ath9k_htc: trigger spectral scan on set_channel
[deliverable/linux.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25
26 #include "slab.h"
27
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32
33 /*
34 * Set of flags that will prevent slab merging
35 */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
39
40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 SLAB_CACHE_DMA | SLAB_NOTRACK)
42
43 /*
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 */
47 static int slab_nomerge;
48
49 static int __init setup_slab_nomerge(char *str)
50 {
51 slab_nomerge = 1;
52 return 1;
53 }
54
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58
59 __setup("slab_nomerge", setup_slab_nomerge);
60
61 /*
62 * Determine the size of a slab object
63 */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 struct kmem_cache *s = NULL;
74
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
79 }
80
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
84
85 /*
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
89 */
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
92 pr_err("Slab cache with size %d has lost its name\n",
93 s->object_size);
94 continue;
95 }
96
97 #if !defined(CONFIG_SLUB)
98 if (!strcmp(s->name, name)) {
99 pr_err("%s (%s): Cache name already exists.\n",
100 __func__, name);
101 dump_stack();
102 s = NULL;
103 return -EINVAL;
104 }
105 #endif
106 }
107
108 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
109 return 0;
110 }
111 #else
112 static inline int kmem_cache_sanity_check(const char *name, size_t size)
113 {
114 return 0;
115 }
116 #endif
117
118 #ifdef CONFIG_MEMCG_KMEM
119 static int memcg_alloc_cache_params(struct mem_cgroup *memcg,
120 struct kmem_cache *s, struct kmem_cache *root_cache)
121 {
122 size_t size;
123
124 if (!memcg_kmem_enabled())
125 return 0;
126
127 if (!memcg) {
128 size = offsetof(struct memcg_cache_params, memcg_caches);
129 size += memcg_limited_groups_array_size * sizeof(void *);
130 } else
131 size = sizeof(struct memcg_cache_params);
132
133 s->memcg_params = kzalloc(size, GFP_KERNEL);
134 if (!s->memcg_params)
135 return -ENOMEM;
136
137 if (memcg) {
138 s->memcg_params->memcg = memcg;
139 s->memcg_params->root_cache = root_cache;
140 } else
141 s->memcg_params->is_root_cache = true;
142
143 return 0;
144 }
145
146 static void memcg_free_cache_params(struct kmem_cache *s)
147 {
148 kfree(s->memcg_params);
149 }
150
151 static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs)
152 {
153 int size;
154 struct memcg_cache_params *new_params, *cur_params;
155
156 BUG_ON(!is_root_cache(s));
157
158 size = offsetof(struct memcg_cache_params, memcg_caches);
159 size += num_memcgs * sizeof(void *);
160
161 new_params = kzalloc(size, GFP_KERNEL);
162 if (!new_params)
163 return -ENOMEM;
164
165 cur_params = s->memcg_params;
166 memcpy(new_params->memcg_caches, cur_params->memcg_caches,
167 memcg_limited_groups_array_size * sizeof(void *));
168
169 new_params->is_root_cache = true;
170
171 rcu_assign_pointer(s->memcg_params, new_params);
172 if (cur_params)
173 kfree_rcu(cur_params, rcu_head);
174
175 return 0;
176 }
177
178 int memcg_update_all_caches(int num_memcgs)
179 {
180 struct kmem_cache *s;
181 int ret = 0;
182 mutex_lock(&slab_mutex);
183
184 list_for_each_entry(s, &slab_caches, list) {
185 if (!is_root_cache(s))
186 continue;
187
188 ret = memcg_update_cache_params(s, num_memcgs);
189 /*
190 * Instead of freeing the memory, we'll just leave the caches
191 * up to this point in an updated state.
192 */
193 if (ret)
194 goto out;
195 }
196
197 memcg_update_array_size(num_memcgs);
198 out:
199 mutex_unlock(&slab_mutex);
200 return ret;
201 }
202 #else
203 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
204 struct kmem_cache *s, struct kmem_cache *root_cache)
205 {
206 return 0;
207 }
208
209 static inline void memcg_free_cache_params(struct kmem_cache *s)
210 {
211 }
212 #endif /* CONFIG_MEMCG_KMEM */
213
214 /*
215 * Find a mergeable slab cache
216 */
217 int slab_unmergeable(struct kmem_cache *s)
218 {
219 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
220 return 1;
221
222 if (!is_root_cache(s))
223 return 1;
224
225 if (s->ctor)
226 return 1;
227
228 /*
229 * We may have set a slab to be unmergeable during bootstrap.
230 */
231 if (s->refcount < 0)
232 return 1;
233
234 return 0;
235 }
236
237 struct kmem_cache *find_mergeable(size_t size, size_t align,
238 unsigned long flags, const char *name, void (*ctor)(void *))
239 {
240 struct kmem_cache *s;
241
242 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
243 return NULL;
244
245 if (ctor)
246 return NULL;
247
248 size = ALIGN(size, sizeof(void *));
249 align = calculate_alignment(flags, align, size);
250 size = ALIGN(size, align);
251 flags = kmem_cache_flags(size, flags, name, NULL);
252
253 list_for_each_entry(s, &slab_caches, list) {
254 if (slab_unmergeable(s))
255 continue;
256
257 if (size > s->size)
258 continue;
259
260 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
261 continue;
262 /*
263 * Check if alignment is compatible.
264 * Courtesy of Adrian Drzewiecki
265 */
266 if ((s->size & ~(align - 1)) != s->size)
267 continue;
268
269 if (s->size - size >= sizeof(void *))
270 continue;
271
272 return s;
273 }
274 return NULL;
275 }
276
277 /*
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
280 */
281 unsigned long calculate_alignment(unsigned long flags,
282 unsigned long align, unsigned long size)
283 {
284 /*
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
287 *
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
290 */
291 if (flags & SLAB_HWCACHE_ALIGN) {
292 unsigned long ralign = cache_line_size();
293 while (size <= ralign / 2)
294 ralign /= 2;
295 align = max(align, ralign);
296 }
297
298 if (align < ARCH_SLAB_MINALIGN)
299 align = ARCH_SLAB_MINALIGN;
300
301 return ALIGN(align, sizeof(void *));
302 }
303
304 static struct kmem_cache *
305 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
306 unsigned long flags, void (*ctor)(void *),
307 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
308 {
309 struct kmem_cache *s;
310 int err;
311
312 err = -ENOMEM;
313 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
314 if (!s)
315 goto out;
316
317 s->name = name;
318 s->object_size = object_size;
319 s->size = size;
320 s->align = align;
321 s->ctor = ctor;
322
323 err = memcg_alloc_cache_params(memcg, s, root_cache);
324 if (err)
325 goto out_free_cache;
326
327 err = __kmem_cache_create(s, flags);
328 if (err)
329 goto out_free_cache;
330
331 s->refcount = 1;
332 list_add(&s->list, &slab_caches);
333 out:
334 if (err)
335 return ERR_PTR(err);
336 return s;
337
338 out_free_cache:
339 memcg_free_cache_params(s);
340 kfree(s);
341 goto out;
342 }
343
344 /*
345 * kmem_cache_create - Create a cache.
346 * @name: A string which is used in /proc/slabinfo to identify this cache.
347 * @size: The size of objects to be created in this cache.
348 * @align: The required alignment for the objects.
349 * @flags: SLAB flags
350 * @ctor: A constructor for the objects.
351 *
352 * Returns a ptr to the cache on success, NULL on failure.
353 * Cannot be called within a interrupt, but can be interrupted.
354 * The @ctor is run when new pages are allocated by the cache.
355 *
356 * The flags are
357 *
358 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
359 * to catch references to uninitialised memory.
360 *
361 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
362 * for buffer overruns.
363 *
364 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
365 * cacheline. This can be beneficial if you're counting cycles as closely
366 * as davem.
367 */
368 struct kmem_cache *
369 kmem_cache_create(const char *name, size_t size, size_t align,
370 unsigned long flags, void (*ctor)(void *))
371 {
372 struct kmem_cache *s;
373 char *cache_name;
374 int err;
375
376 get_online_cpus();
377 get_online_mems();
378
379 mutex_lock(&slab_mutex);
380
381 err = kmem_cache_sanity_check(name, size);
382 if (err) {
383 s = NULL; /* suppress uninit var warning */
384 goto out_unlock;
385 }
386
387 /*
388 * Some allocators will constraint the set of valid flags to a subset
389 * of all flags. We expect them to define CACHE_CREATE_MASK in this
390 * case, and we'll just provide them with a sanitized version of the
391 * passed flags.
392 */
393 flags &= CACHE_CREATE_MASK;
394
395 s = __kmem_cache_alias(name, size, align, flags, ctor);
396 if (s)
397 goto out_unlock;
398
399 cache_name = kstrdup(name, GFP_KERNEL);
400 if (!cache_name) {
401 err = -ENOMEM;
402 goto out_unlock;
403 }
404
405 s = do_kmem_cache_create(cache_name, size, size,
406 calculate_alignment(flags, align, size),
407 flags, ctor, NULL, NULL);
408 if (IS_ERR(s)) {
409 err = PTR_ERR(s);
410 kfree(cache_name);
411 }
412
413 out_unlock:
414 mutex_unlock(&slab_mutex);
415
416 put_online_mems();
417 put_online_cpus();
418
419 if (err) {
420 if (flags & SLAB_PANIC)
421 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
422 name, err);
423 else {
424 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
425 name, err);
426 dump_stack();
427 }
428 return NULL;
429 }
430 return s;
431 }
432 EXPORT_SYMBOL(kmem_cache_create);
433
434 #ifdef CONFIG_MEMCG_KMEM
435 /*
436 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
437 * @memcg: The memory cgroup the new cache is for.
438 * @root_cache: The parent of the new cache.
439 * @memcg_name: The name of the memory cgroup (used for naming the new cache).
440 *
441 * This function attempts to create a kmem cache that will serve allocation
442 * requests going from @memcg to @root_cache. The new cache inherits properties
443 * from its parent.
444 */
445 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
446 struct kmem_cache *root_cache,
447 const char *memcg_name)
448 {
449 struct kmem_cache *s = NULL;
450 char *cache_name;
451
452 get_online_cpus();
453 get_online_mems();
454
455 mutex_lock(&slab_mutex);
456
457 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
458 memcg_cache_id(memcg), memcg_name);
459 if (!cache_name)
460 goto out_unlock;
461
462 s = do_kmem_cache_create(cache_name, root_cache->object_size,
463 root_cache->size, root_cache->align,
464 root_cache->flags, root_cache->ctor,
465 memcg, root_cache);
466 if (IS_ERR(s)) {
467 kfree(cache_name);
468 s = NULL;
469 }
470
471 out_unlock:
472 mutex_unlock(&slab_mutex);
473
474 put_online_mems();
475 put_online_cpus();
476
477 return s;
478 }
479
480 static int memcg_cleanup_cache_params(struct kmem_cache *s)
481 {
482 int rc;
483
484 if (!s->memcg_params ||
485 !s->memcg_params->is_root_cache)
486 return 0;
487
488 mutex_unlock(&slab_mutex);
489 rc = __memcg_cleanup_cache_params(s);
490 mutex_lock(&slab_mutex);
491
492 return rc;
493 }
494 #else
495 static int memcg_cleanup_cache_params(struct kmem_cache *s)
496 {
497 return 0;
498 }
499 #endif /* CONFIG_MEMCG_KMEM */
500
501 void slab_kmem_cache_release(struct kmem_cache *s)
502 {
503 kfree(s->name);
504 kmem_cache_free(kmem_cache, s);
505 }
506
507 void kmem_cache_destroy(struct kmem_cache *s)
508 {
509 get_online_cpus();
510 get_online_mems();
511
512 mutex_lock(&slab_mutex);
513
514 s->refcount--;
515 if (s->refcount)
516 goto out_unlock;
517
518 if (memcg_cleanup_cache_params(s) != 0)
519 goto out_unlock;
520
521 if (__kmem_cache_shutdown(s) != 0) {
522 printk(KERN_ERR "kmem_cache_destroy %s: "
523 "Slab cache still has objects\n", s->name);
524 dump_stack();
525 goto out_unlock;
526 }
527
528 list_del(&s->list);
529
530 mutex_unlock(&slab_mutex);
531 if (s->flags & SLAB_DESTROY_BY_RCU)
532 rcu_barrier();
533
534 memcg_free_cache_params(s);
535 #ifdef SLAB_SUPPORTS_SYSFS
536 sysfs_slab_remove(s);
537 #else
538 slab_kmem_cache_release(s);
539 #endif
540 goto out;
541
542 out_unlock:
543 mutex_unlock(&slab_mutex);
544 out:
545 put_online_mems();
546 put_online_cpus();
547 }
548 EXPORT_SYMBOL(kmem_cache_destroy);
549
550 /**
551 * kmem_cache_shrink - Shrink a cache.
552 * @cachep: The cache to shrink.
553 *
554 * Releases as many slabs as possible for a cache.
555 * To help debugging, a zero exit status indicates all slabs were released.
556 */
557 int kmem_cache_shrink(struct kmem_cache *cachep)
558 {
559 int ret;
560
561 get_online_cpus();
562 get_online_mems();
563 ret = __kmem_cache_shrink(cachep);
564 put_online_mems();
565 put_online_cpus();
566 return ret;
567 }
568 EXPORT_SYMBOL(kmem_cache_shrink);
569
570 int slab_is_available(void)
571 {
572 return slab_state >= UP;
573 }
574
575 #ifndef CONFIG_SLOB
576 /* Create a cache during boot when no slab services are available yet */
577 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
578 unsigned long flags)
579 {
580 int err;
581
582 s->name = name;
583 s->size = s->object_size = size;
584 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
585 err = __kmem_cache_create(s, flags);
586
587 if (err)
588 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
589 name, size, err);
590
591 s->refcount = -1; /* Exempt from merging for now */
592 }
593
594 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
595 unsigned long flags)
596 {
597 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
598
599 if (!s)
600 panic("Out of memory when creating slab %s\n", name);
601
602 create_boot_cache(s, name, size, flags);
603 list_add(&s->list, &slab_caches);
604 s->refcount = 1;
605 return s;
606 }
607
608 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
609 EXPORT_SYMBOL(kmalloc_caches);
610
611 #ifdef CONFIG_ZONE_DMA
612 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
613 EXPORT_SYMBOL(kmalloc_dma_caches);
614 #endif
615
616 /*
617 * Conversion table for small slabs sizes / 8 to the index in the
618 * kmalloc array. This is necessary for slabs < 192 since we have non power
619 * of two cache sizes there. The size of larger slabs can be determined using
620 * fls.
621 */
622 static s8 size_index[24] = {
623 3, /* 8 */
624 4, /* 16 */
625 5, /* 24 */
626 5, /* 32 */
627 6, /* 40 */
628 6, /* 48 */
629 6, /* 56 */
630 6, /* 64 */
631 1, /* 72 */
632 1, /* 80 */
633 1, /* 88 */
634 1, /* 96 */
635 7, /* 104 */
636 7, /* 112 */
637 7, /* 120 */
638 7, /* 128 */
639 2, /* 136 */
640 2, /* 144 */
641 2, /* 152 */
642 2, /* 160 */
643 2, /* 168 */
644 2, /* 176 */
645 2, /* 184 */
646 2 /* 192 */
647 };
648
649 static inline int size_index_elem(size_t bytes)
650 {
651 return (bytes - 1) / 8;
652 }
653
654 /*
655 * Find the kmem_cache structure that serves a given size of
656 * allocation
657 */
658 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
659 {
660 int index;
661
662 if (unlikely(size > KMALLOC_MAX_SIZE)) {
663 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
664 return NULL;
665 }
666
667 if (size <= 192) {
668 if (!size)
669 return ZERO_SIZE_PTR;
670
671 index = size_index[size_index_elem(size)];
672 } else
673 index = fls(size - 1);
674
675 #ifdef CONFIG_ZONE_DMA
676 if (unlikely((flags & GFP_DMA)))
677 return kmalloc_dma_caches[index];
678
679 #endif
680 return kmalloc_caches[index];
681 }
682
683 /*
684 * Create the kmalloc array. Some of the regular kmalloc arrays
685 * may already have been created because they were needed to
686 * enable allocations for slab creation.
687 */
688 void __init create_kmalloc_caches(unsigned long flags)
689 {
690 int i;
691
692 /*
693 * Patch up the size_index table if we have strange large alignment
694 * requirements for the kmalloc array. This is only the case for
695 * MIPS it seems. The standard arches will not generate any code here.
696 *
697 * Largest permitted alignment is 256 bytes due to the way we
698 * handle the index determination for the smaller caches.
699 *
700 * Make sure that nothing crazy happens if someone starts tinkering
701 * around with ARCH_KMALLOC_MINALIGN
702 */
703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
704 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
705
706 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
707 int elem = size_index_elem(i);
708
709 if (elem >= ARRAY_SIZE(size_index))
710 break;
711 size_index[elem] = KMALLOC_SHIFT_LOW;
712 }
713
714 if (KMALLOC_MIN_SIZE >= 64) {
715 /*
716 * The 96 byte size cache is not used if the alignment
717 * is 64 byte.
718 */
719 for (i = 64 + 8; i <= 96; i += 8)
720 size_index[size_index_elem(i)] = 7;
721
722 }
723
724 if (KMALLOC_MIN_SIZE >= 128) {
725 /*
726 * The 192 byte sized cache is not used if the alignment
727 * is 128 byte. Redirect kmalloc to use the 256 byte cache
728 * instead.
729 */
730 for (i = 128 + 8; i <= 192; i += 8)
731 size_index[size_index_elem(i)] = 8;
732 }
733 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
734 if (!kmalloc_caches[i]) {
735 kmalloc_caches[i] = create_kmalloc_cache(NULL,
736 1 << i, flags);
737 }
738
739 /*
740 * Caches that are not of the two-to-the-power-of size.
741 * These have to be created immediately after the
742 * earlier power of two caches
743 */
744 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
745 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
746
747 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
748 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
749 }
750
751 /* Kmalloc array is now usable */
752 slab_state = UP;
753
754 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
755 struct kmem_cache *s = kmalloc_caches[i];
756 char *n;
757
758 if (s) {
759 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
760
761 BUG_ON(!n);
762 s->name = n;
763 }
764 }
765
766 #ifdef CONFIG_ZONE_DMA
767 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
768 struct kmem_cache *s = kmalloc_caches[i];
769
770 if (s) {
771 int size = kmalloc_size(i);
772 char *n = kasprintf(GFP_NOWAIT,
773 "dma-kmalloc-%d", size);
774
775 BUG_ON(!n);
776 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
777 size, SLAB_CACHE_DMA | flags);
778 }
779 }
780 #endif
781 }
782 #endif /* !CONFIG_SLOB */
783
784 /*
785 * To avoid unnecessary overhead, we pass through large allocation requests
786 * directly to the page allocator. We use __GFP_COMP, because we will need to
787 * know the allocation order to free the pages properly in kfree.
788 */
789 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
790 {
791 void *ret;
792 struct page *page;
793
794 flags |= __GFP_COMP;
795 page = alloc_kmem_pages(flags, order);
796 ret = page ? page_address(page) : NULL;
797 kmemleak_alloc(ret, size, 1, flags);
798 return ret;
799 }
800 EXPORT_SYMBOL(kmalloc_order);
801
802 #ifdef CONFIG_TRACING
803 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
804 {
805 void *ret = kmalloc_order(size, flags, order);
806 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
807 return ret;
808 }
809 EXPORT_SYMBOL(kmalloc_order_trace);
810 #endif
811
812 #ifdef CONFIG_SLABINFO
813
814 #ifdef CONFIG_SLAB
815 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
816 #else
817 #define SLABINFO_RIGHTS S_IRUSR
818 #endif
819
820 void print_slabinfo_header(struct seq_file *m)
821 {
822 /*
823 * Output format version, so at least we can change it
824 * without _too_ many complaints.
825 */
826 #ifdef CONFIG_DEBUG_SLAB
827 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
828 #else
829 seq_puts(m, "slabinfo - version: 2.1\n");
830 #endif
831 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
832 "<objperslab> <pagesperslab>");
833 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
834 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
835 #ifdef CONFIG_DEBUG_SLAB
836 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
837 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
838 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
839 #endif
840 seq_putc(m, '\n');
841 }
842
843 static void *s_start(struct seq_file *m, loff_t *pos)
844 {
845 loff_t n = *pos;
846
847 mutex_lock(&slab_mutex);
848 if (!n)
849 print_slabinfo_header(m);
850
851 return seq_list_start(&slab_caches, *pos);
852 }
853
854 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
855 {
856 return seq_list_next(p, &slab_caches, pos);
857 }
858
859 void slab_stop(struct seq_file *m, void *p)
860 {
861 mutex_unlock(&slab_mutex);
862 }
863
864 static void
865 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
866 {
867 struct kmem_cache *c;
868 struct slabinfo sinfo;
869 int i;
870
871 if (!is_root_cache(s))
872 return;
873
874 for_each_memcg_cache_index(i) {
875 c = cache_from_memcg_idx(s, i);
876 if (!c)
877 continue;
878
879 memset(&sinfo, 0, sizeof(sinfo));
880 get_slabinfo(c, &sinfo);
881
882 info->active_slabs += sinfo.active_slabs;
883 info->num_slabs += sinfo.num_slabs;
884 info->shared_avail += sinfo.shared_avail;
885 info->active_objs += sinfo.active_objs;
886 info->num_objs += sinfo.num_objs;
887 }
888 }
889
890 int cache_show(struct kmem_cache *s, struct seq_file *m)
891 {
892 struct slabinfo sinfo;
893
894 memset(&sinfo, 0, sizeof(sinfo));
895 get_slabinfo(s, &sinfo);
896
897 memcg_accumulate_slabinfo(s, &sinfo);
898
899 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
900 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
901 sinfo.objects_per_slab, (1 << sinfo.cache_order));
902
903 seq_printf(m, " : tunables %4u %4u %4u",
904 sinfo.limit, sinfo.batchcount, sinfo.shared);
905 seq_printf(m, " : slabdata %6lu %6lu %6lu",
906 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
907 slabinfo_show_stats(m, s);
908 seq_putc(m, '\n');
909 return 0;
910 }
911
912 static int s_show(struct seq_file *m, void *p)
913 {
914 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
915
916 if (!is_root_cache(s))
917 return 0;
918 return cache_show(s, m);
919 }
920
921 /*
922 * slabinfo_op - iterator that generates /proc/slabinfo
923 *
924 * Output layout:
925 * cache-name
926 * num-active-objs
927 * total-objs
928 * object size
929 * num-active-slabs
930 * total-slabs
931 * num-pages-per-slab
932 * + further values on SMP and with statistics enabled
933 */
934 static const struct seq_operations slabinfo_op = {
935 .start = s_start,
936 .next = slab_next,
937 .stop = slab_stop,
938 .show = s_show,
939 };
940
941 static int slabinfo_open(struct inode *inode, struct file *file)
942 {
943 return seq_open(file, &slabinfo_op);
944 }
945
946 static const struct file_operations proc_slabinfo_operations = {
947 .open = slabinfo_open,
948 .read = seq_read,
949 .write = slabinfo_write,
950 .llseek = seq_lseek,
951 .release = seq_release,
952 };
953
954 static int __init slab_proc_init(void)
955 {
956 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
957 &proc_slabinfo_operations);
958 return 0;
959 }
960 module_init(slab_proc_init);
961 #endif /* CONFIG_SLABINFO */
962
963 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
964 gfp_t flags)
965 {
966 void *ret;
967 size_t ks = 0;
968
969 if (p)
970 ks = ksize(p);
971
972 if (ks >= new_size)
973 return (void *)p;
974
975 ret = kmalloc_track_caller(new_size, flags);
976 if (ret && p)
977 memcpy(ret, p, ks);
978
979 return ret;
980 }
981
982 /**
983 * __krealloc - like krealloc() but don't free @p.
984 * @p: object to reallocate memory for.
985 * @new_size: how many bytes of memory are required.
986 * @flags: the type of memory to allocate.
987 *
988 * This function is like krealloc() except it never frees the originally
989 * allocated buffer. Use this if you don't want to free the buffer immediately
990 * like, for example, with RCU.
991 */
992 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
993 {
994 if (unlikely(!new_size))
995 return ZERO_SIZE_PTR;
996
997 return __do_krealloc(p, new_size, flags);
998
999 }
1000 EXPORT_SYMBOL(__krealloc);
1001
1002 /**
1003 * krealloc - reallocate memory. The contents will remain unchanged.
1004 * @p: object to reallocate memory for.
1005 * @new_size: how many bytes of memory are required.
1006 * @flags: the type of memory to allocate.
1007 *
1008 * The contents of the object pointed to are preserved up to the
1009 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1010 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1011 * %NULL pointer, the object pointed to is freed.
1012 */
1013 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1014 {
1015 void *ret;
1016
1017 if (unlikely(!new_size)) {
1018 kfree(p);
1019 return ZERO_SIZE_PTR;
1020 }
1021
1022 ret = __do_krealloc(p, new_size, flags);
1023 if (ret && p != ret)
1024 kfree(p);
1025
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(krealloc);
1029
1030 /**
1031 * kzfree - like kfree but zero memory
1032 * @p: object to free memory of
1033 *
1034 * The memory of the object @p points to is zeroed before freed.
1035 * If @p is %NULL, kzfree() does nothing.
1036 *
1037 * Note: this function zeroes the whole allocated buffer which can be a good
1038 * deal bigger than the requested buffer size passed to kmalloc(). So be
1039 * careful when using this function in performance sensitive code.
1040 */
1041 void kzfree(const void *p)
1042 {
1043 size_t ks;
1044 void *mem = (void *)p;
1045
1046 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1047 return;
1048 ks = ksize(mem);
1049 memset(mem, 0, ks);
1050 kfree(mem);
1051 }
1052 EXPORT_SYMBOL(kzfree);
1053
1054 /* Tracepoints definitions. */
1055 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1056 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1057 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1058 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1059 EXPORT_TRACEPOINT_SYMBOL(kfree);
1060 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
This page took 0.052729 seconds and 5 git commands to generate.