vmscan: move isolate_lru_page() to vmscan.c
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26
27 /*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
96 * freelist that allows lockless access to
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
102 * the fast path and disables lockless freelists.
103 */
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG 1
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 /*
112 * Issues still to be resolved:
113 *
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
115 *
116 * - Variable sizing of the per node arrays
117 */
118
119 /* Enable to test recovery from slab corruption on boot */
120 #undef SLUB_RESILIENCY_TEST
121
122 /*
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
125 */
126 #define MIN_PARTIAL 5
127
128 /*
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
132 */
133 #define MAX_PARTIAL 10
134
135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136 SLAB_POISON | SLAB_STORE_USER)
137
138 /*
139 * Set of flags that will prevent slab merging
140 */
141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143
144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145 SLAB_CACHE_DMA)
146
147 #ifndef ARCH_KMALLOC_MINALIGN
148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149 #endif
150
151 #ifndef ARCH_SLAB_MINALIGN
152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153 #endif
154
155 /* Internal SLUB flags */
156 #define __OBJECT_POISON 0x80000000 /* Poison object */
157 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
158
159 static int kmem_size = sizeof(struct kmem_cache);
160
161 #ifdef CONFIG_SMP
162 static struct notifier_block slab_notifier;
163 #endif
164
165 static enum {
166 DOWN, /* No slab functionality available */
167 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
168 UP, /* Everything works but does not show up in sysfs */
169 SYSFS /* Sysfs up */
170 } slab_state = DOWN;
171
172 /* A list of all slab caches on the system */
173 static DECLARE_RWSEM(slub_lock);
174 static LIST_HEAD(slab_caches);
175
176 /*
177 * Tracking user of a slab.
178 */
179 struct track {
180 void *addr; /* Called from address */
181 int cpu; /* Was running on cpu */
182 int pid; /* Pid context */
183 unsigned long when; /* When did the operation occur */
184 };
185
186 enum track_item { TRACK_ALLOC, TRACK_FREE };
187
188 #ifdef CONFIG_SLUB_DEBUG
189 static int sysfs_slab_add(struct kmem_cache *);
190 static int sysfs_slab_alias(struct kmem_cache *, const char *);
191 static void sysfs_slab_remove(struct kmem_cache *);
192
193 #else
194 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196 { return 0; }
197 static inline void sysfs_slab_remove(struct kmem_cache *s)
198 {
199 kfree(s);
200 }
201
202 #endif
203
204 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
205 {
206 #ifdef CONFIG_SLUB_STATS
207 c->stat[si]++;
208 #endif
209 }
210
211 /********************************************************************
212 * Core slab cache functions
213 *******************************************************************/
214
215 int slab_is_available(void)
216 {
217 return slab_state >= UP;
218 }
219
220 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
221 {
222 #ifdef CONFIG_NUMA
223 return s->node[node];
224 #else
225 return &s->local_node;
226 #endif
227 }
228
229 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
230 {
231 #ifdef CONFIG_SMP
232 return s->cpu_slab[cpu];
233 #else
234 return &s->cpu_slab;
235 #endif
236 }
237
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
241 {
242 void *base;
243
244 if (!object)
245 return 1;
246
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
250 return 0;
251 }
252
253 return 1;
254 }
255
256 /*
257 * Slow version of get and set free pointer.
258 *
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
262 */
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
264 {
265 return *(void **)(object + s->offset);
266 }
267
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269 {
270 *(void **)(object + s->offset) = fp;
271 }
272
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 __p += (__s)->size)
277
278 /* Scan freelist */
279 #define for_each_free_object(__p, __s, __free) \
280 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 {
285 return (p - addr) / s->size;
286 }
287
288 static inline struct kmem_cache_order_objects oo_make(int order,
289 unsigned long size)
290 {
291 struct kmem_cache_order_objects x = {
292 (order << 16) + (PAGE_SIZE << order) / size
293 };
294
295 return x;
296 }
297
298 static inline int oo_order(struct kmem_cache_order_objects x)
299 {
300 return x.x >> 16;
301 }
302
303 static inline int oo_objects(struct kmem_cache_order_objects x)
304 {
305 return x.x & ((1 << 16) - 1);
306 }
307
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debug settings:
311 */
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
314 #else
315 static int slub_debug;
316 #endif
317
318 static char *slub_debug_slabs;
319
320 /*
321 * Object debugging
322 */
323 static void print_section(char *text, u8 *addr, unsigned int length)
324 {
325 int i, offset;
326 int newline = 1;
327 char ascii[17];
328
329 ascii[16] = 0;
330
331 for (i = 0; i < length; i++) {
332 if (newline) {
333 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334 newline = 0;
335 }
336 printk(KERN_CONT " %02x", addr[i]);
337 offset = i % 16;
338 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339 if (offset == 15) {
340 printk(KERN_CONT " %s\n", ascii);
341 newline = 1;
342 }
343 }
344 if (!newline) {
345 i %= 16;
346 while (i < 16) {
347 printk(KERN_CONT " ");
348 ascii[i] = ' ';
349 i++;
350 }
351 printk(KERN_CONT " %s\n", ascii);
352 }
353 }
354
355 static struct track *get_track(struct kmem_cache *s, void *object,
356 enum track_item alloc)
357 {
358 struct track *p;
359
360 if (s->offset)
361 p = object + s->offset + sizeof(void *);
362 else
363 p = object + s->inuse;
364
365 return p + alloc;
366 }
367
368 static void set_track(struct kmem_cache *s, void *object,
369 enum track_item alloc, void *addr)
370 {
371 struct track *p;
372
373 if (s->offset)
374 p = object + s->offset + sizeof(void *);
375 else
376 p = object + s->inuse;
377
378 p += alloc;
379 if (addr) {
380 p->addr = addr;
381 p->cpu = smp_processor_id();
382 p->pid = current->pid;
383 p->when = jiffies;
384 } else
385 memset(p, 0, sizeof(struct track));
386 }
387
388 static void init_tracking(struct kmem_cache *s, void *object)
389 {
390 if (!(s->flags & SLAB_STORE_USER))
391 return;
392
393 set_track(s, object, TRACK_FREE, NULL);
394 set_track(s, object, TRACK_ALLOC, NULL);
395 }
396
397 static void print_track(const char *s, struct track *t)
398 {
399 if (!t->addr)
400 return;
401
402 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 s, t->addr, jiffies - t->when, t->cpu, t->pid);
404 }
405
406 static void print_tracking(struct kmem_cache *s, void *object)
407 {
408 if (!(s->flags & SLAB_STORE_USER))
409 return;
410
411 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 print_track("Freed", get_track(s, object, TRACK_FREE));
413 }
414
415 static void print_page_info(struct page *page)
416 {
417 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page, page->objects, page->inuse, page->freelist, page->flags);
419
420 }
421
422 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423 {
424 va_list args;
425 char buf[100];
426
427 va_start(args, fmt);
428 vsnprintf(buf, sizeof(buf), fmt, args);
429 va_end(args);
430 printk(KERN_ERR "========================================"
431 "=====================================\n");
432 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 printk(KERN_ERR "----------------------------------------"
434 "-------------------------------------\n\n");
435 }
436
437 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438 {
439 va_list args;
440 char buf[100];
441
442 va_start(args, fmt);
443 vsnprintf(buf, sizeof(buf), fmt, args);
444 va_end(args);
445 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446 }
447
448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
449 {
450 unsigned int off; /* Offset of last byte */
451 u8 *addr = page_address(page);
452
453 print_tracking(s, p);
454
455 print_page_info(page);
456
457 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p, p - addr, get_freepointer(s, p));
459
460 if (p > addr + 16)
461 print_section("Bytes b4", p - 16, 16);
462
463 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
464
465 if (s->flags & SLAB_RED_ZONE)
466 print_section("Redzone", p + s->objsize,
467 s->inuse - s->objsize);
468
469 if (s->offset)
470 off = s->offset + sizeof(void *);
471 else
472 off = s->inuse;
473
474 if (s->flags & SLAB_STORE_USER)
475 off += 2 * sizeof(struct track);
476
477 if (off != s->size)
478 /* Beginning of the filler is the free pointer */
479 print_section("Padding", p + off, s->size - off);
480
481 dump_stack();
482 }
483
484 static void object_err(struct kmem_cache *s, struct page *page,
485 u8 *object, char *reason)
486 {
487 slab_bug(s, "%s", reason);
488 print_trailer(s, page, object);
489 }
490
491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
492 {
493 va_list args;
494 char buf[100];
495
496 va_start(args, fmt);
497 vsnprintf(buf, sizeof(buf), fmt, args);
498 va_end(args);
499 slab_bug(s, "%s", buf);
500 print_page_info(page);
501 dump_stack();
502 }
503
504 static void init_object(struct kmem_cache *s, void *object, int active)
505 {
506 u8 *p = object;
507
508 if (s->flags & __OBJECT_POISON) {
509 memset(p, POISON_FREE, s->objsize - 1);
510 p[s->objsize - 1] = POISON_END;
511 }
512
513 if (s->flags & SLAB_RED_ZONE)
514 memset(p + s->objsize,
515 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 s->inuse - s->objsize);
517 }
518
519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
520 {
521 while (bytes) {
522 if (*start != (u8)value)
523 return start;
524 start++;
525 bytes--;
526 }
527 return NULL;
528 }
529
530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 void *from, void *to)
532 {
533 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 memset(from, data, to - from);
535 }
536
537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 u8 *object, char *what,
539 u8 *start, unsigned int value, unsigned int bytes)
540 {
541 u8 *fault;
542 u8 *end;
543
544 fault = check_bytes(start, value, bytes);
545 if (!fault)
546 return 1;
547
548 end = start + bytes;
549 while (end > fault && end[-1] == value)
550 end--;
551
552 slab_bug(s, "%s overwritten", what);
553 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault, end - 1, fault[0], value);
555 print_trailer(s, page, object);
556
557 restore_bytes(s, what, value, fault, end);
558 return 0;
559 }
560
561 /*
562 * Object layout:
563 *
564 * object address
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
568 *
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 0xa5 (POISON_END)
571 *
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
574 * Padding is extended by another word if Redzoning is enabled and
575 * objsize == inuse.
576 *
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
579 *
580 * object + s->inuse
581 * Meta data starts here.
582 *
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
585 * C. Padding to reach required alignment boundary or at mininum
586 * one word if debugging is on to be able to detect writes
587 * before the word boundary.
588 *
589 * Padding is done using 0x5a (POISON_INUSE)
590 *
591 * object + s->size
592 * Nothing is used beyond s->size.
593 *
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
597 */
598
599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600 {
601 unsigned long off = s->inuse; /* The end of info */
602
603 if (s->offset)
604 /* Freepointer is placed after the object. */
605 off += sizeof(void *);
606
607 if (s->flags & SLAB_STORE_USER)
608 /* We also have user information there */
609 off += 2 * sizeof(struct track);
610
611 if (s->size == off)
612 return 1;
613
614 return check_bytes_and_report(s, page, p, "Object padding",
615 p + off, POISON_INUSE, s->size - off);
616 }
617
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache *s, struct page *page)
620 {
621 u8 *start;
622 u8 *fault;
623 u8 *end;
624 int length;
625 int remainder;
626
627 if (!(s->flags & SLAB_POISON))
628 return 1;
629
630 start = page_address(page);
631 length = (PAGE_SIZE << compound_order(page));
632 end = start + length;
633 remainder = length % s->size;
634 if (!remainder)
635 return 1;
636
637 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638 if (!fault)
639 return 1;
640 while (end > fault && end[-1] == POISON_INUSE)
641 end--;
642
643 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644 print_section("Padding", end - remainder, remainder);
645
646 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647 return 0;
648 }
649
650 static int check_object(struct kmem_cache *s, struct page *page,
651 void *object, int active)
652 {
653 u8 *p = object;
654 u8 *endobject = object + s->objsize;
655
656 if (s->flags & SLAB_RED_ZONE) {
657 unsigned int red =
658 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659
660 if (!check_bytes_and_report(s, page, object, "Redzone",
661 endobject, red, s->inuse - s->objsize))
662 return 0;
663 } else {
664 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 check_bytes_and_report(s, page, p, "Alignment padding",
666 endobject, POISON_INUSE, s->inuse - s->objsize);
667 }
668 }
669
670 if (s->flags & SLAB_POISON) {
671 if (!active && (s->flags & __OBJECT_POISON) &&
672 (!check_bytes_and_report(s, page, p, "Poison", p,
673 POISON_FREE, s->objsize - 1) ||
674 !check_bytes_and_report(s, page, p, "Poison",
675 p + s->objsize - 1, POISON_END, 1)))
676 return 0;
677 /*
678 * check_pad_bytes cleans up on its own.
679 */
680 check_pad_bytes(s, page, p);
681 }
682
683 if (!s->offset && active)
684 /*
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
687 */
688 return 1;
689
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 object_err(s, page, p, "Freepointer corrupt");
693 /*
694 * No choice but to zap it and thus loose the remainder
695 * of the free objects in this slab. May cause
696 * another error because the object count is now wrong.
697 */
698 set_freepointer(s, p, NULL);
699 return 0;
700 }
701 return 1;
702 }
703
704 static int check_slab(struct kmem_cache *s, struct page *page)
705 {
706 int maxobj;
707
708 VM_BUG_ON(!irqs_disabled());
709
710 if (!PageSlab(page)) {
711 slab_err(s, page, "Not a valid slab page");
712 return 0;
713 }
714
715 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 if (page->objects > maxobj) {
717 slab_err(s, page, "objects %u > max %u",
718 s->name, page->objects, maxobj);
719 return 0;
720 }
721 if (page->inuse > page->objects) {
722 slab_err(s, page, "inuse %u > max %u",
723 s->name, page->inuse, page->objects);
724 return 0;
725 }
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s, page);
728 return 1;
729 }
730
731 /*
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
734 */
735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736 {
737 int nr = 0;
738 void *fp = page->freelist;
739 void *object = NULL;
740 unsigned long max_objects;
741
742 while (fp && nr <= page->objects) {
743 if (fp == search)
744 return 1;
745 if (!check_valid_pointer(s, page, fp)) {
746 if (object) {
747 object_err(s, page, object,
748 "Freechain corrupt");
749 set_freepointer(s, object, NULL);
750 break;
751 } else {
752 slab_err(s, page, "Freepointer corrupt");
753 page->freelist = NULL;
754 page->inuse = page->objects;
755 slab_fix(s, "Freelist cleared");
756 return 0;
757 }
758 break;
759 }
760 object = fp;
761 fp = get_freepointer(s, object);
762 nr++;
763 }
764
765 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766 if (max_objects > 65535)
767 max_objects = 65535;
768
769 if (page->objects != max_objects) {
770 slab_err(s, page, "Wrong number of objects. Found %d but "
771 "should be %d", page->objects, max_objects);
772 page->objects = max_objects;
773 slab_fix(s, "Number of objects adjusted.");
774 }
775 if (page->inuse != page->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, page->objects - nr);
778 page->inuse = page->objects - nr;
779 slab_fix(s, "Object count adjusted.");
780 }
781 return search == NULL;
782 }
783
784 static void trace(struct kmem_cache *s, struct page *page, void *object,
785 int alloc)
786 {
787 if (s->flags & SLAB_TRACE) {
788 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 s->name,
790 alloc ? "alloc" : "free",
791 object, page->inuse,
792 page->freelist);
793
794 if (!alloc)
795 print_section("Object", (void *)object, s->objsize);
796
797 dump_stack();
798 }
799 }
800
801 /*
802 * Tracking of fully allocated slabs for debugging purposes.
803 */
804 static void add_full(struct kmem_cache_node *n, struct page *page)
805 {
806 spin_lock(&n->list_lock);
807 list_add(&page->lru, &n->full);
808 spin_unlock(&n->list_lock);
809 }
810
811 static void remove_full(struct kmem_cache *s, struct page *page)
812 {
813 struct kmem_cache_node *n;
814
815 if (!(s->flags & SLAB_STORE_USER))
816 return;
817
818 n = get_node(s, page_to_nid(page));
819
820 spin_lock(&n->list_lock);
821 list_del(&page->lru);
822 spin_unlock(&n->list_lock);
823 }
824
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827 {
828 struct kmem_cache_node *n = get_node(s, node);
829
830 return atomic_long_read(&n->nr_slabs);
831 }
832
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834 {
835 struct kmem_cache_node *n = get_node(s, node);
836
837 /*
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
842 */
843 if (!NUMA_BUILD || n) {
844 atomic_long_inc(&n->nr_slabs);
845 atomic_long_add(objects, &n->total_objects);
846 }
847 }
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849 {
850 struct kmem_cache_node *n = get_node(s, node);
851
852 atomic_long_dec(&n->nr_slabs);
853 atomic_long_sub(objects, &n->total_objects);
854 }
855
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
859 {
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
862
863 init_object(s, object, 0);
864 init_tracking(s, object);
865 }
866
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, void *addr)
869 {
870 if (!check_slab(s, page))
871 goto bad;
872
873 if (!on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
875 goto bad;
876 }
877
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
880 goto bad;
881 }
882
883 if (!check_object(s, page, object, 0))
884 goto bad;
885
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
891 return 1;
892
893 bad:
894 if (PageSlab(page)) {
895 /*
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
899 */
900 slab_fix(s, "Marking all objects used");
901 page->inuse = page->objects;
902 page->freelist = NULL;
903 }
904 return 0;
905 }
906
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, void *addr)
909 {
910 if (!check_slab(s, page))
911 goto fail;
912
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
915 goto fail;
916 }
917
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
920 goto fail;
921 }
922
923 if (!check_object(s, page, object, 1))
924 return 0;
925
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
931 printk(KERN_ERR
932 "SLUB <none>: no slab for object 0x%p.\n",
933 object);
934 dump_stack();
935 } else
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
938 goto fail;
939 }
940
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page) && !page->freelist)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
948 return 1;
949
950 fail:
951 slab_fix(s, "Object at 0x%p not freed", object);
952 return 0;
953 }
954
955 static int __init setup_slub_debug(char *str)
956 {
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
959 /*
960 * No options specified. Switch on full debugging.
961 */
962 goto out;
963
964 if (*str == ',')
965 /*
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
968 */
969 goto check_slabs;
970
971 slub_debug = 0;
972 if (*str == '-')
973 /*
974 * Switch off all debugging measures.
975 */
976 goto out;
977
978 /*
979 * Determine which debug features should be switched on
980 */
981 for (; *str && *str != ','; str++) {
982 switch (tolower(*str)) {
983 case 'f':
984 slub_debug |= SLAB_DEBUG_FREE;
985 break;
986 case 'z':
987 slub_debug |= SLAB_RED_ZONE;
988 break;
989 case 'p':
990 slub_debug |= SLAB_POISON;
991 break;
992 case 'u':
993 slub_debug |= SLAB_STORE_USER;
994 break;
995 case 't':
996 slub_debug |= SLAB_TRACE;
997 break;
998 default:
999 printk(KERN_ERR "slub_debug option '%c' "
1000 "unknown. skipped\n", *str);
1001 }
1002 }
1003
1004 check_slabs:
1005 if (*str == ',')
1006 slub_debug_slabs = str + 1;
1007 out:
1008 return 1;
1009 }
1010
1011 __setup("slub_debug", setup_slub_debug);
1012
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 unsigned long flags, const char *name,
1015 void (*ctor)(void *))
1016 {
1017 /*
1018 * Enable debugging if selected on the kernel commandline.
1019 */
1020 if (slub_debug && (!slub_debug_slabs ||
1021 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 flags |= slub_debug;
1023
1024 return flags;
1025 }
1026 #else
1027 static inline void setup_object_debug(struct kmem_cache *s,
1028 struct page *page, void *object) {}
1029
1030 static inline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page, void *object, void *addr) { return 0; }
1032
1033 static inline int free_debug_processing(struct kmem_cache *s,
1034 struct page *page, void *object, void *addr) { return 0; }
1035
1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037 { return 1; }
1038 static inline int check_object(struct kmem_cache *s, struct page *page,
1039 void *object, int active) { return 1; }
1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 unsigned long flags, const char *name,
1043 void (*ctor)(void *))
1044 {
1045 return flags;
1046 }
1047 #define slub_debug 0
1048
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 { return 0; }
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052 int objects) {}
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054 int objects) {}
1055 #endif
1056
1057 /*
1058 * Slab allocation and freeing
1059 */
1060 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 struct kmem_cache_order_objects oo)
1062 {
1063 int order = oo_order(oo);
1064
1065 if (node == -1)
1066 return alloc_pages(flags, order);
1067 else
1068 return alloc_pages_node(node, flags, order);
1069 }
1070
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072 {
1073 struct page *page;
1074 struct kmem_cache_order_objects oo = s->oo;
1075
1076 flags |= s->allocflags;
1077
1078 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079 oo);
1080 if (unlikely(!page)) {
1081 oo = s->min;
1082 /*
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1085 */
1086 page = alloc_slab_page(flags, node, oo);
1087 if (!page)
1088 return NULL;
1089
1090 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091 }
1092 page->objects = oo_objects(oo);
1093 mod_zone_page_state(page_zone(page),
1094 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096 1 << oo_order(oo));
1097
1098 return page;
1099 }
1100
1101 static void setup_object(struct kmem_cache *s, struct page *page,
1102 void *object)
1103 {
1104 setup_object_debug(s, page, object);
1105 if (unlikely(s->ctor))
1106 s->ctor(object);
1107 }
1108
1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110 {
1111 struct page *page;
1112 void *start;
1113 void *last;
1114 void *p;
1115
1116 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1117
1118 page = allocate_slab(s,
1119 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120 if (!page)
1121 goto out;
1122
1123 inc_slabs_node(s, page_to_nid(page), page->objects);
1124 page->slab = s;
1125 page->flags |= 1 << PG_slab;
1126 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 SLAB_STORE_USER | SLAB_TRACE))
1128 __SetPageSlubDebug(page);
1129
1130 start = page_address(page);
1131
1132 if (unlikely(s->flags & SLAB_POISON))
1133 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1134
1135 last = start;
1136 for_each_object(p, s, start, page->objects) {
1137 setup_object(s, page, last);
1138 set_freepointer(s, last, p);
1139 last = p;
1140 }
1141 setup_object(s, page, last);
1142 set_freepointer(s, last, NULL);
1143
1144 page->freelist = start;
1145 page->inuse = 0;
1146 out:
1147 return page;
1148 }
1149
1150 static void __free_slab(struct kmem_cache *s, struct page *page)
1151 {
1152 int order = compound_order(page);
1153 int pages = 1 << order;
1154
1155 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156 void *p;
1157
1158 slab_pad_check(s, page);
1159 for_each_object(p, s, page_address(page),
1160 page->objects)
1161 check_object(s, page, p, 0);
1162 __ClearPageSlubDebug(page);
1163 }
1164
1165 mod_zone_page_state(page_zone(page),
1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168 -pages);
1169
1170 __ClearPageSlab(page);
1171 reset_page_mapcount(page);
1172 __free_pages(page, order);
1173 }
1174
1175 static void rcu_free_slab(struct rcu_head *h)
1176 {
1177 struct page *page;
1178
1179 page = container_of((struct list_head *)h, struct page, lru);
1180 __free_slab(page->slab, page);
1181 }
1182
1183 static void free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186 /*
1187 * RCU free overloads the RCU head over the LRU
1188 */
1189 struct rcu_head *head = (void *)&page->lru;
1190
1191 call_rcu(head, rcu_free_slab);
1192 } else
1193 __free_slab(s, page);
1194 }
1195
1196 static void discard_slab(struct kmem_cache *s, struct page *page)
1197 {
1198 dec_slabs_node(s, page_to_nid(page), page->objects);
1199 free_slab(s, page);
1200 }
1201
1202 /*
1203 * Per slab locking using the pagelock
1204 */
1205 static __always_inline void slab_lock(struct page *page)
1206 {
1207 bit_spin_lock(PG_locked, &page->flags);
1208 }
1209
1210 static __always_inline void slab_unlock(struct page *page)
1211 {
1212 __bit_spin_unlock(PG_locked, &page->flags);
1213 }
1214
1215 static __always_inline int slab_trylock(struct page *page)
1216 {
1217 int rc = 1;
1218
1219 rc = bit_spin_trylock(PG_locked, &page->flags);
1220 return rc;
1221 }
1222
1223 /*
1224 * Management of partially allocated slabs
1225 */
1226 static void add_partial(struct kmem_cache_node *n,
1227 struct page *page, int tail)
1228 {
1229 spin_lock(&n->list_lock);
1230 n->nr_partial++;
1231 if (tail)
1232 list_add_tail(&page->lru, &n->partial);
1233 else
1234 list_add(&page->lru, &n->partial);
1235 spin_unlock(&n->list_lock);
1236 }
1237
1238 static void remove_partial(struct kmem_cache *s, struct page *page)
1239 {
1240 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241
1242 spin_lock(&n->list_lock);
1243 list_del(&page->lru);
1244 n->nr_partial--;
1245 spin_unlock(&n->list_lock);
1246 }
1247
1248 /*
1249 * Lock slab and remove from the partial list.
1250 *
1251 * Must hold list_lock.
1252 */
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254 struct page *page)
1255 {
1256 if (slab_trylock(page)) {
1257 list_del(&page->lru);
1258 n->nr_partial--;
1259 __SetPageSlubFrozen(page);
1260 return 1;
1261 }
1262 return 0;
1263 }
1264
1265 /*
1266 * Try to allocate a partial slab from a specific node.
1267 */
1268 static struct page *get_partial_node(struct kmem_cache_node *n)
1269 {
1270 struct page *page;
1271
1272 /*
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
1275 * partial slab and there is none available then get_partials()
1276 * will return NULL.
1277 */
1278 if (!n || !n->nr_partial)
1279 return NULL;
1280
1281 spin_lock(&n->list_lock);
1282 list_for_each_entry(page, &n->partial, lru)
1283 if (lock_and_freeze_slab(n, page))
1284 goto out;
1285 page = NULL;
1286 out:
1287 spin_unlock(&n->list_lock);
1288 return page;
1289 }
1290
1291 /*
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1293 */
1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295 {
1296 #ifdef CONFIG_NUMA
1297 struct zonelist *zonelist;
1298 struct zoneref *z;
1299 struct zone *zone;
1300 enum zone_type high_zoneidx = gfp_zone(flags);
1301 struct page *page;
1302
1303 /*
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
1308 *
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
1313 *
1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
1320 */
1321 if (!s->remote_node_defrag_ratio ||
1322 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323 return NULL;
1324
1325 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327 struct kmem_cache_node *n;
1328
1329 n = get_node(s, zone_to_nid(zone));
1330
1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332 n->nr_partial > n->min_partial) {
1333 page = get_partial_node(n);
1334 if (page)
1335 return page;
1336 }
1337 }
1338 #endif
1339 return NULL;
1340 }
1341
1342 /*
1343 * Get a partial page, lock it and return it.
1344 */
1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 struct page *page;
1348 int searchnode = (node == -1) ? numa_node_id() : node;
1349
1350 page = get_partial_node(get_node(s, searchnode));
1351 if (page || (flags & __GFP_THISNODE))
1352 return page;
1353
1354 return get_any_partial(s, flags);
1355 }
1356
1357 /*
1358 * Move a page back to the lists.
1359 *
1360 * Must be called with the slab lock held.
1361 *
1362 * On exit the slab lock will have been dropped.
1363 */
1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1365 {
1366 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1368
1369 __ClearPageSlubFrozen(page);
1370 if (page->inuse) {
1371
1372 if (page->freelist) {
1373 add_partial(n, page, tail);
1374 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375 } else {
1376 stat(c, DEACTIVATE_FULL);
1377 if (SLABDEBUG && PageSlubDebug(page) &&
1378 (s->flags & SLAB_STORE_USER))
1379 add_full(n, page);
1380 }
1381 slab_unlock(page);
1382 } else {
1383 stat(c, DEACTIVATE_EMPTY);
1384 if (n->nr_partial < n->min_partial) {
1385 /*
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1391 *
1392 * kmem_cache_shrink can reclaim any empty slabs from
1393 * the partial list.
1394 */
1395 add_partial(n, page, 1);
1396 slab_unlock(page);
1397 } else {
1398 slab_unlock(page);
1399 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400 discard_slab(s, page);
1401 }
1402 }
1403 }
1404
1405 /*
1406 * Remove the cpu slab
1407 */
1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1409 {
1410 struct page *page = c->page;
1411 int tail = 1;
1412
1413 if (page->freelist)
1414 stat(c, DEACTIVATE_REMOTE_FREES);
1415 /*
1416 * Merge cpu freelist into slab freelist. Typically we get here
1417 * because both freelists are empty. So this is unlikely
1418 * to occur.
1419 */
1420 while (unlikely(c->freelist)) {
1421 void **object;
1422
1423 tail = 0; /* Hot objects. Put the slab first */
1424
1425 /* Retrieve object from cpu_freelist */
1426 object = c->freelist;
1427 c->freelist = c->freelist[c->offset];
1428
1429 /* And put onto the regular freelist */
1430 object[c->offset] = page->freelist;
1431 page->freelist = object;
1432 page->inuse--;
1433 }
1434 c->page = NULL;
1435 unfreeze_slab(s, page, tail);
1436 }
1437
1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1439 {
1440 stat(c, CPUSLAB_FLUSH);
1441 slab_lock(c->page);
1442 deactivate_slab(s, c);
1443 }
1444
1445 /*
1446 * Flush cpu slab.
1447 *
1448 * Called from IPI handler with interrupts disabled.
1449 */
1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1451 {
1452 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1453
1454 if (likely(c && c->page))
1455 flush_slab(s, c);
1456 }
1457
1458 static void flush_cpu_slab(void *d)
1459 {
1460 struct kmem_cache *s = d;
1461
1462 __flush_cpu_slab(s, smp_processor_id());
1463 }
1464
1465 static void flush_all(struct kmem_cache *s)
1466 {
1467 on_each_cpu(flush_cpu_slab, s, 1);
1468 }
1469
1470 /*
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1473 */
1474 static inline int node_match(struct kmem_cache_cpu *c, int node)
1475 {
1476 #ifdef CONFIG_NUMA
1477 if (node != -1 && c->node != node)
1478 return 0;
1479 #endif
1480 return 1;
1481 }
1482
1483 /*
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1486 *
1487 * Interrupts are disabled.
1488 *
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1492 *
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1496 *
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1500 */
1501 static void *__slab_alloc(struct kmem_cache *s,
1502 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1503 {
1504 void **object;
1505 struct page *new;
1506
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags &= ~__GFP_ZERO;
1509
1510 if (!c->page)
1511 goto new_slab;
1512
1513 slab_lock(c->page);
1514 if (unlikely(!node_match(c, node)))
1515 goto another_slab;
1516
1517 stat(c, ALLOC_REFILL);
1518
1519 load_freelist:
1520 object = c->page->freelist;
1521 if (unlikely(!object))
1522 goto another_slab;
1523 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524 goto debug;
1525
1526 c->freelist = object[c->offset];
1527 c->page->inuse = c->page->objects;
1528 c->page->freelist = NULL;
1529 c->node = page_to_nid(c->page);
1530 unlock_out:
1531 slab_unlock(c->page);
1532 stat(c, ALLOC_SLOWPATH);
1533 return object;
1534
1535 another_slab:
1536 deactivate_slab(s, c);
1537
1538 new_slab:
1539 new = get_partial(s, gfpflags, node);
1540 if (new) {
1541 c->page = new;
1542 stat(c, ALLOC_FROM_PARTIAL);
1543 goto load_freelist;
1544 }
1545
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_enable();
1548
1549 new = new_slab(s, gfpflags, node);
1550
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_disable();
1553
1554 if (new) {
1555 c = get_cpu_slab(s, smp_processor_id());
1556 stat(c, ALLOC_SLAB);
1557 if (c->page)
1558 flush_slab(s, c);
1559 slab_lock(new);
1560 __SetPageSlubFrozen(new);
1561 c->page = new;
1562 goto load_freelist;
1563 }
1564 return NULL;
1565 debug:
1566 if (!alloc_debug_processing(s, c->page, object, addr))
1567 goto another_slab;
1568
1569 c->page->inuse++;
1570 c->page->freelist = object[c->offset];
1571 c->node = -1;
1572 goto unlock_out;
1573 }
1574
1575 /*
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1579 *
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1582 *
1583 * Otherwise we can simply pick the next object from the lockless free list.
1584 */
1585 static __always_inline void *slab_alloc(struct kmem_cache *s,
1586 gfp_t gfpflags, int node, void *addr)
1587 {
1588 void **object;
1589 struct kmem_cache_cpu *c;
1590 unsigned long flags;
1591 unsigned int objsize;
1592
1593 local_irq_save(flags);
1594 c = get_cpu_slab(s, smp_processor_id());
1595 objsize = c->objsize;
1596 if (unlikely(!c->freelist || !node_match(c, node)))
1597
1598 object = __slab_alloc(s, gfpflags, node, addr, c);
1599
1600 else {
1601 object = c->freelist;
1602 c->freelist = object[c->offset];
1603 stat(c, ALLOC_FASTPATH);
1604 }
1605 local_irq_restore(flags);
1606
1607 if (unlikely((gfpflags & __GFP_ZERO) && object))
1608 memset(object, 0, objsize);
1609
1610 return object;
1611 }
1612
1613 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1614 {
1615 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1616 }
1617 EXPORT_SYMBOL(kmem_cache_alloc);
1618
1619 #ifdef CONFIG_NUMA
1620 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1621 {
1622 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1623 }
1624 EXPORT_SYMBOL(kmem_cache_alloc_node);
1625 #endif
1626
1627 /*
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1630 *
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1634 */
1635 static void __slab_free(struct kmem_cache *s, struct page *page,
1636 void *x, void *addr, unsigned int offset)
1637 {
1638 void *prior;
1639 void **object = (void *)x;
1640 struct kmem_cache_cpu *c;
1641
1642 c = get_cpu_slab(s, raw_smp_processor_id());
1643 stat(c, FREE_SLOWPATH);
1644 slab_lock(page);
1645
1646 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647 goto debug;
1648
1649 checks_ok:
1650 prior = object[offset] = page->freelist;
1651 page->freelist = object;
1652 page->inuse--;
1653
1654 if (unlikely(PageSlubFrozen(page))) {
1655 stat(c, FREE_FROZEN);
1656 goto out_unlock;
1657 }
1658
1659 if (unlikely(!page->inuse))
1660 goto slab_empty;
1661
1662 /*
1663 * Objects left in the slab. If it was not on the partial list before
1664 * then add it.
1665 */
1666 if (unlikely(!prior)) {
1667 add_partial(get_node(s, page_to_nid(page)), page, 1);
1668 stat(c, FREE_ADD_PARTIAL);
1669 }
1670
1671 out_unlock:
1672 slab_unlock(page);
1673 return;
1674
1675 slab_empty:
1676 if (prior) {
1677 /*
1678 * Slab still on the partial list.
1679 */
1680 remove_partial(s, page);
1681 stat(c, FREE_REMOVE_PARTIAL);
1682 }
1683 slab_unlock(page);
1684 stat(c, FREE_SLAB);
1685 discard_slab(s, page);
1686 return;
1687
1688 debug:
1689 if (!free_debug_processing(s, page, x, addr))
1690 goto out_unlock;
1691 goto checks_ok;
1692 }
1693
1694 /*
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1697 *
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1700 * the item before.
1701 *
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1704 */
1705 static __always_inline void slab_free(struct kmem_cache *s,
1706 struct page *page, void *x, void *addr)
1707 {
1708 void **object = (void *)x;
1709 struct kmem_cache_cpu *c;
1710 unsigned long flags;
1711
1712 local_irq_save(flags);
1713 c = get_cpu_slab(s, smp_processor_id());
1714 debug_check_no_locks_freed(object, c->objsize);
1715 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716 debug_check_no_obj_freed(object, s->objsize);
1717 if (likely(page == c->page && c->node >= 0)) {
1718 object[c->offset] = c->freelist;
1719 c->freelist = object;
1720 stat(c, FREE_FASTPATH);
1721 } else
1722 __slab_free(s, page, x, addr, c->offset);
1723
1724 local_irq_restore(flags);
1725 }
1726
1727 void kmem_cache_free(struct kmem_cache *s, void *x)
1728 {
1729 struct page *page;
1730
1731 page = virt_to_head_page(x);
1732
1733 slab_free(s, page, x, __builtin_return_address(0));
1734 }
1735 EXPORT_SYMBOL(kmem_cache_free);
1736
1737 /* Figure out on which slab object the object resides */
1738 static struct page *get_object_page(const void *x)
1739 {
1740 struct page *page = virt_to_head_page(x);
1741
1742 if (!PageSlab(page))
1743 return NULL;
1744
1745 return page;
1746 }
1747
1748 /*
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1752 * another.
1753 *
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1758 * locking overhead.
1759 */
1760
1761 /*
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1766 */
1767 static int slub_min_order;
1768 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769 static int slub_min_objects;
1770
1771 /*
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1774 */
1775 static int slub_nomerge;
1776
1777 /*
1778 * Calculate the order of allocation given an slab object size.
1779 *
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1785 * would be wasted.
1786 *
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1791 *
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1796 *
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1801 */
1802 static inline int slab_order(int size, int min_objects,
1803 int max_order, int fract_leftover)
1804 {
1805 int order;
1806 int rem;
1807 int min_order = slub_min_order;
1808
1809 if ((PAGE_SIZE << min_order) / size > 65535)
1810 return get_order(size * 65535) - 1;
1811
1812 for (order = max(min_order,
1813 fls(min_objects * size - 1) - PAGE_SHIFT);
1814 order <= max_order; order++) {
1815
1816 unsigned long slab_size = PAGE_SIZE << order;
1817
1818 if (slab_size < min_objects * size)
1819 continue;
1820
1821 rem = slab_size % size;
1822
1823 if (rem <= slab_size / fract_leftover)
1824 break;
1825
1826 }
1827
1828 return order;
1829 }
1830
1831 static inline int calculate_order(int size)
1832 {
1833 int order;
1834 int min_objects;
1835 int fraction;
1836
1837 /*
1838 * Attempt to find best configuration for a slab. This
1839 * works by first attempting to generate a layout with
1840 * the best configuration and backing off gradually.
1841 *
1842 * First we reduce the acceptable waste in a slab. Then
1843 * we reduce the minimum objects required in a slab.
1844 */
1845 min_objects = slub_min_objects;
1846 if (!min_objects)
1847 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848 while (min_objects > 1) {
1849 fraction = 16;
1850 while (fraction >= 4) {
1851 order = slab_order(size, min_objects,
1852 slub_max_order, fraction);
1853 if (order <= slub_max_order)
1854 return order;
1855 fraction /= 2;
1856 }
1857 min_objects /= 2;
1858 }
1859
1860 /*
1861 * We were unable to place multiple objects in a slab. Now
1862 * lets see if we can place a single object there.
1863 */
1864 order = slab_order(size, 1, slub_max_order, 1);
1865 if (order <= slub_max_order)
1866 return order;
1867
1868 /*
1869 * Doh this slab cannot be placed using slub_max_order.
1870 */
1871 order = slab_order(size, 1, MAX_ORDER, 1);
1872 if (order <= MAX_ORDER)
1873 return order;
1874 return -ENOSYS;
1875 }
1876
1877 /*
1878 * Figure out what the alignment of the objects will be.
1879 */
1880 static unsigned long calculate_alignment(unsigned long flags,
1881 unsigned long align, unsigned long size)
1882 {
1883 /*
1884 * If the user wants hardware cache aligned objects then follow that
1885 * suggestion if the object is sufficiently large.
1886 *
1887 * The hardware cache alignment cannot override the specified
1888 * alignment though. If that is greater then use it.
1889 */
1890 if (flags & SLAB_HWCACHE_ALIGN) {
1891 unsigned long ralign = cache_line_size();
1892 while (size <= ralign / 2)
1893 ralign /= 2;
1894 align = max(align, ralign);
1895 }
1896
1897 if (align < ARCH_SLAB_MINALIGN)
1898 align = ARCH_SLAB_MINALIGN;
1899
1900 return ALIGN(align, sizeof(void *));
1901 }
1902
1903 static void init_kmem_cache_cpu(struct kmem_cache *s,
1904 struct kmem_cache_cpu *c)
1905 {
1906 c->page = NULL;
1907 c->freelist = NULL;
1908 c->node = 0;
1909 c->offset = s->offset / sizeof(void *);
1910 c->objsize = s->objsize;
1911 #ifdef CONFIG_SLUB_STATS
1912 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913 #endif
1914 }
1915
1916 static void
1917 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1918 {
1919 n->nr_partial = 0;
1920
1921 /*
1922 * The larger the object size is, the more pages we want on the partial
1923 * list to avoid pounding the page allocator excessively.
1924 */
1925 n->min_partial = ilog2(s->size);
1926 if (n->min_partial < MIN_PARTIAL)
1927 n->min_partial = MIN_PARTIAL;
1928 else if (n->min_partial > MAX_PARTIAL)
1929 n->min_partial = MAX_PARTIAL;
1930
1931 spin_lock_init(&n->list_lock);
1932 INIT_LIST_HEAD(&n->partial);
1933 #ifdef CONFIG_SLUB_DEBUG
1934 atomic_long_set(&n->nr_slabs, 0);
1935 atomic_long_set(&n->total_objects, 0);
1936 INIT_LIST_HEAD(&n->full);
1937 #endif
1938 }
1939
1940 #ifdef CONFIG_SMP
1941 /*
1942 * Per cpu array for per cpu structures.
1943 *
1944 * The per cpu array places all kmem_cache_cpu structures from one processor
1945 * close together meaning that it becomes possible that multiple per cpu
1946 * structures are contained in one cacheline. This may be particularly
1947 * beneficial for the kmalloc caches.
1948 *
1949 * A desktop system typically has around 60-80 slabs. With 100 here we are
1950 * likely able to get per cpu structures for all caches from the array defined
1951 * here. We must be able to cover all kmalloc caches during bootstrap.
1952 *
1953 * If the per cpu array is exhausted then fall back to kmalloc
1954 * of individual cachelines. No sharing is possible then.
1955 */
1956 #define NR_KMEM_CACHE_CPU 100
1957
1958 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1959 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1960
1961 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1962 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1963
1964 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1965 int cpu, gfp_t flags)
1966 {
1967 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1968
1969 if (c)
1970 per_cpu(kmem_cache_cpu_free, cpu) =
1971 (void *)c->freelist;
1972 else {
1973 /* Table overflow: So allocate ourselves */
1974 c = kmalloc_node(
1975 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1976 flags, cpu_to_node(cpu));
1977 if (!c)
1978 return NULL;
1979 }
1980
1981 init_kmem_cache_cpu(s, c);
1982 return c;
1983 }
1984
1985 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1986 {
1987 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1988 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1989 kfree(c);
1990 return;
1991 }
1992 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1993 per_cpu(kmem_cache_cpu_free, cpu) = c;
1994 }
1995
1996 static void free_kmem_cache_cpus(struct kmem_cache *s)
1997 {
1998 int cpu;
1999
2000 for_each_online_cpu(cpu) {
2001 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2002
2003 if (c) {
2004 s->cpu_slab[cpu] = NULL;
2005 free_kmem_cache_cpu(c, cpu);
2006 }
2007 }
2008 }
2009
2010 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2011 {
2012 int cpu;
2013
2014 for_each_online_cpu(cpu) {
2015 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2016
2017 if (c)
2018 continue;
2019
2020 c = alloc_kmem_cache_cpu(s, cpu, flags);
2021 if (!c) {
2022 free_kmem_cache_cpus(s);
2023 return 0;
2024 }
2025 s->cpu_slab[cpu] = c;
2026 }
2027 return 1;
2028 }
2029
2030 /*
2031 * Initialize the per cpu array.
2032 */
2033 static void init_alloc_cpu_cpu(int cpu)
2034 {
2035 int i;
2036
2037 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2038 return;
2039
2040 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2041 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2042
2043 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2044 }
2045
2046 static void __init init_alloc_cpu(void)
2047 {
2048 int cpu;
2049
2050 for_each_online_cpu(cpu)
2051 init_alloc_cpu_cpu(cpu);
2052 }
2053
2054 #else
2055 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2056 static inline void init_alloc_cpu(void) {}
2057
2058 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2059 {
2060 init_kmem_cache_cpu(s, &s->cpu_slab);
2061 return 1;
2062 }
2063 #endif
2064
2065 #ifdef CONFIG_NUMA
2066 /*
2067 * No kmalloc_node yet so do it by hand. We know that this is the first
2068 * slab on the node for this slabcache. There are no concurrent accesses
2069 * possible.
2070 *
2071 * Note that this function only works on the kmalloc_node_cache
2072 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2073 * memory on a fresh node that has no slab structures yet.
2074 */
2075 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2076 int node)
2077 {
2078 struct page *page;
2079 struct kmem_cache_node *n;
2080 unsigned long flags;
2081
2082 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2083
2084 page = new_slab(kmalloc_caches, gfpflags, node);
2085
2086 BUG_ON(!page);
2087 if (page_to_nid(page) != node) {
2088 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2089 "node %d\n", node);
2090 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2091 "in order to be able to continue\n");
2092 }
2093
2094 n = page->freelist;
2095 BUG_ON(!n);
2096 page->freelist = get_freepointer(kmalloc_caches, n);
2097 page->inuse++;
2098 kmalloc_caches->node[node] = n;
2099 #ifdef CONFIG_SLUB_DEBUG
2100 init_object(kmalloc_caches, n, 1);
2101 init_tracking(kmalloc_caches, n);
2102 #endif
2103 init_kmem_cache_node(n, kmalloc_caches);
2104 inc_slabs_node(kmalloc_caches, node, page->objects);
2105
2106 /*
2107 * lockdep requires consistent irq usage for each lock
2108 * so even though there cannot be a race this early in
2109 * the boot sequence, we still disable irqs.
2110 */
2111 local_irq_save(flags);
2112 add_partial(n, page, 0);
2113 local_irq_restore(flags);
2114 return n;
2115 }
2116
2117 static void free_kmem_cache_nodes(struct kmem_cache *s)
2118 {
2119 int node;
2120
2121 for_each_node_state(node, N_NORMAL_MEMORY) {
2122 struct kmem_cache_node *n = s->node[node];
2123 if (n && n != &s->local_node)
2124 kmem_cache_free(kmalloc_caches, n);
2125 s->node[node] = NULL;
2126 }
2127 }
2128
2129 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2130 {
2131 int node;
2132 int local_node;
2133
2134 if (slab_state >= UP)
2135 local_node = page_to_nid(virt_to_page(s));
2136 else
2137 local_node = 0;
2138
2139 for_each_node_state(node, N_NORMAL_MEMORY) {
2140 struct kmem_cache_node *n;
2141
2142 if (local_node == node)
2143 n = &s->local_node;
2144 else {
2145 if (slab_state == DOWN) {
2146 n = early_kmem_cache_node_alloc(gfpflags,
2147 node);
2148 continue;
2149 }
2150 n = kmem_cache_alloc_node(kmalloc_caches,
2151 gfpflags, node);
2152
2153 if (!n) {
2154 free_kmem_cache_nodes(s);
2155 return 0;
2156 }
2157
2158 }
2159 s->node[node] = n;
2160 init_kmem_cache_node(n, s);
2161 }
2162 return 1;
2163 }
2164 #else
2165 static void free_kmem_cache_nodes(struct kmem_cache *s)
2166 {
2167 }
2168
2169 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2170 {
2171 init_kmem_cache_node(&s->local_node, s);
2172 return 1;
2173 }
2174 #endif
2175
2176 /*
2177 * calculate_sizes() determines the order and the distribution of data within
2178 * a slab object.
2179 */
2180 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2181 {
2182 unsigned long flags = s->flags;
2183 unsigned long size = s->objsize;
2184 unsigned long align = s->align;
2185 int order;
2186
2187 /*
2188 * Round up object size to the next word boundary. We can only
2189 * place the free pointer at word boundaries and this determines
2190 * the possible location of the free pointer.
2191 */
2192 size = ALIGN(size, sizeof(void *));
2193
2194 #ifdef CONFIG_SLUB_DEBUG
2195 /*
2196 * Determine if we can poison the object itself. If the user of
2197 * the slab may touch the object after free or before allocation
2198 * then we should never poison the object itself.
2199 */
2200 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2201 !s->ctor)
2202 s->flags |= __OBJECT_POISON;
2203 else
2204 s->flags &= ~__OBJECT_POISON;
2205
2206
2207 /*
2208 * If we are Redzoning then check if there is some space between the
2209 * end of the object and the free pointer. If not then add an
2210 * additional word to have some bytes to store Redzone information.
2211 */
2212 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2213 size += sizeof(void *);
2214 #endif
2215
2216 /*
2217 * With that we have determined the number of bytes in actual use
2218 * by the object. This is the potential offset to the free pointer.
2219 */
2220 s->inuse = size;
2221
2222 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2223 s->ctor)) {
2224 /*
2225 * Relocate free pointer after the object if it is not
2226 * permitted to overwrite the first word of the object on
2227 * kmem_cache_free.
2228 *
2229 * This is the case if we do RCU, have a constructor or
2230 * destructor or are poisoning the objects.
2231 */
2232 s->offset = size;
2233 size += sizeof(void *);
2234 }
2235
2236 #ifdef CONFIG_SLUB_DEBUG
2237 if (flags & SLAB_STORE_USER)
2238 /*
2239 * Need to store information about allocs and frees after
2240 * the object.
2241 */
2242 size += 2 * sizeof(struct track);
2243
2244 if (flags & SLAB_RED_ZONE)
2245 /*
2246 * Add some empty padding so that we can catch
2247 * overwrites from earlier objects rather than let
2248 * tracking information or the free pointer be
2249 * corrupted if an user writes before the start
2250 * of the object.
2251 */
2252 size += sizeof(void *);
2253 #endif
2254
2255 /*
2256 * Determine the alignment based on various parameters that the
2257 * user specified and the dynamic determination of cache line size
2258 * on bootup.
2259 */
2260 align = calculate_alignment(flags, align, s->objsize);
2261
2262 /*
2263 * SLUB stores one object immediately after another beginning from
2264 * offset 0. In order to align the objects we have to simply size
2265 * each object to conform to the alignment.
2266 */
2267 size = ALIGN(size, align);
2268 s->size = size;
2269 if (forced_order >= 0)
2270 order = forced_order;
2271 else
2272 order = calculate_order(size);
2273
2274 if (order < 0)
2275 return 0;
2276
2277 s->allocflags = 0;
2278 if (order)
2279 s->allocflags |= __GFP_COMP;
2280
2281 if (s->flags & SLAB_CACHE_DMA)
2282 s->allocflags |= SLUB_DMA;
2283
2284 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2285 s->allocflags |= __GFP_RECLAIMABLE;
2286
2287 /*
2288 * Determine the number of objects per slab
2289 */
2290 s->oo = oo_make(order, size);
2291 s->min = oo_make(get_order(size), size);
2292 if (oo_objects(s->oo) > oo_objects(s->max))
2293 s->max = s->oo;
2294
2295 return !!oo_objects(s->oo);
2296
2297 }
2298
2299 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2300 const char *name, size_t size,
2301 size_t align, unsigned long flags,
2302 void (*ctor)(void *))
2303 {
2304 memset(s, 0, kmem_size);
2305 s->name = name;
2306 s->ctor = ctor;
2307 s->objsize = size;
2308 s->align = align;
2309 s->flags = kmem_cache_flags(size, flags, name, ctor);
2310
2311 if (!calculate_sizes(s, -1))
2312 goto error;
2313
2314 s->refcount = 1;
2315 #ifdef CONFIG_NUMA
2316 s->remote_node_defrag_ratio = 1000;
2317 #endif
2318 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2319 goto error;
2320
2321 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2322 return 1;
2323 free_kmem_cache_nodes(s);
2324 error:
2325 if (flags & SLAB_PANIC)
2326 panic("Cannot create slab %s size=%lu realsize=%u "
2327 "order=%u offset=%u flags=%lx\n",
2328 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2329 s->offset, flags);
2330 return 0;
2331 }
2332
2333 /*
2334 * Check if a given pointer is valid
2335 */
2336 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2337 {
2338 struct page *page;
2339
2340 page = get_object_page(object);
2341
2342 if (!page || s != page->slab)
2343 /* No slab or wrong slab */
2344 return 0;
2345
2346 if (!check_valid_pointer(s, page, object))
2347 return 0;
2348
2349 /*
2350 * We could also check if the object is on the slabs freelist.
2351 * But this would be too expensive and it seems that the main
2352 * purpose of kmem_ptr_valid() is to check if the object belongs
2353 * to a certain slab.
2354 */
2355 return 1;
2356 }
2357 EXPORT_SYMBOL(kmem_ptr_validate);
2358
2359 /*
2360 * Determine the size of a slab object
2361 */
2362 unsigned int kmem_cache_size(struct kmem_cache *s)
2363 {
2364 return s->objsize;
2365 }
2366 EXPORT_SYMBOL(kmem_cache_size);
2367
2368 const char *kmem_cache_name(struct kmem_cache *s)
2369 {
2370 return s->name;
2371 }
2372 EXPORT_SYMBOL(kmem_cache_name);
2373
2374 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2375 const char *text)
2376 {
2377 #ifdef CONFIG_SLUB_DEBUG
2378 void *addr = page_address(page);
2379 void *p;
2380 DECLARE_BITMAP(map, page->objects);
2381
2382 bitmap_zero(map, page->objects);
2383 slab_err(s, page, "%s", text);
2384 slab_lock(page);
2385 for_each_free_object(p, s, page->freelist)
2386 set_bit(slab_index(p, s, addr), map);
2387
2388 for_each_object(p, s, addr, page->objects) {
2389
2390 if (!test_bit(slab_index(p, s, addr), map)) {
2391 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2392 p, p - addr);
2393 print_tracking(s, p);
2394 }
2395 }
2396 slab_unlock(page);
2397 #endif
2398 }
2399
2400 /*
2401 * Attempt to free all partial slabs on a node.
2402 */
2403 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2404 {
2405 unsigned long flags;
2406 struct page *page, *h;
2407
2408 spin_lock_irqsave(&n->list_lock, flags);
2409 list_for_each_entry_safe(page, h, &n->partial, lru) {
2410 if (!page->inuse) {
2411 list_del(&page->lru);
2412 discard_slab(s, page);
2413 n->nr_partial--;
2414 } else {
2415 list_slab_objects(s, page,
2416 "Objects remaining on kmem_cache_close()");
2417 }
2418 }
2419 spin_unlock_irqrestore(&n->list_lock, flags);
2420 }
2421
2422 /*
2423 * Release all resources used by a slab cache.
2424 */
2425 static inline int kmem_cache_close(struct kmem_cache *s)
2426 {
2427 int node;
2428
2429 flush_all(s);
2430
2431 /* Attempt to free all objects */
2432 free_kmem_cache_cpus(s);
2433 for_each_node_state(node, N_NORMAL_MEMORY) {
2434 struct kmem_cache_node *n = get_node(s, node);
2435
2436 free_partial(s, n);
2437 if (n->nr_partial || slabs_node(s, node))
2438 return 1;
2439 }
2440 free_kmem_cache_nodes(s);
2441 return 0;
2442 }
2443
2444 /*
2445 * Close a cache and release the kmem_cache structure
2446 * (must be used for caches created using kmem_cache_create)
2447 */
2448 void kmem_cache_destroy(struct kmem_cache *s)
2449 {
2450 down_write(&slub_lock);
2451 s->refcount--;
2452 if (!s->refcount) {
2453 list_del(&s->list);
2454 up_write(&slub_lock);
2455 if (kmem_cache_close(s)) {
2456 printk(KERN_ERR "SLUB %s: %s called for cache that "
2457 "still has objects.\n", s->name, __func__);
2458 dump_stack();
2459 }
2460 sysfs_slab_remove(s);
2461 } else
2462 up_write(&slub_lock);
2463 }
2464 EXPORT_SYMBOL(kmem_cache_destroy);
2465
2466 /********************************************************************
2467 * Kmalloc subsystem
2468 *******************************************************************/
2469
2470 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2471 EXPORT_SYMBOL(kmalloc_caches);
2472
2473 static int __init setup_slub_min_order(char *str)
2474 {
2475 get_option(&str, &slub_min_order);
2476
2477 return 1;
2478 }
2479
2480 __setup("slub_min_order=", setup_slub_min_order);
2481
2482 static int __init setup_slub_max_order(char *str)
2483 {
2484 get_option(&str, &slub_max_order);
2485
2486 return 1;
2487 }
2488
2489 __setup("slub_max_order=", setup_slub_max_order);
2490
2491 static int __init setup_slub_min_objects(char *str)
2492 {
2493 get_option(&str, &slub_min_objects);
2494
2495 return 1;
2496 }
2497
2498 __setup("slub_min_objects=", setup_slub_min_objects);
2499
2500 static int __init setup_slub_nomerge(char *str)
2501 {
2502 slub_nomerge = 1;
2503 return 1;
2504 }
2505
2506 __setup("slub_nomerge", setup_slub_nomerge);
2507
2508 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2509 const char *name, int size, gfp_t gfp_flags)
2510 {
2511 unsigned int flags = 0;
2512
2513 if (gfp_flags & SLUB_DMA)
2514 flags = SLAB_CACHE_DMA;
2515
2516 down_write(&slub_lock);
2517 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2518 flags, NULL))
2519 goto panic;
2520
2521 list_add(&s->list, &slab_caches);
2522 up_write(&slub_lock);
2523 if (sysfs_slab_add(s))
2524 goto panic;
2525 return s;
2526
2527 panic:
2528 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2529 }
2530
2531 #ifdef CONFIG_ZONE_DMA
2532 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2533
2534 static void sysfs_add_func(struct work_struct *w)
2535 {
2536 struct kmem_cache *s;
2537
2538 down_write(&slub_lock);
2539 list_for_each_entry(s, &slab_caches, list) {
2540 if (s->flags & __SYSFS_ADD_DEFERRED) {
2541 s->flags &= ~__SYSFS_ADD_DEFERRED;
2542 sysfs_slab_add(s);
2543 }
2544 }
2545 up_write(&slub_lock);
2546 }
2547
2548 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2549
2550 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2551 {
2552 struct kmem_cache *s;
2553 char *text;
2554 size_t realsize;
2555
2556 s = kmalloc_caches_dma[index];
2557 if (s)
2558 return s;
2559
2560 /* Dynamically create dma cache */
2561 if (flags & __GFP_WAIT)
2562 down_write(&slub_lock);
2563 else {
2564 if (!down_write_trylock(&slub_lock))
2565 goto out;
2566 }
2567
2568 if (kmalloc_caches_dma[index])
2569 goto unlock_out;
2570
2571 realsize = kmalloc_caches[index].objsize;
2572 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2573 (unsigned int)realsize);
2574 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2575
2576 if (!s || !text || !kmem_cache_open(s, flags, text,
2577 realsize, ARCH_KMALLOC_MINALIGN,
2578 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2579 kfree(s);
2580 kfree(text);
2581 goto unlock_out;
2582 }
2583
2584 list_add(&s->list, &slab_caches);
2585 kmalloc_caches_dma[index] = s;
2586
2587 schedule_work(&sysfs_add_work);
2588
2589 unlock_out:
2590 up_write(&slub_lock);
2591 out:
2592 return kmalloc_caches_dma[index];
2593 }
2594 #endif
2595
2596 /*
2597 * Conversion table for small slabs sizes / 8 to the index in the
2598 * kmalloc array. This is necessary for slabs < 192 since we have non power
2599 * of two cache sizes there. The size of larger slabs can be determined using
2600 * fls.
2601 */
2602 static s8 size_index[24] = {
2603 3, /* 8 */
2604 4, /* 16 */
2605 5, /* 24 */
2606 5, /* 32 */
2607 6, /* 40 */
2608 6, /* 48 */
2609 6, /* 56 */
2610 6, /* 64 */
2611 1, /* 72 */
2612 1, /* 80 */
2613 1, /* 88 */
2614 1, /* 96 */
2615 7, /* 104 */
2616 7, /* 112 */
2617 7, /* 120 */
2618 7, /* 128 */
2619 2, /* 136 */
2620 2, /* 144 */
2621 2, /* 152 */
2622 2, /* 160 */
2623 2, /* 168 */
2624 2, /* 176 */
2625 2, /* 184 */
2626 2 /* 192 */
2627 };
2628
2629 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2630 {
2631 int index;
2632
2633 if (size <= 192) {
2634 if (!size)
2635 return ZERO_SIZE_PTR;
2636
2637 index = size_index[(size - 1) / 8];
2638 } else
2639 index = fls(size - 1);
2640
2641 #ifdef CONFIG_ZONE_DMA
2642 if (unlikely((flags & SLUB_DMA)))
2643 return dma_kmalloc_cache(index, flags);
2644
2645 #endif
2646 return &kmalloc_caches[index];
2647 }
2648
2649 void *__kmalloc(size_t size, gfp_t flags)
2650 {
2651 struct kmem_cache *s;
2652
2653 if (unlikely(size > PAGE_SIZE))
2654 return kmalloc_large(size, flags);
2655
2656 s = get_slab(size, flags);
2657
2658 if (unlikely(ZERO_OR_NULL_PTR(s)))
2659 return s;
2660
2661 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2662 }
2663 EXPORT_SYMBOL(__kmalloc);
2664
2665 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2666 {
2667 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2668 get_order(size));
2669
2670 if (page)
2671 return page_address(page);
2672 else
2673 return NULL;
2674 }
2675
2676 #ifdef CONFIG_NUMA
2677 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2678 {
2679 struct kmem_cache *s;
2680
2681 if (unlikely(size > PAGE_SIZE))
2682 return kmalloc_large_node(size, flags, node);
2683
2684 s = get_slab(size, flags);
2685
2686 if (unlikely(ZERO_OR_NULL_PTR(s)))
2687 return s;
2688
2689 return slab_alloc(s, flags, node, __builtin_return_address(0));
2690 }
2691 EXPORT_SYMBOL(__kmalloc_node);
2692 #endif
2693
2694 size_t ksize(const void *object)
2695 {
2696 struct page *page;
2697 struct kmem_cache *s;
2698
2699 if (unlikely(object == ZERO_SIZE_PTR))
2700 return 0;
2701
2702 page = virt_to_head_page(object);
2703
2704 if (unlikely(!PageSlab(page))) {
2705 WARN_ON(!PageCompound(page));
2706 return PAGE_SIZE << compound_order(page);
2707 }
2708 s = page->slab;
2709
2710 #ifdef CONFIG_SLUB_DEBUG
2711 /*
2712 * Debugging requires use of the padding between object
2713 * and whatever may come after it.
2714 */
2715 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2716 return s->objsize;
2717
2718 #endif
2719 /*
2720 * If we have the need to store the freelist pointer
2721 * back there or track user information then we can
2722 * only use the space before that information.
2723 */
2724 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2725 return s->inuse;
2726 /*
2727 * Else we can use all the padding etc for the allocation
2728 */
2729 return s->size;
2730 }
2731
2732 void kfree(const void *x)
2733 {
2734 struct page *page;
2735 void *object = (void *)x;
2736
2737 if (unlikely(ZERO_OR_NULL_PTR(x)))
2738 return;
2739
2740 page = virt_to_head_page(x);
2741 if (unlikely(!PageSlab(page))) {
2742 BUG_ON(!PageCompound(page));
2743 put_page(page);
2744 return;
2745 }
2746 slab_free(page->slab, page, object, __builtin_return_address(0));
2747 }
2748 EXPORT_SYMBOL(kfree);
2749
2750 /*
2751 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2752 * the remaining slabs by the number of items in use. The slabs with the
2753 * most items in use come first. New allocations will then fill those up
2754 * and thus they can be removed from the partial lists.
2755 *
2756 * The slabs with the least items are placed last. This results in them
2757 * being allocated from last increasing the chance that the last objects
2758 * are freed in them.
2759 */
2760 int kmem_cache_shrink(struct kmem_cache *s)
2761 {
2762 int node;
2763 int i;
2764 struct kmem_cache_node *n;
2765 struct page *page;
2766 struct page *t;
2767 int objects = oo_objects(s->max);
2768 struct list_head *slabs_by_inuse =
2769 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2770 unsigned long flags;
2771
2772 if (!slabs_by_inuse)
2773 return -ENOMEM;
2774
2775 flush_all(s);
2776 for_each_node_state(node, N_NORMAL_MEMORY) {
2777 n = get_node(s, node);
2778
2779 if (!n->nr_partial)
2780 continue;
2781
2782 for (i = 0; i < objects; i++)
2783 INIT_LIST_HEAD(slabs_by_inuse + i);
2784
2785 spin_lock_irqsave(&n->list_lock, flags);
2786
2787 /*
2788 * Build lists indexed by the items in use in each slab.
2789 *
2790 * Note that concurrent frees may occur while we hold the
2791 * list_lock. page->inuse here is the upper limit.
2792 */
2793 list_for_each_entry_safe(page, t, &n->partial, lru) {
2794 if (!page->inuse && slab_trylock(page)) {
2795 /*
2796 * Must hold slab lock here because slab_free
2797 * may have freed the last object and be
2798 * waiting to release the slab.
2799 */
2800 list_del(&page->lru);
2801 n->nr_partial--;
2802 slab_unlock(page);
2803 discard_slab(s, page);
2804 } else {
2805 list_move(&page->lru,
2806 slabs_by_inuse + page->inuse);
2807 }
2808 }
2809
2810 /*
2811 * Rebuild the partial list with the slabs filled up most
2812 * first and the least used slabs at the end.
2813 */
2814 for (i = objects - 1; i >= 0; i--)
2815 list_splice(slabs_by_inuse + i, n->partial.prev);
2816
2817 spin_unlock_irqrestore(&n->list_lock, flags);
2818 }
2819
2820 kfree(slabs_by_inuse);
2821 return 0;
2822 }
2823 EXPORT_SYMBOL(kmem_cache_shrink);
2824
2825 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2826 static int slab_mem_going_offline_callback(void *arg)
2827 {
2828 struct kmem_cache *s;
2829
2830 down_read(&slub_lock);
2831 list_for_each_entry(s, &slab_caches, list)
2832 kmem_cache_shrink(s);
2833 up_read(&slub_lock);
2834
2835 return 0;
2836 }
2837
2838 static void slab_mem_offline_callback(void *arg)
2839 {
2840 struct kmem_cache_node *n;
2841 struct kmem_cache *s;
2842 struct memory_notify *marg = arg;
2843 int offline_node;
2844
2845 offline_node = marg->status_change_nid;
2846
2847 /*
2848 * If the node still has available memory. we need kmem_cache_node
2849 * for it yet.
2850 */
2851 if (offline_node < 0)
2852 return;
2853
2854 down_read(&slub_lock);
2855 list_for_each_entry(s, &slab_caches, list) {
2856 n = get_node(s, offline_node);
2857 if (n) {
2858 /*
2859 * if n->nr_slabs > 0, slabs still exist on the node
2860 * that is going down. We were unable to free them,
2861 * and offline_pages() function shoudn't call this
2862 * callback. So, we must fail.
2863 */
2864 BUG_ON(slabs_node(s, offline_node));
2865
2866 s->node[offline_node] = NULL;
2867 kmem_cache_free(kmalloc_caches, n);
2868 }
2869 }
2870 up_read(&slub_lock);
2871 }
2872
2873 static int slab_mem_going_online_callback(void *arg)
2874 {
2875 struct kmem_cache_node *n;
2876 struct kmem_cache *s;
2877 struct memory_notify *marg = arg;
2878 int nid = marg->status_change_nid;
2879 int ret = 0;
2880
2881 /*
2882 * If the node's memory is already available, then kmem_cache_node is
2883 * already created. Nothing to do.
2884 */
2885 if (nid < 0)
2886 return 0;
2887
2888 /*
2889 * We are bringing a node online. No memory is available yet. We must
2890 * allocate a kmem_cache_node structure in order to bring the node
2891 * online.
2892 */
2893 down_read(&slub_lock);
2894 list_for_each_entry(s, &slab_caches, list) {
2895 /*
2896 * XXX: kmem_cache_alloc_node will fallback to other nodes
2897 * since memory is not yet available from the node that
2898 * is brought up.
2899 */
2900 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2901 if (!n) {
2902 ret = -ENOMEM;
2903 goto out;
2904 }
2905 init_kmem_cache_node(n, s);
2906 s->node[nid] = n;
2907 }
2908 out:
2909 up_read(&slub_lock);
2910 return ret;
2911 }
2912
2913 static int slab_memory_callback(struct notifier_block *self,
2914 unsigned long action, void *arg)
2915 {
2916 int ret = 0;
2917
2918 switch (action) {
2919 case MEM_GOING_ONLINE:
2920 ret = slab_mem_going_online_callback(arg);
2921 break;
2922 case MEM_GOING_OFFLINE:
2923 ret = slab_mem_going_offline_callback(arg);
2924 break;
2925 case MEM_OFFLINE:
2926 case MEM_CANCEL_ONLINE:
2927 slab_mem_offline_callback(arg);
2928 break;
2929 case MEM_ONLINE:
2930 case MEM_CANCEL_OFFLINE:
2931 break;
2932 }
2933
2934 ret = notifier_from_errno(ret);
2935 return ret;
2936 }
2937
2938 #endif /* CONFIG_MEMORY_HOTPLUG */
2939
2940 /********************************************************************
2941 * Basic setup of slabs
2942 *******************************************************************/
2943
2944 void __init kmem_cache_init(void)
2945 {
2946 int i;
2947 int caches = 0;
2948
2949 init_alloc_cpu();
2950
2951 #ifdef CONFIG_NUMA
2952 /*
2953 * Must first have the slab cache available for the allocations of the
2954 * struct kmem_cache_node's. There is special bootstrap code in
2955 * kmem_cache_open for slab_state == DOWN.
2956 */
2957 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2958 sizeof(struct kmem_cache_node), GFP_KERNEL);
2959 kmalloc_caches[0].refcount = -1;
2960 caches++;
2961
2962 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2963 #endif
2964
2965 /* Able to allocate the per node structures */
2966 slab_state = PARTIAL;
2967
2968 /* Caches that are not of the two-to-the-power-of size */
2969 if (KMALLOC_MIN_SIZE <= 64) {
2970 create_kmalloc_cache(&kmalloc_caches[1],
2971 "kmalloc-96", 96, GFP_KERNEL);
2972 caches++;
2973 create_kmalloc_cache(&kmalloc_caches[2],
2974 "kmalloc-192", 192, GFP_KERNEL);
2975 caches++;
2976 }
2977
2978 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2979 create_kmalloc_cache(&kmalloc_caches[i],
2980 "kmalloc", 1 << i, GFP_KERNEL);
2981 caches++;
2982 }
2983
2984
2985 /*
2986 * Patch up the size_index table if we have strange large alignment
2987 * requirements for the kmalloc array. This is only the case for
2988 * MIPS it seems. The standard arches will not generate any code here.
2989 *
2990 * Largest permitted alignment is 256 bytes due to the way we
2991 * handle the index determination for the smaller caches.
2992 *
2993 * Make sure that nothing crazy happens if someone starts tinkering
2994 * around with ARCH_KMALLOC_MINALIGN
2995 */
2996 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2997 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2998
2999 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3000 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3001
3002 if (KMALLOC_MIN_SIZE == 128) {
3003 /*
3004 * The 192 byte sized cache is not used if the alignment
3005 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3006 * instead.
3007 */
3008 for (i = 128 + 8; i <= 192; i += 8)
3009 size_index[(i - 1) / 8] = 8;
3010 }
3011
3012 slab_state = UP;
3013
3014 /* Provide the correct kmalloc names now that the caches are up */
3015 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3016 kmalloc_caches[i]. name =
3017 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3018
3019 #ifdef CONFIG_SMP
3020 register_cpu_notifier(&slab_notifier);
3021 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3022 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3023 #else
3024 kmem_size = sizeof(struct kmem_cache);
3025 #endif
3026
3027 printk(KERN_INFO
3028 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3029 " CPUs=%d, Nodes=%d\n",
3030 caches, cache_line_size(),
3031 slub_min_order, slub_max_order, slub_min_objects,
3032 nr_cpu_ids, nr_node_ids);
3033 }
3034
3035 /*
3036 * Find a mergeable slab cache
3037 */
3038 static int slab_unmergeable(struct kmem_cache *s)
3039 {
3040 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3041 return 1;
3042
3043 if (s->ctor)
3044 return 1;
3045
3046 /*
3047 * We may have set a slab to be unmergeable during bootstrap.
3048 */
3049 if (s->refcount < 0)
3050 return 1;
3051
3052 return 0;
3053 }
3054
3055 static struct kmem_cache *find_mergeable(size_t size,
3056 size_t align, unsigned long flags, const char *name,
3057 void (*ctor)(void *))
3058 {
3059 struct kmem_cache *s;
3060
3061 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3062 return NULL;
3063
3064 if (ctor)
3065 return NULL;
3066
3067 size = ALIGN(size, sizeof(void *));
3068 align = calculate_alignment(flags, align, size);
3069 size = ALIGN(size, align);
3070 flags = kmem_cache_flags(size, flags, name, NULL);
3071
3072 list_for_each_entry(s, &slab_caches, list) {
3073 if (slab_unmergeable(s))
3074 continue;
3075
3076 if (size > s->size)
3077 continue;
3078
3079 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3080 continue;
3081 /*
3082 * Check if alignment is compatible.
3083 * Courtesy of Adrian Drzewiecki
3084 */
3085 if ((s->size & ~(align - 1)) != s->size)
3086 continue;
3087
3088 if (s->size - size >= sizeof(void *))
3089 continue;
3090
3091 return s;
3092 }
3093 return NULL;
3094 }
3095
3096 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3097 size_t align, unsigned long flags, void (*ctor)(void *))
3098 {
3099 struct kmem_cache *s;
3100
3101 down_write(&slub_lock);
3102 s = find_mergeable(size, align, flags, name, ctor);
3103 if (s) {
3104 int cpu;
3105
3106 s->refcount++;
3107 /*
3108 * Adjust the object sizes so that we clear
3109 * the complete object on kzalloc.
3110 */
3111 s->objsize = max(s->objsize, (int)size);
3112
3113 /*
3114 * And then we need to update the object size in the
3115 * per cpu structures
3116 */
3117 for_each_online_cpu(cpu)
3118 get_cpu_slab(s, cpu)->objsize = s->objsize;
3119
3120 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3121 up_write(&slub_lock);
3122
3123 if (sysfs_slab_alias(s, name))
3124 goto err;
3125 return s;
3126 }
3127
3128 s = kmalloc(kmem_size, GFP_KERNEL);
3129 if (s) {
3130 if (kmem_cache_open(s, GFP_KERNEL, name,
3131 size, align, flags, ctor)) {
3132 list_add(&s->list, &slab_caches);
3133 up_write(&slub_lock);
3134 if (sysfs_slab_add(s))
3135 goto err;
3136 return s;
3137 }
3138 kfree(s);
3139 }
3140 up_write(&slub_lock);
3141
3142 err:
3143 if (flags & SLAB_PANIC)
3144 panic("Cannot create slabcache %s\n", name);
3145 else
3146 s = NULL;
3147 return s;
3148 }
3149 EXPORT_SYMBOL(kmem_cache_create);
3150
3151 #ifdef CONFIG_SMP
3152 /*
3153 * Use the cpu notifier to insure that the cpu slabs are flushed when
3154 * necessary.
3155 */
3156 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3157 unsigned long action, void *hcpu)
3158 {
3159 long cpu = (long)hcpu;
3160 struct kmem_cache *s;
3161 unsigned long flags;
3162
3163 switch (action) {
3164 case CPU_UP_PREPARE:
3165 case CPU_UP_PREPARE_FROZEN:
3166 init_alloc_cpu_cpu(cpu);
3167 down_read(&slub_lock);
3168 list_for_each_entry(s, &slab_caches, list)
3169 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3170 GFP_KERNEL);
3171 up_read(&slub_lock);
3172 break;
3173
3174 case CPU_UP_CANCELED:
3175 case CPU_UP_CANCELED_FROZEN:
3176 case CPU_DEAD:
3177 case CPU_DEAD_FROZEN:
3178 down_read(&slub_lock);
3179 list_for_each_entry(s, &slab_caches, list) {
3180 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3181
3182 local_irq_save(flags);
3183 __flush_cpu_slab(s, cpu);
3184 local_irq_restore(flags);
3185 free_kmem_cache_cpu(c, cpu);
3186 s->cpu_slab[cpu] = NULL;
3187 }
3188 up_read(&slub_lock);
3189 break;
3190 default:
3191 break;
3192 }
3193 return NOTIFY_OK;
3194 }
3195
3196 static struct notifier_block __cpuinitdata slab_notifier = {
3197 .notifier_call = slab_cpuup_callback
3198 };
3199
3200 #endif
3201
3202 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3203 {
3204 struct kmem_cache *s;
3205
3206 if (unlikely(size > PAGE_SIZE))
3207 return kmalloc_large(size, gfpflags);
3208
3209 s = get_slab(size, gfpflags);
3210
3211 if (unlikely(ZERO_OR_NULL_PTR(s)))
3212 return s;
3213
3214 return slab_alloc(s, gfpflags, -1, caller);
3215 }
3216
3217 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3218 int node, void *caller)
3219 {
3220 struct kmem_cache *s;
3221
3222 if (unlikely(size > PAGE_SIZE))
3223 return kmalloc_large_node(size, gfpflags, node);
3224
3225 s = get_slab(size, gfpflags);
3226
3227 if (unlikely(ZERO_OR_NULL_PTR(s)))
3228 return s;
3229
3230 return slab_alloc(s, gfpflags, node, caller);
3231 }
3232
3233 #ifdef CONFIG_SLUB_DEBUG
3234 static unsigned long count_partial(struct kmem_cache_node *n,
3235 int (*get_count)(struct page *))
3236 {
3237 unsigned long flags;
3238 unsigned long x = 0;
3239 struct page *page;
3240
3241 spin_lock_irqsave(&n->list_lock, flags);
3242 list_for_each_entry(page, &n->partial, lru)
3243 x += get_count(page);
3244 spin_unlock_irqrestore(&n->list_lock, flags);
3245 return x;
3246 }
3247
3248 static int count_inuse(struct page *page)
3249 {
3250 return page->inuse;
3251 }
3252
3253 static int count_total(struct page *page)
3254 {
3255 return page->objects;
3256 }
3257
3258 static int count_free(struct page *page)
3259 {
3260 return page->objects - page->inuse;
3261 }
3262
3263 static int validate_slab(struct kmem_cache *s, struct page *page,
3264 unsigned long *map)
3265 {
3266 void *p;
3267 void *addr = page_address(page);
3268
3269 if (!check_slab(s, page) ||
3270 !on_freelist(s, page, NULL))
3271 return 0;
3272
3273 /* Now we know that a valid freelist exists */
3274 bitmap_zero(map, page->objects);
3275
3276 for_each_free_object(p, s, page->freelist) {
3277 set_bit(slab_index(p, s, addr), map);
3278 if (!check_object(s, page, p, 0))
3279 return 0;
3280 }
3281
3282 for_each_object(p, s, addr, page->objects)
3283 if (!test_bit(slab_index(p, s, addr), map))
3284 if (!check_object(s, page, p, 1))
3285 return 0;
3286 return 1;
3287 }
3288
3289 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3290 unsigned long *map)
3291 {
3292 if (slab_trylock(page)) {
3293 validate_slab(s, page, map);
3294 slab_unlock(page);
3295 } else
3296 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3297 s->name, page);
3298
3299 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3300 if (!PageSlubDebug(page))
3301 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3302 "on slab 0x%p\n", s->name, page);
3303 } else {
3304 if (PageSlubDebug(page))
3305 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3306 "slab 0x%p\n", s->name, page);
3307 }
3308 }
3309
3310 static int validate_slab_node(struct kmem_cache *s,
3311 struct kmem_cache_node *n, unsigned long *map)
3312 {
3313 unsigned long count = 0;
3314 struct page *page;
3315 unsigned long flags;
3316
3317 spin_lock_irqsave(&n->list_lock, flags);
3318
3319 list_for_each_entry(page, &n->partial, lru) {
3320 validate_slab_slab(s, page, map);
3321 count++;
3322 }
3323 if (count != n->nr_partial)
3324 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3325 "counter=%ld\n", s->name, count, n->nr_partial);
3326
3327 if (!(s->flags & SLAB_STORE_USER))
3328 goto out;
3329
3330 list_for_each_entry(page, &n->full, lru) {
3331 validate_slab_slab(s, page, map);
3332 count++;
3333 }
3334 if (count != atomic_long_read(&n->nr_slabs))
3335 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3336 "counter=%ld\n", s->name, count,
3337 atomic_long_read(&n->nr_slabs));
3338
3339 out:
3340 spin_unlock_irqrestore(&n->list_lock, flags);
3341 return count;
3342 }
3343
3344 static long validate_slab_cache(struct kmem_cache *s)
3345 {
3346 int node;
3347 unsigned long count = 0;
3348 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3349 sizeof(unsigned long), GFP_KERNEL);
3350
3351 if (!map)
3352 return -ENOMEM;
3353
3354 flush_all(s);
3355 for_each_node_state(node, N_NORMAL_MEMORY) {
3356 struct kmem_cache_node *n = get_node(s, node);
3357
3358 count += validate_slab_node(s, n, map);
3359 }
3360 kfree(map);
3361 return count;
3362 }
3363
3364 #ifdef SLUB_RESILIENCY_TEST
3365 static void resiliency_test(void)
3366 {
3367 u8 *p;
3368
3369 printk(KERN_ERR "SLUB resiliency testing\n");
3370 printk(KERN_ERR "-----------------------\n");
3371 printk(KERN_ERR "A. Corruption after allocation\n");
3372
3373 p = kzalloc(16, GFP_KERNEL);
3374 p[16] = 0x12;
3375 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3376 " 0x12->0x%p\n\n", p + 16);
3377
3378 validate_slab_cache(kmalloc_caches + 4);
3379
3380 /* Hmmm... The next two are dangerous */
3381 p = kzalloc(32, GFP_KERNEL);
3382 p[32 + sizeof(void *)] = 0x34;
3383 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3384 " 0x34 -> -0x%p\n", p);
3385 printk(KERN_ERR
3386 "If allocated object is overwritten then not detectable\n\n");
3387
3388 validate_slab_cache(kmalloc_caches + 5);
3389 p = kzalloc(64, GFP_KERNEL);
3390 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3391 *p = 0x56;
3392 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3393 p);
3394 printk(KERN_ERR
3395 "If allocated object is overwritten then not detectable\n\n");
3396 validate_slab_cache(kmalloc_caches + 6);
3397
3398 printk(KERN_ERR "\nB. Corruption after free\n");
3399 p = kzalloc(128, GFP_KERNEL);
3400 kfree(p);
3401 *p = 0x78;
3402 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3403 validate_slab_cache(kmalloc_caches + 7);
3404
3405 p = kzalloc(256, GFP_KERNEL);
3406 kfree(p);
3407 p[50] = 0x9a;
3408 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3409 p);
3410 validate_slab_cache(kmalloc_caches + 8);
3411
3412 p = kzalloc(512, GFP_KERNEL);
3413 kfree(p);
3414 p[512] = 0xab;
3415 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3416 validate_slab_cache(kmalloc_caches + 9);
3417 }
3418 #else
3419 static void resiliency_test(void) {};
3420 #endif
3421
3422 /*
3423 * Generate lists of code addresses where slabcache objects are allocated
3424 * and freed.
3425 */
3426
3427 struct location {
3428 unsigned long count;
3429 void *addr;
3430 long long sum_time;
3431 long min_time;
3432 long max_time;
3433 long min_pid;
3434 long max_pid;
3435 cpumask_t cpus;
3436 nodemask_t nodes;
3437 };
3438
3439 struct loc_track {
3440 unsigned long max;
3441 unsigned long count;
3442 struct location *loc;
3443 };
3444
3445 static void free_loc_track(struct loc_track *t)
3446 {
3447 if (t->max)
3448 free_pages((unsigned long)t->loc,
3449 get_order(sizeof(struct location) * t->max));
3450 }
3451
3452 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3453 {
3454 struct location *l;
3455 int order;
3456
3457 order = get_order(sizeof(struct location) * max);
3458
3459 l = (void *)__get_free_pages(flags, order);
3460 if (!l)
3461 return 0;
3462
3463 if (t->count) {
3464 memcpy(l, t->loc, sizeof(struct location) * t->count);
3465 free_loc_track(t);
3466 }
3467 t->max = max;
3468 t->loc = l;
3469 return 1;
3470 }
3471
3472 static int add_location(struct loc_track *t, struct kmem_cache *s,
3473 const struct track *track)
3474 {
3475 long start, end, pos;
3476 struct location *l;
3477 void *caddr;
3478 unsigned long age = jiffies - track->when;
3479
3480 start = -1;
3481 end = t->count;
3482
3483 for ( ; ; ) {
3484 pos = start + (end - start + 1) / 2;
3485
3486 /*
3487 * There is nothing at "end". If we end up there
3488 * we need to add something to before end.
3489 */
3490 if (pos == end)
3491 break;
3492
3493 caddr = t->loc[pos].addr;
3494 if (track->addr == caddr) {
3495
3496 l = &t->loc[pos];
3497 l->count++;
3498 if (track->when) {
3499 l->sum_time += age;
3500 if (age < l->min_time)
3501 l->min_time = age;
3502 if (age > l->max_time)
3503 l->max_time = age;
3504
3505 if (track->pid < l->min_pid)
3506 l->min_pid = track->pid;
3507 if (track->pid > l->max_pid)
3508 l->max_pid = track->pid;
3509
3510 cpu_set(track->cpu, l->cpus);
3511 }
3512 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3513 return 1;
3514 }
3515
3516 if (track->addr < caddr)
3517 end = pos;
3518 else
3519 start = pos;
3520 }
3521
3522 /*
3523 * Not found. Insert new tracking element.
3524 */
3525 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3526 return 0;
3527
3528 l = t->loc + pos;
3529 if (pos < t->count)
3530 memmove(l + 1, l,
3531 (t->count - pos) * sizeof(struct location));
3532 t->count++;
3533 l->count = 1;
3534 l->addr = track->addr;
3535 l->sum_time = age;
3536 l->min_time = age;
3537 l->max_time = age;
3538 l->min_pid = track->pid;
3539 l->max_pid = track->pid;
3540 cpus_clear(l->cpus);
3541 cpu_set(track->cpu, l->cpus);
3542 nodes_clear(l->nodes);
3543 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3544 return 1;
3545 }
3546
3547 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3548 struct page *page, enum track_item alloc)
3549 {
3550 void *addr = page_address(page);
3551 DECLARE_BITMAP(map, page->objects);
3552 void *p;
3553
3554 bitmap_zero(map, page->objects);
3555 for_each_free_object(p, s, page->freelist)
3556 set_bit(slab_index(p, s, addr), map);
3557
3558 for_each_object(p, s, addr, page->objects)
3559 if (!test_bit(slab_index(p, s, addr), map))
3560 add_location(t, s, get_track(s, p, alloc));
3561 }
3562
3563 static int list_locations(struct kmem_cache *s, char *buf,
3564 enum track_item alloc)
3565 {
3566 int len = 0;
3567 unsigned long i;
3568 struct loc_track t = { 0, 0, NULL };
3569 int node;
3570
3571 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3572 GFP_TEMPORARY))
3573 return sprintf(buf, "Out of memory\n");
3574
3575 /* Push back cpu slabs */
3576 flush_all(s);
3577
3578 for_each_node_state(node, N_NORMAL_MEMORY) {
3579 struct kmem_cache_node *n = get_node(s, node);
3580 unsigned long flags;
3581 struct page *page;
3582
3583 if (!atomic_long_read(&n->nr_slabs))
3584 continue;
3585
3586 spin_lock_irqsave(&n->list_lock, flags);
3587 list_for_each_entry(page, &n->partial, lru)
3588 process_slab(&t, s, page, alloc);
3589 list_for_each_entry(page, &n->full, lru)
3590 process_slab(&t, s, page, alloc);
3591 spin_unlock_irqrestore(&n->list_lock, flags);
3592 }
3593
3594 for (i = 0; i < t.count; i++) {
3595 struct location *l = &t.loc[i];
3596
3597 if (len > PAGE_SIZE - 100)
3598 break;
3599 len += sprintf(buf + len, "%7ld ", l->count);
3600
3601 if (l->addr)
3602 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3603 else
3604 len += sprintf(buf + len, "<not-available>");
3605
3606 if (l->sum_time != l->min_time) {
3607 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3608 l->min_time,
3609 (long)div_u64(l->sum_time, l->count),
3610 l->max_time);
3611 } else
3612 len += sprintf(buf + len, " age=%ld",
3613 l->min_time);
3614
3615 if (l->min_pid != l->max_pid)
3616 len += sprintf(buf + len, " pid=%ld-%ld",
3617 l->min_pid, l->max_pid);
3618 else
3619 len += sprintf(buf + len, " pid=%ld",
3620 l->min_pid);
3621
3622 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3623 len < PAGE_SIZE - 60) {
3624 len += sprintf(buf + len, " cpus=");
3625 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3626 l->cpus);
3627 }
3628
3629 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3630 len < PAGE_SIZE - 60) {
3631 len += sprintf(buf + len, " nodes=");
3632 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3633 l->nodes);
3634 }
3635
3636 len += sprintf(buf + len, "\n");
3637 }
3638
3639 free_loc_track(&t);
3640 if (!t.count)
3641 len += sprintf(buf, "No data\n");
3642 return len;
3643 }
3644
3645 enum slab_stat_type {
3646 SL_ALL, /* All slabs */
3647 SL_PARTIAL, /* Only partially allocated slabs */
3648 SL_CPU, /* Only slabs used for cpu caches */
3649 SL_OBJECTS, /* Determine allocated objects not slabs */
3650 SL_TOTAL /* Determine object capacity not slabs */
3651 };
3652
3653 #define SO_ALL (1 << SL_ALL)
3654 #define SO_PARTIAL (1 << SL_PARTIAL)
3655 #define SO_CPU (1 << SL_CPU)
3656 #define SO_OBJECTS (1 << SL_OBJECTS)
3657 #define SO_TOTAL (1 << SL_TOTAL)
3658
3659 static ssize_t show_slab_objects(struct kmem_cache *s,
3660 char *buf, unsigned long flags)
3661 {
3662 unsigned long total = 0;
3663 int node;
3664 int x;
3665 unsigned long *nodes;
3666 unsigned long *per_cpu;
3667
3668 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3669 if (!nodes)
3670 return -ENOMEM;
3671 per_cpu = nodes + nr_node_ids;
3672
3673 if (flags & SO_CPU) {
3674 int cpu;
3675
3676 for_each_possible_cpu(cpu) {
3677 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3678
3679 if (!c || c->node < 0)
3680 continue;
3681
3682 if (c->page) {
3683 if (flags & SO_TOTAL)
3684 x = c->page->objects;
3685 else if (flags & SO_OBJECTS)
3686 x = c->page->inuse;
3687 else
3688 x = 1;
3689
3690 total += x;
3691 nodes[c->node] += x;
3692 }
3693 per_cpu[c->node]++;
3694 }
3695 }
3696
3697 if (flags & SO_ALL) {
3698 for_each_node_state(node, N_NORMAL_MEMORY) {
3699 struct kmem_cache_node *n = get_node(s, node);
3700
3701 if (flags & SO_TOTAL)
3702 x = atomic_long_read(&n->total_objects);
3703 else if (flags & SO_OBJECTS)
3704 x = atomic_long_read(&n->total_objects) -
3705 count_partial(n, count_free);
3706
3707 else
3708 x = atomic_long_read(&n->nr_slabs);
3709 total += x;
3710 nodes[node] += x;
3711 }
3712
3713 } else if (flags & SO_PARTIAL) {
3714 for_each_node_state(node, N_NORMAL_MEMORY) {
3715 struct kmem_cache_node *n = get_node(s, node);
3716
3717 if (flags & SO_TOTAL)
3718 x = count_partial(n, count_total);
3719 else if (flags & SO_OBJECTS)
3720 x = count_partial(n, count_inuse);
3721 else
3722 x = n->nr_partial;
3723 total += x;
3724 nodes[node] += x;
3725 }
3726 }
3727 x = sprintf(buf, "%lu", total);
3728 #ifdef CONFIG_NUMA
3729 for_each_node_state(node, N_NORMAL_MEMORY)
3730 if (nodes[node])
3731 x += sprintf(buf + x, " N%d=%lu",
3732 node, nodes[node]);
3733 #endif
3734 kfree(nodes);
3735 return x + sprintf(buf + x, "\n");
3736 }
3737
3738 static int any_slab_objects(struct kmem_cache *s)
3739 {
3740 int node;
3741
3742 for_each_online_node(node) {
3743 struct kmem_cache_node *n = get_node(s, node);
3744
3745 if (!n)
3746 continue;
3747
3748 if (atomic_long_read(&n->total_objects))
3749 return 1;
3750 }
3751 return 0;
3752 }
3753
3754 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3755 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3756
3757 struct slab_attribute {
3758 struct attribute attr;
3759 ssize_t (*show)(struct kmem_cache *s, char *buf);
3760 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3761 };
3762
3763 #define SLAB_ATTR_RO(_name) \
3764 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3765
3766 #define SLAB_ATTR(_name) \
3767 static struct slab_attribute _name##_attr = \
3768 __ATTR(_name, 0644, _name##_show, _name##_store)
3769
3770 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3771 {
3772 return sprintf(buf, "%d\n", s->size);
3773 }
3774 SLAB_ATTR_RO(slab_size);
3775
3776 static ssize_t align_show(struct kmem_cache *s, char *buf)
3777 {
3778 return sprintf(buf, "%d\n", s->align);
3779 }
3780 SLAB_ATTR_RO(align);
3781
3782 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3783 {
3784 return sprintf(buf, "%d\n", s->objsize);
3785 }
3786 SLAB_ATTR_RO(object_size);
3787
3788 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3789 {
3790 return sprintf(buf, "%d\n", oo_objects(s->oo));
3791 }
3792 SLAB_ATTR_RO(objs_per_slab);
3793
3794 static ssize_t order_store(struct kmem_cache *s,
3795 const char *buf, size_t length)
3796 {
3797 unsigned long order;
3798 int err;
3799
3800 err = strict_strtoul(buf, 10, &order);
3801 if (err)
3802 return err;
3803
3804 if (order > slub_max_order || order < slub_min_order)
3805 return -EINVAL;
3806
3807 calculate_sizes(s, order);
3808 return length;
3809 }
3810
3811 static ssize_t order_show(struct kmem_cache *s, char *buf)
3812 {
3813 return sprintf(buf, "%d\n", oo_order(s->oo));
3814 }
3815 SLAB_ATTR(order);
3816
3817 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3818 {
3819 if (s->ctor) {
3820 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3821
3822 return n + sprintf(buf + n, "\n");
3823 }
3824 return 0;
3825 }
3826 SLAB_ATTR_RO(ctor);
3827
3828 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3829 {
3830 return sprintf(buf, "%d\n", s->refcount - 1);
3831 }
3832 SLAB_ATTR_RO(aliases);
3833
3834 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3835 {
3836 return show_slab_objects(s, buf, SO_ALL);
3837 }
3838 SLAB_ATTR_RO(slabs);
3839
3840 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3841 {
3842 return show_slab_objects(s, buf, SO_PARTIAL);
3843 }
3844 SLAB_ATTR_RO(partial);
3845
3846 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3847 {
3848 return show_slab_objects(s, buf, SO_CPU);
3849 }
3850 SLAB_ATTR_RO(cpu_slabs);
3851
3852 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3853 {
3854 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3855 }
3856 SLAB_ATTR_RO(objects);
3857
3858 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3859 {
3860 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3861 }
3862 SLAB_ATTR_RO(objects_partial);
3863
3864 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3865 {
3866 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3867 }
3868 SLAB_ATTR_RO(total_objects);
3869
3870 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3871 {
3872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3873 }
3874
3875 static ssize_t sanity_checks_store(struct kmem_cache *s,
3876 const char *buf, size_t length)
3877 {
3878 s->flags &= ~SLAB_DEBUG_FREE;
3879 if (buf[0] == '1')
3880 s->flags |= SLAB_DEBUG_FREE;
3881 return length;
3882 }
3883 SLAB_ATTR(sanity_checks);
3884
3885 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3886 {
3887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3888 }
3889
3890 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3891 size_t length)
3892 {
3893 s->flags &= ~SLAB_TRACE;
3894 if (buf[0] == '1')
3895 s->flags |= SLAB_TRACE;
3896 return length;
3897 }
3898 SLAB_ATTR(trace);
3899
3900 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3901 {
3902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3903 }
3904
3905 static ssize_t reclaim_account_store(struct kmem_cache *s,
3906 const char *buf, size_t length)
3907 {
3908 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3909 if (buf[0] == '1')
3910 s->flags |= SLAB_RECLAIM_ACCOUNT;
3911 return length;
3912 }
3913 SLAB_ATTR(reclaim_account);
3914
3915 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3916 {
3917 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3918 }
3919 SLAB_ATTR_RO(hwcache_align);
3920
3921 #ifdef CONFIG_ZONE_DMA
3922 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3923 {
3924 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3925 }
3926 SLAB_ATTR_RO(cache_dma);
3927 #endif
3928
3929 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3930 {
3931 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3932 }
3933 SLAB_ATTR_RO(destroy_by_rcu);
3934
3935 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3936 {
3937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3938 }
3939
3940 static ssize_t red_zone_store(struct kmem_cache *s,
3941 const char *buf, size_t length)
3942 {
3943 if (any_slab_objects(s))
3944 return -EBUSY;
3945
3946 s->flags &= ~SLAB_RED_ZONE;
3947 if (buf[0] == '1')
3948 s->flags |= SLAB_RED_ZONE;
3949 calculate_sizes(s, -1);
3950 return length;
3951 }
3952 SLAB_ATTR(red_zone);
3953
3954 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3955 {
3956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3957 }
3958
3959 static ssize_t poison_store(struct kmem_cache *s,
3960 const char *buf, size_t length)
3961 {
3962 if (any_slab_objects(s))
3963 return -EBUSY;
3964
3965 s->flags &= ~SLAB_POISON;
3966 if (buf[0] == '1')
3967 s->flags |= SLAB_POISON;
3968 calculate_sizes(s, -1);
3969 return length;
3970 }
3971 SLAB_ATTR(poison);
3972
3973 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3974 {
3975 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3976 }
3977
3978 static ssize_t store_user_store(struct kmem_cache *s,
3979 const char *buf, size_t length)
3980 {
3981 if (any_slab_objects(s))
3982 return -EBUSY;
3983
3984 s->flags &= ~SLAB_STORE_USER;
3985 if (buf[0] == '1')
3986 s->flags |= SLAB_STORE_USER;
3987 calculate_sizes(s, -1);
3988 return length;
3989 }
3990 SLAB_ATTR(store_user);
3991
3992 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3993 {
3994 return 0;
3995 }
3996
3997 static ssize_t validate_store(struct kmem_cache *s,
3998 const char *buf, size_t length)
3999 {
4000 int ret = -EINVAL;
4001
4002 if (buf[0] == '1') {
4003 ret = validate_slab_cache(s);
4004 if (ret >= 0)
4005 ret = length;
4006 }
4007 return ret;
4008 }
4009 SLAB_ATTR(validate);
4010
4011 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4012 {
4013 return 0;
4014 }
4015
4016 static ssize_t shrink_store(struct kmem_cache *s,
4017 const char *buf, size_t length)
4018 {
4019 if (buf[0] == '1') {
4020 int rc = kmem_cache_shrink(s);
4021
4022 if (rc)
4023 return rc;
4024 } else
4025 return -EINVAL;
4026 return length;
4027 }
4028 SLAB_ATTR(shrink);
4029
4030 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4031 {
4032 if (!(s->flags & SLAB_STORE_USER))
4033 return -ENOSYS;
4034 return list_locations(s, buf, TRACK_ALLOC);
4035 }
4036 SLAB_ATTR_RO(alloc_calls);
4037
4038 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4039 {
4040 if (!(s->flags & SLAB_STORE_USER))
4041 return -ENOSYS;
4042 return list_locations(s, buf, TRACK_FREE);
4043 }
4044 SLAB_ATTR_RO(free_calls);
4045
4046 #ifdef CONFIG_NUMA
4047 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4048 {
4049 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4050 }
4051
4052 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4053 const char *buf, size_t length)
4054 {
4055 unsigned long ratio;
4056 int err;
4057
4058 err = strict_strtoul(buf, 10, &ratio);
4059 if (err)
4060 return err;
4061
4062 if (ratio <= 100)
4063 s->remote_node_defrag_ratio = ratio * 10;
4064
4065 return length;
4066 }
4067 SLAB_ATTR(remote_node_defrag_ratio);
4068 #endif
4069
4070 #ifdef CONFIG_SLUB_STATS
4071 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4072 {
4073 unsigned long sum = 0;
4074 int cpu;
4075 int len;
4076 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4077
4078 if (!data)
4079 return -ENOMEM;
4080
4081 for_each_online_cpu(cpu) {
4082 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4083
4084 data[cpu] = x;
4085 sum += x;
4086 }
4087
4088 len = sprintf(buf, "%lu", sum);
4089
4090 #ifdef CONFIG_SMP
4091 for_each_online_cpu(cpu) {
4092 if (data[cpu] && len < PAGE_SIZE - 20)
4093 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4094 }
4095 #endif
4096 kfree(data);
4097 return len + sprintf(buf + len, "\n");
4098 }
4099
4100 #define STAT_ATTR(si, text) \
4101 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4102 { \
4103 return show_stat(s, buf, si); \
4104 } \
4105 SLAB_ATTR_RO(text); \
4106
4107 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4108 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4109 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4110 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4111 STAT_ATTR(FREE_FROZEN, free_frozen);
4112 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4113 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4114 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4115 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4116 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4117 STAT_ATTR(FREE_SLAB, free_slab);
4118 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4119 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4120 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4121 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4122 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4123 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4124 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4125 #endif
4126
4127 static struct attribute *slab_attrs[] = {
4128 &slab_size_attr.attr,
4129 &object_size_attr.attr,
4130 &objs_per_slab_attr.attr,
4131 &order_attr.attr,
4132 &objects_attr.attr,
4133 &objects_partial_attr.attr,
4134 &total_objects_attr.attr,
4135 &slabs_attr.attr,
4136 &partial_attr.attr,
4137 &cpu_slabs_attr.attr,
4138 &ctor_attr.attr,
4139 &aliases_attr.attr,
4140 &align_attr.attr,
4141 &sanity_checks_attr.attr,
4142 &trace_attr.attr,
4143 &hwcache_align_attr.attr,
4144 &reclaim_account_attr.attr,
4145 &destroy_by_rcu_attr.attr,
4146 &red_zone_attr.attr,
4147 &poison_attr.attr,
4148 &store_user_attr.attr,
4149 &validate_attr.attr,
4150 &shrink_attr.attr,
4151 &alloc_calls_attr.attr,
4152 &free_calls_attr.attr,
4153 #ifdef CONFIG_ZONE_DMA
4154 &cache_dma_attr.attr,
4155 #endif
4156 #ifdef CONFIG_NUMA
4157 &remote_node_defrag_ratio_attr.attr,
4158 #endif
4159 #ifdef CONFIG_SLUB_STATS
4160 &alloc_fastpath_attr.attr,
4161 &alloc_slowpath_attr.attr,
4162 &free_fastpath_attr.attr,
4163 &free_slowpath_attr.attr,
4164 &free_frozen_attr.attr,
4165 &free_add_partial_attr.attr,
4166 &free_remove_partial_attr.attr,
4167 &alloc_from_partial_attr.attr,
4168 &alloc_slab_attr.attr,
4169 &alloc_refill_attr.attr,
4170 &free_slab_attr.attr,
4171 &cpuslab_flush_attr.attr,
4172 &deactivate_full_attr.attr,
4173 &deactivate_empty_attr.attr,
4174 &deactivate_to_head_attr.attr,
4175 &deactivate_to_tail_attr.attr,
4176 &deactivate_remote_frees_attr.attr,
4177 &order_fallback_attr.attr,
4178 #endif
4179 NULL
4180 };
4181
4182 static struct attribute_group slab_attr_group = {
4183 .attrs = slab_attrs,
4184 };
4185
4186 static ssize_t slab_attr_show(struct kobject *kobj,
4187 struct attribute *attr,
4188 char *buf)
4189 {
4190 struct slab_attribute *attribute;
4191 struct kmem_cache *s;
4192 int err;
4193
4194 attribute = to_slab_attr(attr);
4195 s = to_slab(kobj);
4196
4197 if (!attribute->show)
4198 return -EIO;
4199
4200 err = attribute->show(s, buf);
4201
4202 return err;
4203 }
4204
4205 static ssize_t slab_attr_store(struct kobject *kobj,
4206 struct attribute *attr,
4207 const char *buf, size_t len)
4208 {
4209 struct slab_attribute *attribute;
4210 struct kmem_cache *s;
4211 int err;
4212
4213 attribute = to_slab_attr(attr);
4214 s = to_slab(kobj);
4215
4216 if (!attribute->store)
4217 return -EIO;
4218
4219 err = attribute->store(s, buf, len);
4220
4221 return err;
4222 }
4223
4224 static void kmem_cache_release(struct kobject *kobj)
4225 {
4226 struct kmem_cache *s = to_slab(kobj);
4227
4228 kfree(s);
4229 }
4230
4231 static struct sysfs_ops slab_sysfs_ops = {
4232 .show = slab_attr_show,
4233 .store = slab_attr_store,
4234 };
4235
4236 static struct kobj_type slab_ktype = {
4237 .sysfs_ops = &slab_sysfs_ops,
4238 .release = kmem_cache_release
4239 };
4240
4241 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4242 {
4243 struct kobj_type *ktype = get_ktype(kobj);
4244
4245 if (ktype == &slab_ktype)
4246 return 1;
4247 return 0;
4248 }
4249
4250 static struct kset_uevent_ops slab_uevent_ops = {
4251 .filter = uevent_filter,
4252 };
4253
4254 static struct kset *slab_kset;
4255
4256 #define ID_STR_LENGTH 64
4257
4258 /* Create a unique string id for a slab cache:
4259 *
4260 * Format :[flags-]size
4261 */
4262 static char *create_unique_id(struct kmem_cache *s)
4263 {
4264 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4265 char *p = name;
4266
4267 BUG_ON(!name);
4268
4269 *p++ = ':';
4270 /*
4271 * First flags affecting slabcache operations. We will only
4272 * get here for aliasable slabs so we do not need to support
4273 * too many flags. The flags here must cover all flags that
4274 * are matched during merging to guarantee that the id is
4275 * unique.
4276 */
4277 if (s->flags & SLAB_CACHE_DMA)
4278 *p++ = 'd';
4279 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4280 *p++ = 'a';
4281 if (s->flags & SLAB_DEBUG_FREE)
4282 *p++ = 'F';
4283 if (p != name + 1)
4284 *p++ = '-';
4285 p += sprintf(p, "%07d", s->size);
4286 BUG_ON(p > name + ID_STR_LENGTH - 1);
4287 return name;
4288 }
4289
4290 static int sysfs_slab_add(struct kmem_cache *s)
4291 {
4292 int err;
4293 const char *name;
4294 int unmergeable;
4295
4296 if (slab_state < SYSFS)
4297 /* Defer until later */
4298 return 0;
4299
4300 unmergeable = slab_unmergeable(s);
4301 if (unmergeable) {
4302 /*
4303 * Slabcache can never be merged so we can use the name proper.
4304 * This is typically the case for debug situations. In that
4305 * case we can catch duplicate names easily.
4306 */
4307 sysfs_remove_link(&slab_kset->kobj, s->name);
4308 name = s->name;
4309 } else {
4310 /*
4311 * Create a unique name for the slab as a target
4312 * for the symlinks.
4313 */
4314 name = create_unique_id(s);
4315 }
4316
4317 s->kobj.kset = slab_kset;
4318 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4319 if (err) {
4320 kobject_put(&s->kobj);
4321 return err;
4322 }
4323
4324 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4325 if (err)
4326 return err;
4327 kobject_uevent(&s->kobj, KOBJ_ADD);
4328 if (!unmergeable) {
4329 /* Setup first alias */
4330 sysfs_slab_alias(s, s->name);
4331 kfree(name);
4332 }
4333 return 0;
4334 }
4335
4336 static void sysfs_slab_remove(struct kmem_cache *s)
4337 {
4338 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4339 kobject_del(&s->kobj);
4340 kobject_put(&s->kobj);
4341 }
4342
4343 /*
4344 * Need to buffer aliases during bootup until sysfs becomes
4345 * available lest we loose that information.
4346 */
4347 struct saved_alias {
4348 struct kmem_cache *s;
4349 const char *name;
4350 struct saved_alias *next;
4351 };
4352
4353 static struct saved_alias *alias_list;
4354
4355 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4356 {
4357 struct saved_alias *al;
4358
4359 if (slab_state == SYSFS) {
4360 /*
4361 * If we have a leftover link then remove it.
4362 */
4363 sysfs_remove_link(&slab_kset->kobj, name);
4364 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4365 }
4366
4367 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4368 if (!al)
4369 return -ENOMEM;
4370
4371 al->s = s;
4372 al->name = name;
4373 al->next = alias_list;
4374 alias_list = al;
4375 return 0;
4376 }
4377
4378 static int __init slab_sysfs_init(void)
4379 {
4380 struct kmem_cache *s;
4381 int err;
4382
4383 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4384 if (!slab_kset) {
4385 printk(KERN_ERR "Cannot register slab subsystem.\n");
4386 return -ENOSYS;
4387 }
4388
4389 slab_state = SYSFS;
4390
4391 list_for_each_entry(s, &slab_caches, list) {
4392 err = sysfs_slab_add(s);
4393 if (err)
4394 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4395 " to sysfs\n", s->name);
4396 }
4397
4398 while (alias_list) {
4399 struct saved_alias *al = alias_list;
4400
4401 alias_list = alias_list->next;
4402 err = sysfs_slab_alias(al->s, al->name);
4403 if (err)
4404 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4405 " %s to sysfs\n", s->name);
4406 kfree(al);
4407 }
4408
4409 resiliency_test();
4410 return 0;
4411 }
4412
4413 __initcall(slab_sysfs_init);
4414 #endif
4415
4416 /*
4417 * The /proc/slabinfo ABI
4418 */
4419 #ifdef CONFIG_SLABINFO
4420
4421 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4422 size_t count, loff_t *ppos)
4423 {
4424 return -EINVAL;
4425 }
4426
4427
4428 static void print_slabinfo_header(struct seq_file *m)
4429 {
4430 seq_puts(m, "slabinfo - version: 2.1\n");
4431 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4432 "<objperslab> <pagesperslab>");
4433 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4434 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4435 seq_putc(m, '\n');
4436 }
4437
4438 static void *s_start(struct seq_file *m, loff_t *pos)
4439 {
4440 loff_t n = *pos;
4441
4442 down_read(&slub_lock);
4443 if (!n)
4444 print_slabinfo_header(m);
4445
4446 return seq_list_start(&slab_caches, *pos);
4447 }
4448
4449 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4450 {
4451 return seq_list_next(p, &slab_caches, pos);
4452 }
4453
4454 static void s_stop(struct seq_file *m, void *p)
4455 {
4456 up_read(&slub_lock);
4457 }
4458
4459 static int s_show(struct seq_file *m, void *p)
4460 {
4461 unsigned long nr_partials = 0;
4462 unsigned long nr_slabs = 0;
4463 unsigned long nr_inuse = 0;
4464 unsigned long nr_objs = 0;
4465 unsigned long nr_free = 0;
4466 struct kmem_cache *s;
4467 int node;
4468
4469 s = list_entry(p, struct kmem_cache, list);
4470
4471 for_each_online_node(node) {
4472 struct kmem_cache_node *n = get_node(s, node);
4473
4474 if (!n)
4475 continue;
4476
4477 nr_partials += n->nr_partial;
4478 nr_slabs += atomic_long_read(&n->nr_slabs);
4479 nr_objs += atomic_long_read(&n->total_objects);
4480 nr_free += count_partial(n, count_free);
4481 }
4482
4483 nr_inuse = nr_objs - nr_free;
4484
4485 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4486 nr_objs, s->size, oo_objects(s->oo),
4487 (1 << oo_order(s->oo)));
4488 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4489 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4490 0UL);
4491 seq_putc(m, '\n');
4492 return 0;
4493 }
4494
4495 const struct seq_operations slabinfo_op = {
4496 .start = s_start,
4497 .next = s_next,
4498 .stop = s_stop,
4499 .show = s_show,
4500 };
4501
4502 #endif /* CONFIG_SLABINFO */
This page took 0.120327 seconds and 5 git commands to generate.