[PATCH] SLAB: use a multiply instead of a divide in obj_to_index()
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
117
118 /*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129 #ifdef CONFIG_DEBUG_SLAB
130 #define DEBUG 1
131 #define STATS 1
132 #define FORCED_DEBUG 1
133 #else
134 #define DEBUG 0
135 #define STATS 0
136 #define FORCED_DEBUG 0
137 #endif
138
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
141
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
145
146 #ifndef ARCH_KMALLOC_MINALIGN
147 /*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155 #define ARCH_KMALLOC_MINALIGN 0
156 #endif
157
158 #ifndef ARCH_SLAB_MINALIGN
159 /*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
168
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
172
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
187
188 /*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228
229 /*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
249 };
250
251 /*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
275 };
276
277 /*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
285 };
286
287 /*
288 * The slab lists for all objects.
289 */
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
302 };
303
304 /*
305 * Need this for bootstrapping a per node allocator.
306 */
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
312
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
319
320 /*
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324 static __always_inline int index_of(const size_t size)
325 {
326 extern void __bad_size(void);
327
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
342 }
343
344 static int slab_early_init = 1;
345
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349 static void kmem_list3_init(struct kmem_list3 *parent)
350 {
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360 }
361
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
367
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
374
375 /*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
388
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
392 struct kmem_list3 *nodelists[MAX_NUMNODES];
393
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
396
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder;
400
401 /* force GFP flags, e.g. GFP_DMA */
402 gfp_t gfpflags;
403
404 size_t colour; /* cache colouring range */
405 unsigned int colour_off; /* colour offset */
406 struct kmem_cache *slabp_cache;
407 unsigned int slab_size;
408 unsigned int dflags; /* dynamic flags */
409
410 /* constructor func */
411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
412
413 /* de-constructor func */
414 void (*dtor) (void *, struct kmem_cache *, unsigned long);
415
416 /* 5) cache creation/removal */
417 const char *name;
418 struct list_head next;
419
420 /* 6) statistics */
421 #if STATS
422 unsigned long num_active;
423 unsigned long num_allocations;
424 unsigned long high_mark;
425 unsigned long grown;
426 unsigned long reaped;
427 unsigned long errors;
428 unsigned long max_freeable;
429 unsigned long node_allocs;
430 unsigned long node_frees;
431 unsigned long node_overflow;
432 atomic_t allochit;
433 atomic_t allocmiss;
434 atomic_t freehit;
435 atomic_t freemiss;
436 #endif
437 #if DEBUG
438 /*
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
443 */
444 int obj_offset;
445 int obj_size;
446 #endif
447 };
448
449 #define CFLGS_OFF_SLAB (0x80000000UL)
450 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
451
452 #define BATCHREFILL_LIMIT 16
453 /*
454 * Optimization question: fewer reaps means less probability for unnessary
455 * cpucache drain/refill cycles.
456 *
457 * OTOH the cpuarrays can contain lots of objects,
458 * which could lock up otherwise freeable slabs.
459 */
460 #define REAPTIMEOUT_CPUC (2*HZ)
461 #define REAPTIMEOUT_LIST3 (4*HZ)
462
463 #if STATS
464 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
465 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
466 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
467 #define STATS_INC_GROWN(x) ((x)->grown++)
468 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
469 #define STATS_SET_HIGH(x) \
470 do { \
471 if ((x)->num_active > (x)->high_mark) \
472 (x)->high_mark = (x)->num_active; \
473 } while (0)
474 #define STATS_INC_ERR(x) ((x)->errors++)
475 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
476 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
477 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
478 #define STATS_SET_FREEABLE(x, i) \
479 do { \
480 if ((x)->max_freeable < i) \
481 (x)->max_freeable = i; \
482 } while (0)
483 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
484 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
485 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
486 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
487 #else
488 #define STATS_INC_ACTIVE(x) do { } while (0)
489 #define STATS_DEC_ACTIVE(x) do { } while (0)
490 #define STATS_INC_ALLOCED(x) do { } while (0)
491 #define STATS_INC_GROWN(x) do { } while (0)
492 #define STATS_ADD_REAPED(x,y) do { } while (0)
493 #define STATS_SET_HIGH(x) do { } while (0)
494 #define STATS_INC_ERR(x) do { } while (0)
495 #define STATS_INC_NODEALLOCS(x) do { } while (0)
496 #define STATS_INC_NODEFREES(x) do { } while (0)
497 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
498 #define STATS_SET_FREEABLE(x, i) do { } while (0)
499 #define STATS_INC_ALLOCHIT(x) do { } while (0)
500 #define STATS_INC_ALLOCMISS(x) do { } while (0)
501 #define STATS_INC_FREEHIT(x) do { } while (0)
502 #define STATS_INC_FREEMISS(x) do { } while (0)
503 #endif
504
505 #if DEBUG
506
507 /*
508 * memory layout of objects:
509 * 0 : objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
519 */
520 static int obj_offset(struct kmem_cache *cachep)
521 {
522 return cachep->obj_offset;
523 }
524
525 static int obj_size(struct kmem_cache *cachep)
526 {
527 return cachep->obj_size;
528 }
529
530 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531 {
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 }
535
536 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537 {
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
540 return (unsigned long *)(objp + cachep->buffer_size -
541 2 * BYTES_PER_WORD);
542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 }
544
545 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546 {
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 }
550
551 #else
552
553 #define obj_offset(x) 0
554 #define obj_size(cachep) (cachep->buffer_size)
555 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559 #endif
560
561 /*
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
564 */
565 #if defined(CONFIG_LARGE_ALLOCS)
566 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
567 #define MAX_GFP_ORDER 13 /* up to 32Mb */
568 #elif defined(CONFIG_MMU)
569 #define MAX_OBJ_ORDER 5 /* 32 pages */
570 #define MAX_GFP_ORDER 5 /* 32 pages */
571 #else
572 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
573 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 #endif
575
576 /*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579 #define BREAK_GFP_ORDER_HI 1
580 #define BREAK_GFP_ORDER_LO 0
581 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
583 /*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
587 */
588 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589 {
590 page->lru.next = (struct list_head *)cache;
591 }
592
593 static inline struct kmem_cache *page_get_cache(struct page *page)
594 {
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
597 BUG_ON(!PageSlab(page));
598 return (struct kmem_cache *)page->lru.next;
599 }
600
601 static inline void page_set_slab(struct page *page, struct slab *slab)
602 {
603 page->lru.prev = (struct list_head *)slab;
604 }
605
606 static inline struct slab *page_get_slab(struct page *page)
607 {
608 if (unlikely(PageCompound(page)))
609 page = (struct page *)page_private(page);
610 BUG_ON(!PageSlab(page));
611 return (struct slab *)page->lru.prev;
612 }
613
614 static inline struct kmem_cache *virt_to_cache(const void *obj)
615 {
616 struct page *page = virt_to_page(obj);
617 return page_get_cache(page);
618 }
619
620 static inline struct slab *virt_to_slab(const void *obj)
621 {
622 struct page *page = virt_to_page(obj);
623 return page_get_slab(page);
624 }
625
626 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
627 unsigned int idx)
628 {
629 return slab->s_mem + cache->buffer_size * idx;
630 }
631
632 /*
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
637 */
638 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
639 const struct slab *slab, void *obj)
640 {
641 u32 offset = (obj - slab->s_mem);
642 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
643 }
644
645 /*
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
647 */
648 struct cache_sizes malloc_sizes[] = {
649 #define CACHE(x) { .cs_size = (x) },
650 #include <linux/kmalloc_sizes.h>
651 CACHE(ULONG_MAX)
652 #undef CACHE
653 };
654 EXPORT_SYMBOL(malloc_sizes);
655
656 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
657 struct cache_names {
658 char *name;
659 char *name_dma;
660 };
661
662 static struct cache_names __initdata cache_names[] = {
663 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664 #include <linux/kmalloc_sizes.h>
665 {NULL,}
666 #undef CACHE
667 };
668
669 static struct arraycache_init initarray_cache __initdata =
670 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
671 static struct arraycache_init initarray_generic =
672 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
673
674 /* internal cache of cache description objs */
675 static struct kmem_cache cache_cache = {
676 .batchcount = 1,
677 .limit = BOOT_CPUCACHE_ENTRIES,
678 .shared = 1,
679 .buffer_size = sizeof(struct kmem_cache),
680 .name = "kmem_cache",
681 #if DEBUG
682 .obj_size = sizeof(struct kmem_cache),
683 #endif
684 };
685
686 #define BAD_ALIEN_MAGIC 0x01020304ul
687
688 #ifdef CONFIG_LOCKDEP
689
690 /*
691 * Slab sometimes uses the kmalloc slabs to store the slab headers
692 * for other slabs "off slab".
693 * The locking for this is tricky in that it nests within the locks
694 * of all other slabs in a few places; to deal with this special
695 * locking we put on-slab caches into a separate lock-class.
696 *
697 * We set lock class for alien array caches which are up during init.
698 * The lock annotation will be lost if all cpus of a node goes down and
699 * then comes back up during hotplug
700 */
701 static struct lock_class_key on_slab_l3_key;
702 static struct lock_class_key on_slab_alc_key;
703
704 static inline void init_lock_keys(void)
705
706 {
707 int q;
708 struct cache_sizes *s = malloc_sizes;
709
710 while (s->cs_size != ULONG_MAX) {
711 for_each_node(q) {
712 struct array_cache **alc;
713 int r;
714 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
715 if (!l3 || OFF_SLAB(s->cs_cachep))
716 continue;
717 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
718 alc = l3->alien;
719 /*
720 * FIXME: This check for BAD_ALIEN_MAGIC
721 * should go away when common slab code is taught to
722 * work even without alien caches.
723 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
724 * for alloc_alien_cache,
725 */
726 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
727 continue;
728 for_each_node(r) {
729 if (alc[r])
730 lockdep_set_class(&alc[r]->lock,
731 &on_slab_alc_key);
732 }
733 }
734 s++;
735 }
736 }
737 #else
738 static inline void init_lock_keys(void)
739 {
740 }
741 #endif
742
743 /*
744 * 1. Guard access to the cache-chain.
745 * 2. Protect sanity of cpu_online_map against cpu hotplug events
746 */
747 static DEFINE_MUTEX(cache_chain_mutex);
748 static struct list_head cache_chain;
749
750 /*
751 * chicken and egg problem: delay the per-cpu array allocation
752 * until the general caches are up.
753 */
754 static enum {
755 NONE,
756 PARTIAL_AC,
757 PARTIAL_L3,
758 FULL
759 } g_cpucache_up;
760
761 /*
762 * used by boot code to determine if it can use slab based allocator
763 */
764 int slab_is_available(void)
765 {
766 return g_cpucache_up == FULL;
767 }
768
769 static DEFINE_PER_CPU(struct delayed_work, reap_work);
770
771 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
772 {
773 return cachep->array[smp_processor_id()];
774 }
775
776 static inline struct kmem_cache *__find_general_cachep(size_t size,
777 gfp_t gfpflags)
778 {
779 struct cache_sizes *csizep = malloc_sizes;
780
781 #if DEBUG
782 /* This happens if someone tries to call
783 * kmem_cache_create(), or __kmalloc(), before
784 * the generic caches are initialized.
785 */
786 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
787 #endif
788 while (size > csizep->cs_size)
789 csizep++;
790
791 /*
792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
795 */
796 if (unlikely(gfpflags & GFP_DMA))
797 return csizep->cs_dmacachep;
798 return csizep->cs_cachep;
799 }
800
801 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
802 {
803 return __find_general_cachep(size, gfpflags);
804 }
805
806 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
807 {
808 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
809 }
810
811 /*
812 * Calculate the number of objects and left-over bytes for a given buffer size.
813 */
814 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
815 size_t align, int flags, size_t *left_over,
816 unsigned int *num)
817 {
818 int nr_objs;
819 size_t mgmt_size;
820 size_t slab_size = PAGE_SIZE << gfporder;
821
822 /*
823 * The slab management structure can be either off the slab or
824 * on it. For the latter case, the memory allocated for a
825 * slab is used for:
826 *
827 * - The struct slab
828 * - One kmem_bufctl_t for each object
829 * - Padding to respect alignment of @align
830 * - @buffer_size bytes for each object
831 *
832 * If the slab management structure is off the slab, then the
833 * alignment will already be calculated into the size. Because
834 * the slabs are all pages aligned, the objects will be at the
835 * correct alignment when allocated.
836 */
837 if (flags & CFLGS_OFF_SLAB) {
838 mgmt_size = 0;
839 nr_objs = slab_size / buffer_size;
840
841 if (nr_objs > SLAB_LIMIT)
842 nr_objs = SLAB_LIMIT;
843 } else {
844 /*
845 * Ignore padding for the initial guess. The padding
846 * is at most @align-1 bytes, and @buffer_size is at
847 * least @align. In the worst case, this result will
848 * be one greater than the number of objects that fit
849 * into the memory allocation when taking the padding
850 * into account.
851 */
852 nr_objs = (slab_size - sizeof(struct slab)) /
853 (buffer_size + sizeof(kmem_bufctl_t));
854
855 /*
856 * This calculated number will be either the right
857 * amount, or one greater than what we want.
858 */
859 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
860 > slab_size)
861 nr_objs--;
862
863 if (nr_objs > SLAB_LIMIT)
864 nr_objs = SLAB_LIMIT;
865
866 mgmt_size = slab_mgmt_size(nr_objs, align);
867 }
868 *num = nr_objs;
869 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
870 }
871
872 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
873
874 static void __slab_error(const char *function, struct kmem_cache *cachep,
875 char *msg)
876 {
877 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
878 function, cachep->name, msg);
879 dump_stack();
880 }
881
882 /*
883 * By default on NUMA we use alien caches to stage the freeing of
884 * objects allocated from other nodes. This causes massive memory
885 * inefficiencies when using fake NUMA setup to split memory into a
886 * large number of small nodes, so it can be disabled on the command
887 * line
888 */
889
890 static int use_alien_caches __read_mostly = 1;
891 static int __init noaliencache_setup(char *s)
892 {
893 use_alien_caches = 0;
894 return 1;
895 }
896 __setup("noaliencache", noaliencache_setup);
897
898 #ifdef CONFIG_NUMA
899 /*
900 * Special reaping functions for NUMA systems called from cache_reap().
901 * These take care of doing round robin flushing of alien caches (containing
902 * objects freed on different nodes from which they were allocated) and the
903 * flushing of remote pcps by calling drain_node_pages.
904 */
905 static DEFINE_PER_CPU(unsigned long, reap_node);
906
907 static void init_reap_node(int cpu)
908 {
909 int node;
910
911 node = next_node(cpu_to_node(cpu), node_online_map);
912 if (node == MAX_NUMNODES)
913 node = first_node(node_online_map);
914
915 per_cpu(reap_node, cpu) = node;
916 }
917
918 static void next_reap_node(void)
919 {
920 int node = __get_cpu_var(reap_node);
921
922 /*
923 * Also drain per cpu pages on remote zones
924 */
925 if (node != numa_node_id())
926 drain_node_pages(node);
927
928 node = next_node(node, node_online_map);
929 if (unlikely(node >= MAX_NUMNODES))
930 node = first_node(node_online_map);
931 __get_cpu_var(reap_node) = node;
932 }
933
934 #else
935 #define init_reap_node(cpu) do { } while (0)
936 #define next_reap_node(void) do { } while (0)
937 #endif
938
939 /*
940 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
941 * via the workqueue/eventd.
942 * Add the CPU number into the expiration time to minimize the possibility of
943 * the CPUs getting into lockstep and contending for the global cache chain
944 * lock.
945 */
946 static void __devinit start_cpu_timer(int cpu)
947 {
948 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
949
950 /*
951 * When this gets called from do_initcalls via cpucache_init(),
952 * init_workqueues() has already run, so keventd will be setup
953 * at that time.
954 */
955 if (keventd_up() && reap_work->work.func == NULL) {
956 init_reap_node(cpu);
957 INIT_DELAYED_WORK(reap_work, cache_reap);
958 schedule_delayed_work_on(cpu, reap_work,
959 __round_jiffies_relative(HZ, cpu));
960 }
961 }
962
963 static struct array_cache *alloc_arraycache(int node, int entries,
964 int batchcount)
965 {
966 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
967 struct array_cache *nc = NULL;
968
969 nc = kmalloc_node(memsize, GFP_KERNEL, node);
970 if (nc) {
971 nc->avail = 0;
972 nc->limit = entries;
973 nc->batchcount = batchcount;
974 nc->touched = 0;
975 spin_lock_init(&nc->lock);
976 }
977 return nc;
978 }
979
980 /*
981 * Transfer objects in one arraycache to another.
982 * Locking must be handled by the caller.
983 *
984 * Return the number of entries transferred.
985 */
986 static int transfer_objects(struct array_cache *to,
987 struct array_cache *from, unsigned int max)
988 {
989 /* Figure out how many entries to transfer */
990 int nr = min(min(from->avail, max), to->limit - to->avail);
991
992 if (!nr)
993 return 0;
994
995 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
996 sizeof(void *) *nr);
997
998 from->avail -= nr;
999 to->avail += nr;
1000 to->touched = 1;
1001 return nr;
1002 }
1003
1004 #ifndef CONFIG_NUMA
1005
1006 #define drain_alien_cache(cachep, alien) do { } while (0)
1007 #define reap_alien(cachep, l3) do { } while (0)
1008
1009 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1010 {
1011 return (struct array_cache **)BAD_ALIEN_MAGIC;
1012 }
1013
1014 static inline void free_alien_cache(struct array_cache **ac_ptr)
1015 {
1016 }
1017
1018 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019 {
1020 return 0;
1021 }
1022
1023 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1024 gfp_t flags)
1025 {
1026 return NULL;
1027 }
1028
1029 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1030 gfp_t flags, int nodeid)
1031 {
1032 return NULL;
1033 }
1034
1035 #else /* CONFIG_NUMA */
1036
1037 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1038 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1039
1040 static struct array_cache **alloc_alien_cache(int node, int limit)
1041 {
1042 struct array_cache **ac_ptr;
1043 int memsize = sizeof(void *) * MAX_NUMNODES;
1044 int i;
1045
1046 if (limit > 1)
1047 limit = 12;
1048 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1049 if (ac_ptr) {
1050 for_each_node(i) {
1051 if (i == node || !node_online(i)) {
1052 ac_ptr[i] = NULL;
1053 continue;
1054 }
1055 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1056 if (!ac_ptr[i]) {
1057 for (i--; i <= 0; i--)
1058 kfree(ac_ptr[i]);
1059 kfree(ac_ptr);
1060 return NULL;
1061 }
1062 }
1063 }
1064 return ac_ptr;
1065 }
1066
1067 static void free_alien_cache(struct array_cache **ac_ptr)
1068 {
1069 int i;
1070
1071 if (!ac_ptr)
1072 return;
1073 for_each_node(i)
1074 kfree(ac_ptr[i]);
1075 kfree(ac_ptr);
1076 }
1077
1078 static void __drain_alien_cache(struct kmem_cache *cachep,
1079 struct array_cache *ac, int node)
1080 {
1081 struct kmem_list3 *rl3 = cachep->nodelists[node];
1082
1083 if (ac->avail) {
1084 spin_lock(&rl3->list_lock);
1085 /*
1086 * Stuff objects into the remote nodes shared array first.
1087 * That way we could avoid the overhead of putting the objects
1088 * into the free lists and getting them back later.
1089 */
1090 if (rl3->shared)
1091 transfer_objects(rl3->shared, ac, ac->limit);
1092
1093 free_block(cachep, ac->entry, ac->avail, node);
1094 ac->avail = 0;
1095 spin_unlock(&rl3->list_lock);
1096 }
1097 }
1098
1099 /*
1100 * Called from cache_reap() to regularly drain alien caches round robin.
1101 */
1102 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1103 {
1104 int node = __get_cpu_var(reap_node);
1105
1106 if (l3->alien) {
1107 struct array_cache *ac = l3->alien[node];
1108
1109 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1110 __drain_alien_cache(cachep, ac, node);
1111 spin_unlock_irq(&ac->lock);
1112 }
1113 }
1114 }
1115
1116 static void drain_alien_cache(struct kmem_cache *cachep,
1117 struct array_cache **alien)
1118 {
1119 int i = 0;
1120 struct array_cache *ac;
1121 unsigned long flags;
1122
1123 for_each_online_node(i) {
1124 ac = alien[i];
1125 if (ac) {
1126 spin_lock_irqsave(&ac->lock, flags);
1127 __drain_alien_cache(cachep, ac, i);
1128 spin_unlock_irqrestore(&ac->lock, flags);
1129 }
1130 }
1131 }
1132
1133 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1134 {
1135 struct slab *slabp = virt_to_slab(objp);
1136 int nodeid = slabp->nodeid;
1137 struct kmem_list3 *l3;
1138 struct array_cache *alien = NULL;
1139 int node;
1140
1141 node = numa_node_id();
1142
1143 /*
1144 * Make sure we are not freeing a object from another node to the array
1145 * cache on this cpu.
1146 */
1147 if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1148 return 0;
1149
1150 l3 = cachep->nodelists[node];
1151 STATS_INC_NODEFREES(cachep);
1152 if (l3->alien && l3->alien[nodeid]) {
1153 alien = l3->alien[nodeid];
1154 spin_lock(&alien->lock);
1155 if (unlikely(alien->avail == alien->limit)) {
1156 STATS_INC_ACOVERFLOW(cachep);
1157 __drain_alien_cache(cachep, alien, nodeid);
1158 }
1159 alien->entry[alien->avail++] = objp;
1160 spin_unlock(&alien->lock);
1161 } else {
1162 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1163 free_block(cachep, &objp, 1, nodeid);
1164 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1165 }
1166 return 1;
1167 }
1168 #endif
1169
1170 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1171 unsigned long action, void *hcpu)
1172 {
1173 long cpu = (long)hcpu;
1174 struct kmem_cache *cachep;
1175 struct kmem_list3 *l3 = NULL;
1176 int node = cpu_to_node(cpu);
1177 int memsize = sizeof(struct kmem_list3);
1178
1179 switch (action) {
1180 case CPU_UP_PREPARE:
1181 mutex_lock(&cache_chain_mutex);
1182 /*
1183 * We need to do this right in the beginning since
1184 * alloc_arraycache's are going to use this list.
1185 * kmalloc_node allows us to add the slab to the right
1186 * kmem_list3 and not this cpu's kmem_list3
1187 */
1188
1189 list_for_each_entry(cachep, &cache_chain, next) {
1190 /*
1191 * Set up the size64 kmemlist for cpu before we can
1192 * begin anything. Make sure some other cpu on this
1193 * node has not already allocated this
1194 */
1195 if (!cachep->nodelists[node]) {
1196 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1197 if (!l3)
1198 goto bad;
1199 kmem_list3_init(l3);
1200 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1201 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1202
1203 /*
1204 * The l3s don't come and go as CPUs come and
1205 * go. cache_chain_mutex is sufficient
1206 * protection here.
1207 */
1208 cachep->nodelists[node] = l3;
1209 }
1210
1211 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1212 cachep->nodelists[node]->free_limit =
1213 (1 + nr_cpus_node(node)) *
1214 cachep->batchcount + cachep->num;
1215 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1216 }
1217
1218 /*
1219 * Now we can go ahead with allocating the shared arrays and
1220 * array caches
1221 */
1222 list_for_each_entry(cachep, &cache_chain, next) {
1223 struct array_cache *nc;
1224 struct array_cache *shared;
1225 struct array_cache **alien = NULL;
1226
1227 nc = alloc_arraycache(node, cachep->limit,
1228 cachep->batchcount);
1229 if (!nc)
1230 goto bad;
1231 shared = alloc_arraycache(node,
1232 cachep->shared * cachep->batchcount,
1233 0xbaadf00d);
1234 if (!shared)
1235 goto bad;
1236
1237 if (use_alien_caches) {
1238 alien = alloc_alien_cache(node, cachep->limit);
1239 if (!alien)
1240 goto bad;
1241 }
1242 cachep->array[cpu] = nc;
1243 l3 = cachep->nodelists[node];
1244 BUG_ON(!l3);
1245
1246 spin_lock_irq(&l3->list_lock);
1247 if (!l3->shared) {
1248 /*
1249 * We are serialised from CPU_DEAD or
1250 * CPU_UP_CANCELLED by the cpucontrol lock
1251 */
1252 l3->shared = shared;
1253 shared = NULL;
1254 }
1255 #ifdef CONFIG_NUMA
1256 if (!l3->alien) {
1257 l3->alien = alien;
1258 alien = NULL;
1259 }
1260 #endif
1261 spin_unlock_irq(&l3->list_lock);
1262 kfree(shared);
1263 free_alien_cache(alien);
1264 }
1265 break;
1266 case CPU_ONLINE:
1267 mutex_unlock(&cache_chain_mutex);
1268 start_cpu_timer(cpu);
1269 break;
1270 #ifdef CONFIG_HOTPLUG_CPU
1271 case CPU_DOWN_PREPARE:
1272 mutex_lock(&cache_chain_mutex);
1273 break;
1274 case CPU_DOWN_FAILED:
1275 mutex_unlock(&cache_chain_mutex);
1276 break;
1277 case CPU_DEAD:
1278 /*
1279 * Even if all the cpus of a node are down, we don't free the
1280 * kmem_list3 of any cache. This to avoid a race between
1281 * cpu_down, and a kmalloc allocation from another cpu for
1282 * memory from the node of the cpu going down. The list3
1283 * structure is usually allocated from kmem_cache_create() and
1284 * gets destroyed at kmem_cache_destroy().
1285 */
1286 /* fall thru */
1287 #endif
1288 case CPU_UP_CANCELED:
1289 list_for_each_entry(cachep, &cache_chain, next) {
1290 struct array_cache *nc;
1291 struct array_cache *shared;
1292 struct array_cache **alien;
1293 cpumask_t mask;
1294
1295 mask = node_to_cpumask(node);
1296 /* cpu is dead; no one can alloc from it. */
1297 nc = cachep->array[cpu];
1298 cachep->array[cpu] = NULL;
1299 l3 = cachep->nodelists[node];
1300
1301 if (!l3)
1302 goto free_array_cache;
1303
1304 spin_lock_irq(&l3->list_lock);
1305
1306 /* Free limit for this kmem_list3 */
1307 l3->free_limit -= cachep->batchcount;
1308 if (nc)
1309 free_block(cachep, nc->entry, nc->avail, node);
1310
1311 if (!cpus_empty(mask)) {
1312 spin_unlock_irq(&l3->list_lock);
1313 goto free_array_cache;
1314 }
1315
1316 shared = l3->shared;
1317 if (shared) {
1318 free_block(cachep, l3->shared->entry,
1319 l3->shared->avail, node);
1320 l3->shared = NULL;
1321 }
1322
1323 alien = l3->alien;
1324 l3->alien = NULL;
1325
1326 spin_unlock_irq(&l3->list_lock);
1327
1328 kfree(shared);
1329 if (alien) {
1330 drain_alien_cache(cachep, alien);
1331 free_alien_cache(alien);
1332 }
1333 free_array_cache:
1334 kfree(nc);
1335 }
1336 /*
1337 * In the previous loop, all the objects were freed to
1338 * the respective cache's slabs, now we can go ahead and
1339 * shrink each nodelist to its limit.
1340 */
1341 list_for_each_entry(cachep, &cache_chain, next) {
1342 l3 = cachep->nodelists[node];
1343 if (!l3)
1344 continue;
1345 drain_freelist(cachep, l3, l3->free_objects);
1346 }
1347 mutex_unlock(&cache_chain_mutex);
1348 break;
1349 }
1350 return NOTIFY_OK;
1351 bad:
1352 return NOTIFY_BAD;
1353 }
1354
1355 static struct notifier_block __cpuinitdata cpucache_notifier = {
1356 &cpuup_callback, NULL, 0
1357 };
1358
1359 /*
1360 * swap the static kmem_list3 with kmalloced memory
1361 */
1362 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1363 int nodeid)
1364 {
1365 struct kmem_list3 *ptr;
1366
1367 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1368 BUG_ON(!ptr);
1369
1370 local_irq_disable();
1371 memcpy(ptr, list, sizeof(struct kmem_list3));
1372 /*
1373 * Do not assume that spinlocks can be initialized via memcpy:
1374 */
1375 spin_lock_init(&ptr->list_lock);
1376
1377 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1378 cachep->nodelists[nodeid] = ptr;
1379 local_irq_enable();
1380 }
1381
1382 /*
1383 * Initialisation. Called after the page allocator have been initialised and
1384 * before smp_init().
1385 */
1386 void __init kmem_cache_init(void)
1387 {
1388 size_t left_over;
1389 struct cache_sizes *sizes;
1390 struct cache_names *names;
1391 int i;
1392 int order;
1393 int node;
1394
1395 for (i = 0; i < NUM_INIT_LISTS; i++) {
1396 kmem_list3_init(&initkmem_list3[i]);
1397 if (i < MAX_NUMNODES)
1398 cache_cache.nodelists[i] = NULL;
1399 }
1400
1401 /*
1402 * Fragmentation resistance on low memory - only use bigger
1403 * page orders on machines with more than 32MB of memory.
1404 */
1405 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1406 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1407
1408 /* Bootstrap is tricky, because several objects are allocated
1409 * from caches that do not exist yet:
1410 * 1) initialize the cache_cache cache: it contains the struct
1411 * kmem_cache structures of all caches, except cache_cache itself:
1412 * cache_cache is statically allocated.
1413 * Initially an __init data area is used for the head array and the
1414 * kmem_list3 structures, it's replaced with a kmalloc allocated
1415 * array at the end of the bootstrap.
1416 * 2) Create the first kmalloc cache.
1417 * The struct kmem_cache for the new cache is allocated normally.
1418 * An __init data area is used for the head array.
1419 * 3) Create the remaining kmalloc caches, with minimally sized
1420 * head arrays.
1421 * 4) Replace the __init data head arrays for cache_cache and the first
1422 * kmalloc cache with kmalloc allocated arrays.
1423 * 5) Replace the __init data for kmem_list3 for cache_cache and
1424 * the other cache's with kmalloc allocated memory.
1425 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1426 */
1427
1428 node = numa_node_id();
1429
1430 /* 1) create the cache_cache */
1431 INIT_LIST_HEAD(&cache_chain);
1432 list_add(&cache_cache.next, &cache_chain);
1433 cache_cache.colour_off = cache_line_size();
1434 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1435 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1436
1437 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1438 cache_line_size());
1439 cache_cache.reciprocal_buffer_size =
1440 reciprocal_value(cache_cache.buffer_size);
1441
1442 for (order = 0; order < MAX_ORDER; order++) {
1443 cache_estimate(order, cache_cache.buffer_size,
1444 cache_line_size(), 0, &left_over, &cache_cache.num);
1445 if (cache_cache.num)
1446 break;
1447 }
1448 BUG_ON(!cache_cache.num);
1449 cache_cache.gfporder = order;
1450 cache_cache.colour = left_over / cache_cache.colour_off;
1451 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1452 sizeof(struct slab), cache_line_size());
1453
1454 /* 2+3) create the kmalloc caches */
1455 sizes = malloc_sizes;
1456 names = cache_names;
1457
1458 /*
1459 * Initialize the caches that provide memory for the array cache and the
1460 * kmem_list3 structures first. Without this, further allocations will
1461 * bug.
1462 */
1463
1464 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1465 sizes[INDEX_AC].cs_size,
1466 ARCH_KMALLOC_MINALIGN,
1467 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1468 NULL, NULL);
1469
1470 if (INDEX_AC != INDEX_L3) {
1471 sizes[INDEX_L3].cs_cachep =
1472 kmem_cache_create(names[INDEX_L3].name,
1473 sizes[INDEX_L3].cs_size,
1474 ARCH_KMALLOC_MINALIGN,
1475 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1476 NULL, NULL);
1477 }
1478
1479 slab_early_init = 0;
1480
1481 while (sizes->cs_size != ULONG_MAX) {
1482 /*
1483 * For performance, all the general caches are L1 aligned.
1484 * This should be particularly beneficial on SMP boxes, as it
1485 * eliminates "false sharing".
1486 * Note for systems short on memory removing the alignment will
1487 * allow tighter packing of the smaller caches.
1488 */
1489 if (!sizes->cs_cachep) {
1490 sizes->cs_cachep = kmem_cache_create(names->name,
1491 sizes->cs_size,
1492 ARCH_KMALLOC_MINALIGN,
1493 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1494 NULL, NULL);
1495 }
1496
1497 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1498 sizes->cs_size,
1499 ARCH_KMALLOC_MINALIGN,
1500 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1501 SLAB_PANIC,
1502 NULL, NULL);
1503 sizes++;
1504 names++;
1505 }
1506 /* 4) Replace the bootstrap head arrays */
1507 {
1508 struct array_cache *ptr;
1509
1510 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1511
1512 local_irq_disable();
1513 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1514 memcpy(ptr, cpu_cache_get(&cache_cache),
1515 sizeof(struct arraycache_init));
1516 /*
1517 * Do not assume that spinlocks can be initialized via memcpy:
1518 */
1519 spin_lock_init(&ptr->lock);
1520
1521 cache_cache.array[smp_processor_id()] = ptr;
1522 local_irq_enable();
1523
1524 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1525
1526 local_irq_disable();
1527 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1528 != &initarray_generic.cache);
1529 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1530 sizeof(struct arraycache_init));
1531 /*
1532 * Do not assume that spinlocks can be initialized via memcpy:
1533 */
1534 spin_lock_init(&ptr->lock);
1535
1536 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1537 ptr;
1538 local_irq_enable();
1539 }
1540 /* 5) Replace the bootstrap kmem_list3's */
1541 {
1542 int nid;
1543
1544 /* Replace the static kmem_list3 structures for the boot cpu */
1545 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1546
1547 for_each_online_node(nid) {
1548 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1549 &initkmem_list3[SIZE_AC + nid], nid);
1550
1551 if (INDEX_AC != INDEX_L3) {
1552 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1553 &initkmem_list3[SIZE_L3 + nid], nid);
1554 }
1555 }
1556 }
1557
1558 /* 6) resize the head arrays to their final sizes */
1559 {
1560 struct kmem_cache *cachep;
1561 mutex_lock(&cache_chain_mutex);
1562 list_for_each_entry(cachep, &cache_chain, next)
1563 if (enable_cpucache(cachep))
1564 BUG();
1565 mutex_unlock(&cache_chain_mutex);
1566 }
1567
1568 /* Annotate slab for lockdep -- annotate the malloc caches */
1569 init_lock_keys();
1570
1571
1572 /* Done! */
1573 g_cpucache_up = FULL;
1574
1575 /*
1576 * Register a cpu startup notifier callback that initializes
1577 * cpu_cache_get for all new cpus
1578 */
1579 register_cpu_notifier(&cpucache_notifier);
1580
1581 /*
1582 * The reap timers are started later, with a module init call: That part
1583 * of the kernel is not yet operational.
1584 */
1585 }
1586
1587 static int __init cpucache_init(void)
1588 {
1589 int cpu;
1590
1591 /*
1592 * Register the timers that return unneeded pages to the page allocator
1593 */
1594 for_each_online_cpu(cpu)
1595 start_cpu_timer(cpu);
1596 return 0;
1597 }
1598 __initcall(cpucache_init);
1599
1600 /*
1601 * Interface to system's page allocator. No need to hold the cache-lock.
1602 *
1603 * If we requested dmaable memory, we will get it. Even if we
1604 * did not request dmaable memory, we might get it, but that
1605 * would be relatively rare and ignorable.
1606 */
1607 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1608 {
1609 struct page *page;
1610 int nr_pages;
1611 int i;
1612
1613 #ifndef CONFIG_MMU
1614 /*
1615 * Nommu uses slab's for process anonymous memory allocations, and thus
1616 * requires __GFP_COMP to properly refcount higher order allocations
1617 */
1618 flags |= __GFP_COMP;
1619 #endif
1620
1621 flags |= cachep->gfpflags;
1622
1623 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1624 if (!page)
1625 return NULL;
1626
1627 nr_pages = (1 << cachep->gfporder);
1628 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1629 add_zone_page_state(page_zone(page),
1630 NR_SLAB_RECLAIMABLE, nr_pages);
1631 else
1632 add_zone_page_state(page_zone(page),
1633 NR_SLAB_UNRECLAIMABLE, nr_pages);
1634 for (i = 0; i < nr_pages; i++)
1635 __SetPageSlab(page + i);
1636 return page_address(page);
1637 }
1638
1639 /*
1640 * Interface to system's page release.
1641 */
1642 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1643 {
1644 unsigned long i = (1 << cachep->gfporder);
1645 struct page *page = virt_to_page(addr);
1646 const unsigned long nr_freed = i;
1647
1648 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1649 sub_zone_page_state(page_zone(page),
1650 NR_SLAB_RECLAIMABLE, nr_freed);
1651 else
1652 sub_zone_page_state(page_zone(page),
1653 NR_SLAB_UNRECLAIMABLE, nr_freed);
1654 while (i--) {
1655 BUG_ON(!PageSlab(page));
1656 __ClearPageSlab(page);
1657 page++;
1658 }
1659 if (current->reclaim_state)
1660 current->reclaim_state->reclaimed_slab += nr_freed;
1661 free_pages((unsigned long)addr, cachep->gfporder);
1662 }
1663
1664 static void kmem_rcu_free(struct rcu_head *head)
1665 {
1666 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1667 struct kmem_cache *cachep = slab_rcu->cachep;
1668
1669 kmem_freepages(cachep, slab_rcu->addr);
1670 if (OFF_SLAB(cachep))
1671 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1672 }
1673
1674 #if DEBUG
1675
1676 #ifdef CONFIG_DEBUG_PAGEALLOC
1677 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1678 unsigned long caller)
1679 {
1680 int size = obj_size(cachep);
1681
1682 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1683
1684 if (size < 5 * sizeof(unsigned long))
1685 return;
1686
1687 *addr++ = 0x12345678;
1688 *addr++ = caller;
1689 *addr++ = smp_processor_id();
1690 size -= 3 * sizeof(unsigned long);
1691 {
1692 unsigned long *sptr = &caller;
1693 unsigned long svalue;
1694
1695 while (!kstack_end(sptr)) {
1696 svalue = *sptr++;
1697 if (kernel_text_address(svalue)) {
1698 *addr++ = svalue;
1699 size -= sizeof(unsigned long);
1700 if (size <= sizeof(unsigned long))
1701 break;
1702 }
1703 }
1704
1705 }
1706 *addr++ = 0x87654321;
1707 }
1708 #endif
1709
1710 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1711 {
1712 int size = obj_size(cachep);
1713 addr = &((char *)addr)[obj_offset(cachep)];
1714
1715 memset(addr, val, size);
1716 *(unsigned char *)(addr + size - 1) = POISON_END;
1717 }
1718
1719 static void dump_line(char *data, int offset, int limit)
1720 {
1721 int i;
1722 unsigned char error = 0;
1723 int bad_count = 0;
1724
1725 printk(KERN_ERR "%03x:", offset);
1726 for (i = 0; i < limit; i++) {
1727 if (data[offset + i] != POISON_FREE) {
1728 error = data[offset + i];
1729 bad_count++;
1730 }
1731 printk(" %02x", (unsigned char)data[offset + i]);
1732 }
1733 printk("\n");
1734
1735 if (bad_count == 1) {
1736 error ^= POISON_FREE;
1737 if (!(error & (error - 1))) {
1738 printk(KERN_ERR "Single bit error detected. Probably "
1739 "bad RAM.\n");
1740 #ifdef CONFIG_X86
1741 printk(KERN_ERR "Run memtest86+ or a similar memory "
1742 "test tool.\n");
1743 #else
1744 printk(KERN_ERR "Run a memory test tool.\n");
1745 #endif
1746 }
1747 }
1748 }
1749 #endif
1750
1751 #if DEBUG
1752
1753 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1754 {
1755 int i, size;
1756 char *realobj;
1757
1758 if (cachep->flags & SLAB_RED_ZONE) {
1759 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1760 *dbg_redzone1(cachep, objp),
1761 *dbg_redzone2(cachep, objp));
1762 }
1763
1764 if (cachep->flags & SLAB_STORE_USER) {
1765 printk(KERN_ERR "Last user: [<%p>]",
1766 *dbg_userword(cachep, objp));
1767 print_symbol("(%s)",
1768 (unsigned long)*dbg_userword(cachep, objp));
1769 printk("\n");
1770 }
1771 realobj = (char *)objp + obj_offset(cachep);
1772 size = obj_size(cachep);
1773 for (i = 0; i < size && lines; i += 16, lines--) {
1774 int limit;
1775 limit = 16;
1776 if (i + limit > size)
1777 limit = size - i;
1778 dump_line(realobj, i, limit);
1779 }
1780 }
1781
1782 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1783 {
1784 char *realobj;
1785 int size, i;
1786 int lines = 0;
1787
1788 realobj = (char *)objp + obj_offset(cachep);
1789 size = obj_size(cachep);
1790
1791 for (i = 0; i < size; i++) {
1792 char exp = POISON_FREE;
1793 if (i == size - 1)
1794 exp = POISON_END;
1795 if (realobj[i] != exp) {
1796 int limit;
1797 /* Mismatch ! */
1798 /* Print header */
1799 if (lines == 0) {
1800 printk(KERN_ERR
1801 "Slab corruption: start=%p, len=%d\n",
1802 realobj, size);
1803 print_objinfo(cachep, objp, 0);
1804 }
1805 /* Hexdump the affected line */
1806 i = (i / 16) * 16;
1807 limit = 16;
1808 if (i + limit > size)
1809 limit = size - i;
1810 dump_line(realobj, i, limit);
1811 i += 16;
1812 lines++;
1813 /* Limit to 5 lines */
1814 if (lines > 5)
1815 break;
1816 }
1817 }
1818 if (lines != 0) {
1819 /* Print some data about the neighboring objects, if they
1820 * exist:
1821 */
1822 struct slab *slabp = virt_to_slab(objp);
1823 unsigned int objnr;
1824
1825 objnr = obj_to_index(cachep, slabp, objp);
1826 if (objnr) {
1827 objp = index_to_obj(cachep, slabp, objnr - 1);
1828 realobj = (char *)objp + obj_offset(cachep);
1829 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1830 realobj, size);
1831 print_objinfo(cachep, objp, 2);
1832 }
1833 if (objnr + 1 < cachep->num) {
1834 objp = index_to_obj(cachep, slabp, objnr + 1);
1835 realobj = (char *)objp + obj_offset(cachep);
1836 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1837 realobj, size);
1838 print_objinfo(cachep, objp, 2);
1839 }
1840 }
1841 }
1842 #endif
1843
1844 #if DEBUG
1845 /**
1846 * slab_destroy_objs - destroy a slab and its objects
1847 * @cachep: cache pointer being destroyed
1848 * @slabp: slab pointer being destroyed
1849 *
1850 * Call the registered destructor for each object in a slab that is being
1851 * destroyed.
1852 */
1853 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1854 {
1855 int i;
1856 for (i = 0; i < cachep->num; i++) {
1857 void *objp = index_to_obj(cachep, slabp, i);
1858
1859 if (cachep->flags & SLAB_POISON) {
1860 #ifdef CONFIG_DEBUG_PAGEALLOC
1861 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1862 OFF_SLAB(cachep))
1863 kernel_map_pages(virt_to_page(objp),
1864 cachep->buffer_size / PAGE_SIZE, 1);
1865 else
1866 check_poison_obj(cachep, objp);
1867 #else
1868 check_poison_obj(cachep, objp);
1869 #endif
1870 }
1871 if (cachep->flags & SLAB_RED_ZONE) {
1872 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1873 slab_error(cachep, "start of a freed object "
1874 "was overwritten");
1875 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1876 slab_error(cachep, "end of a freed object "
1877 "was overwritten");
1878 }
1879 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1880 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1881 }
1882 }
1883 #else
1884 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1885 {
1886 if (cachep->dtor) {
1887 int i;
1888 for (i = 0; i < cachep->num; i++) {
1889 void *objp = index_to_obj(cachep, slabp, i);
1890 (cachep->dtor) (objp, cachep, 0);
1891 }
1892 }
1893 }
1894 #endif
1895
1896 /**
1897 * slab_destroy - destroy and release all objects in a slab
1898 * @cachep: cache pointer being destroyed
1899 * @slabp: slab pointer being destroyed
1900 *
1901 * Destroy all the objs in a slab, and release the mem back to the system.
1902 * Before calling the slab must have been unlinked from the cache. The
1903 * cache-lock is not held/needed.
1904 */
1905 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1906 {
1907 void *addr = slabp->s_mem - slabp->colouroff;
1908
1909 slab_destroy_objs(cachep, slabp);
1910 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1911 struct slab_rcu *slab_rcu;
1912
1913 slab_rcu = (struct slab_rcu *)slabp;
1914 slab_rcu->cachep = cachep;
1915 slab_rcu->addr = addr;
1916 call_rcu(&slab_rcu->head, kmem_rcu_free);
1917 } else {
1918 kmem_freepages(cachep, addr);
1919 if (OFF_SLAB(cachep))
1920 kmem_cache_free(cachep->slabp_cache, slabp);
1921 }
1922 }
1923
1924 /*
1925 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1926 * size of kmem_list3.
1927 */
1928 static void set_up_list3s(struct kmem_cache *cachep, int index)
1929 {
1930 int node;
1931
1932 for_each_online_node(node) {
1933 cachep->nodelists[node] = &initkmem_list3[index + node];
1934 cachep->nodelists[node]->next_reap = jiffies +
1935 REAPTIMEOUT_LIST3 +
1936 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1937 }
1938 }
1939
1940 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1941 {
1942 int i;
1943 struct kmem_list3 *l3;
1944
1945 for_each_online_cpu(i)
1946 kfree(cachep->array[i]);
1947
1948 /* NUMA: free the list3 structures */
1949 for_each_online_node(i) {
1950 l3 = cachep->nodelists[i];
1951 if (l3) {
1952 kfree(l3->shared);
1953 free_alien_cache(l3->alien);
1954 kfree(l3);
1955 }
1956 }
1957 kmem_cache_free(&cache_cache, cachep);
1958 }
1959
1960
1961 /**
1962 * calculate_slab_order - calculate size (page order) of slabs
1963 * @cachep: pointer to the cache that is being created
1964 * @size: size of objects to be created in this cache.
1965 * @align: required alignment for the objects.
1966 * @flags: slab allocation flags
1967 *
1968 * Also calculates the number of objects per slab.
1969 *
1970 * This could be made much more intelligent. For now, try to avoid using
1971 * high order pages for slabs. When the gfp() functions are more friendly
1972 * towards high-order requests, this should be changed.
1973 */
1974 static size_t calculate_slab_order(struct kmem_cache *cachep,
1975 size_t size, size_t align, unsigned long flags)
1976 {
1977 unsigned long offslab_limit;
1978 size_t left_over = 0;
1979 int gfporder;
1980
1981 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1982 unsigned int num;
1983 size_t remainder;
1984
1985 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1986 if (!num)
1987 continue;
1988
1989 if (flags & CFLGS_OFF_SLAB) {
1990 /*
1991 * Max number of objs-per-slab for caches which
1992 * use off-slab slabs. Needed to avoid a possible
1993 * looping condition in cache_grow().
1994 */
1995 offslab_limit = size - sizeof(struct slab);
1996 offslab_limit /= sizeof(kmem_bufctl_t);
1997
1998 if (num > offslab_limit)
1999 break;
2000 }
2001
2002 /* Found something acceptable - save it away */
2003 cachep->num = num;
2004 cachep->gfporder = gfporder;
2005 left_over = remainder;
2006
2007 /*
2008 * A VFS-reclaimable slab tends to have most allocations
2009 * as GFP_NOFS and we really don't want to have to be allocating
2010 * higher-order pages when we are unable to shrink dcache.
2011 */
2012 if (flags & SLAB_RECLAIM_ACCOUNT)
2013 break;
2014
2015 /*
2016 * Large number of objects is good, but very large slabs are
2017 * currently bad for the gfp()s.
2018 */
2019 if (gfporder >= slab_break_gfp_order)
2020 break;
2021
2022 /*
2023 * Acceptable internal fragmentation?
2024 */
2025 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2026 break;
2027 }
2028 return left_over;
2029 }
2030
2031 static int setup_cpu_cache(struct kmem_cache *cachep)
2032 {
2033 if (g_cpucache_up == FULL)
2034 return enable_cpucache(cachep);
2035
2036 if (g_cpucache_up == NONE) {
2037 /*
2038 * Note: the first kmem_cache_create must create the cache
2039 * that's used by kmalloc(24), otherwise the creation of
2040 * further caches will BUG().
2041 */
2042 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2043
2044 /*
2045 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2046 * the first cache, then we need to set up all its list3s,
2047 * otherwise the creation of further caches will BUG().
2048 */
2049 set_up_list3s(cachep, SIZE_AC);
2050 if (INDEX_AC == INDEX_L3)
2051 g_cpucache_up = PARTIAL_L3;
2052 else
2053 g_cpucache_up = PARTIAL_AC;
2054 } else {
2055 cachep->array[smp_processor_id()] =
2056 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2057
2058 if (g_cpucache_up == PARTIAL_AC) {
2059 set_up_list3s(cachep, SIZE_L3);
2060 g_cpucache_up = PARTIAL_L3;
2061 } else {
2062 int node;
2063 for_each_online_node(node) {
2064 cachep->nodelists[node] =
2065 kmalloc_node(sizeof(struct kmem_list3),
2066 GFP_KERNEL, node);
2067 BUG_ON(!cachep->nodelists[node]);
2068 kmem_list3_init(cachep->nodelists[node]);
2069 }
2070 }
2071 }
2072 cachep->nodelists[numa_node_id()]->next_reap =
2073 jiffies + REAPTIMEOUT_LIST3 +
2074 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2075
2076 cpu_cache_get(cachep)->avail = 0;
2077 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2078 cpu_cache_get(cachep)->batchcount = 1;
2079 cpu_cache_get(cachep)->touched = 0;
2080 cachep->batchcount = 1;
2081 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2082 return 0;
2083 }
2084
2085 /**
2086 * kmem_cache_create - Create a cache.
2087 * @name: A string which is used in /proc/slabinfo to identify this cache.
2088 * @size: The size of objects to be created in this cache.
2089 * @align: The required alignment for the objects.
2090 * @flags: SLAB flags
2091 * @ctor: A constructor for the objects.
2092 * @dtor: A destructor for the objects.
2093 *
2094 * Returns a ptr to the cache on success, NULL on failure.
2095 * Cannot be called within a int, but can be interrupted.
2096 * The @ctor is run when new pages are allocated by the cache
2097 * and the @dtor is run before the pages are handed back.
2098 *
2099 * @name must be valid until the cache is destroyed. This implies that
2100 * the module calling this has to destroy the cache before getting unloaded.
2101 *
2102 * The flags are
2103 *
2104 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2105 * to catch references to uninitialised memory.
2106 *
2107 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2108 * for buffer overruns.
2109 *
2110 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2111 * cacheline. This can be beneficial if you're counting cycles as closely
2112 * as davem.
2113 */
2114 struct kmem_cache *
2115 kmem_cache_create (const char *name, size_t size, size_t align,
2116 unsigned long flags,
2117 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2118 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2119 {
2120 size_t left_over, slab_size, ralign;
2121 struct kmem_cache *cachep = NULL, *pc;
2122
2123 /*
2124 * Sanity checks... these are all serious usage bugs.
2125 */
2126 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2127 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2128 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2129 name);
2130 BUG();
2131 }
2132
2133 /*
2134 * We use cache_chain_mutex to ensure a consistent view of
2135 * cpu_online_map as well. Please see cpuup_callback
2136 */
2137 mutex_lock(&cache_chain_mutex);
2138
2139 list_for_each_entry(pc, &cache_chain, next) {
2140 char tmp;
2141 int res;
2142
2143 /*
2144 * This happens when the module gets unloaded and doesn't
2145 * destroy its slab cache and no-one else reuses the vmalloc
2146 * area of the module. Print a warning.
2147 */
2148 res = probe_kernel_address(pc->name, tmp);
2149 if (res) {
2150 printk("SLAB: cache with size %d has lost its name\n",
2151 pc->buffer_size);
2152 continue;
2153 }
2154
2155 if (!strcmp(pc->name, name)) {
2156 printk("kmem_cache_create: duplicate cache %s\n", name);
2157 dump_stack();
2158 goto oops;
2159 }
2160 }
2161
2162 #if DEBUG
2163 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2164 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2165 /* No constructor, but inital state check requested */
2166 printk(KERN_ERR "%s: No con, but init state check "
2167 "requested - %s\n", __FUNCTION__, name);
2168 flags &= ~SLAB_DEBUG_INITIAL;
2169 }
2170 #if FORCED_DEBUG
2171 /*
2172 * Enable redzoning and last user accounting, except for caches with
2173 * large objects, if the increased size would increase the object size
2174 * above the next power of two: caches with object sizes just above a
2175 * power of two have a significant amount of internal fragmentation.
2176 */
2177 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2178 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2179 if (!(flags & SLAB_DESTROY_BY_RCU))
2180 flags |= SLAB_POISON;
2181 #endif
2182 if (flags & SLAB_DESTROY_BY_RCU)
2183 BUG_ON(flags & SLAB_POISON);
2184 #endif
2185 if (flags & SLAB_DESTROY_BY_RCU)
2186 BUG_ON(dtor);
2187
2188 /*
2189 * Always checks flags, a caller might be expecting debug support which
2190 * isn't available.
2191 */
2192 BUG_ON(flags & ~CREATE_MASK);
2193
2194 /*
2195 * Check that size is in terms of words. This is needed to avoid
2196 * unaligned accesses for some archs when redzoning is used, and makes
2197 * sure any on-slab bufctl's are also correctly aligned.
2198 */
2199 if (size & (BYTES_PER_WORD - 1)) {
2200 size += (BYTES_PER_WORD - 1);
2201 size &= ~(BYTES_PER_WORD - 1);
2202 }
2203
2204 /* calculate the final buffer alignment: */
2205
2206 /* 1) arch recommendation: can be overridden for debug */
2207 if (flags & SLAB_HWCACHE_ALIGN) {
2208 /*
2209 * Default alignment: as specified by the arch code. Except if
2210 * an object is really small, then squeeze multiple objects into
2211 * one cacheline.
2212 */
2213 ralign = cache_line_size();
2214 while (size <= ralign / 2)
2215 ralign /= 2;
2216 } else {
2217 ralign = BYTES_PER_WORD;
2218 }
2219
2220 /*
2221 * Redzoning and user store require word alignment. Note this will be
2222 * overridden by architecture or caller mandated alignment if either
2223 * is greater than BYTES_PER_WORD.
2224 */
2225 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2226 ralign = BYTES_PER_WORD;
2227
2228 /* 2) arch mandated alignment */
2229 if (ralign < ARCH_SLAB_MINALIGN) {
2230 ralign = ARCH_SLAB_MINALIGN;
2231 }
2232 /* 3) caller mandated alignment */
2233 if (ralign < align) {
2234 ralign = align;
2235 }
2236 /* disable debug if necessary */
2237 if (ralign > BYTES_PER_WORD)
2238 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2239 /*
2240 * 4) Store it.
2241 */
2242 align = ralign;
2243
2244 /* Get cache's description obj. */
2245 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2246 if (!cachep)
2247 goto oops;
2248
2249 #if DEBUG
2250 cachep->obj_size = size;
2251
2252 /*
2253 * Both debugging options require word-alignment which is calculated
2254 * into align above.
2255 */
2256 if (flags & SLAB_RED_ZONE) {
2257 /* add space for red zone words */
2258 cachep->obj_offset += BYTES_PER_WORD;
2259 size += 2 * BYTES_PER_WORD;
2260 }
2261 if (flags & SLAB_STORE_USER) {
2262 /* user store requires one word storage behind the end of
2263 * the real object.
2264 */
2265 size += BYTES_PER_WORD;
2266 }
2267 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2268 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2269 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2270 cachep->obj_offset += PAGE_SIZE - size;
2271 size = PAGE_SIZE;
2272 }
2273 #endif
2274 #endif
2275
2276 /*
2277 * Determine if the slab management is 'on' or 'off' slab.
2278 * (bootstrapping cannot cope with offslab caches so don't do
2279 * it too early on.)
2280 */
2281 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2282 /*
2283 * Size is large, assume best to place the slab management obj
2284 * off-slab (should allow better packing of objs).
2285 */
2286 flags |= CFLGS_OFF_SLAB;
2287
2288 size = ALIGN(size, align);
2289
2290 left_over = calculate_slab_order(cachep, size, align, flags);
2291
2292 if (!cachep->num) {
2293 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2294 kmem_cache_free(&cache_cache, cachep);
2295 cachep = NULL;
2296 goto oops;
2297 }
2298 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2299 + sizeof(struct slab), align);
2300
2301 /*
2302 * If the slab has been placed off-slab, and we have enough space then
2303 * move it on-slab. This is at the expense of any extra colouring.
2304 */
2305 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2306 flags &= ~CFLGS_OFF_SLAB;
2307 left_over -= slab_size;
2308 }
2309
2310 if (flags & CFLGS_OFF_SLAB) {
2311 /* really off slab. No need for manual alignment */
2312 slab_size =
2313 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2314 }
2315
2316 cachep->colour_off = cache_line_size();
2317 /* Offset must be a multiple of the alignment. */
2318 if (cachep->colour_off < align)
2319 cachep->colour_off = align;
2320 cachep->colour = left_over / cachep->colour_off;
2321 cachep->slab_size = slab_size;
2322 cachep->flags = flags;
2323 cachep->gfpflags = 0;
2324 if (flags & SLAB_CACHE_DMA)
2325 cachep->gfpflags |= GFP_DMA;
2326 cachep->buffer_size = size;
2327 cachep->reciprocal_buffer_size = reciprocal_value(size);
2328
2329 if (flags & CFLGS_OFF_SLAB) {
2330 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2331 /*
2332 * This is a possibility for one of the malloc_sizes caches.
2333 * But since we go off slab only for object size greater than
2334 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2335 * this should not happen at all.
2336 * But leave a BUG_ON for some lucky dude.
2337 */
2338 BUG_ON(!cachep->slabp_cache);
2339 }
2340 cachep->ctor = ctor;
2341 cachep->dtor = dtor;
2342 cachep->name = name;
2343
2344 if (setup_cpu_cache(cachep)) {
2345 __kmem_cache_destroy(cachep);
2346 cachep = NULL;
2347 goto oops;
2348 }
2349
2350 /* cache setup completed, link it into the list */
2351 list_add(&cachep->next, &cache_chain);
2352 oops:
2353 if (!cachep && (flags & SLAB_PANIC))
2354 panic("kmem_cache_create(): failed to create slab `%s'\n",
2355 name);
2356 mutex_unlock(&cache_chain_mutex);
2357 return cachep;
2358 }
2359 EXPORT_SYMBOL(kmem_cache_create);
2360
2361 #if DEBUG
2362 static void check_irq_off(void)
2363 {
2364 BUG_ON(!irqs_disabled());
2365 }
2366
2367 static void check_irq_on(void)
2368 {
2369 BUG_ON(irqs_disabled());
2370 }
2371
2372 static void check_spinlock_acquired(struct kmem_cache *cachep)
2373 {
2374 #ifdef CONFIG_SMP
2375 check_irq_off();
2376 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2377 #endif
2378 }
2379
2380 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2381 {
2382 #ifdef CONFIG_SMP
2383 check_irq_off();
2384 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2385 #endif
2386 }
2387
2388 #else
2389 #define check_irq_off() do { } while(0)
2390 #define check_irq_on() do { } while(0)
2391 #define check_spinlock_acquired(x) do { } while(0)
2392 #define check_spinlock_acquired_node(x, y) do { } while(0)
2393 #endif
2394
2395 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2396 struct array_cache *ac,
2397 int force, int node);
2398
2399 static void do_drain(void *arg)
2400 {
2401 struct kmem_cache *cachep = arg;
2402 struct array_cache *ac;
2403 int node = numa_node_id();
2404
2405 check_irq_off();
2406 ac = cpu_cache_get(cachep);
2407 spin_lock(&cachep->nodelists[node]->list_lock);
2408 free_block(cachep, ac->entry, ac->avail, node);
2409 spin_unlock(&cachep->nodelists[node]->list_lock);
2410 ac->avail = 0;
2411 }
2412
2413 static void drain_cpu_caches(struct kmem_cache *cachep)
2414 {
2415 struct kmem_list3 *l3;
2416 int node;
2417
2418 on_each_cpu(do_drain, cachep, 1, 1);
2419 check_irq_on();
2420 for_each_online_node(node) {
2421 l3 = cachep->nodelists[node];
2422 if (l3 && l3->alien)
2423 drain_alien_cache(cachep, l3->alien);
2424 }
2425
2426 for_each_online_node(node) {
2427 l3 = cachep->nodelists[node];
2428 if (l3)
2429 drain_array(cachep, l3, l3->shared, 1, node);
2430 }
2431 }
2432
2433 /*
2434 * Remove slabs from the list of free slabs.
2435 * Specify the number of slabs to drain in tofree.
2436 *
2437 * Returns the actual number of slabs released.
2438 */
2439 static int drain_freelist(struct kmem_cache *cache,
2440 struct kmem_list3 *l3, int tofree)
2441 {
2442 struct list_head *p;
2443 int nr_freed;
2444 struct slab *slabp;
2445
2446 nr_freed = 0;
2447 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2448
2449 spin_lock_irq(&l3->list_lock);
2450 p = l3->slabs_free.prev;
2451 if (p == &l3->slabs_free) {
2452 spin_unlock_irq(&l3->list_lock);
2453 goto out;
2454 }
2455
2456 slabp = list_entry(p, struct slab, list);
2457 #if DEBUG
2458 BUG_ON(slabp->inuse);
2459 #endif
2460 list_del(&slabp->list);
2461 /*
2462 * Safe to drop the lock. The slab is no longer linked
2463 * to the cache.
2464 */
2465 l3->free_objects -= cache->num;
2466 spin_unlock_irq(&l3->list_lock);
2467 slab_destroy(cache, slabp);
2468 nr_freed++;
2469 }
2470 out:
2471 return nr_freed;
2472 }
2473
2474 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2475 static int __cache_shrink(struct kmem_cache *cachep)
2476 {
2477 int ret = 0, i = 0;
2478 struct kmem_list3 *l3;
2479
2480 drain_cpu_caches(cachep);
2481
2482 check_irq_on();
2483 for_each_online_node(i) {
2484 l3 = cachep->nodelists[i];
2485 if (!l3)
2486 continue;
2487
2488 drain_freelist(cachep, l3, l3->free_objects);
2489
2490 ret += !list_empty(&l3->slabs_full) ||
2491 !list_empty(&l3->slabs_partial);
2492 }
2493 return (ret ? 1 : 0);
2494 }
2495
2496 /**
2497 * kmem_cache_shrink - Shrink a cache.
2498 * @cachep: The cache to shrink.
2499 *
2500 * Releases as many slabs as possible for a cache.
2501 * To help debugging, a zero exit status indicates all slabs were released.
2502 */
2503 int kmem_cache_shrink(struct kmem_cache *cachep)
2504 {
2505 int ret;
2506 BUG_ON(!cachep || in_interrupt());
2507
2508 mutex_lock(&cache_chain_mutex);
2509 ret = __cache_shrink(cachep);
2510 mutex_unlock(&cache_chain_mutex);
2511 return ret;
2512 }
2513 EXPORT_SYMBOL(kmem_cache_shrink);
2514
2515 /**
2516 * kmem_cache_destroy - delete a cache
2517 * @cachep: the cache to destroy
2518 *
2519 * Remove a struct kmem_cache object from the slab cache.
2520 *
2521 * It is expected this function will be called by a module when it is
2522 * unloaded. This will remove the cache completely, and avoid a duplicate
2523 * cache being allocated each time a module is loaded and unloaded, if the
2524 * module doesn't have persistent in-kernel storage across loads and unloads.
2525 *
2526 * The cache must be empty before calling this function.
2527 *
2528 * The caller must guarantee that noone will allocate memory from the cache
2529 * during the kmem_cache_destroy().
2530 */
2531 void kmem_cache_destroy(struct kmem_cache *cachep)
2532 {
2533 BUG_ON(!cachep || in_interrupt());
2534
2535 /* Find the cache in the chain of caches. */
2536 mutex_lock(&cache_chain_mutex);
2537 /*
2538 * the chain is never empty, cache_cache is never destroyed
2539 */
2540 list_del(&cachep->next);
2541 if (__cache_shrink(cachep)) {
2542 slab_error(cachep, "Can't free all objects");
2543 list_add(&cachep->next, &cache_chain);
2544 mutex_unlock(&cache_chain_mutex);
2545 return;
2546 }
2547
2548 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2549 synchronize_rcu();
2550
2551 __kmem_cache_destroy(cachep);
2552 mutex_unlock(&cache_chain_mutex);
2553 }
2554 EXPORT_SYMBOL(kmem_cache_destroy);
2555
2556 /*
2557 * Get the memory for a slab management obj.
2558 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2559 * always come from malloc_sizes caches. The slab descriptor cannot
2560 * come from the same cache which is getting created because,
2561 * when we are searching for an appropriate cache for these
2562 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2563 * If we are creating a malloc_sizes cache here it would not be visible to
2564 * kmem_find_general_cachep till the initialization is complete.
2565 * Hence we cannot have slabp_cache same as the original cache.
2566 */
2567 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2568 int colour_off, gfp_t local_flags,
2569 int nodeid)
2570 {
2571 struct slab *slabp;
2572
2573 if (OFF_SLAB(cachep)) {
2574 /* Slab management obj is off-slab. */
2575 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2576 local_flags & ~GFP_THISNODE, nodeid);
2577 if (!slabp)
2578 return NULL;
2579 } else {
2580 slabp = objp + colour_off;
2581 colour_off += cachep->slab_size;
2582 }
2583 slabp->inuse = 0;
2584 slabp->colouroff = colour_off;
2585 slabp->s_mem = objp + colour_off;
2586 slabp->nodeid = nodeid;
2587 return slabp;
2588 }
2589
2590 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2591 {
2592 return (kmem_bufctl_t *) (slabp + 1);
2593 }
2594
2595 static void cache_init_objs(struct kmem_cache *cachep,
2596 struct slab *slabp, unsigned long ctor_flags)
2597 {
2598 int i;
2599
2600 for (i = 0; i < cachep->num; i++) {
2601 void *objp = index_to_obj(cachep, slabp, i);
2602 #if DEBUG
2603 /* need to poison the objs? */
2604 if (cachep->flags & SLAB_POISON)
2605 poison_obj(cachep, objp, POISON_FREE);
2606 if (cachep->flags & SLAB_STORE_USER)
2607 *dbg_userword(cachep, objp) = NULL;
2608
2609 if (cachep->flags & SLAB_RED_ZONE) {
2610 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2611 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2612 }
2613 /*
2614 * Constructors are not allowed to allocate memory from the same
2615 * cache which they are a constructor for. Otherwise, deadlock.
2616 * They must also be threaded.
2617 */
2618 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2619 cachep->ctor(objp + obj_offset(cachep), cachep,
2620 ctor_flags);
2621
2622 if (cachep->flags & SLAB_RED_ZONE) {
2623 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2624 slab_error(cachep, "constructor overwrote the"
2625 " end of an object");
2626 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2627 slab_error(cachep, "constructor overwrote the"
2628 " start of an object");
2629 }
2630 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2631 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2632 kernel_map_pages(virt_to_page(objp),
2633 cachep->buffer_size / PAGE_SIZE, 0);
2634 #else
2635 if (cachep->ctor)
2636 cachep->ctor(objp, cachep, ctor_flags);
2637 #endif
2638 slab_bufctl(slabp)[i] = i + 1;
2639 }
2640 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2641 slabp->free = 0;
2642 }
2643
2644 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2645 {
2646 if (flags & GFP_DMA)
2647 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2648 else
2649 BUG_ON(cachep->gfpflags & GFP_DMA);
2650 }
2651
2652 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2653 int nodeid)
2654 {
2655 void *objp = index_to_obj(cachep, slabp, slabp->free);
2656 kmem_bufctl_t next;
2657
2658 slabp->inuse++;
2659 next = slab_bufctl(slabp)[slabp->free];
2660 #if DEBUG
2661 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2662 WARN_ON(slabp->nodeid != nodeid);
2663 #endif
2664 slabp->free = next;
2665
2666 return objp;
2667 }
2668
2669 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2670 void *objp, int nodeid)
2671 {
2672 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2673
2674 #if DEBUG
2675 /* Verify that the slab belongs to the intended node */
2676 WARN_ON(slabp->nodeid != nodeid);
2677
2678 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2679 printk(KERN_ERR "slab: double free detected in cache "
2680 "'%s', objp %p\n", cachep->name, objp);
2681 BUG();
2682 }
2683 #endif
2684 slab_bufctl(slabp)[objnr] = slabp->free;
2685 slabp->free = objnr;
2686 slabp->inuse--;
2687 }
2688
2689 /*
2690 * Map pages beginning at addr to the given cache and slab. This is required
2691 * for the slab allocator to be able to lookup the cache and slab of a
2692 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2693 */
2694 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2695 void *addr)
2696 {
2697 int nr_pages;
2698 struct page *page;
2699
2700 page = virt_to_page(addr);
2701
2702 nr_pages = 1;
2703 if (likely(!PageCompound(page)))
2704 nr_pages <<= cache->gfporder;
2705
2706 do {
2707 page_set_cache(page, cache);
2708 page_set_slab(page, slab);
2709 page++;
2710 } while (--nr_pages);
2711 }
2712
2713 /*
2714 * Grow (by 1) the number of slabs within a cache. This is called by
2715 * kmem_cache_alloc() when there are no active objs left in a cache.
2716 */
2717 static int cache_grow(struct kmem_cache *cachep,
2718 gfp_t flags, int nodeid, void *objp)
2719 {
2720 struct slab *slabp;
2721 size_t offset;
2722 gfp_t local_flags;
2723 unsigned long ctor_flags;
2724 struct kmem_list3 *l3;
2725
2726 /*
2727 * Be lazy and only check for valid flags here, keeping it out of the
2728 * critical path in kmem_cache_alloc().
2729 */
2730 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2731 if (flags & __GFP_NO_GROW)
2732 return 0;
2733
2734 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2735 local_flags = (flags & GFP_LEVEL_MASK);
2736 if (!(local_flags & __GFP_WAIT))
2737 /*
2738 * Not allowed to sleep. Need to tell a constructor about
2739 * this - it might need to know...
2740 */
2741 ctor_flags |= SLAB_CTOR_ATOMIC;
2742
2743 /* Take the l3 list lock to change the colour_next on this node */
2744 check_irq_off();
2745 l3 = cachep->nodelists[nodeid];
2746 spin_lock(&l3->list_lock);
2747
2748 /* Get colour for the slab, and cal the next value. */
2749 offset = l3->colour_next;
2750 l3->colour_next++;
2751 if (l3->colour_next >= cachep->colour)
2752 l3->colour_next = 0;
2753 spin_unlock(&l3->list_lock);
2754
2755 offset *= cachep->colour_off;
2756
2757 if (local_flags & __GFP_WAIT)
2758 local_irq_enable();
2759
2760 /*
2761 * The test for missing atomic flag is performed here, rather than
2762 * the more obvious place, simply to reduce the critical path length
2763 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2764 * will eventually be caught here (where it matters).
2765 */
2766 kmem_flagcheck(cachep, flags);
2767
2768 /*
2769 * Get mem for the objs. Attempt to allocate a physical page from
2770 * 'nodeid'.
2771 */
2772 if (!objp)
2773 objp = kmem_getpages(cachep, flags, nodeid);
2774 if (!objp)
2775 goto failed;
2776
2777 /* Get slab management. */
2778 slabp = alloc_slabmgmt(cachep, objp, offset,
2779 local_flags & ~GFP_THISNODE, nodeid);
2780 if (!slabp)
2781 goto opps1;
2782
2783 slabp->nodeid = nodeid;
2784 slab_map_pages(cachep, slabp, objp);
2785
2786 cache_init_objs(cachep, slabp, ctor_flags);
2787
2788 if (local_flags & __GFP_WAIT)
2789 local_irq_disable();
2790 check_irq_off();
2791 spin_lock(&l3->list_lock);
2792
2793 /* Make slab active. */
2794 list_add_tail(&slabp->list, &(l3->slabs_free));
2795 STATS_INC_GROWN(cachep);
2796 l3->free_objects += cachep->num;
2797 spin_unlock(&l3->list_lock);
2798 return 1;
2799 opps1:
2800 kmem_freepages(cachep, objp);
2801 failed:
2802 if (local_flags & __GFP_WAIT)
2803 local_irq_disable();
2804 return 0;
2805 }
2806
2807 #if DEBUG
2808
2809 /*
2810 * Perform extra freeing checks:
2811 * - detect bad pointers.
2812 * - POISON/RED_ZONE checking
2813 * - destructor calls, for caches with POISON+dtor
2814 */
2815 static void kfree_debugcheck(const void *objp)
2816 {
2817 struct page *page;
2818
2819 if (!virt_addr_valid(objp)) {
2820 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2821 (unsigned long)objp);
2822 BUG();
2823 }
2824 page = virt_to_page(objp);
2825 if (!PageSlab(page)) {
2826 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2827 (unsigned long)objp);
2828 BUG();
2829 }
2830 }
2831
2832 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2833 {
2834 unsigned long redzone1, redzone2;
2835
2836 redzone1 = *dbg_redzone1(cache, obj);
2837 redzone2 = *dbg_redzone2(cache, obj);
2838
2839 /*
2840 * Redzone is ok.
2841 */
2842 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2843 return;
2844
2845 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2846 slab_error(cache, "double free detected");
2847 else
2848 slab_error(cache, "memory outside object was overwritten");
2849
2850 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2851 obj, redzone1, redzone2);
2852 }
2853
2854 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2855 void *caller)
2856 {
2857 struct page *page;
2858 unsigned int objnr;
2859 struct slab *slabp;
2860
2861 objp -= obj_offset(cachep);
2862 kfree_debugcheck(objp);
2863 page = virt_to_page(objp);
2864
2865 slabp = page_get_slab(page);
2866
2867 if (cachep->flags & SLAB_RED_ZONE) {
2868 verify_redzone_free(cachep, objp);
2869 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2870 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2871 }
2872 if (cachep->flags & SLAB_STORE_USER)
2873 *dbg_userword(cachep, objp) = caller;
2874
2875 objnr = obj_to_index(cachep, slabp, objp);
2876
2877 BUG_ON(objnr >= cachep->num);
2878 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2879
2880 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2881 /*
2882 * Need to call the slab's constructor so the caller can
2883 * perform a verify of its state (debugging). Called without
2884 * the cache-lock held.
2885 */
2886 cachep->ctor(objp + obj_offset(cachep),
2887 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2888 }
2889 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2890 /* we want to cache poison the object,
2891 * call the destruction callback
2892 */
2893 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2894 }
2895 #ifdef CONFIG_DEBUG_SLAB_LEAK
2896 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2897 #endif
2898 if (cachep->flags & SLAB_POISON) {
2899 #ifdef CONFIG_DEBUG_PAGEALLOC
2900 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2901 store_stackinfo(cachep, objp, (unsigned long)caller);
2902 kernel_map_pages(virt_to_page(objp),
2903 cachep->buffer_size / PAGE_SIZE, 0);
2904 } else {
2905 poison_obj(cachep, objp, POISON_FREE);
2906 }
2907 #else
2908 poison_obj(cachep, objp, POISON_FREE);
2909 #endif
2910 }
2911 return objp;
2912 }
2913
2914 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2915 {
2916 kmem_bufctl_t i;
2917 int entries = 0;
2918
2919 /* Check slab's freelist to see if this obj is there. */
2920 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2921 entries++;
2922 if (entries > cachep->num || i >= cachep->num)
2923 goto bad;
2924 }
2925 if (entries != cachep->num - slabp->inuse) {
2926 bad:
2927 printk(KERN_ERR "slab: Internal list corruption detected in "
2928 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2929 cachep->name, cachep->num, slabp, slabp->inuse);
2930 for (i = 0;
2931 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2932 i++) {
2933 if (i % 16 == 0)
2934 printk("\n%03x:", i);
2935 printk(" %02x", ((unsigned char *)slabp)[i]);
2936 }
2937 printk("\n");
2938 BUG();
2939 }
2940 }
2941 #else
2942 #define kfree_debugcheck(x) do { } while(0)
2943 #define cache_free_debugcheck(x,objp,z) (objp)
2944 #define check_slabp(x,y) do { } while(0)
2945 #endif
2946
2947 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2948 {
2949 int batchcount;
2950 struct kmem_list3 *l3;
2951 struct array_cache *ac;
2952 int node;
2953
2954 node = numa_node_id();
2955
2956 check_irq_off();
2957 ac = cpu_cache_get(cachep);
2958 retry:
2959 batchcount = ac->batchcount;
2960 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2961 /*
2962 * If there was little recent activity on this cache, then
2963 * perform only a partial refill. Otherwise we could generate
2964 * refill bouncing.
2965 */
2966 batchcount = BATCHREFILL_LIMIT;
2967 }
2968 l3 = cachep->nodelists[node];
2969
2970 BUG_ON(ac->avail > 0 || !l3);
2971 spin_lock(&l3->list_lock);
2972
2973 /* See if we can refill from the shared array */
2974 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2975 goto alloc_done;
2976
2977 while (batchcount > 0) {
2978 struct list_head *entry;
2979 struct slab *slabp;
2980 /* Get slab alloc is to come from. */
2981 entry = l3->slabs_partial.next;
2982 if (entry == &l3->slabs_partial) {
2983 l3->free_touched = 1;
2984 entry = l3->slabs_free.next;
2985 if (entry == &l3->slabs_free)
2986 goto must_grow;
2987 }
2988
2989 slabp = list_entry(entry, struct slab, list);
2990 check_slabp(cachep, slabp);
2991 check_spinlock_acquired(cachep);
2992 while (slabp->inuse < cachep->num && batchcount--) {
2993 STATS_INC_ALLOCED(cachep);
2994 STATS_INC_ACTIVE(cachep);
2995 STATS_SET_HIGH(cachep);
2996
2997 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2998 node);
2999 }
3000 check_slabp(cachep, slabp);
3001
3002 /* move slabp to correct slabp list: */
3003 list_del(&slabp->list);
3004 if (slabp->free == BUFCTL_END)
3005 list_add(&slabp->list, &l3->slabs_full);
3006 else
3007 list_add(&slabp->list, &l3->slabs_partial);
3008 }
3009
3010 must_grow:
3011 l3->free_objects -= ac->avail;
3012 alloc_done:
3013 spin_unlock(&l3->list_lock);
3014
3015 if (unlikely(!ac->avail)) {
3016 int x;
3017 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3018
3019 /* cache_grow can reenable interrupts, then ac could change. */
3020 ac = cpu_cache_get(cachep);
3021 if (!x && ac->avail == 0) /* no objects in sight? abort */
3022 return NULL;
3023
3024 if (!ac->avail) /* objects refilled by interrupt? */
3025 goto retry;
3026 }
3027 ac->touched = 1;
3028 return ac->entry[--ac->avail];
3029 }
3030
3031 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3032 gfp_t flags)
3033 {
3034 might_sleep_if(flags & __GFP_WAIT);
3035 #if DEBUG
3036 kmem_flagcheck(cachep, flags);
3037 #endif
3038 }
3039
3040 #if DEBUG
3041 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3042 gfp_t flags, void *objp, void *caller)
3043 {
3044 if (!objp)
3045 return objp;
3046 if (cachep->flags & SLAB_POISON) {
3047 #ifdef CONFIG_DEBUG_PAGEALLOC
3048 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3049 kernel_map_pages(virt_to_page(objp),
3050 cachep->buffer_size / PAGE_SIZE, 1);
3051 else
3052 check_poison_obj(cachep, objp);
3053 #else
3054 check_poison_obj(cachep, objp);
3055 #endif
3056 poison_obj(cachep, objp, POISON_INUSE);
3057 }
3058 if (cachep->flags & SLAB_STORE_USER)
3059 *dbg_userword(cachep, objp) = caller;
3060
3061 if (cachep->flags & SLAB_RED_ZONE) {
3062 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3063 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3064 slab_error(cachep, "double free, or memory outside"
3065 " object was overwritten");
3066 printk(KERN_ERR
3067 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3068 objp, *dbg_redzone1(cachep, objp),
3069 *dbg_redzone2(cachep, objp));
3070 }
3071 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3072 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3073 }
3074 #ifdef CONFIG_DEBUG_SLAB_LEAK
3075 {
3076 struct slab *slabp;
3077 unsigned objnr;
3078
3079 slabp = page_get_slab(virt_to_page(objp));
3080 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3081 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3082 }
3083 #endif
3084 objp += obj_offset(cachep);
3085 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3086 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3087
3088 if (!(flags & __GFP_WAIT))
3089 ctor_flags |= SLAB_CTOR_ATOMIC;
3090
3091 cachep->ctor(objp, cachep, ctor_flags);
3092 }
3093 #if ARCH_SLAB_MINALIGN
3094 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3095 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3096 objp, ARCH_SLAB_MINALIGN);
3097 }
3098 #endif
3099 return objp;
3100 }
3101 #else
3102 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3103 #endif
3104
3105 #ifdef CONFIG_FAILSLAB
3106
3107 static struct failslab_attr {
3108
3109 struct fault_attr attr;
3110
3111 u32 ignore_gfp_wait;
3112 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3113 struct dentry *ignore_gfp_wait_file;
3114 #endif
3115
3116 } failslab = {
3117 .attr = FAULT_ATTR_INITIALIZER,
3118 .ignore_gfp_wait = 1,
3119 };
3120
3121 static int __init setup_failslab(char *str)
3122 {
3123 return setup_fault_attr(&failslab.attr, str);
3124 }
3125 __setup("failslab=", setup_failslab);
3126
3127 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3128 {
3129 if (cachep == &cache_cache)
3130 return 0;
3131 if (flags & __GFP_NOFAIL)
3132 return 0;
3133 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3134 return 0;
3135
3136 return should_fail(&failslab.attr, obj_size(cachep));
3137 }
3138
3139 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3140
3141 static int __init failslab_debugfs(void)
3142 {
3143 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3144 struct dentry *dir;
3145 int err;
3146
3147 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3148 if (err)
3149 return err;
3150 dir = failslab.attr.dentries.dir;
3151
3152 failslab.ignore_gfp_wait_file =
3153 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3154 &failslab.ignore_gfp_wait);
3155
3156 if (!failslab.ignore_gfp_wait_file) {
3157 err = -ENOMEM;
3158 debugfs_remove(failslab.ignore_gfp_wait_file);
3159 cleanup_fault_attr_dentries(&failslab.attr);
3160 }
3161
3162 return err;
3163 }
3164
3165 late_initcall(failslab_debugfs);
3166
3167 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3168
3169 #else /* CONFIG_FAILSLAB */
3170
3171 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3172 {
3173 return 0;
3174 }
3175
3176 #endif /* CONFIG_FAILSLAB */
3177
3178 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3179 {
3180 void *objp;
3181 struct array_cache *ac;
3182
3183 check_irq_off();
3184
3185 if (should_failslab(cachep, flags))
3186 return NULL;
3187
3188 ac = cpu_cache_get(cachep);
3189 if (likely(ac->avail)) {
3190 STATS_INC_ALLOCHIT(cachep);
3191 ac->touched = 1;
3192 objp = ac->entry[--ac->avail];
3193 } else {
3194 STATS_INC_ALLOCMISS(cachep);
3195 objp = cache_alloc_refill(cachep, flags);
3196 }
3197 return objp;
3198 }
3199
3200 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3201 gfp_t flags, void *caller)
3202 {
3203 unsigned long save_flags;
3204 void *objp = NULL;
3205
3206 cache_alloc_debugcheck_before(cachep, flags);
3207
3208 local_irq_save(save_flags);
3209
3210 if (unlikely(NUMA_BUILD &&
3211 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3212 objp = alternate_node_alloc(cachep, flags);
3213
3214 if (!objp)
3215 objp = ____cache_alloc(cachep, flags);
3216 /*
3217 * We may just have run out of memory on the local node.
3218 * ____cache_alloc_node() knows how to locate memory on other nodes
3219 */
3220 if (NUMA_BUILD && !objp)
3221 objp = ____cache_alloc_node(cachep, flags, numa_node_id());
3222 local_irq_restore(save_flags);
3223 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3224 caller);
3225 prefetchw(objp);
3226 return objp;
3227 }
3228
3229 #ifdef CONFIG_NUMA
3230 /*
3231 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3232 *
3233 * If we are in_interrupt, then process context, including cpusets and
3234 * mempolicy, may not apply and should not be used for allocation policy.
3235 */
3236 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3237 {
3238 int nid_alloc, nid_here;
3239
3240 if (in_interrupt() || (flags & __GFP_THISNODE))
3241 return NULL;
3242 nid_alloc = nid_here = numa_node_id();
3243 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3244 nid_alloc = cpuset_mem_spread_node();
3245 else if (current->mempolicy)
3246 nid_alloc = slab_node(current->mempolicy);
3247 if (nid_alloc != nid_here)
3248 return ____cache_alloc_node(cachep, flags, nid_alloc);
3249 return NULL;
3250 }
3251
3252 /*
3253 * Fallback function if there was no memory available and no objects on a
3254 * certain node and fall back is permitted. First we scan all the
3255 * available nodelists for available objects. If that fails then we
3256 * perform an allocation without specifying a node. This allows the page
3257 * allocator to do its reclaim / fallback magic. We then insert the
3258 * slab into the proper nodelist and then allocate from it.
3259 */
3260 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3261 {
3262 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3263 ->node_zonelists[gfp_zone(flags)];
3264 struct zone **z;
3265 void *obj = NULL;
3266 int nid;
3267 gfp_t local_flags = (flags & GFP_LEVEL_MASK);
3268
3269 retry:
3270 /*
3271 * Look through allowed nodes for objects available
3272 * from existing per node queues.
3273 */
3274 for (z = zonelist->zones; *z && !obj; z++) {
3275 nid = zone_to_nid(*z);
3276
3277 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3278 cache->nodelists[nid] &&
3279 cache->nodelists[nid]->free_objects)
3280 obj = ____cache_alloc_node(cache,
3281 flags | GFP_THISNODE, nid);
3282 }
3283
3284 if (!obj) {
3285 /*
3286 * This allocation will be performed within the constraints
3287 * of the current cpuset / memory policy requirements.
3288 * We may trigger various forms of reclaim on the allowed
3289 * set and go into memory reserves if necessary.
3290 */
3291 if (local_flags & __GFP_WAIT)
3292 local_irq_enable();
3293 kmem_flagcheck(cache, flags);
3294 obj = kmem_getpages(cache, flags, -1);
3295 if (local_flags & __GFP_WAIT)
3296 local_irq_disable();
3297 if (obj) {
3298 /*
3299 * Insert into the appropriate per node queues
3300 */
3301 nid = page_to_nid(virt_to_page(obj));
3302 if (cache_grow(cache, flags, nid, obj)) {
3303 obj = ____cache_alloc_node(cache,
3304 flags | GFP_THISNODE, nid);
3305 if (!obj)
3306 /*
3307 * Another processor may allocate the
3308 * objects in the slab since we are
3309 * not holding any locks.
3310 */
3311 goto retry;
3312 } else {
3313 kmem_freepages(cache, obj);
3314 obj = NULL;
3315 }
3316 }
3317 }
3318 return obj;
3319 }
3320
3321 /*
3322 * A interface to enable slab creation on nodeid
3323 */
3324 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3325 int nodeid)
3326 {
3327 struct list_head *entry;
3328 struct slab *slabp;
3329 struct kmem_list3 *l3;
3330 void *obj;
3331 int x;
3332
3333 l3 = cachep->nodelists[nodeid];
3334 BUG_ON(!l3);
3335
3336 retry:
3337 check_irq_off();
3338 spin_lock(&l3->list_lock);
3339 entry = l3->slabs_partial.next;
3340 if (entry == &l3->slabs_partial) {
3341 l3->free_touched = 1;
3342 entry = l3->slabs_free.next;
3343 if (entry == &l3->slabs_free)
3344 goto must_grow;
3345 }
3346
3347 slabp = list_entry(entry, struct slab, list);
3348 check_spinlock_acquired_node(cachep, nodeid);
3349 check_slabp(cachep, slabp);
3350
3351 STATS_INC_NODEALLOCS(cachep);
3352 STATS_INC_ACTIVE(cachep);
3353 STATS_SET_HIGH(cachep);
3354
3355 BUG_ON(slabp->inuse == cachep->num);
3356
3357 obj = slab_get_obj(cachep, slabp, nodeid);
3358 check_slabp(cachep, slabp);
3359 l3->free_objects--;
3360 /* move slabp to correct slabp list: */
3361 list_del(&slabp->list);
3362
3363 if (slabp->free == BUFCTL_END)
3364 list_add(&slabp->list, &l3->slabs_full);
3365 else
3366 list_add(&slabp->list, &l3->slabs_partial);
3367
3368 spin_unlock(&l3->list_lock);
3369 goto done;
3370
3371 must_grow:
3372 spin_unlock(&l3->list_lock);
3373 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3374 if (x)
3375 goto retry;
3376
3377 if (!(flags & __GFP_THISNODE))
3378 /* Unable to grow the cache. Fall back to other nodes. */
3379 return fallback_alloc(cachep, flags);
3380
3381 return NULL;
3382
3383 done:
3384 return obj;
3385 }
3386 #endif
3387
3388 /*
3389 * Caller needs to acquire correct kmem_list's list_lock
3390 */
3391 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3392 int node)
3393 {
3394 int i;
3395 struct kmem_list3 *l3;
3396
3397 for (i = 0; i < nr_objects; i++) {
3398 void *objp = objpp[i];
3399 struct slab *slabp;
3400
3401 slabp = virt_to_slab(objp);
3402 l3 = cachep->nodelists[node];
3403 list_del(&slabp->list);
3404 check_spinlock_acquired_node(cachep, node);
3405 check_slabp(cachep, slabp);
3406 slab_put_obj(cachep, slabp, objp, node);
3407 STATS_DEC_ACTIVE(cachep);
3408 l3->free_objects++;
3409 check_slabp(cachep, slabp);
3410
3411 /* fixup slab chains */
3412 if (slabp->inuse == 0) {
3413 if (l3->free_objects > l3->free_limit) {
3414 l3->free_objects -= cachep->num;
3415 /* No need to drop any previously held
3416 * lock here, even if we have a off-slab slab
3417 * descriptor it is guaranteed to come from
3418 * a different cache, refer to comments before
3419 * alloc_slabmgmt.
3420 */
3421 slab_destroy(cachep, slabp);
3422 } else {
3423 list_add(&slabp->list, &l3->slabs_free);
3424 }
3425 } else {
3426 /* Unconditionally move a slab to the end of the
3427 * partial list on free - maximum time for the
3428 * other objects to be freed, too.
3429 */
3430 list_add_tail(&slabp->list, &l3->slabs_partial);
3431 }
3432 }
3433 }
3434
3435 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3436 {
3437 int batchcount;
3438 struct kmem_list3 *l3;
3439 int node = numa_node_id();
3440
3441 batchcount = ac->batchcount;
3442 #if DEBUG
3443 BUG_ON(!batchcount || batchcount > ac->avail);
3444 #endif
3445 check_irq_off();
3446 l3 = cachep->nodelists[node];
3447 spin_lock(&l3->list_lock);
3448 if (l3->shared) {
3449 struct array_cache *shared_array = l3->shared;
3450 int max = shared_array->limit - shared_array->avail;
3451 if (max) {
3452 if (batchcount > max)
3453 batchcount = max;
3454 memcpy(&(shared_array->entry[shared_array->avail]),
3455 ac->entry, sizeof(void *) * batchcount);
3456 shared_array->avail += batchcount;
3457 goto free_done;
3458 }
3459 }
3460
3461 free_block(cachep, ac->entry, batchcount, node);
3462 free_done:
3463 #if STATS
3464 {
3465 int i = 0;
3466 struct list_head *p;
3467
3468 p = l3->slabs_free.next;
3469 while (p != &(l3->slabs_free)) {
3470 struct slab *slabp;
3471
3472 slabp = list_entry(p, struct slab, list);
3473 BUG_ON(slabp->inuse);
3474
3475 i++;
3476 p = p->next;
3477 }
3478 STATS_SET_FREEABLE(cachep, i);
3479 }
3480 #endif
3481 spin_unlock(&l3->list_lock);
3482 ac->avail -= batchcount;
3483 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3484 }
3485
3486 /*
3487 * Release an obj back to its cache. If the obj has a constructed state, it must
3488 * be in this state _before_ it is released. Called with disabled ints.
3489 */
3490 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3491 {
3492 struct array_cache *ac = cpu_cache_get(cachep);
3493
3494 check_irq_off();
3495 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3496
3497 if (cache_free_alien(cachep, objp))
3498 return;
3499
3500 if (likely(ac->avail < ac->limit)) {
3501 STATS_INC_FREEHIT(cachep);
3502 ac->entry[ac->avail++] = objp;
3503 return;
3504 } else {
3505 STATS_INC_FREEMISS(cachep);
3506 cache_flusharray(cachep, ac);
3507 ac->entry[ac->avail++] = objp;
3508 }
3509 }
3510
3511 /**
3512 * kmem_cache_alloc - Allocate an object
3513 * @cachep: The cache to allocate from.
3514 * @flags: See kmalloc().
3515 *
3516 * Allocate an object from this cache. The flags are only relevant
3517 * if the cache has no available objects.
3518 */
3519 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3520 {
3521 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3522 }
3523 EXPORT_SYMBOL(kmem_cache_alloc);
3524
3525 /**
3526 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3527 * @cache: The cache to allocate from.
3528 * @flags: See kmalloc().
3529 *
3530 * Allocate an object from this cache and set the allocated memory to zero.
3531 * The flags are only relevant if the cache has no available objects.
3532 */
3533 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3534 {
3535 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3536 if (ret)
3537 memset(ret, 0, obj_size(cache));
3538 return ret;
3539 }
3540 EXPORT_SYMBOL(kmem_cache_zalloc);
3541
3542 /**
3543 * kmem_ptr_validate - check if an untrusted pointer might
3544 * be a slab entry.
3545 * @cachep: the cache we're checking against
3546 * @ptr: pointer to validate
3547 *
3548 * This verifies that the untrusted pointer looks sane:
3549 * it is _not_ a guarantee that the pointer is actually
3550 * part of the slab cache in question, but it at least
3551 * validates that the pointer can be dereferenced and
3552 * looks half-way sane.
3553 *
3554 * Currently only used for dentry validation.
3555 */
3556 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3557 {
3558 unsigned long addr = (unsigned long)ptr;
3559 unsigned long min_addr = PAGE_OFFSET;
3560 unsigned long align_mask = BYTES_PER_WORD - 1;
3561 unsigned long size = cachep->buffer_size;
3562 struct page *page;
3563
3564 if (unlikely(addr < min_addr))
3565 goto out;
3566 if (unlikely(addr > (unsigned long)high_memory - size))
3567 goto out;
3568 if (unlikely(addr & align_mask))
3569 goto out;
3570 if (unlikely(!kern_addr_valid(addr)))
3571 goto out;
3572 if (unlikely(!kern_addr_valid(addr + size - 1)))
3573 goto out;
3574 page = virt_to_page(ptr);
3575 if (unlikely(!PageSlab(page)))
3576 goto out;
3577 if (unlikely(page_get_cache(page) != cachep))
3578 goto out;
3579 return 1;
3580 out:
3581 return 0;
3582 }
3583
3584 #ifdef CONFIG_NUMA
3585 /**
3586 * kmem_cache_alloc_node - Allocate an object on the specified node
3587 * @cachep: The cache to allocate from.
3588 * @flags: See kmalloc().
3589 * @nodeid: node number of the target node.
3590 *
3591 * Identical to kmem_cache_alloc but it will allocate memory on the given
3592 * node, which can improve the performance for cpu bound structures.
3593 *
3594 * Fallback to other node is possible if __GFP_THISNODE is not set.
3595 */
3596 static __always_inline void *
3597 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3598 int nodeid, void *caller)
3599 {
3600 unsigned long save_flags;
3601 void *ptr = NULL;
3602
3603 cache_alloc_debugcheck_before(cachep, flags);
3604 local_irq_save(save_flags);
3605
3606 if (unlikely(nodeid == -1))
3607 nodeid = numa_node_id();
3608
3609 if (likely(cachep->nodelists[nodeid])) {
3610 if (nodeid == numa_node_id()) {
3611 /*
3612 * Use the locally cached objects if possible.
3613 * However ____cache_alloc does not allow fallback
3614 * to other nodes. It may fail while we still have
3615 * objects on other nodes available.
3616 */
3617 ptr = ____cache_alloc(cachep, flags);
3618 }
3619 if (!ptr) {
3620 /* ___cache_alloc_node can fall back to other nodes */
3621 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3622 }
3623 } else {
3624 /* Node not bootstrapped yet */
3625 if (!(flags & __GFP_THISNODE))
3626 ptr = fallback_alloc(cachep, flags);
3627 }
3628
3629 local_irq_restore(save_flags);
3630 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3631
3632 return ptr;
3633 }
3634
3635 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3636 {
3637 return __cache_alloc_node(cachep, flags, nodeid,
3638 __builtin_return_address(0));
3639 }
3640 EXPORT_SYMBOL(kmem_cache_alloc_node);
3641
3642 static __always_inline void *
3643 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3644 {
3645 struct kmem_cache *cachep;
3646
3647 cachep = kmem_find_general_cachep(size, flags);
3648 if (unlikely(cachep == NULL))
3649 return NULL;
3650 return kmem_cache_alloc_node(cachep, flags, node);
3651 }
3652
3653 #ifdef CONFIG_DEBUG_SLAB
3654 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3655 {
3656 return __do_kmalloc_node(size, flags, node,
3657 __builtin_return_address(0));
3658 }
3659 EXPORT_SYMBOL(__kmalloc_node);
3660
3661 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3662 int node, void *caller)
3663 {
3664 return __do_kmalloc_node(size, flags, node, caller);
3665 }
3666 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3667 #else
3668 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3669 {
3670 return __do_kmalloc_node(size, flags, node, NULL);
3671 }
3672 EXPORT_SYMBOL(__kmalloc_node);
3673 #endif /* CONFIG_DEBUG_SLAB */
3674 #endif /* CONFIG_NUMA */
3675
3676 /**
3677 * __do_kmalloc - allocate memory
3678 * @size: how many bytes of memory are required.
3679 * @flags: the type of memory to allocate (see kmalloc).
3680 * @caller: function caller for debug tracking of the caller
3681 */
3682 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3683 void *caller)
3684 {
3685 struct kmem_cache *cachep;
3686
3687 /* If you want to save a few bytes .text space: replace
3688 * __ with kmem_.
3689 * Then kmalloc uses the uninlined functions instead of the inline
3690 * functions.
3691 */
3692 cachep = __find_general_cachep(size, flags);
3693 if (unlikely(cachep == NULL))
3694 return NULL;
3695 return __cache_alloc(cachep, flags, caller);
3696 }
3697
3698
3699 #ifdef CONFIG_DEBUG_SLAB
3700 void *__kmalloc(size_t size, gfp_t flags)
3701 {
3702 return __do_kmalloc(size, flags, __builtin_return_address(0));
3703 }
3704 EXPORT_SYMBOL(__kmalloc);
3705
3706 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3707 {
3708 return __do_kmalloc(size, flags, caller);
3709 }
3710 EXPORT_SYMBOL(__kmalloc_track_caller);
3711
3712 #else
3713 void *__kmalloc(size_t size, gfp_t flags)
3714 {
3715 return __do_kmalloc(size, flags, NULL);
3716 }
3717 EXPORT_SYMBOL(__kmalloc);
3718 #endif
3719
3720 /**
3721 * kmem_cache_free - Deallocate an object
3722 * @cachep: The cache the allocation was from.
3723 * @objp: The previously allocated object.
3724 *
3725 * Free an object which was previously allocated from this
3726 * cache.
3727 */
3728 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3729 {
3730 unsigned long flags;
3731
3732 BUG_ON(virt_to_cache(objp) != cachep);
3733
3734 local_irq_save(flags);
3735 __cache_free(cachep, objp);
3736 local_irq_restore(flags);
3737 }
3738 EXPORT_SYMBOL(kmem_cache_free);
3739
3740 /**
3741 * kfree - free previously allocated memory
3742 * @objp: pointer returned by kmalloc.
3743 *
3744 * If @objp is NULL, no operation is performed.
3745 *
3746 * Don't free memory not originally allocated by kmalloc()
3747 * or you will run into trouble.
3748 */
3749 void kfree(const void *objp)
3750 {
3751 struct kmem_cache *c;
3752 unsigned long flags;
3753
3754 if (unlikely(!objp))
3755 return;
3756 local_irq_save(flags);
3757 kfree_debugcheck(objp);
3758 c = virt_to_cache(objp);
3759 debug_check_no_locks_freed(objp, obj_size(c));
3760 __cache_free(c, (void *)objp);
3761 local_irq_restore(flags);
3762 }
3763 EXPORT_SYMBOL(kfree);
3764
3765 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3766 {
3767 return obj_size(cachep);
3768 }
3769 EXPORT_SYMBOL(kmem_cache_size);
3770
3771 const char *kmem_cache_name(struct kmem_cache *cachep)
3772 {
3773 return cachep->name;
3774 }
3775 EXPORT_SYMBOL_GPL(kmem_cache_name);
3776
3777 /*
3778 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3779 */
3780 static int alloc_kmemlist(struct kmem_cache *cachep)
3781 {
3782 int node;
3783 struct kmem_list3 *l3;
3784 struct array_cache *new_shared;
3785 struct array_cache **new_alien = NULL;
3786
3787 for_each_online_node(node) {
3788
3789 if (use_alien_caches) {
3790 new_alien = alloc_alien_cache(node, cachep->limit);
3791 if (!new_alien)
3792 goto fail;
3793 }
3794
3795 new_shared = alloc_arraycache(node,
3796 cachep->shared*cachep->batchcount,
3797 0xbaadf00d);
3798 if (!new_shared) {
3799 free_alien_cache(new_alien);
3800 goto fail;
3801 }
3802
3803 l3 = cachep->nodelists[node];
3804 if (l3) {
3805 struct array_cache *shared = l3->shared;
3806
3807 spin_lock_irq(&l3->list_lock);
3808
3809 if (shared)
3810 free_block(cachep, shared->entry,
3811 shared->avail, node);
3812
3813 l3->shared = new_shared;
3814 if (!l3->alien) {
3815 l3->alien = new_alien;
3816 new_alien = NULL;
3817 }
3818 l3->free_limit = (1 + nr_cpus_node(node)) *
3819 cachep->batchcount + cachep->num;
3820 spin_unlock_irq(&l3->list_lock);
3821 kfree(shared);
3822 free_alien_cache(new_alien);
3823 continue;
3824 }
3825 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3826 if (!l3) {
3827 free_alien_cache(new_alien);
3828 kfree(new_shared);
3829 goto fail;
3830 }
3831
3832 kmem_list3_init(l3);
3833 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3834 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3835 l3->shared = new_shared;
3836 l3->alien = new_alien;
3837 l3->free_limit = (1 + nr_cpus_node(node)) *
3838 cachep->batchcount + cachep->num;
3839 cachep->nodelists[node] = l3;
3840 }
3841 return 0;
3842
3843 fail:
3844 if (!cachep->next.next) {
3845 /* Cache is not active yet. Roll back what we did */
3846 node--;
3847 while (node >= 0) {
3848 if (cachep->nodelists[node]) {
3849 l3 = cachep->nodelists[node];
3850
3851 kfree(l3->shared);
3852 free_alien_cache(l3->alien);
3853 kfree(l3);
3854 cachep->nodelists[node] = NULL;
3855 }
3856 node--;
3857 }
3858 }
3859 return -ENOMEM;
3860 }
3861
3862 struct ccupdate_struct {
3863 struct kmem_cache *cachep;
3864 struct array_cache *new[NR_CPUS];
3865 };
3866
3867 static void do_ccupdate_local(void *info)
3868 {
3869 struct ccupdate_struct *new = info;
3870 struct array_cache *old;
3871
3872 check_irq_off();
3873 old = cpu_cache_get(new->cachep);
3874
3875 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3876 new->new[smp_processor_id()] = old;
3877 }
3878
3879 /* Always called with the cache_chain_mutex held */
3880 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3881 int batchcount, int shared)
3882 {
3883 struct ccupdate_struct *new;
3884 int i;
3885
3886 new = kzalloc(sizeof(*new), GFP_KERNEL);
3887 if (!new)
3888 return -ENOMEM;
3889
3890 for_each_online_cpu(i) {
3891 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3892 batchcount);
3893 if (!new->new[i]) {
3894 for (i--; i >= 0; i--)
3895 kfree(new->new[i]);
3896 kfree(new);
3897 return -ENOMEM;
3898 }
3899 }
3900 new->cachep = cachep;
3901
3902 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3903
3904 check_irq_on();
3905 cachep->batchcount = batchcount;
3906 cachep->limit = limit;
3907 cachep->shared = shared;
3908
3909 for_each_online_cpu(i) {
3910 struct array_cache *ccold = new->new[i];
3911 if (!ccold)
3912 continue;
3913 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3914 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3915 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3916 kfree(ccold);
3917 }
3918 kfree(new);
3919 return alloc_kmemlist(cachep);
3920 }
3921
3922 /* Called with cache_chain_mutex held always */
3923 static int enable_cpucache(struct kmem_cache *cachep)
3924 {
3925 int err;
3926 int limit, shared;
3927
3928 /*
3929 * The head array serves three purposes:
3930 * - create a LIFO ordering, i.e. return objects that are cache-warm
3931 * - reduce the number of spinlock operations.
3932 * - reduce the number of linked list operations on the slab and
3933 * bufctl chains: array operations are cheaper.
3934 * The numbers are guessed, we should auto-tune as described by
3935 * Bonwick.
3936 */
3937 if (cachep->buffer_size > 131072)
3938 limit = 1;
3939 else if (cachep->buffer_size > PAGE_SIZE)
3940 limit = 8;
3941 else if (cachep->buffer_size > 1024)
3942 limit = 24;
3943 else if (cachep->buffer_size > 256)
3944 limit = 54;
3945 else
3946 limit = 120;
3947
3948 /*
3949 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3950 * allocation behaviour: Most allocs on one cpu, most free operations
3951 * on another cpu. For these cases, an efficient object passing between
3952 * cpus is necessary. This is provided by a shared array. The array
3953 * replaces Bonwick's magazine layer.
3954 * On uniprocessor, it's functionally equivalent (but less efficient)
3955 * to a larger limit. Thus disabled by default.
3956 */
3957 shared = 0;
3958 #ifdef CONFIG_SMP
3959 if (cachep->buffer_size <= PAGE_SIZE)
3960 shared = 8;
3961 #endif
3962
3963 #if DEBUG
3964 /*
3965 * With debugging enabled, large batchcount lead to excessively long
3966 * periods with disabled local interrupts. Limit the batchcount
3967 */
3968 if (limit > 32)
3969 limit = 32;
3970 #endif
3971 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3972 if (err)
3973 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3974 cachep->name, -err);
3975 return err;
3976 }
3977
3978 /*
3979 * Drain an array if it contains any elements taking the l3 lock only if
3980 * necessary. Note that the l3 listlock also protects the array_cache
3981 * if drain_array() is used on the shared array.
3982 */
3983 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3984 struct array_cache *ac, int force, int node)
3985 {
3986 int tofree;
3987
3988 if (!ac || !ac->avail)
3989 return;
3990 if (ac->touched && !force) {
3991 ac->touched = 0;
3992 } else {
3993 spin_lock_irq(&l3->list_lock);
3994 if (ac->avail) {
3995 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3996 if (tofree > ac->avail)
3997 tofree = (ac->avail + 1) / 2;
3998 free_block(cachep, ac->entry, tofree, node);
3999 ac->avail -= tofree;
4000 memmove(ac->entry, &(ac->entry[tofree]),
4001 sizeof(void *) * ac->avail);
4002 }
4003 spin_unlock_irq(&l3->list_lock);
4004 }
4005 }
4006
4007 /**
4008 * cache_reap - Reclaim memory from caches.
4009 * @unused: unused parameter
4010 *
4011 * Called from workqueue/eventd every few seconds.
4012 * Purpose:
4013 * - clear the per-cpu caches for this CPU.
4014 * - return freeable pages to the main free memory pool.
4015 *
4016 * If we cannot acquire the cache chain mutex then just give up - we'll try
4017 * again on the next iteration.
4018 */
4019 static void cache_reap(struct work_struct *unused)
4020 {
4021 struct kmem_cache *searchp;
4022 struct kmem_list3 *l3;
4023 int node = numa_node_id();
4024
4025 if (!mutex_trylock(&cache_chain_mutex)) {
4026 /* Give up. Setup the next iteration. */
4027 schedule_delayed_work(&__get_cpu_var(reap_work),
4028 round_jiffies_relative(REAPTIMEOUT_CPUC));
4029 return;
4030 }
4031
4032 list_for_each_entry(searchp, &cache_chain, next) {
4033 check_irq_on();
4034
4035 /*
4036 * We only take the l3 lock if absolutely necessary and we
4037 * have established with reasonable certainty that
4038 * we can do some work if the lock was obtained.
4039 */
4040 l3 = searchp->nodelists[node];
4041
4042 reap_alien(searchp, l3);
4043
4044 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4045
4046 /*
4047 * These are racy checks but it does not matter
4048 * if we skip one check or scan twice.
4049 */
4050 if (time_after(l3->next_reap, jiffies))
4051 goto next;
4052
4053 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4054
4055 drain_array(searchp, l3, l3->shared, 0, node);
4056
4057 if (l3->free_touched)
4058 l3->free_touched = 0;
4059 else {
4060 int freed;
4061
4062 freed = drain_freelist(searchp, l3, (l3->free_limit +
4063 5 * searchp->num - 1) / (5 * searchp->num));
4064 STATS_ADD_REAPED(searchp, freed);
4065 }
4066 next:
4067 cond_resched();
4068 }
4069 check_irq_on();
4070 mutex_unlock(&cache_chain_mutex);
4071 next_reap_node();
4072 refresh_cpu_vm_stats(smp_processor_id());
4073 /* Set up the next iteration */
4074 schedule_delayed_work(&__get_cpu_var(reap_work),
4075 round_jiffies_relative(REAPTIMEOUT_CPUC));
4076 }
4077
4078 #ifdef CONFIG_PROC_FS
4079
4080 static void print_slabinfo_header(struct seq_file *m)
4081 {
4082 /*
4083 * Output format version, so at least we can change it
4084 * without _too_ many complaints.
4085 */
4086 #if STATS
4087 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4088 #else
4089 seq_puts(m, "slabinfo - version: 2.1\n");
4090 #endif
4091 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4092 "<objperslab> <pagesperslab>");
4093 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4094 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4095 #if STATS
4096 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4097 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4098 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4099 #endif
4100 seq_putc(m, '\n');
4101 }
4102
4103 static void *s_start(struct seq_file *m, loff_t *pos)
4104 {
4105 loff_t n = *pos;
4106 struct list_head *p;
4107
4108 mutex_lock(&cache_chain_mutex);
4109 if (!n)
4110 print_slabinfo_header(m);
4111 p = cache_chain.next;
4112 while (n--) {
4113 p = p->next;
4114 if (p == &cache_chain)
4115 return NULL;
4116 }
4117 return list_entry(p, struct kmem_cache, next);
4118 }
4119
4120 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4121 {
4122 struct kmem_cache *cachep = p;
4123 ++*pos;
4124 return cachep->next.next == &cache_chain ?
4125 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4126 }
4127
4128 static void s_stop(struct seq_file *m, void *p)
4129 {
4130 mutex_unlock(&cache_chain_mutex);
4131 }
4132
4133 static int s_show(struct seq_file *m, void *p)
4134 {
4135 struct kmem_cache *cachep = p;
4136 struct slab *slabp;
4137 unsigned long active_objs;
4138 unsigned long num_objs;
4139 unsigned long active_slabs = 0;
4140 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4141 const char *name;
4142 char *error = NULL;
4143 int node;
4144 struct kmem_list3 *l3;
4145
4146 active_objs = 0;
4147 num_slabs = 0;
4148 for_each_online_node(node) {
4149 l3 = cachep->nodelists[node];
4150 if (!l3)
4151 continue;
4152
4153 check_irq_on();
4154 spin_lock_irq(&l3->list_lock);
4155
4156 list_for_each_entry(slabp, &l3->slabs_full, list) {
4157 if (slabp->inuse != cachep->num && !error)
4158 error = "slabs_full accounting error";
4159 active_objs += cachep->num;
4160 active_slabs++;
4161 }
4162 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4163 if (slabp->inuse == cachep->num && !error)
4164 error = "slabs_partial inuse accounting error";
4165 if (!slabp->inuse && !error)
4166 error = "slabs_partial/inuse accounting error";
4167 active_objs += slabp->inuse;
4168 active_slabs++;
4169 }
4170 list_for_each_entry(slabp, &l3->slabs_free, list) {
4171 if (slabp->inuse && !error)
4172 error = "slabs_free/inuse accounting error";
4173 num_slabs++;
4174 }
4175 free_objects += l3->free_objects;
4176 if (l3->shared)
4177 shared_avail += l3->shared->avail;
4178
4179 spin_unlock_irq(&l3->list_lock);
4180 }
4181 num_slabs += active_slabs;
4182 num_objs = num_slabs * cachep->num;
4183 if (num_objs - active_objs != free_objects && !error)
4184 error = "free_objects accounting error";
4185
4186 name = cachep->name;
4187 if (error)
4188 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4189
4190 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4191 name, active_objs, num_objs, cachep->buffer_size,
4192 cachep->num, (1 << cachep->gfporder));
4193 seq_printf(m, " : tunables %4u %4u %4u",
4194 cachep->limit, cachep->batchcount, cachep->shared);
4195 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4196 active_slabs, num_slabs, shared_avail);
4197 #if STATS
4198 { /* list3 stats */
4199 unsigned long high = cachep->high_mark;
4200 unsigned long allocs = cachep->num_allocations;
4201 unsigned long grown = cachep->grown;
4202 unsigned long reaped = cachep->reaped;
4203 unsigned long errors = cachep->errors;
4204 unsigned long max_freeable = cachep->max_freeable;
4205 unsigned long node_allocs = cachep->node_allocs;
4206 unsigned long node_frees = cachep->node_frees;
4207 unsigned long overflows = cachep->node_overflow;
4208
4209 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4210 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4211 reaped, errors, max_freeable, node_allocs,
4212 node_frees, overflows);
4213 }
4214 /* cpu stats */
4215 {
4216 unsigned long allochit = atomic_read(&cachep->allochit);
4217 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4218 unsigned long freehit = atomic_read(&cachep->freehit);
4219 unsigned long freemiss = atomic_read(&cachep->freemiss);
4220
4221 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4222 allochit, allocmiss, freehit, freemiss);
4223 }
4224 #endif
4225 seq_putc(m, '\n');
4226 return 0;
4227 }
4228
4229 /*
4230 * slabinfo_op - iterator that generates /proc/slabinfo
4231 *
4232 * Output layout:
4233 * cache-name
4234 * num-active-objs
4235 * total-objs
4236 * object size
4237 * num-active-slabs
4238 * total-slabs
4239 * num-pages-per-slab
4240 * + further values on SMP and with statistics enabled
4241 */
4242
4243 const struct seq_operations slabinfo_op = {
4244 .start = s_start,
4245 .next = s_next,
4246 .stop = s_stop,
4247 .show = s_show,
4248 };
4249
4250 #define MAX_SLABINFO_WRITE 128
4251 /**
4252 * slabinfo_write - Tuning for the slab allocator
4253 * @file: unused
4254 * @buffer: user buffer
4255 * @count: data length
4256 * @ppos: unused
4257 */
4258 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4259 size_t count, loff_t *ppos)
4260 {
4261 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4262 int limit, batchcount, shared, res;
4263 struct kmem_cache *cachep;
4264
4265 if (count > MAX_SLABINFO_WRITE)
4266 return -EINVAL;
4267 if (copy_from_user(&kbuf, buffer, count))
4268 return -EFAULT;
4269 kbuf[MAX_SLABINFO_WRITE] = '\0';
4270
4271 tmp = strchr(kbuf, ' ');
4272 if (!tmp)
4273 return -EINVAL;
4274 *tmp = '\0';
4275 tmp++;
4276 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4277 return -EINVAL;
4278
4279 /* Find the cache in the chain of caches. */
4280 mutex_lock(&cache_chain_mutex);
4281 res = -EINVAL;
4282 list_for_each_entry(cachep, &cache_chain, next) {
4283 if (!strcmp(cachep->name, kbuf)) {
4284 if (limit < 1 || batchcount < 1 ||
4285 batchcount > limit || shared < 0) {
4286 res = 0;
4287 } else {
4288 res = do_tune_cpucache(cachep, limit,
4289 batchcount, shared);
4290 }
4291 break;
4292 }
4293 }
4294 mutex_unlock(&cache_chain_mutex);
4295 if (res >= 0)
4296 res = count;
4297 return res;
4298 }
4299
4300 #ifdef CONFIG_DEBUG_SLAB_LEAK
4301
4302 static void *leaks_start(struct seq_file *m, loff_t *pos)
4303 {
4304 loff_t n = *pos;
4305 struct list_head *p;
4306
4307 mutex_lock(&cache_chain_mutex);
4308 p = cache_chain.next;
4309 while (n--) {
4310 p = p->next;
4311 if (p == &cache_chain)
4312 return NULL;
4313 }
4314 return list_entry(p, struct kmem_cache, next);
4315 }
4316
4317 static inline int add_caller(unsigned long *n, unsigned long v)
4318 {
4319 unsigned long *p;
4320 int l;
4321 if (!v)
4322 return 1;
4323 l = n[1];
4324 p = n + 2;
4325 while (l) {
4326 int i = l/2;
4327 unsigned long *q = p + 2 * i;
4328 if (*q == v) {
4329 q[1]++;
4330 return 1;
4331 }
4332 if (*q > v) {
4333 l = i;
4334 } else {
4335 p = q + 2;
4336 l -= i + 1;
4337 }
4338 }
4339 if (++n[1] == n[0])
4340 return 0;
4341 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4342 p[0] = v;
4343 p[1] = 1;
4344 return 1;
4345 }
4346
4347 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4348 {
4349 void *p;
4350 int i;
4351 if (n[0] == n[1])
4352 return;
4353 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4354 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4355 continue;
4356 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4357 return;
4358 }
4359 }
4360
4361 static void show_symbol(struct seq_file *m, unsigned long address)
4362 {
4363 #ifdef CONFIG_KALLSYMS
4364 char *modname;
4365 const char *name;
4366 unsigned long offset, size;
4367 char namebuf[KSYM_NAME_LEN+1];
4368
4369 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4370
4371 if (name) {
4372 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4373 if (modname)
4374 seq_printf(m, " [%s]", modname);
4375 return;
4376 }
4377 #endif
4378 seq_printf(m, "%p", (void *)address);
4379 }
4380
4381 static int leaks_show(struct seq_file *m, void *p)
4382 {
4383 struct kmem_cache *cachep = p;
4384 struct slab *slabp;
4385 struct kmem_list3 *l3;
4386 const char *name;
4387 unsigned long *n = m->private;
4388 int node;
4389 int i;
4390
4391 if (!(cachep->flags & SLAB_STORE_USER))
4392 return 0;
4393 if (!(cachep->flags & SLAB_RED_ZONE))
4394 return 0;
4395
4396 /* OK, we can do it */
4397
4398 n[1] = 0;
4399
4400 for_each_online_node(node) {
4401 l3 = cachep->nodelists[node];
4402 if (!l3)
4403 continue;
4404
4405 check_irq_on();
4406 spin_lock_irq(&l3->list_lock);
4407
4408 list_for_each_entry(slabp, &l3->slabs_full, list)
4409 handle_slab(n, cachep, slabp);
4410 list_for_each_entry(slabp, &l3->slabs_partial, list)
4411 handle_slab(n, cachep, slabp);
4412 spin_unlock_irq(&l3->list_lock);
4413 }
4414 name = cachep->name;
4415 if (n[0] == n[1]) {
4416 /* Increase the buffer size */
4417 mutex_unlock(&cache_chain_mutex);
4418 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4419 if (!m->private) {
4420 /* Too bad, we are really out */
4421 m->private = n;
4422 mutex_lock(&cache_chain_mutex);
4423 return -ENOMEM;
4424 }
4425 *(unsigned long *)m->private = n[0] * 2;
4426 kfree(n);
4427 mutex_lock(&cache_chain_mutex);
4428 /* Now make sure this entry will be retried */
4429 m->count = m->size;
4430 return 0;
4431 }
4432 for (i = 0; i < n[1]; i++) {
4433 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4434 show_symbol(m, n[2*i+2]);
4435 seq_putc(m, '\n');
4436 }
4437
4438 return 0;
4439 }
4440
4441 const struct seq_operations slabstats_op = {
4442 .start = leaks_start,
4443 .next = s_next,
4444 .stop = s_stop,
4445 .show = leaks_show,
4446 };
4447 #endif
4448 #endif
4449
4450 /**
4451 * ksize - get the actual amount of memory allocated for a given object
4452 * @objp: Pointer to the object
4453 *
4454 * kmalloc may internally round up allocations and return more memory
4455 * than requested. ksize() can be used to determine the actual amount of
4456 * memory allocated. The caller may use this additional memory, even though
4457 * a smaller amount of memory was initially specified with the kmalloc call.
4458 * The caller must guarantee that objp points to a valid object previously
4459 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4460 * must not be freed during the duration of the call.
4461 */
4462 unsigned int ksize(const void *objp)
4463 {
4464 if (unlikely(objp == NULL))
4465 return 0;
4466
4467 return obj_size(virt_to_cache(objp));
4468 }
This page took 0.131691 seconds and 6 git commands to generate.