parisc,metag: Do not hardcode maximum userspace stack size
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 return s->node[node];
239 }
240
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244 {
245 void *base;
246
247 if (!object)
248 return 1;
249
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257 }
258
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 return *(void **)(object + s->offset);
262 }
263
264 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265 {
266 prefetch(object + s->offset);
267 }
268
269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 {
271 void *p;
272
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275 #else
276 p = get_freepointer(s, object);
277 #endif
278 return p;
279 }
280
281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 {
283 *(void **)(object + s->offset) = fp;
284 }
285
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 __p += (__s)->size)
290
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 return (p - addr) / s->size;
295 }
296
297 static inline size_t slab_ksize(const struct kmem_cache *s)
298 {
299 #ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 return s->object_size;
306
307 #endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319 }
320
321 static inline int order_objects(int order, unsigned long size, int reserved)
322 {
323 return ((PAGE_SIZE << order) - reserved) / size;
324 }
325
326 static inline struct kmem_cache_order_objects oo_make(int order,
327 unsigned long size, int reserved)
328 {
329 struct kmem_cache_order_objects x = {
330 (order << OO_SHIFT) + order_objects(order, size, reserved)
331 };
332
333 return x;
334 }
335
336 static inline int oo_order(struct kmem_cache_order_objects x)
337 {
338 return x.x >> OO_SHIFT;
339 }
340
341 static inline int oo_objects(struct kmem_cache_order_objects x)
342 {
343 return x.x & OO_MASK;
344 }
345
346 /*
347 * Per slab locking using the pagelock
348 */
349 static __always_inline void slab_lock(struct page *page)
350 {
351 bit_spin_lock(PG_locked, &page->flags);
352 }
353
354 static __always_inline void slab_unlock(struct page *page)
355 {
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return 1;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return 1;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return 0;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return 1;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return 1;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return 0;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 /*
470 * Debug settings:
471 */
472 #ifdef CONFIG_SLUB_DEBUG_ON
473 static int slub_debug = DEBUG_DEFAULT_FLAGS;
474 #else
475 static int slub_debug;
476 #endif
477
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480
481 /*
482 * Object debugging
483 */
484 static void print_section(char *text, u8 *addr, unsigned int length)
485 {
486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 length, 1);
488 }
489
490 static struct track *get_track(struct kmem_cache *s, void *object,
491 enum track_item alloc)
492 {
493 struct track *p;
494
495 if (s->offset)
496 p = object + s->offset + sizeof(void *);
497 else
498 p = object + s->inuse;
499
500 return p + alloc;
501 }
502
503 static void set_track(struct kmem_cache *s, void *object,
504 enum track_item alloc, unsigned long addr)
505 {
506 struct track *p = get_track(s, object, alloc);
507
508 if (addr) {
509 #ifdef CONFIG_STACKTRACE
510 struct stack_trace trace;
511 int i;
512
513 trace.nr_entries = 0;
514 trace.max_entries = TRACK_ADDRS_COUNT;
515 trace.entries = p->addrs;
516 trace.skip = 3;
517 save_stack_trace(&trace);
518
519 /* See rant in lockdep.c */
520 if (trace.nr_entries != 0 &&
521 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 trace.nr_entries--;
523
524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 p->addrs[i] = 0;
526 #endif
527 p->addr = addr;
528 p->cpu = smp_processor_id();
529 p->pid = current->pid;
530 p->when = jiffies;
531 } else
532 memset(p, 0, sizeof(struct track));
533 }
534
535 static void init_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 set_track(s, object, TRACK_FREE, 0UL);
541 set_track(s, object, TRACK_ALLOC, 0UL);
542 }
543
544 static void print_track(const char *s, struct track *t)
545 {
546 if (!t->addr)
547 return;
548
549 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 #ifdef CONFIG_STACKTRACE
552 {
553 int i;
554 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 if (t->addrs[i])
556 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
557 else
558 break;
559 }
560 #endif
561 }
562
563 static void print_tracking(struct kmem_cache *s, void *object)
564 {
565 if (!(s->flags & SLAB_STORE_USER))
566 return;
567
568 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 print_track("Freed", get_track(s, object, TRACK_FREE));
570 }
571
572 static void print_page_info(struct page *page)
573 {
574 printk(KERN_ERR
575 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
576 page, page->objects, page->inuse, page->freelist, page->flags);
577
578 }
579
580 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
581 {
582 va_list args;
583 char buf[100];
584
585 va_start(args, fmt);
586 vsnprintf(buf, sizeof(buf), fmt, args);
587 va_end(args);
588 printk(KERN_ERR "========================================"
589 "=====================================\n");
590 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
591 printk(KERN_ERR "----------------------------------------"
592 "-------------------------------------\n\n");
593
594 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
595 }
596
597 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
598 {
599 va_list args;
600 char buf[100];
601
602 va_start(args, fmt);
603 vsnprintf(buf, sizeof(buf), fmt, args);
604 va_end(args);
605 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
606 }
607
608 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
609 {
610 unsigned int off; /* Offset of last byte */
611 u8 *addr = page_address(page);
612
613 print_tracking(s, p);
614
615 print_page_info(page);
616
617 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
618 p, p - addr, get_freepointer(s, p));
619
620 if (p > addr + 16)
621 print_section("Bytes b4 ", p - 16, 16);
622
623 print_section("Object ", p, min_t(unsigned long, s->object_size,
624 PAGE_SIZE));
625 if (s->flags & SLAB_RED_ZONE)
626 print_section("Redzone ", p + s->object_size,
627 s->inuse - s->object_size);
628
629 if (s->offset)
630 off = s->offset + sizeof(void *);
631 else
632 off = s->inuse;
633
634 if (s->flags & SLAB_STORE_USER)
635 off += 2 * sizeof(struct track);
636
637 if (off != s->size)
638 /* Beginning of the filler is the free pointer */
639 print_section("Padding ", p + off, s->size - off);
640
641 dump_stack();
642 }
643
644 static void object_err(struct kmem_cache *s, struct page *page,
645 u8 *object, char *reason)
646 {
647 slab_bug(s, "%s", reason);
648 print_trailer(s, page, object);
649 }
650
651 static void slab_err(struct kmem_cache *s, struct page *page,
652 const char *fmt, ...)
653 {
654 va_list args;
655 char buf[100];
656
657 va_start(args, fmt);
658 vsnprintf(buf, sizeof(buf), fmt, args);
659 va_end(args);
660 slab_bug(s, "%s", buf);
661 print_page_info(page);
662 dump_stack();
663 }
664
665 static void init_object(struct kmem_cache *s, void *object, u8 val)
666 {
667 u8 *p = object;
668
669 if (s->flags & __OBJECT_POISON) {
670 memset(p, POISON_FREE, s->object_size - 1);
671 p[s->object_size - 1] = POISON_END;
672 }
673
674 if (s->flags & SLAB_RED_ZONE)
675 memset(p + s->object_size, val, s->inuse - s->object_size);
676 }
677
678 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
679 void *from, void *to)
680 {
681 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
682 memset(from, data, to - from);
683 }
684
685 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
686 u8 *object, char *what,
687 u8 *start, unsigned int value, unsigned int bytes)
688 {
689 u8 *fault;
690 u8 *end;
691
692 fault = memchr_inv(start, value, bytes);
693 if (!fault)
694 return 1;
695
696 end = start + bytes;
697 while (end > fault && end[-1] == value)
698 end--;
699
700 slab_bug(s, "%s overwritten", what);
701 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
702 fault, end - 1, fault[0], value);
703 print_trailer(s, page, object);
704
705 restore_bytes(s, what, value, fault, end);
706 return 0;
707 }
708
709 /*
710 * Object layout:
711 *
712 * object address
713 * Bytes of the object to be managed.
714 * If the freepointer may overlay the object then the free
715 * pointer is the first word of the object.
716 *
717 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
718 * 0xa5 (POISON_END)
719 *
720 * object + s->object_size
721 * Padding to reach word boundary. This is also used for Redzoning.
722 * Padding is extended by another word if Redzoning is enabled and
723 * object_size == inuse.
724 *
725 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
726 * 0xcc (RED_ACTIVE) for objects in use.
727 *
728 * object + s->inuse
729 * Meta data starts here.
730 *
731 * A. Free pointer (if we cannot overwrite object on free)
732 * B. Tracking data for SLAB_STORE_USER
733 * C. Padding to reach required alignment boundary or at mininum
734 * one word if debugging is on to be able to detect writes
735 * before the word boundary.
736 *
737 * Padding is done using 0x5a (POISON_INUSE)
738 *
739 * object + s->size
740 * Nothing is used beyond s->size.
741 *
742 * If slabcaches are merged then the object_size and inuse boundaries are mostly
743 * ignored. And therefore no slab options that rely on these boundaries
744 * may be used with merged slabcaches.
745 */
746
747 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
748 {
749 unsigned long off = s->inuse; /* The end of info */
750
751 if (s->offset)
752 /* Freepointer is placed after the object. */
753 off += sizeof(void *);
754
755 if (s->flags & SLAB_STORE_USER)
756 /* We also have user information there */
757 off += 2 * sizeof(struct track);
758
759 if (s->size == off)
760 return 1;
761
762 return check_bytes_and_report(s, page, p, "Object padding",
763 p + off, POISON_INUSE, s->size - off);
764 }
765
766 /* Check the pad bytes at the end of a slab page */
767 static int slab_pad_check(struct kmem_cache *s, struct page *page)
768 {
769 u8 *start;
770 u8 *fault;
771 u8 *end;
772 int length;
773 int remainder;
774
775 if (!(s->flags & SLAB_POISON))
776 return 1;
777
778 start = page_address(page);
779 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
780 end = start + length;
781 remainder = length % s->size;
782 if (!remainder)
783 return 1;
784
785 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
786 if (!fault)
787 return 1;
788 while (end > fault && end[-1] == POISON_INUSE)
789 end--;
790
791 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
792 print_section("Padding ", end - remainder, remainder);
793
794 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
795 return 0;
796 }
797
798 static int check_object(struct kmem_cache *s, struct page *page,
799 void *object, u8 val)
800 {
801 u8 *p = object;
802 u8 *endobject = object + s->object_size;
803
804 if (s->flags & SLAB_RED_ZONE) {
805 if (!check_bytes_and_report(s, page, object, "Redzone",
806 endobject, val, s->inuse - s->object_size))
807 return 0;
808 } else {
809 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
810 check_bytes_and_report(s, page, p, "Alignment padding",
811 endobject, POISON_INUSE,
812 s->inuse - s->object_size);
813 }
814 }
815
816 if (s->flags & SLAB_POISON) {
817 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
818 (!check_bytes_and_report(s, page, p, "Poison", p,
819 POISON_FREE, s->object_size - 1) ||
820 !check_bytes_and_report(s, page, p, "Poison",
821 p + s->object_size - 1, POISON_END, 1)))
822 return 0;
823 /*
824 * check_pad_bytes cleans up on its own.
825 */
826 check_pad_bytes(s, page, p);
827 }
828
829 if (!s->offset && val == SLUB_RED_ACTIVE)
830 /*
831 * Object and freepointer overlap. Cannot check
832 * freepointer while object is allocated.
833 */
834 return 1;
835
836 /* Check free pointer validity */
837 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
838 object_err(s, page, p, "Freepointer corrupt");
839 /*
840 * No choice but to zap it and thus lose the remainder
841 * of the free objects in this slab. May cause
842 * another error because the object count is now wrong.
843 */
844 set_freepointer(s, p, NULL);
845 return 0;
846 }
847 return 1;
848 }
849
850 static int check_slab(struct kmem_cache *s, struct page *page)
851 {
852 int maxobj;
853
854 VM_BUG_ON(!irqs_disabled());
855
856 if (!PageSlab(page)) {
857 slab_err(s, page, "Not a valid slab page");
858 return 0;
859 }
860
861 maxobj = order_objects(compound_order(page), s->size, s->reserved);
862 if (page->objects > maxobj) {
863 slab_err(s, page, "objects %u > max %u",
864 s->name, page->objects, maxobj);
865 return 0;
866 }
867 if (page->inuse > page->objects) {
868 slab_err(s, page, "inuse %u > max %u",
869 s->name, page->inuse, page->objects);
870 return 0;
871 }
872 /* Slab_pad_check fixes things up after itself */
873 slab_pad_check(s, page);
874 return 1;
875 }
876
877 /*
878 * Determine if a certain object on a page is on the freelist. Must hold the
879 * slab lock to guarantee that the chains are in a consistent state.
880 */
881 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
882 {
883 int nr = 0;
884 void *fp;
885 void *object = NULL;
886 unsigned long max_objects;
887
888 fp = page->freelist;
889 while (fp && nr <= page->objects) {
890 if (fp == search)
891 return 1;
892 if (!check_valid_pointer(s, page, fp)) {
893 if (object) {
894 object_err(s, page, object,
895 "Freechain corrupt");
896 set_freepointer(s, object, NULL);
897 } else {
898 slab_err(s, page, "Freepointer corrupt");
899 page->freelist = NULL;
900 page->inuse = page->objects;
901 slab_fix(s, "Freelist cleared");
902 return 0;
903 }
904 break;
905 }
906 object = fp;
907 fp = get_freepointer(s, object);
908 nr++;
909 }
910
911 max_objects = order_objects(compound_order(page), s->size, s->reserved);
912 if (max_objects > MAX_OBJS_PER_PAGE)
913 max_objects = MAX_OBJS_PER_PAGE;
914
915 if (page->objects != max_objects) {
916 slab_err(s, page, "Wrong number of objects. Found %d but "
917 "should be %d", page->objects, max_objects);
918 page->objects = max_objects;
919 slab_fix(s, "Number of objects adjusted.");
920 }
921 if (page->inuse != page->objects - nr) {
922 slab_err(s, page, "Wrong object count. Counter is %d but "
923 "counted were %d", page->inuse, page->objects - nr);
924 page->inuse = page->objects - nr;
925 slab_fix(s, "Object count adjusted.");
926 }
927 return search == NULL;
928 }
929
930 static void trace(struct kmem_cache *s, struct page *page, void *object,
931 int alloc)
932 {
933 if (s->flags & SLAB_TRACE) {
934 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
935 s->name,
936 alloc ? "alloc" : "free",
937 object, page->inuse,
938 page->freelist);
939
940 if (!alloc)
941 print_section("Object ", (void *)object,
942 s->object_size);
943
944 dump_stack();
945 }
946 }
947
948 /*
949 * Hooks for other subsystems that check memory allocations. In a typical
950 * production configuration these hooks all should produce no code at all.
951 */
952 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
953 {
954 kmemleak_alloc(ptr, size, 1, flags);
955 }
956
957 static inline void kfree_hook(const void *x)
958 {
959 kmemleak_free(x);
960 }
961
962 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
963 {
964 flags &= gfp_allowed_mask;
965 lockdep_trace_alloc(flags);
966 might_sleep_if(flags & __GFP_WAIT);
967
968 return should_failslab(s->object_size, flags, s->flags);
969 }
970
971 static inline void slab_post_alloc_hook(struct kmem_cache *s,
972 gfp_t flags, void *object)
973 {
974 flags &= gfp_allowed_mask;
975 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
976 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
977 }
978
979 static inline void slab_free_hook(struct kmem_cache *s, void *x)
980 {
981 kmemleak_free_recursive(x, s->flags);
982
983 /*
984 * Trouble is that we may no longer disable interrupts in the fast path
985 * So in order to make the debug calls that expect irqs to be
986 * disabled we need to disable interrupts temporarily.
987 */
988 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
989 {
990 unsigned long flags;
991
992 local_irq_save(flags);
993 kmemcheck_slab_free(s, x, s->object_size);
994 debug_check_no_locks_freed(x, s->object_size);
995 local_irq_restore(flags);
996 }
997 #endif
998 if (!(s->flags & SLAB_DEBUG_OBJECTS))
999 debug_check_no_obj_freed(x, s->object_size);
1000 }
1001
1002 /*
1003 * Tracking of fully allocated slabs for debugging purposes.
1004 */
1005 static void add_full(struct kmem_cache *s,
1006 struct kmem_cache_node *n, struct page *page)
1007 {
1008 if (!(s->flags & SLAB_STORE_USER))
1009 return;
1010
1011 lockdep_assert_held(&n->list_lock);
1012 list_add(&page->lru, &n->full);
1013 }
1014
1015 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016 {
1017 if (!(s->flags & SLAB_STORE_USER))
1018 return;
1019
1020 lockdep_assert_held(&n->list_lock);
1021 list_del(&page->lru);
1022 }
1023
1024 /* Tracking of the number of slabs for debugging purposes */
1025 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1026 {
1027 struct kmem_cache_node *n = get_node(s, node);
1028
1029 return atomic_long_read(&n->nr_slabs);
1030 }
1031
1032 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1033 {
1034 return atomic_long_read(&n->nr_slabs);
1035 }
1036
1037 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1038 {
1039 struct kmem_cache_node *n = get_node(s, node);
1040
1041 /*
1042 * May be called early in order to allocate a slab for the
1043 * kmem_cache_node structure. Solve the chicken-egg
1044 * dilemma by deferring the increment of the count during
1045 * bootstrap (see early_kmem_cache_node_alloc).
1046 */
1047 if (likely(n)) {
1048 atomic_long_inc(&n->nr_slabs);
1049 atomic_long_add(objects, &n->total_objects);
1050 }
1051 }
1052 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1053 {
1054 struct kmem_cache_node *n = get_node(s, node);
1055
1056 atomic_long_dec(&n->nr_slabs);
1057 atomic_long_sub(objects, &n->total_objects);
1058 }
1059
1060 /* Object debug checks for alloc/free paths */
1061 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1062 void *object)
1063 {
1064 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1065 return;
1066
1067 init_object(s, object, SLUB_RED_INACTIVE);
1068 init_tracking(s, object);
1069 }
1070
1071 static noinline int alloc_debug_processing(struct kmem_cache *s,
1072 struct page *page,
1073 void *object, unsigned long addr)
1074 {
1075 if (!check_slab(s, page))
1076 goto bad;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 object_err(s, page, object, "Freelist Pointer check fails");
1080 goto bad;
1081 }
1082
1083 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1084 goto bad;
1085
1086 /* Success perform special debug activities for allocs */
1087 if (s->flags & SLAB_STORE_USER)
1088 set_track(s, object, TRACK_ALLOC, addr);
1089 trace(s, page, object, 1);
1090 init_object(s, object, SLUB_RED_ACTIVE);
1091 return 1;
1092
1093 bad:
1094 if (PageSlab(page)) {
1095 /*
1096 * If this is a slab page then lets do the best we can
1097 * to avoid issues in the future. Marking all objects
1098 * as used avoids touching the remaining objects.
1099 */
1100 slab_fix(s, "Marking all objects used");
1101 page->inuse = page->objects;
1102 page->freelist = NULL;
1103 }
1104 return 0;
1105 }
1106
1107 static noinline struct kmem_cache_node *free_debug_processing(
1108 struct kmem_cache *s, struct page *page, void *object,
1109 unsigned long addr, unsigned long *flags)
1110 {
1111 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1112
1113 spin_lock_irqsave(&n->list_lock, *flags);
1114 slab_lock(page);
1115
1116 if (!check_slab(s, page))
1117 goto fail;
1118
1119 if (!check_valid_pointer(s, page, object)) {
1120 slab_err(s, page, "Invalid object pointer 0x%p", object);
1121 goto fail;
1122 }
1123
1124 if (on_freelist(s, page, object)) {
1125 object_err(s, page, object, "Object already free");
1126 goto fail;
1127 }
1128
1129 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1130 goto out;
1131
1132 if (unlikely(s != page->slab_cache)) {
1133 if (!PageSlab(page)) {
1134 slab_err(s, page, "Attempt to free object(0x%p) "
1135 "outside of slab", object);
1136 } else if (!page->slab_cache) {
1137 printk(KERN_ERR
1138 "SLUB <none>: no slab for object 0x%p.\n",
1139 object);
1140 dump_stack();
1141 } else
1142 object_err(s, page, object,
1143 "page slab pointer corrupt.");
1144 goto fail;
1145 }
1146
1147 if (s->flags & SLAB_STORE_USER)
1148 set_track(s, object, TRACK_FREE, addr);
1149 trace(s, page, object, 0);
1150 init_object(s, object, SLUB_RED_INACTIVE);
1151 out:
1152 slab_unlock(page);
1153 /*
1154 * Keep node_lock to preserve integrity
1155 * until the object is actually freed
1156 */
1157 return n;
1158
1159 fail:
1160 slab_unlock(page);
1161 spin_unlock_irqrestore(&n->list_lock, *flags);
1162 slab_fix(s, "Object at 0x%p not freed", object);
1163 return NULL;
1164 }
1165
1166 static int __init setup_slub_debug(char *str)
1167 {
1168 slub_debug = DEBUG_DEFAULT_FLAGS;
1169 if (*str++ != '=' || !*str)
1170 /*
1171 * No options specified. Switch on full debugging.
1172 */
1173 goto out;
1174
1175 if (*str == ',')
1176 /*
1177 * No options but restriction on slabs. This means full
1178 * debugging for slabs matching a pattern.
1179 */
1180 goto check_slabs;
1181
1182 if (tolower(*str) == 'o') {
1183 /*
1184 * Avoid enabling debugging on caches if its minimum order
1185 * would increase as a result.
1186 */
1187 disable_higher_order_debug = 1;
1188 goto out;
1189 }
1190
1191 slub_debug = 0;
1192 if (*str == '-')
1193 /*
1194 * Switch off all debugging measures.
1195 */
1196 goto out;
1197
1198 /*
1199 * Determine which debug features should be switched on
1200 */
1201 for (; *str && *str != ','; str++) {
1202 switch (tolower(*str)) {
1203 case 'f':
1204 slub_debug |= SLAB_DEBUG_FREE;
1205 break;
1206 case 'z':
1207 slub_debug |= SLAB_RED_ZONE;
1208 break;
1209 case 'p':
1210 slub_debug |= SLAB_POISON;
1211 break;
1212 case 'u':
1213 slub_debug |= SLAB_STORE_USER;
1214 break;
1215 case 't':
1216 slub_debug |= SLAB_TRACE;
1217 break;
1218 case 'a':
1219 slub_debug |= SLAB_FAILSLAB;
1220 break;
1221 default:
1222 printk(KERN_ERR "slub_debug option '%c' "
1223 "unknown. skipped\n", *str);
1224 }
1225 }
1226
1227 check_slabs:
1228 if (*str == ',')
1229 slub_debug_slabs = str + 1;
1230 out:
1231 return 1;
1232 }
1233
1234 __setup("slub_debug", setup_slub_debug);
1235
1236 static unsigned long kmem_cache_flags(unsigned long object_size,
1237 unsigned long flags, const char *name,
1238 void (*ctor)(void *))
1239 {
1240 /*
1241 * Enable debugging if selected on the kernel commandline.
1242 */
1243 if (slub_debug && (!slub_debug_slabs || (name &&
1244 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1245 flags |= slub_debug;
1246
1247 return flags;
1248 }
1249 #else
1250 static inline void setup_object_debug(struct kmem_cache *s,
1251 struct page *page, void *object) {}
1252
1253 static inline int alloc_debug_processing(struct kmem_cache *s,
1254 struct page *page, void *object, unsigned long addr) { return 0; }
1255
1256 static inline struct kmem_cache_node *free_debug_processing(
1257 struct kmem_cache *s, struct page *page, void *object,
1258 unsigned long addr, unsigned long *flags) { return NULL; }
1259
1260 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1261 { return 1; }
1262 static inline int check_object(struct kmem_cache *s, struct page *page,
1263 void *object, u8 val) { return 1; }
1264 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 struct page *page) {}
1266 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1267 struct page *page) {}
1268 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1269 unsigned long flags, const char *name,
1270 void (*ctor)(void *))
1271 {
1272 return flags;
1273 }
1274 #define slub_debug 0
1275
1276 #define disable_higher_order_debug 0
1277
1278 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1279 { return 0; }
1280 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1281 { return 0; }
1282 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1283 int objects) {}
1284 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1285 int objects) {}
1286
1287 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1288 {
1289 kmemleak_alloc(ptr, size, 1, flags);
1290 }
1291
1292 static inline void kfree_hook(const void *x)
1293 {
1294 kmemleak_free(x);
1295 }
1296
1297 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1298 { return 0; }
1299
1300 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1301 void *object)
1302 {
1303 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1304 flags & gfp_allowed_mask);
1305 }
1306
1307 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1308 {
1309 kmemleak_free_recursive(x, s->flags);
1310 }
1311
1312 #endif /* CONFIG_SLUB_DEBUG */
1313
1314 /*
1315 * Slab allocation and freeing
1316 */
1317 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1318 struct kmem_cache_order_objects oo)
1319 {
1320 int order = oo_order(oo);
1321
1322 flags |= __GFP_NOTRACK;
1323
1324 if (node == NUMA_NO_NODE)
1325 return alloc_pages(flags, order);
1326 else
1327 return alloc_pages_exact_node(node, flags, order);
1328 }
1329
1330 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1331 {
1332 struct page *page;
1333 struct kmem_cache_order_objects oo = s->oo;
1334 gfp_t alloc_gfp;
1335
1336 flags &= gfp_allowed_mask;
1337
1338 if (flags & __GFP_WAIT)
1339 local_irq_enable();
1340
1341 flags |= s->allocflags;
1342
1343 /*
1344 * Let the initial higher-order allocation fail under memory pressure
1345 * so we fall-back to the minimum order allocation.
1346 */
1347 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1348
1349 page = alloc_slab_page(alloc_gfp, node, oo);
1350 if (unlikely(!page)) {
1351 oo = s->min;
1352 alloc_gfp = flags;
1353 /*
1354 * Allocation may have failed due to fragmentation.
1355 * Try a lower order alloc if possible
1356 */
1357 page = alloc_slab_page(alloc_gfp, node, oo);
1358
1359 if (page)
1360 stat(s, ORDER_FALLBACK);
1361 }
1362
1363 if (kmemcheck_enabled && page
1364 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 int pages = 1 << oo_order(oo);
1366
1367 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1368
1369 /*
1370 * Objects from caches that have a constructor don't get
1371 * cleared when they're allocated, so we need to do it here.
1372 */
1373 if (s->ctor)
1374 kmemcheck_mark_uninitialized_pages(page, pages);
1375 else
1376 kmemcheck_mark_unallocated_pages(page, pages);
1377 }
1378
1379 if (flags & __GFP_WAIT)
1380 local_irq_disable();
1381 if (!page)
1382 return NULL;
1383
1384 page->objects = oo_objects(oo);
1385 mod_zone_page_state(page_zone(page),
1386 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388 1 << oo_order(oo));
1389
1390 return page;
1391 }
1392
1393 static void setup_object(struct kmem_cache *s, struct page *page,
1394 void *object)
1395 {
1396 setup_object_debug(s, page, object);
1397 if (unlikely(s->ctor))
1398 s->ctor(object);
1399 }
1400
1401 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402 {
1403 struct page *page;
1404 void *start;
1405 void *last;
1406 void *p;
1407 int order;
1408
1409 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410
1411 page = allocate_slab(s,
1412 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413 if (!page)
1414 goto out;
1415
1416 order = compound_order(page);
1417 inc_slabs_node(s, page_to_nid(page), page->objects);
1418 memcg_bind_pages(s, order);
1419 page->slab_cache = s;
1420 __SetPageSlab(page);
1421 if (page->pfmemalloc)
1422 SetPageSlabPfmemalloc(page);
1423
1424 start = page_address(page);
1425
1426 if (unlikely(s->flags & SLAB_POISON))
1427 memset(start, POISON_INUSE, PAGE_SIZE << order);
1428
1429 last = start;
1430 for_each_object(p, s, start, page->objects) {
1431 setup_object(s, page, last);
1432 set_freepointer(s, last, p);
1433 last = p;
1434 }
1435 setup_object(s, page, last);
1436 set_freepointer(s, last, NULL);
1437
1438 page->freelist = start;
1439 page->inuse = page->objects;
1440 page->frozen = 1;
1441 out:
1442 return page;
1443 }
1444
1445 static void __free_slab(struct kmem_cache *s, struct page *page)
1446 {
1447 int order = compound_order(page);
1448 int pages = 1 << order;
1449
1450 if (kmem_cache_debug(s)) {
1451 void *p;
1452
1453 slab_pad_check(s, page);
1454 for_each_object(p, s, page_address(page),
1455 page->objects)
1456 check_object(s, page, p, SLUB_RED_INACTIVE);
1457 }
1458
1459 kmemcheck_free_shadow(page, compound_order(page));
1460
1461 mod_zone_page_state(page_zone(page),
1462 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464 -pages);
1465
1466 __ClearPageSlabPfmemalloc(page);
1467 __ClearPageSlab(page);
1468
1469 memcg_release_pages(s, order);
1470 page_mapcount_reset(page);
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += pages;
1473 __free_memcg_kmem_pages(page, order);
1474 }
1475
1476 #define need_reserve_slab_rcu \
1477 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478
1479 static void rcu_free_slab(struct rcu_head *h)
1480 {
1481 struct page *page;
1482
1483 if (need_reserve_slab_rcu)
1484 page = virt_to_head_page(h);
1485 else
1486 page = container_of((struct list_head *)h, struct page, lru);
1487
1488 __free_slab(page->slab_cache, page);
1489 }
1490
1491 static void free_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 struct rcu_head *head;
1495
1496 if (need_reserve_slab_rcu) {
1497 int order = compound_order(page);
1498 int offset = (PAGE_SIZE << order) - s->reserved;
1499
1500 VM_BUG_ON(s->reserved != sizeof(*head));
1501 head = page_address(page) + offset;
1502 } else {
1503 /*
1504 * RCU free overloads the RCU head over the LRU
1505 */
1506 head = (void *)&page->lru;
1507 }
1508
1509 call_rcu(head, rcu_free_slab);
1510 } else
1511 __free_slab(s, page);
1512 }
1513
1514 static void discard_slab(struct kmem_cache *s, struct page *page)
1515 {
1516 dec_slabs_node(s, page_to_nid(page), page->objects);
1517 free_slab(s, page);
1518 }
1519
1520 /*
1521 * Management of partially allocated slabs.
1522 */
1523 static inline void
1524 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1525 {
1526 n->nr_partial++;
1527 if (tail == DEACTIVATE_TO_TAIL)
1528 list_add_tail(&page->lru, &n->partial);
1529 else
1530 list_add(&page->lru, &n->partial);
1531 }
1532
1533 static inline void add_partial(struct kmem_cache_node *n,
1534 struct page *page, int tail)
1535 {
1536 lockdep_assert_held(&n->list_lock);
1537 __add_partial(n, page, tail);
1538 }
1539
1540 static inline void
1541 __remove_partial(struct kmem_cache_node *n, struct page *page)
1542 {
1543 list_del(&page->lru);
1544 n->nr_partial--;
1545 }
1546
1547 static inline void remove_partial(struct kmem_cache_node *n,
1548 struct page *page)
1549 {
1550 lockdep_assert_held(&n->list_lock);
1551 __remove_partial(n, page);
1552 }
1553
1554 /*
1555 * Remove slab from the partial list, freeze it and
1556 * return the pointer to the freelist.
1557 *
1558 * Returns a list of objects or NULL if it fails.
1559 */
1560 static inline void *acquire_slab(struct kmem_cache *s,
1561 struct kmem_cache_node *n, struct page *page,
1562 int mode, int *objects)
1563 {
1564 void *freelist;
1565 unsigned long counters;
1566 struct page new;
1567
1568 lockdep_assert_held(&n->list_lock);
1569
1570 /*
1571 * Zap the freelist and set the frozen bit.
1572 * The old freelist is the list of objects for the
1573 * per cpu allocation list.
1574 */
1575 freelist = page->freelist;
1576 counters = page->counters;
1577 new.counters = counters;
1578 *objects = new.objects - new.inuse;
1579 if (mode) {
1580 new.inuse = page->objects;
1581 new.freelist = NULL;
1582 } else {
1583 new.freelist = freelist;
1584 }
1585
1586 VM_BUG_ON(new.frozen);
1587 new.frozen = 1;
1588
1589 if (!__cmpxchg_double_slab(s, page,
1590 freelist, counters,
1591 new.freelist, new.counters,
1592 "acquire_slab"))
1593 return NULL;
1594
1595 remove_partial(n, page);
1596 WARN_ON(!freelist);
1597 return freelist;
1598 }
1599
1600 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1601 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1602
1603 /*
1604 * Try to allocate a partial slab from a specific node.
1605 */
1606 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1607 struct kmem_cache_cpu *c, gfp_t flags)
1608 {
1609 struct page *page, *page2;
1610 void *object = NULL;
1611 int available = 0;
1612 int objects;
1613
1614 /*
1615 * Racy check. If we mistakenly see no partial slabs then we
1616 * just allocate an empty slab. If we mistakenly try to get a
1617 * partial slab and there is none available then get_partials()
1618 * will return NULL.
1619 */
1620 if (!n || !n->nr_partial)
1621 return NULL;
1622
1623 spin_lock(&n->list_lock);
1624 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1625 void *t;
1626
1627 if (!pfmemalloc_match(page, flags))
1628 continue;
1629
1630 t = acquire_slab(s, n, page, object == NULL, &objects);
1631 if (!t)
1632 break;
1633
1634 available += objects;
1635 if (!object) {
1636 c->page = page;
1637 stat(s, ALLOC_FROM_PARTIAL);
1638 object = t;
1639 } else {
1640 put_cpu_partial(s, page, 0);
1641 stat(s, CPU_PARTIAL_NODE);
1642 }
1643 if (!kmem_cache_has_cpu_partial(s)
1644 || available > s->cpu_partial / 2)
1645 break;
1646
1647 }
1648 spin_unlock(&n->list_lock);
1649 return object;
1650 }
1651
1652 /*
1653 * Get a page from somewhere. Search in increasing NUMA distances.
1654 */
1655 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1656 struct kmem_cache_cpu *c)
1657 {
1658 #ifdef CONFIG_NUMA
1659 struct zonelist *zonelist;
1660 struct zoneref *z;
1661 struct zone *zone;
1662 enum zone_type high_zoneidx = gfp_zone(flags);
1663 void *object;
1664 unsigned int cpuset_mems_cookie;
1665
1666 /*
1667 * The defrag ratio allows a configuration of the tradeoffs between
1668 * inter node defragmentation and node local allocations. A lower
1669 * defrag_ratio increases the tendency to do local allocations
1670 * instead of attempting to obtain partial slabs from other nodes.
1671 *
1672 * If the defrag_ratio is set to 0 then kmalloc() always
1673 * returns node local objects. If the ratio is higher then kmalloc()
1674 * may return off node objects because partial slabs are obtained
1675 * from other nodes and filled up.
1676 *
1677 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1678 * defrag_ratio = 1000) then every (well almost) allocation will
1679 * first attempt to defrag slab caches on other nodes. This means
1680 * scanning over all nodes to look for partial slabs which may be
1681 * expensive if we do it every time we are trying to find a slab
1682 * with available objects.
1683 */
1684 if (!s->remote_node_defrag_ratio ||
1685 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1686 return NULL;
1687
1688 do {
1689 cpuset_mems_cookie = read_mems_allowed_begin();
1690 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1691 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1692 struct kmem_cache_node *n;
1693
1694 n = get_node(s, zone_to_nid(zone));
1695
1696 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1697 n->nr_partial > s->min_partial) {
1698 object = get_partial_node(s, n, c, flags);
1699 if (object) {
1700 /*
1701 * Don't check read_mems_allowed_retry()
1702 * here - if mems_allowed was updated in
1703 * parallel, that was a harmless race
1704 * between allocation and the cpuset
1705 * update
1706 */
1707 return object;
1708 }
1709 }
1710 }
1711 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1712 #endif
1713 return NULL;
1714 }
1715
1716 /*
1717 * Get a partial page, lock it and return it.
1718 */
1719 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720 struct kmem_cache_cpu *c)
1721 {
1722 void *object;
1723 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1724
1725 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726 if (object || node != NUMA_NO_NODE)
1727 return object;
1728
1729 return get_any_partial(s, flags, c);
1730 }
1731
1732 #ifdef CONFIG_PREEMPT
1733 /*
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1737 */
1738 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1739 #else
1740 /*
1741 * No preemption supported therefore also no need to check for
1742 * different cpus.
1743 */
1744 #define TID_STEP 1
1745 #endif
1746
1747 static inline unsigned long next_tid(unsigned long tid)
1748 {
1749 return tid + TID_STEP;
1750 }
1751
1752 static inline unsigned int tid_to_cpu(unsigned long tid)
1753 {
1754 return tid % TID_STEP;
1755 }
1756
1757 static inline unsigned long tid_to_event(unsigned long tid)
1758 {
1759 return tid / TID_STEP;
1760 }
1761
1762 static inline unsigned int init_tid(int cpu)
1763 {
1764 return cpu;
1765 }
1766
1767 static inline void note_cmpxchg_failure(const char *n,
1768 const struct kmem_cache *s, unsigned long tid)
1769 {
1770 #ifdef SLUB_DEBUG_CMPXCHG
1771 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772
1773 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774
1775 #ifdef CONFIG_PREEMPT
1776 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777 printk("due to cpu change %d -> %d\n",
1778 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779 else
1780 #endif
1781 if (tid_to_event(tid) != tid_to_event(actual_tid))
1782 printk("due to cpu running other code. Event %ld->%ld\n",
1783 tid_to_event(tid), tid_to_event(actual_tid));
1784 else
1785 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 actual_tid, tid, next_tid(tid));
1787 #endif
1788 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789 }
1790
1791 static void init_kmem_cache_cpus(struct kmem_cache *s)
1792 {
1793 int cpu;
1794
1795 for_each_possible_cpu(cpu)
1796 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1797 }
1798
1799 /*
1800 * Remove the cpu slab
1801 */
1802 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803 void *freelist)
1804 {
1805 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1806 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807 int lock = 0;
1808 enum slab_modes l = M_NONE, m = M_NONE;
1809 void *nextfree;
1810 int tail = DEACTIVATE_TO_HEAD;
1811 struct page new;
1812 struct page old;
1813
1814 if (page->freelist) {
1815 stat(s, DEACTIVATE_REMOTE_FREES);
1816 tail = DEACTIVATE_TO_TAIL;
1817 }
1818
1819 /*
1820 * Stage one: Free all available per cpu objects back
1821 * to the page freelist while it is still frozen. Leave the
1822 * last one.
1823 *
1824 * There is no need to take the list->lock because the page
1825 * is still frozen.
1826 */
1827 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828 void *prior;
1829 unsigned long counters;
1830
1831 do {
1832 prior = page->freelist;
1833 counters = page->counters;
1834 set_freepointer(s, freelist, prior);
1835 new.counters = counters;
1836 new.inuse--;
1837 VM_BUG_ON(!new.frozen);
1838
1839 } while (!__cmpxchg_double_slab(s, page,
1840 prior, counters,
1841 freelist, new.counters,
1842 "drain percpu freelist"));
1843
1844 freelist = nextfree;
1845 }
1846
1847 /*
1848 * Stage two: Ensure that the page is unfrozen while the
1849 * list presence reflects the actual number of objects
1850 * during unfreeze.
1851 *
1852 * We setup the list membership and then perform a cmpxchg
1853 * with the count. If there is a mismatch then the page
1854 * is not unfrozen but the page is on the wrong list.
1855 *
1856 * Then we restart the process which may have to remove
1857 * the page from the list that we just put it on again
1858 * because the number of objects in the slab may have
1859 * changed.
1860 */
1861 redo:
1862
1863 old.freelist = page->freelist;
1864 old.counters = page->counters;
1865 VM_BUG_ON(!old.frozen);
1866
1867 /* Determine target state of the slab */
1868 new.counters = old.counters;
1869 if (freelist) {
1870 new.inuse--;
1871 set_freepointer(s, freelist, old.freelist);
1872 new.freelist = freelist;
1873 } else
1874 new.freelist = old.freelist;
1875
1876 new.frozen = 0;
1877
1878 if (!new.inuse && n->nr_partial > s->min_partial)
1879 m = M_FREE;
1880 else if (new.freelist) {
1881 m = M_PARTIAL;
1882 if (!lock) {
1883 lock = 1;
1884 /*
1885 * Taking the spinlock removes the possiblity
1886 * that acquire_slab() will see a slab page that
1887 * is frozen
1888 */
1889 spin_lock(&n->list_lock);
1890 }
1891 } else {
1892 m = M_FULL;
1893 if (kmem_cache_debug(s) && !lock) {
1894 lock = 1;
1895 /*
1896 * This also ensures that the scanning of full
1897 * slabs from diagnostic functions will not see
1898 * any frozen slabs.
1899 */
1900 spin_lock(&n->list_lock);
1901 }
1902 }
1903
1904 if (l != m) {
1905
1906 if (l == M_PARTIAL)
1907
1908 remove_partial(n, page);
1909
1910 else if (l == M_FULL)
1911
1912 remove_full(s, n, page);
1913
1914 if (m == M_PARTIAL) {
1915
1916 add_partial(n, page, tail);
1917 stat(s, tail);
1918
1919 } else if (m == M_FULL) {
1920
1921 stat(s, DEACTIVATE_FULL);
1922 add_full(s, n, page);
1923
1924 }
1925 }
1926
1927 l = m;
1928 if (!__cmpxchg_double_slab(s, page,
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"))
1932 goto redo;
1933
1934 if (lock)
1935 spin_unlock(&n->list_lock);
1936
1937 if (m == M_FREE) {
1938 stat(s, DEACTIVATE_EMPTY);
1939 discard_slab(s, page);
1940 stat(s, FREE_SLAB);
1941 }
1942 }
1943
1944 /*
1945 * Unfreeze all the cpu partial slabs.
1946 *
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
1950 */
1951 static void unfreeze_partials(struct kmem_cache *s,
1952 struct kmem_cache_cpu *c)
1953 {
1954 #ifdef CONFIG_SLUB_CPU_PARTIAL
1955 struct kmem_cache_node *n = NULL, *n2 = NULL;
1956 struct page *page, *discard_page = NULL;
1957
1958 while ((page = c->partial)) {
1959 struct page new;
1960 struct page old;
1961
1962 c->partial = page->next;
1963
1964 n2 = get_node(s, page_to_nid(page));
1965 if (n != n2) {
1966 if (n)
1967 spin_unlock(&n->list_lock);
1968
1969 n = n2;
1970 spin_lock(&n->list_lock);
1971 }
1972
1973 do {
1974
1975 old.freelist = page->freelist;
1976 old.counters = page->counters;
1977 VM_BUG_ON(!old.frozen);
1978
1979 new.counters = old.counters;
1980 new.freelist = old.freelist;
1981
1982 new.frozen = 0;
1983
1984 } while (!__cmpxchg_double_slab(s, page,
1985 old.freelist, old.counters,
1986 new.freelist, new.counters,
1987 "unfreezing slab"));
1988
1989 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990 page->next = discard_page;
1991 discard_page = page;
1992 } else {
1993 add_partial(n, page, DEACTIVATE_TO_TAIL);
1994 stat(s, FREE_ADD_PARTIAL);
1995 }
1996 }
1997
1998 if (n)
1999 spin_unlock(&n->list_lock);
2000
2001 while (discard_page) {
2002 page = discard_page;
2003 discard_page = discard_page->next;
2004
2005 stat(s, DEACTIVATE_EMPTY);
2006 discard_slab(s, page);
2007 stat(s, FREE_SLAB);
2008 }
2009 #endif
2010 }
2011
2012 /*
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
2017 *
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2020 */
2021 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022 {
2023 #ifdef CONFIG_SLUB_CPU_PARTIAL
2024 struct page *oldpage;
2025 int pages;
2026 int pobjects;
2027
2028 do {
2029 pages = 0;
2030 pobjects = 0;
2031 oldpage = this_cpu_read(s->cpu_slab->partial);
2032
2033 if (oldpage) {
2034 pobjects = oldpage->pobjects;
2035 pages = oldpage->pages;
2036 if (drain && pobjects > s->cpu_partial) {
2037 unsigned long flags;
2038 /*
2039 * partial array is full. Move the existing
2040 * set to the per node partial list.
2041 */
2042 local_irq_save(flags);
2043 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044 local_irq_restore(flags);
2045 oldpage = NULL;
2046 pobjects = 0;
2047 pages = 0;
2048 stat(s, CPU_PARTIAL_DRAIN);
2049 }
2050 }
2051
2052 pages++;
2053 pobjects += page->objects - page->inuse;
2054
2055 page->pages = pages;
2056 page->pobjects = pobjects;
2057 page->next = oldpage;
2058
2059 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060 != oldpage);
2061 #endif
2062 }
2063
2064 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2065 {
2066 stat(s, CPUSLAB_FLUSH);
2067 deactivate_slab(s, c->page, c->freelist);
2068
2069 c->tid = next_tid(c->tid);
2070 c->page = NULL;
2071 c->freelist = NULL;
2072 }
2073
2074 /*
2075 * Flush cpu slab.
2076 *
2077 * Called from IPI handler with interrupts disabled.
2078 */
2079 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2080 {
2081 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2082
2083 if (likely(c)) {
2084 if (c->page)
2085 flush_slab(s, c);
2086
2087 unfreeze_partials(s, c);
2088 }
2089 }
2090
2091 static void flush_cpu_slab(void *d)
2092 {
2093 struct kmem_cache *s = d;
2094
2095 __flush_cpu_slab(s, smp_processor_id());
2096 }
2097
2098 static bool has_cpu_slab(int cpu, void *info)
2099 {
2100 struct kmem_cache *s = info;
2101 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2102
2103 return c->page || c->partial;
2104 }
2105
2106 static void flush_all(struct kmem_cache *s)
2107 {
2108 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2109 }
2110
2111 /*
2112 * Check if the objects in a per cpu structure fit numa
2113 * locality expectations.
2114 */
2115 static inline int node_match(struct page *page, int node)
2116 {
2117 #ifdef CONFIG_NUMA
2118 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119 return 0;
2120 #endif
2121 return 1;
2122 }
2123
2124 static int count_free(struct page *page)
2125 {
2126 return page->objects - page->inuse;
2127 }
2128
2129 static unsigned long count_partial(struct kmem_cache_node *n,
2130 int (*get_count)(struct page *))
2131 {
2132 unsigned long flags;
2133 unsigned long x = 0;
2134 struct page *page;
2135
2136 spin_lock_irqsave(&n->list_lock, flags);
2137 list_for_each_entry(page, &n->partial, lru)
2138 x += get_count(page);
2139 spin_unlock_irqrestore(&n->list_lock, flags);
2140 return x;
2141 }
2142
2143 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144 {
2145 #ifdef CONFIG_SLUB_DEBUG
2146 return atomic_long_read(&n->total_objects);
2147 #else
2148 return 0;
2149 #endif
2150 }
2151
2152 static noinline void
2153 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154 {
2155 int node;
2156
2157 printk(KERN_WARNING
2158 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159 nid, gfpflags);
2160 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2161 "default order: %d, min order: %d\n", s->name, s->object_size,
2162 s->size, oo_order(s->oo), oo_order(s->min));
2163
2164 if (oo_order(s->min) > get_order(s->object_size))
2165 printk(KERN_WARNING " %s debugging increased min order, use "
2166 "slub_debug=O to disable.\n", s->name);
2167
2168 for_each_online_node(node) {
2169 struct kmem_cache_node *n = get_node(s, node);
2170 unsigned long nr_slabs;
2171 unsigned long nr_objs;
2172 unsigned long nr_free;
2173
2174 if (!n)
2175 continue;
2176
2177 nr_free = count_partial(n, count_free);
2178 nr_slabs = node_nr_slabs(n);
2179 nr_objs = node_nr_objs(n);
2180
2181 printk(KERN_WARNING
2182 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183 node, nr_slabs, nr_objs, nr_free);
2184 }
2185 }
2186
2187 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188 int node, struct kmem_cache_cpu **pc)
2189 {
2190 void *freelist;
2191 struct kmem_cache_cpu *c = *pc;
2192 struct page *page;
2193
2194 freelist = get_partial(s, flags, node, c);
2195
2196 if (freelist)
2197 return freelist;
2198
2199 page = new_slab(s, flags, node);
2200 if (page) {
2201 c = __this_cpu_ptr(s->cpu_slab);
2202 if (c->page)
2203 flush_slab(s, c);
2204
2205 /*
2206 * No other reference to the page yet so we can
2207 * muck around with it freely without cmpxchg
2208 */
2209 freelist = page->freelist;
2210 page->freelist = NULL;
2211
2212 stat(s, ALLOC_SLAB);
2213 c->page = page;
2214 *pc = c;
2215 } else
2216 freelist = NULL;
2217
2218 return freelist;
2219 }
2220
2221 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222 {
2223 if (unlikely(PageSlabPfmemalloc(page)))
2224 return gfp_pfmemalloc_allowed(gfpflags);
2225
2226 return true;
2227 }
2228
2229 /*
2230 * Check the page->freelist of a page and either transfer the freelist to the
2231 * per cpu freelist or deactivate the page.
2232 *
2233 * The page is still frozen if the return value is not NULL.
2234 *
2235 * If this function returns NULL then the page has been unfrozen.
2236 *
2237 * This function must be called with interrupt disabled.
2238 */
2239 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240 {
2241 struct page new;
2242 unsigned long counters;
2243 void *freelist;
2244
2245 do {
2246 freelist = page->freelist;
2247 counters = page->counters;
2248
2249 new.counters = counters;
2250 VM_BUG_ON(!new.frozen);
2251
2252 new.inuse = page->objects;
2253 new.frozen = freelist != NULL;
2254
2255 } while (!__cmpxchg_double_slab(s, page,
2256 freelist, counters,
2257 NULL, new.counters,
2258 "get_freelist"));
2259
2260 return freelist;
2261 }
2262
2263 /*
2264 * Slow path. The lockless freelist is empty or we need to perform
2265 * debugging duties.
2266 *
2267 * Processing is still very fast if new objects have been freed to the
2268 * regular freelist. In that case we simply take over the regular freelist
2269 * as the lockless freelist and zap the regular freelist.
2270 *
2271 * If that is not working then we fall back to the partial lists. We take the
2272 * first element of the freelist as the object to allocate now and move the
2273 * rest of the freelist to the lockless freelist.
2274 *
2275 * And if we were unable to get a new slab from the partial slab lists then
2276 * we need to allocate a new slab. This is the slowest path since it involves
2277 * a call to the page allocator and the setup of a new slab.
2278 */
2279 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280 unsigned long addr, struct kmem_cache_cpu *c)
2281 {
2282 void *freelist;
2283 struct page *page;
2284 unsigned long flags;
2285
2286 local_irq_save(flags);
2287 #ifdef CONFIG_PREEMPT
2288 /*
2289 * We may have been preempted and rescheduled on a different
2290 * cpu before disabling interrupts. Need to reload cpu area
2291 * pointer.
2292 */
2293 c = this_cpu_ptr(s->cpu_slab);
2294 #endif
2295
2296 page = c->page;
2297 if (!page)
2298 goto new_slab;
2299 redo:
2300
2301 if (unlikely(!node_match(page, node))) {
2302 stat(s, ALLOC_NODE_MISMATCH);
2303 deactivate_slab(s, page, c->freelist);
2304 c->page = NULL;
2305 c->freelist = NULL;
2306 goto new_slab;
2307 }
2308
2309 /*
2310 * By rights, we should be searching for a slab page that was
2311 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 * information when the page leaves the per-cpu allocator
2313 */
2314 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315 deactivate_slab(s, page, c->freelist);
2316 c->page = NULL;
2317 c->freelist = NULL;
2318 goto new_slab;
2319 }
2320
2321 /* must check again c->freelist in case of cpu migration or IRQ */
2322 freelist = c->freelist;
2323 if (freelist)
2324 goto load_freelist;
2325
2326 stat(s, ALLOC_SLOWPATH);
2327
2328 freelist = get_freelist(s, page);
2329
2330 if (!freelist) {
2331 c->page = NULL;
2332 stat(s, DEACTIVATE_BYPASS);
2333 goto new_slab;
2334 }
2335
2336 stat(s, ALLOC_REFILL);
2337
2338 load_freelist:
2339 /*
2340 * freelist is pointing to the list of objects to be used.
2341 * page is pointing to the page from which the objects are obtained.
2342 * That page must be frozen for per cpu allocations to work.
2343 */
2344 VM_BUG_ON(!c->page->frozen);
2345 c->freelist = get_freepointer(s, freelist);
2346 c->tid = next_tid(c->tid);
2347 local_irq_restore(flags);
2348 return freelist;
2349
2350 new_slab:
2351
2352 if (c->partial) {
2353 page = c->page = c->partial;
2354 c->partial = page->next;
2355 stat(s, CPU_PARTIAL_ALLOC);
2356 c->freelist = NULL;
2357 goto redo;
2358 }
2359
2360 freelist = new_slab_objects(s, gfpflags, node, &c);
2361
2362 if (unlikely(!freelist)) {
2363 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364 slab_out_of_memory(s, gfpflags, node);
2365
2366 local_irq_restore(flags);
2367 return NULL;
2368 }
2369
2370 page = c->page;
2371 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2372 goto load_freelist;
2373
2374 /* Only entered in the debug case */
2375 if (kmem_cache_debug(s) &&
2376 !alloc_debug_processing(s, page, freelist, addr))
2377 goto new_slab; /* Slab failed checks. Next slab needed */
2378
2379 deactivate_slab(s, page, get_freepointer(s, freelist));
2380 c->page = NULL;
2381 c->freelist = NULL;
2382 local_irq_restore(flags);
2383 return freelist;
2384 }
2385
2386 /*
2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388 * have the fastpath folded into their functions. So no function call
2389 * overhead for requests that can be satisfied on the fastpath.
2390 *
2391 * The fastpath works by first checking if the lockless freelist can be used.
2392 * If not then __slab_alloc is called for slow processing.
2393 *
2394 * Otherwise we can simply pick the next object from the lockless free list.
2395 */
2396 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397 gfp_t gfpflags, int node, unsigned long addr)
2398 {
2399 void **object;
2400 struct kmem_cache_cpu *c;
2401 struct page *page;
2402 unsigned long tid;
2403
2404 if (slab_pre_alloc_hook(s, gfpflags))
2405 return NULL;
2406
2407 s = memcg_kmem_get_cache(s, gfpflags);
2408 redo:
2409 /*
2410 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411 * enabled. We may switch back and forth between cpus while
2412 * reading from one cpu area. That does not matter as long
2413 * as we end up on the original cpu again when doing the cmpxchg.
2414 *
2415 * Preemption is disabled for the retrieval of the tid because that
2416 * must occur from the current processor. We cannot allow rescheduling
2417 * on a different processor between the determination of the pointer
2418 * and the retrieval of the tid.
2419 */
2420 preempt_disable();
2421 c = __this_cpu_ptr(s->cpu_slab);
2422
2423 /*
2424 * The transaction ids are globally unique per cpu and per operation on
2425 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426 * occurs on the right processor and that there was no operation on the
2427 * linked list in between.
2428 */
2429 tid = c->tid;
2430 preempt_enable();
2431
2432 object = c->freelist;
2433 page = c->page;
2434 if (unlikely(!object || !node_match(page, node)))
2435 object = __slab_alloc(s, gfpflags, node, addr, c);
2436
2437 else {
2438 void *next_object = get_freepointer_safe(s, object);
2439
2440 /*
2441 * The cmpxchg will only match if there was no additional
2442 * operation and if we are on the right processor.
2443 *
2444 * The cmpxchg does the following atomically (without lock
2445 * semantics!)
2446 * 1. Relocate first pointer to the current per cpu area.
2447 * 2. Verify that tid and freelist have not been changed
2448 * 3. If they were not changed replace tid and freelist
2449 *
2450 * Since this is without lock semantics the protection is only
2451 * against code executing on this cpu *not* from access by
2452 * other cpus.
2453 */
2454 if (unlikely(!this_cpu_cmpxchg_double(
2455 s->cpu_slab->freelist, s->cpu_slab->tid,
2456 object, tid,
2457 next_object, next_tid(tid)))) {
2458
2459 note_cmpxchg_failure("slab_alloc", s, tid);
2460 goto redo;
2461 }
2462 prefetch_freepointer(s, next_object);
2463 stat(s, ALLOC_FASTPATH);
2464 }
2465
2466 if (unlikely(gfpflags & __GFP_ZERO) && object)
2467 memset(object, 0, s->object_size);
2468
2469 slab_post_alloc_hook(s, gfpflags, object);
2470
2471 return object;
2472 }
2473
2474 static __always_inline void *slab_alloc(struct kmem_cache *s,
2475 gfp_t gfpflags, unsigned long addr)
2476 {
2477 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2478 }
2479
2480 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2481 {
2482 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2483
2484 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485 s->size, gfpflags);
2486
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(kmem_cache_alloc);
2490
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493 {
2494 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496 return ret;
2497 }
2498 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2499 #endif
2500
2501 #ifdef CONFIG_NUMA
2502 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503 {
2504 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2505
2506 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507 s->object_size, s->size, gfpflags, node);
2508
2509 return ret;
2510 }
2511 EXPORT_SYMBOL(kmem_cache_alloc_node);
2512
2513 #ifdef CONFIG_TRACING
2514 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2515 gfp_t gfpflags,
2516 int node, size_t size)
2517 {
2518 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2519
2520 trace_kmalloc_node(_RET_IP_, ret,
2521 size, s->size, gfpflags, node);
2522 return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2525 #endif
2526 #endif
2527
2528 /*
2529 * Slow patch handling. This may still be called frequently since objects
2530 * have a longer lifetime than the cpu slabs in most processing loads.
2531 *
2532 * So we still attempt to reduce cache line usage. Just take the slab
2533 * lock and free the item. If there is no additional partial page
2534 * handling required then we can return immediately.
2535 */
2536 static void __slab_free(struct kmem_cache *s, struct page *page,
2537 void *x, unsigned long addr)
2538 {
2539 void *prior;
2540 void **object = (void *)x;
2541 int was_frozen;
2542 struct page new;
2543 unsigned long counters;
2544 struct kmem_cache_node *n = NULL;
2545 unsigned long uninitialized_var(flags);
2546
2547 stat(s, FREE_SLOWPATH);
2548
2549 if (kmem_cache_debug(s) &&
2550 !(n = free_debug_processing(s, page, x, addr, &flags)))
2551 return;
2552
2553 do {
2554 if (unlikely(n)) {
2555 spin_unlock_irqrestore(&n->list_lock, flags);
2556 n = NULL;
2557 }
2558 prior = page->freelist;
2559 counters = page->counters;
2560 set_freepointer(s, object, prior);
2561 new.counters = counters;
2562 was_frozen = new.frozen;
2563 new.inuse--;
2564 if ((!new.inuse || !prior) && !was_frozen) {
2565
2566 if (kmem_cache_has_cpu_partial(s) && !prior) {
2567
2568 /*
2569 * Slab was on no list before and will be
2570 * partially empty
2571 * We can defer the list move and instead
2572 * freeze it.
2573 */
2574 new.frozen = 1;
2575
2576 } else { /* Needs to be taken off a list */
2577
2578 n = get_node(s, page_to_nid(page));
2579 /*
2580 * Speculatively acquire the list_lock.
2581 * If the cmpxchg does not succeed then we may
2582 * drop the list_lock without any processing.
2583 *
2584 * Otherwise the list_lock will synchronize with
2585 * other processors updating the list of slabs.
2586 */
2587 spin_lock_irqsave(&n->list_lock, flags);
2588
2589 }
2590 }
2591
2592 } while (!cmpxchg_double_slab(s, page,
2593 prior, counters,
2594 object, new.counters,
2595 "__slab_free"));
2596
2597 if (likely(!n)) {
2598
2599 /*
2600 * If we just froze the page then put it onto the
2601 * per cpu partial list.
2602 */
2603 if (new.frozen && !was_frozen) {
2604 put_cpu_partial(s, page, 1);
2605 stat(s, CPU_PARTIAL_FREE);
2606 }
2607 /*
2608 * The list lock was not taken therefore no list
2609 * activity can be necessary.
2610 */
2611 if (was_frozen)
2612 stat(s, FREE_FROZEN);
2613 return;
2614 }
2615
2616 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2617 goto slab_empty;
2618
2619 /*
2620 * Objects left in the slab. If it was not on the partial list before
2621 * then add it.
2622 */
2623 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624 if (kmem_cache_debug(s))
2625 remove_full(s, n, page);
2626 add_partial(n, page, DEACTIVATE_TO_TAIL);
2627 stat(s, FREE_ADD_PARTIAL);
2628 }
2629 spin_unlock_irqrestore(&n->list_lock, flags);
2630 return;
2631
2632 slab_empty:
2633 if (prior) {
2634 /*
2635 * Slab on the partial list.
2636 */
2637 remove_partial(n, page);
2638 stat(s, FREE_REMOVE_PARTIAL);
2639 } else {
2640 /* Slab must be on the full list */
2641 remove_full(s, n, page);
2642 }
2643
2644 spin_unlock_irqrestore(&n->list_lock, flags);
2645 stat(s, FREE_SLAB);
2646 discard_slab(s, page);
2647 }
2648
2649 /*
2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651 * can perform fastpath freeing without additional function calls.
2652 *
2653 * The fastpath is only possible if we are freeing to the current cpu slab
2654 * of this processor. This typically the case if we have just allocated
2655 * the item before.
2656 *
2657 * If fastpath is not possible then fall back to __slab_free where we deal
2658 * with all sorts of special processing.
2659 */
2660 static __always_inline void slab_free(struct kmem_cache *s,
2661 struct page *page, void *x, unsigned long addr)
2662 {
2663 void **object = (void *)x;
2664 struct kmem_cache_cpu *c;
2665 unsigned long tid;
2666
2667 slab_free_hook(s, x);
2668
2669 redo:
2670 /*
2671 * Determine the currently cpus per cpu slab.
2672 * The cpu may change afterward. However that does not matter since
2673 * data is retrieved via this pointer. If we are on the same cpu
2674 * during the cmpxchg then the free will succedd.
2675 */
2676 preempt_disable();
2677 c = __this_cpu_ptr(s->cpu_slab);
2678
2679 tid = c->tid;
2680 preempt_enable();
2681
2682 if (likely(page == c->page)) {
2683 set_freepointer(s, object, c->freelist);
2684
2685 if (unlikely(!this_cpu_cmpxchg_double(
2686 s->cpu_slab->freelist, s->cpu_slab->tid,
2687 c->freelist, tid,
2688 object, next_tid(tid)))) {
2689
2690 note_cmpxchg_failure("slab_free", s, tid);
2691 goto redo;
2692 }
2693 stat(s, FREE_FASTPATH);
2694 } else
2695 __slab_free(s, page, x, addr);
2696
2697 }
2698
2699 void kmem_cache_free(struct kmem_cache *s, void *x)
2700 {
2701 s = cache_from_obj(s, x);
2702 if (!s)
2703 return;
2704 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2705 trace_kmem_cache_free(_RET_IP_, x);
2706 }
2707 EXPORT_SYMBOL(kmem_cache_free);
2708
2709 /*
2710 * Object placement in a slab is made very easy because we always start at
2711 * offset 0. If we tune the size of the object to the alignment then we can
2712 * get the required alignment by putting one properly sized object after
2713 * another.
2714 *
2715 * Notice that the allocation order determines the sizes of the per cpu
2716 * caches. Each processor has always one slab available for allocations.
2717 * Increasing the allocation order reduces the number of times that slabs
2718 * must be moved on and off the partial lists and is therefore a factor in
2719 * locking overhead.
2720 */
2721
2722 /*
2723 * Mininum / Maximum order of slab pages. This influences locking overhead
2724 * and slab fragmentation. A higher order reduces the number of partial slabs
2725 * and increases the number of allocations possible without having to
2726 * take the list_lock.
2727 */
2728 static int slub_min_order;
2729 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730 static int slub_min_objects;
2731
2732 /*
2733 * Merge control. If this is set then no merging of slab caches will occur.
2734 * (Could be removed. This was introduced to pacify the merge skeptics.)
2735 */
2736 static int slub_nomerge;
2737
2738 /*
2739 * Calculate the order of allocation given an slab object size.
2740 *
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
2745 * unused space left. We go to a higher order if more than 1/16th of the slab
2746 * would be wasted.
2747 *
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
2752 *
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
2757 *
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
2762 */
2763 static inline int slab_order(int size, int min_objects,
2764 int max_order, int fract_leftover, int reserved)
2765 {
2766 int order;
2767 int rem;
2768 int min_order = slub_min_order;
2769
2770 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772
2773 for (order = max(min_order,
2774 fls(min_objects * size - 1) - PAGE_SHIFT);
2775 order <= max_order; order++) {
2776
2777 unsigned long slab_size = PAGE_SIZE << order;
2778
2779 if (slab_size < min_objects * size + reserved)
2780 continue;
2781
2782 rem = (slab_size - reserved) % size;
2783
2784 if (rem <= slab_size / fract_leftover)
2785 break;
2786
2787 }
2788
2789 return order;
2790 }
2791
2792 static inline int calculate_order(int size, int reserved)
2793 {
2794 int order;
2795 int min_objects;
2796 int fraction;
2797 int max_objects;
2798
2799 /*
2800 * Attempt to find best configuration for a slab. This
2801 * works by first attempting to generate a layout with
2802 * the best configuration and backing off gradually.
2803 *
2804 * First we reduce the acceptable waste in a slab. Then
2805 * we reduce the minimum objects required in a slab.
2806 */
2807 min_objects = slub_min_objects;
2808 if (!min_objects)
2809 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810 max_objects = order_objects(slub_max_order, size, reserved);
2811 min_objects = min(min_objects, max_objects);
2812
2813 while (min_objects > 1) {
2814 fraction = 16;
2815 while (fraction >= 4) {
2816 order = slab_order(size, min_objects,
2817 slub_max_order, fraction, reserved);
2818 if (order <= slub_max_order)
2819 return order;
2820 fraction /= 2;
2821 }
2822 min_objects--;
2823 }
2824
2825 /*
2826 * We were unable to place multiple objects in a slab. Now
2827 * lets see if we can place a single object there.
2828 */
2829 order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 if (order <= slub_max_order)
2831 return order;
2832
2833 /*
2834 * Doh this slab cannot be placed using slub_max_order.
2835 */
2836 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837 if (order < MAX_ORDER)
2838 return order;
2839 return -ENOSYS;
2840 }
2841
2842 static void
2843 init_kmem_cache_node(struct kmem_cache_node *n)
2844 {
2845 n->nr_partial = 0;
2846 spin_lock_init(&n->list_lock);
2847 INIT_LIST_HEAD(&n->partial);
2848 #ifdef CONFIG_SLUB_DEBUG
2849 atomic_long_set(&n->nr_slabs, 0);
2850 atomic_long_set(&n->total_objects, 0);
2851 INIT_LIST_HEAD(&n->full);
2852 #endif
2853 }
2854
2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856 {
2857 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859
2860 /*
2861 * Must align to double word boundary for the double cmpxchg
2862 * instructions to work; see __pcpu_double_call_return_bool().
2863 */
2864 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865 2 * sizeof(void *));
2866
2867 if (!s->cpu_slab)
2868 return 0;
2869
2870 init_kmem_cache_cpus(s);
2871
2872 return 1;
2873 }
2874
2875 static struct kmem_cache *kmem_cache_node;
2876
2877 /*
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2880 * possible.
2881 *
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884 * memory on a fresh node that has no slab structures yet.
2885 */
2886 static void early_kmem_cache_node_alloc(int node)
2887 {
2888 struct page *page;
2889 struct kmem_cache_node *n;
2890
2891 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892
2893 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894
2895 BUG_ON(!page);
2896 if (page_to_nid(page) != node) {
2897 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898 "node %d\n", node);
2899 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900 "in order to be able to continue\n");
2901 }
2902
2903 n = page->freelist;
2904 BUG_ON(!n);
2905 page->freelist = get_freepointer(kmem_cache_node, n);
2906 page->inuse = 1;
2907 page->frozen = 0;
2908 kmem_cache_node->node[node] = n;
2909 #ifdef CONFIG_SLUB_DEBUG
2910 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911 init_tracking(kmem_cache_node, n);
2912 #endif
2913 init_kmem_cache_node(n);
2914 inc_slabs_node(kmem_cache_node, node, page->objects);
2915
2916 /*
2917 * No locks need to be taken here as it has just been
2918 * initialized and there is no concurrent access.
2919 */
2920 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2921 }
2922
2923 static void free_kmem_cache_nodes(struct kmem_cache *s)
2924 {
2925 int node;
2926
2927 for_each_node_state(node, N_NORMAL_MEMORY) {
2928 struct kmem_cache_node *n = s->node[node];
2929
2930 if (n)
2931 kmem_cache_free(kmem_cache_node, n);
2932
2933 s->node[node] = NULL;
2934 }
2935 }
2936
2937 static int init_kmem_cache_nodes(struct kmem_cache *s)
2938 {
2939 int node;
2940
2941 for_each_node_state(node, N_NORMAL_MEMORY) {
2942 struct kmem_cache_node *n;
2943
2944 if (slab_state == DOWN) {
2945 early_kmem_cache_node_alloc(node);
2946 continue;
2947 }
2948 n = kmem_cache_alloc_node(kmem_cache_node,
2949 GFP_KERNEL, node);
2950
2951 if (!n) {
2952 free_kmem_cache_nodes(s);
2953 return 0;
2954 }
2955
2956 s->node[node] = n;
2957 init_kmem_cache_node(n);
2958 }
2959 return 1;
2960 }
2961
2962 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963 {
2964 if (min < MIN_PARTIAL)
2965 min = MIN_PARTIAL;
2966 else if (min > MAX_PARTIAL)
2967 min = MAX_PARTIAL;
2968 s->min_partial = min;
2969 }
2970
2971 /*
2972 * calculate_sizes() determines the order and the distribution of data within
2973 * a slab object.
2974 */
2975 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2976 {
2977 unsigned long flags = s->flags;
2978 unsigned long size = s->object_size;
2979 int order;
2980
2981 /*
2982 * Round up object size to the next word boundary. We can only
2983 * place the free pointer at word boundaries and this determines
2984 * the possible location of the free pointer.
2985 */
2986 size = ALIGN(size, sizeof(void *));
2987
2988 #ifdef CONFIG_SLUB_DEBUG
2989 /*
2990 * Determine if we can poison the object itself. If the user of
2991 * the slab may touch the object after free or before allocation
2992 * then we should never poison the object itself.
2993 */
2994 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995 !s->ctor)
2996 s->flags |= __OBJECT_POISON;
2997 else
2998 s->flags &= ~__OBJECT_POISON;
2999
3000
3001 /*
3002 * If we are Redzoning then check if there is some space between the
3003 * end of the object and the free pointer. If not then add an
3004 * additional word to have some bytes to store Redzone information.
3005 */
3006 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3007 size += sizeof(void *);
3008 #endif
3009
3010 /*
3011 * With that we have determined the number of bytes in actual use
3012 * by the object. This is the potential offset to the free pointer.
3013 */
3014 s->inuse = size;
3015
3016 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017 s->ctor)) {
3018 /*
3019 * Relocate free pointer after the object if it is not
3020 * permitted to overwrite the first word of the object on
3021 * kmem_cache_free.
3022 *
3023 * This is the case if we do RCU, have a constructor or
3024 * destructor or are poisoning the objects.
3025 */
3026 s->offset = size;
3027 size += sizeof(void *);
3028 }
3029
3030 #ifdef CONFIG_SLUB_DEBUG
3031 if (flags & SLAB_STORE_USER)
3032 /*
3033 * Need to store information about allocs and frees after
3034 * the object.
3035 */
3036 size += 2 * sizeof(struct track);
3037
3038 if (flags & SLAB_RED_ZONE)
3039 /*
3040 * Add some empty padding so that we can catch
3041 * overwrites from earlier objects rather than let
3042 * tracking information or the free pointer be
3043 * corrupted if a user writes before the start
3044 * of the object.
3045 */
3046 size += sizeof(void *);
3047 #endif
3048
3049 /*
3050 * SLUB stores one object immediately after another beginning from
3051 * offset 0. In order to align the objects we have to simply size
3052 * each object to conform to the alignment.
3053 */
3054 size = ALIGN(size, s->align);
3055 s->size = size;
3056 if (forced_order >= 0)
3057 order = forced_order;
3058 else
3059 order = calculate_order(size, s->reserved);
3060
3061 if (order < 0)
3062 return 0;
3063
3064 s->allocflags = 0;
3065 if (order)
3066 s->allocflags |= __GFP_COMP;
3067
3068 if (s->flags & SLAB_CACHE_DMA)
3069 s->allocflags |= GFP_DMA;
3070
3071 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072 s->allocflags |= __GFP_RECLAIMABLE;
3073
3074 /*
3075 * Determine the number of objects per slab
3076 */
3077 s->oo = oo_make(order, size, s->reserved);
3078 s->min = oo_make(get_order(size), size, s->reserved);
3079 if (oo_objects(s->oo) > oo_objects(s->max))
3080 s->max = s->oo;
3081
3082 return !!oo_objects(s->oo);
3083 }
3084
3085 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3086 {
3087 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3088 s->reserved = 0;
3089
3090 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091 s->reserved = sizeof(struct rcu_head);
3092
3093 if (!calculate_sizes(s, -1))
3094 goto error;
3095 if (disable_higher_order_debug) {
3096 /*
3097 * Disable debugging flags that store metadata if the min slab
3098 * order increased.
3099 */
3100 if (get_order(s->size) > get_order(s->object_size)) {
3101 s->flags &= ~DEBUG_METADATA_FLAGS;
3102 s->offset = 0;
3103 if (!calculate_sizes(s, -1))
3104 goto error;
3105 }
3106 }
3107
3108 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111 /* Enable fast mode */
3112 s->flags |= __CMPXCHG_DOUBLE;
3113 #endif
3114
3115 /*
3116 * The larger the object size is, the more pages we want on the partial
3117 * list to avoid pounding the page allocator excessively.
3118 */
3119 set_min_partial(s, ilog2(s->size) / 2);
3120
3121 /*
3122 * cpu_partial determined the maximum number of objects kept in the
3123 * per cpu partial lists of a processor.
3124 *
3125 * Per cpu partial lists mainly contain slabs that just have one
3126 * object freed. If they are used for allocation then they can be
3127 * filled up again with minimal effort. The slab will never hit the
3128 * per node partial lists and therefore no locking will be required.
3129 *
3130 * This setting also determines
3131 *
3132 * A) The number of objects from per cpu partial slabs dumped to the
3133 * per node list when we reach the limit.
3134 * B) The number of objects in cpu partial slabs to extract from the
3135 * per node list when we run out of per cpu objects. We only fetch
3136 * 50% to keep some capacity around for frees.
3137 */
3138 if (!kmem_cache_has_cpu_partial(s))
3139 s->cpu_partial = 0;
3140 else if (s->size >= PAGE_SIZE)
3141 s->cpu_partial = 2;
3142 else if (s->size >= 1024)
3143 s->cpu_partial = 6;
3144 else if (s->size >= 256)
3145 s->cpu_partial = 13;
3146 else
3147 s->cpu_partial = 30;
3148
3149 #ifdef CONFIG_NUMA
3150 s->remote_node_defrag_ratio = 1000;
3151 #endif
3152 if (!init_kmem_cache_nodes(s))
3153 goto error;
3154
3155 if (alloc_kmem_cache_cpus(s))
3156 return 0;
3157
3158 free_kmem_cache_nodes(s);
3159 error:
3160 if (flags & SLAB_PANIC)
3161 panic("Cannot create slab %s size=%lu realsize=%u "
3162 "order=%u offset=%u flags=%lx\n",
3163 s->name, (unsigned long)s->size, s->size,
3164 oo_order(s->oo), s->offset, flags);
3165 return -EINVAL;
3166 }
3167
3168 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169 const char *text)
3170 {
3171 #ifdef CONFIG_SLUB_DEBUG
3172 void *addr = page_address(page);
3173 void *p;
3174 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175 sizeof(long), GFP_ATOMIC);
3176 if (!map)
3177 return;
3178 slab_err(s, page, text, s->name);
3179 slab_lock(page);
3180
3181 get_map(s, page, map);
3182 for_each_object(p, s, addr, page->objects) {
3183
3184 if (!test_bit(slab_index(p, s, addr), map)) {
3185 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186 p, p - addr);
3187 print_tracking(s, p);
3188 }
3189 }
3190 slab_unlock(page);
3191 kfree(map);
3192 #endif
3193 }
3194
3195 /*
3196 * Attempt to free all partial slabs on a node.
3197 * This is called from kmem_cache_close(). We must be the last thread
3198 * using the cache and therefore we do not need to lock anymore.
3199 */
3200 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3201 {
3202 struct page *page, *h;
3203
3204 list_for_each_entry_safe(page, h, &n->partial, lru) {
3205 if (!page->inuse) {
3206 __remove_partial(n, page);
3207 discard_slab(s, page);
3208 } else {
3209 list_slab_objects(s, page,
3210 "Objects remaining in %s on kmem_cache_close()");
3211 }
3212 }
3213 }
3214
3215 /*
3216 * Release all resources used by a slab cache.
3217 */
3218 static inline int kmem_cache_close(struct kmem_cache *s)
3219 {
3220 int node;
3221
3222 flush_all(s);
3223 /* Attempt to free all objects */
3224 for_each_node_state(node, N_NORMAL_MEMORY) {
3225 struct kmem_cache_node *n = get_node(s, node);
3226
3227 free_partial(s, n);
3228 if (n->nr_partial || slabs_node(s, node))
3229 return 1;
3230 }
3231 free_percpu(s->cpu_slab);
3232 free_kmem_cache_nodes(s);
3233 return 0;
3234 }
3235
3236 int __kmem_cache_shutdown(struct kmem_cache *s)
3237 {
3238 return kmem_cache_close(s);
3239 }
3240
3241 /********************************************************************
3242 * Kmalloc subsystem
3243 *******************************************************************/
3244
3245 static int __init setup_slub_min_order(char *str)
3246 {
3247 get_option(&str, &slub_min_order);
3248
3249 return 1;
3250 }
3251
3252 __setup("slub_min_order=", setup_slub_min_order);
3253
3254 static int __init setup_slub_max_order(char *str)
3255 {
3256 get_option(&str, &slub_max_order);
3257 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3258
3259 return 1;
3260 }
3261
3262 __setup("slub_max_order=", setup_slub_max_order);
3263
3264 static int __init setup_slub_min_objects(char *str)
3265 {
3266 get_option(&str, &slub_min_objects);
3267
3268 return 1;
3269 }
3270
3271 __setup("slub_min_objects=", setup_slub_min_objects);
3272
3273 static int __init setup_slub_nomerge(char *str)
3274 {
3275 slub_nomerge = 1;
3276 return 1;
3277 }
3278
3279 __setup("slub_nomerge", setup_slub_nomerge);
3280
3281 void *__kmalloc(size_t size, gfp_t flags)
3282 {
3283 struct kmem_cache *s;
3284 void *ret;
3285
3286 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3287 return kmalloc_large(size, flags);
3288
3289 s = kmalloc_slab(size, flags);
3290
3291 if (unlikely(ZERO_OR_NULL_PTR(s)))
3292 return s;
3293
3294 ret = slab_alloc(s, flags, _RET_IP_);
3295
3296 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3297
3298 return ret;
3299 }
3300 EXPORT_SYMBOL(__kmalloc);
3301
3302 #ifdef CONFIG_NUMA
3303 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3304 {
3305 struct page *page;
3306 void *ptr = NULL;
3307
3308 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3309 page = alloc_pages_node(node, flags, get_order(size));
3310 if (page)
3311 ptr = page_address(page);
3312
3313 kmalloc_large_node_hook(ptr, size, flags);
3314 return ptr;
3315 }
3316
3317 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3318 {
3319 struct kmem_cache *s;
3320 void *ret;
3321
3322 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3323 ret = kmalloc_large_node(size, flags, node);
3324
3325 trace_kmalloc_node(_RET_IP_, ret,
3326 size, PAGE_SIZE << get_order(size),
3327 flags, node);
3328
3329 return ret;
3330 }
3331
3332 s = kmalloc_slab(size, flags);
3333
3334 if (unlikely(ZERO_OR_NULL_PTR(s)))
3335 return s;
3336
3337 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3338
3339 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3340
3341 return ret;
3342 }
3343 EXPORT_SYMBOL(__kmalloc_node);
3344 #endif
3345
3346 size_t ksize(const void *object)
3347 {
3348 struct page *page;
3349
3350 if (unlikely(object == ZERO_SIZE_PTR))
3351 return 0;
3352
3353 page = virt_to_head_page(object);
3354
3355 if (unlikely(!PageSlab(page))) {
3356 WARN_ON(!PageCompound(page));
3357 return PAGE_SIZE << compound_order(page);
3358 }
3359
3360 return slab_ksize(page->slab_cache);
3361 }
3362 EXPORT_SYMBOL(ksize);
3363
3364 void kfree(const void *x)
3365 {
3366 struct page *page;
3367 void *object = (void *)x;
3368
3369 trace_kfree(_RET_IP_, x);
3370
3371 if (unlikely(ZERO_OR_NULL_PTR(x)))
3372 return;
3373
3374 page = virt_to_head_page(x);
3375 if (unlikely(!PageSlab(page))) {
3376 BUG_ON(!PageCompound(page));
3377 kfree_hook(x);
3378 __free_memcg_kmem_pages(page, compound_order(page));
3379 return;
3380 }
3381 slab_free(page->slab_cache, page, object, _RET_IP_);
3382 }
3383 EXPORT_SYMBOL(kfree);
3384
3385 /*
3386 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3387 * the remaining slabs by the number of items in use. The slabs with the
3388 * most items in use come first. New allocations will then fill those up
3389 * and thus they can be removed from the partial lists.
3390 *
3391 * The slabs with the least items are placed last. This results in them
3392 * being allocated from last increasing the chance that the last objects
3393 * are freed in them.
3394 */
3395 int kmem_cache_shrink(struct kmem_cache *s)
3396 {
3397 int node;
3398 int i;
3399 struct kmem_cache_node *n;
3400 struct page *page;
3401 struct page *t;
3402 int objects = oo_objects(s->max);
3403 struct list_head *slabs_by_inuse =
3404 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3405 unsigned long flags;
3406
3407 if (!slabs_by_inuse)
3408 return -ENOMEM;
3409
3410 flush_all(s);
3411 for_each_node_state(node, N_NORMAL_MEMORY) {
3412 n = get_node(s, node);
3413
3414 if (!n->nr_partial)
3415 continue;
3416
3417 for (i = 0; i < objects; i++)
3418 INIT_LIST_HEAD(slabs_by_inuse + i);
3419
3420 spin_lock_irqsave(&n->list_lock, flags);
3421
3422 /*
3423 * Build lists indexed by the items in use in each slab.
3424 *
3425 * Note that concurrent frees may occur while we hold the
3426 * list_lock. page->inuse here is the upper limit.
3427 */
3428 list_for_each_entry_safe(page, t, &n->partial, lru) {
3429 list_move(&page->lru, slabs_by_inuse + page->inuse);
3430 if (!page->inuse)
3431 n->nr_partial--;
3432 }
3433
3434 /*
3435 * Rebuild the partial list with the slabs filled up most
3436 * first and the least used slabs at the end.
3437 */
3438 for (i = objects - 1; i > 0; i--)
3439 list_splice(slabs_by_inuse + i, n->partial.prev);
3440
3441 spin_unlock_irqrestore(&n->list_lock, flags);
3442
3443 /* Release empty slabs */
3444 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3445 discard_slab(s, page);
3446 }
3447
3448 kfree(slabs_by_inuse);
3449 return 0;
3450 }
3451 EXPORT_SYMBOL(kmem_cache_shrink);
3452
3453 static int slab_mem_going_offline_callback(void *arg)
3454 {
3455 struct kmem_cache *s;
3456
3457 mutex_lock(&slab_mutex);
3458 list_for_each_entry(s, &slab_caches, list)
3459 kmem_cache_shrink(s);
3460 mutex_unlock(&slab_mutex);
3461
3462 return 0;
3463 }
3464
3465 static void slab_mem_offline_callback(void *arg)
3466 {
3467 struct kmem_cache_node *n;
3468 struct kmem_cache *s;
3469 struct memory_notify *marg = arg;
3470 int offline_node;
3471
3472 offline_node = marg->status_change_nid_normal;
3473
3474 /*
3475 * If the node still has available memory. we need kmem_cache_node
3476 * for it yet.
3477 */
3478 if (offline_node < 0)
3479 return;
3480
3481 mutex_lock(&slab_mutex);
3482 list_for_each_entry(s, &slab_caches, list) {
3483 n = get_node(s, offline_node);
3484 if (n) {
3485 /*
3486 * if n->nr_slabs > 0, slabs still exist on the node
3487 * that is going down. We were unable to free them,
3488 * and offline_pages() function shouldn't call this
3489 * callback. So, we must fail.
3490 */
3491 BUG_ON(slabs_node(s, offline_node));
3492
3493 s->node[offline_node] = NULL;
3494 kmem_cache_free(kmem_cache_node, n);
3495 }
3496 }
3497 mutex_unlock(&slab_mutex);
3498 }
3499
3500 static int slab_mem_going_online_callback(void *arg)
3501 {
3502 struct kmem_cache_node *n;
3503 struct kmem_cache *s;
3504 struct memory_notify *marg = arg;
3505 int nid = marg->status_change_nid_normal;
3506 int ret = 0;
3507
3508 /*
3509 * If the node's memory is already available, then kmem_cache_node is
3510 * already created. Nothing to do.
3511 */
3512 if (nid < 0)
3513 return 0;
3514
3515 /*
3516 * We are bringing a node online. No memory is available yet. We must
3517 * allocate a kmem_cache_node structure in order to bring the node
3518 * online.
3519 */
3520 mutex_lock(&slab_mutex);
3521 list_for_each_entry(s, &slab_caches, list) {
3522 /*
3523 * XXX: kmem_cache_alloc_node will fallback to other nodes
3524 * since memory is not yet available from the node that
3525 * is brought up.
3526 */
3527 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3528 if (!n) {
3529 ret = -ENOMEM;
3530 goto out;
3531 }
3532 init_kmem_cache_node(n);
3533 s->node[nid] = n;
3534 }
3535 out:
3536 mutex_unlock(&slab_mutex);
3537 return ret;
3538 }
3539
3540 static int slab_memory_callback(struct notifier_block *self,
3541 unsigned long action, void *arg)
3542 {
3543 int ret = 0;
3544
3545 switch (action) {
3546 case MEM_GOING_ONLINE:
3547 ret = slab_mem_going_online_callback(arg);
3548 break;
3549 case MEM_GOING_OFFLINE:
3550 ret = slab_mem_going_offline_callback(arg);
3551 break;
3552 case MEM_OFFLINE:
3553 case MEM_CANCEL_ONLINE:
3554 slab_mem_offline_callback(arg);
3555 break;
3556 case MEM_ONLINE:
3557 case MEM_CANCEL_OFFLINE:
3558 break;
3559 }
3560 if (ret)
3561 ret = notifier_from_errno(ret);
3562 else
3563 ret = NOTIFY_OK;
3564 return ret;
3565 }
3566
3567 static struct notifier_block slab_memory_callback_nb = {
3568 .notifier_call = slab_memory_callback,
3569 .priority = SLAB_CALLBACK_PRI,
3570 };
3571
3572 /********************************************************************
3573 * Basic setup of slabs
3574 *******************************************************************/
3575
3576 /*
3577 * Used for early kmem_cache structures that were allocated using
3578 * the page allocator. Allocate them properly then fix up the pointers
3579 * that may be pointing to the wrong kmem_cache structure.
3580 */
3581
3582 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3583 {
3584 int node;
3585 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3586
3587 memcpy(s, static_cache, kmem_cache->object_size);
3588
3589 /*
3590 * This runs very early, and only the boot processor is supposed to be
3591 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3592 * IPIs around.
3593 */
3594 __flush_cpu_slab(s, smp_processor_id());
3595 for_each_node_state(node, N_NORMAL_MEMORY) {
3596 struct kmem_cache_node *n = get_node(s, node);
3597 struct page *p;
3598
3599 if (n) {
3600 list_for_each_entry(p, &n->partial, lru)
3601 p->slab_cache = s;
3602
3603 #ifdef CONFIG_SLUB_DEBUG
3604 list_for_each_entry(p, &n->full, lru)
3605 p->slab_cache = s;
3606 #endif
3607 }
3608 }
3609 list_add(&s->list, &slab_caches);
3610 return s;
3611 }
3612
3613 void __init kmem_cache_init(void)
3614 {
3615 static __initdata struct kmem_cache boot_kmem_cache,
3616 boot_kmem_cache_node;
3617
3618 if (debug_guardpage_minorder())
3619 slub_max_order = 0;
3620
3621 kmem_cache_node = &boot_kmem_cache_node;
3622 kmem_cache = &boot_kmem_cache;
3623
3624 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3625 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3626
3627 register_hotmemory_notifier(&slab_memory_callback_nb);
3628
3629 /* Able to allocate the per node structures */
3630 slab_state = PARTIAL;
3631
3632 create_boot_cache(kmem_cache, "kmem_cache",
3633 offsetof(struct kmem_cache, node) +
3634 nr_node_ids * sizeof(struct kmem_cache_node *),
3635 SLAB_HWCACHE_ALIGN);
3636
3637 kmem_cache = bootstrap(&boot_kmem_cache);
3638
3639 /*
3640 * Allocate kmem_cache_node properly from the kmem_cache slab.
3641 * kmem_cache_node is separately allocated so no need to
3642 * update any list pointers.
3643 */
3644 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3645
3646 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3647 create_kmalloc_caches(0);
3648
3649 #ifdef CONFIG_SMP
3650 register_cpu_notifier(&slab_notifier);
3651 #endif
3652
3653 printk(KERN_INFO
3654 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3655 " CPUs=%d, Nodes=%d\n",
3656 cache_line_size(),
3657 slub_min_order, slub_max_order, slub_min_objects,
3658 nr_cpu_ids, nr_node_ids);
3659 }
3660
3661 void __init kmem_cache_init_late(void)
3662 {
3663 }
3664
3665 /*
3666 * Find a mergeable slab cache
3667 */
3668 static int slab_unmergeable(struct kmem_cache *s)
3669 {
3670 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3671 return 1;
3672
3673 if (!is_root_cache(s))
3674 return 1;
3675
3676 if (s->ctor)
3677 return 1;
3678
3679 /*
3680 * We may have set a slab to be unmergeable during bootstrap.
3681 */
3682 if (s->refcount < 0)
3683 return 1;
3684
3685 return 0;
3686 }
3687
3688 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3689 unsigned long flags, const char *name, void (*ctor)(void *))
3690 {
3691 struct kmem_cache *s;
3692
3693 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3694 return NULL;
3695
3696 if (ctor)
3697 return NULL;
3698
3699 size = ALIGN(size, sizeof(void *));
3700 align = calculate_alignment(flags, align, size);
3701 size = ALIGN(size, align);
3702 flags = kmem_cache_flags(size, flags, name, NULL);
3703
3704 list_for_each_entry(s, &slab_caches, list) {
3705 if (slab_unmergeable(s))
3706 continue;
3707
3708 if (size > s->size)
3709 continue;
3710
3711 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3712 continue;
3713 /*
3714 * Check if alignment is compatible.
3715 * Courtesy of Adrian Drzewiecki
3716 */
3717 if ((s->size & ~(align - 1)) != s->size)
3718 continue;
3719
3720 if (s->size - size >= sizeof(void *))
3721 continue;
3722
3723 return s;
3724 }
3725 return NULL;
3726 }
3727
3728 struct kmem_cache *
3729 __kmem_cache_alias(const char *name, size_t size, size_t align,
3730 unsigned long flags, void (*ctor)(void *))
3731 {
3732 struct kmem_cache *s;
3733
3734 s = find_mergeable(size, align, flags, name, ctor);
3735 if (s) {
3736 int i;
3737 struct kmem_cache *c;
3738
3739 s->refcount++;
3740
3741 /*
3742 * Adjust the object sizes so that we clear
3743 * the complete object on kzalloc.
3744 */
3745 s->object_size = max(s->object_size, (int)size);
3746 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3747
3748 for_each_memcg_cache_index(i) {
3749 c = cache_from_memcg_idx(s, i);
3750 if (!c)
3751 continue;
3752 c->object_size = s->object_size;
3753 c->inuse = max_t(int, c->inuse,
3754 ALIGN(size, sizeof(void *)));
3755 }
3756
3757 if (sysfs_slab_alias(s, name)) {
3758 s->refcount--;
3759 s = NULL;
3760 }
3761 }
3762
3763 return s;
3764 }
3765
3766 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767 {
3768 int err;
3769
3770 err = kmem_cache_open(s, flags);
3771 if (err)
3772 return err;
3773
3774 /* Mutex is not taken during early boot */
3775 if (slab_state <= UP)
3776 return 0;
3777
3778 memcg_propagate_slab_attrs(s);
3779 err = sysfs_slab_add(s);
3780 if (err)
3781 kmem_cache_close(s);
3782
3783 return err;
3784 }
3785
3786 #ifdef CONFIG_SMP
3787 /*
3788 * Use the cpu notifier to insure that the cpu slabs are flushed when
3789 * necessary.
3790 */
3791 static int slab_cpuup_callback(struct notifier_block *nfb,
3792 unsigned long action, void *hcpu)
3793 {
3794 long cpu = (long)hcpu;
3795 struct kmem_cache *s;
3796 unsigned long flags;
3797
3798 switch (action) {
3799 case CPU_UP_CANCELED:
3800 case CPU_UP_CANCELED_FROZEN:
3801 case CPU_DEAD:
3802 case CPU_DEAD_FROZEN:
3803 mutex_lock(&slab_mutex);
3804 list_for_each_entry(s, &slab_caches, list) {
3805 local_irq_save(flags);
3806 __flush_cpu_slab(s, cpu);
3807 local_irq_restore(flags);
3808 }
3809 mutex_unlock(&slab_mutex);
3810 break;
3811 default:
3812 break;
3813 }
3814 return NOTIFY_OK;
3815 }
3816
3817 static struct notifier_block slab_notifier = {
3818 .notifier_call = slab_cpuup_callback
3819 };
3820
3821 #endif
3822
3823 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3824 {
3825 struct kmem_cache *s;
3826 void *ret;
3827
3828 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829 return kmalloc_large(size, gfpflags);
3830
3831 s = kmalloc_slab(size, gfpflags);
3832
3833 if (unlikely(ZERO_OR_NULL_PTR(s)))
3834 return s;
3835
3836 ret = slab_alloc(s, gfpflags, caller);
3837
3838 /* Honor the call site pointer we received. */
3839 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840
3841 return ret;
3842 }
3843
3844 #ifdef CONFIG_NUMA
3845 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846 int node, unsigned long caller)
3847 {
3848 struct kmem_cache *s;
3849 void *ret;
3850
3851 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 ret = kmalloc_large_node(size, gfpflags, node);
3853
3854 trace_kmalloc_node(caller, ret,
3855 size, PAGE_SIZE << get_order(size),
3856 gfpflags, node);
3857
3858 return ret;
3859 }
3860
3861 s = kmalloc_slab(size, gfpflags);
3862
3863 if (unlikely(ZERO_OR_NULL_PTR(s)))
3864 return s;
3865
3866 ret = slab_alloc_node(s, gfpflags, node, caller);
3867
3868 /* Honor the call site pointer we received. */
3869 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870
3871 return ret;
3872 }
3873 #endif
3874
3875 #ifdef CONFIG_SYSFS
3876 static int count_inuse(struct page *page)
3877 {
3878 return page->inuse;
3879 }
3880
3881 static int count_total(struct page *page)
3882 {
3883 return page->objects;
3884 }
3885 #endif
3886
3887 #ifdef CONFIG_SLUB_DEBUG
3888 static int validate_slab(struct kmem_cache *s, struct page *page,
3889 unsigned long *map)
3890 {
3891 void *p;
3892 void *addr = page_address(page);
3893
3894 if (!check_slab(s, page) ||
3895 !on_freelist(s, page, NULL))
3896 return 0;
3897
3898 /* Now we know that a valid freelist exists */
3899 bitmap_zero(map, page->objects);
3900
3901 get_map(s, page, map);
3902 for_each_object(p, s, addr, page->objects) {
3903 if (test_bit(slab_index(p, s, addr), map))
3904 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3905 return 0;
3906 }
3907
3908 for_each_object(p, s, addr, page->objects)
3909 if (!test_bit(slab_index(p, s, addr), map))
3910 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911 return 0;
3912 return 1;
3913 }
3914
3915 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3916 unsigned long *map)
3917 {
3918 slab_lock(page);
3919 validate_slab(s, page, map);
3920 slab_unlock(page);
3921 }
3922
3923 static int validate_slab_node(struct kmem_cache *s,
3924 struct kmem_cache_node *n, unsigned long *map)
3925 {
3926 unsigned long count = 0;
3927 struct page *page;
3928 unsigned long flags;
3929
3930 spin_lock_irqsave(&n->list_lock, flags);
3931
3932 list_for_each_entry(page, &n->partial, lru) {
3933 validate_slab_slab(s, page, map);
3934 count++;
3935 }
3936 if (count != n->nr_partial)
3937 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3938 "counter=%ld\n", s->name, count, n->nr_partial);
3939
3940 if (!(s->flags & SLAB_STORE_USER))
3941 goto out;
3942
3943 list_for_each_entry(page, &n->full, lru) {
3944 validate_slab_slab(s, page, map);
3945 count++;
3946 }
3947 if (count != atomic_long_read(&n->nr_slabs))
3948 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3949 "counter=%ld\n", s->name, count,
3950 atomic_long_read(&n->nr_slabs));
3951
3952 out:
3953 spin_unlock_irqrestore(&n->list_lock, flags);
3954 return count;
3955 }
3956
3957 static long validate_slab_cache(struct kmem_cache *s)
3958 {
3959 int node;
3960 unsigned long count = 0;
3961 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962 sizeof(unsigned long), GFP_KERNEL);
3963
3964 if (!map)
3965 return -ENOMEM;
3966
3967 flush_all(s);
3968 for_each_node_state(node, N_NORMAL_MEMORY) {
3969 struct kmem_cache_node *n = get_node(s, node);
3970
3971 count += validate_slab_node(s, n, map);
3972 }
3973 kfree(map);
3974 return count;
3975 }
3976 /*
3977 * Generate lists of code addresses where slabcache objects are allocated
3978 * and freed.
3979 */
3980
3981 struct location {
3982 unsigned long count;
3983 unsigned long addr;
3984 long long sum_time;
3985 long min_time;
3986 long max_time;
3987 long min_pid;
3988 long max_pid;
3989 DECLARE_BITMAP(cpus, NR_CPUS);
3990 nodemask_t nodes;
3991 };
3992
3993 struct loc_track {
3994 unsigned long max;
3995 unsigned long count;
3996 struct location *loc;
3997 };
3998
3999 static void free_loc_track(struct loc_track *t)
4000 {
4001 if (t->max)
4002 free_pages((unsigned long)t->loc,
4003 get_order(sizeof(struct location) * t->max));
4004 }
4005
4006 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007 {
4008 struct location *l;
4009 int order;
4010
4011 order = get_order(sizeof(struct location) * max);
4012
4013 l = (void *)__get_free_pages(flags, order);
4014 if (!l)
4015 return 0;
4016
4017 if (t->count) {
4018 memcpy(l, t->loc, sizeof(struct location) * t->count);
4019 free_loc_track(t);
4020 }
4021 t->max = max;
4022 t->loc = l;
4023 return 1;
4024 }
4025
4026 static int add_location(struct loc_track *t, struct kmem_cache *s,
4027 const struct track *track)
4028 {
4029 long start, end, pos;
4030 struct location *l;
4031 unsigned long caddr;
4032 unsigned long age = jiffies - track->when;
4033
4034 start = -1;
4035 end = t->count;
4036
4037 for ( ; ; ) {
4038 pos = start + (end - start + 1) / 2;
4039
4040 /*
4041 * There is nothing at "end". If we end up there
4042 * we need to add something to before end.
4043 */
4044 if (pos == end)
4045 break;
4046
4047 caddr = t->loc[pos].addr;
4048 if (track->addr == caddr) {
4049
4050 l = &t->loc[pos];
4051 l->count++;
4052 if (track->when) {
4053 l->sum_time += age;
4054 if (age < l->min_time)
4055 l->min_time = age;
4056 if (age > l->max_time)
4057 l->max_time = age;
4058
4059 if (track->pid < l->min_pid)
4060 l->min_pid = track->pid;
4061 if (track->pid > l->max_pid)
4062 l->max_pid = track->pid;
4063
4064 cpumask_set_cpu(track->cpu,
4065 to_cpumask(l->cpus));
4066 }
4067 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068 return 1;
4069 }
4070
4071 if (track->addr < caddr)
4072 end = pos;
4073 else
4074 start = pos;
4075 }
4076
4077 /*
4078 * Not found. Insert new tracking element.
4079 */
4080 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081 return 0;
4082
4083 l = t->loc + pos;
4084 if (pos < t->count)
4085 memmove(l + 1, l,
4086 (t->count - pos) * sizeof(struct location));
4087 t->count++;
4088 l->count = 1;
4089 l->addr = track->addr;
4090 l->sum_time = age;
4091 l->min_time = age;
4092 l->max_time = age;
4093 l->min_pid = track->pid;
4094 l->max_pid = track->pid;
4095 cpumask_clear(to_cpumask(l->cpus));
4096 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097 nodes_clear(l->nodes);
4098 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099 return 1;
4100 }
4101
4102 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103 struct page *page, enum track_item alloc,
4104 unsigned long *map)
4105 {
4106 void *addr = page_address(page);
4107 void *p;
4108
4109 bitmap_zero(map, page->objects);
4110 get_map(s, page, map);
4111
4112 for_each_object(p, s, addr, page->objects)
4113 if (!test_bit(slab_index(p, s, addr), map))
4114 add_location(t, s, get_track(s, p, alloc));
4115 }
4116
4117 static int list_locations(struct kmem_cache *s, char *buf,
4118 enum track_item alloc)
4119 {
4120 int len = 0;
4121 unsigned long i;
4122 struct loc_track t = { 0, 0, NULL };
4123 int node;
4124 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125 sizeof(unsigned long), GFP_KERNEL);
4126
4127 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128 GFP_TEMPORARY)) {
4129 kfree(map);
4130 return sprintf(buf, "Out of memory\n");
4131 }
4132 /* Push back cpu slabs */
4133 flush_all(s);
4134
4135 for_each_node_state(node, N_NORMAL_MEMORY) {
4136 struct kmem_cache_node *n = get_node(s, node);
4137 unsigned long flags;
4138 struct page *page;
4139
4140 if (!atomic_long_read(&n->nr_slabs))
4141 continue;
4142
4143 spin_lock_irqsave(&n->list_lock, flags);
4144 list_for_each_entry(page, &n->partial, lru)
4145 process_slab(&t, s, page, alloc, map);
4146 list_for_each_entry(page, &n->full, lru)
4147 process_slab(&t, s, page, alloc, map);
4148 spin_unlock_irqrestore(&n->list_lock, flags);
4149 }
4150
4151 for (i = 0; i < t.count; i++) {
4152 struct location *l = &t.loc[i];
4153
4154 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155 break;
4156 len += sprintf(buf + len, "%7ld ", l->count);
4157
4158 if (l->addr)
4159 len += sprintf(buf + len, "%pS", (void *)l->addr);
4160 else
4161 len += sprintf(buf + len, "<not-available>");
4162
4163 if (l->sum_time != l->min_time) {
4164 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165 l->min_time,
4166 (long)div_u64(l->sum_time, l->count),
4167 l->max_time);
4168 } else
4169 len += sprintf(buf + len, " age=%ld",
4170 l->min_time);
4171
4172 if (l->min_pid != l->max_pid)
4173 len += sprintf(buf + len, " pid=%ld-%ld",
4174 l->min_pid, l->max_pid);
4175 else
4176 len += sprintf(buf + len, " pid=%ld",
4177 l->min_pid);
4178
4179 if (num_online_cpus() > 1 &&
4180 !cpumask_empty(to_cpumask(l->cpus)) &&
4181 len < PAGE_SIZE - 60) {
4182 len += sprintf(buf + len, " cpus=");
4183 len += cpulist_scnprintf(buf + len,
4184 PAGE_SIZE - len - 50,
4185 to_cpumask(l->cpus));
4186 }
4187
4188 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189 len < PAGE_SIZE - 60) {
4190 len += sprintf(buf + len, " nodes=");
4191 len += nodelist_scnprintf(buf + len,
4192 PAGE_SIZE - len - 50,
4193 l->nodes);
4194 }
4195
4196 len += sprintf(buf + len, "\n");
4197 }
4198
4199 free_loc_track(&t);
4200 kfree(map);
4201 if (!t.count)
4202 len += sprintf(buf, "No data\n");
4203 return len;
4204 }
4205 #endif
4206
4207 #ifdef SLUB_RESILIENCY_TEST
4208 static void resiliency_test(void)
4209 {
4210 u8 *p;
4211
4212 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213
4214 printk(KERN_ERR "SLUB resiliency testing\n");
4215 printk(KERN_ERR "-----------------------\n");
4216 printk(KERN_ERR "A. Corruption after allocation\n");
4217
4218 p = kzalloc(16, GFP_KERNEL);
4219 p[16] = 0x12;
4220 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4221 " 0x12->0x%p\n\n", p + 16);
4222
4223 validate_slab_cache(kmalloc_caches[4]);
4224
4225 /* Hmmm... The next two are dangerous */
4226 p = kzalloc(32, GFP_KERNEL);
4227 p[32 + sizeof(void *)] = 0x34;
4228 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4229 " 0x34 -> -0x%p\n", p);
4230 printk(KERN_ERR
4231 "If allocated object is overwritten then not detectable\n\n");
4232
4233 validate_slab_cache(kmalloc_caches[5]);
4234 p = kzalloc(64, GFP_KERNEL);
4235 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4236 *p = 0x56;
4237 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4238 p);
4239 printk(KERN_ERR
4240 "If allocated object is overwritten then not detectable\n\n");
4241 validate_slab_cache(kmalloc_caches[6]);
4242
4243 printk(KERN_ERR "\nB. Corruption after free\n");
4244 p = kzalloc(128, GFP_KERNEL);
4245 kfree(p);
4246 *p = 0x78;
4247 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4248 validate_slab_cache(kmalloc_caches[7]);
4249
4250 p = kzalloc(256, GFP_KERNEL);
4251 kfree(p);
4252 p[50] = 0x9a;
4253 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4254 p);
4255 validate_slab_cache(kmalloc_caches[8]);
4256
4257 p = kzalloc(512, GFP_KERNEL);
4258 kfree(p);
4259 p[512] = 0xab;
4260 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4261 validate_slab_cache(kmalloc_caches[9]);
4262 }
4263 #else
4264 #ifdef CONFIG_SYSFS
4265 static void resiliency_test(void) {};
4266 #endif
4267 #endif
4268
4269 #ifdef CONFIG_SYSFS
4270 enum slab_stat_type {
4271 SL_ALL, /* All slabs */
4272 SL_PARTIAL, /* Only partially allocated slabs */
4273 SL_CPU, /* Only slabs used for cpu caches */
4274 SL_OBJECTS, /* Determine allocated objects not slabs */
4275 SL_TOTAL /* Determine object capacity not slabs */
4276 };
4277
4278 #define SO_ALL (1 << SL_ALL)
4279 #define SO_PARTIAL (1 << SL_PARTIAL)
4280 #define SO_CPU (1 << SL_CPU)
4281 #define SO_OBJECTS (1 << SL_OBJECTS)
4282 #define SO_TOTAL (1 << SL_TOTAL)
4283
4284 static ssize_t show_slab_objects(struct kmem_cache *s,
4285 char *buf, unsigned long flags)
4286 {
4287 unsigned long total = 0;
4288 int node;
4289 int x;
4290 unsigned long *nodes;
4291
4292 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4293 if (!nodes)
4294 return -ENOMEM;
4295
4296 if (flags & SO_CPU) {
4297 int cpu;
4298
4299 for_each_possible_cpu(cpu) {
4300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4301 cpu);
4302 int node;
4303 struct page *page;
4304
4305 page = ACCESS_ONCE(c->page);
4306 if (!page)
4307 continue;
4308
4309 node = page_to_nid(page);
4310 if (flags & SO_TOTAL)
4311 x = page->objects;
4312 else if (flags & SO_OBJECTS)
4313 x = page->inuse;
4314 else
4315 x = 1;
4316
4317 total += x;
4318 nodes[node] += x;
4319
4320 page = ACCESS_ONCE(c->partial);
4321 if (page) {
4322 node = page_to_nid(page);
4323 if (flags & SO_TOTAL)
4324 WARN_ON_ONCE(1);
4325 else if (flags & SO_OBJECTS)
4326 WARN_ON_ONCE(1);
4327 else
4328 x = page->pages;
4329 total += x;
4330 nodes[node] += x;
4331 }
4332 }
4333 }
4334
4335 lock_memory_hotplug();
4336 #ifdef CONFIG_SLUB_DEBUG
4337 if (flags & SO_ALL) {
4338 for_each_node_state(node, N_NORMAL_MEMORY) {
4339 struct kmem_cache_node *n = get_node(s, node);
4340
4341 if (flags & SO_TOTAL)
4342 x = atomic_long_read(&n->total_objects);
4343 else if (flags & SO_OBJECTS)
4344 x = atomic_long_read(&n->total_objects) -
4345 count_partial(n, count_free);
4346 else
4347 x = atomic_long_read(&n->nr_slabs);
4348 total += x;
4349 nodes[node] += x;
4350 }
4351
4352 } else
4353 #endif
4354 if (flags & SO_PARTIAL) {
4355 for_each_node_state(node, N_NORMAL_MEMORY) {
4356 struct kmem_cache_node *n = get_node(s, node);
4357
4358 if (flags & SO_TOTAL)
4359 x = count_partial(n, count_total);
4360 else if (flags & SO_OBJECTS)
4361 x = count_partial(n, count_inuse);
4362 else
4363 x = n->nr_partial;
4364 total += x;
4365 nodes[node] += x;
4366 }
4367 }
4368 x = sprintf(buf, "%lu", total);
4369 #ifdef CONFIG_NUMA
4370 for_each_node_state(node, N_NORMAL_MEMORY)
4371 if (nodes[node])
4372 x += sprintf(buf + x, " N%d=%lu",
4373 node, nodes[node]);
4374 #endif
4375 unlock_memory_hotplug();
4376 kfree(nodes);
4377 return x + sprintf(buf + x, "\n");
4378 }
4379
4380 #ifdef CONFIG_SLUB_DEBUG
4381 static int any_slab_objects(struct kmem_cache *s)
4382 {
4383 int node;
4384
4385 for_each_online_node(node) {
4386 struct kmem_cache_node *n = get_node(s, node);
4387
4388 if (!n)
4389 continue;
4390
4391 if (atomic_long_read(&n->total_objects))
4392 return 1;
4393 }
4394 return 0;
4395 }
4396 #endif
4397
4398 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4399 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4400
4401 struct slab_attribute {
4402 struct attribute attr;
4403 ssize_t (*show)(struct kmem_cache *s, char *buf);
4404 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4405 };
4406
4407 #define SLAB_ATTR_RO(_name) \
4408 static struct slab_attribute _name##_attr = \
4409 __ATTR(_name, 0400, _name##_show, NULL)
4410
4411 #define SLAB_ATTR(_name) \
4412 static struct slab_attribute _name##_attr = \
4413 __ATTR(_name, 0600, _name##_show, _name##_store)
4414
4415 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4416 {
4417 return sprintf(buf, "%d\n", s->size);
4418 }
4419 SLAB_ATTR_RO(slab_size);
4420
4421 static ssize_t align_show(struct kmem_cache *s, char *buf)
4422 {
4423 return sprintf(buf, "%d\n", s->align);
4424 }
4425 SLAB_ATTR_RO(align);
4426
4427 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4428 {
4429 return sprintf(buf, "%d\n", s->object_size);
4430 }
4431 SLAB_ATTR_RO(object_size);
4432
4433 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4434 {
4435 return sprintf(buf, "%d\n", oo_objects(s->oo));
4436 }
4437 SLAB_ATTR_RO(objs_per_slab);
4438
4439 static ssize_t order_store(struct kmem_cache *s,
4440 const char *buf, size_t length)
4441 {
4442 unsigned long order;
4443 int err;
4444
4445 err = kstrtoul(buf, 10, &order);
4446 if (err)
4447 return err;
4448
4449 if (order > slub_max_order || order < slub_min_order)
4450 return -EINVAL;
4451
4452 calculate_sizes(s, order);
4453 return length;
4454 }
4455
4456 static ssize_t order_show(struct kmem_cache *s, char *buf)
4457 {
4458 return sprintf(buf, "%d\n", oo_order(s->oo));
4459 }
4460 SLAB_ATTR(order);
4461
4462 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4463 {
4464 return sprintf(buf, "%lu\n", s->min_partial);
4465 }
4466
4467 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4468 size_t length)
4469 {
4470 unsigned long min;
4471 int err;
4472
4473 err = kstrtoul(buf, 10, &min);
4474 if (err)
4475 return err;
4476
4477 set_min_partial(s, min);
4478 return length;
4479 }
4480 SLAB_ATTR(min_partial);
4481
4482 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4483 {
4484 return sprintf(buf, "%u\n", s->cpu_partial);
4485 }
4486
4487 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4488 size_t length)
4489 {
4490 unsigned long objects;
4491 int err;
4492
4493 err = kstrtoul(buf, 10, &objects);
4494 if (err)
4495 return err;
4496 if (objects && !kmem_cache_has_cpu_partial(s))
4497 return -EINVAL;
4498
4499 s->cpu_partial = objects;
4500 flush_all(s);
4501 return length;
4502 }
4503 SLAB_ATTR(cpu_partial);
4504
4505 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4506 {
4507 if (!s->ctor)
4508 return 0;
4509 return sprintf(buf, "%pS\n", s->ctor);
4510 }
4511 SLAB_ATTR_RO(ctor);
4512
4513 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4514 {
4515 return sprintf(buf, "%d\n", s->refcount - 1);
4516 }
4517 SLAB_ATTR_RO(aliases);
4518
4519 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4520 {
4521 return show_slab_objects(s, buf, SO_PARTIAL);
4522 }
4523 SLAB_ATTR_RO(partial);
4524
4525 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4526 {
4527 return show_slab_objects(s, buf, SO_CPU);
4528 }
4529 SLAB_ATTR_RO(cpu_slabs);
4530
4531 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4532 {
4533 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4534 }
4535 SLAB_ATTR_RO(objects);
4536
4537 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4538 {
4539 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4540 }
4541 SLAB_ATTR_RO(objects_partial);
4542
4543 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4544 {
4545 int objects = 0;
4546 int pages = 0;
4547 int cpu;
4548 int len;
4549
4550 for_each_online_cpu(cpu) {
4551 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4552
4553 if (page) {
4554 pages += page->pages;
4555 objects += page->pobjects;
4556 }
4557 }
4558
4559 len = sprintf(buf, "%d(%d)", objects, pages);
4560
4561 #ifdef CONFIG_SMP
4562 for_each_online_cpu(cpu) {
4563 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4564
4565 if (page && len < PAGE_SIZE - 20)
4566 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4567 page->pobjects, page->pages);
4568 }
4569 #endif
4570 return len + sprintf(buf + len, "\n");
4571 }
4572 SLAB_ATTR_RO(slabs_cpu_partial);
4573
4574 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4575 {
4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4577 }
4578
4579 static ssize_t reclaim_account_store(struct kmem_cache *s,
4580 const char *buf, size_t length)
4581 {
4582 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4583 if (buf[0] == '1')
4584 s->flags |= SLAB_RECLAIM_ACCOUNT;
4585 return length;
4586 }
4587 SLAB_ATTR(reclaim_account);
4588
4589 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4590 {
4591 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4592 }
4593 SLAB_ATTR_RO(hwcache_align);
4594
4595 #ifdef CONFIG_ZONE_DMA
4596 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4597 {
4598 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4599 }
4600 SLAB_ATTR_RO(cache_dma);
4601 #endif
4602
4603 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4604 {
4605 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4606 }
4607 SLAB_ATTR_RO(destroy_by_rcu);
4608
4609 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4610 {
4611 return sprintf(buf, "%d\n", s->reserved);
4612 }
4613 SLAB_ATTR_RO(reserved);
4614
4615 #ifdef CONFIG_SLUB_DEBUG
4616 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4617 {
4618 return show_slab_objects(s, buf, SO_ALL);
4619 }
4620 SLAB_ATTR_RO(slabs);
4621
4622 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4623 {
4624 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4625 }
4626 SLAB_ATTR_RO(total_objects);
4627
4628 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4629 {
4630 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4631 }
4632
4633 static ssize_t sanity_checks_store(struct kmem_cache *s,
4634 const char *buf, size_t length)
4635 {
4636 s->flags &= ~SLAB_DEBUG_FREE;
4637 if (buf[0] == '1') {
4638 s->flags &= ~__CMPXCHG_DOUBLE;
4639 s->flags |= SLAB_DEBUG_FREE;
4640 }
4641 return length;
4642 }
4643 SLAB_ATTR(sanity_checks);
4644
4645 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4646 {
4647 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4648 }
4649
4650 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4651 size_t length)
4652 {
4653 s->flags &= ~SLAB_TRACE;
4654 if (buf[0] == '1') {
4655 s->flags &= ~__CMPXCHG_DOUBLE;
4656 s->flags |= SLAB_TRACE;
4657 }
4658 return length;
4659 }
4660 SLAB_ATTR(trace);
4661
4662 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4663 {
4664 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4665 }
4666
4667 static ssize_t red_zone_store(struct kmem_cache *s,
4668 const char *buf, size_t length)
4669 {
4670 if (any_slab_objects(s))
4671 return -EBUSY;
4672
4673 s->flags &= ~SLAB_RED_ZONE;
4674 if (buf[0] == '1') {
4675 s->flags &= ~__CMPXCHG_DOUBLE;
4676 s->flags |= SLAB_RED_ZONE;
4677 }
4678 calculate_sizes(s, -1);
4679 return length;
4680 }
4681 SLAB_ATTR(red_zone);
4682
4683 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4684 {
4685 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4686 }
4687
4688 static ssize_t poison_store(struct kmem_cache *s,
4689 const char *buf, size_t length)
4690 {
4691 if (any_slab_objects(s))
4692 return -EBUSY;
4693
4694 s->flags &= ~SLAB_POISON;
4695 if (buf[0] == '1') {
4696 s->flags &= ~__CMPXCHG_DOUBLE;
4697 s->flags |= SLAB_POISON;
4698 }
4699 calculate_sizes(s, -1);
4700 return length;
4701 }
4702 SLAB_ATTR(poison);
4703
4704 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4705 {
4706 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4707 }
4708
4709 static ssize_t store_user_store(struct kmem_cache *s,
4710 const char *buf, size_t length)
4711 {
4712 if (any_slab_objects(s))
4713 return -EBUSY;
4714
4715 s->flags &= ~SLAB_STORE_USER;
4716 if (buf[0] == '1') {
4717 s->flags &= ~__CMPXCHG_DOUBLE;
4718 s->flags |= SLAB_STORE_USER;
4719 }
4720 calculate_sizes(s, -1);
4721 return length;
4722 }
4723 SLAB_ATTR(store_user);
4724
4725 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4726 {
4727 return 0;
4728 }
4729
4730 static ssize_t validate_store(struct kmem_cache *s,
4731 const char *buf, size_t length)
4732 {
4733 int ret = -EINVAL;
4734
4735 if (buf[0] == '1') {
4736 ret = validate_slab_cache(s);
4737 if (ret >= 0)
4738 ret = length;
4739 }
4740 return ret;
4741 }
4742 SLAB_ATTR(validate);
4743
4744 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4745 {
4746 if (!(s->flags & SLAB_STORE_USER))
4747 return -ENOSYS;
4748 return list_locations(s, buf, TRACK_ALLOC);
4749 }
4750 SLAB_ATTR_RO(alloc_calls);
4751
4752 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4753 {
4754 if (!(s->flags & SLAB_STORE_USER))
4755 return -ENOSYS;
4756 return list_locations(s, buf, TRACK_FREE);
4757 }
4758 SLAB_ATTR_RO(free_calls);
4759 #endif /* CONFIG_SLUB_DEBUG */
4760
4761 #ifdef CONFIG_FAILSLAB
4762 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4763 {
4764 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4765 }
4766
4767 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4768 size_t length)
4769 {
4770 s->flags &= ~SLAB_FAILSLAB;
4771 if (buf[0] == '1')
4772 s->flags |= SLAB_FAILSLAB;
4773 return length;
4774 }
4775 SLAB_ATTR(failslab);
4776 #endif
4777
4778 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4779 {
4780 return 0;
4781 }
4782
4783 static ssize_t shrink_store(struct kmem_cache *s,
4784 const char *buf, size_t length)
4785 {
4786 if (buf[0] == '1') {
4787 int rc = kmem_cache_shrink(s);
4788
4789 if (rc)
4790 return rc;
4791 } else
4792 return -EINVAL;
4793 return length;
4794 }
4795 SLAB_ATTR(shrink);
4796
4797 #ifdef CONFIG_NUMA
4798 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4799 {
4800 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4801 }
4802
4803 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4804 const char *buf, size_t length)
4805 {
4806 unsigned long ratio;
4807 int err;
4808
4809 err = kstrtoul(buf, 10, &ratio);
4810 if (err)
4811 return err;
4812
4813 if (ratio <= 100)
4814 s->remote_node_defrag_ratio = ratio * 10;
4815
4816 return length;
4817 }
4818 SLAB_ATTR(remote_node_defrag_ratio);
4819 #endif
4820
4821 #ifdef CONFIG_SLUB_STATS
4822 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4823 {
4824 unsigned long sum = 0;
4825 int cpu;
4826 int len;
4827 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4828
4829 if (!data)
4830 return -ENOMEM;
4831
4832 for_each_online_cpu(cpu) {
4833 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4834
4835 data[cpu] = x;
4836 sum += x;
4837 }
4838
4839 len = sprintf(buf, "%lu", sum);
4840
4841 #ifdef CONFIG_SMP
4842 for_each_online_cpu(cpu) {
4843 if (data[cpu] && len < PAGE_SIZE - 20)
4844 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4845 }
4846 #endif
4847 kfree(data);
4848 return len + sprintf(buf + len, "\n");
4849 }
4850
4851 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4852 {
4853 int cpu;
4854
4855 for_each_online_cpu(cpu)
4856 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4857 }
4858
4859 #define STAT_ATTR(si, text) \
4860 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4861 { \
4862 return show_stat(s, buf, si); \
4863 } \
4864 static ssize_t text##_store(struct kmem_cache *s, \
4865 const char *buf, size_t length) \
4866 { \
4867 if (buf[0] != '0') \
4868 return -EINVAL; \
4869 clear_stat(s, si); \
4870 return length; \
4871 } \
4872 SLAB_ATTR(text); \
4873
4874 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4875 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4876 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4877 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4878 STAT_ATTR(FREE_FROZEN, free_frozen);
4879 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4880 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4881 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4882 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4883 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4884 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4885 STAT_ATTR(FREE_SLAB, free_slab);
4886 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4887 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4888 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4889 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4890 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4891 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4892 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4893 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4894 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4895 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4896 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4897 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4898 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4899 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4900 #endif
4901
4902 static struct attribute *slab_attrs[] = {
4903 &slab_size_attr.attr,
4904 &object_size_attr.attr,
4905 &objs_per_slab_attr.attr,
4906 &order_attr.attr,
4907 &min_partial_attr.attr,
4908 &cpu_partial_attr.attr,
4909 &objects_attr.attr,
4910 &objects_partial_attr.attr,
4911 &partial_attr.attr,
4912 &cpu_slabs_attr.attr,
4913 &ctor_attr.attr,
4914 &aliases_attr.attr,
4915 &align_attr.attr,
4916 &hwcache_align_attr.attr,
4917 &reclaim_account_attr.attr,
4918 &destroy_by_rcu_attr.attr,
4919 &shrink_attr.attr,
4920 &reserved_attr.attr,
4921 &slabs_cpu_partial_attr.attr,
4922 #ifdef CONFIG_SLUB_DEBUG
4923 &total_objects_attr.attr,
4924 &slabs_attr.attr,
4925 &sanity_checks_attr.attr,
4926 &trace_attr.attr,
4927 &red_zone_attr.attr,
4928 &poison_attr.attr,
4929 &store_user_attr.attr,
4930 &validate_attr.attr,
4931 &alloc_calls_attr.attr,
4932 &free_calls_attr.attr,
4933 #endif
4934 #ifdef CONFIG_ZONE_DMA
4935 &cache_dma_attr.attr,
4936 #endif
4937 #ifdef CONFIG_NUMA
4938 &remote_node_defrag_ratio_attr.attr,
4939 #endif
4940 #ifdef CONFIG_SLUB_STATS
4941 &alloc_fastpath_attr.attr,
4942 &alloc_slowpath_attr.attr,
4943 &free_fastpath_attr.attr,
4944 &free_slowpath_attr.attr,
4945 &free_frozen_attr.attr,
4946 &free_add_partial_attr.attr,
4947 &free_remove_partial_attr.attr,
4948 &alloc_from_partial_attr.attr,
4949 &alloc_slab_attr.attr,
4950 &alloc_refill_attr.attr,
4951 &alloc_node_mismatch_attr.attr,
4952 &free_slab_attr.attr,
4953 &cpuslab_flush_attr.attr,
4954 &deactivate_full_attr.attr,
4955 &deactivate_empty_attr.attr,
4956 &deactivate_to_head_attr.attr,
4957 &deactivate_to_tail_attr.attr,
4958 &deactivate_remote_frees_attr.attr,
4959 &deactivate_bypass_attr.attr,
4960 &order_fallback_attr.attr,
4961 &cmpxchg_double_fail_attr.attr,
4962 &cmpxchg_double_cpu_fail_attr.attr,
4963 &cpu_partial_alloc_attr.attr,
4964 &cpu_partial_free_attr.attr,
4965 &cpu_partial_node_attr.attr,
4966 &cpu_partial_drain_attr.attr,
4967 #endif
4968 #ifdef CONFIG_FAILSLAB
4969 &failslab_attr.attr,
4970 #endif
4971
4972 NULL
4973 };
4974
4975 static struct attribute_group slab_attr_group = {
4976 .attrs = slab_attrs,
4977 };
4978
4979 static ssize_t slab_attr_show(struct kobject *kobj,
4980 struct attribute *attr,
4981 char *buf)
4982 {
4983 struct slab_attribute *attribute;
4984 struct kmem_cache *s;
4985 int err;
4986
4987 attribute = to_slab_attr(attr);
4988 s = to_slab(kobj);
4989
4990 if (!attribute->show)
4991 return -EIO;
4992
4993 err = attribute->show(s, buf);
4994
4995 return err;
4996 }
4997
4998 static ssize_t slab_attr_store(struct kobject *kobj,
4999 struct attribute *attr,
5000 const char *buf, size_t len)
5001 {
5002 struct slab_attribute *attribute;
5003 struct kmem_cache *s;
5004 int err;
5005
5006 attribute = to_slab_attr(attr);
5007 s = to_slab(kobj);
5008
5009 if (!attribute->store)
5010 return -EIO;
5011
5012 err = attribute->store(s, buf, len);
5013 #ifdef CONFIG_MEMCG_KMEM
5014 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5015 int i;
5016
5017 mutex_lock(&slab_mutex);
5018 if (s->max_attr_size < len)
5019 s->max_attr_size = len;
5020
5021 /*
5022 * This is a best effort propagation, so this function's return
5023 * value will be determined by the parent cache only. This is
5024 * basically because not all attributes will have a well
5025 * defined semantics for rollbacks - most of the actions will
5026 * have permanent effects.
5027 *
5028 * Returning the error value of any of the children that fail
5029 * is not 100 % defined, in the sense that users seeing the
5030 * error code won't be able to know anything about the state of
5031 * the cache.
5032 *
5033 * Only returning the error code for the parent cache at least
5034 * has well defined semantics. The cache being written to
5035 * directly either failed or succeeded, in which case we loop
5036 * through the descendants with best-effort propagation.
5037 */
5038 for_each_memcg_cache_index(i) {
5039 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5040 if (c)
5041 attribute->store(c, buf, len);
5042 }
5043 mutex_unlock(&slab_mutex);
5044 }
5045 #endif
5046 return err;
5047 }
5048
5049 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5050 {
5051 #ifdef CONFIG_MEMCG_KMEM
5052 int i;
5053 char *buffer = NULL;
5054 struct kmem_cache *root_cache;
5055
5056 if (is_root_cache(s))
5057 return;
5058
5059 root_cache = s->memcg_params->root_cache;
5060
5061 /*
5062 * This mean this cache had no attribute written. Therefore, no point
5063 * in copying default values around
5064 */
5065 if (!root_cache->max_attr_size)
5066 return;
5067
5068 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5069 char mbuf[64];
5070 char *buf;
5071 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5072
5073 if (!attr || !attr->store || !attr->show)
5074 continue;
5075
5076 /*
5077 * It is really bad that we have to allocate here, so we will
5078 * do it only as a fallback. If we actually allocate, though,
5079 * we can just use the allocated buffer until the end.
5080 *
5081 * Most of the slub attributes will tend to be very small in
5082 * size, but sysfs allows buffers up to a page, so they can
5083 * theoretically happen.
5084 */
5085 if (buffer)
5086 buf = buffer;
5087 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5088 buf = mbuf;
5089 else {
5090 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5091 if (WARN_ON(!buffer))
5092 continue;
5093 buf = buffer;
5094 }
5095
5096 attr->show(root_cache, buf);
5097 attr->store(s, buf, strlen(buf));
5098 }
5099
5100 if (buffer)
5101 free_page((unsigned long)buffer);
5102 #endif
5103 }
5104
5105 static void kmem_cache_release(struct kobject *k)
5106 {
5107 slab_kmem_cache_release(to_slab(k));
5108 }
5109
5110 static const struct sysfs_ops slab_sysfs_ops = {
5111 .show = slab_attr_show,
5112 .store = slab_attr_store,
5113 };
5114
5115 static struct kobj_type slab_ktype = {
5116 .sysfs_ops = &slab_sysfs_ops,
5117 .release = kmem_cache_release,
5118 };
5119
5120 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5121 {
5122 struct kobj_type *ktype = get_ktype(kobj);
5123
5124 if (ktype == &slab_ktype)
5125 return 1;
5126 return 0;
5127 }
5128
5129 static const struct kset_uevent_ops slab_uevent_ops = {
5130 .filter = uevent_filter,
5131 };
5132
5133 static struct kset *slab_kset;
5134
5135 static inline struct kset *cache_kset(struct kmem_cache *s)
5136 {
5137 #ifdef CONFIG_MEMCG_KMEM
5138 if (!is_root_cache(s))
5139 return s->memcg_params->root_cache->memcg_kset;
5140 #endif
5141 return slab_kset;
5142 }
5143
5144 #define ID_STR_LENGTH 64
5145
5146 /* Create a unique string id for a slab cache:
5147 *
5148 * Format :[flags-]size
5149 */
5150 static char *create_unique_id(struct kmem_cache *s)
5151 {
5152 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5153 char *p = name;
5154
5155 BUG_ON(!name);
5156
5157 *p++ = ':';
5158 /*
5159 * First flags affecting slabcache operations. We will only
5160 * get here for aliasable slabs so we do not need to support
5161 * too many flags. The flags here must cover all flags that
5162 * are matched during merging to guarantee that the id is
5163 * unique.
5164 */
5165 if (s->flags & SLAB_CACHE_DMA)
5166 *p++ = 'd';
5167 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5168 *p++ = 'a';
5169 if (s->flags & SLAB_DEBUG_FREE)
5170 *p++ = 'F';
5171 if (!(s->flags & SLAB_NOTRACK))
5172 *p++ = 't';
5173 if (p != name + 1)
5174 *p++ = '-';
5175 p += sprintf(p, "%07d", s->size);
5176
5177 #ifdef CONFIG_MEMCG_KMEM
5178 if (!is_root_cache(s))
5179 p += sprintf(p, "-%08d",
5180 memcg_cache_id(s->memcg_params->memcg));
5181 #endif
5182
5183 BUG_ON(p > name + ID_STR_LENGTH - 1);
5184 return name;
5185 }
5186
5187 static int sysfs_slab_add(struct kmem_cache *s)
5188 {
5189 int err;
5190 const char *name;
5191 int unmergeable = slab_unmergeable(s);
5192
5193 if (unmergeable) {
5194 /*
5195 * Slabcache can never be merged so we can use the name proper.
5196 * This is typically the case for debug situations. In that
5197 * case we can catch duplicate names easily.
5198 */
5199 sysfs_remove_link(&slab_kset->kobj, s->name);
5200 name = s->name;
5201 } else {
5202 /*
5203 * Create a unique name for the slab as a target
5204 * for the symlinks.
5205 */
5206 name = create_unique_id(s);
5207 }
5208
5209 s->kobj.kset = cache_kset(s);
5210 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5211 if (err)
5212 goto out_put_kobj;
5213
5214 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5215 if (err)
5216 goto out_del_kobj;
5217
5218 #ifdef CONFIG_MEMCG_KMEM
5219 if (is_root_cache(s)) {
5220 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5221 if (!s->memcg_kset) {
5222 err = -ENOMEM;
5223 goto out_del_kobj;
5224 }
5225 }
5226 #endif
5227
5228 kobject_uevent(&s->kobj, KOBJ_ADD);
5229 if (!unmergeable) {
5230 /* Setup first alias */
5231 sysfs_slab_alias(s, s->name);
5232 }
5233 out:
5234 if (!unmergeable)
5235 kfree(name);
5236 return err;
5237 out_del_kobj:
5238 kobject_del(&s->kobj);
5239 out_put_kobj:
5240 kobject_put(&s->kobj);
5241 goto out;
5242 }
5243
5244 void sysfs_slab_remove(struct kmem_cache *s)
5245 {
5246 if (slab_state < FULL)
5247 /*
5248 * Sysfs has not been setup yet so no need to remove the
5249 * cache from sysfs.
5250 */
5251 return;
5252
5253 #ifdef CONFIG_MEMCG_KMEM
5254 kset_unregister(s->memcg_kset);
5255 #endif
5256 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5257 kobject_del(&s->kobj);
5258 kobject_put(&s->kobj);
5259 }
5260
5261 /*
5262 * Need to buffer aliases during bootup until sysfs becomes
5263 * available lest we lose that information.
5264 */
5265 struct saved_alias {
5266 struct kmem_cache *s;
5267 const char *name;
5268 struct saved_alias *next;
5269 };
5270
5271 static struct saved_alias *alias_list;
5272
5273 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5274 {
5275 struct saved_alias *al;
5276
5277 if (slab_state == FULL) {
5278 /*
5279 * If we have a leftover link then remove it.
5280 */
5281 sysfs_remove_link(&slab_kset->kobj, name);
5282 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5283 }
5284
5285 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5286 if (!al)
5287 return -ENOMEM;
5288
5289 al->s = s;
5290 al->name = name;
5291 al->next = alias_list;
5292 alias_list = al;
5293 return 0;
5294 }
5295
5296 static int __init slab_sysfs_init(void)
5297 {
5298 struct kmem_cache *s;
5299 int err;
5300
5301 mutex_lock(&slab_mutex);
5302
5303 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5304 if (!slab_kset) {
5305 mutex_unlock(&slab_mutex);
5306 printk(KERN_ERR "Cannot register slab subsystem.\n");
5307 return -ENOSYS;
5308 }
5309
5310 slab_state = FULL;
5311
5312 list_for_each_entry(s, &slab_caches, list) {
5313 err = sysfs_slab_add(s);
5314 if (err)
5315 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5316 " to sysfs\n", s->name);
5317 }
5318
5319 while (alias_list) {
5320 struct saved_alias *al = alias_list;
5321
5322 alias_list = alias_list->next;
5323 err = sysfs_slab_alias(al->s, al->name);
5324 if (err)
5325 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5326 " %s to sysfs\n", al->name);
5327 kfree(al);
5328 }
5329
5330 mutex_unlock(&slab_mutex);
5331 resiliency_test();
5332 return 0;
5333 }
5334
5335 __initcall(slab_sysfs_init);
5336 #endif /* CONFIG_SYSFS */
5337
5338 /*
5339 * The /proc/slabinfo ABI
5340 */
5341 #ifdef CONFIG_SLABINFO
5342 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5343 {
5344 unsigned long nr_slabs = 0;
5345 unsigned long nr_objs = 0;
5346 unsigned long nr_free = 0;
5347 int node;
5348
5349 for_each_online_node(node) {
5350 struct kmem_cache_node *n = get_node(s, node);
5351
5352 if (!n)
5353 continue;
5354
5355 nr_slabs += node_nr_slabs(n);
5356 nr_objs += node_nr_objs(n);
5357 nr_free += count_partial(n, count_free);
5358 }
5359
5360 sinfo->active_objs = nr_objs - nr_free;
5361 sinfo->num_objs = nr_objs;
5362 sinfo->active_slabs = nr_slabs;
5363 sinfo->num_slabs = nr_slabs;
5364 sinfo->objects_per_slab = oo_objects(s->oo);
5365 sinfo->cache_order = oo_order(s->oo);
5366 }
5367
5368 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5369 {
5370 }
5371
5372 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5373 size_t count, loff_t *ppos)
5374 {
5375 return -EIO;
5376 }
5377 #endif /* CONFIG_SLABINFO */
This page took 0.142152 seconds and 5 git commands to generate.