memory-hotplug: fix wrong edge when hot add a new node
[deliverable/linux.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41
42 /*
43 * State of the slab allocator.
44 *
45 * This is used to describe the states of the allocator during bootup.
46 * Allocators use this to gradually bootstrap themselves. Most allocators
47 * have the problem that the structures used for managing slab caches are
48 * allocated from slab caches themselves.
49 */
50 enum slab_state {
51 DOWN, /* No slab functionality yet */
52 PARTIAL, /* SLUB: kmem_cache_node available */
53 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
54 UP, /* Slab caches usable but not all extras yet */
55 FULL /* Everything is working */
56 };
57
58 extern enum slab_state slab_state;
59
60 /* The slab cache mutex protects the management structures during changes */
61 extern struct mutex slab_mutex;
62
63 /* The list of all slab caches on the system */
64 extern struct list_head slab_caches;
65
66 /* The slab cache that manages slab cache information */
67 extern struct kmem_cache *kmem_cache;
68
69 unsigned long calculate_alignment(unsigned long flags,
70 unsigned long align, unsigned long size);
71
72 #ifndef CONFIG_SLOB
73 /* Kmalloc array related functions */
74 void setup_kmalloc_cache_index_table(void);
75 void create_kmalloc_caches(unsigned long);
76
77 /* Find the kmalloc slab corresponding for a certain size */
78 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
79 #endif
80
81
82 /* Functions provided by the slab allocators */
83 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
84
85 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
86 unsigned long flags);
87 extern void create_boot_cache(struct kmem_cache *, const char *name,
88 size_t size, unsigned long flags);
89
90 int slab_unmergeable(struct kmem_cache *s);
91 struct kmem_cache *find_mergeable(size_t size, size_t align,
92 unsigned long flags, const char *name, void (*ctor)(void *));
93 #ifndef CONFIG_SLOB
94 struct kmem_cache *
95 __kmem_cache_alias(const char *name, size_t size, size_t align,
96 unsigned long flags, void (*ctor)(void *));
97
98 unsigned long kmem_cache_flags(unsigned long object_size,
99 unsigned long flags, const char *name,
100 void (*ctor)(void *));
101 #else
102 static inline struct kmem_cache *
103 __kmem_cache_alias(const char *name, size_t size, size_t align,
104 unsigned long flags, void (*ctor)(void *))
105 { return NULL; }
106
107 static inline unsigned long kmem_cache_flags(unsigned long object_size,
108 unsigned long flags, const char *name,
109 void (*ctor)(void *))
110 {
111 return flags;
112 }
113 #endif
114
115
116 /* Legal flag mask for kmem_cache_create(), for various configurations */
117 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
118 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
119
120 #if defined(CONFIG_DEBUG_SLAB)
121 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
122 #elif defined(CONFIG_SLUB_DEBUG)
123 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
124 SLAB_TRACE | SLAB_DEBUG_FREE)
125 #else
126 #define SLAB_DEBUG_FLAGS (0)
127 #endif
128
129 #if defined(CONFIG_SLAB)
130 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
131 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
132 #elif defined(CONFIG_SLUB)
133 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
134 SLAB_TEMPORARY | SLAB_NOTRACK)
135 #else
136 #define SLAB_CACHE_FLAGS (0)
137 #endif
138
139 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
140
141 int __kmem_cache_shutdown(struct kmem_cache *);
142 int __kmem_cache_shrink(struct kmem_cache *, bool);
143 void slab_kmem_cache_release(struct kmem_cache *);
144
145 struct seq_file;
146 struct file;
147
148 struct slabinfo {
149 unsigned long active_objs;
150 unsigned long num_objs;
151 unsigned long active_slabs;
152 unsigned long num_slabs;
153 unsigned long shared_avail;
154 unsigned int limit;
155 unsigned int batchcount;
156 unsigned int shared;
157 unsigned int objects_per_slab;
158 unsigned int cache_order;
159 };
160
161 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
162 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
163 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
164 size_t count, loff_t *ppos);
165
166 #ifdef CONFIG_MEMCG_KMEM
167 /*
168 * Iterate over all memcg caches of the given root cache. The caller must hold
169 * slab_mutex.
170 */
171 #define for_each_memcg_cache(iter, root) \
172 list_for_each_entry(iter, &(root)->memcg_params.list, \
173 memcg_params.list)
174
175 #define for_each_memcg_cache_safe(iter, tmp, root) \
176 list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \
177 memcg_params.list)
178
179 static inline bool is_root_cache(struct kmem_cache *s)
180 {
181 return s->memcg_params.is_root_cache;
182 }
183
184 static inline bool slab_equal_or_root(struct kmem_cache *s,
185 struct kmem_cache *p)
186 {
187 return p == s || p == s->memcg_params.root_cache;
188 }
189
190 /*
191 * We use suffixes to the name in memcg because we can't have caches
192 * created in the system with the same name. But when we print them
193 * locally, better refer to them with the base name
194 */
195 static inline const char *cache_name(struct kmem_cache *s)
196 {
197 if (!is_root_cache(s))
198 s = s->memcg_params.root_cache;
199 return s->name;
200 }
201
202 /*
203 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
204 * That said the caller must assure the memcg's cache won't go away by either
205 * taking a css reference to the owner cgroup, or holding the slab_mutex.
206 */
207 static inline struct kmem_cache *
208 cache_from_memcg_idx(struct kmem_cache *s, int idx)
209 {
210 struct kmem_cache *cachep;
211 struct memcg_cache_array *arr;
212
213 rcu_read_lock();
214 arr = rcu_dereference(s->memcg_params.memcg_caches);
215
216 /*
217 * Make sure we will access the up-to-date value. The code updating
218 * memcg_caches issues a write barrier to match this (see
219 * memcg_create_kmem_cache()).
220 */
221 cachep = lockless_dereference(arr->entries[idx]);
222 rcu_read_unlock();
223
224 return cachep;
225 }
226
227 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
228 {
229 if (is_root_cache(s))
230 return s;
231 return s->memcg_params.root_cache;
232 }
233
234 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
235 gfp_t gfp, int order)
236 {
237 if (!memcg_kmem_enabled())
238 return 0;
239 if (is_root_cache(s))
240 return 0;
241 return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order);
242 }
243
244 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
245 {
246 if (!memcg_kmem_enabled())
247 return;
248 if (is_root_cache(s))
249 return;
250 memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order);
251 }
252
253 extern void slab_init_memcg_params(struct kmem_cache *);
254
255 #else /* !CONFIG_MEMCG_KMEM */
256
257 #define for_each_memcg_cache(iter, root) \
258 for ((void)(iter), (void)(root); 0; )
259 #define for_each_memcg_cache_safe(iter, tmp, root) \
260 for ((void)(iter), (void)(tmp), (void)(root); 0; )
261
262 static inline bool is_root_cache(struct kmem_cache *s)
263 {
264 return true;
265 }
266
267 static inline bool slab_equal_or_root(struct kmem_cache *s,
268 struct kmem_cache *p)
269 {
270 return true;
271 }
272
273 static inline const char *cache_name(struct kmem_cache *s)
274 {
275 return s->name;
276 }
277
278 static inline struct kmem_cache *
279 cache_from_memcg_idx(struct kmem_cache *s, int idx)
280 {
281 return NULL;
282 }
283
284 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
285 {
286 return s;
287 }
288
289 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
290 {
291 return 0;
292 }
293
294 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
295 {
296 }
297
298 static inline void slab_init_memcg_params(struct kmem_cache *s)
299 {
300 }
301 #endif /* CONFIG_MEMCG_KMEM */
302
303 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
304 {
305 struct kmem_cache *cachep;
306 struct page *page;
307
308 /*
309 * When kmemcg is not being used, both assignments should return the
310 * same value. but we don't want to pay the assignment price in that
311 * case. If it is not compiled in, the compiler should be smart enough
312 * to not do even the assignment. In that case, slab_equal_or_root
313 * will also be a constant.
314 */
315 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
316 return s;
317
318 page = virt_to_head_page(x);
319 cachep = page->slab_cache;
320 if (slab_equal_or_root(cachep, s))
321 return cachep;
322
323 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
324 __func__, cachep->name, s->name);
325 WARN_ON_ONCE(1);
326 return s;
327 }
328
329 #ifndef CONFIG_SLOB
330 /*
331 * The slab lists for all objects.
332 */
333 struct kmem_cache_node {
334 spinlock_t list_lock;
335
336 #ifdef CONFIG_SLAB
337 struct list_head slabs_partial; /* partial list first, better asm code */
338 struct list_head slabs_full;
339 struct list_head slabs_free;
340 unsigned long free_objects;
341 unsigned int free_limit;
342 unsigned int colour_next; /* Per-node cache coloring */
343 struct array_cache *shared; /* shared per node */
344 struct alien_cache **alien; /* on other nodes */
345 unsigned long next_reap; /* updated without locking */
346 int free_touched; /* updated without locking */
347 #endif
348
349 #ifdef CONFIG_SLUB
350 unsigned long nr_partial;
351 struct list_head partial;
352 #ifdef CONFIG_SLUB_DEBUG
353 atomic_long_t nr_slabs;
354 atomic_long_t total_objects;
355 struct list_head full;
356 #endif
357 #endif
358
359 };
360
361 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
362 {
363 return s->node[node];
364 }
365
366 /*
367 * Iterator over all nodes. The body will be executed for each node that has
368 * a kmem_cache_node structure allocated (which is true for all online nodes)
369 */
370 #define for_each_kmem_cache_node(__s, __node, __n) \
371 for (__node = 0; __node < nr_node_ids; __node++) \
372 if ((__n = get_node(__s, __node)))
373
374 #endif
375
376 void *slab_start(struct seq_file *m, loff_t *pos);
377 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
378 void slab_stop(struct seq_file *m, void *p);
379 int memcg_slab_show(struct seq_file *m, void *p);
380
381 #endif /* MM_SLAB_H */
This page took 0.051309 seconds and 5 git commands to generate.