721 }
1722
1723 }
1724 *addr++ = 0x87654321;
1725 }
1726 #endif
1727
1728 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1729 {
1730 int size = obj_size(cachep);
1731 addr = &((char *)addr)[obj_offset(cachep)];
1732
1733 memset(addr, val, size);
1734 *(unsigned char *)(addr + size - 1) = POISON_END;
1735 }
1736
1737 static void dump_line(char *data, int offset, int limit)
1738 {
1739 int i;
1740 unsigned char error = 0;
1741 int bad_count = 0;
1742
1743 printk(KERN_ERR "%03x:", offset);
1744 for (i = 0; i < limit; i++) {
1745 if (data[offset + i] != POISON_FREE) {
1746 error = data[offset + i];
1747 bad_count++;
1748 }
1749 printk(" %02x", (unsigned char)data[offset + i]);
1750 }
1751 printk("\n");
1752
1753 if (bad_count == 1) {
1754 error ^= POISON_FREE;
1755 if (!(error & (error - 1))) {
1756 printk(KERN_ERR "Single bit error detected. Probably "
1757 "bad RAM.\n");
1758 #ifdef CONFIG_X86
1759 printk(KERN_ERR "Run memtest86+ or a similar memory "
1760 "test tool.\n");
1761 #else
1762 printk(KERN_ERR "Run a memory test tool.\n");
1763 #endif
1764 }
1765 }
1766 }
1767 #endif
1768
1769 #if DEBUG
1770
1771 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1772 {
1773 int i, size;
1774 char *realobj;
1775
1776 if (cachep->flags & SLAB_RED_ZONE) {
1777 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1778 *dbg_redzone1(cachep, objp),
1779 *dbg_redzone2(cachep, objp));
1780 }
1781
1782 if (cachep->flags & SLAB_STORE_USER) {
1783 printk(KERN_ERR "Last user: [<%p>]",
1784 *dbg_userword(cachep, objp));
1785 print_symbol("(%s)",
1786 (unsigned long)*dbg_userword(cachep, objp));
1787 printk("\n");
1788 }
1789 realobj = (char *)objp + obj_offset(cachep);
1790 size = obj_size(cachep);
1791 for (i = 0; i < size && lines; i += 16, lines--) {
1792 int limit;
1793 limit = 16;
1794 if (i + limit > size)
1795 limit = size - i;
1796 dump_line(realobj, i, limit);
1797 }
1798 }
1799
1800 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1801 {
1802 char *realobj;
1803 int size, i;
1804 int lines = 0;
1805
1806 realobj = (char *)objp + obj_offset(cachep);
1807 size = obj_size(cachep);
1808
1809 for (i = 0; i < size; i++) {
1810 char exp = POISON_FREE;
1811 if (i == size - 1)
1812 exp = POISON_END;
1813 if (realobj[i] != exp) {
1814 int limit;
1815 /* Mismatch ! */
1816 /* Print header */
1817 if (lines == 0) {
1818 printk(KERN_ERR
1819 "Slab corruption: %s start=%p, len=%d\n",
1820 cachep->name, realobj, size);
1821 print_objinfo(cachep, objp, 0);
1822 }
1823 /* Hexdump the affected line */
1824 i = (i / 16) * 16;
1825 limit = 16;
1826 if (i + limit > size)
1827 limit = size - i;
1828 dump_line(realobj, i, limit);
1829 i += 16;
1830 lines++;
1831 /* Limit to 5 lines */
1832 if (lines > 5)
1833 break;
1834 }
1835 }
1836 if (lines != 0) {
1837 /* Print some data about the neighboring objects, if they
1838 * exist:
1839 */
1840 struct slab *slabp = virt_to_slab(objp);
1841 unsigned int objnr;
1842
1843 objnr = obj_to_index(cachep, slabp, objp);
1844 if (objnr) {
1845 objp = index_to_obj(cachep, slabp, objnr - 1);
1846 realobj = (char *)objp + obj_offset(cachep);
1847 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1848 realobj, size);
1849 print_objinfo(cachep, objp, 2);
1850 }
1851 if (objnr + 1 < cachep->num) {
1852 objp = index_to_obj(cachep, slabp, objnr + 1);
1853 realobj = (char *)objp + obj_offset(cachep);
1854 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1855 realobj, size);
1856 print_objinfo(cachep, objp, 2);
1857 }
1858 }
1859 }
1860 #endif
1861
1862 #if DEBUG
1863 /**
1864 * slab_destroy_objs - destroy a slab and its objects
1865 * @cachep: cache pointer being destroyed
1866 * @slabp: slab pointer being destroyed
1867 *
1868 * Call the registered destructor for each object in a slab that is being
1869 * destroyed.
1870 */
1871 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1872 {
1873 int i;
1874 for (i = 0; i < cachep->num; i++) {
1875 void *objp = index_to_obj(cachep, slabp, i);
1876
1877 if (cachep->flags & SLAB_POISON) {
1878 #ifdef CONFIG_DEBUG_PAGEALLOC
1879 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1880 OFF_SLAB(cachep))
1881 kernel_map_pages(virt_to_page(objp),
1882 cachep->buffer_size / PAGE_SIZE, 1);
1883 else
1884 check_poison_obj(cachep, objp);
1885 #else
1886 check_poison_obj(cachep, objp);
1887 #endif
1888 }
1889 if (cachep->flags & SLAB_RED_ZONE) {
1890 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1891 slab_error(cachep, "start of a freed object "
1892 "was overwritten");
1893 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "end of a freed object "
1895 "was overwritten");
1896 }
1897 }
1898 }
1899 #else
1900 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1901 {
1902 }
1903 #endif
1904
1905 /**
1906 * slab_destroy - destroy and release all objects in a slab
1907 * @cachep: cache pointer being destroyed
1908 * @slabp: slab pointer being destroyed
1909 *
1910 * Destroy all the objs in a slab, and release the mem back to the system.
1911 * Before calling the slab must have been unlinked from the cache. The
1912 * cache-lock is not held/needed.
1913 */
1914 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1915 {
1916 void *addr = slabp->s_mem - slabp->colouroff;
1917
1918 slab_destroy_objs(cachep, slabp);
1919 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1920 struct slab_rcu *slab_rcu;
1921
1922 slab_rcu = (struct slab_rcu *)slabp;
1923 slab_rcu->cachep = cachep;
1924 slab_rcu->addr = addr;
1925 call_rcu(&slab_rcu->head, kmem_rcu_free);
1926 } else {
1927 kmem_freepages(cachep, addr);
1928 if (OFF_SLAB(cachep))
1929 kmem_cache_free(cachep->slabp_cache, slabp);
1930 }
1931 }
1932
1933 /*
1934 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1935 * size of kmem_list3.
1936 */
1937 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1938 {
1939 int node;
1940
1941 for_each_online_node(node) {
1942 cachep->nodelists[node] = &initkmem_list3[index + node];
1943 cachep->nodelists[node]->next_reap = jiffies +
1944 REAPTIMEOUT_LIST3 +
1945 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1946 }
1947 }
1948
1949 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1950 {
1951 int i;
1952 struct kmem_list3 *l3;
1953
1954 for_each_online_cpu(i)
1955 kfree(cachep->array[i]);
1956
1957 /* NUMA: free the list3 structures */
1958 for_each_online_node(i) {
1959 l3 = cachep->nodelists[i];
1960 if (l3) {
1961 kfree(l3->shared);
1962 free_alien_cache(l3->alien);
1963 kfree(l3);
1964 }
1965 }
1966 kmem_cache_free(&cache_cache, cachep);
1967 }
1968
1969
1970 /**
1971 * calculate_slab_order - calculate size (page order) of slabs
1972 * @cachep: pointer to the cache that is being created
1973 * @size: size of objects to be created in this cache.
1974 * @align: required alignment for the objects.
1975 * @flags: slab allocation flags
1976 *
1977 * Also calculates the number of objects per slab.
1978 *
1979 * This could be made much more intelligent. For now, try to avoid using
1980 * high order pages for slabs. When the gfp() functions are more friendly
1981 * towards high-order requests, this should be changed.
1982 */
1983 static size_t calculate_slab_order(struct kmem_cache *cachep,
1984 size_t size, size_t align, unsigned long flags)
1985 {
1986 unsigned long offslab_limit;
1987 size_t left_over = 0;
1988 int gfporder;
1989
1990 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1991 unsigned int num;
1992 size_t remainder;
1993
1994 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1995 if (!num)
1996 continue;
1997
1998 if (flags & CFLGS_OFF_SLAB) {
1999 /*
2000 * Max number of objs-per-slab for caches which
2001 * use off-slab slabs. Needed to avoid a possible
2002 * looping condition in cache_grow().
2003 */
2004 offslab_limit = size - sizeof(struct slab);
2005 offslab_limit /= sizeof(kmem_bufctl_t);
2006
2007 if (num > offslab_limit)
2008 break;
2009 }
2010
2011 /* Found something acceptable - save it away */
2012 cachep->num = num;
2013 cachep->gfporder = gfporder;
2014 left_over = remainder;
2015
2016 /*
2017 * A VFS-reclaimable slab tends to have most allocations
2018 * as GFP_NOFS and we really don't want to have to be allocating
2019 * higher-order pages when we are unable to shrink dcache.
2020 */
2021 if (flags & SLAB_RECLAIM_ACCOUNT)
2022 break;
2023
2024 /*
2025 * Large number of objects is good, but very large slabs are
2026 * currently bad for the gfp()s.
2027 */
2028 if (gfporder >= slab_break_gfp_order)
2029 break;
2030
2031 /*
2032 * Acceptable internal fragmentation?
2033 */
2034 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2035 break;
2036 }
2037 return left_over;
2038 }
2039
2040 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2041 {
2042 if (g_cpucache_up == FULL)
2043 return enable_cpucache(cachep);
2044
2045 if (g_cpucache_up == NONE) {
2046 /*
2047 * Note: the first kmem_cache_create must create the cache
2048 * that's used by kmalloc(24), otherwise the creation of
2049 * further caches will BUG().
2050 */
2051 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2052
2053 /*
2054 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2055 * the first cache, then we need to set up all its list3s,
2056 * otherwise the creation of further caches will BUG().
2057 */
2058 set_up_list3s(cachep, SIZE_AC);
2059 if (INDEX_AC == INDEX_L3)
2060 g_cpucache_up = PARTIAL_L3;
2061 else
2062 g_cpucache_up = PARTIAL_AC;
2063 } else {
2064 cachep->array[smp_processor_id()] =
2065 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2066
2067 if (g_cpucache_up == PARTIAL_AC) {
2068 set_up_list3s(cachep, SIZE_L3);
2069 g_cpucache_up = PARTIAL_L3;
2070 } else {
2071 int node;
2072 for_each_online_node(node) {
2073 cachep->nodelists[node] =
2074 kmalloc_node(sizeof(struct kmem_list3),
2075 GFP_KERNEL, node);
2076 BUG_ON(!cachep->nodelists[node]);
2077 kmem_list3_init(cachep->nodelists[node]);
2078 }
2079 }
2080 }
2081 cachep->nodelists[numa_node_id()]->next_reap =
2082 jiffies + REAPTIMEOUT_LIST3 +
2083 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2084
2085 cpu_cache_get(cachep)->avail = 0;
2086 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2087 cpu_cache_get(cachep)->batchcount = 1;
2088 cpu_cache_get(cachep)->touched = 0;
2089 cachep->batchcount = 1;
2090 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2091 return 0;
2092 }
2093
2094 /**
2095 * kmem_cache_create - Create a cache.
2096 * @name: A string which is used in /proc/slabinfo to identify this cache.
2097 * @size: The size of objects to be created in this cache.
2098 * @align: The required alignment for the objects.
2099 * @flags: SLAB flags
2100 * @ctor: A constructor for the objects.
2101 * @dtor: A destructor for the objects (not implemented anymore).
2102 *
2103 * Returns a ptr to the cache on success, NULL on failure.
2104 * Cannot be called within a int, but can be interrupted.
2105 * The @ctor is run when new pages are allocated by the cache
2106 * and the @dtor is run before the pages are handed back.
2107 *
2108 * @name must be valid until the cache is destroyed. This implies that
2109 * the module calling this has to destroy the cache before getting unloaded.
2110 *
2111 * The flags are
2112 *
2113 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2114 * to catch references to uninitialised memory.
2115 *
2116 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2117 * for buffer overruns.
2118 *
2119 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2120 * cacheline. This can be beneficial if you're counting cycles as closely
2121 * as davem.
2122 */
2123 struct kmem_cache *
2124 kmem_cache_create (const char *name, size_t size, size_t align,
2125 unsigned long flags,
2126 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2127 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2128 {
2129 size_t left_over, slab_size, ralign;
2130 struct kmem_cache *cachep = NULL, *pc;
2131
2132 /*
2133 * Sanity checks... these are all serious usage bugs.
2134 */
2135 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2136 size > KMALLOC_MAX_SIZE || dtor) {
2137 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2138 name);
2139 BUG();
2140 }
2141
2142 /*
2143 * We use cache_chain_mutex to ensure a consistent view of
2144 * cpu_online_map as well. Please see cpuup_callback
2145 */
2146 mutex_lock(&cache_chain_mutex);
2147
2148 list_for_each_entry(pc, &cache_chain, next) {
2149 char tmp;
2150 int res;
2151
2152 /*
2153 * This happens when the module gets unloaded and doesn't
2154 * destroy its slab cache and no-one else reuses the vmalloc
2155 * area of the module. Print a warning.
2156 */
2157 res = probe_kernel_address(pc->name, tmp);
2158 if (res) {
2159 printk(KERN_ERR
2160 "SLAB: cache with size %d has lost its name\n",
2161 pc->buffer_size);
2162 continue;
2163 }
2164
2165 if (!strcmp(pc->name, name)) {
2166 printk(KERN_ERR
2167 "kmem_cache_create: duplicate cache %s\n", name);
2168 dump_stack();
2169 goto oops;
2170 }
2171 }
2172
2173 #if DEBUG
2174 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2175 #if FORCED_DEBUG
2176 /*
2177 * Enable redzoning and last user accounting, except for caches with
2178 * large objects, if the increased size would increase the object size
2179 * above the next power of two: caches with object sizes just above a
2180 * power of two have a significant amount of internal fragmentation.
2181 */
2182 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2183 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2184 if (!(flags & SLAB_DESTROY_BY_RCU))
2185 flags |= SLAB_POISON;
2186 #endif
2187 if (flags & SLAB_DESTROY_BY_RCU)
2188 BUG_ON(flags & SLAB_POISON);
2189 #endif
2190 /*
2191 * Always checks flags, a caller might be expecting debug support which
2192 * isn't available.
2193 */
2194 BUG_ON(flags & ~CREATE_MASK);
2195
2196 /*
2197 * Check that size is in terms of words. This is needed to avoid
2198 * unaligned accesses for some archs when redzoning is used, and makes
2199 * sure any on-slab bufctl's are also correctly aligned.
2200 */
2201 if (size & (BYTES_PER_WORD - 1)) {
2202 size += (BYTES_PER_WORD - 1);
2203 size &= ~(BYTES_PER_WORD - 1);
2204 }
2205
2206 /* calculate the final buffer alignment: */
2207
2208 /* 1) arch recommendation: can be overridden for debug */
2209 if (flags & SLAB_HWCACHE_ALIGN) {
2210 /*
2211 * Default alignment: as specified by the arch code. Except if
2212 * an object is really small, then squeeze multiple objects into
2213 * one cacheline.
2214 */
2215 ralign = cache_line_size();
2216 while (size <= ralign / 2)
2217 ralign /= 2;
2218 } else {
2219 ralign = BYTES_PER_WORD;
2220 }
2221
2222 /*
2223 * Redzoning and user store require word alignment. Note this will be
2224 * overridden by architecture or caller mandated alignment if either
2225 * is greater than BYTES_PER_WORD.
2226 */
2227 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2228 ralign = __alignof__(unsigned long long);
2229
2230 /* 2) arch mandated alignment */
2231 if (ralign < ARCH_SLAB_MINALIGN) {
2232 ralign = ARCH_SLAB_MINALIGN;
2233 }
2234 /* 3) caller mandated alignment */
2235 if (ralign < align) {
2236 ralign = align;
2237 }
2238 /* disable debug if necessary */
2239 if (ralign > __alignof__(unsigned long long))
2240 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2241 /*
2242 * 4) Store it.
2243 */
2244 align = ralign;
2245
2246 /* Get cache's description obj. */
2247 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2248 if (!cachep)
2249 goto oops;
2250
2251 #if DEBUG
2252 cachep->obj_size = size;
2253
2254 /*
2255 * Both debugging options require word-alignment which is calculated
2256 * into align above.
2257 */
2258 if (flags & SLAB_RED_ZONE) {
2259 /* add space for red zone words */
2260 cachep->obj_offset += sizeof(unsigned long long);
2261 size += 2 * sizeof(unsigned long long);
2262 }
2263 if (flags & SLAB_STORE_USER) {
2264 /* user store requires one word storage behind the end of
2265 * the real object.
2266 */
2267 size += BYTES_PER_WORD;
2268 }
2269 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2270 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2271 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2272 cachep->obj_offset += PAGE_SIZE - size;
2273 size = PAGE_SIZE;
2274 }
2275 #endif
2276 #endif
2277
2278 /*
2279 * Determine if the slab management is 'on' or 'off' slab.
2280 * (bootstrapping cannot cope with offslab caches so don't do
2281 * it too early on.)
2282 */
2283 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2284 /*
2285 * Size is large, assume best to place the slab management obj
2286 * off-slab (should allow better packing of objs).
2287 */
2288 flags |= CFLGS_OFF_SLAB;
2289
2290 size = ALIGN(size, align);
2291
2292 left_over = calculate_slab_order(cachep, size, align, flags);
2293
2294 if (!cachep->num) {
2295 printk(KERN_ERR
2296 "kmem_cache_create: couldn't create cache %s.\n", name);
2297 kmem_cache_free(&cache_cache, cachep);
2298 cachep = NULL;
2299 goto oops;
2300 }
2301 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2302 + sizeof(struct slab), align);
2303
2304 /*
2305 * If the slab has been placed off-slab, and we have enough space then
2306 * move it on-slab. This is at the expense of any extra colouring.
2307 */
2308 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2309 flags &= ~CFLGS_OFF_SLAB;
2310 left_over -= slab_size;
2311 }
2312
2313 if (flags & CFLGS_OFF_SLAB) {
2314 /* really off slab. No need for manual alignment */
2315 slab_size =
2316 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2317 }
2318
2319 cachep->colour_off = cache_line_size();
2320 /* Offset must be a multiple of the alignment. */
2321 if (cachep->colour_off < align)
2322 cachep->colour_off = align;
2323 cachep->colour = left_over / cachep->colour_off;
2324 cachep->slab_size = slab_size;
2325 cachep->flags = flags;
2326 cachep->gfpflags = 0;
2327 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2328 cachep->gfpflags |= GFP_DMA;
2329 cachep->buffer_size = size;
2330 cachep->reciprocal_buffer_size = reciprocal_value(size);
2331
2332 if (flags & CFLGS_OFF_SLAB) {
2333 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2334 /*
2335 * This is a possibility for one of the malloc_sizes caches.
2336 * But since we go off slab only for object size greater than
2337 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2338 * this should not happen at all.
2339 * But leave a BUG_ON for some lucky dude.
2340 */
2341 BUG_ON(!cachep->slabp_cache);
2342 }
2343 cachep->ctor = ctor;
2344 cachep->name = name;
2345
2346 if (setup_cpu_cache(cachep)) {
2347 __kmem_cache_destroy(cachep);
2348 cachep = NULL;
2349 goto oops;
2350 }
2351
2352 /* cache setup completed, link it into the list */
2353 list_add(&cachep->next, &cache_chain);
2354 oops:
2355 if (!cachep && (flags & SLAB_PANIC))
2356 panic("kmem_cache_create(): failed to create slab `%s'\n",
2357 name);
2358 mutex_unlock(&cache_chain_mutex);
2359 return cachep;
2360 }
2361 EXPORT_SYMBOL(kmem_cache_create);
2362
2363 #if DEBUG
2364 static void check_irq_off(void)
2365 {
2366 BUG_ON(!irqs_disabled());
2367 }
2368
2369 static void check_irq_on(void)
2370 {
2371 BUG_ON(irqs_disabled());
2372 }
2373
2374 static void check_spinlock_acquired(struct kmem_cache *cachep)
2375 {
2376 #ifdef CONFIG_SMP
2377 check_irq_off();
2378 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2379 #endif
2380 }
2381
2382 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2383 {
2384 #ifdef CONFIG_SMP
2385 check_irq_off();
2386 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2387 #endif
2388 }
2389
2390 #else
2391 #define check_irq_off() do { } while(0)
2392 #define check_irq_on() do { } while(0)
2393 #define check_spinlock_acquired(x) do { } while(0)
2394 #define check_spinlock_acquired_node(x, y) do { } while(0)
2395 #endif
2396
2397 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2398 struct array_cache *ac,
2399 int force, int node);
2400
2401 static void do_drain(void *arg)
2402 {
2403 struct kmem_cache *cachep = arg;
2404 struct array_cache *ac;
2405 int node = numa_node_id();
2406
2407 check_irq_off();
2408 ac = cpu_cache_get(cachep);
2409 spin_lock(&cachep->nodelists[node]->list_lock);
2410 free_block(cachep, ac->entry, ac->avail, node);
2411 spin_unlock(&cachep->nodelists[node]->list_lock);
2412 ac->avail = 0;
2413 }
2414
2415 static void drain_cpu_caches(struct kmem_cache *cachep)
2416 {
2417 struct kmem_list3 *l3;
2418 int node;
2419
2420 on_each_cpu(do_drain, cachep, 1, 1);
2421 check_irq_on();
2422 for_each_online_node(node) {
2423 l3 = cachep->nodelists[node];
2424 if (l3 && l3->alien)
2425 drain_alien_cache(cachep, l3->alien);
2426 }
2427
2428 for_each_online_node(node) {
2429 l3 = cachep->nodelists[node];
2430 if (l3)
2431 drain_array(cachep, l3, l3->shared, 1, node);
2432 }
2433 }
2434
2435 /*
2436 * Remove slabs from the list of free slabs.
2437 * Specify the number of slabs to drain in tofree.
2438 *
2439 * Returns the actual number of slabs released.
2440 */
2441 static int drain_freelist(struct kmem_cache *cache,
2442 struct kmem_list3 *l3, int tofree)
2443 {
2444 struct list_head *p;
2445 int nr_freed;
2446 struct slab *slabp;
2447
2448 nr_freed = 0;
2449 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2450
2451 spin_lock_irq(&l3->list_lock);
2452 p = l3->slabs_free.prev;
2453 if (p == &l3->slabs_free) {
2454 spin_unlock_irq(&l3->list_lock);
2455 goto out;
2456 }
2457
2458 slabp = list_entry(p, struct slab, list);
2459 #if DEBUG
2460 BUG_ON(slabp->inuse);
2461 #endif
2462 list_del(&slabp->list);
2463 /*
2464 * Safe to drop the lock. The slab is no longer linked
2465 * to the cache.
2466 */
2467 l3->free_objects -= cache->num;
2468 spin_unlock_irq(&l3->list_lock);
2469 slab_destroy(cache, slabp);
2470 nr_freed++;
2471 }
2472 out:
2473 return nr_freed;
2474 }
2475
2476 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2477 static int __cache_shrink(struct kmem_cache *cachep)
2478 {
2479 int ret = 0, i = 0;
2480 struct kmem_list3 *l3;
2481
2482 drain_cpu_caches(cachep);
2483
2484 check_irq_on();
2485 for_each_online_node(i) {
2486 l3 = cachep->nodelists[i];
2487 if (!l3)
2488 continue;
2489
2490 drain_freelist(cachep, l3, l3->free_objects);
2491
2492 ret += !list_empty(&l3->slabs_full) ||
2493 !list_empty(&l3->slabs_partial);
2494 }
2495 return (ret ? 1 : 0);
2496 }
2497
2498 /**
2499 * kmem_cache_shrink - Shrink a cache.
2500 * @cachep: The cache to shrink.
2501 *
2502 * Releases as many slabs as possible for a cache.
2503 * To help debugging, a zero exit status indicates all slabs were released.
2504 */
2505 int kmem_cache_shrink(struct kmem_cache *cachep)
2506 {
2507 int ret;
2508 BUG_ON(!cachep || in_interrupt());
2509
2510 mutex_lock(&cache_chain_mutex);
2511 ret = __cache_shrink(cachep);
2512 mutex_unlock(&cache_chain_mutex);
2513 return ret;
2514 }
2515 EXPORT_SYMBOL(kmem_cache_shrink);
2516
2517 /**
2518 * kmem_cache_destroy - delete a cache
2519 * @cachep: the cache to destroy
2520 *
2521 * Remove a &struct kmem_cache object from the slab cache.
2522 *
2523 * It is expected this function will be called by a module when it is
2524 * unloaded. This will remove the cache completely, and avoid a duplicate
2525 * cache being allocated each time a module is loaded and unloaded, if the
2526 * module doesn't have persistent in-kernel storage across loads and unloads.
2527 *
2528 * The cache must be empty before calling this function.
2529 *
2530 * The caller must guarantee that noone will allocate memory from the cache
2531 * during the kmem_cache_destroy().
2532 */
2533 void kmem_cache_destroy(struct kmem_cache *cachep)
2534 {
2535 BUG_ON(!cachep || in_interrupt());
2536
2537 /* Find the cache in the chain of caches. */
2538 mutex_lock(&cache_chain_mutex);
2539 /*
2540 * the chain is never empty, cache_cache is never destroyed
2541 */
2542 list_del(&cachep->next);
2543 if (__cache_shrink(cachep)) {
2544 slab_error(cachep, "Can't free all objects");
2545 list_add(&cachep->next, &cache_chain);
2546 mutex_unlock(&cache_chain_mutex);
2547 return;
2548 }
2549
2550 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2551 synchronize_rcu();
2552
2553 __kmem_cache_destroy(cachep);
2554 mutex_unlock(&cache_chain_mutex);
2555 }
2556 EXPORT_SYMBOL(kmem_cache_destroy);
2557
2558 /*
2559 * Get the memory for a slab management obj.
2560 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2561 * always come from malloc_sizes caches. The slab descriptor cannot
2562 * come from the same cache which is getting created because,
2563 * when we are searching for an appropriate cache for these
2564 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2565 * If we are creating a malloc_sizes cache here it would not be visible to
2566 * kmem_find_general_cachep till the initialization is complete.
2567 * Hence we cannot have slabp_cache same as the original cache.
2568 */
2569 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2570 int colour_off, gfp_t local_flags,
2571 int nodeid)
2572 {
2573 struct slab *slabp;
2574
2575 if (OFF_SLAB(cachep)) {
2576 /* Slab management obj is off-slab. */
2577 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2578 local_flags & ~GFP_THISNODE, nodeid);
2579 if (!slabp)
2580 return NULL;
2581 } else {
2582 slabp = objp + colour_off;
2583 colour_off += cachep->slab_size;
2584 }
2585 slabp->inuse = 0;
2586 slabp->colouroff = colour_off;
2587 slabp->s_mem = objp + colour_off;
2588 slabp->nodeid = nodeid;
2589 return slabp;
2590 }
2591
2592 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2593 {
2594 return (kmem_bufctl_t *) (slabp + 1);
2595 }
2596
2597 static void cache_init_objs(struct kmem_cache *cachep,
2598 struct slab *slabp)
2599 {
2600 int i;
2601
2602 for (i = 0; i < cachep->num; i++) {
2603 void *objp = index_to_obj(cachep, slabp, i);
2604 #if DEBUG
2605 /* need to poison the objs? */
2606 if (cachep->flags & SLAB_POISON)
2607 poison_obj(cachep, objp, POISON_FREE);
2608 if (cachep->flags & SLAB_STORE_USER)
2609 *dbg_userword(cachep, objp) = NULL;
2610
2611 if (cachep->flags & SLAB_RED_ZONE) {
2612 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2613 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2614 }
2615 /*
2616 * Constructors are not allowed to allocate memory from the same
2617 * cache which they are a constructor for. Otherwise, deadlock.
2618 * They must also be threaded.
2619 */
2620 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2621 cachep->ctor(objp + obj_offset(cachep), cachep,
2622 0);
2623
2624 if (cachep->flags & SLAB_RED_ZONE) {
2625 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2626 slab_error(cachep, "constructor overwrote the"
2627 " end of an object");
2628 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2629 slab_error(cachep, "constructor overwrote the"
2630 " start of an object");
2631 }
2632 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2633 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2634 kernel_map_pages(virt_to_page(objp),
2635 cachep->buffer_size / PAGE_SIZE, 0);
2636 #else
2637 if (cachep->ctor)
2638 cachep->ctor(objp, cachep, 0);
2639 #endif
2640 slab_bufctl(slabp)[i] = i + 1;
2641 }
2642 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2643 slabp->free = 0;
2644 }
2645
2646 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2647 {
2648 if (CONFIG_ZONE_DMA_FLAG) {
2649 if (flags & GFP_DMA)
2650 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2651 else
2652 BUG_ON(cachep->gfpflags & GFP_DMA);
2653 }
2654 }
2655
2656 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2657 int nodeid)
2658 {
2659 void *objp = index_to_obj(cachep, slabp, slabp->free);
2660 kmem_bufctl_t next;
2661
2662 slabp->inuse++;
2663 next = slab_bufctl(slabp)[slabp->free];
2664 #if DEBUG
2665 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2666 WARN_ON(slabp->nodeid != nodeid);
2667 #endif
2668 slabp->free = next;
2669
2670 return objp;
2671 }
2672
2673 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2674 void *objp, int nodeid)
2675 {
2676 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2677
2678 #if DEBUG
2679 /* Verify that the slab belongs to the intended node */
2680 WARN_ON(slabp->nodeid != nodeid);
2681
2682 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2683 printk(KERN_ERR "slab: double free detected in cache "
2684 "'%s', objp %p\n", cachep->name, objp);
2685 BUG();
2686 }
2687 #endif
2688 slab_bufctl(slabp)[objnr] = slabp->free;
2689 slabp->free = objnr;
2690 slabp->inuse--;
2691 }
2692
2693 /*
2694 * Map pages beginning at addr to the given cache and slab. This is required
2695 * for the slab allocator to be able to lookup the cache and slab of a
2696 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2697 */
2698 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2699 void *addr)
2700 {
2701 int nr_pages;
2702 struct page *page;
2703
2704 page = virt_to_page(addr);
2705
2706 nr_pages = 1;
2707 if (likely(!PageCompound(page)))
2708 nr_pages <<= cache->gfporder;
2709
2710 do {
2711 page_set_cache(page, cache);
2712 page_set_slab(page, slab);
2713 page++;
2714 } while (--nr_pages);
2715 }
2716
2717 /*
2718 * Grow (by 1) the number of slabs within a cache. This is called by
2719 * kmem_cache_alloc() when there are no active objs left in a cache.
2720 */
2721 static int cache_grow(struct kmem_cache *cachep,
2722 gfp_t flags, int nodeid, void *objp)
2723 {
2724 struct slab *slabp;
2725 size_t offset;
2726 gfp_t local_flags;
2727 struct kmem_list3 *l3;
2728
2729 /*
2730 * Be lazy and only check for valid flags here, keeping it out of the
2731 * critical path in kmem_cache_alloc().
2732 */
2733 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2734
2735 local_flags = (flags & GFP_LEVEL_MASK);
2736 /* Take the l3 list lock to change the colour_next on this node */
2737 check_irq_off();
2738 l3 = cachep->nodelists[nodeid];
2739 spin_lock(&l3->list_lock);
2740
2741 /* Get colour for the slab, and cal the next value. */
2742 offset = l3->colour_next;
2743 l3->colour_next++;
2744 if (l3->colour_next >= cachep->colour)
2745 l3->colour_next = 0;
2746 spin_unlock(&l3->list_lock);
2747
2748 offset *= cachep->colour_off;
2749
2750 if (local_flags & __GFP_WAIT)
2751 local_irq_enable();
2752
2753 /*
2754 * The test for missing atomic flag is performed here, rather than
2755 * the more obvious place, simply to reduce the critical path length
2756 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2757 * will eventually be caught here (where it matters).
2758 */
2759 kmem_flagcheck(cachep, flags);
2760
2761 /*
2762 * Get mem for the objs. Attempt to allocate a physical page from
2763 * 'nodeid'.
2764 */
2765 if (!objp)
2766 objp = kmem_getpages(cachep, flags, nodeid);
2767 if (!objp)
2768 goto failed;
2769
2770 /* Get slab management. */
2771 slabp = alloc_slabmgmt(cachep, objp, offset,
2772 local_flags & ~GFP_THISNODE, nodeid);
2773 if (!slabp)
2774 goto opps1;
2775
2776 slabp->nodeid = nodeid;
2777 slab_map_pages(cachep, slabp, objp);
2778
2779 cache_init_objs(cachep, slabp);
2780
2781 if (local_flags & __GFP_WAIT)
2782 local_irq_disable();
2783 check_irq_off();
2784 spin_lock(&l3->list_lock);
2785
2786 /* Make slab active. */
2787 list_add_tail(&slabp->list, &(l3->slabs_free));
2788 STATS_INC_GROWN(cachep);
2789 l3->free_objects += cachep->num;
2790 spin_unlock(&l3->list_lock);
2791 return 1;
2792 opps1:
2793 kmem_freepages(cachep, objp);
2794 failed:
2795 if (local_flags & __GFP_WAIT)
2796 local_irq_disable();
2797 return 0;
2798 }
2799
2800 #if DEBUG
2801
2802 /*
2803 * Perform extra freeing checks:
2804 * - detect bad pointers.
2805 * - POISON/RED_ZONE checking
2806 */
2807 static void kfree_debugcheck(const void *objp)
2808 {
2809 if (!virt_addr_valid(objp)) {
2810 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2811 (unsigned long)objp);
2812 BUG();
2813 }
2814 }
2815
2816 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2817 {
2818 unsigned long long redzone1, redzone2;
2819
2820 redzone1 = *dbg_redzone1(cache, obj);
2821 redzone2 = *dbg_redzone2(cache, obj);
2822
2823 /*
2824 * Redzone is ok.
2825 */
2826 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2827 return;
2828
2829 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2830 slab_error(cache, "double free detected");
2831 else
2832 slab_error(cache, "memory outside object was overwritten");
2833
2834 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2835 obj, redzone1, redzone2);
2836 }
2837
2838 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2839 void *caller)
2840 {
2841 struct page *page;
2842 unsigned int objnr;
2843 struct slab *slabp;
2844
2845 objp -= obj_offset(cachep);
2846 kfree_debugcheck(objp);
2847 page = virt_to_head_page(objp);
2848
2849 slabp = page_get_slab(page);
2850
2851 if (cachep->flags & SLAB_RED_ZONE) {
2852 verify_redzone_free(cachep, objp);
2853 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2854 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2855 }
2856 if (cachep->flags & SLAB_STORE_USER)
2857 *dbg_userword(cachep, objp) = caller;
2858
2859 objnr = obj_to_index(cachep, slabp, objp);
2860
2861 BUG_ON(objnr >= cachep->num);
2862 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2863
2864 #ifdef CONFIG_DEBUG_SLAB_LEAK
2865 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2866 #endif
2867 if (cachep->flags & SLAB_POISON) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2870 store_stackinfo(cachep, objp, (unsigned long)caller);
2871 kernel_map_pages(virt_to_page(objp),
2872 cachep->buffer_size / PAGE_SIZE, 0);
2873 } else {
2874 poison_obj(cachep, objp, POISON_FREE);
2875 }
2876 #else
2877 poison_obj(cachep, objp, POISON_FREE);
2878 #endif
2879 }
2880 return objp;
2881 }
2882
2883 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2884 {
2885 kmem_bufctl_t i;
2886 int entries = 0;
2887
2888 /* Check slab's freelist to see if this obj is there. */
2889 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2890 entries++;
2891 if (entries > cachep->num || i >= cachep->num)
2892 goto bad;
2893 }
2894 if (entries != cachep->num - slabp->inuse) {
2895 bad:
2896 printk(KERN_ERR "slab: Internal list corruption detected in "
2897 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2898 cachep->name, cachep->num, slabp, slabp->inuse);
2899 for (i = 0;
2900 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2901 i++) {
2902 if (i % 16 == 0)
2903 printk("\n%03x:", i);
2904 printk(" %02x", ((unsigned char *)slabp)[i]);
2905 }
2906 printk("\n");
2907 BUG();
2908 }
2909 }
2910 #else
2911 #define kfree_debugcheck(x) do { } while(0)
2912 #define cache_free_debugcheck(x,objp,z) (objp)
2913 #define check_slabp(x,y) do { } while(0)
2914 #endif
2915
2916 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2917 {
2918 int batchcount;
2919 struct kmem_list3 *l3;
2920 struct array_cache *ac;
2921 int node;
2922
2923 node = numa_node_id();
2924
2925 check_irq_off();
2926 ac = cpu_cache_get(cachep);
2927 retry:
2928 batchcount = ac->batchcount;
2929 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2930 /*
2931 * If there was little recent activity on this cache, then
2932 * perform only a partial refill. Otherwise we could generate
2933 * refill bouncing.
2934 */
2935 batchcount = BATCHREFILL_LIMIT;
2936 }
2937 l3 = cachep->nodelists[node];
2938
2939 BUG_ON(ac->avail > 0 || !l3);
2940 spin_lock(&l3->list_lock);
2941
2942 /* See if we can refill from the shared array */
2943 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2944 goto alloc_done;
2945
2946 while (batchcount > 0) {
2947 struct list_head *entry;
2948 struct slab *slabp;
2949 /* Get slab alloc is to come from. */
2950 entry = l3->slabs_partial.next;
2951 if (entry == &l3->slabs_partial) {
2952 l3->free_touched = 1;
2953 entry = l3->slabs_free.next;
2954 if (entry == &l3->slabs_free)
2955 goto must_grow;
2956 }
2957
2958 slabp = list_entry(entry, struct slab, list);
2959 check_slabp(cachep, slabp);
2960 check_spinlock_acquired(cachep);
2961
2962 /*
2963 * The slab was either on partial or free list so
2964 * there must be at least one object available for
2965 * allocation.
2966 */
2967 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2968
2969 while (slabp->inuse < cachep->num && batchcount--) {
2970 STATS_INC_ALLOCED(cachep);
2971 STATS_INC_ACTIVE(cachep);
2972 STATS_SET_HIGH(cachep);
2973
2974 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2975 node);
2976 }
2977 check_slabp(cachep, slabp);
2978
2979 /* move slabp to correct slabp list: */
2980 list_del(&slabp->list);
2981 if (slabp->free == BUFCTL_END)
2982 list_add(&slabp->list, &l3->slabs_full);
2983 else
2984 list_add(&slabp->list, &l3->slabs_partial);
2985 }
2986
2987 must_grow:
2988 l3->free_objects -= ac->avail;
2989 alloc_done:
2990 spin_unlock(&l3->list_lock);
2991
2992 if (unlikely(!ac->avail)) {
2993 int x;
2994 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2995
2996 /* cache_grow can reenable interrupts, then ac could change. */
2997 ac = cpu_cache_get(cachep);
2998 if (!x && ac->avail == 0) /* no objects in sight? abort */
2999 return NULL;
3000
3001 if (!ac->avail) /* objects refilled by interrupt? */
3002 goto retry;
3003 }
3004 ac->touched = 1;
3005 return ac->entry[--ac->avail];
3006 }
3007
3008 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3009 gfp_t flags)
3010 {
3011 might_sleep_if(flags & __GFP_WAIT);
3012 #if DEBUG
3013 kmem_flagcheck(cachep, flags);
3014 #endif
3015 }
3016
3017 #if DEBUG
3018 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3019 gfp_t flags, void *objp, void *caller)
3020 {
3021 if (!objp)
3022 return objp;
3023 if (cachep->flags & SLAB_POISON) {
3024 #ifdef CONFIG_DEBUG_PAGEALLOC
3025 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3026 kernel_map_pages(virt_to_page(objp),
3027 cachep->buffer_size / PAGE_SIZE, 1);
3028 else
3029 check_poison_obj(cachep, objp);
3030 #else
3031 check_poison_obj(cachep, objp);
3032 #endif
3033 poison_obj(cachep, objp, POISON_INUSE);
3034 }
3035 if (cachep->flags & SLAB_STORE_USER)
3036 *dbg_userword(cachep, objp) = caller;
3037
3038 if (cachep->flags & SLAB_RED_ZONE) {
3039 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3040 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3041 slab_error(cachep, "double free, or memory outside"
3042 " object was overwritten");
3043 printk(KERN_ERR
3044 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3045 objp, *dbg_redzone1(cachep, objp),
3046 *dbg_redzone2(cachep, objp));
3047 }
3048 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3049 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3050 }
3051 #ifdef CONFIG_DEBUG_SLAB_LEAK
3052 {
3053 struct slab *slabp;
3054 unsigned objnr;
3055
3056 slabp = page_get_slab(virt_to_head_page(objp));
3057 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3058 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3059 }
3060 #endif
3061 objp += obj_offset(cachep);
3062 if (cachep->ctor && cachep->flags & SLAB_POISON)
3063 cachep->ctor(objp, cachep, 0);
3064 #if ARCH_SLAB_MINALIGN
3065 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3066 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3067 objp, ARCH_SLAB_MINALIGN);
3068 }
3069 #endif
3070 return objp;
3071 }
3072 #else
3073 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3074 #endif
3075
3076 #ifdef CONFIG_FAILSLAB
3077
3078 static struct failslab_attr {
3079
3080 struct fault_attr attr;
3081
3082 u32 ignore_gfp_wait;
3083 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3084 struct dentry *ignore_gfp_wait_file;
3085 #endif
3086
3087 } failslab = {
3088 .attr = FAULT_ATTR_INITIALIZER,
3089 .ignore_gfp_wait = 1,
3090 };
3091
3092 static int __init setup_failslab(char *str)
3093 {
3094 return setup_fault_attr(&failslab.attr, str);
3095 }
3096 __setup("failslab=", setup_failslab);
3097
3098 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3099 {
3100 if (cachep == &cache_cache)
3101 return 0;
3102 if (flags & __GFP_NOFAIL)
3103 return 0;
3104 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3105 return 0;
3106
3107 return should_fail(&failslab.attr, obj_size(cachep));
3108 }
3109
3110 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3111
3112 static int __init failslab_debugfs(void)
3113 {
3114 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3115 struct dentry *dir;
3116 int err;
3117
3118 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3119 if (err)
3120 return err;
3121 dir = failslab.attr.dentries.dir;
3122
3123 failslab.ignore_gfp_wait_file =
3124 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3125 &failslab.ignore_gfp_wait);
3126
3127 if (!failslab.ignore_gfp_wait_file) {
3128 err = -ENOMEM;
3129 debugfs_remove(failslab.ignore_gfp_wait_file);
3130 cleanup_fault_attr_dentries(&failslab.attr);
3131 }
3132
3133 return err;
3134 }
3135
3136 late_initcall(failslab_debugfs);
3137
3138 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3139
3140 #else /* CONFIG_FAILSLAB */
3141
3142 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3143 {
3144 return 0;
3145 }
3146
3147 #endif /* CONFIG_FAILSLAB */
3148
3149 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3150 {
3151 void *objp;
3152 struct array_cache *ac;
3153
3154 check_irq_off();
3155
3156 ac = cpu_cache_get(cachep);
3157 if (likely(ac->avail)) {
3158 STATS_INC_ALLOCHIT(cachep);
3159 ac->touched = 1;
3160 objp = ac->entry[--ac->avail];
3161 } else {
3162 STATS_INC_ALLOCMISS(cachep);
3163 objp = cache_alloc_refill(cachep, flags);
3164 }
3165 return objp;
3166 }
3167
3168 #ifdef CONFIG_NUMA
3169 /*
3170 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3171 *
3172 * If we are in_interrupt, then process context, including cpusets and
3173 * mempolicy, may not apply and should not be used for allocation policy.
3174 */
3175 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3176 {
3177 int nid_alloc, nid_here;
3178
3179 if (in_interrupt() || (flags & __GFP_THISNODE))
3180 return NULL;
3181 nid_alloc = nid_here = numa_node_id();
3182 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3183 nid_alloc = cpuset_mem_spread_node();
3184 else if (current->mempolicy)
3185 nid_alloc = slab_node(current->mempolicy);
3186 if (nid_alloc != nid_here)
3187 return ____cache_alloc_node(cachep, flags, nid_alloc);
3188 return NULL;
3189 }
3190
3191 /*
3192 * Fallback function if there was no memory available and no objects on a
3193 * certain node and fall back is permitted. First we scan all the
3194 * available nodelists for available objects. If that fails then we
3195 * perform an allocation without specifying a node. This allows the page
3196 * allocator to do its reclaim / fallback magic. We then insert the
3197 * slab into the proper nodelist and then allocate from it.
3198 */
3199 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3200 {
3201 struct zonelist *zonelist;
3202 gfp_t local_flags;
3203 struct zone **z;
3204 void *obj = NULL;
3205 int nid;
3206
3207 if (flags & __GFP_THISNODE)
3208 return NULL;
3209
3210 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3211 ->node_zonelists[gfp_zone(flags)];
3212 local_flags = (flags & GFP_LEVEL_MASK);
3213
3214 retry:
3215 /*
3216 * Look through allowed nodes for objects available
3217 * from existing per node queues.
3218 */
3219 for (z = zonelist->zones; *z && !obj; z++) {
3220 nid = zone_to_nid(*z);
3221
3222 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3223 cache->nodelists[nid] &&
3224 cache->nodelists[nid]->free_objects)
3225 obj = ____cache_alloc_node(cache,
3226 flags | GFP_THISNODE, nid);
3227 }
3228
3229 if (!obj) {
3230 /*
3231 * This allocation will be performed within the constraints
3232 * of the current cpuset / memory policy requirements.
3233 * We may trigger various forms of reclaim on the allowed
3234 * set and go into memory reserves if necessary.
3235 */
3236 if (local_flags & __GFP_WAIT)
3237 local_irq_enable();
3238 kmem_flagcheck(cache, flags);
3239 obj = kmem_getpages(cache, flags, -1);
3240 if (local_flags & __GFP_WAIT)
3241 local_irq_disable();
3242 if (obj) {
3243 /*
3244 * Insert into the appropriate per node queues
3245 */
3246 nid = page_to_nid(virt_to_page(obj));
3247 if (cache_grow(cache, flags, nid, obj)) {
3248 obj = ____cache_alloc_node(cache,
3249 flags | GFP_THISNODE, nid);
3250 if (!obj)
3251 /*
3252 * Another processor may allocate the
3253 * objects in the slab since we are
3254 * not holding any locks.
3255 */
3256 goto retry;
3257 } else {
3258 /* cache_grow already freed obj */
3259 obj = NULL;
3260 }
3261 }
3262 }
3263 return obj;
3264 }
3265
3266 /*
3267 * A interface to enable slab creation on nodeid
3268 */
3269 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3270 int nodeid)
3271 {
3272 struct list_head *entry;
3273 struct slab *slabp;
3274 struct kmem_list3 *l3;
3275 void *obj;
3276 int x;
3277
3278 l3 = cachep->nodelists[nodeid];
3279 BUG_ON(!l3);
3280
3281 retry:
3282 check_irq_off();
3283 spin_lock(&l3->list_lock);
3284 entry = l3->slabs_partial.next;
3285 if (entry == &l3->slabs_partial) {
3286 l3->free_touched = 1;
3287 entry = l3->slabs_free.next;
3288 if (entry == &l3->slabs_free)
3289 goto must_grow;
3290 }
3291
3292 slabp = list_entry(entry, struct slab, list);
3293 check_spinlock_acquired_node(cachep, nodeid);
3294 check_slabp(cachep, slabp);
3295
3296 STATS_INC_NODEALLOCS(cachep);
3297 STATS_INC_ACTIVE(cachep);
3298 STATS_SET_HIGH(cachep);
3299
3300 BUG_ON(slabp->inuse == cachep->num);
3301
3302 obj = slab_get_obj(cachep, slabp, nodeid);
3303 check_slabp(cachep, slabp);
3304 l3->free_objects--;
3305 /* move slabp to correct slabp list: */
3306 list_del(&slabp->list);
3307
3308 if (slabp->free == BUFCTL_END)
3309 list_add(&slabp->list, &l3->slabs_full);
3310 else
3311 list_add(&slabp->list, &l3->slabs_partial);
3312
3313 spin_unlock(&l3->list_lock);
3314 goto done;
3315
3316 must_grow:
3317 spin_unlock(&l3->list_lock);
3318 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3319 if (x)
3320 goto retry;
3321
3322 return fallback_alloc(cachep, flags);
3323
3324 done:
3325 return obj;
3326 }
3327
3328 /**
3329 * kmem_cache_alloc_node - Allocate an object on the specified node
3330 * @cachep: The cache to allocate from.
3331 * @flags: See kmalloc().
3332 * @nodeid: node number of the target node.
3333 * @caller: return address of caller, used for debug information
3334 *
3335 * Identical to kmem_cache_alloc but it will allocate memory on the given
3336 * node, which can improve the performance for cpu bound structures.
3337 *
3338 * Fallback to other node is possible if __GFP_THISNODE is not set.
3339 */
3340 static __always_inline void *
3341 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3342 void *caller)
3343 {
3344 unsigned long save_flags;
3345 void *ptr;
3346
3347 if (should_failslab(cachep, flags))
3348 return NULL;
3349
3350 cache_alloc_debugcheck_before(cachep, flags);
3351 local_irq_save(save_flags);
3352
3353 if (unlikely(nodeid == -1))
3354 nodeid = numa_node_id();
3355
3356 if (unlikely(!cachep->nodelists[nodeid])) {
3357 /* Node not bootstrapped yet */
3358 ptr = fallback_alloc(cachep, flags);
3359 goto out;
3360 }
3361
3362 if (nodeid == numa_node_id()) {
3363 /*
3364 * Use the locally cached objects if possible.
3365 * However ____cache_alloc does not allow fallback
3366 * to other nodes. It may fail while we still have
3367 * objects on other nodes available.
3368 */
3369 ptr = ____cache_alloc(cachep, flags);
3370 if (ptr)
3371 goto out;
3372 }
3373 /* ___cache_alloc_node can fall back to other nodes */
3374 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3375 out:
3376 local_irq_restore(save_flags);
3377 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3378
3379 return ptr;
3380 }
3381
3382 static __always_inline void *
3383 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3384 {
3385 void *objp;
3386
3387 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3388 objp = alternate_node_alloc(cache, flags);
3389 if (objp)
3390 goto out;
3391 }
3392 objp = ____cache_alloc(cache, flags);
3393
3394 /*
3395 * We may just have run out of memory on the local node.
3396 * ____cache_alloc_node() knows how to locate memory on other nodes
3397 */
3398 if (!objp)
3399 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3400
3401 out:
3402 return objp;
3403 }
3404 #else
3405
3406 static __always_inline void *
3407 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3408 {
3409 return ____cache_alloc(cachep, flags);
3410 }
3411
3412 #endif /* CONFIG_NUMA */
3413
3414 static __always_inline void *
3415 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3416 {
3417 unsigned long save_flags;
3418 void *objp;
3419
3420 if (should_failslab(cachep, flags))
3421 return NULL;
3422
3423 cache_alloc_debugcheck_before(cachep, flags);
3424 local_irq_save(save_flags);
3425 objp = __do_cache_alloc(cachep, flags);
3426 local_irq_restore(save_flags);
3427 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3428 prefetchw(objp);
3429
3430 return objp;
3431 }
3432
3433 /*
3434 * Caller needs to acquire correct kmem_list's list_lock
3435 */
3436 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3437 int node)
3438 {
3439 int i;
3440 struct kmem_list3 *l3;
3441
3442 for (i = 0; i < nr_objects; i++) {
3443 void *objp = objpp[i];
3444 struct slab *slabp;
3445
3446 slabp = virt_to_slab(objp);
3447 l3 = cachep->nodelists[node];
3448 list_del(&slabp->list);
3449 check_spinlock_acquired_node(cachep, node);
3450 check_slabp(cachep, slabp);
3451 slab_put_obj(cachep, slabp, objp, node);
3452 STATS_DEC_ACTIVE(cachep);
3453 l3->free_objects++;
3454 check_slabp(cachep, slabp);
3455
3456 /* fixup slab chains */
3457 if (slabp->inuse == 0) {
3458 if (l3->free_objects > l3->free_limit) {
3459 l3->free_objects -= cachep->num;
3460 /* No need to drop any previously held
3461 * lock here, even if we have a off-slab slab
3462 * descriptor it is guaranteed to come from
3463 * a different cache, refer to comments before
3464 * alloc_slabmgmt.
3465 */
3466 slab_destroy(cachep, slabp);
3467 } else {
3468 list_add(&slabp->list, &l3->slabs_free);
3469 }
3470 } else {
3471 /* Unconditionally move a slab to the end of the
3472 * partial list on free - maximum time for the
3473 * other objects to be freed, too.
3474 */
3475 list_add_tail(&slabp->list, &l3->slabs_partial);
3476 }
3477 }
3478 }
3479
3480 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3481 {
3482 int batchcount;
3483 struct kmem_list3 *l3;
3484 int node = numa_node_id();
3485
3486 batchcount = ac->batchcount;
3487 #if DEBUG
3488 BUG_ON(!batchcount || batchcount > ac->avail);
3489 #endif
3490 check_irq_off();
3491 l3 = cachep->nodelists[node];
3492 spin_lock(&l3->list_lock);
3493 if (l3->shared) {
3494 struct array_cache *shared_array = l3->shared;
3495 int max = shared_array->limit - shared_array->avail;
3496 if (max) {
3497 if (batchcount > max)
3498 batchcount = max;
3499 memcpy(&(shared_array->entry[shared_array->avail]),
3500 ac->entry, sizeof(void *) * batchcount);
3501 shared_array->avail += batchcount;
3502 goto free_done;
3503 }
3504 }
3505
3506 free_block(cachep, ac->entry, batchcount, node);
3507 free_done:
3508 #if STATS
3509 {
3510 int i = 0;
3511 struct list_head *p;
3512
3513 p = l3->slabs_free.next;
3514 while (p != &(l3->slabs_free)) {
3515 struct slab *slabp;
3516
3517 slabp = list_entry(p, struct slab, list);
3518 BUG_ON(slabp->inuse);
3519
3520 i++;
3521 p = p->next;
3522 }
3523 STATS_SET_FREEABLE(cachep, i);
3524 }
3525 #endif
3526 spin_unlock(&l3->list_lock);
3527 ac->avail -= batchcount;
3528 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3529 }
3530
3531 /*
3532 * Release an obj back to its cache. If the obj has a constructed state, it must
3533 * be in this state _before_ it is released. Called with disabled ints.
3534 */
3535 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3536 {
3537 struct array_cache *ac = cpu_cache_get(cachep);
3538
3539 check_irq_off();
3540 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3541
3542 if (use_alien_caches && cache_free_alien(cachep, objp))
3543 return;
3544
3545 if (likely(ac->avail < ac->limit)) {
3546 STATS_INC_FREEHIT(cachep);
3547 ac->entry[ac->avail++] = objp;
3548 return;
3549 } else {
3550 STATS_INC_FREEMISS(cachep);
3551 cache_flusharray(cachep, ac);
3552 ac->entry[ac->avail++] = objp;
3553 }
3554 }
3555
3556 /**
3557 * kmem_cache_alloc - Allocate an object
3558 * @cachep: The cache to allocate from.
3559 * @flags: See kmalloc().
3560 *
3561 * Allocate an object from this cache. The flags are only relevant
3562 * if the cache has no available objects.
3563 */
3564 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3565 {
3566 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3567 }
3568 EXPORT_SYMBOL(kmem_cache_alloc);
3569
3570 /**
3571 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3572 * @cache: The cache to allocate from.
3573 * @flags: See kmalloc().
3574 *
3575 * Allocate an object from this cache and set the allocated memory to zero.
3576 * The flags are only relevant if the cache has no available objects.
3577 */
3578 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3579 {
3580 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3581 if (ret)
3582 memset(ret, 0, obj_size(cache));
3583 return ret;
3584 }
3585 EXPORT_SYMBOL(kmem_cache_zalloc);
3586
3587 /**
3588 * kmem_ptr_validate - check if an untrusted pointer might
3589 * be a slab entry.
3590 * @cachep: the cache we're checking against
3591 * @ptr: pointer to validate
3592 *
3593 * This verifies that the untrusted pointer looks sane:
3594 * it is _not_ a guarantee that the pointer is actually
3595 * part of the slab cache in question, but it at least
3596 * validates that the pointer can be dereferenced and
3597 * looks half-way sane.
3598 *
3599 * Currently only used for dentry validation.
3600 */
3601 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3602 {
3603 unsigned long addr = (unsigned long)ptr;
3604 unsigned long min_addr = PAGE_OFFSET;
3605 unsigned long align_mask = BYTES_PER_WORD - 1;
3606 unsigned long size = cachep->buffer_size;
3607 struct page *page;
3608
3609 if (unlikely(addr < min_addr))
3610 goto out;
3611 if (unlikely(addr > (unsigned long)high_memory - size))
3612 goto out;
3613 if (unlikely(addr & align_mask))
3614 goto out;
3615 if (unlikely(!kern_addr_valid(addr)))
3616 goto out;
3617 if (unlikely(!kern_addr_valid(addr + size - 1)))
3618 goto out;
3619 page = virt_to_page(ptr);
3620 if (unlikely(!PageSlab(page)))
3621 goto out;
3622 if (unlikely(page_get_cache(page) != cachep))
3623 goto out;
3624 return 1;
3625 out:
3626 return 0;
3627 }
3628
3629 #ifdef CONFIG_NUMA
3630 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3631 {
3632 return __cache_alloc_node(cachep, flags, nodeid,
3633 __builtin_return_address(0));
3634 }
3635 EXPORT_SYMBOL(kmem_cache_alloc_node);
3636
3637 static __always_inline void *
3638 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3639 {
3640 struct kmem_cache *cachep;
3641
3642 cachep = kmem_find_general_cachep(size, flags);
3643 if (unlikely(cachep == NULL))
3644 return NULL;
3645 return kmem_cache_alloc_node(cachep, flags, node);
3646 }
3647
3648 #ifdef CONFIG_DEBUG_SLAB
3649 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3650 {
3651 return __do_kmalloc_node(size, flags, node,
3652 __builtin_return_address(0));
3653 }
3654 EXPORT_SYMBOL(__kmalloc_node);
3655
3656 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3657 int node, void *caller)
3658 {
3659 return __do_kmalloc_node(size, flags, node, caller);
3660 }
3661 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3662 #else
3663 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3664 {
3665 return __do_kmalloc_node(size, flags, node, NULL);
3666 }
3667 EXPORT_SYMBOL(__kmalloc_node);
3668 #endif /* CONFIG_DEBUG_SLAB */
3669 #endif /* CONFIG_NUMA */
3670
3671 /**
3672 * __do_kmalloc - allocate memory
3673 * @size: how many bytes of memory are required.
3674 * @flags: the type of memory to allocate (see kmalloc).
3675 * @caller: function caller for debug tracking of the caller
3676 */
3677 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3678 void *caller)
3679 {
3680 struct kmem_cache *cachep;
3681
3682 /* If you want to save a few bytes .text space: replace
3683 * __ with kmem_.
3684 * Then kmalloc uses the uninlined functions instead of the inline
3685 * functions.
3686 */
3687 cachep = __find_general_cachep(size, flags);
3688 if (unlikely(cachep == NULL))
3689 return NULL;
3690 return __cache_alloc(cachep, flags, caller);
3691 }
3692
3693
3694 #ifdef CONFIG_DEBUG_SLAB
3695 void *__kmalloc(size_t size, gfp_t flags)
3696 {
3697 return __do_kmalloc(size, flags, __builtin_return_address(0));
3698 }
3699 EXPORT_SYMBOL(__kmalloc);
3700
3701 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3702 {
3703 return __do_kmalloc(size, flags, caller);
3704 }
3705 EXPORT_SYMBOL(__kmalloc_track_caller);
3706
3707 #else
3708 void *__kmalloc(size_t size, gfp_t flags)
3709 {
3710 return __do_kmalloc(size, flags, NULL);
3711 }
3712 EXPORT_SYMBOL(__kmalloc);
3713 #endif
3714
3715 /**
3716 * krealloc - reallocate memory. The contents will remain unchanged.
3717 * @p: object to reallocate memory for.
3718 * @new_size: how many bytes of memory are required.
3719 * @flags: the type of memory to allocate.
3720 *
3721 * The contents of the object pointed to are preserved up to the
3722 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3723 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3724 * %NULL pointer, the object pointed to is freed.
3725 */
3726 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3727 {
3728 struct kmem_cache *cache, *new_cache;
3729 void *ret;
3730
3731 if (unlikely(!p))
3732 return kmalloc_track_caller(new_size, flags);
3733
3734 if (unlikely(!new_size)) {
3735 kfree(p);
3736 return NULL;
3737 }
3738
3739 cache = virt_to_cache(p);
3740 new_cache = __find_general_cachep(new_size, flags);
3741
3742 /*
3743 * If new size fits in the current cache, bail out.
3744 */
3745 if (likely(cache == new_cache))
3746 return (void *)p;
3747
3748 /*
3749 * We are on the slow-path here so do not use __cache_alloc
3750 * because it bloats kernel text.
3751 */
3752 ret = kmalloc_track_caller(new_size, flags);
3753 if (ret) {
3754 memcpy(ret, p, min(new_size, ksize(p)));
3755 kfree(p);
3756 }
3757 return ret;
3758 }
3759 EXPORT_SYMBOL(krealloc);
3760
3761 /**
3762 * kmem_cache_free - Deallocate an object
3763 * @cachep: The cache the allocation was from.
3764 * @objp: The previously allocated object.
3765 *
3766 * Free an object which was previously allocated from this
3767 * cache.
3768 */
3769 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3770 {
3771 unsigned long flags;
3772
3773 BUG_ON(virt_to_cache(objp) != cachep);
3774
3775 local_irq_save(flags);
3776 debug_check_no_locks_freed(objp, obj_size(cachep));
3777 __cache_free(cachep, objp);
3778 local_irq_restore(flags);
3779 }
3780 EXPORT_SYMBOL(kmem_cache_free);
3781
3782 /**
3783 * kfree - free previously allocated memory
3784 * @objp: pointer returned by kmalloc.
3785 *
3786 * If @objp is NULL, no operation is performed.
3787 *
3788 * Don't free memory not originally allocated by kmalloc()
3789 * or you will run into trouble.
3790 */
3791 void kfree(const void *objp)
3792 {
3793 struct kmem_cache *c;
3794 unsigned long flags;
3795
3796 if (unlikely(!objp))
3797 return;
3798 local_irq_save(flags);
3799 kfree_debugcheck(objp);
3800 c = virt_to_cache(objp);
3801 debug_check_no_locks_freed(objp, obj_size(c));
3802 __cache_free(c, (void *)objp);
3803 local_irq_restore(flags);
3804 }
3805 EXPORT_SYMBOL(kfree);
3806
3807 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3808 {
3809 return obj_size(cachep);
3810 }
3811 EXPORT_SYMBOL(kmem_cache_size);
3812
3813 const char *kmem_cache_name(struct kmem_cache *cachep)
3814 {
3815 return cachep->name;
3816 }
3817 EXPORT_SYMBOL_GPL(kmem_cache_name);
3818
3819 /*
3820 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3821 */
3822 static int alloc_kmemlist(struct kmem_cache *cachep)
3823 {
3824 int node;
3825 struct kmem_list3 *l3;
3826 struct array_cache *new_shared;
3827 struct array_cache **new_alien = NULL;
3828
3829 for_each_online_node(node) {
3830
3831 if (use_alien_caches) {
3832 new_alien = alloc_alien_cache(node, cachep->limit);
3833 if (!new_alien)
3834 goto fail;
3835 }
3836
3837 new_shared = NULL;
3838 if (cachep->shared) {
3839 new_shared = alloc_arraycache(node,
3840 cachep->shared*cachep->batchcount,
3841 0xbaadf00d);
3842 if (!new_shared) {
3843 free_alien_cache(new_alien);
3844 goto fail;
3845 }
3846 }
3847
3848 l3 = cachep->nodelists[node];
3849 if (l3) {
3850 struct array_cache *shared = l3->shared;
3851
3852 spin_lock_irq(&l3->list_lock);
3853
3854 if (shared)
3855 free_block(cachep, shared->entry,
3856 shared->avail, node);
3857
3858 l3->shared = new_shared;
3859 if (!l3->alien) {
3860 l3->alien = new_alien;
3861 new_alien = NULL;
3862 }
3863 l3->free_limit = (1 + nr_cpus_node(node)) *
3864 cachep->batchcount + cachep->num;
3865 spin_unlock_irq(&l3->list_lock);
3866 kfree(shared);
3867 free_alien_cache(new_alien);
3868 continue;
3869 }
3870 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3871 if (!l3) {
3872 free_alien_cache(new_alien);
3873 kfree(new_shared);
3874 goto fail;
3875 }
3876
3877 kmem_list3_init(l3);
3878 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3879 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3880 l3->shared = new_shared;
3881 l3->alien = new_alien;
3882 l3->free_limit = (1 + nr_cpus_node(node)) *
3883 cachep->batchcount + cachep->num;
3884 cachep->nodelists[node] = l3;
3885 }
3886 return 0;
3887
3888 fail:
3889 if (!cachep->next.next) {
3890 /* Cache is not active yet. Roll back what we did */
3891 node--;
3892 while (node >= 0) {
3893 if (cachep->nodelists[node]) {
3894 l3 = cachep->nodelists[node];
3895
3896 kfree(l3->shared);
3897 free_alien_cache(l3->alien);
3898 kfree(l3);
3899 cachep->nodelists[node] = NULL;
3900 }
3901 node--;
3902 }
3903 }
3904 return -ENOMEM;
3905 }
3906
3907 struct ccupdate_struct {
3908 struct kmem_cache *cachep;
3909 struct array_cache *new[NR_CPUS];
3910 };
3911
3912 static void do_ccupdate_local(void *info)
3913 {
3914 struct ccupdate_struct *new = info;
3915 struct array_cache *old;
3916
3917 check_irq_off();
3918 old = cpu_cache_get(new->cachep);
3919
3920 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3921 new->new[smp_processor_id()] = old;
3922 }
3923
3924 /* Always called with the cache_chain_mutex held */
3925 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3926 int batchcount, int shared)
3927 {
3928 struct ccupdate_struct *new;
3929 int i;
3930
3931 new = kzalloc(sizeof(*new), GFP_KERNEL);
3932 if (!new)
3933 return -ENOMEM;
3934
3935 for_each_online_cpu(i) {
3936 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3937 batchcount);
3938 if (!new->new[i]) {
3939 for (i--; i >= 0; i--)
3940 kfree(new->new[i]);
3941 kfree(new);
3942 return -ENOMEM;
3943 }
3944 }
3945 new->cachep = cachep;
3946
3947 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3948
3949 check_irq_on();
3950 cachep->batchcount = batchcount;
3951 cachep->limit = limit;
3952 cachep->shared = shared;
3953
3954 for_each_online_cpu(i) {
3955 struct array_cache *ccold = new->new[i];
3956 if (!ccold)
3957 continue;
3958 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3959 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3960 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3961 kfree(ccold);
3962 }
3963 kfree(new);
3964 return alloc_kmemlist(cachep);
3965 }
3966
3967 /* Called with cache_chain_mutex held always */
3968 static int enable_cpucache(struct kmem_cache *cachep)
3969 {
3970 int err;
3971 int limit, shared;
3972
3973 /*
3974 * The head array serves three purposes:
3975 * - create a LIFO ordering, i.e. return objects that are cache-warm
3976 * - reduce the number of spinlock operations.
3977 * - reduce the number of linked list operations on the slab and
3978 * bufctl chains: array operations are cheaper.
3979 * The numbers are guessed, we should auto-tune as described by
3980 * Bonwick.
3981 */
3982 if (cachep->buffer_size > 131072)
3983 limit = 1;
3984 else if (cachep->buffer_size > PAGE_SIZE)
3985 limit = 8;
3986 else if (cachep->buffer_size > 1024)
3987 limit = 24;
3988 else if (cachep->buffer_size > 256)
3989 limit = 54;
3990 else
3991 limit = 120;
3992
3993 /*
3994 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3995 * allocation behaviour: Most allocs on one cpu, most free operations
3996 * on another cpu. For these cases, an efficient object passing between
3997 * cpus is necessary. This is provided by a shared array. The array
3998 * replaces Bonwick's magazine layer.
3999 * On uniprocessor, it's functionally equivalent (but less efficient)
4000 * to a larger limit. Thus disabled by default.
4001 */
4002 shared = 0;
4003 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4004 shared = 8;
4005
4006 #if DEBUG
4007 /*
4008 * With debugging enabled, large batchcount lead to excessively long
4009 * periods with disabled local interrupts. Limit the batchcount
4010 */
4011 if (limit > 32)
4012 limit = 32;
4013 #endif
4014 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4015 if (err)
4016 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4017 cachep->name, -err);
4018 return err;
4019 }
4020
4021 /*
4022 * Drain an array if it contains any elements taking the l3 lock only if
4023 * necessary. Note that the l3 listlock also protects the array_cache
4024 * if drain_array() is used on the shared array.
4025 */
4026 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4027 struct array_cache *ac, int force, int node)
4028 {
4029 int tofree;
4030
4031 if (!ac || !ac->avail)
4032 return;
4033 if (ac->touched && !force) {
4034 ac->touched = 0;
4035 } else {
4036 spin_lock_irq(&l3->list_lock);
4037 if (ac->avail) {
4038 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4039 if (tofree > ac->avail)
4040 tofree = (ac->avail + 1) / 2;
4041 free_block(cachep, ac->entry, tofree, node);
4042 ac->avail -= tofree;
4043 memmove(ac->entry, &(ac->entry[tofree]),
4044 sizeof(void *) * ac->avail);
4045 }
4046 spin_unlock_irq(&l3->list_lock);
4047 }
4048 }
4049
4050 /**
4051 * cache_reap - Reclaim memory from caches.
4052 * @w: work descriptor
4053 *
4054 * Called from workqueue/eventd every few seconds.
4055 * Purpose:
4056 * - clear the per-cpu caches for this CPU.
4057 * - return freeable pages to the main free memory pool.
4058 *
4059 * If we cannot acquire the cache chain mutex then just give up - we'll try
4060 * again on the next iteration.
4061 */
4062 static void cache_reap(struct work_struct *w)
4063 {
4064 struct kmem_cache *searchp;
4065 struct kmem_list3 *l3;
4066 int node = numa_node_id();
4067 struct delayed_work *work =
4068 container_of(w, struct delayed_work, work);
4069
4070 if (!mutex_trylock(&cache_chain_mutex))
4071 /* Give up. Setup the next iteration. */
4072 goto out;
4073
4074 list_for_each_entry(searchp, &cache_chain, next) {
4075 check_irq_on();
4076
4077 /*
4078 * We only take the l3 lock if absolutely necessary and we
4079 * have established with reasonable certainty that
4080 * we can do some work if the lock was obtained.
4081 */
4082 l3 = searchp->nodelists[node];
4083
4084 reap_alien(searchp, l3);
4085
4086 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4087
4088 /*
4089 * These are racy checks but it does not matter
4090 * if we skip one check or scan twice.
4091 */
4092 if (time_after(l3->next_reap, jiffies))
4093 goto next;
4094
4095 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4096
4097 drain_array(searchp, l3, l3->shared, 0, node);
4098
4099 if (l3->free_touched)
4100 l3->free_touched = 0;
4101 else {
4102 int freed;
4103
4104 freed = drain_freelist(searchp, l3, (l3->free_limit +
4105 5 * searchp->num - 1) / (5 * searchp->num));
4106 STATS_ADD_REAPED(searchp, freed);
4107 }
4108 next:
4109 cond_resched();
4110 }
4111 check_irq_on();
4112 mutex_unlock(&cache_chain_mutex);
4113 next_reap_node();
4114 out:
4115 /* Set up the next iteration */
4116 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4117 }
4118
4119 #ifdef CONFIG_PROC_FS
4120
4121 static void print_slabinfo_header(struct seq_file *m)
4122 {
4123 /*
4124 * Output format version, so at least we can change it
4125 * without _too_ many complaints.
4126 */
4127 #if STATS
4128 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4129 #else
4130 seq_puts(m, "slabinfo - version: 2.1\n");
4131 #endif
4132 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4133 "<objperslab> <pagesperslab>");
4134 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4135 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4136 #if STATS
4137 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4138 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4139 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4140 #endif
4141 seq_putc(m, '\n');
4142 }
4143
4144 static void *s_start(struct seq_file *m, loff_t *pos)
4145 {
4146 loff_t n = *pos;
4147 struct list_head *p;
4148
4149 mutex_lock(&cache_chain_mutex);
4150 if (!n)
4151 print_slabinfo_header(m);
4152 p = cache_chain.next;
4153 while (n--) {
4154 p = p->next;
4155 if (p == &cache_chain)
4156 return NULL;
4157 }
4158 return list_entry(p, struct kmem_cache, next);
4159 }
4160
4161 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4162 {
4163 struct kmem_cache *cachep = p;
4164 ++*pos;
4165 return cachep->next.next == &cache_chain ?
4166 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4167 }
4168
4169 static void s_stop(struct seq_file *m, void *p)
4170 {
4171 mutex_unlock(&cache_chain_mutex);
4172 }
4173
4174 static int s_show(struct seq_file *m, void *p)
4175 {
4176 struct kmem_cache *cachep = p;
4177 struct slab *slabp;
4178 unsigned long active_objs;
4179 unsigned long num_objs;
4180 unsigned long active_slabs = 0;
4181 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4182 const char *name;
4183 char *error = NULL;
4184 int node;
4185 struct kmem_list3 *l3;
4186
4187 active_objs = 0;
4188 num_slabs = 0;
4189 for_each_online_node(node) {
4190 l3 = cachep->nodelists[node];
4191 if (!l3)
4192 continue;
4193
4194 check_irq_on();
4195 spin_lock_irq(&l3->list_lock);
4196
4197 list_for_each_entry(slabp, &l3->slabs_full, list) {
4198 if (slabp->inuse != cachep->num && !error)
4199 error = "slabs_full accounting error";
4200 active_objs += cachep->num;
4201 active_slabs++;
4202 }
4203 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4204 if (slabp->inuse == cachep->num && !error)
4205 error = "slabs_partial inuse accounting error";
4206 if (!slabp->inuse && !error)
4207 error = "slabs_partial/inuse accounting error";
4208 active_objs += slabp->inuse;
4209 active_slabs++;
4210 }
4211 list_for_each_entry(slabp, &l3->slabs_free, list) {
4212 if (slabp->inuse && !error)
4213 error = "slabs_free/inuse accounting error";
4214 num_slabs++;
4215 }
4216 free_objects += l3->free_objects;
4217 if (l3->shared)
4218 shared_avail += l3->shared->avail;
4219
4220 spin_unlock_irq(&l3->list_lock);
4221 }
4222 num_slabs += active_slabs;
4223 num_objs = num_slabs * cachep->num;
4224 if (num_objs - active_objs != free_objects && !error)
4225 error = "free_objects accounting error";
4226
4227 name = cachep->name;
4228 if (error)
4229 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4230
4231 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4232 name, active_objs, num_objs, cachep->buffer_size,
4233 cachep->num, (1 << cachep->gfporder));
4234 seq_printf(m, " : tunables %4u %4u %4u",
4235 cachep->limit, cachep->batchcount, cachep->shared);
4236 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4237 active_slabs, num_slabs, shared_avail);
4238 #if STATS
4239 { /* list3 stats */
4240 unsigned long high = cachep->high_mark;
4241 unsigned long allocs = cachep->num_allocations;
4242 unsigned long grown = cachep->grown;
4243 unsigned long reaped = cachep->reaped;
4244 unsigned long errors = cachep->errors;
4245 unsigned long max_freeable = cachep->max_freeable;
4246 unsigned long node_allocs = cachep->node_allocs;
4247 unsigned long node_frees = cachep->node_frees;
4248 unsigned long overflows = cachep->node_overflow;
4249
4250 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4251 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4252 reaped, errors, max_freeable, node_allocs,
4253 node_frees, overflows);
4254 }
4255 /* cpu stats */
4256 {
4257 unsigned long allochit = atomic_read(&cachep->allochit);
4258 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4259 unsigned long freehit = atomic_read(&cachep->freehit);
4260 unsigned long freemiss = atomic_read(&cachep->freemiss);
4261
4262 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4263 allochit, allocmiss, freehit, freemiss);
4264 }
4265 #endif
4266 seq_putc(m, '\n');
4267 return 0;
4268 }
4269
4270 /*
4271 * slabinfo_op - iterator that generates /proc/slabinfo
4272 *
4273 * Output layout:
4274 * cache-name
4275 * num-active-objs
4276 * total-objs
4277 * object size
4278 * num-active-slabs
4279 * total-slabs
4280 * num-pages-per-slab
4281 * + further values on SMP and with statistics enabled
4282 */
4283
4284 const struct seq_operations slabinfo_op = {
4285 .start = s_start,
4286 .next = s_next,
4287 .stop = s_stop,
4288 .show = s_show,
4289 };
4290
4291 #define MAX_SLABINFO_WRITE 128
4292 /**
4293 * slabinfo_write - Tuning for the slab allocator
4294 * @file: unused
4295 * @buffer: user buffer
4296 * @count: data length
4297 * @ppos: unused
4298 */
4299 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4300 size_t count, loff_t *ppos)
4301 {
4302 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4303 int limit, batchcount, shared, res;
4304 struct kmem_cache *cachep;
4305
4306 if (count > MAX_SLABINFO_WRITE)
4307 return -EINVAL;
4308 if (copy_from_user(&kbuf, buffer, count))
4309 return -EFAULT;
4310 kbuf[MAX_SLABINFO_WRITE] = '\0';
4311
4312 tmp = strchr(kbuf, ' ');
4313 if (!tmp)
4314 return -EINVAL;
4315 *tmp = '\0';
4316 tmp++;
4317 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4318 return -EINVAL;
4319
4320 /* Find the cache in the chain of caches. */
4321 mutex_lock(&cache_chain_mutex);
4322 res = -EINVAL;
4323 list_for_each_entry(cachep, &cache_chain, next) {
4324 if (!strcmp(cachep->name, kbuf)) {
4325 if (limit < 1 || batchcount < 1 ||
4326 batchcount > limit || shared < 0) {
4327 res = 0;
4328 } else {
4329 res = do_tune_cpucache(cachep, limit,
4330 batchcount, shared);
4331 }
4332 break;
4333 }
4334 }
4335 mutex_unlock(&cache_chain_mutex);
4336 if (res >= 0)
4337 res = count;
4338 return res;
4339 }
4340
4341 #ifdef CONFIG_DEBUG_SLAB_LEAK
4342
4343 static void *leaks_start(struct seq_file *m, loff_t *pos)
4344 {
4345 loff_t n = *pos;
4346 struct list_head *p;
4347
4348 mutex_lock(&cache_chain_mutex);
4349 p = cache_chain.next;
4350 while (n--) {
4351 p = p->next;
4352 if (p == &cache_chain)
4353 return NULL;
4354 }
4355 return list_entry(p, struct kmem_cache, next);
4356 }
4357
4358 static inline int add_caller(unsigned long *n, unsigned long v)
4359 {
4360 unsigned long *p;
4361 int l;
4362 if (!v)
4363 return 1;
4364 l = n[1];
4365 p = n + 2;
4366 while (l) {
4367 int i = l/2;
4368 unsigned long *q = p + 2 * i;
4369 if (*q == v) {
4370 q[1]++;
4371 return 1;
4372 }
4373 if (*q > v) {
4374 l = i;
4375 } else {
4376 p = q + 2;
4377 l -= i + 1;
4378 }
4379 }
4380 if (++n[1] == n[0])
4381 return 0;
4382 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4383 p[0] = v;
4384 p[1] = 1;
4385 return 1;
4386 }
4387
4388 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4389 {
4390 void *p;
4391 int i;
4392 if (n[0] == n[1])
4393 return;
4394 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4395 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4396 continue;
4397 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4398 return;
4399 }
4400 }
4401
4402 static void show_symbol(struct seq_file *m, unsigned long address)
4403 {
4404 #ifdef CONFIG_KALLSYMS
4405 unsigned long offset, size;
4406 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4407
4408 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4409 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4410 if (modname[0])
4411 seq_printf(m, " [%s]", modname);
4412 return;
4413 }
4414 #endif
4415 seq_printf(m, "%p", (void *)address);
4416 }
4417
4418 static int leaks_show(struct seq_file *m, void *p)
4419 {
4420 struct kmem_cache *cachep = p;
4421 struct slab *slabp;
4422 struct kmem_list3 *l3;
4423 const char *name;
4424 unsigned long *n = m->private;
4425 int node;
4426 int i;
4427
4428 if (!(cachep->flags & SLAB_STORE_USER))
4429 return 0;
4430 if (!(cachep->flags & SLAB_RED_ZONE))
4431 return 0;
4432
4433 /* OK, we can do it */
4434
4435 n[1] = 0;
4436
4437 for_each_online_node(node) {
4438 l3 = cachep->nodelists[node];
4439 if (!l3)
4440 continue;
4441
4442 check_irq_on();
4443 spin_lock_irq(&l3->list_lock);
4444
4445 list_for_each_entry(slabp, &l3->slabs_full, list)
4446 handle_slab(n, cachep, slabp);
4447 list_for_each_entry(slabp, &l3->slabs_partial, list)
4448 handle_slab(n, cachep, slabp);
4449 spin_unlock_irq(&l3->list_lock);
4450 }
4451 name = cachep->name;
4452 if (n[0] == n[1]) {
4453 /* Increase the buffer size */
4454 mutex_unlock(&cache_chain_mutex);
4455 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4456 if (!m->private) {
4457 /* Too bad, we are really out */
4458 m->private = n;
4459 mutex_lock(&cache_chain_mutex);
4460 return -ENOMEM;
4461 }
4462 *(unsigned long *)m->private = n[0] * 2;
4463 kfree(n);
4464 mutex_lock(&cache_chain_mutex);
4465 /* Now make sure this entry will be retried */
4466 m->count = m->size;
4467 return 0;
4468 }
4469 for (i = 0; i < n[1]; i++) {
4470 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4471 show_symbol(m, n[2*i+2]);
4472 seq_putc(m, '\n');
4473 }
4474
4475 return 0;
4476 }
4477
4478 const struct seq_operations slabstats_op = {
4479 .start = leaks_start,
4480 .next = s_next,
4481 .stop = s_stop,
4482 .show = leaks_show,
4483 };
4484 #endif
4485 #endif
4486
4487 /**
4488 * ksize - get the actual amount of memory allocated for a given object
4489 * @objp: Pointer to the object
4490 *
4491 * kmalloc may internally round up allocations and return more memory
4492 * than requested. ksize() can be used to determine the actual amount of
4493 * memory allocated. The caller may use this additional memory, even though
4494 * a smaller amount of memory was initially specified with the kmalloc call.
4495 * The caller must guarantee that objp points to a valid object previously
4496 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4497 * must not be freed during the duration of the call.
4498 */
4499 size_t ksize(const void *objp)
4500 {
4501 if (unlikely(objp == NULL))
4502 return 0;
4503
4504 return obj_size(virt_to_cache(objp));
4505 }
This page took 0.128679 seconds and 5 git commands to generate.