Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
123
124 #include <trace/events/kmem.h>
125
126 /*
127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * STATS - 1 to collect stats for /proc/slabinfo.
131 * 0 for faster, smaller code (especially in the critical paths).
132 *
133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 */
135
136 #ifdef CONFIG_DEBUG_SLAB
137 #define DEBUG 1
138 #define STATS 1
139 #define FORCED_DEBUG 1
140 #else
141 #define DEBUG 0
142 #define STATS 0
143 #define FORCED_DEBUG 0
144 #endif
145
146 /* Shouldn't this be in a header file somewhere? */
147 #define BYTES_PER_WORD sizeof(void *)
148 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
149
150 #ifndef ARCH_KMALLOC_FLAGS
151 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 #endif
153
154 /* Legal flag mask for kmem_cache_create(). */
155 #if DEBUG
156 # define CREATE_MASK (SLAB_RED_ZONE | \
157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_CACHE_DMA | \
159 SLAB_STORE_USER | \
160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
163 #else
164 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
165 SLAB_CACHE_DMA | \
166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
169 #endif
170
171 /*
172 * kmem_bufctl_t:
173 *
174 * Bufctl's are used for linking objs within a slab
175 * linked offsets.
176 *
177 * This implementation relies on "struct page" for locating the cache &
178 * slab an object belongs to.
179 * This allows the bufctl structure to be small (one int), but limits
180 * the number of objects a slab (not a cache) can contain when off-slab
181 * bufctls are used. The limit is the size of the largest general cache
182 * that does not use off-slab slabs.
183 * For 32bit archs with 4 kB pages, is this 56.
184 * This is not serious, as it is only for large objects, when it is unwise
185 * to have too many per slab.
186 * Note: This limit can be raised by introducing a general cache whose size
187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 */
189
190 typedef unsigned int kmem_bufctl_t;
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
195
196 /*
197 * struct slab_rcu
198 *
199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
200 * arrange for kmem_freepages to be called via RCU. This is useful if
201 * we need to approach a kernel structure obliquely, from its address
202 * obtained without the usual locking. We can lock the structure to
203 * stabilize it and check it's still at the given address, only if we
204 * can be sure that the memory has not been meanwhile reused for some
205 * other kind of object (which our subsystem's lock might corrupt).
206 *
207 * rcu_read_lock before reading the address, then rcu_read_unlock after
208 * taking the spinlock within the structure expected at that address.
209 */
210 struct slab_rcu {
211 struct rcu_head head;
212 struct kmem_cache *cachep;
213 void *addr;
214 };
215
216 /*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223 struct slab {
224 union {
225 struct {
226 struct list_head list;
227 unsigned long colouroff;
228 void *s_mem; /* including colour offset */
229 unsigned int inuse; /* num of objs active in slab */
230 kmem_bufctl_t free;
231 unsigned short nodeid;
232 };
233 struct slab_rcu __slab_cover_slab_rcu;
234 };
235 };
236
237 /*
238 * struct array_cache
239 *
240 * Purpose:
241 * - LIFO ordering, to hand out cache-warm objects from _alloc
242 * - reduce the number of linked list operations
243 * - reduce spinlock operations
244 *
245 * The limit is stored in the per-cpu structure to reduce the data cache
246 * footprint.
247 *
248 */
249 struct array_cache {
250 unsigned int avail;
251 unsigned int limit;
252 unsigned int batchcount;
253 unsigned int touched;
254 spinlock_t lock;
255 void *entry[]; /*
256 * Must have this definition in here for the proper
257 * alignment of array_cache. Also simplifies accessing
258 * the entries.
259 */
260 };
261
262 /*
263 * bootstrap: The caches do not work without cpuarrays anymore, but the
264 * cpuarrays are allocated from the generic caches...
265 */
266 #define BOOT_CPUCACHE_ENTRIES 1
267 struct arraycache_init {
268 struct array_cache cache;
269 void *entries[BOOT_CPUCACHE_ENTRIES];
270 };
271
272 /*
273 * The slab lists for all objects.
274 */
275 struct kmem_list3 {
276 struct list_head slabs_partial; /* partial list first, better asm code */
277 struct list_head slabs_full;
278 struct list_head slabs_free;
279 unsigned long free_objects;
280 unsigned int free_limit;
281 unsigned int colour_next; /* Per-node cache coloring */
282 spinlock_t list_lock;
283 struct array_cache *shared; /* shared per node */
284 struct array_cache **alien; /* on other nodes */
285 unsigned long next_reap; /* updated without locking */
286 int free_touched; /* updated without locking */
287 };
288
289 /*
290 * Need this for bootstrapping a per node allocator.
291 */
292 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
293 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
294 #define CACHE_CACHE 0
295 #define SIZE_AC MAX_NUMNODES
296 #define SIZE_L3 (2 * MAX_NUMNODES)
297
298 static int drain_freelist(struct kmem_cache *cache,
299 struct kmem_list3 *l3, int tofree);
300 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
301 int node);
302 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
303 static void cache_reap(struct work_struct *unused);
304
305 /*
306 * This function must be completely optimized away if a constant is passed to
307 * it. Mostly the same as what is in linux/slab.h except it returns an index.
308 */
309 static __always_inline int index_of(const size_t size)
310 {
311 extern void __bad_size(void);
312
313 if (__builtin_constant_p(size)) {
314 int i = 0;
315
316 #define CACHE(x) \
317 if (size <=x) \
318 return i; \
319 else \
320 i++;
321 #include <linux/kmalloc_sizes.h>
322 #undef CACHE
323 __bad_size();
324 } else
325 __bad_size();
326 return 0;
327 }
328
329 static int slab_early_init = 1;
330
331 #define INDEX_AC index_of(sizeof(struct arraycache_init))
332 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
333
334 static void kmem_list3_init(struct kmem_list3 *parent)
335 {
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
341 parent->colour_next = 0;
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
345 }
346
347 #define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 } while (0)
352
353 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
359
360 #define CFLGS_OFF_SLAB (0x80000000UL)
361 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
362
363 #define BATCHREFILL_LIMIT 16
364 /*
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
367 *
368 * OTOH the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
370 */
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
373
374 #if STATS
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
380 #define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
385 #define STATS_INC_ERR(x) ((x)->errors++)
386 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
387 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
388 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
389 #define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
394 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398 #else
399 #define STATS_INC_ACTIVE(x) do { } while (0)
400 #define STATS_DEC_ACTIVE(x) do { } while (0)
401 #define STATS_INC_ALLOCED(x) do { } while (0)
402 #define STATS_INC_GROWN(x) do { } while (0)
403 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
404 #define STATS_SET_HIGH(x) do { } while (0)
405 #define STATS_INC_ERR(x) do { } while (0)
406 #define STATS_INC_NODEALLOCS(x) do { } while (0)
407 #define STATS_INC_NODEFREES(x) do { } while (0)
408 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
409 #define STATS_SET_FREEABLE(x, i) do { } while (0)
410 #define STATS_INC_ALLOCHIT(x) do { } while (0)
411 #define STATS_INC_ALLOCMISS(x) do { } while (0)
412 #define STATS_INC_FREEHIT(x) do { } while (0)
413 #define STATS_INC_FREEMISS(x) do { } while (0)
414 #endif
415
416 #if DEBUG
417
418 /*
419 * memory layout of objects:
420 * 0 : objp
421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
425 * redzone word.
426 * cachep->obj_offset: The real object.
427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
429 * [BYTES_PER_WORD long]
430 */
431 static int obj_offset(struct kmem_cache *cachep)
432 {
433 return cachep->obj_offset;
434 }
435
436 static int obj_size(struct kmem_cache *cachep)
437 {
438 return cachep->obj_size;
439 }
440
441 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
442 {
443 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
444 return (unsigned long long*) (objp + obj_offset(cachep) -
445 sizeof(unsigned long long));
446 }
447
448 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
449 {
450 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
451 if (cachep->flags & SLAB_STORE_USER)
452 return (unsigned long long *)(objp + cachep->buffer_size -
453 sizeof(unsigned long long) -
454 REDZONE_ALIGN);
455 return (unsigned long long *) (objp + cachep->buffer_size -
456 sizeof(unsigned long long));
457 }
458
459 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
460 {
461 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
462 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
463 }
464
465 #else
466
467 #define obj_offset(x) 0
468 #define obj_size(cachep) (cachep->buffer_size)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
472
473 #endif
474
475 #ifdef CONFIG_TRACING
476 size_t slab_buffer_size(struct kmem_cache *cachep)
477 {
478 return cachep->buffer_size;
479 }
480 EXPORT_SYMBOL(slab_buffer_size);
481 #endif
482
483 /*
484 * Do not go above this order unless 0 objects fit into the slab.
485 */
486 #define BREAK_GFP_ORDER_HI 1
487 #define BREAK_GFP_ORDER_LO 0
488 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
489
490 /*
491 * Functions for storing/retrieving the cachep and or slab from the page
492 * allocator. These are used to find the slab an obj belongs to. With kfree(),
493 * these are used to find the cache which an obj belongs to.
494 */
495 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
496 {
497 page->lru.next = (struct list_head *)cache;
498 }
499
500 static inline struct kmem_cache *page_get_cache(struct page *page)
501 {
502 page = compound_head(page);
503 BUG_ON(!PageSlab(page));
504 return (struct kmem_cache *)page->lru.next;
505 }
506
507 static inline void page_set_slab(struct page *page, struct slab *slab)
508 {
509 page->lru.prev = (struct list_head *)slab;
510 }
511
512 static inline struct slab *page_get_slab(struct page *page)
513 {
514 BUG_ON(!PageSlab(page));
515 return (struct slab *)page->lru.prev;
516 }
517
518 static inline struct kmem_cache *virt_to_cache(const void *obj)
519 {
520 struct page *page = virt_to_head_page(obj);
521 return page_get_cache(page);
522 }
523
524 static inline struct slab *virt_to_slab(const void *obj)
525 {
526 struct page *page = virt_to_head_page(obj);
527 return page_get_slab(page);
528 }
529
530 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
531 unsigned int idx)
532 {
533 return slab->s_mem + cache->buffer_size * idx;
534 }
535
536 /*
537 * We want to avoid an expensive divide : (offset / cache->buffer_size)
538 * Using the fact that buffer_size is a constant for a particular cache,
539 * we can replace (offset / cache->buffer_size) by
540 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
541 */
542 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
543 const struct slab *slab, void *obj)
544 {
545 u32 offset = (obj - slab->s_mem);
546 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
547 }
548
549 /*
550 * These are the default caches for kmalloc. Custom caches can have other sizes.
551 */
552 struct cache_sizes malloc_sizes[] = {
553 #define CACHE(x) { .cs_size = (x) },
554 #include <linux/kmalloc_sizes.h>
555 CACHE(ULONG_MAX)
556 #undef CACHE
557 };
558 EXPORT_SYMBOL(malloc_sizes);
559
560 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
561 struct cache_names {
562 char *name;
563 char *name_dma;
564 };
565
566 static struct cache_names __initdata cache_names[] = {
567 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
568 #include <linux/kmalloc_sizes.h>
569 {NULL,}
570 #undef CACHE
571 };
572
573 static struct arraycache_init initarray_cache __initdata =
574 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
575 static struct arraycache_init initarray_generic =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577
578 /* internal cache of cache description objs */
579 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
580 static struct kmem_cache cache_cache = {
581 .nodelists = cache_cache_nodelists,
582 .batchcount = 1,
583 .limit = BOOT_CPUCACHE_ENTRIES,
584 .shared = 1,
585 .buffer_size = sizeof(struct kmem_cache),
586 .name = "kmem_cache",
587 };
588
589 #define BAD_ALIEN_MAGIC 0x01020304ul
590
591 /*
592 * chicken and egg problem: delay the per-cpu array allocation
593 * until the general caches are up.
594 */
595 static enum {
596 NONE,
597 PARTIAL_AC,
598 PARTIAL_L3,
599 EARLY,
600 LATE,
601 FULL
602 } g_cpucache_up;
603
604 /*
605 * used by boot code to determine if it can use slab based allocator
606 */
607 int slab_is_available(void)
608 {
609 return g_cpucache_up >= EARLY;
610 }
611
612 #ifdef CONFIG_LOCKDEP
613
614 /*
615 * Slab sometimes uses the kmalloc slabs to store the slab headers
616 * for other slabs "off slab".
617 * The locking for this is tricky in that it nests within the locks
618 * of all other slabs in a few places; to deal with this special
619 * locking we put on-slab caches into a separate lock-class.
620 *
621 * We set lock class for alien array caches which are up during init.
622 * The lock annotation will be lost if all cpus of a node goes down and
623 * then comes back up during hotplug
624 */
625 static struct lock_class_key on_slab_l3_key;
626 static struct lock_class_key on_slab_alc_key;
627
628 static struct lock_class_key debugobj_l3_key;
629 static struct lock_class_key debugobj_alc_key;
630
631 static void slab_set_lock_classes(struct kmem_cache *cachep,
632 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
633 int q)
634 {
635 struct array_cache **alc;
636 struct kmem_list3 *l3;
637 int r;
638
639 l3 = cachep->nodelists[q];
640 if (!l3)
641 return;
642
643 lockdep_set_class(&l3->list_lock, l3_key);
644 alc = l3->alien;
645 /*
646 * FIXME: This check for BAD_ALIEN_MAGIC
647 * should go away when common slab code is taught to
648 * work even without alien caches.
649 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
650 * for alloc_alien_cache,
651 */
652 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
653 return;
654 for_each_node(r) {
655 if (alc[r])
656 lockdep_set_class(&alc[r]->lock, alc_key);
657 }
658 }
659
660 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
661 {
662 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
663 }
664
665 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
666 {
667 int node;
668
669 for_each_online_node(node)
670 slab_set_debugobj_lock_classes_node(cachep, node);
671 }
672
673 static void init_node_lock_keys(int q)
674 {
675 struct cache_sizes *s = malloc_sizes;
676
677 if (g_cpucache_up < LATE)
678 return;
679
680 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
681 struct kmem_list3 *l3;
682
683 l3 = s->cs_cachep->nodelists[q];
684 if (!l3 || OFF_SLAB(s->cs_cachep))
685 continue;
686
687 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
688 &on_slab_alc_key, q);
689 }
690 }
691
692 static inline void init_lock_keys(void)
693 {
694 int node;
695
696 for_each_node(node)
697 init_node_lock_keys(node);
698 }
699 #else
700 static void init_node_lock_keys(int q)
701 {
702 }
703
704 static inline void init_lock_keys(void)
705 {
706 }
707
708 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
709 {
710 }
711
712 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
713 {
714 }
715 #endif
716
717 /*
718 * Guard access to the cache-chain.
719 */
720 static DEFINE_MUTEX(cache_chain_mutex);
721 static struct list_head cache_chain;
722
723 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
724
725 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
726 {
727 return cachep->array[smp_processor_id()];
728 }
729
730 static inline struct kmem_cache *__find_general_cachep(size_t size,
731 gfp_t gfpflags)
732 {
733 struct cache_sizes *csizep = malloc_sizes;
734
735 #if DEBUG
736 /* This happens if someone tries to call
737 * kmem_cache_create(), or __kmalloc(), before
738 * the generic caches are initialized.
739 */
740 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
741 #endif
742 if (!size)
743 return ZERO_SIZE_PTR;
744
745 while (size > csizep->cs_size)
746 csizep++;
747
748 /*
749 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
750 * has cs_{dma,}cachep==NULL. Thus no special case
751 * for large kmalloc calls required.
752 */
753 #ifdef CONFIG_ZONE_DMA
754 if (unlikely(gfpflags & GFP_DMA))
755 return csizep->cs_dmacachep;
756 #endif
757 return csizep->cs_cachep;
758 }
759
760 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
761 {
762 return __find_general_cachep(size, gfpflags);
763 }
764
765 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
766 {
767 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
768 }
769
770 /*
771 * Calculate the number of objects and left-over bytes for a given buffer size.
772 */
773 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
774 size_t align, int flags, size_t *left_over,
775 unsigned int *num)
776 {
777 int nr_objs;
778 size_t mgmt_size;
779 size_t slab_size = PAGE_SIZE << gfporder;
780
781 /*
782 * The slab management structure can be either off the slab or
783 * on it. For the latter case, the memory allocated for a
784 * slab is used for:
785 *
786 * - The struct slab
787 * - One kmem_bufctl_t for each object
788 * - Padding to respect alignment of @align
789 * - @buffer_size bytes for each object
790 *
791 * If the slab management structure is off the slab, then the
792 * alignment will already be calculated into the size. Because
793 * the slabs are all pages aligned, the objects will be at the
794 * correct alignment when allocated.
795 */
796 if (flags & CFLGS_OFF_SLAB) {
797 mgmt_size = 0;
798 nr_objs = slab_size / buffer_size;
799
800 if (nr_objs > SLAB_LIMIT)
801 nr_objs = SLAB_LIMIT;
802 } else {
803 /*
804 * Ignore padding for the initial guess. The padding
805 * is at most @align-1 bytes, and @buffer_size is at
806 * least @align. In the worst case, this result will
807 * be one greater than the number of objects that fit
808 * into the memory allocation when taking the padding
809 * into account.
810 */
811 nr_objs = (slab_size - sizeof(struct slab)) /
812 (buffer_size + sizeof(kmem_bufctl_t));
813
814 /*
815 * This calculated number will be either the right
816 * amount, or one greater than what we want.
817 */
818 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
819 > slab_size)
820 nr_objs--;
821
822 if (nr_objs > SLAB_LIMIT)
823 nr_objs = SLAB_LIMIT;
824
825 mgmt_size = slab_mgmt_size(nr_objs, align);
826 }
827 *num = nr_objs;
828 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
829 }
830
831 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
832
833 static void __slab_error(const char *function, struct kmem_cache *cachep,
834 char *msg)
835 {
836 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
837 function, cachep->name, msg);
838 dump_stack();
839 }
840
841 /*
842 * By default on NUMA we use alien caches to stage the freeing of
843 * objects allocated from other nodes. This causes massive memory
844 * inefficiencies when using fake NUMA setup to split memory into a
845 * large number of small nodes, so it can be disabled on the command
846 * line
847 */
848
849 static int use_alien_caches __read_mostly = 1;
850 static int __init noaliencache_setup(char *s)
851 {
852 use_alien_caches = 0;
853 return 1;
854 }
855 __setup("noaliencache", noaliencache_setup);
856
857 #ifdef CONFIG_NUMA
858 /*
859 * Special reaping functions for NUMA systems called from cache_reap().
860 * These take care of doing round robin flushing of alien caches (containing
861 * objects freed on different nodes from which they were allocated) and the
862 * flushing of remote pcps by calling drain_node_pages.
863 */
864 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
865
866 static void init_reap_node(int cpu)
867 {
868 int node;
869
870 node = next_node(cpu_to_mem(cpu), node_online_map);
871 if (node == MAX_NUMNODES)
872 node = first_node(node_online_map);
873
874 per_cpu(slab_reap_node, cpu) = node;
875 }
876
877 static void next_reap_node(void)
878 {
879 int node = __this_cpu_read(slab_reap_node);
880
881 node = next_node(node, node_online_map);
882 if (unlikely(node >= MAX_NUMNODES))
883 node = first_node(node_online_map);
884 __this_cpu_write(slab_reap_node, node);
885 }
886
887 #else
888 #define init_reap_node(cpu) do { } while (0)
889 #define next_reap_node(void) do { } while (0)
890 #endif
891
892 /*
893 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
894 * via the workqueue/eventd.
895 * Add the CPU number into the expiration time to minimize the possibility of
896 * the CPUs getting into lockstep and contending for the global cache chain
897 * lock.
898 */
899 static void __cpuinit start_cpu_timer(int cpu)
900 {
901 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
902
903 /*
904 * When this gets called from do_initcalls via cpucache_init(),
905 * init_workqueues() has already run, so keventd will be setup
906 * at that time.
907 */
908 if (keventd_up() && reap_work->work.func == NULL) {
909 init_reap_node(cpu);
910 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
911 schedule_delayed_work_on(cpu, reap_work,
912 __round_jiffies_relative(HZ, cpu));
913 }
914 }
915
916 static struct array_cache *alloc_arraycache(int node, int entries,
917 int batchcount, gfp_t gfp)
918 {
919 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
920 struct array_cache *nc = NULL;
921
922 nc = kmalloc_node(memsize, gfp, node);
923 /*
924 * The array_cache structures contain pointers to free object.
925 * However, when such objects are allocated or transferred to another
926 * cache the pointers are not cleared and they could be counted as
927 * valid references during a kmemleak scan. Therefore, kmemleak must
928 * not scan such objects.
929 */
930 kmemleak_no_scan(nc);
931 if (nc) {
932 nc->avail = 0;
933 nc->limit = entries;
934 nc->batchcount = batchcount;
935 nc->touched = 0;
936 spin_lock_init(&nc->lock);
937 }
938 return nc;
939 }
940
941 /*
942 * Transfer objects in one arraycache to another.
943 * Locking must be handled by the caller.
944 *
945 * Return the number of entries transferred.
946 */
947 static int transfer_objects(struct array_cache *to,
948 struct array_cache *from, unsigned int max)
949 {
950 /* Figure out how many entries to transfer */
951 int nr = min3(from->avail, max, to->limit - to->avail);
952
953 if (!nr)
954 return 0;
955
956 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
957 sizeof(void *) *nr);
958
959 from->avail -= nr;
960 to->avail += nr;
961 return nr;
962 }
963
964 #ifndef CONFIG_NUMA
965
966 #define drain_alien_cache(cachep, alien) do { } while (0)
967 #define reap_alien(cachep, l3) do { } while (0)
968
969 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
970 {
971 return (struct array_cache **)BAD_ALIEN_MAGIC;
972 }
973
974 static inline void free_alien_cache(struct array_cache **ac_ptr)
975 {
976 }
977
978 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
979 {
980 return 0;
981 }
982
983 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
984 gfp_t flags)
985 {
986 return NULL;
987 }
988
989 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
990 gfp_t flags, int nodeid)
991 {
992 return NULL;
993 }
994
995 #else /* CONFIG_NUMA */
996
997 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
998 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
999
1000 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1001 {
1002 struct array_cache **ac_ptr;
1003 int memsize = sizeof(void *) * nr_node_ids;
1004 int i;
1005
1006 if (limit > 1)
1007 limit = 12;
1008 ac_ptr = kzalloc_node(memsize, gfp, node);
1009 if (ac_ptr) {
1010 for_each_node(i) {
1011 if (i == node || !node_online(i))
1012 continue;
1013 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1014 if (!ac_ptr[i]) {
1015 for (i--; i >= 0; i--)
1016 kfree(ac_ptr[i]);
1017 kfree(ac_ptr);
1018 return NULL;
1019 }
1020 }
1021 }
1022 return ac_ptr;
1023 }
1024
1025 static void free_alien_cache(struct array_cache **ac_ptr)
1026 {
1027 int i;
1028
1029 if (!ac_ptr)
1030 return;
1031 for_each_node(i)
1032 kfree(ac_ptr[i]);
1033 kfree(ac_ptr);
1034 }
1035
1036 static void __drain_alien_cache(struct kmem_cache *cachep,
1037 struct array_cache *ac, int node)
1038 {
1039 struct kmem_list3 *rl3 = cachep->nodelists[node];
1040
1041 if (ac->avail) {
1042 spin_lock(&rl3->list_lock);
1043 /*
1044 * Stuff objects into the remote nodes shared array first.
1045 * That way we could avoid the overhead of putting the objects
1046 * into the free lists and getting them back later.
1047 */
1048 if (rl3->shared)
1049 transfer_objects(rl3->shared, ac, ac->limit);
1050
1051 free_block(cachep, ac->entry, ac->avail, node);
1052 ac->avail = 0;
1053 spin_unlock(&rl3->list_lock);
1054 }
1055 }
1056
1057 /*
1058 * Called from cache_reap() to regularly drain alien caches round robin.
1059 */
1060 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1061 {
1062 int node = __this_cpu_read(slab_reap_node);
1063
1064 if (l3->alien) {
1065 struct array_cache *ac = l3->alien[node];
1066
1067 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1068 __drain_alien_cache(cachep, ac, node);
1069 spin_unlock_irq(&ac->lock);
1070 }
1071 }
1072 }
1073
1074 static void drain_alien_cache(struct kmem_cache *cachep,
1075 struct array_cache **alien)
1076 {
1077 int i = 0;
1078 struct array_cache *ac;
1079 unsigned long flags;
1080
1081 for_each_online_node(i) {
1082 ac = alien[i];
1083 if (ac) {
1084 spin_lock_irqsave(&ac->lock, flags);
1085 __drain_alien_cache(cachep, ac, i);
1086 spin_unlock_irqrestore(&ac->lock, flags);
1087 }
1088 }
1089 }
1090
1091 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1092 {
1093 struct slab *slabp = virt_to_slab(objp);
1094 int nodeid = slabp->nodeid;
1095 struct kmem_list3 *l3;
1096 struct array_cache *alien = NULL;
1097 int node;
1098
1099 node = numa_mem_id();
1100
1101 /*
1102 * Make sure we are not freeing a object from another node to the array
1103 * cache on this cpu.
1104 */
1105 if (likely(slabp->nodeid == node))
1106 return 0;
1107
1108 l3 = cachep->nodelists[node];
1109 STATS_INC_NODEFREES(cachep);
1110 if (l3->alien && l3->alien[nodeid]) {
1111 alien = l3->alien[nodeid];
1112 spin_lock(&alien->lock);
1113 if (unlikely(alien->avail == alien->limit)) {
1114 STATS_INC_ACOVERFLOW(cachep);
1115 __drain_alien_cache(cachep, alien, nodeid);
1116 }
1117 alien->entry[alien->avail++] = objp;
1118 spin_unlock(&alien->lock);
1119 } else {
1120 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1121 free_block(cachep, &objp, 1, nodeid);
1122 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1123 }
1124 return 1;
1125 }
1126 #endif
1127
1128 /*
1129 * Allocates and initializes nodelists for a node on each slab cache, used for
1130 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1131 * will be allocated off-node since memory is not yet online for the new node.
1132 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1133 * already in use.
1134 *
1135 * Must hold cache_chain_mutex.
1136 */
1137 static int init_cache_nodelists_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 struct kmem_list3 *l3;
1141 const int memsize = sizeof(struct kmem_list3);
1142
1143 list_for_each_entry(cachep, &cache_chain, next) {
1144 /*
1145 * Set up the size64 kmemlist for cpu before we can
1146 * begin anything. Make sure some other cpu on this
1147 * node has not already allocated this
1148 */
1149 if (!cachep->nodelists[node]) {
1150 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1151 if (!l3)
1152 return -ENOMEM;
1153 kmem_list3_init(l3);
1154 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1155 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1156
1157 /*
1158 * The l3s don't come and go as CPUs come and
1159 * go. cache_chain_mutex is sufficient
1160 * protection here.
1161 */
1162 cachep->nodelists[node] = l3;
1163 }
1164
1165 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1166 cachep->nodelists[node]->free_limit =
1167 (1 + nr_cpus_node(node)) *
1168 cachep->batchcount + cachep->num;
1169 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1170 }
1171 return 0;
1172 }
1173
1174 static void __cpuinit cpuup_canceled(long cpu)
1175 {
1176 struct kmem_cache *cachep;
1177 struct kmem_list3 *l3 = NULL;
1178 int node = cpu_to_mem(cpu);
1179 const struct cpumask *mask = cpumask_of_node(node);
1180
1181 list_for_each_entry(cachep, &cache_chain, next) {
1182 struct array_cache *nc;
1183 struct array_cache *shared;
1184 struct array_cache **alien;
1185
1186 /* cpu is dead; no one can alloc from it. */
1187 nc = cachep->array[cpu];
1188 cachep->array[cpu] = NULL;
1189 l3 = cachep->nodelists[node];
1190
1191 if (!l3)
1192 goto free_array_cache;
1193
1194 spin_lock_irq(&l3->list_lock);
1195
1196 /* Free limit for this kmem_list3 */
1197 l3->free_limit -= cachep->batchcount;
1198 if (nc)
1199 free_block(cachep, nc->entry, nc->avail, node);
1200
1201 if (!cpumask_empty(mask)) {
1202 spin_unlock_irq(&l3->list_lock);
1203 goto free_array_cache;
1204 }
1205
1206 shared = l3->shared;
1207 if (shared) {
1208 free_block(cachep, shared->entry,
1209 shared->avail, node);
1210 l3->shared = NULL;
1211 }
1212
1213 alien = l3->alien;
1214 l3->alien = NULL;
1215
1216 spin_unlock_irq(&l3->list_lock);
1217
1218 kfree(shared);
1219 if (alien) {
1220 drain_alien_cache(cachep, alien);
1221 free_alien_cache(alien);
1222 }
1223 free_array_cache:
1224 kfree(nc);
1225 }
1226 /*
1227 * In the previous loop, all the objects were freed to
1228 * the respective cache's slabs, now we can go ahead and
1229 * shrink each nodelist to its limit.
1230 */
1231 list_for_each_entry(cachep, &cache_chain, next) {
1232 l3 = cachep->nodelists[node];
1233 if (!l3)
1234 continue;
1235 drain_freelist(cachep, l3, l3->free_objects);
1236 }
1237 }
1238
1239 static int __cpuinit cpuup_prepare(long cpu)
1240 {
1241 struct kmem_cache *cachep;
1242 struct kmem_list3 *l3 = NULL;
1243 int node = cpu_to_mem(cpu);
1244 int err;
1245
1246 /*
1247 * We need to do this right in the beginning since
1248 * alloc_arraycache's are going to use this list.
1249 * kmalloc_node allows us to add the slab to the right
1250 * kmem_list3 and not this cpu's kmem_list3
1251 */
1252 err = init_cache_nodelists_node(node);
1253 if (err < 0)
1254 goto bad;
1255
1256 /*
1257 * Now we can go ahead with allocating the shared arrays and
1258 * array caches
1259 */
1260 list_for_each_entry(cachep, &cache_chain, next) {
1261 struct array_cache *nc;
1262 struct array_cache *shared = NULL;
1263 struct array_cache **alien = NULL;
1264
1265 nc = alloc_arraycache(node, cachep->limit,
1266 cachep->batchcount, GFP_KERNEL);
1267 if (!nc)
1268 goto bad;
1269 if (cachep->shared) {
1270 shared = alloc_arraycache(node,
1271 cachep->shared * cachep->batchcount,
1272 0xbaadf00d, GFP_KERNEL);
1273 if (!shared) {
1274 kfree(nc);
1275 goto bad;
1276 }
1277 }
1278 if (use_alien_caches) {
1279 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1280 if (!alien) {
1281 kfree(shared);
1282 kfree(nc);
1283 goto bad;
1284 }
1285 }
1286 cachep->array[cpu] = nc;
1287 l3 = cachep->nodelists[node];
1288 BUG_ON(!l3);
1289
1290 spin_lock_irq(&l3->list_lock);
1291 if (!l3->shared) {
1292 /*
1293 * We are serialised from CPU_DEAD or
1294 * CPU_UP_CANCELLED by the cpucontrol lock
1295 */
1296 l3->shared = shared;
1297 shared = NULL;
1298 }
1299 #ifdef CONFIG_NUMA
1300 if (!l3->alien) {
1301 l3->alien = alien;
1302 alien = NULL;
1303 }
1304 #endif
1305 spin_unlock_irq(&l3->list_lock);
1306 kfree(shared);
1307 free_alien_cache(alien);
1308 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1309 slab_set_debugobj_lock_classes_node(cachep, node);
1310 }
1311 init_node_lock_keys(node);
1312
1313 return 0;
1314 bad:
1315 cpuup_canceled(cpu);
1316 return -ENOMEM;
1317 }
1318
1319 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1320 unsigned long action, void *hcpu)
1321 {
1322 long cpu = (long)hcpu;
1323 int err = 0;
1324
1325 switch (action) {
1326 case CPU_UP_PREPARE:
1327 case CPU_UP_PREPARE_FROZEN:
1328 mutex_lock(&cache_chain_mutex);
1329 err = cpuup_prepare(cpu);
1330 mutex_unlock(&cache_chain_mutex);
1331 break;
1332 case CPU_ONLINE:
1333 case CPU_ONLINE_FROZEN:
1334 start_cpu_timer(cpu);
1335 break;
1336 #ifdef CONFIG_HOTPLUG_CPU
1337 case CPU_DOWN_PREPARE:
1338 case CPU_DOWN_PREPARE_FROZEN:
1339 /*
1340 * Shutdown cache reaper. Note that the cache_chain_mutex is
1341 * held so that if cache_reap() is invoked it cannot do
1342 * anything expensive but will only modify reap_work
1343 * and reschedule the timer.
1344 */
1345 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1346 /* Now the cache_reaper is guaranteed to be not running. */
1347 per_cpu(slab_reap_work, cpu).work.func = NULL;
1348 break;
1349 case CPU_DOWN_FAILED:
1350 case CPU_DOWN_FAILED_FROZEN:
1351 start_cpu_timer(cpu);
1352 break;
1353 case CPU_DEAD:
1354 case CPU_DEAD_FROZEN:
1355 /*
1356 * Even if all the cpus of a node are down, we don't free the
1357 * kmem_list3 of any cache. This to avoid a race between
1358 * cpu_down, and a kmalloc allocation from another cpu for
1359 * memory from the node of the cpu going down. The list3
1360 * structure is usually allocated from kmem_cache_create() and
1361 * gets destroyed at kmem_cache_destroy().
1362 */
1363 /* fall through */
1364 #endif
1365 case CPU_UP_CANCELED:
1366 case CPU_UP_CANCELED_FROZEN:
1367 mutex_lock(&cache_chain_mutex);
1368 cpuup_canceled(cpu);
1369 mutex_unlock(&cache_chain_mutex);
1370 break;
1371 }
1372 return notifier_from_errno(err);
1373 }
1374
1375 static struct notifier_block __cpuinitdata cpucache_notifier = {
1376 &cpuup_callback, NULL, 0
1377 };
1378
1379 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1380 /*
1381 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1382 * Returns -EBUSY if all objects cannot be drained so that the node is not
1383 * removed.
1384 *
1385 * Must hold cache_chain_mutex.
1386 */
1387 static int __meminit drain_cache_nodelists_node(int node)
1388 {
1389 struct kmem_cache *cachep;
1390 int ret = 0;
1391
1392 list_for_each_entry(cachep, &cache_chain, next) {
1393 struct kmem_list3 *l3;
1394
1395 l3 = cachep->nodelists[node];
1396 if (!l3)
1397 continue;
1398
1399 drain_freelist(cachep, l3, l3->free_objects);
1400
1401 if (!list_empty(&l3->slabs_full) ||
1402 !list_empty(&l3->slabs_partial)) {
1403 ret = -EBUSY;
1404 break;
1405 }
1406 }
1407 return ret;
1408 }
1409
1410 static int __meminit slab_memory_callback(struct notifier_block *self,
1411 unsigned long action, void *arg)
1412 {
1413 struct memory_notify *mnb = arg;
1414 int ret = 0;
1415 int nid;
1416
1417 nid = mnb->status_change_nid;
1418 if (nid < 0)
1419 goto out;
1420
1421 switch (action) {
1422 case MEM_GOING_ONLINE:
1423 mutex_lock(&cache_chain_mutex);
1424 ret = init_cache_nodelists_node(nid);
1425 mutex_unlock(&cache_chain_mutex);
1426 break;
1427 case MEM_GOING_OFFLINE:
1428 mutex_lock(&cache_chain_mutex);
1429 ret = drain_cache_nodelists_node(nid);
1430 mutex_unlock(&cache_chain_mutex);
1431 break;
1432 case MEM_ONLINE:
1433 case MEM_OFFLINE:
1434 case MEM_CANCEL_ONLINE:
1435 case MEM_CANCEL_OFFLINE:
1436 break;
1437 }
1438 out:
1439 return notifier_from_errno(ret);
1440 }
1441 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1442
1443 /*
1444 * swap the static kmem_list3 with kmalloced memory
1445 */
1446 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1447 int nodeid)
1448 {
1449 struct kmem_list3 *ptr;
1450
1451 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1452 BUG_ON(!ptr);
1453
1454 memcpy(ptr, list, sizeof(struct kmem_list3));
1455 /*
1456 * Do not assume that spinlocks can be initialized via memcpy:
1457 */
1458 spin_lock_init(&ptr->list_lock);
1459
1460 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1461 cachep->nodelists[nodeid] = ptr;
1462 }
1463
1464 /*
1465 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1466 * size of kmem_list3.
1467 */
1468 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1469 {
1470 int node;
1471
1472 for_each_online_node(node) {
1473 cachep->nodelists[node] = &initkmem_list3[index + node];
1474 cachep->nodelists[node]->next_reap = jiffies +
1475 REAPTIMEOUT_LIST3 +
1476 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1477 }
1478 }
1479
1480 /*
1481 * Initialisation. Called after the page allocator have been initialised and
1482 * before smp_init().
1483 */
1484 void __init kmem_cache_init(void)
1485 {
1486 size_t left_over;
1487 struct cache_sizes *sizes;
1488 struct cache_names *names;
1489 int i;
1490 int order;
1491 int node;
1492
1493 if (num_possible_nodes() == 1)
1494 use_alien_caches = 0;
1495
1496 for (i = 0; i < NUM_INIT_LISTS; i++) {
1497 kmem_list3_init(&initkmem_list3[i]);
1498 if (i < MAX_NUMNODES)
1499 cache_cache.nodelists[i] = NULL;
1500 }
1501 set_up_list3s(&cache_cache, CACHE_CACHE);
1502
1503 /*
1504 * Fragmentation resistance on low memory - only use bigger
1505 * page orders on machines with more than 32MB of memory.
1506 */
1507 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1508 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1509
1510 /* Bootstrap is tricky, because several objects are allocated
1511 * from caches that do not exist yet:
1512 * 1) initialize the cache_cache cache: it contains the struct
1513 * kmem_cache structures of all caches, except cache_cache itself:
1514 * cache_cache is statically allocated.
1515 * Initially an __init data area is used for the head array and the
1516 * kmem_list3 structures, it's replaced with a kmalloc allocated
1517 * array at the end of the bootstrap.
1518 * 2) Create the first kmalloc cache.
1519 * The struct kmem_cache for the new cache is allocated normally.
1520 * An __init data area is used for the head array.
1521 * 3) Create the remaining kmalloc caches, with minimally sized
1522 * head arrays.
1523 * 4) Replace the __init data head arrays for cache_cache and the first
1524 * kmalloc cache with kmalloc allocated arrays.
1525 * 5) Replace the __init data for kmem_list3 for cache_cache and
1526 * the other cache's with kmalloc allocated memory.
1527 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1528 */
1529
1530 node = numa_mem_id();
1531
1532 /* 1) create the cache_cache */
1533 INIT_LIST_HEAD(&cache_chain);
1534 list_add(&cache_cache.next, &cache_chain);
1535 cache_cache.colour_off = cache_line_size();
1536 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1537 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1538
1539 /*
1540 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1541 */
1542 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1543 nr_node_ids * sizeof(struct kmem_list3 *);
1544 #if DEBUG
1545 cache_cache.obj_size = cache_cache.buffer_size;
1546 #endif
1547 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1548 cache_line_size());
1549 cache_cache.reciprocal_buffer_size =
1550 reciprocal_value(cache_cache.buffer_size);
1551
1552 for (order = 0; order < MAX_ORDER; order++) {
1553 cache_estimate(order, cache_cache.buffer_size,
1554 cache_line_size(), 0, &left_over, &cache_cache.num);
1555 if (cache_cache.num)
1556 break;
1557 }
1558 BUG_ON(!cache_cache.num);
1559 cache_cache.gfporder = order;
1560 cache_cache.colour = left_over / cache_cache.colour_off;
1561 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1562 sizeof(struct slab), cache_line_size());
1563
1564 /* 2+3) create the kmalloc caches */
1565 sizes = malloc_sizes;
1566 names = cache_names;
1567
1568 /*
1569 * Initialize the caches that provide memory for the array cache and the
1570 * kmem_list3 structures first. Without this, further allocations will
1571 * bug.
1572 */
1573
1574 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1575 sizes[INDEX_AC].cs_size,
1576 ARCH_KMALLOC_MINALIGN,
1577 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1578 NULL);
1579
1580 if (INDEX_AC != INDEX_L3) {
1581 sizes[INDEX_L3].cs_cachep =
1582 kmem_cache_create(names[INDEX_L3].name,
1583 sizes[INDEX_L3].cs_size,
1584 ARCH_KMALLOC_MINALIGN,
1585 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1586 NULL);
1587 }
1588
1589 slab_early_init = 0;
1590
1591 while (sizes->cs_size != ULONG_MAX) {
1592 /*
1593 * For performance, all the general caches are L1 aligned.
1594 * This should be particularly beneficial on SMP boxes, as it
1595 * eliminates "false sharing".
1596 * Note for systems short on memory removing the alignment will
1597 * allow tighter packing of the smaller caches.
1598 */
1599 if (!sizes->cs_cachep) {
1600 sizes->cs_cachep = kmem_cache_create(names->name,
1601 sizes->cs_size,
1602 ARCH_KMALLOC_MINALIGN,
1603 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1604 NULL);
1605 }
1606 #ifdef CONFIG_ZONE_DMA
1607 sizes->cs_dmacachep = kmem_cache_create(
1608 names->name_dma,
1609 sizes->cs_size,
1610 ARCH_KMALLOC_MINALIGN,
1611 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1612 SLAB_PANIC,
1613 NULL);
1614 #endif
1615 sizes++;
1616 names++;
1617 }
1618 /* 4) Replace the bootstrap head arrays */
1619 {
1620 struct array_cache *ptr;
1621
1622 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1623
1624 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1625 memcpy(ptr, cpu_cache_get(&cache_cache),
1626 sizeof(struct arraycache_init));
1627 /*
1628 * Do not assume that spinlocks can be initialized via memcpy:
1629 */
1630 spin_lock_init(&ptr->lock);
1631
1632 cache_cache.array[smp_processor_id()] = ptr;
1633
1634 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1635
1636 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1637 != &initarray_generic.cache);
1638 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1639 sizeof(struct arraycache_init));
1640 /*
1641 * Do not assume that spinlocks can be initialized via memcpy:
1642 */
1643 spin_lock_init(&ptr->lock);
1644
1645 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1646 ptr;
1647 }
1648 /* 5) Replace the bootstrap kmem_list3's */
1649 {
1650 int nid;
1651
1652 for_each_online_node(nid) {
1653 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1654
1655 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1656 &initkmem_list3[SIZE_AC + nid], nid);
1657
1658 if (INDEX_AC != INDEX_L3) {
1659 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1660 &initkmem_list3[SIZE_L3 + nid], nid);
1661 }
1662 }
1663 }
1664
1665 g_cpucache_up = EARLY;
1666 }
1667
1668 void __init kmem_cache_init_late(void)
1669 {
1670 struct kmem_cache *cachep;
1671
1672 g_cpucache_up = LATE;
1673
1674 /* Annotate slab for lockdep -- annotate the malloc caches */
1675 init_lock_keys();
1676
1677 /* 6) resize the head arrays to their final sizes */
1678 mutex_lock(&cache_chain_mutex);
1679 list_for_each_entry(cachep, &cache_chain, next)
1680 if (enable_cpucache(cachep, GFP_NOWAIT))
1681 BUG();
1682 mutex_unlock(&cache_chain_mutex);
1683
1684 /* Done! */
1685 g_cpucache_up = FULL;
1686
1687 /*
1688 * Register a cpu startup notifier callback that initializes
1689 * cpu_cache_get for all new cpus
1690 */
1691 register_cpu_notifier(&cpucache_notifier);
1692
1693 #ifdef CONFIG_NUMA
1694 /*
1695 * Register a memory hotplug callback that initializes and frees
1696 * nodelists.
1697 */
1698 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1699 #endif
1700
1701 /*
1702 * The reap timers are started later, with a module init call: That part
1703 * of the kernel is not yet operational.
1704 */
1705 }
1706
1707 static int __init cpucache_init(void)
1708 {
1709 int cpu;
1710
1711 /*
1712 * Register the timers that return unneeded pages to the page allocator
1713 */
1714 for_each_online_cpu(cpu)
1715 start_cpu_timer(cpu);
1716 return 0;
1717 }
1718 __initcall(cpucache_init);
1719
1720 /*
1721 * Interface to system's page allocator. No need to hold the cache-lock.
1722 *
1723 * If we requested dmaable memory, we will get it. Even if we
1724 * did not request dmaable memory, we might get it, but that
1725 * would be relatively rare and ignorable.
1726 */
1727 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1728 {
1729 struct page *page;
1730 int nr_pages;
1731 int i;
1732
1733 #ifndef CONFIG_MMU
1734 /*
1735 * Nommu uses slab's for process anonymous memory allocations, and thus
1736 * requires __GFP_COMP to properly refcount higher order allocations
1737 */
1738 flags |= __GFP_COMP;
1739 #endif
1740
1741 flags |= cachep->gfpflags;
1742 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1743 flags |= __GFP_RECLAIMABLE;
1744
1745 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1746 if (!page)
1747 return NULL;
1748
1749 nr_pages = (1 << cachep->gfporder);
1750 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1751 add_zone_page_state(page_zone(page),
1752 NR_SLAB_RECLAIMABLE, nr_pages);
1753 else
1754 add_zone_page_state(page_zone(page),
1755 NR_SLAB_UNRECLAIMABLE, nr_pages);
1756 for (i = 0; i < nr_pages; i++)
1757 __SetPageSlab(page + i);
1758
1759 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1760 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1761
1762 if (cachep->ctor)
1763 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1764 else
1765 kmemcheck_mark_unallocated_pages(page, nr_pages);
1766 }
1767
1768 return page_address(page);
1769 }
1770
1771 /*
1772 * Interface to system's page release.
1773 */
1774 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1775 {
1776 unsigned long i = (1 << cachep->gfporder);
1777 struct page *page = virt_to_page(addr);
1778 const unsigned long nr_freed = i;
1779
1780 kmemcheck_free_shadow(page, cachep->gfporder);
1781
1782 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1783 sub_zone_page_state(page_zone(page),
1784 NR_SLAB_RECLAIMABLE, nr_freed);
1785 else
1786 sub_zone_page_state(page_zone(page),
1787 NR_SLAB_UNRECLAIMABLE, nr_freed);
1788 while (i--) {
1789 BUG_ON(!PageSlab(page));
1790 __ClearPageSlab(page);
1791 page++;
1792 }
1793 if (current->reclaim_state)
1794 current->reclaim_state->reclaimed_slab += nr_freed;
1795 free_pages((unsigned long)addr, cachep->gfporder);
1796 }
1797
1798 static void kmem_rcu_free(struct rcu_head *head)
1799 {
1800 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1801 struct kmem_cache *cachep = slab_rcu->cachep;
1802
1803 kmem_freepages(cachep, slab_rcu->addr);
1804 if (OFF_SLAB(cachep))
1805 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1806 }
1807
1808 #if DEBUG
1809
1810 #ifdef CONFIG_DEBUG_PAGEALLOC
1811 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1812 unsigned long caller)
1813 {
1814 int size = obj_size(cachep);
1815
1816 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1817
1818 if (size < 5 * sizeof(unsigned long))
1819 return;
1820
1821 *addr++ = 0x12345678;
1822 *addr++ = caller;
1823 *addr++ = smp_processor_id();
1824 size -= 3 * sizeof(unsigned long);
1825 {
1826 unsigned long *sptr = &caller;
1827 unsigned long svalue;
1828
1829 while (!kstack_end(sptr)) {
1830 svalue = *sptr++;
1831 if (kernel_text_address(svalue)) {
1832 *addr++ = svalue;
1833 size -= sizeof(unsigned long);
1834 if (size <= sizeof(unsigned long))
1835 break;
1836 }
1837 }
1838
1839 }
1840 *addr++ = 0x87654321;
1841 }
1842 #endif
1843
1844 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1845 {
1846 int size = obj_size(cachep);
1847 addr = &((char *)addr)[obj_offset(cachep)];
1848
1849 memset(addr, val, size);
1850 *(unsigned char *)(addr + size - 1) = POISON_END;
1851 }
1852
1853 static void dump_line(char *data, int offset, int limit)
1854 {
1855 int i;
1856 unsigned char error = 0;
1857 int bad_count = 0;
1858
1859 printk(KERN_ERR "%03x: ", offset);
1860 for (i = 0; i < limit; i++) {
1861 if (data[offset + i] != POISON_FREE) {
1862 error = data[offset + i];
1863 bad_count++;
1864 }
1865 }
1866 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1867 &data[offset], limit, 1);
1868
1869 if (bad_count == 1) {
1870 error ^= POISON_FREE;
1871 if (!(error & (error - 1))) {
1872 printk(KERN_ERR "Single bit error detected. Probably "
1873 "bad RAM.\n");
1874 #ifdef CONFIG_X86
1875 printk(KERN_ERR "Run memtest86+ or a similar memory "
1876 "test tool.\n");
1877 #else
1878 printk(KERN_ERR "Run a memory test tool.\n");
1879 #endif
1880 }
1881 }
1882 }
1883 #endif
1884
1885 #if DEBUG
1886
1887 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1888 {
1889 int i, size;
1890 char *realobj;
1891
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1894 *dbg_redzone1(cachep, objp),
1895 *dbg_redzone2(cachep, objp));
1896 }
1897
1898 if (cachep->flags & SLAB_STORE_USER) {
1899 printk(KERN_ERR "Last user: [<%p>]",
1900 *dbg_userword(cachep, objp));
1901 print_symbol("(%s)",
1902 (unsigned long)*dbg_userword(cachep, objp));
1903 printk("\n");
1904 }
1905 realobj = (char *)objp + obj_offset(cachep);
1906 size = obj_size(cachep);
1907 for (i = 0; i < size && lines; i += 16, lines--) {
1908 int limit;
1909 limit = 16;
1910 if (i + limit > size)
1911 limit = size - i;
1912 dump_line(realobj, i, limit);
1913 }
1914 }
1915
1916 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1917 {
1918 char *realobj;
1919 int size, i;
1920 int lines = 0;
1921
1922 realobj = (char *)objp + obj_offset(cachep);
1923 size = obj_size(cachep);
1924
1925 for (i = 0; i < size; i++) {
1926 char exp = POISON_FREE;
1927 if (i == size - 1)
1928 exp = POISON_END;
1929 if (realobj[i] != exp) {
1930 int limit;
1931 /* Mismatch ! */
1932 /* Print header */
1933 if (lines == 0) {
1934 printk(KERN_ERR
1935 "Slab corruption: %s start=%p, len=%d\n",
1936 cachep->name, realobj, size);
1937 print_objinfo(cachep, objp, 0);
1938 }
1939 /* Hexdump the affected line */
1940 i = (i / 16) * 16;
1941 limit = 16;
1942 if (i + limit > size)
1943 limit = size - i;
1944 dump_line(realobj, i, limit);
1945 i += 16;
1946 lines++;
1947 /* Limit to 5 lines */
1948 if (lines > 5)
1949 break;
1950 }
1951 }
1952 if (lines != 0) {
1953 /* Print some data about the neighboring objects, if they
1954 * exist:
1955 */
1956 struct slab *slabp = virt_to_slab(objp);
1957 unsigned int objnr;
1958
1959 objnr = obj_to_index(cachep, slabp, objp);
1960 if (objnr) {
1961 objp = index_to_obj(cachep, slabp, objnr - 1);
1962 realobj = (char *)objp + obj_offset(cachep);
1963 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1964 realobj, size);
1965 print_objinfo(cachep, objp, 2);
1966 }
1967 if (objnr + 1 < cachep->num) {
1968 objp = index_to_obj(cachep, slabp, objnr + 1);
1969 realobj = (char *)objp + obj_offset(cachep);
1970 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1971 realobj, size);
1972 print_objinfo(cachep, objp, 2);
1973 }
1974 }
1975 }
1976 #endif
1977
1978 #if DEBUG
1979 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1980 {
1981 int i;
1982 for (i = 0; i < cachep->num; i++) {
1983 void *objp = index_to_obj(cachep, slabp, i);
1984
1985 if (cachep->flags & SLAB_POISON) {
1986 #ifdef CONFIG_DEBUG_PAGEALLOC
1987 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1988 OFF_SLAB(cachep))
1989 kernel_map_pages(virt_to_page(objp),
1990 cachep->buffer_size / PAGE_SIZE, 1);
1991 else
1992 check_poison_obj(cachep, objp);
1993 #else
1994 check_poison_obj(cachep, objp);
1995 #endif
1996 }
1997 if (cachep->flags & SLAB_RED_ZONE) {
1998 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1999 slab_error(cachep, "start of a freed object "
2000 "was overwritten");
2001 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2002 slab_error(cachep, "end of a freed object "
2003 "was overwritten");
2004 }
2005 }
2006 }
2007 #else
2008 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2009 {
2010 }
2011 #endif
2012
2013 /**
2014 * slab_destroy - destroy and release all objects in a slab
2015 * @cachep: cache pointer being destroyed
2016 * @slabp: slab pointer being destroyed
2017 *
2018 * Destroy all the objs in a slab, and release the mem back to the system.
2019 * Before calling the slab must have been unlinked from the cache. The
2020 * cache-lock is not held/needed.
2021 */
2022 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2023 {
2024 void *addr = slabp->s_mem - slabp->colouroff;
2025
2026 slab_destroy_debugcheck(cachep, slabp);
2027 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2028 struct slab_rcu *slab_rcu;
2029
2030 slab_rcu = (struct slab_rcu *)slabp;
2031 slab_rcu->cachep = cachep;
2032 slab_rcu->addr = addr;
2033 call_rcu(&slab_rcu->head, kmem_rcu_free);
2034 } else {
2035 kmem_freepages(cachep, addr);
2036 if (OFF_SLAB(cachep))
2037 kmem_cache_free(cachep->slabp_cache, slabp);
2038 }
2039 }
2040
2041 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2042 {
2043 int i;
2044 struct kmem_list3 *l3;
2045
2046 for_each_online_cpu(i)
2047 kfree(cachep->array[i]);
2048
2049 /* NUMA: free the list3 structures */
2050 for_each_online_node(i) {
2051 l3 = cachep->nodelists[i];
2052 if (l3) {
2053 kfree(l3->shared);
2054 free_alien_cache(l3->alien);
2055 kfree(l3);
2056 }
2057 }
2058 kmem_cache_free(&cache_cache, cachep);
2059 }
2060
2061
2062 /**
2063 * calculate_slab_order - calculate size (page order) of slabs
2064 * @cachep: pointer to the cache that is being created
2065 * @size: size of objects to be created in this cache.
2066 * @align: required alignment for the objects.
2067 * @flags: slab allocation flags
2068 *
2069 * Also calculates the number of objects per slab.
2070 *
2071 * This could be made much more intelligent. For now, try to avoid using
2072 * high order pages for slabs. When the gfp() functions are more friendly
2073 * towards high-order requests, this should be changed.
2074 */
2075 static size_t calculate_slab_order(struct kmem_cache *cachep,
2076 size_t size, size_t align, unsigned long flags)
2077 {
2078 unsigned long offslab_limit;
2079 size_t left_over = 0;
2080 int gfporder;
2081
2082 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2083 unsigned int num;
2084 size_t remainder;
2085
2086 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2087 if (!num)
2088 continue;
2089
2090 if (flags & CFLGS_OFF_SLAB) {
2091 /*
2092 * Max number of objs-per-slab for caches which
2093 * use off-slab slabs. Needed to avoid a possible
2094 * looping condition in cache_grow().
2095 */
2096 offslab_limit = size - sizeof(struct slab);
2097 offslab_limit /= sizeof(kmem_bufctl_t);
2098
2099 if (num > offslab_limit)
2100 break;
2101 }
2102
2103 /* Found something acceptable - save it away */
2104 cachep->num = num;
2105 cachep->gfporder = gfporder;
2106 left_over = remainder;
2107
2108 /*
2109 * A VFS-reclaimable slab tends to have most allocations
2110 * as GFP_NOFS and we really don't want to have to be allocating
2111 * higher-order pages when we are unable to shrink dcache.
2112 */
2113 if (flags & SLAB_RECLAIM_ACCOUNT)
2114 break;
2115
2116 /*
2117 * Large number of objects is good, but very large slabs are
2118 * currently bad for the gfp()s.
2119 */
2120 if (gfporder >= slab_break_gfp_order)
2121 break;
2122
2123 /*
2124 * Acceptable internal fragmentation?
2125 */
2126 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2127 break;
2128 }
2129 return left_over;
2130 }
2131
2132 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2133 {
2134 if (g_cpucache_up == FULL)
2135 return enable_cpucache(cachep, gfp);
2136
2137 if (g_cpucache_up == NONE) {
2138 /*
2139 * Note: the first kmem_cache_create must create the cache
2140 * that's used by kmalloc(24), otherwise the creation of
2141 * further caches will BUG().
2142 */
2143 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2144
2145 /*
2146 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2147 * the first cache, then we need to set up all its list3s,
2148 * otherwise the creation of further caches will BUG().
2149 */
2150 set_up_list3s(cachep, SIZE_AC);
2151 if (INDEX_AC == INDEX_L3)
2152 g_cpucache_up = PARTIAL_L3;
2153 else
2154 g_cpucache_up = PARTIAL_AC;
2155 } else {
2156 cachep->array[smp_processor_id()] =
2157 kmalloc(sizeof(struct arraycache_init), gfp);
2158
2159 if (g_cpucache_up == PARTIAL_AC) {
2160 set_up_list3s(cachep, SIZE_L3);
2161 g_cpucache_up = PARTIAL_L3;
2162 } else {
2163 int node;
2164 for_each_online_node(node) {
2165 cachep->nodelists[node] =
2166 kmalloc_node(sizeof(struct kmem_list3),
2167 gfp, node);
2168 BUG_ON(!cachep->nodelists[node]);
2169 kmem_list3_init(cachep->nodelists[node]);
2170 }
2171 }
2172 }
2173 cachep->nodelists[numa_mem_id()]->next_reap =
2174 jiffies + REAPTIMEOUT_LIST3 +
2175 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2176
2177 cpu_cache_get(cachep)->avail = 0;
2178 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2179 cpu_cache_get(cachep)->batchcount = 1;
2180 cpu_cache_get(cachep)->touched = 0;
2181 cachep->batchcount = 1;
2182 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2183 return 0;
2184 }
2185
2186 /**
2187 * kmem_cache_create - Create a cache.
2188 * @name: A string which is used in /proc/slabinfo to identify this cache.
2189 * @size: The size of objects to be created in this cache.
2190 * @align: The required alignment for the objects.
2191 * @flags: SLAB flags
2192 * @ctor: A constructor for the objects.
2193 *
2194 * Returns a ptr to the cache on success, NULL on failure.
2195 * Cannot be called within a int, but can be interrupted.
2196 * The @ctor is run when new pages are allocated by the cache.
2197 *
2198 * @name must be valid until the cache is destroyed. This implies that
2199 * the module calling this has to destroy the cache before getting unloaded.
2200 *
2201 * The flags are
2202 *
2203 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2204 * to catch references to uninitialised memory.
2205 *
2206 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2207 * for buffer overruns.
2208 *
2209 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2210 * cacheline. This can be beneficial if you're counting cycles as closely
2211 * as davem.
2212 */
2213 struct kmem_cache *
2214 kmem_cache_create (const char *name, size_t size, size_t align,
2215 unsigned long flags, void (*ctor)(void *))
2216 {
2217 size_t left_over, slab_size, ralign;
2218 struct kmem_cache *cachep = NULL, *pc;
2219 gfp_t gfp;
2220
2221 /*
2222 * Sanity checks... these are all serious usage bugs.
2223 */
2224 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2225 size > KMALLOC_MAX_SIZE) {
2226 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2227 name);
2228 BUG();
2229 }
2230
2231 /*
2232 * We use cache_chain_mutex to ensure a consistent view of
2233 * cpu_online_mask as well. Please see cpuup_callback
2234 */
2235 if (slab_is_available()) {
2236 get_online_cpus();
2237 mutex_lock(&cache_chain_mutex);
2238 }
2239
2240 list_for_each_entry(pc, &cache_chain, next) {
2241 char tmp;
2242 int res;
2243
2244 /*
2245 * This happens when the module gets unloaded and doesn't
2246 * destroy its slab cache and no-one else reuses the vmalloc
2247 * area of the module. Print a warning.
2248 */
2249 res = probe_kernel_address(pc->name, tmp);
2250 if (res) {
2251 printk(KERN_ERR
2252 "SLAB: cache with size %d has lost its name\n",
2253 pc->buffer_size);
2254 continue;
2255 }
2256
2257 if (!strcmp(pc->name, name)) {
2258 printk(KERN_ERR
2259 "kmem_cache_create: duplicate cache %s\n", name);
2260 dump_stack();
2261 goto oops;
2262 }
2263 }
2264
2265 #if DEBUG
2266 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2267 #if FORCED_DEBUG
2268 /*
2269 * Enable redzoning and last user accounting, except for caches with
2270 * large objects, if the increased size would increase the object size
2271 * above the next power of two: caches with object sizes just above a
2272 * power of two have a significant amount of internal fragmentation.
2273 */
2274 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2275 2 * sizeof(unsigned long long)))
2276 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2277 if (!(flags & SLAB_DESTROY_BY_RCU))
2278 flags |= SLAB_POISON;
2279 #endif
2280 if (flags & SLAB_DESTROY_BY_RCU)
2281 BUG_ON(flags & SLAB_POISON);
2282 #endif
2283 /*
2284 * Always checks flags, a caller might be expecting debug support which
2285 * isn't available.
2286 */
2287 BUG_ON(flags & ~CREATE_MASK);
2288
2289 /*
2290 * Check that size is in terms of words. This is needed to avoid
2291 * unaligned accesses for some archs when redzoning is used, and makes
2292 * sure any on-slab bufctl's are also correctly aligned.
2293 */
2294 if (size & (BYTES_PER_WORD - 1)) {
2295 size += (BYTES_PER_WORD - 1);
2296 size &= ~(BYTES_PER_WORD - 1);
2297 }
2298
2299 /* calculate the final buffer alignment: */
2300
2301 /* 1) arch recommendation: can be overridden for debug */
2302 if (flags & SLAB_HWCACHE_ALIGN) {
2303 /*
2304 * Default alignment: as specified by the arch code. Except if
2305 * an object is really small, then squeeze multiple objects into
2306 * one cacheline.
2307 */
2308 ralign = cache_line_size();
2309 while (size <= ralign / 2)
2310 ralign /= 2;
2311 } else {
2312 ralign = BYTES_PER_WORD;
2313 }
2314
2315 /*
2316 * Redzoning and user store require word alignment or possibly larger.
2317 * Note this will be overridden by architecture or caller mandated
2318 * alignment if either is greater than BYTES_PER_WORD.
2319 */
2320 if (flags & SLAB_STORE_USER)
2321 ralign = BYTES_PER_WORD;
2322
2323 if (flags & SLAB_RED_ZONE) {
2324 ralign = REDZONE_ALIGN;
2325 /* If redzoning, ensure that the second redzone is suitably
2326 * aligned, by adjusting the object size accordingly. */
2327 size += REDZONE_ALIGN - 1;
2328 size &= ~(REDZONE_ALIGN - 1);
2329 }
2330
2331 /* 2) arch mandated alignment */
2332 if (ralign < ARCH_SLAB_MINALIGN) {
2333 ralign = ARCH_SLAB_MINALIGN;
2334 }
2335 /* 3) caller mandated alignment */
2336 if (ralign < align) {
2337 ralign = align;
2338 }
2339 /* disable debug if necessary */
2340 if (ralign > __alignof__(unsigned long long))
2341 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2342 /*
2343 * 4) Store it.
2344 */
2345 align = ralign;
2346
2347 if (slab_is_available())
2348 gfp = GFP_KERNEL;
2349 else
2350 gfp = GFP_NOWAIT;
2351
2352 /* Get cache's description obj. */
2353 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2354 if (!cachep)
2355 goto oops;
2356
2357 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2358 #if DEBUG
2359 cachep->obj_size = size;
2360
2361 /*
2362 * Both debugging options require word-alignment which is calculated
2363 * into align above.
2364 */
2365 if (flags & SLAB_RED_ZONE) {
2366 /* add space for red zone words */
2367 cachep->obj_offset += sizeof(unsigned long long);
2368 size += 2 * sizeof(unsigned long long);
2369 }
2370 if (flags & SLAB_STORE_USER) {
2371 /* user store requires one word storage behind the end of
2372 * the real object. But if the second red zone needs to be
2373 * aligned to 64 bits, we must allow that much space.
2374 */
2375 if (flags & SLAB_RED_ZONE)
2376 size += REDZONE_ALIGN;
2377 else
2378 size += BYTES_PER_WORD;
2379 }
2380 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2381 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2382 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2383 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2384 size = PAGE_SIZE;
2385 }
2386 #endif
2387 #endif
2388
2389 /*
2390 * Determine if the slab management is 'on' or 'off' slab.
2391 * (bootstrapping cannot cope with offslab caches so don't do
2392 * it too early on. Always use on-slab management when
2393 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2394 */
2395 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2396 !(flags & SLAB_NOLEAKTRACE))
2397 /*
2398 * Size is large, assume best to place the slab management obj
2399 * off-slab (should allow better packing of objs).
2400 */
2401 flags |= CFLGS_OFF_SLAB;
2402
2403 size = ALIGN(size, align);
2404
2405 left_over = calculate_slab_order(cachep, size, align, flags);
2406
2407 if (!cachep->num) {
2408 printk(KERN_ERR
2409 "kmem_cache_create: couldn't create cache %s.\n", name);
2410 kmem_cache_free(&cache_cache, cachep);
2411 cachep = NULL;
2412 goto oops;
2413 }
2414 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2415 + sizeof(struct slab), align);
2416
2417 /*
2418 * If the slab has been placed off-slab, and we have enough space then
2419 * move it on-slab. This is at the expense of any extra colouring.
2420 */
2421 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2422 flags &= ~CFLGS_OFF_SLAB;
2423 left_over -= slab_size;
2424 }
2425
2426 if (flags & CFLGS_OFF_SLAB) {
2427 /* really off slab. No need for manual alignment */
2428 slab_size =
2429 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2430
2431 #ifdef CONFIG_PAGE_POISONING
2432 /* If we're going to use the generic kernel_map_pages()
2433 * poisoning, then it's going to smash the contents of
2434 * the redzone and userword anyhow, so switch them off.
2435 */
2436 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2437 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2438 #endif
2439 }
2440
2441 cachep->colour_off = cache_line_size();
2442 /* Offset must be a multiple of the alignment. */
2443 if (cachep->colour_off < align)
2444 cachep->colour_off = align;
2445 cachep->colour = left_over / cachep->colour_off;
2446 cachep->slab_size = slab_size;
2447 cachep->flags = flags;
2448 cachep->gfpflags = 0;
2449 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2450 cachep->gfpflags |= GFP_DMA;
2451 cachep->buffer_size = size;
2452 cachep->reciprocal_buffer_size = reciprocal_value(size);
2453
2454 if (flags & CFLGS_OFF_SLAB) {
2455 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2456 /*
2457 * This is a possibility for one of the malloc_sizes caches.
2458 * But since we go off slab only for object size greater than
2459 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2460 * this should not happen at all.
2461 * But leave a BUG_ON for some lucky dude.
2462 */
2463 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2464 }
2465 cachep->ctor = ctor;
2466 cachep->name = name;
2467
2468 if (setup_cpu_cache(cachep, gfp)) {
2469 __kmem_cache_destroy(cachep);
2470 cachep = NULL;
2471 goto oops;
2472 }
2473
2474 if (flags & SLAB_DEBUG_OBJECTS) {
2475 /*
2476 * Would deadlock through slab_destroy()->call_rcu()->
2477 * debug_object_activate()->kmem_cache_alloc().
2478 */
2479 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2480
2481 slab_set_debugobj_lock_classes(cachep);
2482 }
2483
2484 /* cache setup completed, link it into the list */
2485 list_add(&cachep->next, &cache_chain);
2486 oops:
2487 if (!cachep && (flags & SLAB_PANIC))
2488 panic("kmem_cache_create(): failed to create slab `%s'\n",
2489 name);
2490 if (slab_is_available()) {
2491 mutex_unlock(&cache_chain_mutex);
2492 put_online_cpus();
2493 }
2494 return cachep;
2495 }
2496 EXPORT_SYMBOL(kmem_cache_create);
2497
2498 #if DEBUG
2499 static void check_irq_off(void)
2500 {
2501 BUG_ON(!irqs_disabled());
2502 }
2503
2504 static void check_irq_on(void)
2505 {
2506 BUG_ON(irqs_disabled());
2507 }
2508
2509 static void check_spinlock_acquired(struct kmem_cache *cachep)
2510 {
2511 #ifdef CONFIG_SMP
2512 check_irq_off();
2513 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2514 #endif
2515 }
2516
2517 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2518 {
2519 #ifdef CONFIG_SMP
2520 check_irq_off();
2521 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2522 #endif
2523 }
2524
2525 #else
2526 #define check_irq_off() do { } while(0)
2527 #define check_irq_on() do { } while(0)
2528 #define check_spinlock_acquired(x) do { } while(0)
2529 #define check_spinlock_acquired_node(x, y) do { } while(0)
2530 #endif
2531
2532 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2533 struct array_cache *ac,
2534 int force, int node);
2535
2536 static void do_drain(void *arg)
2537 {
2538 struct kmem_cache *cachep = arg;
2539 struct array_cache *ac;
2540 int node = numa_mem_id();
2541
2542 check_irq_off();
2543 ac = cpu_cache_get(cachep);
2544 spin_lock(&cachep->nodelists[node]->list_lock);
2545 free_block(cachep, ac->entry, ac->avail, node);
2546 spin_unlock(&cachep->nodelists[node]->list_lock);
2547 ac->avail = 0;
2548 }
2549
2550 static void drain_cpu_caches(struct kmem_cache *cachep)
2551 {
2552 struct kmem_list3 *l3;
2553 int node;
2554
2555 on_each_cpu(do_drain, cachep, 1);
2556 check_irq_on();
2557 for_each_online_node(node) {
2558 l3 = cachep->nodelists[node];
2559 if (l3 && l3->alien)
2560 drain_alien_cache(cachep, l3->alien);
2561 }
2562
2563 for_each_online_node(node) {
2564 l3 = cachep->nodelists[node];
2565 if (l3)
2566 drain_array(cachep, l3, l3->shared, 1, node);
2567 }
2568 }
2569
2570 /*
2571 * Remove slabs from the list of free slabs.
2572 * Specify the number of slabs to drain in tofree.
2573 *
2574 * Returns the actual number of slabs released.
2575 */
2576 static int drain_freelist(struct kmem_cache *cache,
2577 struct kmem_list3 *l3, int tofree)
2578 {
2579 struct list_head *p;
2580 int nr_freed;
2581 struct slab *slabp;
2582
2583 nr_freed = 0;
2584 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2585
2586 spin_lock_irq(&l3->list_lock);
2587 p = l3->slabs_free.prev;
2588 if (p == &l3->slabs_free) {
2589 spin_unlock_irq(&l3->list_lock);
2590 goto out;
2591 }
2592
2593 slabp = list_entry(p, struct slab, list);
2594 #if DEBUG
2595 BUG_ON(slabp->inuse);
2596 #endif
2597 list_del(&slabp->list);
2598 /*
2599 * Safe to drop the lock. The slab is no longer linked
2600 * to the cache.
2601 */
2602 l3->free_objects -= cache->num;
2603 spin_unlock_irq(&l3->list_lock);
2604 slab_destroy(cache, slabp);
2605 nr_freed++;
2606 }
2607 out:
2608 return nr_freed;
2609 }
2610
2611 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2612 static int __cache_shrink(struct kmem_cache *cachep)
2613 {
2614 int ret = 0, i = 0;
2615 struct kmem_list3 *l3;
2616
2617 drain_cpu_caches(cachep);
2618
2619 check_irq_on();
2620 for_each_online_node(i) {
2621 l3 = cachep->nodelists[i];
2622 if (!l3)
2623 continue;
2624
2625 drain_freelist(cachep, l3, l3->free_objects);
2626
2627 ret += !list_empty(&l3->slabs_full) ||
2628 !list_empty(&l3->slabs_partial);
2629 }
2630 return (ret ? 1 : 0);
2631 }
2632
2633 /**
2634 * kmem_cache_shrink - Shrink a cache.
2635 * @cachep: The cache to shrink.
2636 *
2637 * Releases as many slabs as possible for a cache.
2638 * To help debugging, a zero exit status indicates all slabs were released.
2639 */
2640 int kmem_cache_shrink(struct kmem_cache *cachep)
2641 {
2642 int ret;
2643 BUG_ON(!cachep || in_interrupt());
2644
2645 get_online_cpus();
2646 mutex_lock(&cache_chain_mutex);
2647 ret = __cache_shrink(cachep);
2648 mutex_unlock(&cache_chain_mutex);
2649 put_online_cpus();
2650 return ret;
2651 }
2652 EXPORT_SYMBOL(kmem_cache_shrink);
2653
2654 /**
2655 * kmem_cache_destroy - delete a cache
2656 * @cachep: the cache to destroy
2657 *
2658 * Remove a &struct kmem_cache object from the slab cache.
2659 *
2660 * It is expected this function will be called by a module when it is
2661 * unloaded. This will remove the cache completely, and avoid a duplicate
2662 * cache being allocated each time a module is loaded and unloaded, if the
2663 * module doesn't have persistent in-kernel storage across loads and unloads.
2664 *
2665 * The cache must be empty before calling this function.
2666 *
2667 * The caller must guarantee that no one will allocate memory from the cache
2668 * during the kmem_cache_destroy().
2669 */
2670 void kmem_cache_destroy(struct kmem_cache *cachep)
2671 {
2672 BUG_ON(!cachep || in_interrupt());
2673
2674 /* Find the cache in the chain of caches. */
2675 get_online_cpus();
2676 mutex_lock(&cache_chain_mutex);
2677 /*
2678 * the chain is never empty, cache_cache is never destroyed
2679 */
2680 list_del(&cachep->next);
2681 if (__cache_shrink(cachep)) {
2682 slab_error(cachep, "Can't free all objects");
2683 list_add(&cachep->next, &cache_chain);
2684 mutex_unlock(&cache_chain_mutex);
2685 put_online_cpus();
2686 return;
2687 }
2688
2689 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2690 rcu_barrier();
2691
2692 __kmem_cache_destroy(cachep);
2693 mutex_unlock(&cache_chain_mutex);
2694 put_online_cpus();
2695 }
2696 EXPORT_SYMBOL(kmem_cache_destroy);
2697
2698 /*
2699 * Get the memory for a slab management obj.
2700 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2701 * always come from malloc_sizes caches. The slab descriptor cannot
2702 * come from the same cache which is getting created because,
2703 * when we are searching for an appropriate cache for these
2704 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2705 * If we are creating a malloc_sizes cache here it would not be visible to
2706 * kmem_find_general_cachep till the initialization is complete.
2707 * Hence we cannot have slabp_cache same as the original cache.
2708 */
2709 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2710 int colour_off, gfp_t local_flags,
2711 int nodeid)
2712 {
2713 struct slab *slabp;
2714
2715 if (OFF_SLAB(cachep)) {
2716 /* Slab management obj is off-slab. */
2717 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2718 local_flags, nodeid);
2719 /*
2720 * If the first object in the slab is leaked (it's allocated
2721 * but no one has a reference to it), we want to make sure
2722 * kmemleak does not treat the ->s_mem pointer as a reference
2723 * to the object. Otherwise we will not report the leak.
2724 */
2725 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2726 local_flags);
2727 if (!slabp)
2728 return NULL;
2729 } else {
2730 slabp = objp + colour_off;
2731 colour_off += cachep->slab_size;
2732 }
2733 slabp->inuse = 0;
2734 slabp->colouroff = colour_off;
2735 slabp->s_mem = objp + colour_off;
2736 slabp->nodeid = nodeid;
2737 slabp->free = 0;
2738 return slabp;
2739 }
2740
2741 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2742 {
2743 return (kmem_bufctl_t *) (slabp + 1);
2744 }
2745
2746 static void cache_init_objs(struct kmem_cache *cachep,
2747 struct slab *slabp)
2748 {
2749 int i;
2750
2751 for (i = 0; i < cachep->num; i++) {
2752 void *objp = index_to_obj(cachep, slabp, i);
2753 #if DEBUG
2754 /* need to poison the objs? */
2755 if (cachep->flags & SLAB_POISON)
2756 poison_obj(cachep, objp, POISON_FREE);
2757 if (cachep->flags & SLAB_STORE_USER)
2758 *dbg_userword(cachep, objp) = NULL;
2759
2760 if (cachep->flags & SLAB_RED_ZONE) {
2761 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2762 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2763 }
2764 /*
2765 * Constructors are not allowed to allocate memory from the same
2766 * cache which they are a constructor for. Otherwise, deadlock.
2767 * They must also be threaded.
2768 */
2769 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2770 cachep->ctor(objp + obj_offset(cachep));
2771
2772 if (cachep->flags & SLAB_RED_ZONE) {
2773 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2774 slab_error(cachep, "constructor overwrote the"
2775 " end of an object");
2776 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2777 slab_error(cachep, "constructor overwrote the"
2778 " start of an object");
2779 }
2780 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2781 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2782 kernel_map_pages(virt_to_page(objp),
2783 cachep->buffer_size / PAGE_SIZE, 0);
2784 #else
2785 if (cachep->ctor)
2786 cachep->ctor(objp);
2787 #endif
2788 slab_bufctl(slabp)[i] = i + 1;
2789 }
2790 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2791 }
2792
2793 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2794 {
2795 if (CONFIG_ZONE_DMA_FLAG) {
2796 if (flags & GFP_DMA)
2797 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2798 else
2799 BUG_ON(cachep->gfpflags & GFP_DMA);
2800 }
2801 }
2802
2803 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2804 int nodeid)
2805 {
2806 void *objp = index_to_obj(cachep, slabp, slabp->free);
2807 kmem_bufctl_t next;
2808
2809 slabp->inuse++;
2810 next = slab_bufctl(slabp)[slabp->free];
2811 #if DEBUG
2812 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2813 WARN_ON(slabp->nodeid != nodeid);
2814 #endif
2815 slabp->free = next;
2816
2817 return objp;
2818 }
2819
2820 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2821 void *objp, int nodeid)
2822 {
2823 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2824
2825 #if DEBUG
2826 /* Verify that the slab belongs to the intended node */
2827 WARN_ON(slabp->nodeid != nodeid);
2828
2829 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2830 printk(KERN_ERR "slab: double free detected in cache "
2831 "'%s', objp %p\n", cachep->name, objp);
2832 BUG();
2833 }
2834 #endif
2835 slab_bufctl(slabp)[objnr] = slabp->free;
2836 slabp->free = objnr;
2837 slabp->inuse--;
2838 }
2839
2840 /*
2841 * Map pages beginning at addr to the given cache and slab. This is required
2842 * for the slab allocator to be able to lookup the cache and slab of a
2843 * virtual address for kfree, ksize, and slab debugging.
2844 */
2845 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2846 void *addr)
2847 {
2848 int nr_pages;
2849 struct page *page;
2850
2851 page = virt_to_page(addr);
2852
2853 nr_pages = 1;
2854 if (likely(!PageCompound(page)))
2855 nr_pages <<= cache->gfporder;
2856
2857 do {
2858 page_set_cache(page, cache);
2859 page_set_slab(page, slab);
2860 page++;
2861 } while (--nr_pages);
2862 }
2863
2864 /*
2865 * Grow (by 1) the number of slabs within a cache. This is called by
2866 * kmem_cache_alloc() when there are no active objs left in a cache.
2867 */
2868 static int cache_grow(struct kmem_cache *cachep,
2869 gfp_t flags, int nodeid, void *objp)
2870 {
2871 struct slab *slabp;
2872 size_t offset;
2873 gfp_t local_flags;
2874 struct kmem_list3 *l3;
2875
2876 /*
2877 * Be lazy and only check for valid flags here, keeping it out of the
2878 * critical path in kmem_cache_alloc().
2879 */
2880 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2881 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2882
2883 /* Take the l3 list lock to change the colour_next on this node */
2884 check_irq_off();
2885 l3 = cachep->nodelists[nodeid];
2886 spin_lock(&l3->list_lock);
2887
2888 /* Get colour for the slab, and cal the next value. */
2889 offset = l3->colour_next;
2890 l3->colour_next++;
2891 if (l3->colour_next >= cachep->colour)
2892 l3->colour_next = 0;
2893 spin_unlock(&l3->list_lock);
2894
2895 offset *= cachep->colour_off;
2896
2897 if (local_flags & __GFP_WAIT)
2898 local_irq_enable();
2899
2900 /*
2901 * The test for missing atomic flag is performed here, rather than
2902 * the more obvious place, simply to reduce the critical path length
2903 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2904 * will eventually be caught here (where it matters).
2905 */
2906 kmem_flagcheck(cachep, flags);
2907
2908 /*
2909 * Get mem for the objs. Attempt to allocate a physical page from
2910 * 'nodeid'.
2911 */
2912 if (!objp)
2913 objp = kmem_getpages(cachep, local_flags, nodeid);
2914 if (!objp)
2915 goto failed;
2916
2917 /* Get slab management. */
2918 slabp = alloc_slabmgmt(cachep, objp, offset,
2919 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2920 if (!slabp)
2921 goto opps1;
2922
2923 slab_map_pages(cachep, slabp, objp);
2924
2925 cache_init_objs(cachep, slabp);
2926
2927 if (local_flags & __GFP_WAIT)
2928 local_irq_disable();
2929 check_irq_off();
2930 spin_lock(&l3->list_lock);
2931
2932 /* Make slab active. */
2933 list_add_tail(&slabp->list, &(l3->slabs_free));
2934 STATS_INC_GROWN(cachep);
2935 l3->free_objects += cachep->num;
2936 spin_unlock(&l3->list_lock);
2937 return 1;
2938 opps1:
2939 kmem_freepages(cachep, objp);
2940 failed:
2941 if (local_flags & __GFP_WAIT)
2942 local_irq_disable();
2943 return 0;
2944 }
2945
2946 #if DEBUG
2947
2948 /*
2949 * Perform extra freeing checks:
2950 * - detect bad pointers.
2951 * - POISON/RED_ZONE checking
2952 */
2953 static void kfree_debugcheck(const void *objp)
2954 {
2955 if (!virt_addr_valid(objp)) {
2956 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2957 (unsigned long)objp);
2958 BUG();
2959 }
2960 }
2961
2962 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2963 {
2964 unsigned long long redzone1, redzone2;
2965
2966 redzone1 = *dbg_redzone1(cache, obj);
2967 redzone2 = *dbg_redzone2(cache, obj);
2968
2969 /*
2970 * Redzone is ok.
2971 */
2972 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2973 return;
2974
2975 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2976 slab_error(cache, "double free detected");
2977 else
2978 slab_error(cache, "memory outside object was overwritten");
2979
2980 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2981 obj, redzone1, redzone2);
2982 }
2983
2984 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2985 void *caller)
2986 {
2987 struct page *page;
2988 unsigned int objnr;
2989 struct slab *slabp;
2990
2991 BUG_ON(virt_to_cache(objp) != cachep);
2992
2993 objp -= obj_offset(cachep);
2994 kfree_debugcheck(objp);
2995 page = virt_to_head_page(objp);
2996
2997 slabp = page_get_slab(page);
2998
2999 if (cachep->flags & SLAB_RED_ZONE) {
3000 verify_redzone_free(cachep, objp);
3001 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3002 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3003 }
3004 if (cachep->flags & SLAB_STORE_USER)
3005 *dbg_userword(cachep, objp) = caller;
3006
3007 objnr = obj_to_index(cachep, slabp, objp);
3008
3009 BUG_ON(objnr >= cachep->num);
3010 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3011
3012 #ifdef CONFIG_DEBUG_SLAB_LEAK
3013 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3014 #endif
3015 if (cachep->flags & SLAB_POISON) {
3016 #ifdef CONFIG_DEBUG_PAGEALLOC
3017 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3018 store_stackinfo(cachep, objp, (unsigned long)caller);
3019 kernel_map_pages(virt_to_page(objp),
3020 cachep->buffer_size / PAGE_SIZE, 0);
3021 } else {
3022 poison_obj(cachep, objp, POISON_FREE);
3023 }
3024 #else
3025 poison_obj(cachep, objp, POISON_FREE);
3026 #endif
3027 }
3028 return objp;
3029 }
3030
3031 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3032 {
3033 kmem_bufctl_t i;
3034 int entries = 0;
3035
3036 /* Check slab's freelist to see if this obj is there. */
3037 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3038 entries++;
3039 if (entries > cachep->num || i >= cachep->num)
3040 goto bad;
3041 }
3042 if (entries != cachep->num - slabp->inuse) {
3043 bad:
3044 printk(KERN_ERR "slab: Internal list corruption detected in "
3045 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3046 cachep->name, cachep->num, slabp, slabp->inuse);
3047 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3048 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3049 1);
3050 BUG();
3051 }
3052 }
3053 #else
3054 #define kfree_debugcheck(x) do { } while(0)
3055 #define cache_free_debugcheck(x,objp,z) (objp)
3056 #define check_slabp(x,y) do { } while(0)
3057 #endif
3058
3059 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3060 {
3061 int batchcount;
3062 struct kmem_list3 *l3;
3063 struct array_cache *ac;
3064 int node;
3065
3066 retry:
3067 check_irq_off();
3068 node = numa_mem_id();
3069 ac = cpu_cache_get(cachep);
3070 batchcount = ac->batchcount;
3071 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3072 /*
3073 * If there was little recent activity on this cache, then
3074 * perform only a partial refill. Otherwise we could generate
3075 * refill bouncing.
3076 */
3077 batchcount = BATCHREFILL_LIMIT;
3078 }
3079 l3 = cachep->nodelists[node];
3080
3081 BUG_ON(ac->avail > 0 || !l3);
3082 spin_lock(&l3->list_lock);
3083
3084 /* See if we can refill from the shared array */
3085 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3086 l3->shared->touched = 1;
3087 goto alloc_done;
3088 }
3089
3090 while (batchcount > 0) {
3091 struct list_head *entry;
3092 struct slab *slabp;
3093 /* Get slab alloc is to come from. */
3094 entry = l3->slabs_partial.next;
3095 if (entry == &l3->slabs_partial) {
3096 l3->free_touched = 1;
3097 entry = l3->slabs_free.next;
3098 if (entry == &l3->slabs_free)
3099 goto must_grow;
3100 }
3101
3102 slabp = list_entry(entry, struct slab, list);
3103 check_slabp(cachep, slabp);
3104 check_spinlock_acquired(cachep);
3105
3106 /*
3107 * The slab was either on partial or free list so
3108 * there must be at least one object available for
3109 * allocation.
3110 */
3111 BUG_ON(slabp->inuse >= cachep->num);
3112
3113 while (slabp->inuse < cachep->num && batchcount--) {
3114 STATS_INC_ALLOCED(cachep);
3115 STATS_INC_ACTIVE(cachep);
3116 STATS_SET_HIGH(cachep);
3117
3118 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3119 node);
3120 }
3121 check_slabp(cachep, slabp);
3122
3123 /* move slabp to correct slabp list: */
3124 list_del(&slabp->list);
3125 if (slabp->free == BUFCTL_END)
3126 list_add(&slabp->list, &l3->slabs_full);
3127 else
3128 list_add(&slabp->list, &l3->slabs_partial);
3129 }
3130
3131 must_grow:
3132 l3->free_objects -= ac->avail;
3133 alloc_done:
3134 spin_unlock(&l3->list_lock);
3135
3136 if (unlikely(!ac->avail)) {
3137 int x;
3138 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3139
3140 /* cache_grow can reenable interrupts, then ac could change. */
3141 ac = cpu_cache_get(cachep);
3142 if (!x && ac->avail == 0) /* no objects in sight? abort */
3143 return NULL;
3144
3145 if (!ac->avail) /* objects refilled by interrupt? */
3146 goto retry;
3147 }
3148 ac->touched = 1;
3149 return ac->entry[--ac->avail];
3150 }
3151
3152 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3153 gfp_t flags)
3154 {
3155 might_sleep_if(flags & __GFP_WAIT);
3156 #if DEBUG
3157 kmem_flagcheck(cachep, flags);
3158 #endif
3159 }
3160
3161 #if DEBUG
3162 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3163 gfp_t flags, void *objp, void *caller)
3164 {
3165 if (!objp)
3166 return objp;
3167 if (cachep->flags & SLAB_POISON) {
3168 #ifdef CONFIG_DEBUG_PAGEALLOC
3169 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3170 kernel_map_pages(virt_to_page(objp),
3171 cachep->buffer_size / PAGE_SIZE, 1);
3172 else
3173 check_poison_obj(cachep, objp);
3174 #else
3175 check_poison_obj(cachep, objp);
3176 #endif
3177 poison_obj(cachep, objp, POISON_INUSE);
3178 }
3179 if (cachep->flags & SLAB_STORE_USER)
3180 *dbg_userword(cachep, objp) = caller;
3181
3182 if (cachep->flags & SLAB_RED_ZONE) {
3183 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3184 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3185 slab_error(cachep, "double free, or memory outside"
3186 " object was overwritten");
3187 printk(KERN_ERR
3188 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3189 objp, *dbg_redzone1(cachep, objp),
3190 *dbg_redzone2(cachep, objp));
3191 }
3192 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3193 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3194 }
3195 #ifdef CONFIG_DEBUG_SLAB_LEAK
3196 {
3197 struct slab *slabp;
3198 unsigned objnr;
3199
3200 slabp = page_get_slab(virt_to_head_page(objp));
3201 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3202 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3203 }
3204 #endif
3205 objp += obj_offset(cachep);
3206 if (cachep->ctor && cachep->flags & SLAB_POISON)
3207 cachep->ctor(objp);
3208 if (ARCH_SLAB_MINALIGN &&
3209 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3210 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3211 objp, (int)ARCH_SLAB_MINALIGN);
3212 }
3213 return objp;
3214 }
3215 #else
3216 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3217 #endif
3218
3219 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3220 {
3221 if (cachep == &cache_cache)
3222 return false;
3223
3224 return should_failslab(obj_size(cachep), flags, cachep->flags);
3225 }
3226
3227 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3228 {
3229 void *objp;
3230 struct array_cache *ac;
3231
3232 check_irq_off();
3233
3234 ac = cpu_cache_get(cachep);
3235 if (likely(ac->avail)) {
3236 STATS_INC_ALLOCHIT(cachep);
3237 ac->touched = 1;
3238 objp = ac->entry[--ac->avail];
3239 } else {
3240 STATS_INC_ALLOCMISS(cachep);
3241 objp = cache_alloc_refill(cachep, flags);
3242 /*
3243 * the 'ac' may be updated by cache_alloc_refill(),
3244 * and kmemleak_erase() requires its correct value.
3245 */
3246 ac = cpu_cache_get(cachep);
3247 }
3248 /*
3249 * To avoid a false negative, if an object that is in one of the
3250 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3251 * treat the array pointers as a reference to the object.
3252 */
3253 if (objp)
3254 kmemleak_erase(&ac->entry[ac->avail]);
3255 return objp;
3256 }
3257
3258 #ifdef CONFIG_NUMA
3259 /*
3260 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3261 *
3262 * If we are in_interrupt, then process context, including cpusets and
3263 * mempolicy, may not apply and should not be used for allocation policy.
3264 */
3265 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3266 {
3267 int nid_alloc, nid_here;
3268
3269 if (in_interrupt() || (flags & __GFP_THISNODE))
3270 return NULL;
3271 nid_alloc = nid_here = numa_mem_id();
3272 get_mems_allowed();
3273 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3274 nid_alloc = cpuset_slab_spread_node();
3275 else if (current->mempolicy)
3276 nid_alloc = slab_node(current->mempolicy);
3277 put_mems_allowed();
3278 if (nid_alloc != nid_here)
3279 return ____cache_alloc_node(cachep, flags, nid_alloc);
3280 return NULL;
3281 }
3282
3283 /*
3284 * Fallback function if there was no memory available and no objects on a
3285 * certain node and fall back is permitted. First we scan all the
3286 * available nodelists for available objects. If that fails then we
3287 * perform an allocation without specifying a node. This allows the page
3288 * allocator to do its reclaim / fallback magic. We then insert the
3289 * slab into the proper nodelist and then allocate from it.
3290 */
3291 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3292 {
3293 struct zonelist *zonelist;
3294 gfp_t local_flags;
3295 struct zoneref *z;
3296 struct zone *zone;
3297 enum zone_type high_zoneidx = gfp_zone(flags);
3298 void *obj = NULL;
3299 int nid;
3300
3301 if (flags & __GFP_THISNODE)
3302 return NULL;
3303
3304 get_mems_allowed();
3305 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3306 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3307
3308 retry:
3309 /*
3310 * Look through allowed nodes for objects available
3311 * from existing per node queues.
3312 */
3313 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3314 nid = zone_to_nid(zone);
3315
3316 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3317 cache->nodelists[nid] &&
3318 cache->nodelists[nid]->free_objects) {
3319 obj = ____cache_alloc_node(cache,
3320 flags | GFP_THISNODE, nid);
3321 if (obj)
3322 break;
3323 }
3324 }
3325
3326 if (!obj) {
3327 /*
3328 * This allocation will be performed within the constraints
3329 * of the current cpuset / memory policy requirements.
3330 * We may trigger various forms of reclaim on the allowed
3331 * set and go into memory reserves if necessary.
3332 */
3333 if (local_flags & __GFP_WAIT)
3334 local_irq_enable();
3335 kmem_flagcheck(cache, flags);
3336 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3337 if (local_flags & __GFP_WAIT)
3338 local_irq_disable();
3339 if (obj) {
3340 /*
3341 * Insert into the appropriate per node queues
3342 */
3343 nid = page_to_nid(virt_to_page(obj));
3344 if (cache_grow(cache, flags, nid, obj)) {
3345 obj = ____cache_alloc_node(cache,
3346 flags | GFP_THISNODE, nid);
3347 if (!obj)
3348 /*
3349 * Another processor may allocate the
3350 * objects in the slab since we are
3351 * not holding any locks.
3352 */
3353 goto retry;
3354 } else {
3355 /* cache_grow already freed obj */
3356 obj = NULL;
3357 }
3358 }
3359 }
3360 put_mems_allowed();
3361 return obj;
3362 }
3363
3364 /*
3365 * A interface to enable slab creation on nodeid
3366 */
3367 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3368 int nodeid)
3369 {
3370 struct list_head *entry;
3371 struct slab *slabp;
3372 struct kmem_list3 *l3;
3373 void *obj;
3374 int x;
3375
3376 l3 = cachep->nodelists[nodeid];
3377 BUG_ON(!l3);
3378
3379 retry:
3380 check_irq_off();
3381 spin_lock(&l3->list_lock);
3382 entry = l3->slabs_partial.next;
3383 if (entry == &l3->slabs_partial) {
3384 l3->free_touched = 1;
3385 entry = l3->slabs_free.next;
3386 if (entry == &l3->slabs_free)
3387 goto must_grow;
3388 }
3389
3390 slabp = list_entry(entry, struct slab, list);
3391 check_spinlock_acquired_node(cachep, nodeid);
3392 check_slabp(cachep, slabp);
3393
3394 STATS_INC_NODEALLOCS(cachep);
3395 STATS_INC_ACTIVE(cachep);
3396 STATS_SET_HIGH(cachep);
3397
3398 BUG_ON(slabp->inuse == cachep->num);
3399
3400 obj = slab_get_obj(cachep, slabp, nodeid);
3401 check_slabp(cachep, slabp);
3402 l3->free_objects--;
3403 /* move slabp to correct slabp list: */
3404 list_del(&slabp->list);
3405
3406 if (slabp->free == BUFCTL_END)
3407 list_add(&slabp->list, &l3->slabs_full);
3408 else
3409 list_add(&slabp->list, &l3->slabs_partial);
3410
3411 spin_unlock(&l3->list_lock);
3412 goto done;
3413
3414 must_grow:
3415 spin_unlock(&l3->list_lock);
3416 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3417 if (x)
3418 goto retry;
3419
3420 return fallback_alloc(cachep, flags);
3421
3422 done:
3423 return obj;
3424 }
3425
3426 /**
3427 * kmem_cache_alloc_node - Allocate an object on the specified node
3428 * @cachep: The cache to allocate from.
3429 * @flags: See kmalloc().
3430 * @nodeid: node number of the target node.
3431 * @caller: return address of caller, used for debug information
3432 *
3433 * Identical to kmem_cache_alloc but it will allocate memory on the given
3434 * node, which can improve the performance for cpu bound structures.
3435 *
3436 * Fallback to other node is possible if __GFP_THISNODE is not set.
3437 */
3438 static __always_inline void *
3439 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3440 void *caller)
3441 {
3442 unsigned long save_flags;
3443 void *ptr;
3444 int slab_node = numa_mem_id();
3445
3446 flags &= gfp_allowed_mask;
3447
3448 lockdep_trace_alloc(flags);
3449
3450 if (slab_should_failslab(cachep, flags))
3451 return NULL;
3452
3453 cache_alloc_debugcheck_before(cachep, flags);
3454 local_irq_save(save_flags);
3455
3456 if (nodeid == NUMA_NO_NODE)
3457 nodeid = slab_node;
3458
3459 if (unlikely(!cachep->nodelists[nodeid])) {
3460 /* Node not bootstrapped yet */
3461 ptr = fallback_alloc(cachep, flags);
3462 goto out;
3463 }
3464
3465 if (nodeid == slab_node) {
3466 /*
3467 * Use the locally cached objects if possible.
3468 * However ____cache_alloc does not allow fallback
3469 * to other nodes. It may fail while we still have
3470 * objects on other nodes available.
3471 */
3472 ptr = ____cache_alloc(cachep, flags);
3473 if (ptr)
3474 goto out;
3475 }
3476 /* ___cache_alloc_node can fall back to other nodes */
3477 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3478 out:
3479 local_irq_restore(save_flags);
3480 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3481 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3482 flags);
3483
3484 if (likely(ptr))
3485 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3486
3487 if (unlikely((flags & __GFP_ZERO) && ptr))
3488 memset(ptr, 0, obj_size(cachep));
3489
3490 return ptr;
3491 }
3492
3493 static __always_inline void *
3494 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3495 {
3496 void *objp;
3497
3498 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3499 objp = alternate_node_alloc(cache, flags);
3500 if (objp)
3501 goto out;
3502 }
3503 objp = ____cache_alloc(cache, flags);
3504
3505 /*
3506 * We may just have run out of memory on the local node.
3507 * ____cache_alloc_node() knows how to locate memory on other nodes
3508 */
3509 if (!objp)
3510 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3511
3512 out:
3513 return objp;
3514 }
3515 #else
3516
3517 static __always_inline void *
3518 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3519 {
3520 return ____cache_alloc(cachep, flags);
3521 }
3522
3523 #endif /* CONFIG_NUMA */
3524
3525 static __always_inline void *
3526 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3527 {
3528 unsigned long save_flags;
3529 void *objp;
3530
3531 flags &= gfp_allowed_mask;
3532
3533 lockdep_trace_alloc(flags);
3534
3535 if (slab_should_failslab(cachep, flags))
3536 return NULL;
3537
3538 cache_alloc_debugcheck_before(cachep, flags);
3539 local_irq_save(save_flags);
3540 objp = __do_cache_alloc(cachep, flags);
3541 local_irq_restore(save_flags);
3542 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3543 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3544 flags);
3545 prefetchw(objp);
3546
3547 if (likely(objp))
3548 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3549
3550 if (unlikely((flags & __GFP_ZERO) && objp))
3551 memset(objp, 0, obj_size(cachep));
3552
3553 return objp;
3554 }
3555
3556 /*
3557 * Caller needs to acquire correct kmem_list's list_lock
3558 */
3559 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3560 int node)
3561 {
3562 int i;
3563 struct kmem_list3 *l3;
3564
3565 for (i = 0; i < nr_objects; i++) {
3566 void *objp = objpp[i];
3567 struct slab *slabp;
3568
3569 slabp = virt_to_slab(objp);
3570 l3 = cachep->nodelists[node];
3571 list_del(&slabp->list);
3572 check_spinlock_acquired_node(cachep, node);
3573 check_slabp(cachep, slabp);
3574 slab_put_obj(cachep, slabp, objp, node);
3575 STATS_DEC_ACTIVE(cachep);
3576 l3->free_objects++;
3577 check_slabp(cachep, slabp);
3578
3579 /* fixup slab chains */
3580 if (slabp->inuse == 0) {
3581 if (l3->free_objects > l3->free_limit) {
3582 l3->free_objects -= cachep->num;
3583 /* No need to drop any previously held
3584 * lock here, even if we have a off-slab slab
3585 * descriptor it is guaranteed to come from
3586 * a different cache, refer to comments before
3587 * alloc_slabmgmt.
3588 */
3589 slab_destroy(cachep, slabp);
3590 } else {
3591 list_add(&slabp->list, &l3->slabs_free);
3592 }
3593 } else {
3594 /* Unconditionally move a slab to the end of the
3595 * partial list on free - maximum time for the
3596 * other objects to be freed, too.
3597 */
3598 list_add_tail(&slabp->list, &l3->slabs_partial);
3599 }
3600 }
3601 }
3602
3603 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3604 {
3605 int batchcount;
3606 struct kmem_list3 *l3;
3607 int node = numa_mem_id();
3608
3609 batchcount = ac->batchcount;
3610 #if DEBUG
3611 BUG_ON(!batchcount || batchcount > ac->avail);
3612 #endif
3613 check_irq_off();
3614 l3 = cachep->nodelists[node];
3615 spin_lock(&l3->list_lock);
3616 if (l3->shared) {
3617 struct array_cache *shared_array = l3->shared;
3618 int max = shared_array->limit - shared_array->avail;
3619 if (max) {
3620 if (batchcount > max)
3621 batchcount = max;
3622 memcpy(&(shared_array->entry[shared_array->avail]),
3623 ac->entry, sizeof(void *) * batchcount);
3624 shared_array->avail += batchcount;
3625 goto free_done;
3626 }
3627 }
3628
3629 free_block(cachep, ac->entry, batchcount, node);
3630 free_done:
3631 #if STATS
3632 {
3633 int i = 0;
3634 struct list_head *p;
3635
3636 p = l3->slabs_free.next;
3637 while (p != &(l3->slabs_free)) {
3638 struct slab *slabp;
3639
3640 slabp = list_entry(p, struct slab, list);
3641 BUG_ON(slabp->inuse);
3642
3643 i++;
3644 p = p->next;
3645 }
3646 STATS_SET_FREEABLE(cachep, i);
3647 }
3648 #endif
3649 spin_unlock(&l3->list_lock);
3650 ac->avail -= batchcount;
3651 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3652 }
3653
3654 /*
3655 * Release an obj back to its cache. If the obj has a constructed state, it must
3656 * be in this state _before_ it is released. Called with disabled ints.
3657 */
3658 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3659 void *caller)
3660 {
3661 struct array_cache *ac = cpu_cache_get(cachep);
3662
3663 check_irq_off();
3664 kmemleak_free_recursive(objp, cachep->flags);
3665 objp = cache_free_debugcheck(cachep, objp, caller);
3666
3667 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3668
3669 /*
3670 * Skip calling cache_free_alien() when the platform is not numa.
3671 * This will avoid cache misses that happen while accessing slabp (which
3672 * is per page memory reference) to get nodeid. Instead use a global
3673 * variable to skip the call, which is mostly likely to be present in
3674 * the cache.
3675 */
3676 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3677 return;
3678
3679 if (likely(ac->avail < ac->limit)) {
3680 STATS_INC_FREEHIT(cachep);
3681 ac->entry[ac->avail++] = objp;
3682 return;
3683 } else {
3684 STATS_INC_FREEMISS(cachep);
3685 cache_flusharray(cachep, ac);
3686 ac->entry[ac->avail++] = objp;
3687 }
3688 }
3689
3690 /**
3691 * kmem_cache_alloc - Allocate an object
3692 * @cachep: The cache to allocate from.
3693 * @flags: See kmalloc().
3694 *
3695 * Allocate an object from this cache. The flags are only relevant
3696 * if the cache has no available objects.
3697 */
3698 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3699 {
3700 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3701
3702 trace_kmem_cache_alloc(_RET_IP_, ret,
3703 obj_size(cachep), cachep->buffer_size, flags);
3704
3705 return ret;
3706 }
3707 EXPORT_SYMBOL(kmem_cache_alloc);
3708
3709 #ifdef CONFIG_TRACING
3710 void *
3711 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3712 {
3713 void *ret;
3714
3715 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3716
3717 trace_kmalloc(_RET_IP_, ret,
3718 size, slab_buffer_size(cachep), flags);
3719 return ret;
3720 }
3721 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3722 #endif
3723
3724 #ifdef CONFIG_NUMA
3725 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3726 {
3727 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3728 __builtin_return_address(0));
3729
3730 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3731 obj_size(cachep), cachep->buffer_size,
3732 flags, nodeid);
3733
3734 return ret;
3735 }
3736 EXPORT_SYMBOL(kmem_cache_alloc_node);
3737
3738 #ifdef CONFIG_TRACING
3739 void *kmem_cache_alloc_node_trace(size_t size,
3740 struct kmem_cache *cachep,
3741 gfp_t flags,
3742 int nodeid)
3743 {
3744 void *ret;
3745
3746 ret = __cache_alloc_node(cachep, flags, nodeid,
3747 __builtin_return_address(0));
3748 trace_kmalloc_node(_RET_IP_, ret,
3749 size, slab_buffer_size(cachep),
3750 flags, nodeid);
3751 return ret;
3752 }
3753 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3754 #endif
3755
3756 static __always_inline void *
3757 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3758 {
3759 struct kmem_cache *cachep;
3760
3761 cachep = kmem_find_general_cachep(size, flags);
3762 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3763 return cachep;
3764 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3765 }
3766
3767 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3768 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3769 {
3770 return __do_kmalloc_node(size, flags, node,
3771 __builtin_return_address(0));
3772 }
3773 EXPORT_SYMBOL(__kmalloc_node);
3774
3775 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3776 int node, unsigned long caller)
3777 {
3778 return __do_kmalloc_node(size, flags, node, (void *)caller);
3779 }
3780 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3781 #else
3782 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3783 {
3784 return __do_kmalloc_node(size, flags, node, NULL);
3785 }
3786 EXPORT_SYMBOL(__kmalloc_node);
3787 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3788 #endif /* CONFIG_NUMA */
3789
3790 /**
3791 * __do_kmalloc - allocate memory
3792 * @size: how many bytes of memory are required.
3793 * @flags: the type of memory to allocate (see kmalloc).
3794 * @caller: function caller for debug tracking of the caller
3795 */
3796 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3797 void *caller)
3798 {
3799 struct kmem_cache *cachep;
3800 void *ret;
3801
3802 /* If you want to save a few bytes .text space: replace
3803 * __ with kmem_.
3804 * Then kmalloc uses the uninlined functions instead of the inline
3805 * functions.
3806 */
3807 cachep = __find_general_cachep(size, flags);
3808 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3809 return cachep;
3810 ret = __cache_alloc(cachep, flags, caller);
3811
3812 trace_kmalloc((unsigned long) caller, ret,
3813 size, cachep->buffer_size, flags);
3814
3815 return ret;
3816 }
3817
3818
3819 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3820 void *__kmalloc(size_t size, gfp_t flags)
3821 {
3822 return __do_kmalloc(size, flags, __builtin_return_address(0));
3823 }
3824 EXPORT_SYMBOL(__kmalloc);
3825
3826 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3827 {
3828 return __do_kmalloc(size, flags, (void *)caller);
3829 }
3830 EXPORT_SYMBOL(__kmalloc_track_caller);
3831
3832 #else
3833 void *__kmalloc(size_t size, gfp_t flags)
3834 {
3835 return __do_kmalloc(size, flags, NULL);
3836 }
3837 EXPORT_SYMBOL(__kmalloc);
3838 #endif
3839
3840 /**
3841 * kmem_cache_free - Deallocate an object
3842 * @cachep: The cache the allocation was from.
3843 * @objp: The previously allocated object.
3844 *
3845 * Free an object which was previously allocated from this
3846 * cache.
3847 */
3848 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3849 {
3850 unsigned long flags;
3851
3852 local_irq_save(flags);
3853 debug_check_no_locks_freed(objp, obj_size(cachep));
3854 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3855 debug_check_no_obj_freed(objp, obj_size(cachep));
3856 __cache_free(cachep, objp, __builtin_return_address(0));
3857 local_irq_restore(flags);
3858
3859 trace_kmem_cache_free(_RET_IP_, objp);
3860 }
3861 EXPORT_SYMBOL(kmem_cache_free);
3862
3863 /**
3864 * kfree - free previously allocated memory
3865 * @objp: pointer returned by kmalloc.
3866 *
3867 * If @objp is NULL, no operation is performed.
3868 *
3869 * Don't free memory not originally allocated by kmalloc()
3870 * or you will run into trouble.
3871 */
3872 void kfree(const void *objp)
3873 {
3874 struct kmem_cache *c;
3875 unsigned long flags;
3876
3877 trace_kfree(_RET_IP_, objp);
3878
3879 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3880 return;
3881 local_irq_save(flags);
3882 kfree_debugcheck(objp);
3883 c = virt_to_cache(objp);
3884 debug_check_no_locks_freed(objp, obj_size(c));
3885 debug_check_no_obj_freed(objp, obj_size(c));
3886 __cache_free(c, (void *)objp, __builtin_return_address(0));
3887 local_irq_restore(flags);
3888 }
3889 EXPORT_SYMBOL(kfree);
3890
3891 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3892 {
3893 return obj_size(cachep);
3894 }
3895 EXPORT_SYMBOL(kmem_cache_size);
3896
3897 /*
3898 * This initializes kmem_list3 or resizes various caches for all nodes.
3899 */
3900 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3901 {
3902 int node;
3903 struct kmem_list3 *l3;
3904 struct array_cache *new_shared;
3905 struct array_cache **new_alien = NULL;
3906
3907 for_each_online_node(node) {
3908
3909 if (use_alien_caches) {
3910 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3911 if (!new_alien)
3912 goto fail;
3913 }
3914
3915 new_shared = NULL;
3916 if (cachep->shared) {
3917 new_shared = alloc_arraycache(node,
3918 cachep->shared*cachep->batchcount,
3919 0xbaadf00d, gfp);
3920 if (!new_shared) {
3921 free_alien_cache(new_alien);
3922 goto fail;
3923 }
3924 }
3925
3926 l3 = cachep->nodelists[node];
3927 if (l3) {
3928 struct array_cache *shared = l3->shared;
3929
3930 spin_lock_irq(&l3->list_lock);
3931
3932 if (shared)
3933 free_block(cachep, shared->entry,
3934 shared->avail, node);
3935
3936 l3->shared = new_shared;
3937 if (!l3->alien) {
3938 l3->alien = new_alien;
3939 new_alien = NULL;
3940 }
3941 l3->free_limit = (1 + nr_cpus_node(node)) *
3942 cachep->batchcount + cachep->num;
3943 spin_unlock_irq(&l3->list_lock);
3944 kfree(shared);
3945 free_alien_cache(new_alien);
3946 continue;
3947 }
3948 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3949 if (!l3) {
3950 free_alien_cache(new_alien);
3951 kfree(new_shared);
3952 goto fail;
3953 }
3954
3955 kmem_list3_init(l3);
3956 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3957 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3958 l3->shared = new_shared;
3959 l3->alien = new_alien;
3960 l3->free_limit = (1 + nr_cpus_node(node)) *
3961 cachep->batchcount + cachep->num;
3962 cachep->nodelists[node] = l3;
3963 }
3964 return 0;
3965
3966 fail:
3967 if (!cachep->next.next) {
3968 /* Cache is not active yet. Roll back what we did */
3969 node--;
3970 while (node >= 0) {
3971 if (cachep->nodelists[node]) {
3972 l3 = cachep->nodelists[node];
3973
3974 kfree(l3->shared);
3975 free_alien_cache(l3->alien);
3976 kfree(l3);
3977 cachep->nodelists[node] = NULL;
3978 }
3979 node--;
3980 }
3981 }
3982 return -ENOMEM;
3983 }
3984
3985 struct ccupdate_struct {
3986 struct kmem_cache *cachep;
3987 struct array_cache *new[0];
3988 };
3989
3990 static void do_ccupdate_local(void *info)
3991 {
3992 struct ccupdate_struct *new = info;
3993 struct array_cache *old;
3994
3995 check_irq_off();
3996 old = cpu_cache_get(new->cachep);
3997
3998 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3999 new->new[smp_processor_id()] = old;
4000 }
4001
4002 /* Always called with the cache_chain_mutex held */
4003 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4004 int batchcount, int shared, gfp_t gfp)
4005 {
4006 struct ccupdate_struct *new;
4007 int i;
4008
4009 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4010 gfp);
4011 if (!new)
4012 return -ENOMEM;
4013
4014 for_each_online_cpu(i) {
4015 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4016 batchcount, gfp);
4017 if (!new->new[i]) {
4018 for (i--; i >= 0; i--)
4019 kfree(new->new[i]);
4020 kfree(new);
4021 return -ENOMEM;
4022 }
4023 }
4024 new->cachep = cachep;
4025
4026 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4027
4028 check_irq_on();
4029 cachep->batchcount = batchcount;
4030 cachep->limit = limit;
4031 cachep->shared = shared;
4032
4033 for_each_online_cpu(i) {
4034 struct array_cache *ccold = new->new[i];
4035 if (!ccold)
4036 continue;
4037 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4038 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4039 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4040 kfree(ccold);
4041 }
4042 kfree(new);
4043 return alloc_kmemlist(cachep, gfp);
4044 }
4045
4046 /* Called with cache_chain_mutex held always */
4047 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4048 {
4049 int err;
4050 int limit, shared;
4051
4052 /*
4053 * The head array serves three purposes:
4054 * - create a LIFO ordering, i.e. return objects that are cache-warm
4055 * - reduce the number of spinlock operations.
4056 * - reduce the number of linked list operations on the slab and
4057 * bufctl chains: array operations are cheaper.
4058 * The numbers are guessed, we should auto-tune as described by
4059 * Bonwick.
4060 */
4061 if (cachep->buffer_size > 131072)
4062 limit = 1;
4063 else if (cachep->buffer_size > PAGE_SIZE)
4064 limit = 8;
4065 else if (cachep->buffer_size > 1024)
4066 limit = 24;
4067 else if (cachep->buffer_size > 256)
4068 limit = 54;
4069 else
4070 limit = 120;
4071
4072 /*
4073 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4074 * allocation behaviour: Most allocs on one cpu, most free operations
4075 * on another cpu. For these cases, an efficient object passing between
4076 * cpus is necessary. This is provided by a shared array. The array
4077 * replaces Bonwick's magazine layer.
4078 * On uniprocessor, it's functionally equivalent (but less efficient)
4079 * to a larger limit. Thus disabled by default.
4080 */
4081 shared = 0;
4082 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4083 shared = 8;
4084
4085 #if DEBUG
4086 /*
4087 * With debugging enabled, large batchcount lead to excessively long
4088 * periods with disabled local interrupts. Limit the batchcount
4089 */
4090 if (limit > 32)
4091 limit = 32;
4092 #endif
4093 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4094 if (err)
4095 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4096 cachep->name, -err);
4097 return err;
4098 }
4099
4100 /*
4101 * Drain an array if it contains any elements taking the l3 lock only if
4102 * necessary. Note that the l3 listlock also protects the array_cache
4103 * if drain_array() is used on the shared array.
4104 */
4105 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4106 struct array_cache *ac, int force, int node)
4107 {
4108 int tofree;
4109
4110 if (!ac || !ac->avail)
4111 return;
4112 if (ac->touched && !force) {
4113 ac->touched = 0;
4114 } else {
4115 spin_lock_irq(&l3->list_lock);
4116 if (ac->avail) {
4117 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4118 if (tofree > ac->avail)
4119 tofree = (ac->avail + 1) / 2;
4120 free_block(cachep, ac->entry, tofree, node);
4121 ac->avail -= tofree;
4122 memmove(ac->entry, &(ac->entry[tofree]),
4123 sizeof(void *) * ac->avail);
4124 }
4125 spin_unlock_irq(&l3->list_lock);
4126 }
4127 }
4128
4129 /**
4130 * cache_reap - Reclaim memory from caches.
4131 * @w: work descriptor
4132 *
4133 * Called from workqueue/eventd every few seconds.
4134 * Purpose:
4135 * - clear the per-cpu caches for this CPU.
4136 * - return freeable pages to the main free memory pool.
4137 *
4138 * If we cannot acquire the cache chain mutex then just give up - we'll try
4139 * again on the next iteration.
4140 */
4141 static void cache_reap(struct work_struct *w)
4142 {
4143 struct kmem_cache *searchp;
4144 struct kmem_list3 *l3;
4145 int node = numa_mem_id();
4146 struct delayed_work *work = to_delayed_work(w);
4147
4148 if (!mutex_trylock(&cache_chain_mutex))
4149 /* Give up. Setup the next iteration. */
4150 goto out;
4151
4152 list_for_each_entry(searchp, &cache_chain, next) {
4153 check_irq_on();
4154
4155 /*
4156 * We only take the l3 lock if absolutely necessary and we
4157 * have established with reasonable certainty that
4158 * we can do some work if the lock was obtained.
4159 */
4160 l3 = searchp->nodelists[node];
4161
4162 reap_alien(searchp, l3);
4163
4164 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4165
4166 /*
4167 * These are racy checks but it does not matter
4168 * if we skip one check or scan twice.
4169 */
4170 if (time_after(l3->next_reap, jiffies))
4171 goto next;
4172
4173 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4174
4175 drain_array(searchp, l3, l3->shared, 0, node);
4176
4177 if (l3->free_touched)
4178 l3->free_touched = 0;
4179 else {
4180 int freed;
4181
4182 freed = drain_freelist(searchp, l3, (l3->free_limit +
4183 5 * searchp->num - 1) / (5 * searchp->num));
4184 STATS_ADD_REAPED(searchp, freed);
4185 }
4186 next:
4187 cond_resched();
4188 }
4189 check_irq_on();
4190 mutex_unlock(&cache_chain_mutex);
4191 next_reap_node();
4192 out:
4193 /* Set up the next iteration */
4194 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4195 }
4196
4197 #ifdef CONFIG_SLABINFO
4198
4199 static void print_slabinfo_header(struct seq_file *m)
4200 {
4201 /*
4202 * Output format version, so at least we can change it
4203 * without _too_ many complaints.
4204 */
4205 #if STATS
4206 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4207 #else
4208 seq_puts(m, "slabinfo - version: 2.1\n");
4209 #endif
4210 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4211 "<objperslab> <pagesperslab>");
4212 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4213 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4214 #if STATS
4215 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4216 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4217 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4218 #endif
4219 seq_putc(m, '\n');
4220 }
4221
4222 static void *s_start(struct seq_file *m, loff_t *pos)
4223 {
4224 loff_t n = *pos;
4225
4226 mutex_lock(&cache_chain_mutex);
4227 if (!n)
4228 print_slabinfo_header(m);
4229
4230 return seq_list_start(&cache_chain, *pos);
4231 }
4232
4233 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4234 {
4235 return seq_list_next(p, &cache_chain, pos);
4236 }
4237
4238 static void s_stop(struct seq_file *m, void *p)
4239 {
4240 mutex_unlock(&cache_chain_mutex);
4241 }
4242
4243 static int s_show(struct seq_file *m, void *p)
4244 {
4245 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4246 struct slab *slabp;
4247 unsigned long active_objs;
4248 unsigned long num_objs;
4249 unsigned long active_slabs = 0;
4250 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4251 const char *name;
4252 char *error = NULL;
4253 int node;
4254 struct kmem_list3 *l3;
4255
4256 active_objs = 0;
4257 num_slabs = 0;
4258 for_each_online_node(node) {
4259 l3 = cachep->nodelists[node];
4260 if (!l3)
4261 continue;
4262
4263 check_irq_on();
4264 spin_lock_irq(&l3->list_lock);
4265
4266 list_for_each_entry(slabp, &l3->slabs_full, list) {
4267 if (slabp->inuse != cachep->num && !error)
4268 error = "slabs_full accounting error";
4269 active_objs += cachep->num;
4270 active_slabs++;
4271 }
4272 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4273 if (slabp->inuse == cachep->num && !error)
4274 error = "slabs_partial inuse accounting error";
4275 if (!slabp->inuse && !error)
4276 error = "slabs_partial/inuse accounting error";
4277 active_objs += slabp->inuse;
4278 active_slabs++;
4279 }
4280 list_for_each_entry(slabp, &l3->slabs_free, list) {
4281 if (slabp->inuse && !error)
4282 error = "slabs_free/inuse accounting error";
4283 num_slabs++;
4284 }
4285 free_objects += l3->free_objects;
4286 if (l3->shared)
4287 shared_avail += l3->shared->avail;
4288
4289 spin_unlock_irq(&l3->list_lock);
4290 }
4291 num_slabs += active_slabs;
4292 num_objs = num_slabs * cachep->num;
4293 if (num_objs - active_objs != free_objects && !error)
4294 error = "free_objects accounting error";
4295
4296 name = cachep->name;
4297 if (error)
4298 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4299
4300 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4301 name, active_objs, num_objs, cachep->buffer_size,
4302 cachep->num, (1 << cachep->gfporder));
4303 seq_printf(m, " : tunables %4u %4u %4u",
4304 cachep->limit, cachep->batchcount, cachep->shared);
4305 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4306 active_slabs, num_slabs, shared_avail);
4307 #if STATS
4308 { /* list3 stats */
4309 unsigned long high = cachep->high_mark;
4310 unsigned long allocs = cachep->num_allocations;
4311 unsigned long grown = cachep->grown;
4312 unsigned long reaped = cachep->reaped;
4313 unsigned long errors = cachep->errors;
4314 unsigned long max_freeable = cachep->max_freeable;
4315 unsigned long node_allocs = cachep->node_allocs;
4316 unsigned long node_frees = cachep->node_frees;
4317 unsigned long overflows = cachep->node_overflow;
4318
4319 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4320 "%4lu %4lu %4lu %4lu %4lu",
4321 allocs, high, grown,
4322 reaped, errors, max_freeable, node_allocs,
4323 node_frees, overflows);
4324 }
4325 /* cpu stats */
4326 {
4327 unsigned long allochit = atomic_read(&cachep->allochit);
4328 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4329 unsigned long freehit = atomic_read(&cachep->freehit);
4330 unsigned long freemiss = atomic_read(&cachep->freemiss);
4331
4332 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4333 allochit, allocmiss, freehit, freemiss);
4334 }
4335 #endif
4336 seq_putc(m, '\n');
4337 return 0;
4338 }
4339
4340 /*
4341 * slabinfo_op - iterator that generates /proc/slabinfo
4342 *
4343 * Output layout:
4344 * cache-name
4345 * num-active-objs
4346 * total-objs
4347 * object size
4348 * num-active-slabs
4349 * total-slabs
4350 * num-pages-per-slab
4351 * + further values on SMP and with statistics enabled
4352 */
4353
4354 static const struct seq_operations slabinfo_op = {
4355 .start = s_start,
4356 .next = s_next,
4357 .stop = s_stop,
4358 .show = s_show,
4359 };
4360
4361 #define MAX_SLABINFO_WRITE 128
4362 /**
4363 * slabinfo_write - Tuning for the slab allocator
4364 * @file: unused
4365 * @buffer: user buffer
4366 * @count: data length
4367 * @ppos: unused
4368 */
4369 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4370 size_t count, loff_t *ppos)
4371 {
4372 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4373 int limit, batchcount, shared, res;
4374 struct kmem_cache *cachep;
4375
4376 if (count > MAX_SLABINFO_WRITE)
4377 return -EINVAL;
4378 if (copy_from_user(&kbuf, buffer, count))
4379 return -EFAULT;
4380 kbuf[MAX_SLABINFO_WRITE] = '\0';
4381
4382 tmp = strchr(kbuf, ' ');
4383 if (!tmp)
4384 return -EINVAL;
4385 *tmp = '\0';
4386 tmp++;
4387 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4388 return -EINVAL;
4389
4390 /* Find the cache in the chain of caches. */
4391 mutex_lock(&cache_chain_mutex);
4392 res = -EINVAL;
4393 list_for_each_entry(cachep, &cache_chain, next) {
4394 if (!strcmp(cachep->name, kbuf)) {
4395 if (limit < 1 || batchcount < 1 ||
4396 batchcount > limit || shared < 0) {
4397 res = 0;
4398 } else {
4399 res = do_tune_cpucache(cachep, limit,
4400 batchcount, shared,
4401 GFP_KERNEL);
4402 }
4403 break;
4404 }
4405 }
4406 mutex_unlock(&cache_chain_mutex);
4407 if (res >= 0)
4408 res = count;
4409 return res;
4410 }
4411
4412 static int slabinfo_open(struct inode *inode, struct file *file)
4413 {
4414 return seq_open(file, &slabinfo_op);
4415 }
4416
4417 static const struct file_operations proc_slabinfo_operations = {
4418 .open = slabinfo_open,
4419 .read = seq_read,
4420 .write = slabinfo_write,
4421 .llseek = seq_lseek,
4422 .release = seq_release,
4423 };
4424
4425 #ifdef CONFIG_DEBUG_SLAB_LEAK
4426
4427 static void *leaks_start(struct seq_file *m, loff_t *pos)
4428 {
4429 mutex_lock(&cache_chain_mutex);
4430 return seq_list_start(&cache_chain, *pos);
4431 }
4432
4433 static inline int add_caller(unsigned long *n, unsigned long v)
4434 {
4435 unsigned long *p;
4436 int l;
4437 if (!v)
4438 return 1;
4439 l = n[1];
4440 p = n + 2;
4441 while (l) {
4442 int i = l/2;
4443 unsigned long *q = p + 2 * i;
4444 if (*q == v) {
4445 q[1]++;
4446 return 1;
4447 }
4448 if (*q > v) {
4449 l = i;
4450 } else {
4451 p = q + 2;
4452 l -= i + 1;
4453 }
4454 }
4455 if (++n[1] == n[0])
4456 return 0;
4457 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4458 p[0] = v;
4459 p[1] = 1;
4460 return 1;
4461 }
4462
4463 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4464 {
4465 void *p;
4466 int i;
4467 if (n[0] == n[1])
4468 return;
4469 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4470 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4471 continue;
4472 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4473 return;
4474 }
4475 }
4476
4477 static void show_symbol(struct seq_file *m, unsigned long address)
4478 {
4479 #ifdef CONFIG_KALLSYMS
4480 unsigned long offset, size;
4481 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4482
4483 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4484 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4485 if (modname[0])
4486 seq_printf(m, " [%s]", modname);
4487 return;
4488 }
4489 #endif
4490 seq_printf(m, "%p", (void *)address);
4491 }
4492
4493 static int leaks_show(struct seq_file *m, void *p)
4494 {
4495 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4496 struct slab *slabp;
4497 struct kmem_list3 *l3;
4498 const char *name;
4499 unsigned long *n = m->private;
4500 int node;
4501 int i;
4502
4503 if (!(cachep->flags & SLAB_STORE_USER))
4504 return 0;
4505 if (!(cachep->flags & SLAB_RED_ZONE))
4506 return 0;
4507
4508 /* OK, we can do it */
4509
4510 n[1] = 0;
4511
4512 for_each_online_node(node) {
4513 l3 = cachep->nodelists[node];
4514 if (!l3)
4515 continue;
4516
4517 check_irq_on();
4518 spin_lock_irq(&l3->list_lock);
4519
4520 list_for_each_entry(slabp, &l3->slabs_full, list)
4521 handle_slab(n, cachep, slabp);
4522 list_for_each_entry(slabp, &l3->slabs_partial, list)
4523 handle_slab(n, cachep, slabp);
4524 spin_unlock_irq(&l3->list_lock);
4525 }
4526 name = cachep->name;
4527 if (n[0] == n[1]) {
4528 /* Increase the buffer size */
4529 mutex_unlock(&cache_chain_mutex);
4530 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4531 if (!m->private) {
4532 /* Too bad, we are really out */
4533 m->private = n;
4534 mutex_lock(&cache_chain_mutex);
4535 return -ENOMEM;
4536 }
4537 *(unsigned long *)m->private = n[0] * 2;
4538 kfree(n);
4539 mutex_lock(&cache_chain_mutex);
4540 /* Now make sure this entry will be retried */
4541 m->count = m->size;
4542 return 0;
4543 }
4544 for (i = 0; i < n[1]; i++) {
4545 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4546 show_symbol(m, n[2*i+2]);
4547 seq_putc(m, '\n');
4548 }
4549
4550 return 0;
4551 }
4552
4553 static const struct seq_operations slabstats_op = {
4554 .start = leaks_start,
4555 .next = s_next,
4556 .stop = s_stop,
4557 .show = leaks_show,
4558 };
4559
4560 static int slabstats_open(struct inode *inode, struct file *file)
4561 {
4562 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4563 int ret = -ENOMEM;
4564 if (n) {
4565 ret = seq_open(file, &slabstats_op);
4566 if (!ret) {
4567 struct seq_file *m = file->private_data;
4568 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4569 m->private = n;
4570 n = NULL;
4571 }
4572 kfree(n);
4573 }
4574 return ret;
4575 }
4576
4577 static const struct file_operations proc_slabstats_operations = {
4578 .open = slabstats_open,
4579 .read = seq_read,
4580 .llseek = seq_lseek,
4581 .release = seq_release_private,
4582 };
4583 #endif
4584
4585 static int __init slab_proc_init(void)
4586 {
4587 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4588 #ifdef CONFIG_DEBUG_SLAB_LEAK
4589 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4590 #endif
4591 return 0;
4592 }
4593 module_init(slab_proc_init);
4594 #endif
4595
4596 /**
4597 * ksize - get the actual amount of memory allocated for a given object
4598 * @objp: Pointer to the object
4599 *
4600 * kmalloc may internally round up allocations and return more memory
4601 * than requested. ksize() can be used to determine the actual amount of
4602 * memory allocated. The caller may use this additional memory, even though
4603 * a smaller amount of memory was initially specified with the kmalloc call.
4604 * The caller must guarantee that objp points to a valid object previously
4605 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4606 * must not be freed during the duration of the call.
4607 */
4608 size_t ksize(const void *objp)
4609 {
4610 BUG_ON(!objp);
4611 if (unlikely(objp == ZERO_SIZE_PTR))
4612 return 0;
4613
4614 return obj_size(virt_to_cache(objp));
4615 }
4616 EXPORT_SYMBOL(ksize);
This page took 0.142119 seconds and 6 git commands to generate.