Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25
26 #include "slab.h"
27
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32
33 #ifdef CONFIG_DEBUG_VM
34 static int kmem_cache_sanity_check(const char *name, size_t size)
35 {
36 struct kmem_cache *s = NULL;
37
38 if (!name || in_interrupt() || size < sizeof(void *) ||
39 size > KMALLOC_MAX_SIZE) {
40 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
41 return -EINVAL;
42 }
43
44 list_for_each_entry(s, &slab_caches, list) {
45 char tmp;
46 int res;
47
48 /*
49 * This happens when the module gets unloaded and doesn't
50 * destroy its slab cache and no-one else reuses the vmalloc
51 * area of the module. Print a warning.
52 */
53 res = probe_kernel_address(s->name, tmp);
54 if (res) {
55 pr_err("Slab cache with size %d has lost its name\n",
56 s->object_size);
57 continue;
58 }
59
60 #if !defined(CONFIG_SLUB)
61 if (!strcmp(s->name, name)) {
62 pr_err("%s (%s): Cache name already exists.\n",
63 __func__, name);
64 dump_stack();
65 s = NULL;
66 return -EINVAL;
67 }
68 #endif
69 }
70
71 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
72 return 0;
73 }
74 #else
75 static inline int kmem_cache_sanity_check(const char *name, size_t size)
76 {
77 return 0;
78 }
79 #endif
80
81 #ifdef CONFIG_MEMCG_KMEM
82 int memcg_update_all_caches(int num_memcgs)
83 {
84 struct kmem_cache *s;
85 int ret = 0;
86 mutex_lock(&slab_mutex);
87
88 list_for_each_entry(s, &slab_caches, list) {
89 if (!is_root_cache(s))
90 continue;
91
92 ret = memcg_update_cache_size(s, num_memcgs);
93 /*
94 * See comment in memcontrol.c, memcg_update_cache_size:
95 * Instead of freeing the memory, we'll just leave the caches
96 * up to this point in an updated state.
97 */
98 if (ret)
99 goto out;
100 }
101
102 memcg_update_array_size(num_memcgs);
103 out:
104 mutex_unlock(&slab_mutex);
105 return ret;
106 }
107 #endif
108
109 /*
110 * Figure out what the alignment of the objects will be given a set of
111 * flags, a user specified alignment and the size of the objects.
112 */
113 unsigned long calculate_alignment(unsigned long flags,
114 unsigned long align, unsigned long size)
115 {
116 /*
117 * If the user wants hardware cache aligned objects then follow that
118 * suggestion if the object is sufficiently large.
119 *
120 * The hardware cache alignment cannot override the specified
121 * alignment though. If that is greater then use it.
122 */
123 if (flags & SLAB_HWCACHE_ALIGN) {
124 unsigned long ralign = cache_line_size();
125 while (size <= ralign / 2)
126 ralign /= 2;
127 align = max(align, ralign);
128 }
129
130 if (align < ARCH_SLAB_MINALIGN)
131 align = ARCH_SLAB_MINALIGN;
132
133 return ALIGN(align, sizeof(void *));
134 }
135
136 static struct kmem_cache *
137 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
138 unsigned long flags, void (*ctor)(void *),
139 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
140 {
141 struct kmem_cache *s;
142 int err;
143
144 err = -ENOMEM;
145 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
146 if (!s)
147 goto out;
148
149 s->name = name;
150 s->object_size = object_size;
151 s->size = size;
152 s->align = align;
153 s->ctor = ctor;
154
155 err = memcg_alloc_cache_params(memcg, s, root_cache);
156 if (err)
157 goto out_free_cache;
158
159 err = __kmem_cache_create(s, flags);
160 if (err)
161 goto out_free_cache;
162
163 s->refcount = 1;
164 list_add(&s->list, &slab_caches);
165 out:
166 if (err)
167 return ERR_PTR(err);
168 return s;
169
170 out_free_cache:
171 memcg_free_cache_params(s);
172 kfree(s);
173 goto out;
174 }
175
176 /*
177 * kmem_cache_create - Create a cache.
178 * @name: A string which is used in /proc/slabinfo to identify this cache.
179 * @size: The size of objects to be created in this cache.
180 * @align: The required alignment for the objects.
181 * @flags: SLAB flags
182 * @ctor: A constructor for the objects.
183 *
184 * Returns a ptr to the cache on success, NULL on failure.
185 * Cannot be called within a interrupt, but can be interrupted.
186 * The @ctor is run when new pages are allocated by the cache.
187 *
188 * The flags are
189 *
190 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
191 * to catch references to uninitialised memory.
192 *
193 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
194 * for buffer overruns.
195 *
196 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
197 * cacheline. This can be beneficial if you're counting cycles as closely
198 * as davem.
199 */
200 struct kmem_cache *
201 kmem_cache_create(const char *name, size_t size, size_t align,
202 unsigned long flags, void (*ctor)(void *))
203 {
204 struct kmem_cache *s;
205 char *cache_name;
206 int err;
207
208 get_online_cpus();
209 get_online_mems();
210
211 mutex_lock(&slab_mutex);
212
213 err = kmem_cache_sanity_check(name, size);
214 if (err)
215 goto out_unlock;
216
217 /*
218 * Some allocators will constraint the set of valid flags to a subset
219 * of all flags. We expect them to define CACHE_CREATE_MASK in this
220 * case, and we'll just provide them with a sanitized version of the
221 * passed flags.
222 */
223 flags &= CACHE_CREATE_MASK;
224
225 s = __kmem_cache_alias(name, size, align, flags, ctor);
226 if (s)
227 goto out_unlock;
228
229 cache_name = kstrdup(name, GFP_KERNEL);
230 if (!cache_name) {
231 err = -ENOMEM;
232 goto out_unlock;
233 }
234
235 s = do_kmem_cache_create(cache_name, size, size,
236 calculate_alignment(flags, align, size),
237 flags, ctor, NULL, NULL);
238 if (IS_ERR(s)) {
239 err = PTR_ERR(s);
240 kfree(cache_name);
241 }
242
243 out_unlock:
244 mutex_unlock(&slab_mutex);
245
246 put_online_mems();
247 put_online_cpus();
248
249 if (err) {
250 if (flags & SLAB_PANIC)
251 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
252 name, err);
253 else {
254 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
255 name, err);
256 dump_stack();
257 }
258 return NULL;
259 }
260 return s;
261 }
262 EXPORT_SYMBOL(kmem_cache_create);
263
264 #ifdef CONFIG_MEMCG_KMEM
265 /*
266 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
267 * @memcg: The memory cgroup the new cache is for.
268 * @root_cache: The parent of the new cache.
269 * @memcg_name: The name of the memory cgroup (used for naming the new cache).
270 *
271 * This function attempts to create a kmem cache that will serve allocation
272 * requests going from @memcg to @root_cache. The new cache inherits properties
273 * from its parent.
274 */
275 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
276 struct kmem_cache *root_cache,
277 const char *memcg_name)
278 {
279 struct kmem_cache *s = NULL;
280 char *cache_name;
281
282 get_online_cpus();
283 get_online_mems();
284
285 mutex_lock(&slab_mutex);
286
287 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
288 memcg_cache_id(memcg), memcg_name);
289 if (!cache_name)
290 goto out_unlock;
291
292 s = do_kmem_cache_create(cache_name, root_cache->object_size,
293 root_cache->size, root_cache->align,
294 root_cache->flags, root_cache->ctor,
295 memcg, root_cache);
296 if (IS_ERR(s)) {
297 kfree(cache_name);
298 s = NULL;
299 }
300
301 out_unlock:
302 mutex_unlock(&slab_mutex);
303
304 put_online_mems();
305 put_online_cpus();
306
307 return s;
308 }
309
310 static int memcg_cleanup_cache_params(struct kmem_cache *s)
311 {
312 int rc;
313
314 if (!s->memcg_params ||
315 !s->memcg_params->is_root_cache)
316 return 0;
317
318 mutex_unlock(&slab_mutex);
319 rc = __memcg_cleanup_cache_params(s);
320 mutex_lock(&slab_mutex);
321
322 return rc;
323 }
324 #else
325 static int memcg_cleanup_cache_params(struct kmem_cache *s)
326 {
327 return 0;
328 }
329 #endif /* CONFIG_MEMCG_KMEM */
330
331 void slab_kmem_cache_release(struct kmem_cache *s)
332 {
333 kfree(s->name);
334 kmem_cache_free(kmem_cache, s);
335 }
336
337 void kmem_cache_destroy(struct kmem_cache *s)
338 {
339 get_online_cpus();
340 get_online_mems();
341
342 mutex_lock(&slab_mutex);
343
344 s->refcount--;
345 if (s->refcount)
346 goto out_unlock;
347
348 if (memcg_cleanup_cache_params(s) != 0)
349 goto out_unlock;
350
351 if (__kmem_cache_shutdown(s) != 0) {
352 printk(KERN_ERR "kmem_cache_destroy %s: "
353 "Slab cache still has objects\n", s->name);
354 dump_stack();
355 goto out_unlock;
356 }
357
358 list_del(&s->list);
359
360 mutex_unlock(&slab_mutex);
361 if (s->flags & SLAB_DESTROY_BY_RCU)
362 rcu_barrier();
363
364 memcg_free_cache_params(s);
365 #ifdef SLAB_SUPPORTS_SYSFS
366 sysfs_slab_remove(s);
367 #else
368 slab_kmem_cache_release(s);
369 #endif
370 goto out;
371
372 out_unlock:
373 mutex_unlock(&slab_mutex);
374 out:
375 put_online_mems();
376 put_online_cpus();
377 }
378 EXPORT_SYMBOL(kmem_cache_destroy);
379
380 /**
381 * kmem_cache_shrink - Shrink a cache.
382 * @cachep: The cache to shrink.
383 *
384 * Releases as many slabs as possible for a cache.
385 * To help debugging, a zero exit status indicates all slabs were released.
386 */
387 int kmem_cache_shrink(struct kmem_cache *cachep)
388 {
389 int ret;
390
391 get_online_cpus();
392 get_online_mems();
393 ret = __kmem_cache_shrink(cachep);
394 put_online_mems();
395 put_online_cpus();
396 return ret;
397 }
398 EXPORT_SYMBOL(kmem_cache_shrink);
399
400 int slab_is_available(void)
401 {
402 return slab_state >= UP;
403 }
404
405 #ifndef CONFIG_SLOB
406 /* Create a cache during boot when no slab services are available yet */
407 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
408 unsigned long flags)
409 {
410 int err;
411
412 s->name = name;
413 s->size = s->object_size = size;
414 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
415 err = __kmem_cache_create(s, flags);
416
417 if (err)
418 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
419 name, size, err);
420
421 s->refcount = -1; /* Exempt from merging for now */
422 }
423
424 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
425 unsigned long flags)
426 {
427 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
428
429 if (!s)
430 panic("Out of memory when creating slab %s\n", name);
431
432 create_boot_cache(s, name, size, flags);
433 list_add(&s->list, &slab_caches);
434 s->refcount = 1;
435 return s;
436 }
437
438 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
439 EXPORT_SYMBOL(kmalloc_caches);
440
441 #ifdef CONFIG_ZONE_DMA
442 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
443 EXPORT_SYMBOL(kmalloc_dma_caches);
444 #endif
445
446 /*
447 * Conversion table for small slabs sizes / 8 to the index in the
448 * kmalloc array. This is necessary for slabs < 192 since we have non power
449 * of two cache sizes there. The size of larger slabs can be determined using
450 * fls.
451 */
452 static s8 size_index[24] = {
453 3, /* 8 */
454 4, /* 16 */
455 5, /* 24 */
456 5, /* 32 */
457 6, /* 40 */
458 6, /* 48 */
459 6, /* 56 */
460 6, /* 64 */
461 1, /* 72 */
462 1, /* 80 */
463 1, /* 88 */
464 1, /* 96 */
465 7, /* 104 */
466 7, /* 112 */
467 7, /* 120 */
468 7, /* 128 */
469 2, /* 136 */
470 2, /* 144 */
471 2, /* 152 */
472 2, /* 160 */
473 2, /* 168 */
474 2, /* 176 */
475 2, /* 184 */
476 2 /* 192 */
477 };
478
479 static inline int size_index_elem(size_t bytes)
480 {
481 return (bytes - 1) / 8;
482 }
483
484 /*
485 * Find the kmem_cache structure that serves a given size of
486 * allocation
487 */
488 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
489 {
490 int index;
491
492 if (unlikely(size > KMALLOC_MAX_SIZE)) {
493 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
494 return NULL;
495 }
496
497 if (size <= 192) {
498 if (!size)
499 return ZERO_SIZE_PTR;
500
501 index = size_index[size_index_elem(size)];
502 } else
503 index = fls(size - 1);
504
505 #ifdef CONFIG_ZONE_DMA
506 if (unlikely((flags & GFP_DMA)))
507 return kmalloc_dma_caches[index];
508
509 #endif
510 return kmalloc_caches[index];
511 }
512
513 /*
514 * Create the kmalloc array. Some of the regular kmalloc arrays
515 * may already have been created because they were needed to
516 * enable allocations for slab creation.
517 */
518 void __init create_kmalloc_caches(unsigned long flags)
519 {
520 int i;
521
522 /*
523 * Patch up the size_index table if we have strange large alignment
524 * requirements for the kmalloc array. This is only the case for
525 * MIPS it seems. The standard arches will not generate any code here.
526 *
527 * Largest permitted alignment is 256 bytes due to the way we
528 * handle the index determination for the smaller caches.
529 *
530 * Make sure that nothing crazy happens if someone starts tinkering
531 * around with ARCH_KMALLOC_MINALIGN
532 */
533 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
534 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
535
536 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
537 int elem = size_index_elem(i);
538
539 if (elem >= ARRAY_SIZE(size_index))
540 break;
541 size_index[elem] = KMALLOC_SHIFT_LOW;
542 }
543
544 if (KMALLOC_MIN_SIZE >= 64) {
545 /*
546 * The 96 byte size cache is not used if the alignment
547 * is 64 byte.
548 */
549 for (i = 64 + 8; i <= 96; i += 8)
550 size_index[size_index_elem(i)] = 7;
551
552 }
553
554 if (KMALLOC_MIN_SIZE >= 128) {
555 /*
556 * The 192 byte sized cache is not used if the alignment
557 * is 128 byte. Redirect kmalloc to use the 256 byte cache
558 * instead.
559 */
560 for (i = 128 + 8; i <= 192; i += 8)
561 size_index[size_index_elem(i)] = 8;
562 }
563 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
564 if (!kmalloc_caches[i]) {
565 kmalloc_caches[i] = create_kmalloc_cache(NULL,
566 1 << i, flags);
567 }
568
569 /*
570 * Caches that are not of the two-to-the-power-of size.
571 * These have to be created immediately after the
572 * earlier power of two caches
573 */
574 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
575 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
576
577 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
578 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
579 }
580
581 /* Kmalloc array is now usable */
582 slab_state = UP;
583
584 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
585 struct kmem_cache *s = kmalloc_caches[i];
586 char *n;
587
588 if (s) {
589 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
590
591 BUG_ON(!n);
592 s->name = n;
593 }
594 }
595
596 #ifdef CONFIG_ZONE_DMA
597 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
598 struct kmem_cache *s = kmalloc_caches[i];
599
600 if (s) {
601 int size = kmalloc_size(i);
602 char *n = kasprintf(GFP_NOWAIT,
603 "dma-kmalloc-%d", size);
604
605 BUG_ON(!n);
606 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
607 size, SLAB_CACHE_DMA | flags);
608 }
609 }
610 #endif
611 }
612 #endif /* !CONFIG_SLOB */
613
614 /*
615 * To avoid unnecessary overhead, we pass through large allocation requests
616 * directly to the page allocator. We use __GFP_COMP, because we will need to
617 * know the allocation order to free the pages properly in kfree.
618 */
619 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
620 {
621 void *ret;
622 struct page *page;
623
624 flags |= __GFP_COMP;
625 page = alloc_kmem_pages(flags, order);
626 ret = page ? page_address(page) : NULL;
627 kmemleak_alloc(ret, size, 1, flags);
628 return ret;
629 }
630 EXPORT_SYMBOL(kmalloc_order);
631
632 #ifdef CONFIG_TRACING
633 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
634 {
635 void *ret = kmalloc_order(size, flags, order);
636 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
637 return ret;
638 }
639 EXPORT_SYMBOL(kmalloc_order_trace);
640 #endif
641
642 #ifdef CONFIG_SLABINFO
643
644 #ifdef CONFIG_SLAB
645 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
646 #else
647 #define SLABINFO_RIGHTS S_IRUSR
648 #endif
649
650 void print_slabinfo_header(struct seq_file *m)
651 {
652 /*
653 * Output format version, so at least we can change it
654 * without _too_ many complaints.
655 */
656 #ifdef CONFIG_DEBUG_SLAB
657 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
658 #else
659 seq_puts(m, "slabinfo - version: 2.1\n");
660 #endif
661 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
662 "<objperslab> <pagesperslab>");
663 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
664 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
665 #ifdef CONFIG_DEBUG_SLAB
666 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
667 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
668 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
669 #endif
670 seq_putc(m, '\n');
671 }
672
673 static void *s_start(struct seq_file *m, loff_t *pos)
674 {
675 loff_t n = *pos;
676
677 mutex_lock(&slab_mutex);
678 if (!n)
679 print_slabinfo_header(m);
680
681 return seq_list_start(&slab_caches, *pos);
682 }
683
684 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
685 {
686 return seq_list_next(p, &slab_caches, pos);
687 }
688
689 void slab_stop(struct seq_file *m, void *p)
690 {
691 mutex_unlock(&slab_mutex);
692 }
693
694 static void
695 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
696 {
697 struct kmem_cache *c;
698 struct slabinfo sinfo;
699 int i;
700
701 if (!is_root_cache(s))
702 return;
703
704 for_each_memcg_cache_index(i) {
705 c = cache_from_memcg_idx(s, i);
706 if (!c)
707 continue;
708
709 memset(&sinfo, 0, sizeof(sinfo));
710 get_slabinfo(c, &sinfo);
711
712 info->active_slabs += sinfo.active_slabs;
713 info->num_slabs += sinfo.num_slabs;
714 info->shared_avail += sinfo.shared_avail;
715 info->active_objs += sinfo.active_objs;
716 info->num_objs += sinfo.num_objs;
717 }
718 }
719
720 int cache_show(struct kmem_cache *s, struct seq_file *m)
721 {
722 struct slabinfo sinfo;
723
724 memset(&sinfo, 0, sizeof(sinfo));
725 get_slabinfo(s, &sinfo);
726
727 memcg_accumulate_slabinfo(s, &sinfo);
728
729 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
730 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
731 sinfo.objects_per_slab, (1 << sinfo.cache_order));
732
733 seq_printf(m, " : tunables %4u %4u %4u",
734 sinfo.limit, sinfo.batchcount, sinfo.shared);
735 seq_printf(m, " : slabdata %6lu %6lu %6lu",
736 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
737 slabinfo_show_stats(m, s);
738 seq_putc(m, '\n');
739 return 0;
740 }
741
742 static int s_show(struct seq_file *m, void *p)
743 {
744 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
745
746 if (!is_root_cache(s))
747 return 0;
748 return cache_show(s, m);
749 }
750
751 /*
752 * slabinfo_op - iterator that generates /proc/slabinfo
753 *
754 * Output layout:
755 * cache-name
756 * num-active-objs
757 * total-objs
758 * object size
759 * num-active-slabs
760 * total-slabs
761 * num-pages-per-slab
762 * + further values on SMP and with statistics enabled
763 */
764 static const struct seq_operations slabinfo_op = {
765 .start = s_start,
766 .next = slab_next,
767 .stop = slab_stop,
768 .show = s_show,
769 };
770
771 static int slabinfo_open(struct inode *inode, struct file *file)
772 {
773 return seq_open(file, &slabinfo_op);
774 }
775
776 static const struct file_operations proc_slabinfo_operations = {
777 .open = slabinfo_open,
778 .read = seq_read,
779 .write = slabinfo_write,
780 .llseek = seq_lseek,
781 .release = seq_release,
782 };
783
784 static int __init slab_proc_init(void)
785 {
786 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
787 &proc_slabinfo_operations);
788 return 0;
789 }
790 module_init(slab_proc_init);
791 #endif /* CONFIG_SLABINFO */
792
793 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
794 gfp_t flags)
795 {
796 void *ret;
797 size_t ks = 0;
798
799 if (p)
800 ks = ksize(p);
801
802 if (ks >= new_size)
803 return (void *)p;
804
805 ret = kmalloc_track_caller(new_size, flags);
806 if (ret && p)
807 memcpy(ret, p, ks);
808
809 return ret;
810 }
811
812 /**
813 * __krealloc - like krealloc() but don't free @p.
814 * @p: object to reallocate memory for.
815 * @new_size: how many bytes of memory are required.
816 * @flags: the type of memory to allocate.
817 *
818 * This function is like krealloc() except it never frees the originally
819 * allocated buffer. Use this if you don't want to free the buffer immediately
820 * like, for example, with RCU.
821 */
822 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
823 {
824 if (unlikely(!new_size))
825 return ZERO_SIZE_PTR;
826
827 return __do_krealloc(p, new_size, flags);
828
829 }
830 EXPORT_SYMBOL(__krealloc);
831
832 /**
833 * krealloc - reallocate memory. The contents will remain unchanged.
834 * @p: object to reallocate memory for.
835 * @new_size: how many bytes of memory are required.
836 * @flags: the type of memory to allocate.
837 *
838 * The contents of the object pointed to are preserved up to the
839 * lesser of the new and old sizes. If @p is %NULL, krealloc()
840 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
841 * %NULL pointer, the object pointed to is freed.
842 */
843 void *krealloc(const void *p, size_t new_size, gfp_t flags)
844 {
845 void *ret;
846
847 if (unlikely(!new_size)) {
848 kfree(p);
849 return ZERO_SIZE_PTR;
850 }
851
852 ret = __do_krealloc(p, new_size, flags);
853 if (ret && p != ret)
854 kfree(p);
855
856 return ret;
857 }
858 EXPORT_SYMBOL(krealloc);
859
860 /**
861 * kzfree - like kfree but zero memory
862 * @p: object to free memory of
863 *
864 * The memory of the object @p points to is zeroed before freed.
865 * If @p is %NULL, kzfree() does nothing.
866 *
867 * Note: this function zeroes the whole allocated buffer which can be a good
868 * deal bigger than the requested buffer size passed to kmalloc(). So be
869 * careful when using this function in performance sensitive code.
870 */
871 void kzfree(const void *p)
872 {
873 size_t ks;
874 void *mem = (void *)p;
875
876 if (unlikely(ZERO_OR_NULL_PTR(mem)))
877 return;
878 ks = ksize(mem);
879 memset(mem, 0, ks);
880 kfree(mem);
881 }
882 EXPORT_SYMBOL(kzfree);
883
884 /* Tracepoints definitions. */
885 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
886 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
887 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
888 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
889 EXPORT_TRACEPOINT_SYMBOL(kfree);
890 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
This page took 0.050139 seconds and 5 git commands to generate.