Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[deliverable/linux.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21
22 #include "slab.h"
23
24 enum slab_state slab_state;
25 LIST_HEAD(slab_caches);
26 DEFINE_MUTEX(slab_mutex);
27 struct kmem_cache *kmem_cache;
28
29 #ifdef CONFIG_DEBUG_VM
30 static int kmem_cache_sanity_check(const char *name, size_t size)
31 {
32 struct kmem_cache *s = NULL;
33
34 if (!name || in_interrupt() || size < sizeof(void *) ||
35 size > KMALLOC_MAX_SIZE) {
36 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
37 return -EINVAL;
38 }
39
40 list_for_each_entry(s, &slab_caches, list) {
41 char tmp;
42 int res;
43
44 /*
45 * This happens when the module gets unloaded and doesn't
46 * destroy its slab cache and no-one else reuses the vmalloc
47 * area of the module. Print a warning.
48 */
49 res = probe_kernel_address(s->name, tmp);
50 if (res) {
51 pr_err("Slab cache with size %d has lost its name\n",
52 s->object_size);
53 continue;
54 }
55
56 if (!strcmp(s->name, name)) {
57 pr_err("%s (%s): Cache name already exists.\n",
58 __func__, name);
59 dump_stack();
60 s = NULL;
61 return -EINVAL;
62 }
63 }
64
65 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
66 return 0;
67 }
68 #else
69 static inline int kmem_cache_sanity_check(const char *name, size_t size)
70 {
71 return 0;
72 }
73 #endif
74
75 /*
76 * Figure out what the alignment of the objects will be given a set of
77 * flags, a user specified alignment and the size of the objects.
78 */
79 unsigned long calculate_alignment(unsigned long flags,
80 unsigned long align, unsigned long size)
81 {
82 /*
83 * If the user wants hardware cache aligned objects then follow that
84 * suggestion if the object is sufficiently large.
85 *
86 * The hardware cache alignment cannot override the specified
87 * alignment though. If that is greater then use it.
88 */
89 if (flags & SLAB_HWCACHE_ALIGN) {
90 unsigned long ralign = cache_line_size();
91 while (size <= ralign / 2)
92 ralign /= 2;
93 align = max(align, ralign);
94 }
95
96 if (align < ARCH_SLAB_MINALIGN)
97 align = ARCH_SLAB_MINALIGN;
98
99 return ALIGN(align, sizeof(void *));
100 }
101
102
103 /*
104 * kmem_cache_create - Create a cache.
105 * @name: A string which is used in /proc/slabinfo to identify this cache.
106 * @size: The size of objects to be created in this cache.
107 * @align: The required alignment for the objects.
108 * @flags: SLAB flags
109 * @ctor: A constructor for the objects.
110 *
111 * Returns a ptr to the cache on success, NULL on failure.
112 * Cannot be called within a interrupt, but can be interrupted.
113 * The @ctor is run when new pages are allocated by the cache.
114 *
115 * The flags are
116 *
117 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
118 * to catch references to uninitialised memory.
119 *
120 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
121 * for buffer overruns.
122 *
123 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
124 * cacheline. This can be beneficial if you're counting cycles as closely
125 * as davem.
126 */
127
128 struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align,
129 unsigned long flags, void (*ctor)(void *))
130 {
131 struct kmem_cache *s = NULL;
132 int err = 0;
133
134 get_online_cpus();
135 mutex_lock(&slab_mutex);
136
137 if (!kmem_cache_sanity_check(name, size) == 0)
138 goto out_locked;
139
140 /*
141 * Some allocators will constraint the set of valid flags to a subset
142 * of all flags. We expect them to define CACHE_CREATE_MASK in this
143 * case, and we'll just provide them with a sanitized version of the
144 * passed flags.
145 */
146 flags &= CACHE_CREATE_MASK;
147
148 s = __kmem_cache_alias(name, size, align, flags, ctor);
149 if (s)
150 goto out_locked;
151
152 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
153 if (s) {
154 s->object_size = s->size = size;
155 s->align = calculate_alignment(flags, align, size);
156 s->ctor = ctor;
157 s->name = kstrdup(name, GFP_KERNEL);
158 if (!s->name) {
159 kmem_cache_free(kmem_cache, s);
160 err = -ENOMEM;
161 goto out_locked;
162 }
163
164 err = __kmem_cache_create(s, flags);
165 if (!err) {
166
167 s->refcount = 1;
168 list_add(&s->list, &slab_caches);
169
170 } else {
171 kfree(s->name);
172 kmem_cache_free(kmem_cache, s);
173 }
174 } else
175 err = -ENOMEM;
176
177 out_locked:
178 mutex_unlock(&slab_mutex);
179 put_online_cpus();
180
181 if (err) {
182
183 if (flags & SLAB_PANIC)
184 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
185 name, err);
186 else {
187 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
188 name, err);
189 dump_stack();
190 }
191
192 return NULL;
193 }
194
195 return s;
196 }
197 EXPORT_SYMBOL(kmem_cache_create);
198
199 void kmem_cache_destroy(struct kmem_cache *s)
200 {
201 get_online_cpus();
202 mutex_lock(&slab_mutex);
203 s->refcount--;
204 if (!s->refcount) {
205 list_del(&s->list);
206
207 if (!__kmem_cache_shutdown(s)) {
208 mutex_unlock(&slab_mutex);
209 if (s->flags & SLAB_DESTROY_BY_RCU)
210 rcu_barrier();
211
212 kfree(s->name);
213 kmem_cache_free(kmem_cache, s);
214 } else {
215 list_add(&s->list, &slab_caches);
216 mutex_unlock(&slab_mutex);
217 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
218 s->name);
219 dump_stack();
220 }
221 } else {
222 mutex_unlock(&slab_mutex);
223 }
224 put_online_cpus();
225 }
226 EXPORT_SYMBOL(kmem_cache_destroy);
227
228 int slab_is_available(void)
229 {
230 return slab_state >= UP;
231 }
232
233 #ifndef CONFIG_SLOB
234 /* Create a cache during boot when no slab services are available yet */
235 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
236 unsigned long flags)
237 {
238 int err;
239
240 s->name = name;
241 s->size = s->object_size = size;
242 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
243 err = __kmem_cache_create(s, flags);
244
245 if (err)
246 panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
247 name, size, err);
248
249 s->refcount = -1; /* Exempt from merging for now */
250 }
251
252 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
253 unsigned long flags)
254 {
255 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
256
257 if (!s)
258 panic("Out of memory when creating slab %s\n", name);
259
260 create_boot_cache(s, name, size, flags);
261 list_add(&s->list, &slab_caches);
262 s->refcount = 1;
263 return s;
264 }
265
266 #endif /* !CONFIG_SLOB */
267
268
269 #ifdef CONFIG_SLABINFO
270 static void print_slabinfo_header(struct seq_file *m)
271 {
272 /*
273 * Output format version, so at least we can change it
274 * without _too_ many complaints.
275 */
276 #ifdef CONFIG_DEBUG_SLAB
277 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
278 #else
279 seq_puts(m, "slabinfo - version: 2.1\n");
280 #endif
281 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
282 "<objperslab> <pagesperslab>");
283 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
284 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
285 #ifdef CONFIG_DEBUG_SLAB
286 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
287 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
288 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
289 #endif
290 seq_putc(m, '\n');
291 }
292
293 static void *s_start(struct seq_file *m, loff_t *pos)
294 {
295 loff_t n = *pos;
296
297 mutex_lock(&slab_mutex);
298 if (!n)
299 print_slabinfo_header(m);
300
301 return seq_list_start(&slab_caches, *pos);
302 }
303
304 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
305 {
306 return seq_list_next(p, &slab_caches, pos);
307 }
308
309 static void s_stop(struct seq_file *m, void *p)
310 {
311 mutex_unlock(&slab_mutex);
312 }
313
314 static int s_show(struct seq_file *m, void *p)
315 {
316 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
317 struct slabinfo sinfo;
318
319 memset(&sinfo, 0, sizeof(sinfo));
320 get_slabinfo(s, &sinfo);
321
322 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
323 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
324 sinfo.objects_per_slab, (1 << sinfo.cache_order));
325
326 seq_printf(m, " : tunables %4u %4u %4u",
327 sinfo.limit, sinfo.batchcount, sinfo.shared);
328 seq_printf(m, " : slabdata %6lu %6lu %6lu",
329 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
330 slabinfo_show_stats(m, s);
331 seq_putc(m, '\n');
332 return 0;
333 }
334
335 /*
336 * slabinfo_op - iterator that generates /proc/slabinfo
337 *
338 * Output layout:
339 * cache-name
340 * num-active-objs
341 * total-objs
342 * object size
343 * num-active-slabs
344 * total-slabs
345 * num-pages-per-slab
346 * + further values on SMP and with statistics enabled
347 */
348 static const struct seq_operations slabinfo_op = {
349 .start = s_start,
350 .next = s_next,
351 .stop = s_stop,
352 .show = s_show,
353 };
354
355 static int slabinfo_open(struct inode *inode, struct file *file)
356 {
357 return seq_open(file, &slabinfo_op);
358 }
359
360 static const struct file_operations proc_slabinfo_operations = {
361 .open = slabinfo_open,
362 .read = seq_read,
363 .write = slabinfo_write,
364 .llseek = seq_lseek,
365 .release = seq_release,
366 };
367
368 static int __init slab_proc_init(void)
369 {
370 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
371 return 0;
372 }
373 module_init(slab_proc_init);
374 #endif /* CONFIG_SLABINFO */
This page took 0.040071 seconds and 6 git commands to generate.