[PATCH] slab: allocate node local memory for off-slab slabmanagement
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
114
115 /*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
135
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
138
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
142
143 #ifndef ARCH_KMALLOC_MINALIGN
144 /*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 /*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
165
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
169
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
184
185 /*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
209
210 /* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213 static unsigned long offslab_limit;
214
215 /*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222 struct slab {
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
229 };
230
231 /*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247 struct slab_rcu {
248 struct rcu_head head;
249 struct kmem_cache *cachep;
250 void *addr;
251 };
252
253 /*
254 * struct array_cache
255 *
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265 struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
270 spinlock_t lock;
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
276 */
277 };
278
279 /*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
282 */
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init {
285 struct array_cache cache;
286 void *entries[BOOT_CPUCACHE_ENTRIES];
287 };
288
289 /*
290 * The slab lists for all objects.
291 */
292 struct kmem_list3 {
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
304 };
305
306 /*
307 * Need this for bootstrapping a per node allocator.
308 */
309 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311 #define CACHE_CACHE 0
312 #define SIZE_AC 1
313 #define SIZE_L3 (1 + MAX_NUMNODES)
314
315 /*
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
318 */
319 static __always_inline int index_of(const size_t size)
320 {
321 extern void __bad_size(void);
322
323 if (__builtin_constant_p(size)) {
324 int i = 0;
325
326 #define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331 #include "linux/kmalloc_sizes.h"
332 #undef CACHE
333 __bad_size();
334 } else
335 __bad_size();
336 return 0;
337 }
338
339 #define INDEX_AC index_of(sizeof(struct arraycache_init))
340 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341
342 static void kmem_list3_init(struct kmem_list3 *parent)
343 {
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
349 parent->colour_next = 0;
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
353 }
354
355 #define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
359 } while (0)
360
361 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
367
368 /*
369 * struct kmem_cache
370 *
371 * manages a cache.
372 */
373
374 struct kmem_cache {
375 /* 1) per-cpu data, touched during every alloc/free */
376 struct array_cache *array[NR_CPUS];
377 /* 2) Cache tunables. Protected by cache_chain_mutex */
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
381
382 unsigned int buffer_size;
383 /* 3) touched by every alloc & free from the backend */
384 struct kmem_list3 *nodelists[MAX_NUMNODES];
385
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
388
389 /* 4) cache_grow/shrink */
390 /* order of pgs per slab (2^n) */
391 unsigned int gfporder;
392
393 /* force GFP flags, e.g. GFP_DMA */
394 gfp_t gfpflags;
395
396 size_t colour; /* cache colouring range */
397 unsigned int colour_off; /* colour offset */
398 struct kmem_cache *slabp_cache;
399 unsigned int slab_size;
400 unsigned int dflags; /* dynamic flags */
401
402 /* constructor func */
403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
404
405 /* de-constructor func */
406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
407
408 /* 5) cache creation/removal */
409 const char *name;
410 struct list_head next;
411
412 /* 6) statistics */
413 #if STATS
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 atomic_t allochit;
424 atomic_t allocmiss;
425 atomic_t freehit;
426 atomic_t freemiss;
427 #endif
428 #if DEBUG
429 /*
430 * If debugging is enabled, then the allocator can add additional
431 * fields and/or padding to every object. buffer_size contains the total
432 * object size including these internal fields, the following two
433 * variables contain the offset to the user object and its size.
434 */
435 int obj_offset;
436 int obj_size;
437 #endif
438 };
439
440 #define CFLGS_OFF_SLAB (0x80000000UL)
441 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
442
443 #define BATCHREFILL_LIMIT 16
444 /*
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
447 *
448 * OTOH the cpuarrays can contain lots of objects,
449 * which could lock up otherwise freeable slabs.
450 */
451 #define REAPTIMEOUT_CPUC (2*HZ)
452 #define REAPTIMEOUT_LIST3 (4*HZ)
453
454 #if STATS
455 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
456 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
457 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
458 #define STATS_INC_GROWN(x) ((x)->grown++)
459 #define STATS_INC_REAPED(x) ((x)->reaped++)
460 #define STATS_SET_HIGH(x) \
461 do { \
462 if ((x)->num_active > (x)->high_mark) \
463 (x)->high_mark = (x)->num_active; \
464 } while (0)
465 #define STATS_INC_ERR(x) ((x)->errors++)
466 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
467 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
468 #define STATS_SET_FREEABLE(x, i) \
469 do { \
470 if ((x)->max_freeable < i) \
471 (x)->max_freeable = i; \
472 } while (0)
473 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
474 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
475 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
476 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
477 #else
478 #define STATS_INC_ACTIVE(x) do { } while (0)
479 #define STATS_DEC_ACTIVE(x) do { } while (0)
480 #define STATS_INC_ALLOCED(x) do { } while (0)
481 #define STATS_INC_GROWN(x) do { } while (0)
482 #define STATS_INC_REAPED(x) do { } while (0)
483 #define STATS_SET_HIGH(x) do { } while (0)
484 #define STATS_INC_ERR(x) do { } while (0)
485 #define STATS_INC_NODEALLOCS(x) do { } while (0)
486 #define STATS_INC_NODEFREES(x) do { } while (0)
487 #define STATS_SET_FREEABLE(x, i) do { } while (0)
488 #define STATS_INC_ALLOCHIT(x) do { } while (0)
489 #define STATS_INC_ALLOCMISS(x) do { } while (0)
490 #define STATS_INC_FREEHIT(x) do { } while (0)
491 #define STATS_INC_FREEMISS(x) do { } while (0)
492 #endif
493
494 #if DEBUG
495 /*
496 * Magic nums for obj red zoning.
497 * Placed in the first word before and the first word after an obj.
498 */
499 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
500 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
501
502 /* ...and for poisoning */
503 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
504 #define POISON_FREE 0x6b /* for use-after-free poisoning */
505 #define POISON_END 0xa5 /* end-byte of poisoning */
506
507 /*
508 * memory layout of objects:
509 * 0 : objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
519 */
520 static int obj_offset(struct kmem_cache *cachep)
521 {
522 return cachep->obj_offset;
523 }
524
525 static int obj_size(struct kmem_cache *cachep)
526 {
527 return cachep->obj_size;
528 }
529
530 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531 {
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 }
535
536 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537 {
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
540 return (unsigned long *)(objp + cachep->buffer_size -
541 2 * BYTES_PER_WORD);
542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 }
544
545 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546 {
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 }
550
551 #else
552
553 #define obj_offset(x) 0
554 #define obj_size(cachep) (cachep->buffer_size)
555 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559 #endif
560
561 /*
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
564 */
565 #if defined(CONFIG_LARGE_ALLOCS)
566 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
567 #define MAX_GFP_ORDER 13 /* up to 32Mb */
568 #elif defined(CONFIG_MMU)
569 #define MAX_OBJ_ORDER 5 /* 32 pages */
570 #define MAX_GFP_ORDER 5 /* 32 pages */
571 #else
572 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
573 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 #endif
575
576 /*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579 #define BREAK_GFP_ORDER_HI 1
580 #define BREAK_GFP_ORDER_LO 0
581 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
583 /*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
587 */
588 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589 {
590 page->lru.next = (struct list_head *)cache;
591 }
592
593 static inline struct kmem_cache *page_get_cache(struct page *page)
594 {
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
597 return (struct kmem_cache *)page->lru.next;
598 }
599
600 static inline void page_set_slab(struct page *page, struct slab *slab)
601 {
602 page->lru.prev = (struct list_head *)slab;
603 }
604
605 static inline struct slab *page_get_slab(struct page *page)
606 {
607 if (unlikely(PageCompound(page)))
608 page = (struct page *)page_private(page);
609 return (struct slab *)page->lru.prev;
610 }
611
612 static inline struct kmem_cache *virt_to_cache(const void *obj)
613 {
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616 }
617
618 static inline struct slab *virt_to_slab(const void *obj)
619 {
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622 }
623
624 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626 {
627 return slab->s_mem + cache->buffer_size * idx;
628 }
629
630 static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632 {
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634 }
635
636 /*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639 struct cache_sizes malloc_sizes[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643 #undef CACHE
644 };
645 EXPORT_SYMBOL(malloc_sizes);
646
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
648 struct cache_names {
649 char *name;
650 char *name_dma;
651 };
652
653 static struct cache_names __initdata cache_names[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
656 {NULL,}
657 #undef CACHE
658 };
659
660 static struct arraycache_init initarray_cache __initdata =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662 static struct arraycache_init initarray_generic =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache = {
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
670 .buffer_size = sizeof(struct kmem_cache),
671 .name = "kmem_cache",
672 #if DEBUG
673 .obj_size = sizeof(struct kmem_cache),
674 #endif
675 };
676
677 /* Guard access to the cache-chain. */
678 static DEFINE_MUTEX(cache_chain_mutex);
679 static struct list_head cache_chain;
680
681 /*
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687 atomic_t slab_reclaim_pages;
688
689 /*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693 static enum {
694 NONE,
695 PARTIAL_AC,
696 PARTIAL_L3,
697 FULL
698 } g_cpucache_up;
699
700 static DEFINE_PER_CPU(struct work_struct, reap_work);
701
702 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703 int node);
704 static void enable_cpucache(struct kmem_cache *cachep);
705 static void cache_reap(void *unused);
706 static int __node_shrink(struct kmem_cache *cachep, int node);
707
708 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
709 {
710 return cachep->array[smp_processor_id()];
711 }
712
713 static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
715 {
716 struct cache_sizes *csizep = malloc_sizes;
717
718 #if DEBUG
719 /* This happens if someone tries to call
720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
722 */
723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
724 #endif
725 while (size > csizep->cs_size)
726 csizep++;
727
728 /*
729 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
730 * has cs_{dma,}cachep==NULL. Thus no special case
731 * for large kmalloc calls required.
732 */
733 if (unlikely(gfpflags & GFP_DMA))
734 return csizep->cs_dmacachep;
735 return csizep->cs_cachep;
736 }
737
738 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
739 {
740 return __find_general_cachep(size, gfpflags);
741 }
742 EXPORT_SYMBOL(kmem_find_general_cachep);
743
744 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
745 {
746 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
747 }
748
749 /*
750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
752 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753 size_t align, int flags, size_t *left_over,
754 unsigned int *num)
755 {
756 int nr_objs;
757 size_t mgmt_size;
758 size_t slab_size = PAGE_SIZE << gfporder;
759
760 /*
761 * The slab management structure can be either off the slab or
762 * on it. For the latter case, the memory allocated for a
763 * slab is used for:
764 *
765 * - The struct slab
766 * - One kmem_bufctl_t for each object
767 * - Padding to respect alignment of @align
768 * - @buffer_size bytes for each object
769 *
770 * If the slab management structure is off the slab, then the
771 * alignment will already be calculated into the size. Because
772 * the slabs are all pages aligned, the objects will be at the
773 * correct alignment when allocated.
774 */
775 if (flags & CFLGS_OFF_SLAB) {
776 mgmt_size = 0;
777 nr_objs = slab_size / buffer_size;
778
779 if (nr_objs > SLAB_LIMIT)
780 nr_objs = SLAB_LIMIT;
781 } else {
782 /*
783 * Ignore padding for the initial guess. The padding
784 * is at most @align-1 bytes, and @buffer_size is at
785 * least @align. In the worst case, this result will
786 * be one greater than the number of objects that fit
787 * into the memory allocation when taking the padding
788 * into account.
789 */
790 nr_objs = (slab_size - sizeof(struct slab)) /
791 (buffer_size + sizeof(kmem_bufctl_t));
792
793 /*
794 * This calculated number will be either the right
795 * amount, or one greater than what we want.
796 */
797 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798 > slab_size)
799 nr_objs--;
800
801 if (nr_objs > SLAB_LIMIT)
802 nr_objs = SLAB_LIMIT;
803
804 mgmt_size = slab_mgmt_size(nr_objs, align);
805 }
806 *num = nr_objs;
807 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
808 }
809
810 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811
812 static void __slab_error(const char *function, struct kmem_cache *cachep,
813 char *msg)
814 {
815 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
816 function, cachep->name, msg);
817 dump_stack();
818 }
819
820 #ifdef CONFIG_NUMA
821 /*
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
826 */
827 static DEFINE_PER_CPU(unsigned long, reap_node);
828
829 static void init_reap_node(int cpu)
830 {
831 int node;
832
833 node = next_node(cpu_to_node(cpu), node_online_map);
834 if (node == MAX_NUMNODES)
835 node = first_node(node_online_map);
836
837 __get_cpu_var(reap_node) = node;
838 }
839
840 static void next_reap_node(void)
841 {
842 int node = __get_cpu_var(reap_node);
843
844 /*
845 * Also drain per cpu pages on remote zones
846 */
847 if (node != numa_node_id())
848 drain_node_pages(node);
849
850 node = next_node(node, node_online_map);
851 if (unlikely(node >= MAX_NUMNODES))
852 node = first_node(node_online_map);
853 __get_cpu_var(reap_node) = node;
854 }
855
856 #else
857 #define init_reap_node(cpu) do { } while (0)
858 #define next_reap_node(void) do { } while (0)
859 #endif
860
861 /*
862 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
867 */
868 static void __devinit start_cpu_timer(int cpu)
869 {
870 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
871
872 /*
873 * When this gets called from do_initcalls via cpucache_init(),
874 * init_workqueues() has already run, so keventd will be setup
875 * at that time.
876 */
877 if (keventd_up() && reap_work->func == NULL) {
878 init_reap_node(cpu);
879 INIT_WORK(reap_work, cache_reap, NULL);
880 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
881 }
882 }
883
884 static struct array_cache *alloc_arraycache(int node, int entries,
885 int batchcount)
886 {
887 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
888 struct array_cache *nc = NULL;
889
890 nc = kmalloc_node(memsize, GFP_KERNEL, node);
891 if (nc) {
892 nc->avail = 0;
893 nc->limit = entries;
894 nc->batchcount = batchcount;
895 nc->touched = 0;
896 spin_lock_init(&nc->lock);
897 }
898 return nc;
899 }
900
901 /*
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
904 *
905 * Return the number of entries transferred.
906 */
907 static int transfer_objects(struct array_cache *to,
908 struct array_cache *from, unsigned int max)
909 {
910 /* Figure out how many entries to transfer */
911 int nr = min(min(from->avail, max), to->limit - to->avail);
912
913 if (!nr)
914 return 0;
915
916 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917 sizeof(void *) *nr);
918
919 from->avail -= nr;
920 to->avail += nr;
921 to->touched = 1;
922 return nr;
923 }
924
925 #ifdef CONFIG_NUMA
926 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
927 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
928
929 static struct array_cache **alloc_alien_cache(int node, int limit)
930 {
931 struct array_cache **ac_ptr;
932 int memsize = sizeof(void *) * MAX_NUMNODES;
933 int i;
934
935 if (limit > 1)
936 limit = 12;
937 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
938 if (ac_ptr) {
939 for_each_node(i) {
940 if (i == node || !node_online(i)) {
941 ac_ptr[i] = NULL;
942 continue;
943 }
944 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
945 if (!ac_ptr[i]) {
946 for (i--; i <= 0; i--)
947 kfree(ac_ptr[i]);
948 kfree(ac_ptr);
949 return NULL;
950 }
951 }
952 }
953 return ac_ptr;
954 }
955
956 static void free_alien_cache(struct array_cache **ac_ptr)
957 {
958 int i;
959
960 if (!ac_ptr)
961 return;
962 for_each_node(i)
963 kfree(ac_ptr[i]);
964 kfree(ac_ptr);
965 }
966
967 static void __drain_alien_cache(struct kmem_cache *cachep,
968 struct array_cache *ac, int node)
969 {
970 struct kmem_list3 *rl3 = cachep->nodelists[node];
971
972 if (ac->avail) {
973 spin_lock(&rl3->list_lock);
974 /*
975 * Stuff objects into the remote nodes shared array first.
976 * That way we could avoid the overhead of putting the objects
977 * into the free lists and getting them back later.
978 */
979 transfer_objects(rl3->shared, ac, ac->limit);
980
981 free_block(cachep, ac->entry, ac->avail, node);
982 ac->avail = 0;
983 spin_unlock(&rl3->list_lock);
984 }
985 }
986
987 /*
988 * Called from cache_reap() to regularly drain alien caches round robin.
989 */
990 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
991 {
992 int node = __get_cpu_var(reap_node);
993
994 if (l3->alien) {
995 struct array_cache *ac = l3->alien[node];
996
997 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
998 __drain_alien_cache(cachep, ac, node);
999 spin_unlock_irq(&ac->lock);
1000 }
1001 }
1002 }
1003
1004 static void drain_alien_cache(struct kmem_cache *cachep,
1005 struct array_cache **alien)
1006 {
1007 int i = 0;
1008 struct array_cache *ac;
1009 unsigned long flags;
1010
1011 for_each_online_node(i) {
1012 ac = alien[i];
1013 if (ac) {
1014 spin_lock_irqsave(&ac->lock, flags);
1015 __drain_alien_cache(cachep, ac, i);
1016 spin_unlock_irqrestore(&ac->lock, flags);
1017 }
1018 }
1019 }
1020 #else
1021
1022 #define drain_alien_cache(cachep, alien) do { } while (0)
1023 #define reap_alien(cachep, l3) do { } while (0)
1024
1025 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1026 {
1027 return (struct array_cache **) 0x01020304ul;
1028 }
1029
1030 static inline void free_alien_cache(struct array_cache **ac_ptr)
1031 {
1032 }
1033
1034 #endif
1035
1036 static int __devinit cpuup_callback(struct notifier_block *nfb,
1037 unsigned long action, void *hcpu)
1038 {
1039 long cpu = (long)hcpu;
1040 struct kmem_cache *cachep;
1041 struct kmem_list3 *l3 = NULL;
1042 int node = cpu_to_node(cpu);
1043 int memsize = sizeof(struct kmem_list3);
1044
1045 switch (action) {
1046 case CPU_UP_PREPARE:
1047 mutex_lock(&cache_chain_mutex);
1048 /*
1049 * We need to do this right in the beginning since
1050 * alloc_arraycache's are going to use this list.
1051 * kmalloc_node allows us to add the slab to the right
1052 * kmem_list3 and not this cpu's kmem_list3
1053 */
1054
1055 list_for_each_entry(cachep, &cache_chain, next) {
1056 /*
1057 * Set up the size64 kmemlist for cpu before we can
1058 * begin anything. Make sure some other cpu on this
1059 * node has not already allocated this
1060 */
1061 if (!cachep->nodelists[node]) {
1062 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1063 if (!l3)
1064 goto bad;
1065 kmem_list3_init(l3);
1066 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1067 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1068
1069 /*
1070 * The l3s don't come and go as CPUs come and
1071 * go. cache_chain_mutex is sufficient
1072 * protection here.
1073 */
1074 cachep->nodelists[node] = l3;
1075 }
1076
1077 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1078 cachep->nodelists[node]->free_limit =
1079 (1 + nr_cpus_node(node)) *
1080 cachep->batchcount + cachep->num;
1081 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1082 }
1083
1084 /*
1085 * Now we can go ahead with allocating the shared arrays and
1086 * array caches
1087 */
1088 list_for_each_entry(cachep, &cache_chain, next) {
1089 struct array_cache *nc;
1090 struct array_cache *shared;
1091 struct array_cache **alien;
1092
1093 nc = alloc_arraycache(node, cachep->limit,
1094 cachep->batchcount);
1095 if (!nc)
1096 goto bad;
1097 shared = alloc_arraycache(node,
1098 cachep->shared * cachep->batchcount,
1099 0xbaadf00d);
1100 if (!shared)
1101 goto bad;
1102
1103 alien = alloc_alien_cache(node, cachep->limit);
1104 if (!alien)
1105 goto bad;
1106 cachep->array[cpu] = nc;
1107 l3 = cachep->nodelists[node];
1108 BUG_ON(!l3);
1109
1110 spin_lock_irq(&l3->list_lock);
1111 if (!l3->shared) {
1112 /*
1113 * We are serialised from CPU_DEAD or
1114 * CPU_UP_CANCELLED by the cpucontrol lock
1115 */
1116 l3->shared = shared;
1117 shared = NULL;
1118 }
1119 #ifdef CONFIG_NUMA
1120 if (!l3->alien) {
1121 l3->alien = alien;
1122 alien = NULL;
1123 }
1124 #endif
1125 spin_unlock_irq(&l3->list_lock);
1126 kfree(shared);
1127 free_alien_cache(alien);
1128 }
1129 mutex_unlock(&cache_chain_mutex);
1130 break;
1131 case CPU_ONLINE:
1132 start_cpu_timer(cpu);
1133 break;
1134 #ifdef CONFIG_HOTPLUG_CPU
1135 case CPU_DEAD:
1136 /*
1137 * Even if all the cpus of a node are down, we don't free the
1138 * kmem_list3 of any cache. This to avoid a race between
1139 * cpu_down, and a kmalloc allocation from another cpu for
1140 * memory from the node of the cpu going down. The list3
1141 * structure is usually allocated from kmem_cache_create() and
1142 * gets destroyed at kmem_cache_destroy().
1143 */
1144 /* fall thru */
1145 case CPU_UP_CANCELED:
1146 mutex_lock(&cache_chain_mutex);
1147 list_for_each_entry(cachep, &cache_chain, next) {
1148 struct array_cache *nc;
1149 struct array_cache *shared;
1150 struct array_cache **alien;
1151 cpumask_t mask;
1152
1153 mask = node_to_cpumask(node);
1154 /* cpu is dead; no one can alloc from it. */
1155 nc = cachep->array[cpu];
1156 cachep->array[cpu] = NULL;
1157 l3 = cachep->nodelists[node];
1158
1159 if (!l3)
1160 goto free_array_cache;
1161
1162 spin_lock_irq(&l3->list_lock);
1163
1164 /* Free limit for this kmem_list3 */
1165 l3->free_limit -= cachep->batchcount;
1166 if (nc)
1167 free_block(cachep, nc->entry, nc->avail, node);
1168
1169 if (!cpus_empty(mask)) {
1170 spin_unlock_irq(&l3->list_lock);
1171 goto free_array_cache;
1172 }
1173
1174 shared = l3->shared;
1175 if (shared) {
1176 free_block(cachep, l3->shared->entry,
1177 l3->shared->avail, node);
1178 l3->shared = NULL;
1179 }
1180
1181 alien = l3->alien;
1182 l3->alien = NULL;
1183
1184 spin_unlock_irq(&l3->list_lock);
1185
1186 kfree(shared);
1187 if (alien) {
1188 drain_alien_cache(cachep, alien);
1189 free_alien_cache(alien);
1190 }
1191 free_array_cache:
1192 kfree(nc);
1193 }
1194 /*
1195 * In the previous loop, all the objects were freed to
1196 * the respective cache's slabs, now we can go ahead and
1197 * shrink each nodelist to its limit.
1198 */
1199 list_for_each_entry(cachep, &cache_chain, next) {
1200 l3 = cachep->nodelists[node];
1201 if (!l3)
1202 continue;
1203 spin_lock_irq(&l3->list_lock);
1204 /* free slabs belonging to this node */
1205 __node_shrink(cachep, node);
1206 spin_unlock_irq(&l3->list_lock);
1207 }
1208 mutex_unlock(&cache_chain_mutex);
1209 break;
1210 #endif
1211 }
1212 return NOTIFY_OK;
1213 bad:
1214 mutex_unlock(&cache_chain_mutex);
1215 return NOTIFY_BAD;
1216 }
1217
1218 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1219
1220 /*
1221 * swap the static kmem_list3 with kmalloced memory
1222 */
1223 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1224 int nodeid)
1225 {
1226 struct kmem_list3 *ptr;
1227
1228 BUG_ON(cachep->nodelists[nodeid] != list);
1229 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1230 BUG_ON(!ptr);
1231
1232 local_irq_disable();
1233 memcpy(ptr, list, sizeof(struct kmem_list3));
1234 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1235 cachep->nodelists[nodeid] = ptr;
1236 local_irq_enable();
1237 }
1238
1239 /*
1240 * Initialisation. Called after the page allocator have been initialised and
1241 * before smp_init().
1242 */
1243 void __init kmem_cache_init(void)
1244 {
1245 size_t left_over;
1246 struct cache_sizes *sizes;
1247 struct cache_names *names;
1248 int i;
1249 int order;
1250
1251 for (i = 0; i < NUM_INIT_LISTS; i++) {
1252 kmem_list3_init(&initkmem_list3[i]);
1253 if (i < MAX_NUMNODES)
1254 cache_cache.nodelists[i] = NULL;
1255 }
1256
1257 /*
1258 * Fragmentation resistance on low memory - only use bigger
1259 * page orders on machines with more than 32MB of memory.
1260 */
1261 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1262 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1263
1264 /* Bootstrap is tricky, because several objects are allocated
1265 * from caches that do not exist yet:
1266 * 1) initialize the cache_cache cache: it contains the struct
1267 * kmem_cache structures of all caches, except cache_cache itself:
1268 * cache_cache is statically allocated.
1269 * Initially an __init data area is used for the head array and the
1270 * kmem_list3 structures, it's replaced with a kmalloc allocated
1271 * array at the end of the bootstrap.
1272 * 2) Create the first kmalloc cache.
1273 * The struct kmem_cache for the new cache is allocated normally.
1274 * An __init data area is used for the head array.
1275 * 3) Create the remaining kmalloc caches, with minimally sized
1276 * head arrays.
1277 * 4) Replace the __init data head arrays for cache_cache and the first
1278 * kmalloc cache with kmalloc allocated arrays.
1279 * 5) Replace the __init data for kmem_list3 for cache_cache and
1280 * the other cache's with kmalloc allocated memory.
1281 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1282 */
1283
1284 /* 1) create the cache_cache */
1285 INIT_LIST_HEAD(&cache_chain);
1286 list_add(&cache_cache.next, &cache_chain);
1287 cache_cache.colour_off = cache_line_size();
1288 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1289 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1290
1291 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1292 cache_line_size());
1293
1294 for (order = 0; order < MAX_ORDER; order++) {
1295 cache_estimate(order, cache_cache.buffer_size,
1296 cache_line_size(), 0, &left_over, &cache_cache.num);
1297 if (cache_cache.num)
1298 break;
1299 }
1300 BUG_ON(!cache_cache.num);
1301 cache_cache.gfporder = order;
1302 cache_cache.colour = left_over / cache_cache.colour_off;
1303 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1304 sizeof(struct slab), cache_line_size());
1305
1306 /* 2+3) create the kmalloc caches */
1307 sizes = malloc_sizes;
1308 names = cache_names;
1309
1310 /*
1311 * Initialize the caches that provide memory for the array cache and the
1312 * kmem_list3 structures first. Without this, further allocations will
1313 * bug.
1314 */
1315
1316 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1317 sizes[INDEX_AC].cs_size,
1318 ARCH_KMALLOC_MINALIGN,
1319 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1320 NULL, NULL);
1321
1322 if (INDEX_AC != INDEX_L3) {
1323 sizes[INDEX_L3].cs_cachep =
1324 kmem_cache_create(names[INDEX_L3].name,
1325 sizes[INDEX_L3].cs_size,
1326 ARCH_KMALLOC_MINALIGN,
1327 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1328 NULL, NULL);
1329 }
1330
1331 while (sizes->cs_size != ULONG_MAX) {
1332 /*
1333 * For performance, all the general caches are L1 aligned.
1334 * This should be particularly beneficial on SMP boxes, as it
1335 * eliminates "false sharing".
1336 * Note for systems short on memory removing the alignment will
1337 * allow tighter packing of the smaller caches.
1338 */
1339 if (!sizes->cs_cachep) {
1340 sizes->cs_cachep = kmem_cache_create(names->name,
1341 sizes->cs_size,
1342 ARCH_KMALLOC_MINALIGN,
1343 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1344 NULL, NULL);
1345 }
1346
1347 /* Inc off-slab bufctl limit until the ceiling is hit. */
1348 if (!(OFF_SLAB(sizes->cs_cachep))) {
1349 offslab_limit = sizes->cs_size - sizeof(struct slab);
1350 offslab_limit /= sizeof(kmem_bufctl_t);
1351 }
1352
1353 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1354 sizes->cs_size,
1355 ARCH_KMALLOC_MINALIGN,
1356 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1357 SLAB_PANIC,
1358 NULL, NULL);
1359 sizes++;
1360 names++;
1361 }
1362 /* 4) Replace the bootstrap head arrays */
1363 {
1364 void *ptr;
1365
1366 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1367
1368 local_irq_disable();
1369 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1370 memcpy(ptr, cpu_cache_get(&cache_cache),
1371 sizeof(struct arraycache_init));
1372 cache_cache.array[smp_processor_id()] = ptr;
1373 local_irq_enable();
1374
1375 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1376
1377 local_irq_disable();
1378 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1379 != &initarray_generic.cache);
1380 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1381 sizeof(struct arraycache_init));
1382 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1383 ptr;
1384 local_irq_enable();
1385 }
1386 /* 5) Replace the bootstrap kmem_list3's */
1387 {
1388 int node;
1389 /* Replace the static kmem_list3 structures for the boot cpu */
1390 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1391 numa_node_id());
1392
1393 for_each_online_node(node) {
1394 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1395 &initkmem_list3[SIZE_AC + node], node);
1396
1397 if (INDEX_AC != INDEX_L3) {
1398 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1399 &initkmem_list3[SIZE_L3 + node],
1400 node);
1401 }
1402 }
1403 }
1404
1405 /* 6) resize the head arrays to their final sizes */
1406 {
1407 struct kmem_cache *cachep;
1408 mutex_lock(&cache_chain_mutex);
1409 list_for_each_entry(cachep, &cache_chain, next)
1410 enable_cpucache(cachep);
1411 mutex_unlock(&cache_chain_mutex);
1412 }
1413
1414 /* Done! */
1415 g_cpucache_up = FULL;
1416
1417 /*
1418 * Register a cpu startup notifier callback that initializes
1419 * cpu_cache_get for all new cpus
1420 */
1421 register_cpu_notifier(&cpucache_notifier);
1422
1423 /*
1424 * The reap timers are started later, with a module init call: That part
1425 * of the kernel is not yet operational.
1426 */
1427 }
1428
1429 static int __init cpucache_init(void)
1430 {
1431 int cpu;
1432
1433 /*
1434 * Register the timers that return unneeded pages to the page allocator
1435 */
1436 for_each_online_cpu(cpu)
1437 start_cpu_timer(cpu);
1438 return 0;
1439 }
1440 __initcall(cpucache_init);
1441
1442 /*
1443 * Interface to system's page allocator. No need to hold the cache-lock.
1444 *
1445 * If we requested dmaable memory, we will get it. Even if we
1446 * did not request dmaable memory, we might get it, but that
1447 * would be relatively rare and ignorable.
1448 */
1449 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1450 {
1451 struct page *page;
1452 void *addr;
1453 int i;
1454
1455 flags |= cachep->gfpflags;
1456 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1457 if (!page)
1458 return NULL;
1459 addr = page_address(page);
1460
1461 i = (1 << cachep->gfporder);
1462 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1463 atomic_add(i, &slab_reclaim_pages);
1464 add_page_state(nr_slab, i);
1465 while (i--) {
1466 __SetPageSlab(page);
1467 page++;
1468 }
1469 return addr;
1470 }
1471
1472 /*
1473 * Interface to system's page release.
1474 */
1475 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1476 {
1477 unsigned long i = (1 << cachep->gfporder);
1478 struct page *page = virt_to_page(addr);
1479 const unsigned long nr_freed = i;
1480
1481 while (i--) {
1482 BUG_ON(!PageSlab(page));
1483 __ClearPageSlab(page);
1484 page++;
1485 }
1486 sub_page_state(nr_slab, nr_freed);
1487 if (current->reclaim_state)
1488 current->reclaim_state->reclaimed_slab += nr_freed;
1489 free_pages((unsigned long)addr, cachep->gfporder);
1490 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1491 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1492 }
1493
1494 static void kmem_rcu_free(struct rcu_head *head)
1495 {
1496 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1497 struct kmem_cache *cachep = slab_rcu->cachep;
1498
1499 kmem_freepages(cachep, slab_rcu->addr);
1500 if (OFF_SLAB(cachep))
1501 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1502 }
1503
1504 #if DEBUG
1505
1506 #ifdef CONFIG_DEBUG_PAGEALLOC
1507 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1508 unsigned long caller)
1509 {
1510 int size = obj_size(cachep);
1511
1512 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1513
1514 if (size < 5 * sizeof(unsigned long))
1515 return;
1516
1517 *addr++ = 0x12345678;
1518 *addr++ = caller;
1519 *addr++ = smp_processor_id();
1520 size -= 3 * sizeof(unsigned long);
1521 {
1522 unsigned long *sptr = &caller;
1523 unsigned long svalue;
1524
1525 while (!kstack_end(sptr)) {
1526 svalue = *sptr++;
1527 if (kernel_text_address(svalue)) {
1528 *addr++ = svalue;
1529 size -= sizeof(unsigned long);
1530 if (size <= sizeof(unsigned long))
1531 break;
1532 }
1533 }
1534
1535 }
1536 *addr++ = 0x87654321;
1537 }
1538 #endif
1539
1540 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1541 {
1542 int size = obj_size(cachep);
1543 addr = &((char *)addr)[obj_offset(cachep)];
1544
1545 memset(addr, val, size);
1546 *(unsigned char *)(addr + size - 1) = POISON_END;
1547 }
1548
1549 static void dump_line(char *data, int offset, int limit)
1550 {
1551 int i;
1552 printk(KERN_ERR "%03x:", offset);
1553 for (i = 0; i < limit; i++)
1554 printk(" %02x", (unsigned char)data[offset + i]);
1555 printk("\n");
1556 }
1557 #endif
1558
1559 #if DEBUG
1560
1561 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1562 {
1563 int i, size;
1564 char *realobj;
1565
1566 if (cachep->flags & SLAB_RED_ZONE) {
1567 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1568 *dbg_redzone1(cachep, objp),
1569 *dbg_redzone2(cachep, objp));
1570 }
1571
1572 if (cachep->flags & SLAB_STORE_USER) {
1573 printk(KERN_ERR "Last user: [<%p>]",
1574 *dbg_userword(cachep, objp));
1575 print_symbol("(%s)",
1576 (unsigned long)*dbg_userword(cachep, objp));
1577 printk("\n");
1578 }
1579 realobj = (char *)objp + obj_offset(cachep);
1580 size = obj_size(cachep);
1581 for (i = 0; i < size && lines; i += 16, lines--) {
1582 int limit;
1583 limit = 16;
1584 if (i + limit > size)
1585 limit = size - i;
1586 dump_line(realobj, i, limit);
1587 }
1588 }
1589
1590 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1591 {
1592 char *realobj;
1593 int size, i;
1594 int lines = 0;
1595
1596 realobj = (char *)objp + obj_offset(cachep);
1597 size = obj_size(cachep);
1598
1599 for (i = 0; i < size; i++) {
1600 char exp = POISON_FREE;
1601 if (i == size - 1)
1602 exp = POISON_END;
1603 if (realobj[i] != exp) {
1604 int limit;
1605 /* Mismatch ! */
1606 /* Print header */
1607 if (lines == 0) {
1608 printk(KERN_ERR
1609 "Slab corruption: start=%p, len=%d\n",
1610 realobj, size);
1611 print_objinfo(cachep, objp, 0);
1612 }
1613 /* Hexdump the affected line */
1614 i = (i / 16) * 16;
1615 limit = 16;
1616 if (i + limit > size)
1617 limit = size - i;
1618 dump_line(realobj, i, limit);
1619 i += 16;
1620 lines++;
1621 /* Limit to 5 lines */
1622 if (lines > 5)
1623 break;
1624 }
1625 }
1626 if (lines != 0) {
1627 /* Print some data about the neighboring objects, if they
1628 * exist:
1629 */
1630 struct slab *slabp = virt_to_slab(objp);
1631 unsigned int objnr;
1632
1633 objnr = obj_to_index(cachep, slabp, objp);
1634 if (objnr) {
1635 objp = index_to_obj(cachep, slabp, objnr - 1);
1636 realobj = (char *)objp + obj_offset(cachep);
1637 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1638 realobj, size);
1639 print_objinfo(cachep, objp, 2);
1640 }
1641 if (objnr + 1 < cachep->num) {
1642 objp = index_to_obj(cachep, slabp, objnr + 1);
1643 realobj = (char *)objp + obj_offset(cachep);
1644 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1645 realobj, size);
1646 print_objinfo(cachep, objp, 2);
1647 }
1648 }
1649 }
1650 #endif
1651
1652 #if DEBUG
1653 /**
1654 * slab_destroy_objs - destroy a slab and its objects
1655 * @cachep: cache pointer being destroyed
1656 * @slabp: slab pointer being destroyed
1657 *
1658 * Call the registered destructor for each object in a slab that is being
1659 * destroyed.
1660 */
1661 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1662 {
1663 int i;
1664 for (i = 0; i < cachep->num; i++) {
1665 void *objp = index_to_obj(cachep, slabp, i);
1666
1667 if (cachep->flags & SLAB_POISON) {
1668 #ifdef CONFIG_DEBUG_PAGEALLOC
1669 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1670 OFF_SLAB(cachep))
1671 kernel_map_pages(virt_to_page(objp),
1672 cachep->buffer_size / PAGE_SIZE, 1);
1673 else
1674 check_poison_obj(cachep, objp);
1675 #else
1676 check_poison_obj(cachep, objp);
1677 #endif
1678 }
1679 if (cachep->flags & SLAB_RED_ZONE) {
1680 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1681 slab_error(cachep, "start of a freed object "
1682 "was overwritten");
1683 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1684 slab_error(cachep, "end of a freed object "
1685 "was overwritten");
1686 }
1687 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1688 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1689 }
1690 }
1691 #else
1692 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1693 {
1694 if (cachep->dtor) {
1695 int i;
1696 for (i = 0; i < cachep->num; i++) {
1697 void *objp = index_to_obj(cachep, slabp, i);
1698 (cachep->dtor) (objp, cachep, 0);
1699 }
1700 }
1701 }
1702 #endif
1703
1704 /**
1705 * slab_destroy - destroy and release all objects in a slab
1706 * @cachep: cache pointer being destroyed
1707 * @slabp: slab pointer being destroyed
1708 *
1709 * Destroy all the objs in a slab, and release the mem back to the system.
1710 * Before calling the slab must have been unlinked from the cache. The
1711 * cache-lock is not held/needed.
1712 */
1713 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1714 {
1715 void *addr = slabp->s_mem - slabp->colouroff;
1716
1717 slab_destroy_objs(cachep, slabp);
1718 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1719 struct slab_rcu *slab_rcu;
1720
1721 slab_rcu = (struct slab_rcu *)slabp;
1722 slab_rcu->cachep = cachep;
1723 slab_rcu->addr = addr;
1724 call_rcu(&slab_rcu->head, kmem_rcu_free);
1725 } else {
1726 kmem_freepages(cachep, addr);
1727 if (OFF_SLAB(cachep))
1728 kmem_cache_free(cachep->slabp_cache, slabp);
1729 }
1730 }
1731
1732 /*
1733 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1734 * size of kmem_list3.
1735 */
1736 static void set_up_list3s(struct kmem_cache *cachep, int index)
1737 {
1738 int node;
1739
1740 for_each_online_node(node) {
1741 cachep->nodelists[node] = &initkmem_list3[index + node];
1742 cachep->nodelists[node]->next_reap = jiffies +
1743 REAPTIMEOUT_LIST3 +
1744 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1745 }
1746 }
1747
1748 /**
1749 * calculate_slab_order - calculate size (page order) of slabs
1750 * @cachep: pointer to the cache that is being created
1751 * @size: size of objects to be created in this cache.
1752 * @align: required alignment for the objects.
1753 * @flags: slab allocation flags
1754 *
1755 * Also calculates the number of objects per slab.
1756 *
1757 * This could be made much more intelligent. For now, try to avoid using
1758 * high order pages for slabs. When the gfp() functions are more friendly
1759 * towards high-order requests, this should be changed.
1760 */
1761 static size_t calculate_slab_order(struct kmem_cache *cachep,
1762 size_t size, size_t align, unsigned long flags)
1763 {
1764 size_t left_over = 0;
1765 int gfporder;
1766
1767 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1768 unsigned int num;
1769 size_t remainder;
1770
1771 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1772 if (!num)
1773 continue;
1774
1775 /* More than offslab_limit objects will cause problems */
1776 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1777 break;
1778
1779 /* Found something acceptable - save it away */
1780 cachep->num = num;
1781 cachep->gfporder = gfporder;
1782 left_over = remainder;
1783
1784 /*
1785 * A VFS-reclaimable slab tends to have most allocations
1786 * as GFP_NOFS and we really don't want to have to be allocating
1787 * higher-order pages when we are unable to shrink dcache.
1788 */
1789 if (flags & SLAB_RECLAIM_ACCOUNT)
1790 break;
1791
1792 /*
1793 * Large number of objects is good, but very large slabs are
1794 * currently bad for the gfp()s.
1795 */
1796 if (gfporder >= slab_break_gfp_order)
1797 break;
1798
1799 /*
1800 * Acceptable internal fragmentation?
1801 */
1802 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1803 break;
1804 }
1805 return left_over;
1806 }
1807
1808 static void setup_cpu_cache(struct kmem_cache *cachep)
1809 {
1810 if (g_cpucache_up == FULL) {
1811 enable_cpucache(cachep);
1812 return;
1813 }
1814 if (g_cpucache_up == NONE) {
1815 /*
1816 * Note: the first kmem_cache_create must create the cache
1817 * that's used by kmalloc(24), otherwise the creation of
1818 * further caches will BUG().
1819 */
1820 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1821
1822 /*
1823 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1824 * the first cache, then we need to set up all its list3s,
1825 * otherwise the creation of further caches will BUG().
1826 */
1827 set_up_list3s(cachep, SIZE_AC);
1828 if (INDEX_AC == INDEX_L3)
1829 g_cpucache_up = PARTIAL_L3;
1830 else
1831 g_cpucache_up = PARTIAL_AC;
1832 } else {
1833 cachep->array[smp_processor_id()] =
1834 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1835
1836 if (g_cpucache_up == PARTIAL_AC) {
1837 set_up_list3s(cachep, SIZE_L3);
1838 g_cpucache_up = PARTIAL_L3;
1839 } else {
1840 int node;
1841 for_each_online_node(node) {
1842 cachep->nodelists[node] =
1843 kmalloc_node(sizeof(struct kmem_list3),
1844 GFP_KERNEL, node);
1845 BUG_ON(!cachep->nodelists[node]);
1846 kmem_list3_init(cachep->nodelists[node]);
1847 }
1848 }
1849 }
1850 cachep->nodelists[numa_node_id()]->next_reap =
1851 jiffies + REAPTIMEOUT_LIST3 +
1852 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1853
1854 cpu_cache_get(cachep)->avail = 0;
1855 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1856 cpu_cache_get(cachep)->batchcount = 1;
1857 cpu_cache_get(cachep)->touched = 0;
1858 cachep->batchcount = 1;
1859 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1860 }
1861
1862 /**
1863 * kmem_cache_create - Create a cache.
1864 * @name: A string which is used in /proc/slabinfo to identify this cache.
1865 * @size: The size of objects to be created in this cache.
1866 * @align: The required alignment for the objects.
1867 * @flags: SLAB flags
1868 * @ctor: A constructor for the objects.
1869 * @dtor: A destructor for the objects.
1870 *
1871 * Returns a ptr to the cache on success, NULL on failure.
1872 * Cannot be called within a int, but can be interrupted.
1873 * The @ctor is run when new pages are allocated by the cache
1874 * and the @dtor is run before the pages are handed back.
1875 *
1876 * @name must be valid until the cache is destroyed. This implies that
1877 * the module calling this has to destroy the cache before getting unloaded.
1878 *
1879 * The flags are
1880 *
1881 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1882 * to catch references to uninitialised memory.
1883 *
1884 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1885 * for buffer overruns.
1886 *
1887 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1888 * cacheline. This can be beneficial if you're counting cycles as closely
1889 * as davem.
1890 */
1891 struct kmem_cache *
1892 kmem_cache_create (const char *name, size_t size, size_t align,
1893 unsigned long flags,
1894 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1895 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1896 {
1897 size_t left_over, slab_size, ralign;
1898 struct kmem_cache *cachep = NULL;
1899 struct list_head *p;
1900
1901 /*
1902 * Sanity checks... these are all serious usage bugs.
1903 */
1904 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1905 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1906 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1907 name);
1908 BUG();
1909 }
1910
1911 /*
1912 * Prevent CPUs from coming and going.
1913 * lock_cpu_hotplug() nests outside cache_chain_mutex
1914 */
1915 lock_cpu_hotplug();
1916
1917 mutex_lock(&cache_chain_mutex);
1918
1919 list_for_each(p, &cache_chain) {
1920 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1921 mm_segment_t old_fs = get_fs();
1922 char tmp;
1923 int res;
1924
1925 /*
1926 * This happens when the module gets unloaded and doesn't
1927 * destroy its slab cache and no-one else reuses the vmalloc
1928 * area of the module. Print a warning.
1929 */
1930 set_fs(KERNEL_DS);
1931 res = __get_user(tmp, pc->name);
1932 set_fs(old_fs);
1933 if (res) {
1934 printk("SLAB: cache with size %d has lost its name\n",
1935 pc->buffer_size);
1936 continue;
1937 }
1938
1939 if (!strcmp(pc->name, name)) {
1940 printk("kmem_cache_create: duplicate cache %s\n", name);
1941 dump_stack();
1942 goto oops;
1943 }
1944 }
1945
1946 #if DEBUG
1947 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1948 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1949 /* No constructor, but inital state check requested */
1950 printk(KERN_ERR "%s: No con, but init state check "
1951 "requested - %s\n", __FUNCTION__, name);
1952 flags &= ~SLAB_DEBUG_INITIAL;
1953 }
1954 #if FORCED_DEBUG
1955 /*
1956 * Enable redzoning and last user accounting, except for caches with
1957 * large objects, if the increased size would increase the object size
1958 * above the next power of two: caches with object sizes just above a
1959 * power of two have a significant amount of internal fragmentation.
1960 */
1961 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1962 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1963 if (!(flags & SLAB_DESTROY_BY_RCU))
1964 flags |= SLAB_POISON;
1965 #endif
1966 if (flags & SLAB_DESTROY_BY_RCU)
1967 BUG_ON(flags & SLAB_POISON);
1968 #endif
1969 if (flags & SLAB_DESTROY_BY_RCU)
1970 BUG_ON(dtor);
1971
1972 /*
1973 * Always checks flags, a caller might be expecting debug support which
1974 * isn't available.
1975 */
1976 BUG_ON(flags & ~CREATE_MASK);
1977
1978 /*
1979 * Check that size is in terms of words. This is needed to avoid
1980 * unaligned accesses for some archs when redzoning is used, and makes
1981 * sure any on-slab bufctl's are also correctly aligned.
1982 */
1983 if (size & (BYTES_PER_WORD - 1)) {
1984 size += (BYTES_PER_WORD - 1);
1985 size &= ~(BYTES_PER_WORD - 1);
1986 }
1987
1988 /* calculate the final buffer alignment: */
1989
1990 /* 1) arch recommendation: can be overridden for debug */
1991 if (flags & SLAB_HWCACHE_ALIGN) {
1992 /*
1993 * Default alignment: as specified by the arch code. Except if
1994 * an object is really small, then squeeze multiple objects into
1995 * one cacheline.
1996 */
1997 ralign = cache_line_size();
1998 while (size <= ralign / 2)
1999 ralign /= 2;
2000 } else {
2001 ralign = BYTES_PER_WORD;
2002 }
2003 /* 2) arch mandated alignment: disables debug if necessary */
2004 if (ralign < ARCH_SLAB_MINALIGN) {
2005 ralign = ARCH_SLAB_MINALIGN;
2006 if (ralign > BYTES_PER_WORD)
2007 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2008 }
2009 /* 3) caller mandated alignment: disables debug if necessary */
2010 if (ralign < align) {
2011 ralign = align;
2012 if (ralign > BYTES_PER_WORD)
2013 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2014 }
2015 /*
2016 * 4) Store it. Note that the debug code below can reduce
2017 * the alignment to BYTES_PER_WORD.
2018 */
2019 align = ralign;
2020
2021 /* Get cache's description obj. */
2022 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2023 if (!cachep)
2024 goto oops;
2025
2026 #if DEBUG
2027 cachep->obj_size = size;
2028
2029 if (flags & SLAB_RED_ZONE) {
2030 /* redzoning only works with word aligned caches */
2031 align = BYTES_PER_WORD;
2032
2033 /* add space for red zone words */
2034 cachep->obj_offset += BYTES_PER_WORD;
2035 size += 2 * BYTES_PER_WORD;
2036 }
2037 if (flags & SLAB_STORE_USER) {
2038 /* user store requires word alignment and
2039 * one word storage behind the end of the real
2040 * object.
2041 */
2042 align = BYTES_PER_WORD;
2043 size += BYTES_PER_WORD;
2044 }
2045 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2046 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2047 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2048 cachep->obj_offset += PAGE_SIZE - size;
2049 size = PAGE_SIZE;
2050 }
2051 #endif
2052 #endif
2053
2054 /* Determine if the slab management is 'on' or 'off' slab. */
2055 if (size >= (PAGE_SIZE >> 3))
2056 /*
2057 * Size is large, assume best to place the slab management obj
2058 * off-slab (should allow better packing of objs).
2059 */
2060 flags |= CFLGS_OFF_SLAB;
2061
2062 size = ALIGN(size, align);
2063
2064 left_over = calculate_slab_order(cachep, size, align, flags);
2065
2066 if (!cachep->num) {
2067 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2068 kmem_cache_free(&cache_cache, cachep);
2069 cachep = NULL;
2070 goto oops;
2071 }
2072 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2073 + sizeof(struct slab), align);
2074
2075 /*
2076 * If the slab has been placed off-slab, and we have enough space then
2077 * move it on-slab. This is at the expense of any extra colouring.
2078 */
2079 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2080 flags &= ~CFLGS_OFF_SLAB;
2081 left_over -= slab_size;
2082 }
2083
2084 if (flags & CFLGS_OFF_SLAB) {
2085 /* really off slab. No need for manual alignment */
2086 slab_size =
2087 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2088 }
2089
2090 cachep->colour_off = cache_line_size();
2091 /* Offset must be a multiple of the alignment. */
2092 if (cachep->colour_off < align)
2093 cachep->colour_off = align;
2094 cachep->colour = left_over / cachep->colour_off;
2095 cachep->slab_size = slab_size;
2096 cachep->flags = flags;
2097 cachep->gfpflags = 0;
2098 if (flags & SLAB_CACHE_DMA)
2099 cachep->gfpflags |= GFP_DMA;
2100 cachep->buffer_size = size;
2101
2102 if (flags & CFLGS_OFF_SLAB)
2103 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2104 cachep->ctor = ctor;
2105 cachep->dtor = dtor;
2106 cachep->name = name;
2107
2108
2109 setup_cpu_cache(cachep);
2110
2111 /* cache setup completed, link it into the list */
2112 list_add(&cachep->next, &cache_chain);
2113 oops:
2114 if (!cachep && (flags & SLAB_PANIC))
2115 panic("kmem_cache_create(): failed to create slab `%s'\n",
2116 name);
2117 mutex_unlock(&cache_chain_mutex);
2118 unlock_cpu_hotplug();
2119 return cachep;
2120 }
2121 EXPORT_SYMBOL(kmem_cache_create);
2122
2123 #if DEBUG
2124 static void check_irq_off(void)
2125 {
2126 BUG_ON(!irqs_disabled());
2127 }
2128
2129 static void check_irq_on(void)
2130 {
2131 BUG_ON(irqs_disabled());
2132 }
2133
2134 static void check_spinlock_acquired(struct kmem_cache *cachep)
2135 {
2136 #ifdef CONFIG_SMP
2137 check_irq_off();
2138 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2139 #endif
2140 }
2141
2142 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2143 {
2144 #ifdef CONFIG_SMP
2145 check_irq_off();
2146 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2147 #endif
2148 }
2149
2150 #else
2151 #define check_irq_off() do { } while(0)
2152 #define check_irq_on() do { } while(0)
2153 #define check_spinlock_acquired(x) do { } while(0)
2154 #define check_spinlock_acquired_node(x, y) do { } while(0)
2155 #endif
2156
2157 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2158 struct array_cache *ac,
2159 int force, int node);
2160
2161 static void do_drain(void *arg)
2162 {
2163 struct kmem_cache *cachep = arg;
2164 struct array_cache *ac;
2165 int node = numa_node_id();
2166
2167 check_irq_off();
2168 ac = cpu_cache_get(cachep);
2169 spin_lock(&cachep->nodelists[node]->list_lock);
2170 free_block(cachep, ac->entry, ac->avail, node);
2171 spin_unlock(&cachep->nodelists[node]->list_lock);
2172 ac->avail = 0;
2173 }
2174
2175 static void drain_cpu_caches(struct kmem_cache *cachep)
2176 {
2177 struct kmem_list3 *l3;
2178 int node;
2179
2180 on_each_cpu(do_drain, cachep, 1, 1);
2181 check_irq_on();
2182 for_each_online_node(node) {
2183 l3 = cachep->nodelists[node];
2184 if (l3) {
2185 drain_array(cachep, l3, l3->shared, 1, node);
2186 if (l3->alien)
2187 drain_alien_cache(cachep, l3->alien);
2188 }
2189 }
2190 }
2191
2192 static int __node_shrink(struct kmem_cache *cachep, int node)
2193 {
2194 struct slab *slabp;
2195 struct kmem_list3 *l3 = cachep->nodelists[node];
2196 int ret;
2197
2198 for (;;) {
2199 struct list_head *p;
2200
2201 p = l3->slabs_free.prev;
2202 if (p == &l3->slabs_free)
2203 break;
2204
2205 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2206 #if DEBUG
2207 BUG_ON(slabp->inuse);
2208 #endif
2209 list_del(&slabp->list);
2210
2211 l3->free_objects -= cachep->num;
2212 spin_unlock_irq(&l3->list_lock);
2213 slab_destroy(cachep, slabp);
2214 spin_lock_irq(&l3->list_lock);
2215 }
2216 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2217 return ret;
2218 }
2219
2220 static int __cache_shrink(struct kmem_cache *cachep)
2221 {
2222 int ret = 0, i = 0;
2223 struct kmem_list3 *l3;
2224
2225 drain_cpu_caches(cachep);
2226
2227 check_irq_on();
2228 for_each_online_node(i) {
2229 l3 = cachep->nodelists[i];
2230 if (l3) {
2231 spin_lock_irq(&l3->list_lock);
2232 ret += __node_shrink(cachep, i);
2233 spin_unlock_irq(&l3->list_lock);
2234 }
2235 }
2236 return (ret ? 1 : 0);
2237 }
2238
2239 /**
2240 * kmem_cache_shrink - Shrink a cache.
2241 * @cachep: The cache to shrink.
2242 *
2243 * Releases as many slabs as possible for a cache.
2244 * To help debugging, a zero exit status indicates all slabs were released.
2245 */
2246 int kmem_cache_shrink(struct kmem_cache *cachep)
2247 {
2248 BUG_ON(!cachep || in_interrupt());
2249
2250 return __cache_shrink(cachep);
2251 }
2252 EXPORT_SYMBOL(kmem_cache_shrink);
2253
2254 /**
2255 * kmem_cache_destroy - delete a cache
2256 * @cachep: the cache to destroy
2257 *
2258 * Remove a struct kmem_cache object from the slab cache.
2259 * Returns 0 on success.
2260 *
2261 * It is expected this function will be called by a module when it is
2262 * unloaded. This will remove the cache completely, and avoid a duplicate
2263 * cache being allocated each time a module is loaded and unloaded, if the
2264 * module doesn't have persistent in-kernel storage across loads and unloads.
2265 *
2266 * The cache must be empty before calling this function.
2267 *
2268 * The caller must guarantee that noone will allocate memory from the cache
2269 * during the kmem_cache_destroy().
2270 */
2271 int kmem_cache_destroy(struct kmem_cache *cachep)
2272 {
2273 int i;
2274 struct kmem_list3 *l3;
2275
2276 BUG_ON(!cachep || in_interrupt());
2277
2278 /* Don't let CPUs to come and go */
2279 lock_cpu_hotplug();
2280
2281 /* Find the cache in the chain of caches. */
2282 mutex_lock(&cache_chain_mutex);
2283 /*
2284 * the chain is never empty, cache_cache is never destroyed
2285 */
2286 list_del(&cachep->next);
2287 mutex_unlock(&cache_chain_mutex);
2288
2289 if (__cache_shrink(cachep)) {
2290 slab_error(cachep, "Can't free all objects");
2291 mutex_lock(&cache_chain_mutex);
2292 list_add(&cachep->next, &cache_chain);
2293 mutex_unlock(&cache_chain_mutex);
2294 unlock_cpu_hotplug();
2295 return 1;
2296 }
2297
2298 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2299 synchronize_rcu();
2300
2301 for_each_online_cpu(i)
2302 kfree(cachep->array[i]);
2303
2304 /* NUMA: free the list3 structures */
2305 for_each_online_node(i) {
2306 l3 = cachep->nodelists[i];
2307 if (l3) {
2308 kfree(l3->shared);
2309 free_alien_cache(l3->alien);
2310 kfree(l3);
2311 }
2312 }
2313 kmem_cache_free(&cache_cache, cachep);
2314 unlock_cpu_hotplug();
2315 return 0;
2316 }
2317 EXPORT_SYMBOL(kmem_cache_destroy);
2318
2319 /* Get the memory for a slab management obj. */
2320 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2321 int colour_off, gfp_t local_flags,
2322 int nodeid)
2323 {
2324 struct slab *slabp;
2325
2326 if (OFF_SLAB(cachep)) {
2327 /* Slab management obj is off-slab. */
2328 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2329 local_flags, nodeid);
2330 if (!slabp)
2331 return NULL;
2332 } else {
2333 slabp = objp + colour_off;
2334 colour_off += cachep->slab_size;
2335 }
2336 slabp->inuse = 0;
2337 slabp->colouroff = colour_off;
2338 slabp->s_mem = objp + colour_off;
2339 slabp->nodeid = nodeid;
2340 return slabp;
2341 }
2342
2343 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2344 {
2345 return (kmem_bufctl_t *) (slabp + 1);
2346 }
2347
2348 static void cache_init_objs(struct kmem_cache *cachep,
2349 struct slab *slabp, unsigned long ctor_flags)
2350 {
2351 int i;
2352
2353 for (i = 0; i < cachep->num; i++) {
2354 void *objp = index_to_obj(cachep, slabp, i);
2355 #if DEBUG
2356 /* need to poison the objs? */
2357 if (cachep->flags & SLAB_POISON)
2358 poison_obj(cachep, objp, POISON_FREE);
2359 if (cachep->flags & SLAB_STORE_USER)
2360 *dbg_userword(cachep, objp) = NULL;
2361
2362 if (cachep->flags & SLAB_RED_ZONE) {
2363 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2364 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2365 }
2366 /*
2367 * Constructors are not allowed to allocate memory from the same
2368 * cache which they are a constructor for. Otherwise, deadlock.
2369 * They must also be threaded.
2370 */
2371 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2372 cachep->ctor(objp + obj_offset(cachep), cachep,
2373 ctor_flags);
2374
2375 if (cachep->flags & SLAB_RED_ZONE) {
2376 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2377 slab_error(cachep, "constructor overwrote the"
2378 " end of an object");
2379 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2380 slab_error(cachep, "constructor overwrote the"
2381 " start of an object");
2382 }
2383 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2384 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2385 kernel_map_pages(virt_to_page(objp),
2386 cachep->buffer_size / PAGE_SIZE, 0);
2387 #else
2388 if (cachep->ctor)
2389 cachep->ctor(objp, cachep, ctor_flags);
2390 #endif
2391 slab_bufctl(slabp)[i] = i + 1;
2392 }
2393 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2394 slabp->free = 0;
2395 }
2396
2397 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2398 {
2399 if (flags & SLAB_DMA)
2400 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2401 else
2402 BUG_ON(cachep->gfpflags & GFP_DMA);
2403 }
2404
2405 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2406 int nodeid)
2407 {
2408 void *objp = index_to_obj(cachep, slabp, slabp->free);
2409 kmem_bufctl_t next;
2410
2411 slabp->inuse++;
2412 next = slab_bufctl(slabp)[slabp->free];
2413 #if DEBUG
2414 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2415 WARN_ON(slabp->nodeid != nodeid);
2416 #endif
2417 slabp->free = next;
2418
2419 return objp;
2420 }
2421
2422 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2423 void *objp, int nodeid)
2424 {
2425 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2426
2427 #if DEBUG
2428 /* Verify that the slab belongs to the intended node */
2429 WARN_ON(slabp->nodeid != nodeid);
2430
2431 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2432 printk(KERN_ERR "slab: double free detected in cache "
2433 "'%s', objp %p\n", cachep->name, objp);
2434 BUG();
2435 }
2436 #endif
2437 slab_bufctl(slabp)[objnr] = slabp->free;
2438 slabp->free = objnr;
2439 slabp->inuse--;
2440 }
2441
2442 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2443 void *objp)
2444 {
2445 int i;
2446 struct page *page;
2447
2448 /* Nasty!!!!!! I hope this is OK. */
2449 page = virt_to_page(objp);
2450
2451 i = 1;
2452 if (likely(!PageCompound(page)))
2453 i <<= cachep->gfporder;
2454 do {
2455 page_set_cache(page, cachep);
2456 page_set_slab(page, slabp);
2457 page++;
2458 } while (--i);
2459 }
2460
2461 /*
2462 * Grow (by 1) the number of slabs within a cache. This is called by
2463 * kmem_cache_alloc() when there are no active objs left in a cache.
2464 */
2465 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2466 {
2467 struct slab *slabp;
2468 void *objp;
2469 size_t offset;
2470 gfp_t local_flags;
2471 unsigned long ctor_flags;
2472 struct kmem_list3 *l3;
2473
2474 /*
2475 * Be lazy and only check for valid flags here, keeping it out of the
2476 * critical path in kmem_cache_alloc().
2477 */
2478 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2479 if (flags & SLAB_NO_GROW)
2480 return 0;
2481
2482 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2483 local_flags = (flags & SLAB_LEVEL_MASK);
2484 if (!(local_flags & __GFP_WAIT))
2485 /*
2486 * Not allowed to sleep. Need to tell a constructor about
2487 * this - it might need to know...
2488 */
2489 ctor_flags |= SLAB_CTOR_ATOMIC;
2490
2491 /* Take the l3 list lock to change the colour_next on this node */
2492 check_irq_off();
2493 l3 = cachep->nodelists[nodeid];
2494 spin_lock(&l3->list_lock);
2495
2496 /* Get colour for the slab, and cal the next value. */
2497 offset = l3->colour_next;
2498 l3->colour_next++;
2499 if (l3->colour_next >= cachep->colour)
2500 l3->colour_next = 0;
2501 spin_unlock(&l3->list_lock);
2502
2503 offset *= cachep->colour_off;
2504
2505 if (local_flags & __GFP_WAIT)
2506 local_irq_enable();
2507
2508 /*
2509 * The test for missing atomic flag is performed here, rather than
2510 * the more obvious place, simply to reduce the critical path length
2511 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2512 * will eventually be caught here (where it matters).
2513 */
2514 kmem_flagcheck(cachep, flags);
2515
2516 /*
2517 * Get mem for the objs. Attempt to allocate a physical page from
2518 * 'nodeid'.
2519 */
2520 objp = kmem_getpages(cachep, flags, nodeid);
2521 if (!objp)
2522 goto failed;
2523
2524 /* Get slab management. */
2525 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2526 if (!slabp)
2527 goto opps1;
2528
2529 slabp->nodeid = nodeid;
2530 set_slab_attr(cachep, slabp, objp);
2531
2532 cache_init_objs(cachep, slabp, ctor_flags);
2533
2534 if (local_flags & __GFP_WAIT)
2535 local_irq_disable();
2536 check_irq_off();
2537 spin_lock(&l3->list_lock);
2538
2539 /* Make slab active. */
2540 list_add_tail(&slabp->list, &(l3->slabs_free));
2541 STATS_INC_GROWN(cachep);
2542 l3->free_objects += cachep->num;
2543 spin_unlock(&l3->list_lock);
2544 return 1;
2545 opps1:
2546 kmem_freepages(cachep, objp);
2547 failed:
2548 if (local_flags & __GFP_WAIT)
2549 local_irq_disable();
2550 return 0;
2551 }
2552
2553 #if DEBUG
2554
2555 /*
2556 * Perform extra freeing checks:
2557 * - detect bad pointers.
2558 * - POISON/RED_ZONE checking
2559 * - destructor calls, for caches with POISON+dtor
2560 */
2561 static void kfree_debugcheck(const void *objp)
2562 {
2563 struct page *page;
2564
2565 if (!virt_addr_valid(objp)) {
2566 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2567 (unsigned long)objp);
2568 BUG();
2569 }
2570 page = virt_to_page(objp);
2571 if (!PageSlab(page)) {
2572 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2573 (unsigned long)objp);
2574 BUG();
2575 }
2576 }
2577
2578 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2579 void *caller)
2580 {
2581 struct page *page;
2582 unsigned int objnr;
2583 struct slab *slabp;
2584
2585 objp -= obj_offset(cachep);
2586 kfree_debugcheck(objp);
2587 page = virt_to_page(objp);
2588
2589 if (page_get_cache(page) != cachep) {
2590 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2591 "cache %p, got %p\n",
2592 page_get_cache(page), cachep);
2593 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2594 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2595 page_get_cache(page)->name);
2596 WARN_ON(1);
2597 }
2598 slabp = page_get_slab(page);
2599
2600 if (cachep->flags & SLAB_RED_ZONE) {
2601 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2602 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2603 slab_error(cachep, "double free, or memory outside"
2604 " object was overwritten");
2605 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2606 "redzone 2:0x%lx.\n",
2607 objp, *dbg_redzone1(cachep, objp),
2608 *dbg_redzone2(cachep, objp));
2609 }
2610 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2611 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2612 }
2613 if (cachep->flags & SLAB_STORE_USER)
2614 *dbg_userword(cachep, objp) = caller;
2615
2616 objnr = obj_to_index(cachep, slabp, objp);
2617
2618 BUG_ON(objnr >= cachep->num);
2619 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2620
2621 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2622 /*
2623 * Need to call the slab's constructor so the caller can
2624 * perform a verify of its state (debugging). Called without
2625 * the cache-lock held.
2626 */
2627 cachep->ctor(objp + obj_offset(cachep),
2628 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2629 }
2630 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2631 /* we want to cache poison the object,
2632 * call the destruction callback
2633 */
2634 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2635 }
2636 #ifdef CONFIG_DEBUG_SLAB_LEAK
2637 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2638 #endif
2639 if (cachep->flags & SLAB_POISON) {
2640 #ifdef CONFIG_DEBUG_PAGEALLOC
2641 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2642 store_stackinfo(cachep, objp, (unsigned long)caller);
2643 kernel_map_pages(virt_to_page(objp),
2644 cachep->buffer_size / PAGE_SIZE, 0);
2645 } else {
2646 poison_obj(cachep, objp, POISON_FREE);
2647 }
2648 #else
2649 poison_obj(cachep, objp, POISON_FREE);
2650 #endif
2651 }
2652 return objp;
2653 }
2654
2655 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2656 {
2657 kmem_bufctl_t i;
2658 int entries = 0;
2659
2660 /* Check slab's freelist to see if this obj is there. */
2661 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2662 entries++;
2663 if (entries > cachep->num || i >= cachep->num)
2664 goto bad;
2665 }
2666 if (entries != cachep->num - slabp->inuse) {
2667 bad:
2668 printk(KERN_ERR "slab: Internal list corruption detected in "
2669 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2670 cachep->name, cachep->num, slabp, slabp->inuse);
2671 for (i = 0;
2672 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2673 i++) {
2674 if (i % 16 == 0)
2675 printk("\n%03x:", i);
2676 printk(" %02x", ((unsigned char *)slabp)[i]);
2677 }
2678 printk("\n");
2679 BUG();
2680 }
2681 }
2682 #else
2683 #define kfree_debugcheck(x) do { } while(0)
2684 #define cache_free_debugcheck(x,objp,z) (objp)
2685 #define check_slabp(x,y) do { } while(0)
2686 #endif
2687
2688 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2689 {
2690 int batchcount;
2691 struct kmem_list3 *l3;
2692 struct array_cache *ac;
2693
2694 check_irq_off();
2695 ac = cpu_cache_get(cachep);
2696 retry:
2697 batchcount = ac->batchcount;
2698 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2699 /*
2700 * If there was little recent activity on this cache, then
2701 * perform only a partial refill. Otherwise we could generate
2702 * refill bouncing.
2703 */
2704 batchcount = BATCHREFILL_LIMIT;
2705 }
2706 l3 = cachep->nodelists[numa_node_id()];
2707
2708 BUG_ON(ac->avail > 0 || !l3);
2709 spin_lock(&l3->list_lock);
2710
2711 /* See if we can refill from the shared array */
2712 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2713 goto alloc_done;
2714
2715 while (batchcount > 0) {
2716 struct list_head *entry;
2717 struct slab *slabp;
2718 /* Get slab alloc is to come from. */
2719 entry = l3->slabs_partial.next;
2720 if (entry == &l3->slabs_partial) {
2721 l3->free_touched = 1;
2722 entry = l3->slabs_free.next;
2723 if (entry == &l3->slabs_free)
2724 goto must_grow;
2725 }
2726
2727 slabp = list_entry(entry, struct slab, list);
2728 check_slabp(cachep, slabp);
2729 check_spinlock_acquired(cachep);
2730 while (slabp->inuse < cachep->num && batchcount--) {
2731 STATS_INC_ALLOCED(cachep);
2732 STATS_INC_ACTIVE(cachep);
2733 STATS_SET_HIGH(cachep);
2734
2735 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2736 numa_node_id());
2737 }
2738 check_slabp(cachep, slabp);
2739
2740 /* move slabp to correct slabp list: */
2741 list_del(&slabp->list);
2742 if (slabp->free == BUFCTL_END)
2743 list_add(&slabp->list, &l3->slabs_full);
2744 else
2745 list_add(&slabp->list, &l3->slabs_partial);
2746 }
2747
2748 must_grow:
2749 l3->free_objects -= ac->avail;
2750 alloc_done:
2751 spin_unlock(&l3->list_lock);
2752
2753 if (unlikely(!ac->avail)) {
2754 int x;
2755 x = cache_grow(cachep, flags, numa_node_id());
2756
2757 /* cache_grow can reenable interrupts, then ac could change. */
2758 ac = cpu_cache_get(cachep);
2759 if (!x && ac->avail == 0) /* no objects in sight? abort */
2760 return NULL;
2761
2762 if (!ac->avail) /* objects refilled by interrupt? */
2763 goto retry;
2764 }
2765 ac->touched = 1;
2766 return ac->entry[--ac->avail];
2767 }
2768
2769 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2770 gfp_t flags)
2771 {
2772 might_sleep_if(flags & __GFP_WAIT);
2773 #if DEBUG
2774 kmem_flagcheck(cachep, flags);
2775 #endif
2776 }
2777
2778 #if DEBUG
2779 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2780 gfp_t flags, void *objp, void *caller)
2781 {
2782 if (!objp)
2783 return objp;
2784 if (cachep->flags & SLAB_POISON) {
2785 #ifdef CONFIG_DEBUG_PAGEALLOC
2786 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2787 kernel_map_pages(virt_to_page(objp),
2788 cachep->buffer_size / PAGE_SIZE, 1);
2789 else
2790 check_poison_obj(cachep, objp);
2791 #else
2792 check_poison_obj(cachep, objp);
2793 #endif
2794 poison_obj(cachep, objp, POISON_INUSE);
2795 }
2796 if (cachep->flags & SLAB_STORE_USER)
2797 *dbg_userword(cachep, objp) = caller;
2798
2799 if (cachep->flags & SLAB_RED_ZONE) {
2800 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2801 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2802 slab_error(cachep, "double free, or memory outside"
2803 " object was overwritten");
2804 printk(KERN_ERR
2805 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2806 objp, *dbg_redzone1(cachep, objp),
2807 *dbg_redzone2(cachep, objp));
2808 }
2809 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2810 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2811 }
2812 #ifdef CONFIG_DEBUG_SLAB_LEAK
2813 {
2814 struct slab *slabp;
2815 unsigned objnr;
2816
2817 slabp = page_get_slab(virt_to_page(objp));
2818 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2819 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2820 }
2821 #endif
2822 objp += obj_offset(cachep);
2823 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2824 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2825
2826 if (!(flags & __GFP_WAIT))
2827 ctor_flags |= SLAB_CTOR_ATOMIC;
2828
2829 cachep->ctor(objp, cachep, ctor_flags);
2830 }
2831 return objp;
2832 }
2833 #else
2834 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2835 #endif
2836
2837 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2838 {
2839 void *objp;
2840 struct array_cache *ac;
2841
2842 #ifdef CONFIG_NUMA
2843 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2844 objp = alternate_node_alloc(cachep, flags);
2845 if (objp != NULL)
2846 return objp;
2847 }
2848 #endif
2849
2850 check_irq_off();
2851 ac = cpu_cache_get(cachep);
2852 if (likely(ac->avail)) {
2853 STATS_INC_ALLOCHIT(cachep);
2854 ac->touched = 1;
2855 objp = ac->entry[--ac->avail];
2856 } else {
2857 STATS_INC_ALLOCMISS(cachep);
2858 objp = cache_alloc_refill(cachep, flags);
2859 }
2860 return objp;
2861 }
2862
2863 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2864 gfp_t flags, void *caller)
2865 {
2866 unsigned long save_flags;
2867 void *objp;
2868
2869 cache_alloc_debugcheck_before(cachep, flags);
2870
2871 local_irq_save(save_flags);
2872 objp = ____cache_alloc(cachep, flags);
2873 local_irq_restore(save_flags);
2874 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2875 caller);
2876 prefetchw(objp);
2877 return objp;
2878 }
2879
2880 #ifdef CONFIG_NUMA
2881 /*
2882 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2883 *
2884 * If we are in_interrupt, then process context, including cpusets and
2885 * mempolicy, may not apply and should not be used for allocation policy.
2886 */
2887 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2888 {
2889 int nid_alloc, nid_here;
2890
2891 if (in_interrupt())
2892 return NULL;
2893 nid_alloc = nid_here = numa_node_id();
2894 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2895 nid_alloc = cpuset_mem_spread_node();
2896 else if (current->mempolicy)
2897 nid_alloc = slab_node(current->mempolicy);
2898 if (nid_alloc != nid_here)
2899 return __cache_alloc_node(cachep, flags, nid_alloc);
2900 return NULL;
2901 }
2902
2903 /*
2904 * A interface to enable slab creation on nodeid
2905 */
2906 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2907 int nodeid)
2908 {
2909 struct list_head *entry;
2910 struct slab *slabp;
2911 struct kmem_list3 *l3;
2912 void *obj;
2913 int x;
2914
2915 l3 = cachep->nodelists[nodeid];
2916 BUG_ON(!l3);
2917
2918 retry:
2919 check_irq_off();
2920 spin_lock(&l3->list_lock);
2921 entry = l3->slabs_partial.next;
2922 if (entry == &l3->slabs_partial) {
2923 l3->free_touched = 1;
2924 entry = l3->slabs_free.next;
2925 if (entry == &l3->slabs_free)
2926 goto must_grow;
2927 }
2928
2929 slabp = list_entry(entry, struct slab, list);
2930 check_spinlock_acquired_node(cachep, nodeid);
2931 check_slabp(cachep, slabp);
2932
2933 STATS_INC_NODEALLOCS(cachep);
2934 STATS_INC_ACTIVE(cachep);
2935 STATS_SET_HIGH(cachep);
2936
2937 BUG_ON(slabp->inuse == cachep->num);
2938
2939 obj = slab_get_obj(cachep, slabp, nodeid);
2940 check_slabp(cachep, slabp);
2941 l3->free_objects--;
2942 /* move slabp to correct slabp list: */
2943 list_del(&slabp->list);
2944
2945 if (slabp->free == BUFCTL_END)
2946 list_add(&slabp->list, &l3->slabs_full);
2947 else
2948 list_add(&slabp->list, &l3->slabs_partial);
2949
2950 spin_unlock(&l3->list_lock);
2951 goto done;
2952
2953 must_grow:
2954 spin_unlock(&l3->list_lock);
2955 x = cache_grow(cachep, flags, nodeid);
2956
2957 if (!x)
2958 return NULL;
2959
2960 goto retry;
2961 done:
2962 return obj;
2963 }
2964 #endif
2965
2966 /*
2967 * Caller needs to acquire correct kmem_list's list_lock
2968 */
2969 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2970 int node)
2971 {
2972 int i;
2973 struct kmem_list3 *l3;
2974
2975 for (i = 0; i < nr_objects; i++) {
2976 void *objp = objpp[i];
2977 struct slab *slabp;
2978
2979 slabp = virt_to_slab(objp);
2980 l3 = cachep->nodelists[node];
2981 list_del(&slabp->list);
2982 check_spinlock_acquired_node(cachep, node);
2983 check_slabp(cachep, slabp);
2984 slab_put_obj(cachep, slabp, objp, node);
2985 STATS_DEC_ACTIVE(cachep);
2986 l3->free_objects++;
2987 check_slabp(cachep, slabp);
2988
2989 /* fixup slab chains */
2990 if (slabp->inuse == 0) {
2991 if (l3->free_objects > l3->free_limit) {
2992 l3->free_objects -= cachep->num;
2993 slab_destroy(cachep, slabp);
2994 } else {
2995 list_add(&slabp->list, &l3->slabs_free);
2996 }
2997 } else {
2998 /* Unconditionally move a slab to the end of the
2999 * partial list on free - maximum time for the
3000 * other objects to be freed, too.
3001 */
3002 list_add_tail(&slabp->list, &l3->slabs_partial);
3003 }
3004 }
3005 }
3006
3007 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3008 {
3009 int batchcount;
3010 struct kmem_list3 *l3;
3011 int node = numa_node_id();
3012
3013 batchcount = ac->batchcount;
3014 #if DEBUG
3015 BUG_ON(!batchcount || batchcount > ac->avail);
3016 #endif
3017 check_irq_off();
3018 l3 = cachep->nodelists[node];
3019 spin_lock(&l3->list_lock);
3020 if (l3->shared) {
3021 struct array_cache *shared_array = l3->shared;
3022 int max = shared_array->limit - shared_array->avail;
3023 if (max) {
3024 if (batchcount > max)
3025 batchcount = max;
3026 memcpy(&(shared_array->entry[shared_array->avail]),
3027 ac->entry, sizeof(void *) * batchcount);
3028 shared_array->avail += batchcount;
3029 goto free_done;
3030 }
3031 }
3032
3033 free_block(cachep, ac->entry, batchcount, node);
3034 free_done:
3035 #if STATS
3036 {
3037 int i = 0;
3038 struct list_head *p;
3039
3040 p = l3->slabs_free.next;
3041 while (p != &(l3->slabs_free)) {
3042 struct slab *slabp;
3043
3044 slabp = list_entry(p, struct slab, list);
3045 BUG_ON(slabp->inuse);
3046
3047 i++;
3048 p = p->next;
3049 }
3050 STATS_SET_FREEABLE(cachep, i);
3051 }
3052 #endif
3053 spin_unlock(&l3->list_lock);
3054 ac->avail -= batchcount;
3055 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3056 }
3057
3058 /*
3059 * Release an obj back to its cache. If the obj has a constructed state, it must
3060 * be in this state _before_ it is released. Called with disabled ints.
3061 */
3062 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3063 {
3064 struct array_cache *ac = cpu_cache_get(cachep);
3065
3066 check_irq_off();
3067 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3068
3069 /* Make sure we are not freeing a object from another
3070 * node to the array cache on this cpu.
3071 */
3072 #ifdef CONFIG_NUMA
3073 {
3074 struct slab *slabp;
3075 slabp = virt_to_slab(objp);
3076 if (unlikely(slabp->nodeid != numa_node_id())) {
3077 struct array_cache *alien = NULL;
3078 int nodeid = slabp->nodeid;
3079 struct kmem_list3 *l3;
3080
3081 l3 = cachep->nodelists[numa_node_id()];
3082 STATS_INC_NODEFREES(cachep);
3083 if (l3->alien && l3->alien[nodeid]) {
3084 alien = l3->alien[nodeid];
3085 spin_lock(&alien->lock);
3086 if (unlikely(alien->avail == alien->limit))
3087 __drain_alien_cache(cachep,
3088 alien, nodeid);
3089 alien->entry[alien->avail++] = objp;
3090 spin_unlock(&alien->lock);
3091 } else {
3092 spin_lock(&(cachep->nodelists[nodeid])->
3093 list_lock);
3094 free_block(cachep, &objp, 1, nodeid);
3095 spin_unlock(&(cachep->nodelists[nodeid])->
3096 list_lock);
3097 }
3098 return;
3099 }
3100 }
3101 #endif
3102 if (likely(ac->avail < ac->limit)) {
3103 STATS_INC_FREEHIT(cachep);
3104 ac->entry[ac->avail++] = objp;
3105 return;
3106 } else {
3107 STATS_INC_FREEMISS(cachep);
3108 cache_flusharray(cachep, ac);
3109 ac->entry[ac->avail++] = objp;
3110 }
3111 }
3112
3113 /**
3114 * kmem_cache_alloc - Allocate an object
3115 * @cachep: The cache to allocate from.
3116 * @flags: See kmalloc().
3117 *
3118 * Allocate an object from this cache. The flags are only relevant
3119 * if the cache has no available objects.
3120 */
3121 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3122 {
3123 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3124 }
3125 EXPORT_SYMBOL(kmem_cache_alloc);
3126
3127 /**
3128 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3129 * @cache: The cache to allocate from.
3130 * @flags: See kmalloc().
3131 *
3132 * Allocate an object from this cache and set the allocated memory to zero.
3133 * The flags are only relevant if the cache has no available objects.
3134 */
3135 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3136 {
3137 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3138 if (ret)
3139 memset(ret, 0, obj_size(cache));
3140 return ret;
3141 }
3142 EXPORT_SYMBOL(kmem_cache_zalloc);
3143
3144 /**
3145 * kmem_ptr_validate - check if an untrusted pointer might
3146 * be a slab entry.
3147 * @cachep: the cache we're checking against
3148 * @ptr: pointer to validate
3149 *
3150 * This verifies that the untrusted pointer looks sane:
3151 * it is _not_ a guarantee that the pointer is actually
3152 * part of the slab cache in question, but it at least
3153 * validates that the pointer can be dereferenced and
3154 * looks half-way sane.
3155 *
3156 * Currently only used for dentry validation.
3157 */
3158 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3159 {
3160 unsigned long addr = (unsigned long)ptr;
3161 unsigned long min_addr = PAGE_OFFSET;
3162 unsigned long align_mask = BYTES_PER_WORD - 1;
3163 unsigned long size = cachep->buffer_size;
3164 struct page *page;
3165
3166 if (unlikely(addr < min_addr))
3167 goto out;
3168 if (unlikely(addr > (unsigned long)high_memory - size))
3169 goto out;
3170 if (unlikely(addr & align_mask))
3171 goto out;
3172 if (unlikely(!kern_addr_valid(addr)))
3173 goto out;
3174 if (unlikely(!kern_addr_valid(addr + size - 1)))
3175 goto out;
3176 page = virt_to_page(ptr);
3177 if (unlikely(!PageSlab(page)))
3178 goto out;
3179 if (unlikely(page_get_cache(page) != cachep))
3180 goto out;
3181 return 1;
3182 out:
3183 return 0;
3184 }
3185
3186 #ifdef CONFIG_NUMA
3187 /**
3188 * kmem_cache_alloc_node - Allocate an object on the specified node
3189 * @cachep: The cache to allocate from.
3190 * @flags: See kmalloc().
3191 * @nodeid: node number of the target node.
3192 *
3193 * Identical to kmem_cache_alloc, except that this function is slow
3194 * and can sleep. And it will allocate memory on the given node, which
3195 * can improve the performance for cpu bound structures.
3196 * New and improved: it will now make sure that the object gets
3197 * put on the correct node list so that there is no false sharing.
3198 */
3199 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3200 {
3201 unsigned long save_flags;
3202 void *ptr;
3203
3204 cache_alloc_debugcheck_before(cachep, flags);
3205 local_irq_save(save_flags);
3206
3207 if (nodeid == -1 || nodeid == numa_node_id() ||
3208 !cachep->nodelists[nodeid])
3209 ptr = ____cache_alloc(cachep, flags);
3210 else
3211 ptr = __cache_alloc_node(cachep, flags, nodeid);
3212 local_irq_restore(save_flags);
3213
3214 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3215 __builtin_return_address(0));
3216
3217 return ptr;
3218 }
3219 EXPORT_SYMBOL(kmem_cache_alloc_node);
3220
3221 void *kmalloc_node(size_t size, gfp_t flags, int node)
3222 {
3223 struct kmem_cache *cachep;
3224
3225 cachep = kmem_find_general_cachep(size, flags);
3226 if (unlikely(cachep == NULL))
3227 return NULL;
3228 return kmem_cache_alloc_node(cachep, flags, node);
3229 }
3230 EXPORT_SYMBOL(kmalloc_node);
3231 #endif
3232
3233 /**
3234 * kmalloc - allocate memory
3235 * @size: how many bytes of memory are required.
3236 * @flags: the type of memory to allocate.
3237 * @caller: function caller for debug tracking of the caller
3238 *
3239 * kmalloc is the normal method of allocating memory
3240 * in the kernel.
3241 *
3242 * The @flags argument may be one of:
3243 *
3244 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3245 *
3246 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3247 *
3248 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3249 *
3250 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3251 * must be suitable for DMA. This can mean different things on different
3252 * platforms. For example, on i386, it means that the memory must come
3253 * from the first 16MB.
3254 */
3255 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3256 void *caller)
3257 {
3258 struct kmem_cache *cachep;
3259
3260 /* If you want to save a few bytes .text space: replace
3261 * __ with kmem_.
3262 * Then kmalloc uses the uninlined functions instead of the inline
3263 * functions.
3264 */
3265 cachep = __find_general_cachep(size, flags);
3266 if (unlikely(cachep == NULL))
3267 return NULL;
3268 return __cache_alloc(cachep, flags, caller);
3269 }
3270
3271
3272 void *__kmalloc(size_t size, gfp_t flags)
3273 {
3274 #ifndef CONFIG_DEBUG_SLAB
3275 return __do_kmalloc(size, flags, NULL);
3276 #else
3277 return __do_kmalloc(size, flags, __builtin_return_address(0));
3278 #endif
3279 }
3280 EXPORT_SYMBOL(__kmalloc);
3281
3282 #ifdef CONFIG_DEBUG_SLAB
3283 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3284 {
3285 return __do_kmalloc(size, flags, caller);
3286 }
3287 EXPORT_SYMBOL(__kmalloc_track_caller);
3288 #endif
3289
3290 #ifdef CONFIG_SMP
3291 /**
3292 * __alloc_percpu - allocate one copy of the object for every present
3293 * cpu in the system, zeroing them.
3294 * Objects should be dereferenced using the per_cpu_ptr macro only.
3295 *
3296 * @size: how many bytes of memory are required.
3297 */
3298 void *__alloc_percpu(size_t size)
3299 {
3300 int i;
3301 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3302
3303 if (!pdata)
3304 return NULL;
3305
3306 /*
3307 * Cannot use for_each_online_cpu since a cpu may come online
3308 * and we have no way of figuring out how to fix the array
3309 * that we have allocated then....
3310 */
3311 for_each_possible_cpu(i) {
3312 int node = cpu_to_node(i);
3313
3314 if (node_online(node))
3315 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3316 else
3317 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3318
3319 if (!pdata->ptrs[i])
3320 goto unwind_oom;
3321 memset(pdata->ptrs[i], 0, size);
3322 }
3323
3324 /* Catch derefs w/o wrappers */
3325 return (void *)(~(unsigned long)pdata);
3326
3327 unwind_oom:
3328 while (--i >= 0) {
3329 if (!cpu_possible(i))
3330 continue;
3331 kfree(pdata->ptrs[i]);
3332 }
3333 kfree(pdata);
3334 return NULL;
3335 }
3336 EXPORT_SYMBOL(__alloc_percpu);
3337 #endif
3338
3339 /**
3340 * kmem_cache_free - Deallocate an object
3341 * @cachep: The cache the allocation was from.
3342 * @objp: The previously allocated object.
3343 *
3344 * Free an object which was previously allocated from this
3345 * cache.
3346 */
3347 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3348 {
3349 unsigned long flags;
3350
3351 local_irq_save(flags);
3352 __cache_free(cachep, objp);
3353 local_irq_restore(flags);
3354 }
3355 EXPORT_SYMBOL(kmem_cache_free);
3356
3357 /**
3358 * kfree - free previously allocated memory
3359 * @objp: pointer returned by kmalloc.
3360 *
3361 * If @objp is NULL, no operation is performed.
3362 *
3363 * Don't free memory not originally allocated by kmalloc()
3364 * or you will run into trouble.
3365 */
3366 void kfree(const void *objp)
3367 {
3368 struct kmem_cache *c;
3369 unsigned long flags;
3370
3371 if (unlikely(!objp))
3372 return;
3373 local_irq_save(flags);
3374 kfree_debugcheck(objp);
3375 c = virt_to_cache(objp);
3376 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3377 __cache_free(c, (void *)objp);
3378 local_irq_restore(flags);
3379 }
3380 EXPORT_SYMBOL(kfree);
3381
3382 #ifdef CONFIG_SMP
3383 /**
3384 * free_percpu - free previously allocated percpu memory
3385 * @objp: pointer returned by alloc_percpu.
3386 *
3387 * Don't free memory not originally allocated by alloc_percpu()
3388 * The complemented objp is to check for that.
3389 */
3390 void free_percpu(const void *objp)
3391 {
3392 int i;
3393 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3394
3395 /*
3396 * We allocate for all cpus so we cannot use for online cpu here.
3397 */
3398 for_each_possible_cpu(i)
3399 kfree(p->ptrs[i]);
3400 kfree(p);
3401 }
3402 EXPORT_SYMBOL(free_percpu);
3403 #endif
3404
3405 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3406 {
3407 return obj_size(cachep);
3408 }
3409 EXPORT_SYMBOL(kmem_cache_size);
3410
3411 const char *kmem_cache_name(struct kmem_cache *cachep)
3412 {
3413 return cachep->name;
3414 }
3415 EXPORT_SYMBOL_GPL(kmem_cache_name);
3416
3417 /*
3418 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3419 */
3420 static int alloc_kmemlist(struct kmem_cache *cachep)
3421 {
3422 int node;
3423 struct kmem_list3 *l3;
3424 struct array_cache *new_shared;
3425 struct array_cache **new_alien;
3426
3427 for_each_online_node(node) {
3428
3429 new_alien = alloc_alien_cache(node, cachep->limit);
3430 if (!new_alien)
3431 goto fail;
3432
3433 new_shared = alloc_arraycache(node,
3434 cachep->shared*cachep->batchcount,
3435 0xbaadf00d);
3436 if (!new_shared) {
3437 free_alien_cache(new_alien);
3438 goto fail;
3439 }
3440
3441 l3 = cachep->nodelists[node];
3442 if (l3) {
3443 struct array_cache *shared = l3->shared;
3444
3445 spin_lock_irq(&l3->list_lock);
3446
3447 if (shared)
3448 free_block(cachep, shared->entry,
3449 shared->avail, node);
3450
3451 l3->shared = new_shared;
3452 if (!l3->alien) {
3453 l3->alien = new_alien;
3454 new_alien = NULL;
3455 }
3456 l3->free_limit = (1 + nr_cpus_node(node)) *
3457 cachep->batchcount + cachep->num;
3458 spin_unlock_irq(&l3->list_lock);
3459 kfree(shared);
3460 free_alien_cache(new_alien);
3461 continue;
3462 }
3463 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3464 if (!l3) {
3465 free_alien_cache(new_alien);
3466 kfree(new_shared);
3467 goto fail;
3468 }
3469
3470 kmem_list3_init(l3);
3471 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3472 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3473 l3->shared = new_shared;
3474 l3->alien = new_alien;
3475 l3->free_limit = (1 + nr_cpus_node(node)) *
3476 cachep->batchcount + cachep->num;
3477 cachep->nodelists[node] = l3;
3478 }
3479 return 0;
3480
3481 fail:
3482 if (!cachep->next.next) {
3483 /* Cache is not active yet. Roll back what we did */
3484 node--;
3485 while (node >= 0) {
3486 if (cachep->nodelists[node]) {
3487 l3 = cachep->nodelists[node];
3488
3489 kfree(l3->shared);
3490 free_alien_cache(l3->alien);
3491 kfree(l3);
3492 cachep->nodelists[node] = NULL;
3493 }
3494 node--;
3495 }
3496 }
3497 return -ENOMEM;
3498 }
3499
3500 struct ccupdate_struct {
3501 struct kmem_cache *cachep;
3502 struct array_cache *new[NR_CPUS];
3503 };
3504
3505 static void do_ccupdate_local(void *info)
3506 {
3507 struct ccupdate_struct *new = info;
3508 struct array_cache *old;
3509
3510 check_irq_off();
3511 old = cpu_cache_get(new->cachep);
3512
3513 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3514 new->new[smp_processor_id()] = old;
3515 }
3516
3517 /* Always called with the cache_chain_mutex held */
3518 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3519 int batchcount, int shared)
3520 {
3521 struct ccupdate_struct new;
3522 int i, err;
3523
3524 memset(&new.new, 0, sizeof(new.new));
3525 for_each_online_cpu(i) {
3526 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3527 batchcount);
3528 if (!new.new[i]) {
3529 for (i--; i >= 0; i--)
3530 kfree(new.new[i]);
3531 return -ENOMEM;
3532 }
3533 }
3534 new.cachep = cachep;
3535
3536 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3537
3538 check_irq_on();
3539 cachep->batchcount = batchcount;
3540 cachep->limit = limit;
3541 cachep->shared = shared;
3542
3543 for_each_online_cpu(i) {
3544 struct array_cache *ccold = new.new[i];
3545 if (!ccold)
3546 continue;
3547 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3548 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3549 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3550 kfree(ccold);
3551 }
3552
3553 err = alloc_kmemlist(cachep);
3554 if (err) {
3555 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3556 cachep->name, -err);
3557 BUG();
3558 }
3559 return 0;
3560 }
3561
3562 /* Called with cache_chain_mutex held always */
3563 static void enable_cpucache(struct kmem_cache *cachep)
3564 {
3565 int err;
3566 int limit, shared;
3567
3568 /*
3569 * The head array serves three purposes:
3570 * - create a LIFO ordering, i.e. return objects that are cache-warm
3571 * - reduce the number of spinlock operations.
3572 * - reduce the number of linked list operations on the slab and
3573 * bufctl chains: array operations are cheaper.
3574 * The numbers are guessed, we should auto-tune as described by
3575 * Bonwick.
3576 */
3577 if (cachep->buffer_size > 131072)
3578 limit = 1;
3579 else if (cachep->buffer_size > PAGE_SIZE)
3580 limit = 8;
3581 else if (cachep->buffer_size > 1024)
3582 limit = 24;
3583 else if (cachep->buffer_size > 256)
3584 limit = 54;
3585 else
3586 limit = 120;
3587
3588 /*
3589 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3590 * allocation behaviour: Most allocs on one cpu, most free operations
3591 * on another cpu. For these cases, an efficient object passing between
3592 * cpus is necessary. This is provided by a shared array. The array
3593 * replaces Bonwick's magazine layer.
3594 * On uniprocessor, it's functionally equivalent (but less efficient)
3595 * to a larger limit. Thus disabled by default.
3596 */
3597 shared = 0;
3598 #ifdef CONFIG_SMP
3599 if (cachep->buffer_size <= PAGE_SIZE)
3600 shared = 8;
3601 #endif
3602
3603 #if DEBUG
3604 /*
3605 * With debugging enabled, large batchcount lead to excessively long
3606 * periods with disabled local interrupts. Limit the batchcount
3607 */
3608 if (limit > 32)
3609 limit = 32;
3610 #endif
3611 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3612 if (err)
3613 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3614 cachep->name, -err);
3615 }
3616
3617 /*
3618 * Drain an array if it contains any elements taking the l3 lock only if
3619 * necessary. Note that the l3 listlock also protects the array_cache
3620 * if drain_array() is used on the shared array.
3621 */
3622 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3623 struct array_cache *ac, int force, int node)
3624 {
3625 int tofree;
3626
3627 if (!ac || !ac->avail)
3628 return;
3629 if (ac->touched && !force) {
3630 ac->touched = 0;
3631 } else {
3632 spin_lock_irq(&l3->list_lock);
3633 if (ac->avail) {
3634 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3635 if (tofree > ac->avail)
3636 tofree = (ac->avail + 1) / 2;
3637 free_block(cachep, ac->entry, tofree, node);
3638 ac->avail -= tofree;
3639 memmove(ac->entry, &(ac->entry[tofree]),
3640 sizeof(void *) * ac->avail);
3641 }
3642 spin_unlock_irq(&l3->list_lock);
3643 }
3644 }
3645
3646 /**
3647 * cache_reap - Reclaim memory from caches.
3648 * @unused: unused parameter
3649 *
3650 * Called from workqueue/eventd every few seconds.
3651 * Purpose:
3652 * - clear the per-cpu caches for this CPU.
3653 * - return freeable pages to the main free memory pool.
3654 *
3655 * If we cannot acquire the cache chain mutex then just give up - we'll try
3656 * again on the next iteration.
3657 */
3658 static void cache_reap(void *unused)
3659 {
3660 struct list_head *walk;
3661 struct kmem_list3 *l3;
3662 int node = numa_node_id();
3663
3664 if (!mutex_trylock(&cache_chain_mutex)) {
3665 /* Give up. Setup the next iteration. */
3666 schedule_delayed_work(&__get_cpu_var(reap_work),
3667 REAPTIMEOUT_CPUC);
3668 return;
3669 }
3670
3671 list_for_each(walk, &cache_chain) {
3672 struct kmem_cache *searchp;
3673 struct list_head *p;
3674 int tofree;
3675 struct slab *slabp;
3676
3677 searchp = list_entry(walk, struct kmem_cache, next);
3678 check_irq_on();
3679
3680 /*
3681 * We only take the l3 lock if absolutely necessary and we
3682 * have established with reasonable certainty that
3683 * we can do some work if the lock was obtained.
3684 */
3685 l3 = searchp->nodelists[node];
3686
3687 reap_alien(searchp, l3);
3688
3689 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3690
3691 /*
3692 * These are racy checks but it does not matter
3693 * if we skip one check or scan twice.
3694 */
3695 if (time_after(l3->next_reap, jiffies))
3696 goto next;
3697
3698 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3699
3700 drain_array(searchp, l3, l3->shared, 0, node);
3701
3702 if (l3->free_touched) {
3703 l3->free_touched = 0;
3704 goto next;
3705 }
3706
3707 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3708 (5 * searchp->num);
3709 do {
3710 /*
3711 * Do not lock if there are no free blocks.
3712 */
3713 if (list_empty(&l3->slabs_free))
3714 break;
3715
3716 spin_lock_irq(&l3->list_lock);
3717 p = l3->slabs_free.next;
3718 if (p == &(l3->slabs_free)) {
3719 spin_unlock_irq(&l3->list_lock);
3720 break;
3721 }
3722
3723 slabp = list_entry(p, struct slab, list);
3724 BUG_ON(slabp->inuse);
3725 list_del(&slabp->list);
3726 STATS_INC_REAPED(searchp);
3727
3728 /*
3729 * Safe to drop the lock. The slab is no longer linked
3730 * to the cache. searchp cannot disappear, we hold
3731 * cache_chain_lock
3732 */
3733 l3->free_objects -= searchp->num;
3734 spin_unlock_irq(&l3->list_lock);
3735 slab_destroy(searchp, slabp);
3736 } while (--tofree > 0);
3737 next:
3738 cond_resched();
3739 }
3740 check_irq_on();
3741 mutex_unlock(&cache_chain_mutex);
3742 next_reap_node();
3743 /* Set up the next iteration */
3744 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3745 }
3746
3747 #ifdef CONFIG_PROC_FS
3748
3749 static void print_slabinfo_header(struct seq_file *m)
3750 {
3751 /*
3752 * Output format version, so at least we can change it
3753 * without _too_ many complaints.
3754 */
3755 #if STATS
3756 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3757 #else
3758 seq_puts(m, "slabinfo - version: 2.1\n");
3759 #endif
3760 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3761 "<objperslab> <pagesperslab>");
3762 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3763 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3764 #if STATS
3765 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3766 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3767 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3768 #endif
3769 seq_putc(m, '\n');
3770 }
3771
3772 static void *s_start(struct seq_file *m, loff_t *pos)
3773 {
3774 loff_t n = *pos;
3775 struct list_head *p;
3776
3777 mutex_lock(&cache_chain_mutex);
3778 if (!n)
3779 print_slabinfo_header(m);
3780 p = cache_chain.next;
3781 while (n--) {
3782 p = p->next;
3783 if (p == &cache_chain)
3784 return NULL;
3785 }
3786 return list_entry(p, struct kmem_cache, next);
3787 }
3788
3789 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3790 {
3791 struct kmem_cache *cachep = p;
3792 ++*pos;
3793 return cachep->next.next == &cache_chain ?
3794 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3795 }
3796
3797 static void s_stop(struct seq_file *m, void *p)
3798 {
3799 mutex_unlock(&cache_chain_mutex);
3800 }
3801
3802 static int s_show(struct seq_file *m, void *p)
3803 {
3804 struct kmem_cache *cachep = p;
3805 struct list_head *q;
3806 struct slab *slabp;
3807 unsigned long active_objs;
3808 unsigned long num_objs;
3809 unsigned long active_slabs = 0;
3810 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3811 const char *name;
3812 char *error = NULL;
3813 int node;
3814 struct kmem_list3 *l3;
3815
3816 active_objs = 0;
3817 num_slabs = 0;
3818 for_each_online_node(node) {
3819 l3 = cachep->nodelists[node];
3820 if (!l3)
3821 continue;
3822
3823 check_irq_on();
3824 spin_lock_irq(&l3->list_lock);
3825
3826 list_for_each(q, &l3->slabs_full) {
3827 slabp = list_entry(q, struct slab, list);
3828 if (slabp->inuse != cachep->num && !error)
3829 error = "slabs_full accounting error";
3830 active_objs += cachep->num;
3831 active_slabs++;
3832 }
3833 list_for_each(q, &l3->slabs_partial) {
3834 slabp = list_entry(q, struct slab, list);
3835 if (slabp->inuse == cachep->num && !error)
3836 error = "slabs_partial inuse accounting error";
3837 if (!slabp->inuse && !error)
3838 error = "slabs_partial/inuse accounting error";
3839 active_objs += slabp->inuse;
3840 active_slabs++;
3841 }
3842 list_for_each(q, &l3->slabs_free) {
3843 slabp = list_entry(q, struct slab, list);
3844 if (slabp->inuse && !error)
3845 error = "slabs_free/inuse accounting error";
3846 num_slabs++;
3847 }
3848 free_objects += l3->free_objects;
3849 if (l3->shared)
3850 shared_avail += l3->shared->avail;
3851
3852 spin_unlock_irq(&l3->list_lock);
3853 }
3854 num_slabs += active_slabs;
3855 num_objs = num_slabs * cachep->num;
3856 if (num_objs - active_objs != free_objects && !error)
3857 error = "free_objects accounting error";
3858
3859 name = cachep->name;
3860 if (error)
3861 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3862
3863 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3864 name, active_objs, num_objs, cachep->buffer_size,
3865 cachep->num, (1 << cachep->gfporder));
3866 seq_printf(m, " : tunables %4u %4u %4u",
3867 cachep->limit, cachep->batchcount, cachep->shared);
3868 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3869 active_slabs, num_slabs, shared_avail);
3870 #if STATS
3871 { /* list3 stats */
3872 unsigned long high = cachep->high_mark;
3873 unsigned long allocs = cachep->num_allocations;
3874 unsigned long grown = cachep->grown;
3875 unsigned long reaped = cachep->reaped;
3876 unsigned long errors = cachep->errors;
3877 unsigned long max_freeable = cachep->max_freeable;
3878 unsigned long node_allocs = cachep->node_allocs;
3879 unsigned long node_frees = cachep->node_frees;
3880
3881 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3882 %4lu %4lu %4lu %4lu", allocs, high, grown,
3883 reaped, errors, max_freeable, node_allocs,
3884 node_frees);
3885 }
3886 /* cpu stats */
3887 {
3888 unsigned long allochit = atomic_read(&cachep->allochit);
3889 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3890 unsigned long freehit = atomic_read(&cachep->freehit);
3891 unsigned long freemiss = atomic_read(&cachep->freemiss);
3892
3893 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3894 allochit, allocmiss, freehit, freemiss);
3895 }
3896 #endif
3897 seq_putc(m, '\n');
3898 return 0;
3899 }
3900
3901 /*
3902 * slabinfo_op - iterator that generates /proc/slabinfo
3903 *
3904 * Output layout:
3905 * cache-name
3906 * num-active-objs
3907 * total-objs
3908 * object size
3909 * num-active-slabs
3910 * total-slabs
3911 * num-pages-per-slab
3912 * + further values on SMP and with statistics enabled
3913 */
3914
3915 struct seq_operations slabinfo_op = {
3916 .start = s_start,
3917 .next = s_next,
3918 .stop = s_stop,
3919 .show = s_show,
3920 };
3921
3922 #define MAX_SLABINFO_WRITE 128
3923 /**
3924 * slabinfo_write - Tuning for the slab allocator
3925 * @file: unused
3926 * @buffer: user buffer
3927 * @count: data length
3928 * @ppos: unused
3929 */
3930 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3931 size_t count, loff_t *ppos)
3932 {
3933 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3934 int limit, batchcount, shared, res;
3935 struct list_head *p;
3936
3937 if (count > MAX_SLABINFO_WRITE)
3938 return -EINVAL;
3939 if (copy_from_user(&kbuf, buffer, count))
3940 return -EFAULT;
3941 kbuf[MAX_SLABINFO_WRITE] = '\0';
3942
3943 tmp = strchr(kbuf, ' ');
3944 if (!tmp)
3945 return -EINVAL;
3946 *tmp = '\0';
3947 tmp++;
3948 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3949 return -EINVAL;
3950
3951 /* Find the cache in the chain of caches. */
3952 mutex_lock(&cache_chain_mutex);
3953 res = -EINVAL;
3954 list_for_each(p, &cache_chain) {
3955 struct kmem_cache *cachep;
3956
3957 cachep = list_entry(p, struct kmem_cache, next);
3958 if (!strcmp(cachep->name, kbuf)) {
3959 if (limit < 1 || batchcount < 1 ||
3960 batchcount > limit || shared < 0) {
3961 res = 0;
3962 } else {
3963 res = do_tune_cpucache(cachep, limit,
3964 batchcount, shared);
3965 }
3966 break;
3967 }
3968 }
3969 mutex_unlock(&cache_chain_mutex);
3970 if (res >= 0)
3971 res = count;
3972 return res;
3973 }
3974
3975 #ifdef CONFIG_DEBUG_SLAB_LEAK
3976
3977 static void *leaks_start(struct seq_file *m, loff_t *pos)
3978 {
3979 loff_t n = *pos;
3980 struct list_head *p;
3981
3982 mutex_lock(&cache_chain_mutex);
3983 p = cache_chain.next;
3984 while (n--) {
3985 p = p->next;
3986 if (p == &cache_chain)
3987 return NULL;
3988 }
3989 return list_entry(p, struct kmem_cache, next);
3990 }
3991
3992 static inline int add_caller(unsigned long *n, unsigned long v)
3993 {
3994 unsigned long *p;
3995 int l;
3996 if (!v)
3997 return 1;
3998 l = n[1];
3999 p = n + 2;
4000 while (l) {
4001 int i = l/2;
4002 unsigned long *q = p + 2 * i;
4003 if (*q == v) {
4004 q[1]++;
4005 return 1;
4006 }
4007 if (*q > v) {
4008 l = i;
4009 } else {
4010 p = q + 2;
4011 l -= i + 1;
4012 }
4013 }
4014 if (++n[1] == n[0])
4015 return 0;
4016 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4017 p[0] = v;
4018 p[1] = 1;
4019 return 1;
4020 }
4021
4022 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4023 {
4024 void *p;
4025 int i;
4026 if (n[0] == n[1])
4027 return;
4028 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4029 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4030 continue;
4031 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4032 return;
4033 }
4034 }
4035
4036 static void show_symbol(struct seq_file *m, unsigned long address)
4037 {
4038 #ifdef CONFIG_KALLSYMS
4039 char *modname;
4040 const char *name;
4041 unsigned long offset, size;
4042 char namebuf[KSYM_NAME_LEN+1];
4043
4044 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4045
4046 if (name) {
4047 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4048 if (modname)
4049 seq_printf(m, " [%s]", modname);
4050 return;
4051 }
4052 #endif
4053 seq_printf(m, "%p", (void *)address);
4054 }
4055
4056 static int leaks_show(struct seq_file *m, void *p)
4057 {
4058 struct kmem_cache *cachep = p;
4059 struct list_head *q;
4060 struct slab *slabp;
4061 struct kmem_list3 *l3;
4062 const char *name;
4063 unsigned long *n = m->private;
4064 int node;
4065 int i;
4066
4067 if (!(cachep->flags & SLAB_STORE_USER))
4068 return 0;
4069 if (!(cachep->flags & SLAB_RED_ZONE))
4070 return 0;
4071
4072 /* OK, we can do it */
4073
4074 n[1] = 0;
4075
4076 for_each_online_node(node) {
4077 l3 = cachep->nodelists[node];
4078 if (!l3)
4079 continue;
4080
4081 check_irq_on();
4082 spin_lock_irq(&l3->list_lock);
4083
4084 list_for_each(q, &l3->slabs_full) {
4085 slabp = list_entry(q, struct slab, list);
4086 handle_slab(n, cachep, slabp);
4087 }
4088 list_for_each(q, &l3->slabs_partial) {
4089 slabp = list_entry(q, struct slab, list);
4090 handle_slab(n, cachep, slabp);
4091 }
4092 spin_unlock_irq(&l3->list_lock);
4093 }
4094 name = cachep->name;
4095 if (n[0] == n[1]) {
4096 /* Increase the buffer size */
4097 mutex_unlock(&cache_chain_mutex);
4098 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4099 if (!m->private) {
4100 /* Too bad, we are really out */
4101 m->private = n;
4102 mutex_lock(&cache_chain_mutex);
4103 return -ENOMEM;
4104 }
4105 *(unsigned long *)m->private = n[0] * 2;
4106 kfree(n);
4107 mutex_lock(&cache_chain_mutex);
4108 /* Now make sure this entry will be retried */
4109 m->count = m->size;
4110 return 0;
4111 }
4112 for (i = 0; i < n[1]; i++) {
4113 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4114 show_symbol(m, n[2*i+2]);
4115 seq_putc(m, '\n');
4116 }
4117 return 0;
4118 }
4119
4120 struct seq_operations slabstats_op = {
4121 .start = leaks_start,
4122 .next = s_next,
4123 .stop = s_stop,
4124 .show = leaks_show,
4125 };
4126 #endif
4127 #endif
4128
4129 /**
4130 * ksize - get the actual amount of memory allocated for a given object
4131 * @objp: Pointer to the object
4132 *
4133 * kmalloc may internally round up allocations and return more memory
4134 * than requested. ksize() can be used to determine the actual amount of
4135 * memory allocated. The caller may use this additional memory, even though
4136 * a smaller amount of memory was initially specified with the kmalloc call.
4137 * The caller must guarantee that objp points to a valid object previously
4138 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4139 * must not be freed during the duration of the call.
4140 */
4141 unsigned int ksize(const void *objp)
4142 {
4143 if (unlikely(objp == NULL))
4144 return 0;
4145
4146 return obj_size(virt_to_cache(objp));
4147 }
This page took 0.115019 seconds and 5 git commands to generate.