slob: Remove various small accessors
[deliverable/linux.git] / mm / slob.c
1 /*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14 *
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_exact_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
58 */
59
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 #include <linux/mm.h>
63 #include <linux/swap.h> /* struct reclaim_state */
64 #include <linux/cache.h>
65 #include <linux/init.h>
66 #include <linux/export.h>
67 #include <linux/rcupdate.h>
68 #include <linux/list.h>
69 #include <linux/kmemleak.h>
70
71 #include <trace/events/kmem.h>
72
73 #include <linux/atomic.h>
74
75 /*
76 * slob_block has a field 'units', which indicates size of block if +ve,
77 * or offset of next block if -ve (in SLOB_UNITs).
78 *
79 * Free blocks of size 1 unit simply contain the offset of the next block.
80 * Those with larger size contain their size in the first SLOB_UNIT of
81 * memory, and the offset of the next free block in the second SLOB_UNIT.
82 */
83 #if PAGE_SIZE <= (32767 * 2)
84 typedef s16 slobidx_t;
85 #else
86 typedef s32 slobidx_t;
87 #endif
88
89 struct slob_block {
90 slobidx_t units;
91 };
92 typedef struct slob_block slob_t;
93
94 /*
95 * All partially free slob pages go on these lists.
96 */
97 #define SLOB_BREAK1 256
98 #define SLOB_BREAK2 1024
99 static LIST_HEAD(free_slob_small);
100 static LIST_HEAD(free_slob_medium);
101 static LIST_HEAD(free_slob_large);
102
103 /*
104 * slob_page_free: true for pages on free_slob_pages list.
105 */
106 static inline int slob_page_free(struct page *sp)
107 {
108 return PageSlobFree(sp);
109 }
110
111 static void set_slob_page_free(struct page *sp, struct list_head *list)
112 {
113 list_add(&sp->list, list);
114 __SetPageSlobFree(sp);
115 }
116
117 static inline void clear_slob_page_free(struct page *sp)
118 {
119 list_del(&sp->list);
120 __ClearPageSlobFree(sp);
121 }
122
123 #define SLOB_UNIT sizeof(slob_t)
124 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
125 #define SLOB_ALIGN L1_CACHE_BYTES
126
127 /*
128 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
129 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
130 * the block using call_rcu.
131 */
132 struct slob_rcu {
133 struct rcu_head head;
134 int size;
135 };
136
137 /*
138 * slob_lock protects all slob allocator structures.
139 */
140 static DEFINE_SPINLOCK(slob_lock);
141
142 /*
143 * Encode the given size and next info into a free slob block s.
144 */
145 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
146 {
147 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
148 slobidx_t offset = next - base;
149
150 if (size > 1) {
151 s[0].units = size;
152 s[1].units = offset;
153 } else
154 s[0].units = -offset;
155 }
156
157 /*
158 * Return the size of a slob block.
159 */
160 static slobidx_t slob_units(slob_t *s)
161 {
162 if (s->units > 0)
163 return s->units;
164 return 1;
165 }
166
167 /*
168 * Return the next free slob block pointer after this one.
169 */
170 static slob_t *slob_next(slob_t *s)
171 {
172 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
173 slobidx_t next;
174
175 if (s[0].units < 0)
176 next = -s[0].units;
177 else
178 next = s[1].units;
179 return base+next;
180 }
181
182 /*
183 * Returns true if s is the last free block in its page.
184 */
185 static int slob_last(slob_t *s)
186 {
187 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
188 }
189
190 static void *slob_new_pages(gfp_t gfp, int order, int node)
191 {
192 void *page;
193
194 #ifdef CONFIG_NUMA
195 if (node != -1)
196 page = alloc_pages_exact_node(node, gfp, order);
197 else
198 #endif
199 page = alloc_pages(gfp, order);
200
201 if (!page)
202 return NULL;
203
204 return page_address(page);
205 }
206
207 static void slob_free_pages(void *b, int order)
208 {
209 if (current->reclaim_state)
210 current->reclaim_state->reclaimed_slab += 1 << order;
211 free_pages((unsigned long)b, order);
212 }
213
214 /*
215 * Allocate a slob block within a given slob_page sp.
216 */
217 static void *slob_page_alloc(struct page *sp, size_t size, int align)
218 {
219 slob_t *prev, *cur, *aligned = NULL;
220 int delta = 0, units = SLOB_UNITS(size);
221
222 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
223 slobidx_t avail = slob_units(cur);
224
225 if (align) {
226 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
227 delta = aligned - cur;
228 }
229 if (avail >= units + delta) { /* room enough? */
230 slob_t *next;
231
232 if (delta) { /* need to fragment head to align? */
233 next = slob_next(cur);
234 set_slob(aligned, avail - delta, next);
235 set_slob(cur, delta, aligned);
236 prev = cur;
237 cur = aligned;
238 avail = slob_units(cur);
239 }
240
241 next = slob_next(cur);
242 if (avail == units) { /* exact fit? unlink. */
243 if (prev)
244 set_slob(prev, slob_units(prev), next);
245 else
246 sp->freelist = next;
247 } else { /* fragment */
248 if (prev)
249 set_slob(prev, slob_units(prev), cur + units);
250 else
251 sp->freelist = cur + units;
252 set_slob(cur + units, avail - units, next);
253 }
254
255 sp->units -= units;
256 if (!sp->units)
257 clear_slob_page_free(sp);
258 return cur;
259 }
260 if (slob_last(cur))
261 return NULL;
262 }
263 }
264
265 /*
266 * slob_alloc: entry point into the slob allocator.
267 */
268 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
269 {
270 struct page *sp;
271 struct list_head *prev;
272 struct list_head *slob_list;
273 slob_t *b = NULL;
274 unsigned long flags;
275
276 if (size < SLOB_BREAK1)
277 slob_list = &free_slob_small;
278 else if (size < SLOB_BREAK2)
279 slob_list = &free_slob_medium;
280 else
281 slob_list = &free_slob_large;
282
283 spin_lock_irqsave(&slob_lock, flags);
284 /* Iterate through each partially free page, try to find room */
285 list_for_each_entry(sp, slob_list, list) {
286 #ifdef CONFIG_NUMA
287 /*
288 * If there's a node specification, search for a partial
289 * page with a matching node id in the freelist.
290 */
291 if (node != -1 && page_to_nid(sp) != node)
292 continue;
293 #endif
294 /* Enough room on this page? */
295 if (sp->units < SLOB_UNITS(size))
296 continue;
297
298 /* Attempt to alloc */
299 prev = sp->list.prev;
300 b = slob_page_alloc(sp, size, align);
301 if (!b)
302 continue;
303
304 /* Improve fragment distribution and reduce our average
305 * search time by starting our next search here. (see
306 * Knuth vol 1, sec 2.5, pg 449) */
307 if (prev != slob_list->prev &&
308 slob_list->next != prev->next)
309 list_move_tail(slob_list, prev->next);
310 break;
311 }
312 spin_unlock_irqrestore(&slob_lock, flags);
313
314 /* Not enough space: must allocate a new page */
315 if (!b) {
316 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
317 if (!b)
318 return NULL;
319 sp = virt_to_page(b);
320 __SetPageSlab(sp);
321
322 spin_lock_irqsave(&slob_lock, flags);
323 sp->units = SLOB_UNITS(PAGE_SIZE);
324 sp->freelist = b;
325 INIT_LIST_HEAD(&sp->list);
326 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
327 set_slob_page_free(sp, slob_list);
328 b = slob_page_alloc(sp, size, align);
329 BUG_ON(!b);
330 spin_unlock_irqrestore(&slob_lock, flags);
331 }
332 if (unlikely((gfp & __GFP_ZERO) && b))
333 memset(b, 0, size);
334 return b;
335 }
336
337 /*
338 * slob_free: entry point into the slob allocator.
339 */
340 static void slob_free(void *block, int size)
341 {
342 struct page *sp;
343 slob_t *prev, *next, *b = (slob_t *)block;
344 slobidx_t units;
345 unsigned long flags;
346 struct list_head *slob_list;
347
348 if (unlikely(ZERO_OR_NULL_PTR(block)))
349 return;
350 BUG_ON(!size);
351
352 sp = virt_to_page(block);
353 units = SLOB_UNITS(size);
354
355 spin_lock_irqsave(&slob_lock, flags);
356
357 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
358 /* Go directly to page allocator. Do not pass slob allocator */
359 if (slob_page_free(sp))
360 clear_slob_page_free(sp);
361 spin_unlock_irqrestore(&slob_lock, flags);
362 __ClearPageSlab(sp);
363 reset_page_mapcount(sp);
364 slob_free_pages(b, 0);
365 return;
366 }
367
368 if (!slob_page_free(sp)) {
369 /* This slob page is about to become partially free. Easy! */
370 sp->units = units;
371 sp->freelist = b;
372 set_slob(b, units,
373 (void *)((unsigned long)(b +
374 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
375 if (size < SLOB_BREAK1)
376 slob_list = &free_slob_small;
377 else if (size < SLOB_BREAK2)
378 slob_list = &free_slob_medium;
379 else
380 slob_list = &free_slob_large;
381 set_slob_page_free(sp, slob_list);
382 goto out;
383 }
384
385 /*
386 * Otherwise the page is already partially free, so find reinsertion
387 * point.
388 */
389 sp->units += units;
390
391 if (b < (slob_t *)sp->freelist) {
392 if (b + units == sp->freelist) {
393 units += slob_units(sp->freelist);
394 sp->freelist = slob_next(sp->freelist);
395 }
396 set_slob(b, units, sp->freelist);
397 sp->freelist = b;
398 } else {
399 prev = sp->freelist;
400 next = slob_next(prev);
401 while (b > next) {
402 prev = next;
403 next = slob_next(prev);
404 }
405
406 if (!slob_last(prev) && b + units == next) {
407 units += slob_units(next);
408 set_slob(b, units, slob_next(next));
409 } else
410 set_slob(b, units, next);
411
412 if (prev + slob_units(prev) == b) {
413 units = slob_units(b) + slob_units(prev);
414 set_slob(prev, units, slob_next(b));
415 } else
416 set_slob(prev, slob_units(prev), b);
417 }
418 out:
419 spin_unlock_irqrestore(&slob_lock, flags);
420 }
421
422 /*
423 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
424 */
425
426 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
427 {
428 unsigned int *m;
429 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
430 void *ret;
431
432 gfp &= gfp_allowed_mask;
433
434 lockdep_trace_alloc(gfp);
435
436 if (size < PAGE_SIZE - align) {
437 if (!size)
438 return ZERO_SIZE_PTR;
439
440 m = slob_alloc(size + align, gfp, align, node);
441
442 if (!m)
443 return NULL;
444 *m = size;
445 ret = (void *)m + align;
446
447 trace_kmalloc_node(_RET_IP_, ret,
448 size, size + align, gfp, node);
449 } else {
450 unsigned int order = get_order(size);
451
452 if (likely(order))
453 gfp |= __GFP_COMP;
454 ret = slob_new_pages(gfp, order, node);
455 if (ret) {
456 struct page *page;
457 page = virt_to_page(ret);
458 page->private = size;
459 }
460
461 trace_kmalloc_node(_RET_IP_, ret,
462 size, PAGE_SIZE << order, gfp, node);
463 }
464
465 kmemleak_alloc(ret, size, 1, gfp);
466 return ret;
467 }
468 EXPORT_SYMBOL(__kmalloc_node);
469
470 void kfree(const void *block)
471 {
472 struct page *sp;
473
474 trace_kfree(_RET_IP_, block);
475
476 if (unlikely(ZERO_OR_NULL_PTR(block)))
477 return;
478 kmemleak_free(block);
479
480 sp = virt_to_page(block);
481 if (PageSlab(sp)) {
482 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
483 unsigned int *m = (unsigned int *)(block - align);
484 slob_free(m, *m + align);
485 } else
486 put_page(sp);
487 }
488 EXPORT_SYMBOL(kfree);
489
490 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
491 size_t ksize(const void *block)
492 {
493 struct page *sp;
494
495 BUG_ON(!block);
496 if (unlikely(block == ZERO_SIZE_PTR))
497 return 0;
498
499 sp = virt_to_page(block);
500 if (PageSlab(sp)) {
501 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
502 unsigned int *m = (unsigned int *)(block - align);
503 return SLOB_UNITS(*m) * SLOB_UNIT;
504 } else
505 return sp->private;
506 }
507 EXPORT_SYMBOL(ksize);
508
509 struct kmem_cache {
510 unsigned int size, align;
511 unsigned long flags;
512 const char *name;
513 void (*ctor)(void *);
514 };
515
516 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
517 size_t align, unsigned long flags, void (*ctor)(void *))
518 {
519 struct kmem_cache *c;
520
521 c = slob_alloc(sizeof(struct kmem_cache),
522 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
523
524 if (c) {
525 c->name = name;
526 c->size = size;
527 if (flags & SLAB_DESTROY_BY_RCU) {
528 /* leave room for rcu footer at the end of object */
529 c->size += sizeof(struct slob_rcu);
530 }
531 c->flags = flags;
532 c->ctor = ctor;
533 /* ignore alignment unless it's forced */
534 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
535 if (c->align < ARCH_SLAB_MINALIGN)
536 c->align = ARCH_SLAB_MINALIGN;
537 if (c->align < align)
538 c->align = align;
539 } else if (flags & SLAB_PANIC)
540 panic("Cannot create slab cache %s\n", name);
541
542 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
543 return c;
544 }
545 EXPORT_SYMBOL(kmem_cache_create);
546
547 void kmem_cache_destroy(struct kmem_cache *c)
548 {
549 kmemleak_free(c);
550 if (c->flags & SLAB_DESTROY_BY_RCU)
551 rcu_barrier();
552 slob_free(c, sizeof(struct kmem_cache));
553 }
554 EXPORT_SYMBOL(kmem_cache_destroy);
555
556 void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
557 {
558 void *b;
559
560 flags &= gfp_allowed_mask;
561
562 lockdep_trace_alloc(flags);
563
564 if (c->size < PAGE_SIZE) {
565 b = slob_alloc(c->size, flags, c->align, node);
566 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
567 SLOB_UNITS(c->size) * SLOB_UNIT,
568 flags, node);
569 } else {
570 b = slob_new_pages(flags, get_order(c->size), node);
571 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
572 PAGE_SIZE << get_order(c->size),
573 flags, node);
574 }
575
576 if (c->ctor)
577 c->ctor(b);
578
579 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
580 return b;
581 }
582 EXPORT_SYMBOL(kmem_cache_alloc_node);
583
584 static void __kmem_cache_free(void *b, int size)
585 {
586 if (size < PAGE_SIZE)
587 slob_free(b, size);
588 else
589 slob_free_pages(b, get_order(size));
590 }
591
592 static void kmem_rcu_free(struct rcu_head *head)
593 {
594 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
595 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
596
597 __kmem_cache_free(b, slob_rcu->size);
598 }
599
600 void kmem_cache_free(struct kmem_cache *c, void *b)
601 {
602 kmemleak_free_recursive(b, c->flags);
603 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
604 struct slob_rcu *slob_rcu;
605 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
606 slob_rcu->size = c->size;
607 call_rcu(&slob_rcu->head, kmem_rcu_free);
608 } else {
609 __kmem_cache_free(b, c->size);
610 }
611
612 trace_kmem_cache_free(_RET_IP_, b);
613 }
614 EXPORT_SYMBOL(kmem_cache_free);
615
616 unsigned int kmem_cache_size(struct kmem_cache *c)
617 {
618 return c->size;
619 }
620 EXPORT_SYMBOL(kmem_cache_size);
621
622 int kmem_cache_shrink(struct kmem_cache *d)
623 {
624 return 0;
625 }
626 EXPORT_SYMBOL(kmem_cache_shrink);
627
628 static unsigned int slob_ready __read_mostly;
629
630 int slab_is_available(void)
631 {
632 return slob_ready;
633 }
634
635 void __init kmem_cache_init(void)
636 {
637 slob_ready = 1;
638 }
639
640 void __init kmem_cache_init_late(void)
641 {
642 /* Nothing to do */
643 }
This page took 0.103292 seconds and 6 git commands to generate.