tmpfs: avoid a little creat and stat slowdown
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470
471 /*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477 static inline void metadata_access_enable(void)
478 {
479 kasan_disable_current();
480 }
481
482 static inline void metadata_access_disable(void)
483 {
484 kasan_enable_current();
485 }
486
487 /*
488 * Object debugging
489 */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 metadata_access_enable();
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
495 metadata_access_disable();
496 }
497
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500 {
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509 }
510
511 static void set_track(struct kmem_cache *s, void *object,
512 enum track_item alloc, unsigned long addr)
513 {
514 struct track *p = get_track(s, object, alloc);
515
516 if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
525 metadata_access_enable();
526 save_stack_trace(&trace);
527 metadata_access_disable();
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536 #endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543 }
544
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553
554 static void print_track(const char *s, struct track *t)
555 {
556 if (!t->addr)
557 return;
558
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 pr_err("\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570 #endif
571 }
572
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581
582 static void print_page_info(struct page *page)
583 {
584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
586
587 }
588
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 struct va_format vaf;
592 va_list args;
593
594 va_start(args, fmt);
595 vaf.fmt = fmt;
596 vaf.va = &args;
597 pr_err("=============================================================================\n");
598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 pr_err("-----------------------------------------------------------------------------\n\n");
600
601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 va_end(args);
603 }
604
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
614 va_end(args);
615 }
616
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 unsigned int off; /* Offset of last byte */
620 u8 *addr = page_address(page);
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
628
629 if (p > addr + 16)
630 print_section("Bytes b4 ", p - 16, 16);
631
632 print_section("Object ", p, min_t(unsigned long, s->object_size,
633 PAGE_SIZE));
634 if (s->flags & SLAB_RED_ZONE)
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
637
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
643 if (s->flags & SLAB_STORE_USER)
644 off += 2 * sizeof(struct track);
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
648 print_section("Padding ", p + off, s->size - off);
649
650 dump_stack();
651 }
652
653 void object_err(struct kmem_cache *s, struct page *page,
654 u8 *object, char *reason)
655 {
656 slab_bug(s, "%s", reason);
657 print_trailer(s, page, object);
658 }
659
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
662 {
663 va_list args;
664 char buf[100];
665
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
668 va_end(args);
669 slab_bug(s, "%s", buf);
670 print_page_info(page);
671 dump_stack();
672 }
673
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
684 memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689 {
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692 }
693
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
696 u8 *start, unsigned int value, unsigned int bytes)
697 {
698 u8 *fault;
699 u8 *end;
700
701 metadata_access_enable();
702 fault = memchr_inv(start, value, bytes);
703 metadata_access_disable();
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
718 }
719
720 /*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
727 *
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
731 * object + s->object_size
732 * Padding to reach word boundary. This is also used for Redzoning.
733 * Padding is extended by another word if Redzoning is enabled and
734 * object_size == inuse.
735 *
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
740 * Meta data starts here.
741 *
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
744 * C. Padding to reach required alignment boundary or at mininum
745 * one word if debugging is on to be able to detect writes
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
749 *
750 * object + s->size
751 * Nothing is used beyond s->size.
752 *
753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
754 * ignored. And therefore no slab options that rely on these boundaries
755 * may be used with merged slabcaches.
756 */
757
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
775 }
776
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
789 start = page_address(page);
790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 end = start + length;
792 remainder = length % s->size;
793 if (!remainder)
794 return 1;
795
796 metadata_access_enable();
797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 metadata_access_disable();
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 print_section("Padding ", end - remainder, remainder);
806
807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 return 0;
809 }
810
811 static int check_object(struct kmem_cache *s, struct page *page,
812 void *object, u8 val)
813 {
814 u8 *p = object;
815 u8 *endobject = object + s->object_size;
816
817 if (s->flags & SLAB_RED_ZONE) {
818 if (!check_bytes_and_report(s, page, object, "Redzone",
819 endobject, val, s->inuse - s->object_size))
820 return 0;
821 } else {
822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 check_bytes_and_report(s, page, p, "Alignment padding",
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
826 }
827 }
828
829 if (s->flags & SLAB_POISON) {
830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 (!check_bytes_and_report(s, page, p, "Poison", p,
832 POISON_FREE, s->object_size - 1) ||
833 !check_bytes_and_report(s, page, p, "Poison",
834 p + s->object_size - 1, POISON_END, 1)))
835 return 0;
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
842 if (!s->offset && val == SLUB_RED_ACTIVE)
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
853 * No choice but to zap it and thus lose the remainder
854 * of the free objects in this slab. May cause
855 * another error because the object count is now wrong.
856 */
857 set_freepointer(s, p, NULL);
858 return 0;
859 }
860 return 1;
861 }
862
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 int maxobj;
866
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
870 slab_err(s, page, "Not a valid slab page");
871 return 0;
872 }
873
874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
877 page->objects, maxobj);
878 return 0;
879 }
880 if (page->inuse > page->objects) {
881 slab_err(s, page, "inuse %u > max %u",
882 page->inuse, page->objects);
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888 }
889
890 /*
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
893 */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 int nr = 0;
897 void *fp;
898 void *object = NULL;
899 int max_objects;
900
901 fp = page->freelist;
902 while (fp && nr <= page->objects) {
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
909 set_freepointer(s, object, NULL);
910 } else {
911 slab_err(s, page, "Freepointer corrupt");
912 page->freelist = NULL;
913 page->inuse = page->objects;
914 slab_fix(s, "Freelist cleared");
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
934 if (page->inuse != page->objects - nr) {
935 slab_err(s, page, "Wrong object count. Counter is %d but "
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
938 slab_fix(s, "Object count adjusted.");
939 }
940 return search == NULL;
941 }
942
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
945 {
946 if (s->flags & SLAB_TRACE) {
947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
954 print_section("Object ", (void *)object,
955 s->object_size);
956
957 dump_stack();
958 }
959 }
960
961 /*
962 * Tracking of fully allocated slabs for debugging purposes.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 lockdep_assert_held(&n->list_lock);
971 list_add(&page->lru, &n->full);
972 }
973
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
979 lockdep_assert_held(&n->list_lock);
980 list_del(&page->lru);
981 }
982
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989 }
990
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 return atomic_long_read(&n->nr_slabs);
994 }
995
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
1006 if (likely(n)) {
1007 atomic_long_inc(&n->nr_slabs);
1008 atomic_long_add(objects, &n->total_objects);
1009 }
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
1016 atomic_long_sub(objects, &n->total_objects);
1017 }
1018
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022 {
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
1026 init_object(s, object, SLUB_RED_INACTIVE);
1027 init_tracking(s, object);
1028 }
1029
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
1098 dump_stack();
1099 } else
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
1102 goto fail;
1103 }
1104
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
1108 init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 slab_unlock(page);
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
1116
1117 fail:
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
1120 slab_fix(s, "Object at 0x%p not freed", object);
1121 return NULL;
1122 }
1123
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
1150 for (; *str && *str != ','; str++) {
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
1177 default:
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
1180 }
1181 }
1182
1183 check_slabs:
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
1186 out:
1187 return 1;
1188 }
1189
1190 __setup("slub_debug", setup_slub_debug);
1191
1192 unsigned long kmem_cache_flags(unsigned long object_size,
1193 unsigned long flags, const char *name,
1194 void (*ctor)(void *))
1195 {
1196 /*
1197 * Enable debugging if selected on the kernel commandline.
1198 */
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201 flags |= slub_debug;
1202
1203 return flags;
1204 }
1205 #else
1206 static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
1208
1209 static inline int alloc_debug_processing(struct kmem_cache *s,
1210 struct page *page, void *object, unsigned long addr) { return 0; }
1211
1212 static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
1215
1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218 static inline int check_object(struct kmem_cache *s, struct page *page,
1219 void *object, u8 val) { return 1; }
1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 unsigned long kmem_cache_flags(unsigned long object_size,
1225 unsigned long flags, const char *name,
1226 void (*ctor)(void *))
1227 {
1228 return flags;
1229 }
1230 #define slub_debug 0
1231
1232 #define disable_higher_order_debug 0
1233
1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
1238 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242
1243 #endif /* CONFIG_SLUB_DEBUG */
1244
1245 /*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250 {
1251 kmemleak_alloc(ptr, size, 1, flags);
1252 kasan_kmalloc_large(ptr, size);
1253 }
1254
1255 static inline void kfree_hook(const void *x)
1256 {
1257 kmemleak_free(x);
1258 kasan_kfree_large(x);
1259 }
1260
1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
1263 {
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
1267
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
1272 }
1273
1274 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
1276 {
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280 memcg_kmem_put_cache(s);
1281 kasan_slab_alloc(s, object);
1282 }
1283
1284 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285 {
1286 kmemleak_free_recursive(x, s->flags);
1287
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302 #endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
1305
1306 kasan_slab_free(s, x);
1307 }
1308
1309 static void setup_object(struct kmem_cache *s, struct page *page,
1310 void *object)
1311 {
1312 setup_object_debug(s, page, object);
1313 if (unlikely(s->ctor)) {
1314 kasan_unpoison_object_data(s, object);
1315 s->ctor(object);
1316 kasan_poison_object_data(s, object);
1317 }
1318 }
1319
1320 /*
1321 * Slab allocation and freeing
1322 */
1323 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1324 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1325 {
1326 struct page *page;
1327 int order = oo_order(oo);
1328
1329 flags |= __GFP_NOTRACK;
1330
1331 if (node == NUMA_NO_NODE)
1332 page = alloc_pages(flags, order);
1333 else
1334 page = __alloc_pages_node(node, flags, order);
1335
1336 if (page && memcg_charge_slab(page, flags, order, s)) {
1337 __free_pages(page, order);
1338 page = NULL;
1339 }
1340
1341 return page;
1342 }
1343
1344 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1345 {
1346 struct page *page;
1347 struct kmem_cache_order_objects oo = s->oo;
1348 gfp_t alloc_gfp;
1349 void *start, *p;
1350 int idx, order;
1351
1352 flags &= gfp_allowed_mask;
1353
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1356
1357 flags |= s->allocflags;
1358
1359 /*
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1362 */
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364 if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min))
1365 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT;
1366
1367 page = alloc_slab_page(s, alloc_gfp, node, oo);
1368 if (unlikely(!page)) {
1369 oo = s->min;
1370 alloc_gfp = flags;
1371 /*
1372 * Allocation may have failed due to fragmentation.
1373 * Try a lower order alloc if possible
1374 */
1375 page = alloc_slab_page(s, alloc_gfp, node, oo);
1376 if (unlikely(!page))
1377 goto out;
1378 stat(s, ORDER_FALLBACK);
1379 }
1380
1381 if (kmemcheck_enabled &&
1382 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1383 int pages = 1 << oo_order(oo);
1384
1385 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1386
1387 /*
1388 * Objects from caches that have a constructor don't get
1389 * cleared when they're allocated, so we need to do it here.
1390 */
1391 if (s->ctor)
1392 kmemcheck_mark_uninitialized_pages(page, pages);
1393 else
1394 kmemcheck_mark_unallocated_pages(page, pages);
1395 }
1396
1397 page->objects = oo_objects(oo);
1398
1399 order = compound_order(page);
1400 page->slab_cache = s;
1401 __SetPageSlab(page);
1402 if (page_is_pfmemalloc(page))
1403 SetPageSlabPfmemalloc(page);
1404
1405 start = page_address(page);
1406
1407 if (unlikely(s->flags & SLAB_POISON))
1408 memset(start, POISON_INUSE, PAGE_SIZE << order);
1409
1410 kasan_poison_slab(page);
1411
1412 for_each_object_idx(p, idx, s, start, page->objects) {
1413 setup_object(s, page, p);
1414 if (likely(idx < page->objects))
1415 set_freepointer(s, p, p + s->size);
1416 else
1417 set_freepointer(s, p, NULL);
1418 }
1419
1420 page->freelist = start;
1421 page->inuse = page->objects;
1422 page->frozen = 1;
1423
1424 out:
1425 if (flags & __GFP_WAIT)
1426 local_irq_disable();
1427 if (!page)
1428 return NULL;
1429
1430 mod_zone_page_state(page_zone(page),
1431 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1432 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1433 1 << oo_order(oo));
1434
1435 inc_slabs_node(s, page_to_nid(page), page->objects);
1436
1437 return page;
1438 }
1439
1440 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1441 {
1442 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1443 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1444 BUG();
1445 }
1446
1447 return allocate_slab(s,
1448 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1449 }
1450
1451 static void __free_slab(struct kmem_cache *s, struct page *page)
1452 {
1453 int order = compound_order(page);
1454 int pages = 1 << order;
1455
1456 if (kmem_cache_debug(s)) {
1457 void *p;
1458
1459 slab_pad_check(s, page);
1460 for_each_object(p, s, page_address(page),
1461 page->objects)
1462 check_object(s, page, p, SLUB_RED_INACTIVE);
1463 }
1464
1465 kmemcheck_free_shadow(page, compound_order(page));
1466
1467 mod_zone_page_state(page_zone(page),
1468 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1469 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1470 -pages);
1471
1472 __ClearPageSlabPfmemalloc(page);
1473 __ClearPageSlab(page);
1474
1475 page_mapcount_reset(page);
1476 if (current->reclaim_state)
1477 current->reclaim_state->reclaimed_slab += pages;
1478 __free_kmem_pages(page, order);
1479 }
1480
1481 #define need_reserve_slab_rcu \
1482 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1483
1484 static void rcu_free_slab(struct rcu_head *h)
1485 {
1486 struct page *page;
1487
1488 if (need_reserve_slab_rcu)
1489 page = virt_to_head_page(h);
1490 else
1491 page = container_of((struct list_head *)h, struct page, lru);
1492
1493 __free_slab(page->slab_cache, page);
1494 }
1495
1496 static void free_slab(struct kmem_cache *s, struct page *page)
1497 {
1498 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1499 struct rcu_head *head;
1500
1501 if (need_reserve_slab_rcu) {
1502 int order = compound_order(page);
1503 int offset = (PAGE_SIZE << order) - s->reserved;
1504
1505 VM_BUG_ON(s->reserved != sizeof(*head));
1506 head = page_address(page) + offset;
1507 } else {
1508 /*
1509 * RCU free overloads the RCU head over the LRU
1510 */
1511 head = (void *)&page->lru;
1512 }
1513
1514 call_rcu(head, rcu_free_slab);
1515 } else
1516 __free_slab(s, page);
1517 }
1518
1519 static void discard_slab(struct kmem_cache *s, struct page *page)
1520 {
1521 dec_slabs_node(s, page_to_nid(page), page->objects);
1522 free_slab(s, page);
1523 }
1524
1525 /*
1526 * Management of partially allocated slabs.
1527 */
1528 static inline void
1529 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1530 {
1531 n->nr_partial++;
1532 if (tail == DEACTIVATE_TO_TAIL)
1533 list_add_tail(&page->lru, &n->partial);
1534 else
1535 list_add(&page->lru, &n->partial);
1536 }
1537
1538 static inline void add_partial(struct kmem_cache_node *n,
1539 struct page *page, int tail)
1540 {
1541 lockdep_assert_held(&n->list_lock);
1542 __add_partial(n, page, tail);
1543 }
1544
1545 static inline void
1546 __remove_partial(struct kmem_cache_node *n, struct page *page)
1547 {
1548 list_del(&page->lru);
1549 n->nr_partial--;
1550 }
1551
1552 static inline void remove_partial(struct kmem_cache_node *n,
1553 struct page *page)
1554 {
1555 lockdep_assert_held(&n->list_lock);
1556 __remove_partial(n, page);
1557 }
1558
1559 /*
1560 * Remove slab from the partial list, freeze it and
1561 * return the pointer to the freelist.
1562 *
1563 * Returns a list of objects or NULL if it fails.
1564 */
1565 static inline void *acquire_slab(struct kmem_cache *s,
1566 struct kmem_cache_node *n, struct page *page,
1567 int mode, int *objects)
1568 {
1569 void *freelist;
1570 unsigned long counters;
1571 struct page new;
1572
1573 lockdep_assert_held(&n->list_lock);
1574
1575 /*
1576 * Zap the freelist and set the frozen bit.
1577 * The old freelist is the list of objects for the
1578 * per cpu allocation list.
1579 */
1580 freelist = page->freelist;
1581 counters = page->counters;
1582 new.counters = counters;
1583 *objects = new.objects - new.inuse;
1584 if (mode) {
1585 new.inuse = page->objects;
1586 new.freelist = NULL;
1587 } else {
1588 new.freelist = freelist;
1589 }
1590
1591 VM_BUG_ON(new.frozen);
1592 new.frozen = 1;
1593
1594 if (!__cmpxchg_double_slab(s, page,
1595 freelist, counters,
1596 new.freelist, new.counters,
1597 "acquire_slab"))
1598 return NULL;
1599
1600 remove_partial(n, page);
1601 WARN_ON(!freelist);
1602 return freelist;
1603 }
1604
1605 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1606 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1607
1608 /*
1609 * Try to allocate a partial slab from a specific node.
1610 */
1611 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1612 struct kmem_cache_cpu *c, gfp_t flags)
1613 {
1614 struct page *page, *page2;
1615 void *object = NULL;
1616 int available = 0;
1617 int objects;
1618
1619 /*
1620 * Racy check. If we mistakenly see no partial slabs then we
1621 * just allocate an empty slab. If we mistakenly try to get a
1622 * partial slab and there is none available then get_partials()
1623 * will return NULL.
1624 */
1625 if (!n || !n->nr_partial)
1626 return NULL;
1627
1628 spin_lock(&n->list_lock);
1629 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1630 void *t;
1631
1632 if (!pfmemalloc_match(page, flags))
1633 continue;
1634
1635 t = acquire_slab(s, n, page, object == NULL, &objects);
1636 if (!t)
1637 break;
1638
1639 available += objects;
1640 if (!object) {
1641 c->page = page;
1642 stat(s, ALLOC_FROM_PARTIAL);
1643 object = t;
1644 } else {
1645 put_cpu_partial(s, page, 0);
1646 stat(s, CPU_PARTIAL_NODE);
1647 }
1648 if (!kmem_cache_has_cpu_partial(s)
1649 || available > s->cpu_partial / 2)
1650 break;
1651
1652 }
1653 spin_unlock(&n->list_lock);
1654 return object;
1655 }
1656
1657 /*
1658 * Get a page from somewhere. Search in increasing NUMA distances.
1659 */
1660 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1661 struct kmem_cache_cpu *c)
1662 {
1663 #ifdef CONFIG_NUMA
1664 struct zonelist *zonelist;
1665 struct zoneref *z;
1666 struct zone *zone;
1667 enum zone_type high_zoneidx = gfp_zone(flags);
1668 void *object;
1669 unsigned int cpuset_mems_cookie;
1670
1671 /*
1672 * The defrag ratio allows a configuration of the tradeoffs between
1673 * inter node defragmentation and node local allocations. A lower
1674 * defrag_ratio increases the tendency to do local allocations
1675 * instead of attempting to obtain partial slabs from other nodes.
1676 *
1677 * If the defrag_ratio is set to 0 then kmalloc() always
1678 * returns node local objects. If the ratio is higher then kmalloc()
1679 * may return off node objects because partial slabs are obtained
1680 * from other nodes and filled up.
1681 *
1682 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1683 * defrag_ratio = 1000) then every (well almost) allocation will
1684 * first attempt to defrag slab caches on other nodes. This means
1685 * scanning over all nodes to look for partial slabs which may be
1686 * expensive if we do it every time we are trying to find a slab
1687 * with available objects.
1688 */
1689 if (!s->remote_node_defrag_ratio ||
1690 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1691 return NULL;
1692
1693 do {
1694 cpuset_mems_cookie = read_mems_allowed_begin();
1695 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1696 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1697 struct kmem_cache_node *n;
1698
1699 n = get_node(s, zone_to_nid(zone));
1700
1701 if (n && cpuset_zone_allowed(zone, flags) &&
1702 n->nr_partial > s->min_partial) {
1703 object = get_partial_node(s, n, c, flags);
1704 if (object) {
1705 /*
1706 * Don't check read_mems_allowed_retry()
1707 * here - if mems_allowed was updated in
1708 * parallel, that was a harmless race
1709 * between allocation and the cpuset
1710 * update
1711 */
1712 return object;
1713 }
1714 }
1715 }
1716 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1717 #endif
1718 return NULL;
1719 }
1720
1721 /*
1722 * Get a partial page, lock it and return it.
1723 */
1724 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1725 struct kmem_cache_cpu *c)
1726 {
1727 void *object;
1728 int searchnode = node;
1729
1730 if (node == NUMA_NO_NODE)
1731 searchnode = numa_mem_id();
1732 else if (!node_present_pages(node))
1733 searchnode = node_to_mem_node(node);
1734
1735 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1736 if (object || node != NUMA_NO_NODE)
1737 return object;
1738
1739 return get_any_partial(s, flags, c);
1740 }
1741
1742 #ifdef CONFIG_PREEMPT
1743 /*
1744 * Calculate the next globally unique transaction for disambiguiation
1745 * during cmpxchg. The transactions start with the cpu number and are then
1746 * incremented by CONFIG_NR_CPUS.
1747 */
1748 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1749 #else
1750 /*
1751 * No preemption supported therefore also no need to check for
1752 * different cpus.
1753 */
1754 #define TID_STEP 1
1755 #endif
1756
1757 static inline unsigned long next_tid(unsigned long tid)
1758 {
1759 return tid + TID_STEP;
1760 }
1761
1762 static inline unsigned int tid_to_cpu(unsigned long tid)
1763 {
1764 return tid % TID_STEP;
1765 }
1766
1767 static inline unsigned long tid_to_event(unsigned long tid)
1768 {
1769 return tid / TID_STEP;
1770 }
1771
1772 static inline unsigned int init_tid(int cpu)
1773 {
1774 return cpu;
1775 }
1776
1777 static inline void note_cmpxchg_failure(const char *n,
1778 const struct kmem_cache *s, unsigned long tid)
1779 {
1780 #ifdef SLUB_DEBUG_CMPXCHG
1781 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1782
1783 pr_info("%s %s: cmpxchg redo ", n, s->name);
1784
1785 #ifdef CONFIG_PREEMPT
1786 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1787 pr_warn("due to cpu change %d -> %d\n",
1788 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1789 else
1790 #endif
1791 if (tid_to_event(tid) != tid_to_event(actual_tid))
1792 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1793 tid_to_event(tid), tid_to_event(actual_tid));
1794 else
1795 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1796 actual_tid, tid, next_tid(tid));
1797 #endif
1798 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1799 }
1800
1801 static void init_kmem_cache_cpus(struct kmem_cache *s)
1802 {
1803 int cpu;
1804
1805 for_each_possible_cpu(cpu)
1806 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1807 }
1808
1809 /*
1810 * Remove the cpu slab
1811 */
1812 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1813 void *freelist)
1814 {
1815 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1816 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1817 int lock = 0;
1818 enum slab_modes l = M_NONE, m = M_NONE;
1819 void *nextfree;
1820 int tail = DEACTIVATE_TO_HEAD;
1821 struct page new;
1822 struct page old;
1823
1824 if (page->freelist) {
1825 stat(s, DEACTIVATE_REMOTE_FREES);
1826 tail = DEACTIVATE_TO_TAIL;
1827 }
1828
1829 /*
1830 * Stage one: Free all available per cpu objects back
1831 * to the page freelist while it is still frozen. Leave the
1832 * last one.
1833 *
1834 * There is no need to take the list->lock because the page
1835 * is still frozen.
1836 */
1837 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1838 void *prior;
1839 unsigned long counters;
1840
1841 do {
1842 prior = page->freelist;
1843 counters = page->counters;
1844 set_freepointer(s, freelist, prior);
1845 new.counters = counters;
1846 new.inuse--;
1847 VM_BUG_ON(!new.frozen);
1848
1849 } while (!__cmpxchg_double_slab(s, page,
1850 prior, counters,
1851 freelist, new.counters,
1852 "drain percpu freelist"));
1853
1854 freelist = nextfree;
1855 }
1856
1857 /*
1858 * Stage two: Ensure that the page is unfrozen while the
1859 * list presence reflects the actual number of objects
1860 * during unfreeze.
1861 *
1862 * We setup the list membership and then perform a cmpxchg
1863 * with the count. If there is a mismatch then the page
1864 * is not unfrozen but the page is on the wrong list.
1865 *
1866 * Then we restart the process which may have to remove
1867 * the page from the list that we just put it on again
1868 * because the number of objects in the slab may have
1869 * changed.
1870 */
1871 redo:
1872
1873 old.freelist = page->freelist;
1874 old.counters = page->counters;
1875 VM_BUG_ON(!old.frozen);
1876
1877 /* Determine target state of the slab */
1878 new.counters = old.counters;
1879 if (freelist) {
1880 new.inuse--;
1881 set_freepointer(s, freelist, old.freelist);
1882 new.freelist = freelist;
1883 } else
1884 new.freelist = old.freelist;
1885
1886 new.frozen = 0;
1887
1888 if (!new.inuse && n->nr_partial >= s->min_partial)
1889 m = M_FREE;
1890 else if (new.freelist) {
1891 m = M_PARTIAL;
1892 if (!lock) {
1893 lock = 1;
1894 /*
1895 * Taking the spinlock removes the possiblity
1896 * that acquire_slab() will see a slab page that
1897 * is frozen
1898 */
1899 spin_lock(&n->list_lock);
1900 }
1901 } else {
1902 m = M_FULL;
1903 if (kmem_cache_debug(s) && !lock) {
1904 lock = 1;
1905 /*
1906 * This also ensures that the scanning of full
1907 * slabs from diagnostic functions will not see
1908 * any frozen slabs.
1909 */
1910 spin_lock(&n->list_lock);
1911 }
1912 }
1913
1914 if (l != m) {
1915
1916 if (l == M_PARTIAL)
1917
1918 remove_partial(n, page);
1919
1920 else if (l == M_FULL)
1921
1922 remove_full(s, n, page);
1923
1924 if (m == M_PARTIAL) {
1925
1926 add_partial(n, page, tail);
1927 stat(s, tail);
1928
1929 } else if (m == M_FULL) {
1930
1931 stat(s, DEACTIVATE_FULL);
1932 add_full(s, n, page);
1933
1934 }
1935 }
1936
1937 l = m;
1938 if (!__cmpxchg_double_slab(s, page,
1939 old.freelist, old.counters,
1940 new.freelist, new.counters,
1941 "unfreezing slab"))
1942 goto redo;
1943
1944 if (lock)
1945 spin_unlock(&n->list_lock);
1946
1947 if (m == M_FREE) {
1948 stat(s, DEACTIVATE_EMPTY);
1949 discard_slab(s, page);
1950 stat(s, FREE_SLAB);
1951 }
1952 }
1953
1954 /*
1955 * Unfreeze all the cpu partial slabs.
1956 *
1957 * This function must be called with interrupts disabled
1958 * for the cpu using c (or some other guarantee must be there
1959 * to guarantee no concurrent accesses).
1960 */
1961 static void unfreeze_partials(struct kmem_cache *s,
1962 struct kmem_cache_cpu *c)
1963 {
1964 #ifdef CONFIG_SLUB_CPU_PARTIAL
1965 struct kmem_cache_node *n = NULL, *n2 = NULL;
1966 struct page *page, *discard_page = NULL;
1967
1968 while ((page = c->partial)) {
1969 struct page new;
1970 struct page old;
1971
1972 c->partial = page->next;
1973
1974 n2 = get_node(s, page_to_nid(page));
1975 if (n != n2) {
1976 if (n)
1977 spin_unlock(&n->list_lock);
1978
1979 n = n2;
1980 spin_lock(&n->list_lock);
1981 }
1982
1983 do {
1984
1985 old.freelist = page->freelist;
1986 old.counters = page->counters;
1987 VM_BUG_ON(!old.frozen);
1988
1989 new.counters = old.counters;
1990 new.freelist = old.freelist;
1991
1992 new.frozen = 0;
1993
1994 } while (!__cmpxchg_double_slab(s, page,
1995 old.freelist, old.counters,
1996 new.freelist, new.counters,
1997 "unfreezing slab"));
1998
1999 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2000 page->next = discard_page;
2001 discard_page = page;
2002 } else {
2003 add_partial(n, page, DEACTIVATE_TO_TAIL);
2004 stat(s, FREE_ADD_PARTIAL);
2005 }
2006 }
2007
2008 if (n)
2009 spin_unlock(&n->list_lock);
2010
2011 while (discard_page) {
2012 page = discard_page;
2013 discard_page = discard_page->next;
2014
2015 stat(s, DEACTIVATE_EMPTY);
2016 discard_slab(s, page);
2017 stat(s, FREE_SLAB);
2018 }
2019 #endif
2020 }
2021
2022 /*
2023 * Put a page that was just frozen (in __slab_free) into a partial page
2024 * slot if available. This is done without interrupts disabled and without
2025 * preemption disabled. The cmpxchg is racy and may put the partial page
2026 * onto a random cpus partial slot.
2027 *
2028 * If we did not find a slot then simply move all the partials to the
2029 * per node partial list.
2030 */
2031 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2032 {
2033 #ifdef CONFIG_SLUB_CPU_PARTIAL
2034 struct page *oldpage;
2035 int pages;
2036 int pobjects;
2037
2038 preempt_disable();
2039 do {
2040 pages = 0;
2041 pobjects = 0;
2042 oldpage = this_cpu_read(s->cpu_slab->partial);
2043
2044 if (oldpage) {
2045 pobjects = oldpage->pobjects;
2046 pages = oldpage->pages;
2047 if (drain && pobjects > s->cpu_partial) {
2048 unsigned long flags;
2049 /*
2050 * partial array is full. Move the existing
2051 * set to the per node partial list.
2052 */
2053 local_irq_save(flags);
2054 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2055 local_irq_restore(flags);
2056 oldpage = NULL;
2057 pobjects = 0;
2058 pages = 0;
2059 stat(s, CPU_PARTIAL_DRAIN);
2060 }
2061 }
2062
2063 pages++;
2064 pobjects += page->objects - page->inuse;
2065
2066 page->pages = pages;
2067 page->pobjects = pobjects;
2068 page->next = oldpage;
2069
2070 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2071 != oldpage);
2072 if (unlikely(!s->cpu_partial)) {
2073 unsigned long flags;
2074
2075 local_irq_save(flags);
2076 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2077 local_irq_restore(flags);
2078 }
2079 preempt_enable();
2080 #endif
2081 }
2082
2083 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2084 {
2085 stat(s, CPUSLAB_FLUSH);
2086 deactivate_slab(s, c->page, c->freelist);
2087
2088 c->tid = next_tid(c->tid);
2089 c->page = NULL;
2090 c->freelist = NULL;
2091 }
2092
2093 /*
2094 * Flush cpu slab.
2095 *
2096 * Called from IPI handler with interrupts disabled.
2097 */
2098 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2099 {
2100 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2101
2102 if (likely(c)) {
2103 if (c->page)
2104 flush_slab(s, c);
2105
2106 unfreeze_partials(s, c);
2107 }
2108 }
2109
2110 static void flush_cpu_slab(void *d)
2111 {
2112 struct kmem_cache *s = d;
2113
2114 __flush_cpu_slab(s, smp_processor_id());
2115 }
2116
2117 static bool has_cpu_slab(int cpu, void *info)
2118 {
2119 struct kmem_cache *s = info;
2120 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2121
2122 return c->page || c->partial;
2123 }
2124
2125 static void flush_all(struct kmem_cache *s)
2126 {
2127 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2128 }
2129
2130 /*
2131 * Check if the objects in a per cpu structure fit numa
2132 * locality expectations.
2133 */
2134 static inline int node_match(struct page *page, int node)
2135 {
2136 #ifdef CONFIG_NUMA
2137 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2138 return 0;
2139 #endif
2140 return 1;
2141 }
2142
2143 #ifdef CONFIG_SLUB_DEBUG
2144 static int count_free(struct page *page)
2145 {
2146 return page->objects - page->inuse;
2147 }
2148
2149 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2150 {
2151 return atomic_long_read(&n->total_objects);
2152 }
2153 #endif /* CONFIG_SLUB_DEBUG */
2154
2155 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2156 static unsigned long count_partial(struct kmem_cache_node *n,
2157 int (*get_count)(struct page *))
2158 {
2159 unsigned long flags;
2160 unsigned long x = 0;
2161 struct page *page;
2162
2163 spin_lock_irqsave(&n->list_lock, flags);
2164 list_for_each_entry(page, &n->partial, lru)
2165 x += get_count(page);
2166 spin_unlock_irqrestore(&n->list_lock, flags);
2167 return x;
2168 }
2169 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2170
2171 static noinline void
2172 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2173 {
2174 #ifdef CONFIG_SLUB_DEBUG
2175 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2176 DEFAULT_RATELIMIT_BURST);
2177 int node;
2178 struct kmem_cache_node *n;
2179
2180 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2181 return;
2182
2183 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2184 nid, gfpflags);
2185 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2186 s->name, s->object_size, s->size, oo_order(s->oo),
2187 oo_order(s->min));
2188
2189 if (oo_order(s->min) > get_order(s->object_size))
2190 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2191 s->name);
2192
2193 for_each_kmem_cache_node(s, node, n) {
2194 unsigned long nr_slabs;
2195 unsigned long nr_objs;
2196 unsigned long nr_free;
2197
2198 nr_free = count_partial(n, count_free);
2199 nr_slabs = node_nr_slabs(n);
2200 nr_objs = node_nr_objs(n);
2201
2202 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2203 node, nr_slabs, nr_objs, nr_free);
2204 }
2205 #endif
2206 }
2207
2208 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2209 int node, struct kmem_cache_cpu **pc)
2210 {
2211 void *freelist;
2212 struct kmem_cache_cpu *c = *pc;
2213 struct page *page;
2214
2215 freelist = get_partial(s, flags, node, c);
2216
2217 if (freelist)
2218 return freelist;
2219
2220 page = new_slab(s, flags, node);
2221 if (page) {
2222 c = raw_cpu_ptr(s->cpu_slab);
2223 if (c->page)
2224 flush_slab(s, c);
2225
2226 /*
2227 * No other reference to the page yet so we can
2228 * muck around with it freely without cmpxchg
2229 */
2230 freelist = page->freelist;
2231 page->freelist = NULL;
2232
2233 stat(s, ALLOC_SLAB);
2234 c->page = page;
2235 *pc = c;
2236 } else
2237 freelist = NULL;
2238
2239 return freelist;
2240 }
2241
2242 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2243 {
2244 if (unlikely(PageSlabPfmemalloc(page)))
2245 return gfp_pfmemalloc_allowed(gfpflags);
2246
2247 return true;
2248 }
2249
2250 /*
2251 * Check the page->freelist of a page and either transfer the freelist to the
2252 * per cpu freelist or deactivate the page.
2253 *
2254 * The page is still frozen if the return value is not NULL.
2255 *
2256 * If this function returns NULL then the page has been unfrozen.
2257 *
2258 * This function must be called with interrupt disabled.
2259 */
2260 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2261 {
2262 struct page new;
2263 unsigned long counters;
2264 void *freelist;
2265
2266 do {
2267 freelist = page->freelist;
2268 counters = page->counters;
2269
2270 new.counters = counters;
2271 VM_BUG_ON(!new.frozen);
2272
2273 new.inuse = page->objects;
2274 new.frozen = freelist != NULL;
2275
2276 } while (!__cmpxchg_double_slab(s, page,
2277 freelist, counters,
2278 NULL, new.counters,
2279 "get_freelist"));
2280
2281 return freelist;
2282 }
2283
2284 /*
2285 * Slow path. The lockless freelist is empty or we need to perform
2286 * debugging duties.
2287 *
2288 * Processing is still very fast if new objects have been freed to the
2289 * regular freelist. In that case we simply take over the regular freelist
2290 * as the lockless freelist and zap the regular freelist.
2291 *
2292 * If that is not working then we fall back to the partial lists. We take the
2293 * first element of the freelist as the object to allocate now and move the
2294 * rest of the freelist to the lockless freelist.
2295 *
2296 * And if we were unable to get a new slab from the partial slab lists then
2297 * we need to allocate a new slab. This is the slowest path since it involves
2298 * a call to the page allocator and the setup of a new slab.
2299 */
2300 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2301 unsigned long addr, struct kmem_cache_cpu *c)
2302 {
2303 void *freelist;
2304 struct page *page;
2305 unsigned long flags;
2306
2307 local_irq_save(flags);
2308 #ifdef CONFIG_PREEMPT
2309 /*
2310 * We may have been preempted and rescheduled on a different
2311 * cpu before disabling interrupts. Need to reload cpu area
2312 * pointer.
2313 */
2314 c = this_cpu_ptr(s->cpu_slab);
2315 #endif
2316
2317 page = c->page;
2318 if (!page)
2319 goto new_slab;
2320 redo:
2321
2322 if (unlikely(!node_match(page, node))) {
2323 int searchnode = node;
2324
2325 if (node != NUMA_NO_NODE && !node_present_pages(node))
2326 searchnode = node_to_mem_node(node);
2327
2328 if (unlikely(!node_match(page, searchnode))) {
2329 stat(s, ALLOC_NODE_MISMATCH);
2330 deactivate_slab(s, page, c->freelist);
2331 c->page = NULL;
2332 c->freelist = NULL;
2333 goto new_slab;
2334 }
2335 }
2336
2337 /*
2338 * By rights, we should be searching for a slab page that was
2339 * PFMEMALLOC but right now, we are losing the pfmemalloc
2340 * information when the page leaves the per-cpu allocator
2341 */
2342 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2343 deactivate_slab(s, page, c->freelist);
2344 c->page = NULL;
2345 c->freelist = NULL;
2346 goto new_slab;
2347 }
2348
2349 /* must check again c->freelist in case of cpu migration or IRQ */
2350 freelist = c->freelist;
2351 if (freelist)
2352 goto load_freelist;
2353
2354 freelist = get_freelist(s, page);
2355
2356 if (!freelist) {
2357 c->page = NULL;
2358 stat(s, DEACTIVATE_BYPASS);
2359 goto new_slab;
2360 }
2361
2362 stat(s, ALLOC_REFILL);
2363
2364 load_freelist:
2365 /*
2366 * freelist is pointing to the list of objects to be used.
2367 * page is pointing to the page from which the objects are obtained.
2368 * That page must be frozen for per cpu allocations to work.
2369 */
2370 VM_BUG_ON(!c->page->frozen);
2371 c->freelist = get_freepointer(s, freelist);
2372 c->tid = next_tid(c->tid);
2373 local_irq_restore(flags);
2374 return freelist;
2375
2376 new_slab:
2377
2378 if (c->partial) {
2379 page = c->page = c->partial;
2380 c->partial = page->next;
2381 stat(s, CPU_PARTIAL_ALLOC);
2382 c->freelist = NULL;
2383 goto redo;
2384 }
2385
2386 freelist = new_slab_objects(s, gfpflags, node, &c);
2387
2388 if (unlikely(!freelist)) {
2389 slab_out_of_memory(s, gfpflags, node);
2390 local_irq_restore(flags);
2391 return NULL;
2392 }
2393
2394 page = c->page;
2395 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2396 goto load_freelist;
2397
2398 /* Only entered in the debug case */
2399 if (kmem_cache_debug(s) &&
2400 !alloc_debug_processing(s, page, freelist, addr))
2401 goto new_slab; /* Slab failed checks. Next slab needed */
2402
2403 deactivate_slab(s, page, get_freepointer(s, freelist));
2404 c->page = NULL;
2405 c->freelist = NULL;
2406 local_irq_restore(flags);
2407 return freelist;
2408 }
2409
2410 /*
2411 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2412 * have the fastpath folded into their functions. So no function call
2413 * overhead for requests that can be satisfied on the fastpath.
2414 *
2415 * The fastpath works by first checking if the lockless freelist can be used.
2416 * If not then __slab_alloc is called for slow processing.
2417 *
2418 * Otherwise we can simply pick the next object from the lockless free list.
2419 */
2420 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2421 gfp_t gfpflags, int node, unsigned long addr)
2422 {
2423 void **object;
2424 struct kmem_cache_cpu *c;
2425 struct page *page;
2426 unsigned long tid;
2427
2428 s = slab_pre_alloc_hook(s, gfpflags);
2429 if (!s)
2430 return NULL;
2431 redo:
2432 /*
2433 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2434 * enabled. We may switch back and forth between cpus while
2435 * reading from one cpu area. That does not matter as long
2436 * as we end up on the original cpu again when doing the cmpxchg.
2437 *
2438 * We should guarantee that tid and kmem_cache are retrieved on
2439 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2440 * to check if it is matched or not.
2441 */
2442 do {
2443 tid = this_cpu_read(s->cpu_slab->tid);
2444 c = raw_cpu_ptr(s->cpu_slab);
2445 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2446 unlikely(tid != READ_ONCE(c->tid)));
2447
2448 /*
2449 * Irqless object alloc/free algorithm used here depends on sequence
2450 * of fetching cpu_slab's data. tid should be fetched before anything
2451 * on c to guarantee that object and page associated with previous tid
2452 * won't be used with current tid. If we fetch tid first, object and
2453 * page could be one associated with next tid and our alloc/free
2454 * request will be failed. In this case, we will retry. So, no problem.
2455 */
2456 barrier();
2457
2458 /*
2459 * The transaction ids are globally unique per cpu and per operation on
2460 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2461 * occurs on the right processor and that there was no operation on the
2462 * linked list in between.
2463 */
2464
2465 object = c->freelist;
2466 page = c->page;
2467 if (unlikely(!object || !node_match(page, node))) {
2468 object = __slab_alloc(s, gfpflags, node, addr, c);
2469 stat(s, ALLOC_SLOWPATH);
2470 } else {
2471 void *next_object = get_freepointer_safe(s, object);
2472
2473 /*
2474 * The cmpxchg will only match if there was no additional
2475 * operation and if we are on the right processor.
2476 *
2477 * The cmpxchg does the following atomically (without lock
2478 * semantics!)
2479 * 1. Relocate first pointer to the current per cpu area.
2480 * 2. Verify that tid and freelist have not been changed
2481 * 3. If they were not changed replace tid and freelist
2482 *
2483 * Since this is without lock semantics the protection is only
2484 * against code executing on this cpu *not* from access by
2485 * other cpus.
2486 */
2487 if (unlikely(!this_cpu_cmpxchg_double(
2488 s->cpu_slab->freelist, s->cpu_slab->tid,
2489 object, tid,
2490 next_object, next_tid(tid)))) {
2491
2492 note_cmpxchg_failure("slab_alloc", s, tid);
2493 goto redo;
2494 }
2495 prefetch_freepointer(s, next_object);
2496 stat(s, ALLOC_FASTPATH);
2497 }
2498
2499 if (unlikely(gfpflags & __GFP_ZERO) && object)
2500 memset(object, 0, s->object_size);
2501
2502 slab_post_alloc_hook(s, gfpflags, object);
2503
2504 return object;
2505 }
2506
2507 static __always_inline void *slab_alloc(struct kmem_cache *s,
2508 gfp_t gfpflags, unsigned long addr)
2509 {
2510 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2511 }
2512
2513 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2514 {
2515 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2516
2517 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2518 s->size, gfpflags);
2519
2520 return ret;
2521 }
2522 EXPORT_SYMBOL(kmem_cache_alloc);
2523
2524 #ifdef CONFIG_TRACING
2525 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2526 {
2527 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2528 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2529 kasan_kmalloc(s, ret, size);
2530 return ret;
2531 }
2532 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2533 #endif
2534
2535 #ifdef CONFIG_NUMA
2536 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2537 {
2538 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2539
2540 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2541 s->object_size, s->size, gfpflags, node);
2542
2543 return ret;
2544 }
2545 EXPORT_SYMBOL(kmem_cache_alloc_node);
2546
2547 #ifdef CONFIG_TRACING
2548 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2549 gfp_t gfpflags,
2550 int node, size_t size)
2551 {
2552 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2553
2554 trace_kmalloc_node(_RET_IP_, ret,
2555 size, s->size, gfpflags, node);
2556
2557 kasan_kmalloc(s, ret, size);
2558 return ret;
2559 }
2560 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2561 #endif
2562 #endif
2563
2564 /*
2565 * Slow path handling. This may still be called frequently since objects
2566 * have a longer lifetime than the cpu slabs in most processing loads.
2567 *
2568 * So we still attempt to reduce cache line usage. Just take the slab
2569 * lock and free the item. If there is no additional partial page
2570 * handling required then we can return immediately.
2571 */
2572 static void __slab_free(struct kmem_cache *s, struct page *page,
2573 void *x, unsigned long addr)
2574 {
2575 void *prior;
2576 void **object = (void *)x;
2577 int was_frozen;
2578 struct page new;
2579 unsigned long counters;
2580 struct kmem_cache_node *n = NULL;
2581 unsigned long uninitialized_var(flags);
2582
2583 stat(s, FREE_SLOWPATH);
2584
2585 if (kmem_cache_debug(s) &&
2586 !(n = free_debug_processing(s, page, x, addr, &flags)))
2587 return;
2588
2589 do {
2590 if (unlikely(n)) {
2591 spin_unlock_irqrestore(&n->list_lock, flags);
2592 n = NULL;
2593 }
2594 prior = page->freelist;
2595 counters = page->counters;
2596 set_freepointer(s, object, prior);
2597 new.counters = counters;
2598 was_frozen = new.frozen;
2599 new.inuse--;
2600 if ((!new.inuse || !prior) && !was_frozen) {
2601
2602 if (kmem_cache_has_cpu_partial(s) && !prior) {
2603
2604 /*
2605 * Slab was on no list before and will be
2606 * partially empty
2607 * We can defer the list move and instead
2608 * freeze it.
2609 */
2610 new.frozen = 1;
2611
2612 } else { /* Needs to be taken off a list */
2613
2614 n = get_node(s, page_to_nid(page));
2615 /*
2616 * Speculatively acquire the list_lock.
2617 * If the cmpxchg does not succeed then we may
2618 * drop the list_lock without any processing.
2619 *
2620 * Otherwise the list_lock will synchronize with
2621 * other processors updating the list of slabs.
2622 */
2623 spin_lock_irqsave(&n->list_lock, flags);
2624
2625 }
2626 }
2627
2628 } while (!cmpxchg_double_slab(s, page,
2629 prior, counters,
2630 object, new.counters,
2631 "__slab_free"));
2632
2633 if (likely(!n)) {
2634
2635 /*
2636 * If we just froze the page then put it onto the
2637 * per cpu partial list.
2638 */
2639 if (new.frozen && !was_frozen) {
2640 put_cpu_partial(s, page, 1);
2641 stat(s, CPU_PARTIAL_FREE);
2642 }
2643 /*
2644 * The list lock was not taken therefore no list
2645 * activity can be necessary.
2646 */
2647 if (was_frozen)
2648 stat(s, FREE_FROZEN);
2649 return;
2650 }
2651
2652 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2653 goto slab_empty;
2654
2655 /*
2656 * Objects left in the slab. If it was not on the partial list before
2657 * then add it.
2658 */
2659 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2660 if (kmem_cache_debug(s))
2661 remove_full(s, n, page);
2662 add_partial(n, page, DEACTIVATE_TO_TAIL);
2663 stat(s, FREE_ADD_PARTIAL);
2664 }
2665 spin_unlock_irqrestore(&n->list_lock, flags);
2666 return;
2667
2668 slab_empty:
2669 if (prior) {
2670 /*
2671 * Slab on the partial list.
2672 */
2673 remove_partial(n, page);
2674 stat(s, FREE_REMOVE_PARTIAL);
2675 } else {
2676 /* Slab must be on the full list */
2677 remove_full(s, n, page);
2678 }
2679
2680 spin_unlock_irqrestore(&n->list_lock, flags);
2681 stat(s, FREE_SLAB);
2682 discard_slab(s, page);
2683 }
2684
2685 /*
2686 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2687 * can perform fastpath freeing without additional function calls.
2688 *
2689 * The fastpath is only possible if we are freeing to the current cpu slab
2690 * of this processor. This typically the case if we have just allocated
2691 * the item before.
2692 *
2693 * If fastpath is not possible then fall back to __slab_free where we deal
2694 * with all sorts of special processing.
2695 */
2696 static __always_inline void slab_free(struct kmem_cache *s,
2697 struct page *page, void *x, unsigned long addr)
2698 {
2699 void **object = (void *)x;
2700 struct kmem_cache_cpu *c;
2701 unsigned long tid;
2702
2703 slab_free_hook(s, x);
2704
2705 redo:
2706 /*
2707 * Determine the currently cpus per cpu slab.
2708 * The cpu may change afterward. However that does not matter since
2709 * data is retrieved via this pointer. If we are on the same cpu
2710 * during the cmpxchg then the free will succeed.
2711 */
2712 do {
2713 tid = this_cpu_read(s->cpu_slab->tid);
2714 c = raw_cpu_ptr(s->cpu_slab);
2715 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2716 unlikely(tid != READ_ONCE(c->tid)));
2717
2718 /* Same with comment on barrier() in slab_alloc_node() */
2719 barrier();
2720
2721 if (likely(page == c->page)) {
2722 set_freepointer(s, object, c->freelist);
2723
2724 if (unlikely(!this_cpu_cmpxchg_double(
2725 s->cpu_slab->freelist, s->cpu_slab->tid,
2726 c->freelist, tid,
2727 object, next_tid(tid)))) {
2728
2729 note_cmpxchg_failure("slab_free", s, tid);
2730 goto redo;
2731 }
2732 stat(s, FREE_FASTPATH);
2733 } else
2734 __slab_free(s, page, x, addr);
2735
2736 }
2737
2738 void kmem_cache_free(struct kmem_cache *s, void *x)
2739 {
2740 s = cache_from_obj(s, x);
2741 if (!s)
2742 return;
2743 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2744 trace_kmem_cache_free(_RET_IP_, x);
2745 }
2746 EXPORT_SYMBOL(kmem_cache_free);
2747
2748 /* Note that interrupts must be enabled when calling this function. */
2749 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2750 {
2751 struct kmem_cache_cpu *c;
2752 struct page *page;
2753 int i;
2754
2755 local_irq_disable();
2756 c = this_cpu_ptr(s->cpu_slab);
2757
2758 for (i = 0; i < size; i++) {
2759 void *object = p[i];
2760
2761 BUG_ON(!object);
2762 /* kmem cache debug support */
2763 s = cache_from_obj(s, object);
2764 if (unlikely(!s))
2765 goto exit;
2766 slab_free_hook(s, object);
2767
2768 page = virt_to_head_page(object);
2769
2770 if (c->page == page) {
2771 /* Fastpath: local CPU free */
2772 set_freepointer(s, object, c->freelist);
2773 c->freelist = object;
2774 } else {
2775 c->tid = next_tid(c->tid);
2776 local_irq_enable();
2777 /* Slowpath: overhead locked cmpxchg_double_slab */
2778 __slab_free(s, page, object, _RET_IP_);
2779 local_irq_disable();
2780 c = this_cpu_ptr(s->cpu_slab);
2781 }
2782 }
2783 exit:
2784 c->tid = next_tid(c->tid);
2785 local_irq_enable();
2786 }
2787 EXPORT_SYMBOL(kmem_cache_free_bulk);
2788
2789 /* Note that interrupts must be enabled when calling this function. */
2790 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2791 void **p)
2792 {
2793 struct kmem_cache_cpu *c;
2794 int i;
2795
2796 /*
2797 * Drain objects in the per cpu slab, while disabling local
2798 * IRQs, which protects against PREEMPT and interrupts
2799 * handlers invoking normal fastpath.
2800 */
2801 local_irq_disable();
2802 c = this_cpu_ptr(s->cpu_slab);
2803
2804 for (i = 0; i < size; i++) {
2805 void *object = c->freelist;
2806
2807 if (unlikely(!object)) {
2808 local_irq_enable();
2809 /*
2810 * Invoking slow path likely have side-effect
2811 * of re-populating per CPU c->freelist
2812 */
2813 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2814 _RET_IP_, c);
2815 if (unlikely(!p[i])) {
2816 __kmem_cache_free_bulk(s, i, p);
2817 return false;
2818 }
2819 local_irq_disable();
2820 c = this_cpu_ptr(s->cpu_slab);
2821 continue; /* goto for-loop */
2822 }
2823
2824 /* kmem_cache debug support */
2825 s = slab_pre_alloc_hook(s, flags);
2826 if (unlikely(!s)) {
2827 __kmem_cache_free_bulk(s, i, p);
2828 c->tid = next_tid(c->tid);
2829 local_irq_enable();
2830 return false;
2831 }
2832
2833 c->freelist = get_freepointer(s, object);
2834 p[i] = object;
2835
2836 /* kmem_cache debug support */
2837 slab_post_alloc_hook(s, flags, object);
2838 }
2839 c->tid = next_tid(c->tid);
2840 local_irq_enable();
2841
2842 /* Clear memory outside IRQ disabled fastpath loop */
2843 if (unlikely(flags & __GFP_ZERO)) {
2844 int j;
2845
2846 for (j = 0; j < i; j++)
2847 memset(p[j], 0, s->object_size);
2848 }
2849
2850 return true;
2851 }
2852 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2853
2854
2855 /*
2856 * Object placement in a slab is made very easy because we always start at
2857 * offset 0. If we tune the size of the object to the alignment then we can
2858 * get the required alignment by putting one properly sized object after
2859 * another.
2860 *
2861 * Notice that the allocation order determines the sizes of the per cpu
2862 * caches. Each processor has always one slab available for allocations.
2863 * Increasing the allocation order reduces the number of times that slabs
2864 * must be moved on and off the partial lists and is therefore a factor in
2865 * locking overhead.
2866 */
2867
2868 /*
2869 * Mininum / Maximum order of slab pages. This influences locking overhead
2870 * and slab fragmentation. A higher order reduces the number of partial slabs
2871 * and increases the number of allocations possible without having to
2872 * take the list_lock.
2873 */
2874 static int slub_min_order;
2875 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2876 static int slub_min_objects;
2877
2878 /*
2879 * Calculate the order of allocation given an slab object size.
2880 *
2881 * The order of allocation has significant impact on performance and other
2882 * system components. Generally order 0 allocations should be preferred since
2883 * order 0 does not cause fragmentation in the page allocator. Larger objects
2884 * be problematic to put into order 0 slabs because there may be too much
2885 * unused space left. We go to a higher order if more than 1/16th of the slab
2886 * would be wasted.
2887 *
2888 * In order to reach satisfactory performance we must ensure that a minimum
2889 * number of objects is in one slab. Otherwise we may generate too much
2890 * activity on the partial lists which requires taking the list_lock. This is
2891 * less a concern for large slabs though which are rarely used.
2892 *
2893 * slub_max_order specifies the order where we begin to stop considering the
2894 * number of objects in a slab as critical. If we reach slub_max_order then
2895 * we try to keep the page order as low as possible. So we accept more waste
2896 * of space in favor of a small page order.
2897 *
2898 * Higher order allocations also allow the placement of more objects in a
2899 * slab and thereby reduce object handling overhead. If the user has
2900 * requested a higher mininum order then we start with that one instead of
2901 * the smallest order which will fit the object.
2902 */
2903 static inline int slab_order(int size, int min_objects,
2904 int max_order, int fract_leftover, int reserved)
2905 {
2906 int order;
2907 int rem;
2908 int min_order = slub_min_order;
2909
2910 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2911 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2912
2913 for (order = max(min_order, get_order(min_objects * size + reserved));
2914 order <= max_order; order++) {
2915
2916 unsigned long slab_size = PAGE_SIZE << order;
2917
2918 rem = (slab_size - reserved) % size;
2919
2920 if (rem <= slab_size / fract_leftover)
2921 break;
2922 }
2923
2924 return order;
2925 }
2926
2927 static inline int calculate_order(int size, int reserved)
2928 {
2929 int order;
2930 int min_objects;
2931 int fraction;
2932 int max_objects;
2933
2934 /*
2935 * Attempt to find best configuration for a slab. This
2936 * works by first attempting to generate a layout with
2937 * the best configuration and backing off gradually.
2938 *
2939 * First we increase the acceptable waste in a slab. Then
2940 * we reduce the minimum objects required in a slab.
2941 */
2942 min_objects = slub_min_objects;
2943 if (!min_objects)
2944 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2945 max_objects = order_objects(slub_max_order, size, reserved);
2946 min_objects = min(min_objects, max_objects);
2947
2948 while (min_objects > 1) {
2949 fraction = 16;
2950 while (fraction >= 4) {
2951 order = slab_order(size, min_objects,
2952 slub_max_order, fraction, reserved);
2953 if (order <= slub_max_order)
2954 return order;
2955 fraction /= 2;
2956 }
2957 min_objects--;
2958 }
2959
2960 /*
2961 * We were unable to place multiple objects in a slab. Now
2962 * lets see if we can place a single object there.
2963 */
2964 order = slab_order(size, 1, slub_max_order, 1, reserved);
2965 if (order <= slub_max_order)
2966 return order;
2967
2968 /*
2969 * Doh this slab cannot be placed using slub_max_order.
2970 */
2971 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2972 if (order < MAX_ORDER)
2973 return order;
2974 return -ENOSYS;
2975 }
2976
2977 static void
2978 init_kmem_cache_node(struct kmem_cache_node *n)
2979 {
2980 n->nr_partial = 0;
2981 spin_lock_init(&n->list_lock);
2982 INIT_LIST_HEAD(&n->partial);
2983 #ifdef CONFIG_SLUB_DEBUG
2984 atomic_long_set(&n->nr_slabs, 0);
2985 atomic_long_set(&n->total_objects, 0);
2986 INIT_LIST_HEAD(&n->full);
2987 #endif
2988 }
2989
2990 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2991 {
2992 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2993 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2994
2995 /*
2996 * Must align to double word boundary for the double cmpxchg
2997 * instructions to work; see __pcpu_double_call_return_bool().
2998 */
2999 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3000 2 * sizeof(void *));
3001
3002 if (!s->cpu_slab)
3003 return 0;
3004
3005 init_kmem_cache_cpus(s);
3006
3007 return 1;
3008 }
3009
3010 static struct kmem_cache *kmem_cache_node;
3011
3012 /*
3013 * No kmalloc_node yet so do it by hand. We know that this is the first
3014 * slab on the node for this slabcache. There are no concurrent accesses
3015 * possible.
3016 *
3017 * Note that this function only works on the kmem_cache_node
3018 * when allocating for the kmem_cache_node. This is used for bootstrapping
3019 * memory on a fresh node that has no slab structures yet.
3020 */
3021 static void early_kmem_cache_node_alloc(int node)
3022 {
3023 struct page *page;
3024 struct kmem_cache_node *n;
3025
3026 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3027
3028 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3029
3030 BUG_ON(!page);
3031 if (page_to_nid(page) != node) {
3032 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3033 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3034 }
3035
3036 n = page->freelist;
3037 BUG_ON(!n);
3038 page->freelist = get_freepointer(kmem_cache_node, n);
3039 page->inuse = 1;
3040 page->frozen = 0;
3041 kmem_cache_node->node[node] = n;
3042 #ifdef CONFIG_SLUB_DEBUG
3043 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3044 init_tracking(kmem_cache_node, n);
3045 #endif
3046 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3047 init_kmem_cache_node(n);
3048 inc_slabs_node(kmem_cache_node, node, page->objects);
3049
3050 /*
3051 * No locks need to be taken here as it has just been
3052 * initialized and there is no concurrent access.
3053 */
3054 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3055 }
3056
3057 static void free_kmem_cache_nodes(struct kmem_cache *s)
3058 {
3059 int node;
3060 struct kmem_cache_node *n;
3061
3062 for_each_kmem_cache_node(s, node, n) {
3063 kmem_cache_free(kmem_cache_node, n);
3064 s->node[node] = NULL;
3065 }
3066 }
3067
3068 static int init_kmem_cache_nodes(struct kmem_cache *s)
3069 {
3070 int node;
3071
3072 for_each_node_state(node, N_NORMAL_MEMORY) {
3073 struct kmem_cache_node *n;
3074
3075 if (slab_state == DOWN) {
3076 early_kmem_cache_node_alloc(node);
3077 continue;
3078 }
3079 n = kmem_cache_alloc_node(kmem_cache_node,
3080 GFP_KERNEL, node);
3081
3082 if (!n) {
3083 free_kmem_cache_nodes(s);
3084 return 0;
3085 }
3086
3087 s->node[node] = n;
3088 init_kmem_cache_node(n);
3089 }
3090 return 1;
3091 }
3092
3093 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3094 {
3095 if (min < MIN_PARTIAL)
3096 min = MIN_PARTIAL;
3097 else if (min > MAX_PARTIAL)
3098 min = MAX_PARTIAL;
3099 s->min_partial = min;
3100 }
3101
3102 /*
3103 * calculate_sizes() determines the order and the distribution of data within
3104 * a slab object.
3105 */
3106 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3107 {
3108 unsigned long flags = s->flags;
3109 unsigned long size = s->object_size;
3110 int order;
3111
3112 /*
3113 * Round up object size to the next word boundary. We can only
3114 * place the free pointer at word boundaries and this determines
3115 * the possible location of the free pointer.
3116 */
3117 size = ALIGN(size, sizeof(void *));
3118
3119 #ifdef CONFIG_SLUB_DEBUG
3120 /*
3121 * Determine if we can poison the object itself. If the user of
3122 * the slab may touch the object after free or before allocation
3123 * then we should never poison the object itself.
3124 */
3125 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3126 !s->ctor)
3127 s->flags |= __OBJECT_POISON;
3128 else
3129 s->flags &= ~__OBJECT_POISON;
3130
3131
3132 /*
3133 * If we are Redzoning then check if there is some space between the
3134 * end of the object and the free pointer. If not then add an
3135 * additional word to have some bytes to store Redzone information.
3136 */
3137 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3138 size += sizeof(void *);
3139 #endif
3140
3141 /*
3142 * With that we have determined the number of bytes in actual use
3143 * by the object. This is the potential offset to the free pointer.
3144 */
3145 s->inuse = size;
3146
3147 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3148 s->ctor)) {
3149 /*
3150 * Relocate free pointer after the object if it is not
3151 * permitted to overwrite the first word of the object on
3152 * kmem_cache_free.
3153 *
3154 * This is the case if we do RCU, have a constructor or
3155 * destructor or are poisoning the objects.
3156 */
3157 s->offset = size;
3158 size += sizeof(void *);
3159 }
3160
3161 #ifdef CONFIG_SLUB_DEBUG
3162 if (flags & SLAB_STORE_USER)
3163 /*
3164 * Need to store information about allocs and frees after
3165 * the object.
3166 */
3167 size += 2 * sizeof(struct track);
3168
3169 if (flags & SLAB_RED_ZONE)
3170 /*
3171 * Add some empty padding so that we can catch
3172 * overwrites from earlier objects rather than let
3173 * tracking information or the free pointer be
3174 * corrupted if a user writes before the start
3175 * of the object.
3176 */
3177 size += sizeof(void *);
3178 #endif
3179
3180 /*
3181 * SLUB stores one object immediately after another beginning from
3182 * offset 0. In order to align the objects we have to simply size
3183 * each object to conform to the alignment.
3184 */
3185 size = ALIGN(size, s->align);
3186 s->size = size;
3187 if (forced_order >= 0)
3188 order = forced_order;
3189 else
3190 order = calculate_order(size, s->reserved);
3191
3192 if (order < 0)
3193 return 0;
3194
3195 s->allocflags = 0;
3196 if (order)
3197 s->allocflags |= __GFP_COMP;
3198
3199 if (s->flags & SLAB_CACHE_DMA)
3200 s->allocflags |= GFP_DMA;
3201
3202 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3203 s->allocflags |= __GFP_RECLAIMABLE;
3204
3205 /*
3206 * Determine the number of objects per slab
3207 */
3208 s->oo = oo_make(order, size, s->reserved);
3209 s->min = oo_make(get_order(size), size, s->reserved);
3210 if (oo_objects(s->oo) > oo_objects(s->max))
3211 s->max = s->oo;
3212
3213 return !!oo_objects(s->oo);
3214 }
3215
3216 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3217 {
3218 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3219 s->reserved = 0;
3220
3221 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3222 s->reserved = sizeof(struct rcu_head);
3223
3224 if (!calculate_sizes(s, -1))
3225 goto error;
3226 if (disable_higher_order_debug) {
3227 /*
3228 * Disable debugging flags that store metadata if the min slab
3229 * order increased.
3230 */
3231 if (get_order(s->size) > get_order(s->object_size)) {
3232 s->flags &= ~DEBUG_METADATA_FLAGS;
3233 s->offset = 0;
3234 if (!calculate_sizes(s, -1))
3235 goto error;
3236 }
3237 }
3238
3239 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3240 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3241 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3242 /* Enable fast mode */
3243 s->flags |= __CMPXCHG_DOUBLE;
3244 #endif
3245
3246 /*
3247 * The larger the object size is, the more pages we want on the partial
3248 * list to avoid pounding the page allocator excessively.
3249 */
3250 set_min_partial(s, ilog2(s->size) / 2);
3251
3252 /*
3253 * cpu_partial determined the maximum number of objects kept in the
3254 * per cpu partial lists of a processor.
3255 *
3256 * Per cpu partial lists mainly contain slabs that just have one
3257 * object freed. If they are used for allocation then they can be
3258 * filled up again with minimal effort. The slab will never hit the
3259 * per node partial lists and therefore no locking will be required.
3260 *
3261 * This setting also determines
3262 *
3263 * A) The number of objects from per cpu partial slabs dumped to the
3264 * per node list when we reach the limit.
3265 * B) The number of objects in cpu partial slabs to extract from the
3266 * per node list when we run out of per cpu objects. We only fetch
3267 * 50% to keep some capacity around for frees.
3268 */
3269 if (!kmem_cache_has_cpu_partial(s))
3270 s->cpu_partial = 0;
3271 else if (s->size >= PAGE_SIZE)
3272 s->cpu_partial = 2;
3273 else if (s->size >= 1024)
3274 s->cpu_partial = 6;
3275 else if (s->size >= 256)
3276 s->cpu_partial = 13;
3277 else
3278 s->cpu_partial = 30;
3279
3280 #ifdef CONFIG_NUMA
3281 s->remote_node_defrag_ratio = 1000;
3282 #endif
3283 if (!init_kmem_cache_nodes(s))
3284 goto error;
3285
3286 if (alloc_kmem_cache_cpus(s))
3287 return 0;
3288
3289 free_kmem_cache_nodes(s);
3290 error:
3291 if (flags & SLAB_PANIC)
3292 panic("Cannot create slab %s size=%lu realsize=%u "
3293 "order=%u offset=%u flags=%lx\n",
3294 s->name, (unsigned long)s->size, s->size,
3295 oo_order(s->oo), s->offset, flags);
3296 return -EINVAL;
3297 }
3298
3299 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3300 const char *text)
3301 {
3302 #ifdef CONFIG_SLUB_DEBUG
3303 void *addr = page_address(page);
3304 void *p;
3305 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3306 sizeof(long), GFP_ATOMIC);
3307 if (!map)
3308 return;
3309 slab_err(s, page, text, s->name);
3310 slab_lock(page);
3311
3312 get_map(s, page, map);
3313 for_each_object(p, s, addr, page->objects) {
3314
3315 if (!test_bit(slab_index(p, s, addr), map)) {
3316 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3317 print_tracking(s, p);
3318 }
3319 }
3320 slab_unlock(page);
3321 kfree(map);
3322 #endif
3323 }
3324
3325 /*
3326 * Attempt to free all partial slabs on a node.
3327 * This is called from kmem_cache_close(). We must be the last thread
3328 * using the cache and therefore we do not need to lock anymore.
3329 */
3330 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3331 {
3332 struct page *page, *h;
3333
3334 list_for_each_entry_safe(page, h, &n->partial, lru) {
3335 if (!page->inuse) {
3336 __remove_partial(n, page);
3337 discard_slab(s, page);
3338 } else {
3339 list_slab_objects(s, page,
3340 "Objects remaining in %s on kmem_cache_close()");
3341 }
3342 }
3343 }
3344
3345 /*
3346 * Release all resources used by a slab cache.
3347 */
3348 static inline int kmem_cache_close(struct kmem_cache *s)
3349 {
3350 int node;
3351 struct kmem_cache_node *n;
3352
3353 flush_all(s);
3354 /* Attempt to free all objects */
3355 for_each_kmem_cache_node(s, node, n) {
3356 free_partial(s, n);
3357 if (n->nr_partial || slabs_node(s, node))
3358 return 1;
3359 }
3360 free_percpu(s->cpu_slab);
3361 free_kmem_cache_nodes(s);
3362 return 0;
3363 }
3364
3365 int __kmem_cache_shutdown(struct kmem_cache *s)
3366 {
3367 return kmem_cache_close(s);
3368 }
3369
3370 /********************************************************************
3371 * Kmalloc subsystem
3372 *******************************************************************/
3373
3374 static int __init setup_slub_min_order(char *str)
3375 {
3376 get_option(&str, &slub_min_order);
3377
3378 return 1;
3379 }
3380
3381 __setup("slub_min_order=", setup_slub_min_order);
3382
3383 static int __init setup_slub_max_order(char *str)
3384 {
3385 get_option(&str, &slub_max_order);
3386 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3387
3388 return 1;
3389 }
3390
3391 __setup("slub_max_order=", setup_slub_max_order);
3392
3393 static int __init setup_slub_min_objects(char *str)
3394 {
3395 get_option(&str, &slub_min_objects);
3396
3397 return 1;
3398 }
3399
3400 __setup("slub_min_objects=", setup_slub_min_objects);
3401
3402 void *__kmalloc(size_t size, gfp_t flags)
3403 {
3404 struct kmem_cache *s;
3405 void *ret;
3406
3407 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3408 return kmalloc_large(size, flags);
3409
3410 s = kmalloc_slab(size, flags);
3411
3412 if (unlikely(ZERO_OR_NULL_PTR(s)))
3413 return s;
3414
3415 ret = slab_alloc(s, flags, _RET_IP_);
3416
3417 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3418
3419 kasan_kmalloc(s, ret, size);
3420
3421 return ret;
3422 }
3423 EXPORT_SYMBOL(__kmalloc);
3424
3425 #ifdef CONFIG_NUMA
3426 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3427 {
3428 struct page *page;
3429 void *ptr = NULL;
3430
3431 flags |= __GFP_COMP | __GFP_NOTRACK;
3432 page = alloc_kmem_pages_node(node, flags, get_order(size));
3433 if (page)
3434 ptr = page_address(page);
3435
3436 kmalloc_large_node_hook(ptr, size, flags);
3437 return ptr;
3438 }
3439
3440 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3441 {
3442 struct kmem_cache *s;
3443 void *ret;
3444
3445 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3446 ret = kmalloc_large_node(size, flags, node);
3447
3448 trace_kmalloc_node(_RET_IP_, ret,
3449 size, PAGE_SIZE << get_order(size),
3450 flags, node);
3451
3452 return ret;
3453 }
3454
3455 s = kmalloc_slab(size, flags);
3456
3457 if (unlikely(ZERO_OR_NULL_PTR(s)))
3458 return s;
3459
3460 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3461
3462 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3463
3464 kasan_kmalloc(s, ret, size);
3465
3466 return ret;
3467 }
3468 EXPORT_SYMBOL(__kmalloc_node);
3469 #endif
3470
3471 static size_t __ksize(const void *object)
3472 {
3473 struct page *page;
3474
3475 if (unlikely(object == ZERO_SIZE_PTR))
3476 return 0;
3477
3478 page = virt_to_head_page(object);
3479
3480 if (unlikely(!PageSlab(page))) {
3481 WARN_ON(!PageCompound(page));
3482 return PAGE_SIZE << compound_order(page);
3483 }
3484
3485 return slab_ksize(page->slab_cache);
3486 }
3487
3488 size_t ksize(const void *object)
3489 {
3490 size_t size = __ksize(object);
3491 /* We assume that ksize callers could use whole allocated area,
3492 so we need unpoison this area. */
3493 kasan_krealloc(object, size);
3494 return size;
3495 }
3496 EXPORT_SYMBOL(ksize);
3497
3498 void kfree(const void *x)
3499 {
3500 struct page *page;
3501 void *object = (void *)x;
3502
3503 trace_kfree(_RET_IP_, x);
3504
3505 if (unlikely(ZERO_OR_NULL_PTR(x)))
3506 return;
3507
3508 page = virt_to_head_page(x);
3509 if (unlikely(!PageSlab(page))) {
3510 BUG_ON(!PageCompound(page));
3511 kfree_hook(x);
3512 __free_kmem_pages(page, compound_order(page));
3513 return;
3514 }
3515 slab_free(page->slab_cache, page, object, _RET_IP_);
3516 }
3517 EXPORT_SYMBOL(kfree);
3518
3519 #define SHRINK_PROMOTE_MAX 32
3520
3521 /*
3522 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3523 * up most to the head of the partial lists. New allocations will then
3524 * fill those up and thus they can be removed from the partial lists.
3525 *
3526 * The slabs with the least items are placed last. This results in them
3527 * being allocated from last increasing the chance that the last objects
3528 * are freed in them.
3529 */
3530 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3531 {
3532 int node;
3533 int i;
3534 struct kmem_cache_node *n;
3535 struct page *page;
3536 struct page *t;
3537 struct list_head discard;
3538 struct list_head promote[SHRINK_PROMOTE_MAX];
3539 unsigned long flags;
3540 int ret = 0;
3541
3542 if (deactivate) {
3543 /*
3544 * Disable empty slabs caching. Used to avoid pinning offline
3545 * memory cgroups by kmem pages that can be freed.
3546 */
3547 s->cpu_partial = 0;
3548 s->min_partial = 0;
3549
3550 /*
3551 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3552 * so we have to make sure the change is visible.
3553 */
3554 kick_all_cpus_sync();
3555 }
3556
3557 flush_all(s);
3558 for_each_kmem_cache_node(s, node, n) {
3559 INIT_LIST_HEAD(&discard);
3560 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3561 INIT_LIST_HEAD(promote + i);
3562
3563 spin_lock_irqsave(&n->list_lock, flags);
3564
3565 /*
3566 * Build lists of slabs to discard or promote.
3567 *
3568 * Note that concurrent frees may occur while we hold the
3569 * list_lock. page->inuse here is the upper limit.
3570 */
3571 list_for_each_entry_safe(page, t, &n->partial, lru) {
3572 int free = page->objects - page->inuse;
3573
3574 /* Do not reread page->inuse */
3575 barrier();
3576
3577 /* We do not keep full slabs on the list */
3578 BUG_ON(free <= 0);
3579
3580 if (free == page->objects) {
3581 list_move(&page->lru, &discard);
3582 n->nr_partial--;
3583 } else if (free <= SHRINK_PROMOTE_MAX)
3584 list_move(&page->lru, promote + free - 1);
3585 }
3586
3587 /*
3588 * Promote the slabs filled up most to the head of the
3589 * partial list.
3590 */
3591 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3592 list_splice(promote + i, &n->partial);
3593
3594 spin_unlock_irqrestore(&n->list_lock, flags);
3595
3596 /* Release empty slabs */
3597 list_for_each_entry_safe(page, t, &discard, lru)
3598 discard_slab(s, page);
3599
3600 if (slabs_node(s, node))
3601 ret = 1;
3602 }
3603
3604 return ret;
3605 }
3606
3607 static int slab_mem_going_offline_callback(void *arg)
3608 {
3609 struct kmem_cache *s;
3610
3611 mutex_lock(&slab_mutex);
3612 list_for_each_entry(s, &slab_caches, list)
3613 __kmem_cache_shrink(s, false);
3614 mutex_unlock(&slab_mutex);
3615
3616 return 0;
3617 }
3618
3619 static void slab_mem_offline_callback(void *arg)
3620 {
3621 struct kmem_cache_node *n;
3622 struct kmem_cache *s;
3623 struct memory_notify *marg = arg;
3624 int offline_node;
3625
3626 offline_node = marg->status_change_nid_normal;
3627
3628 /*
3629 * If the node still has available memory. we need kmem_cache_node
3630 * for it yet.
3631 */
3632 if (offline_node < 0)
3633 return;
3634
3635 mutex_lock(&slab_mutex);
3636 list_for_each_entry(s, &slab_caches, list) {
3637 n = get_node(s, offline_node);
3638 if (n) {
3639 /*
3640 * if n->nr_slabs > 0, slabs still exist on the node
3641 * that is going down. We were unable to free them,
3642 * and offline_pages() function shouldn't call this
3643 * callback. So, we must fail.
3644 */
3645 BUG_ON(slabs_node(s, offline_node));
3646
3647 s->node[offline_node] = NULL;
3648 kmem_cache_free(kmem_cache_node, n);
3649 }
3650 }
3651 mutex_unlock(&slab_mutex);
3652 }
3653
3654 static int slab_mem_going_online_callback(void *arg)
3655 {
3656 struct kmem_cache_node *n;
3657 struct kmem_cache *s;
3658 struct memory_notify *marg = arg;
3659 int nid = marg->status_change_nid_normal;
3660 int ret = 0;
3661
3662 /*
3663 * If the node's memory is already available, then kmem_cache_node is
3664 * already created. Nothing to do.
3665 */
3666 if (nid < 0)
3667 return 0;
3668
3669 /*
3670 * We are bringing a node online. No memory is available yet. We must
3671 * allocate a kmem_cache_node structure in order to bring the node
3672 * online.
3673 */
3674 mutex_lock(&slab_mutex);
3675 list_for_each_entry(s, &slab_caches, list) {
3676 /*
3677 * XXX: kmem_cache_alloc_node will fallback to other nodes
3678 * since memory is not yet available from the node that
3679 * is brought up.
3680 */
3681 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3682 if (!n) {
3683 ret = -ENOMEM;
3684 goto out;
3685 }
3686 init_kmem_cache_node(n);
3687 s->node[nid] = n;
3688 }
3689 out:
3690 mutex_unlock(&slab_mutex);
3691 return ret;
3692 }
3693
3694 static int slab_memory_callback(struct notifier_block *self,
3695 unsigned long action, void *arg)
3696 {
3697 int ret = 0;
3698
3699 switch (action) {
3700 case MEM_GOING_ONLINE:
3701 ret = slab_mem_going_online_callback(arg);
3702 break;
3703 case MEM_GOING_OFFLINE:
3704 ret = slab_mem_going_offline_callback(arg);
3705 break;
3706 case MEM_OFFLINE:
3707 case MEM_CANCEL_ONLINE:
3708 slab_mem_offline_callback(arg);
3709 break;
3710 case MEM_ONLINE:
3711 case MEM_CANCEL_OFFLINE:
3712 break;
3713 }
3714 if (ret)
3715 ret = notifier_from_errno(ret);
3716 else
3717 ret = NOTIFY_OK;
3718 return ret;
3719 }
3720
3721 static struct notifier_block slab_memory_callback_nb = {
3722 .notifier_call = slab_memory_callback,
3723 .priority = SLAB_CALLBACK_PRI,
3724 };
3725
3726 /********************************************************************
3727 * Basic setup of slabs
3728 *******************************************************************/
3729
3730 /*
3731 * Used for early kmem_cache structures that were allocated using
3732 * the page allocator. Allocate them properly then fix up the pointers
3733 * that may be pointing to the wrong kmem_cache structure.
3734 */
3735
3736 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3737 {
3738 int node;
3739 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3740 struct kmem_cache_node *n;
3741
3742 memcpy(s, static_cache, kmem_cache->object_size);
3743
3744 /*
3745 * This runs very early, and only the boot processor is supposed to be
3746 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3747 * IPIs around.
3748 */
3749 __flush_cpu_slab(s, smp_processor_id());
3750 for_each_kmem_cache_node(s, node, n) {
3751 struct page *p;
3752
3753 list_for_each_entry(p, &n->partial, lru)
3754 p->slab_cache = s;
3755
3756 #ifdef CONFIG_SLUB_DEBUG
3757 list_for_each_entry(p, &n->full, lru)
3758 p->slab_cache = s;
3759 #endif
3760 }
3761 slab_init_memcg_params(s);
3762 list_add(&s->list, &slab_caches);
3763 return s;
3764 }
3765
3766 void __init kmem_cache_init(void)
3767 {
3768 static __initdata struct kmem_cache boot_kmem_cache,
3769 boot_kmem_cache_node;
3770
3771 if (debug_guardpage_minorder())
3772 slub_max_order = 0;
3773
3774 kmem_cache_node = &boot_kmem_cache_node;
3775 kmem_cache = &boot_kmem_cache;
3776
3777 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3778 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3779
3780 register_hotmemory_notifier(&slab_memory_callback_nb);
3781
3782 /* Able to allocate the per node structures */
3783 slab_state = PARTIAL;
3784
3785 create_boot_cache(kmem_cache, "kmem_cache",
3786 offsetof(struct kmem_cache, node) +
3787 nr_node_ids * sizeof(struct kmem_cache_node *),
3788 SLAB_HWCACHE_ALIGN);
3789
3790 kmem_cache = bootstrap(&boot_kmem_cache);
3791
3792 /*
3793 * Allocate kmem_cache_node properly from the kmem_cache slab.
3794 * kmem_cache_node is separately allocated so no need to
3795 * update any list pointers.
3796 */
3797 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3798
3799 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3800 setup_kmalloc_cache_index_table();
3801 create_kmalloc_caches(0);
3802
3803 #ifdef CONFIG_SMP
3804 register_cpu_notifier(&slab_notifier);
3805 #endif
3806
3807 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3808 cache_line_size(),
3809 slub_min_order, slub_max_order, slub_min_objects,
3810 nr_cpu_ids, nr_node_ids);
3811 }
3812
3813 void __init kmem_cache_init_late(void)
3814 {
3815 }
3816
3817 struct kmem_cache *
3818 __kmem_cache_alias(const char *name, size_t size, size_t align,
3819 unsigned long flags, void (*ctor)(void *))
3820 {
3821 struct kmem_cache *s, *c;
3822
3823 s = find_mergeable(size, align, flags, name, ctor);
3824 if (s) {
3825 s->refcount++;
3826
3827 /*
3828 * Adjust the object sizes so that we clear
3829 * the complete object on kzalloc.
3830 */
3831 s->object_size = max(s->object_size, (int)size);
3832 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3833
3834 for_each_memcg_cache(c, s) {
3835 c->object_size = s->object_size;
3836 c->inuse = max_t(int, c->inuse,
3837 ALIGN(size, sizeof(void *)));
3838 }
3839
3840 if (sysfs_slab_alias(s, name)) {
3841 s->refcount--;
3842 s = NULL;
3843 }
3844 }
3845
3846 return s;
3847 }
3848
3849 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3850 {
3851 int err;
3852
3853 err = kmem_cache_open(s, flags);
3854 if (err)
3855 return err;
3856
3857 /* Mutex is not taken during early boot */
3858 if (slab_state <= UP)
3859 return 0;
3860
3861 memcg_propagate_slab_attrs(s);
3862 err = sysfs_slab_add(s);
3863 if (err)
3864 kmem_cache_close(s);
3865
3866 return err;
3867 }
3868
3869 #ifdef CONFIG_SMP
3870 /*
3871 * Use the cpu notifier to insure that the cpu slabs are flushed when
3872 * necessary.
3873 */
3874 static int slab_cpuup_callback(struct notifier_block *nfb,
3875 unsigned long action, void *hcpu)
3876 {
3877 long cpu = (long)hcpu;
3878 struct kmem_cache *s;
3879 unsigned long flags;
3880
3881 switch (action) {
3882 case CPU_UP_CANCELED:
3883 case CPU_UP_CANCELED_FROZEN:
3884 case CPU_DEAD:
3885 case CPU_DEAD_FROZEN:
3886 mutex_lock(&slab_mutex);
3887 list_for_each_entry(s, &slab_caches, list) {
3888 local_irq_save(flags);
3889 __flush_cpu_slab(s, cpu);
3890 local_irq_restore(flags);
3891 }
3892 mutex_unlock(&slab_mutex);
3893 break;
3894 default:
3895 break;
3896 }
3897 return NOTIFY_OK;
3898 }
3899
3900 static struct notifier_block slab_notifier = {
3901 .notifier_call = slab_cpuup_callback
3902 };
3903
3904 #endif
3905
3906 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3907 {
3908 struct kmem_cache *s;
3909 void *ret;
3910
3911 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3912 return kmalloc_large(size, gfpflags);
3913
3914 s = kmalloc_slab(size, gfpflags);
3915
3916 if (unlikely(ZERO_OR_NULL_PTR(s)))
3917 return s;
3918
3919 ret = slab_alloc(s, gfpflags, caller);
3920
3921 /* Honor the call site pointer we received. */
3922 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3923
3924 return ret;
3925 }
3926
3927 #ifdef CONFIG_NUMA
3928 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3929 int node, unsigned long caller)
3930 {
3931 struct kmem_cache *s;
3932 void *ret;
3933
3934 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3935 ret = kmalloc_large_node(size, gfpflags, node);
3936
3937 trace_kmalloc_node(caller, ret,
3938 size, PAGE_SIZE << get_order(size),
3939 gfpflags, node);
3940
3941 return ret;
3942 }
3943
3944 s = kmalloc_slab(size, gfpflags);
3945
3946 if (unlikely(ZERO_OR_NULL_PTR(s)))
3947 return s;
3948
3949 ret = slab_alloc_node(s, gfpflags, node, caller);
3950
3951 /* Honor the call site pointer we received. */
3952 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3953
3954 return ret;
3955 }
3956 #endif
3957
3958 #ifdef CONFIG_SYSFS
3959 static int count_inuse(struct page *page)
3960 {
3961 return page->inuse;
3962 }
3963
3964 static int count_total(struct page *page)
3965 {
3966 return page->objects;
3967 }
3968 #endif
3969
3970 #ifdef CONFIG_SLUB_DEBUG
3971 static int validate_slab(struct kmem_cache *s, struct page *page,
3972 unsigned long *map)
3973 {
3974 void *p;
3975 void *addr = page_address(page);
3976
3977 if (!check_slab(s, page) ||
3978 !on_freelist(s, page, NULL))
3979 return 0;
3980
3981 /* Now we know that a valid freelist exists */
3982 bitmap_zero(map, page->objects);
3983
3984 get_map(s, page, map);
3985 for_each_object(p, s, addr, page->objects) {
3986 if (test_bit(slab_index(p, s, addr), map))
3987 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3988 return 0;
3989 }
3990
3991 for_each_object(p, s, addr, page->objects)
3992 if (!test_bit(slab_index(p, s, addr), map))
3993 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3994 return 0;
3995 return 1;
3996 }
3997
3998 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3999 unsigned long *map)
4000 {
4001 slab_lock(page);
4002 validate_slab(s, page, map);
4003 slab_unlock(page);
4004 }
4005
4006 static int validate_slab_node(struct kmem_cache *s,
4007 struct kmem_cache_node *n, unsigned long *map)
4008 {
4009 unsigned long count = 0;
4010 struct page *page;
4011 unsigned long flags;
4012
4013 spin_lock_irqsave(&n->list_lock, flags);
4014
4015 list_for_each_entry(page, &n->partial, lru) {
4016 validate_slab_slab(s, page, map);
4017 count++;
4018 }
4019 if (count != n->nr_partial)
4020 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4021 s->name, count, n->nr_partial);
4022
4023 if (!(s->flags & SLAB_STORE_USER))
4024 goto out;
4025
4026 list_for_each_entry(page, &n->full, lru) {
4027 validate_slab_slab(s, page, map);
4028 count++;
4029 }
4030 if (count != atomic_long_read(&n->nr_slabs))
4031 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4032 s->name, count, atomic_long_read(&n->nr_slabs));
4033
4034 out:
4035 spin_unlock_irqrestore(&n->list_lock, flags);
4036 return count;
4037 }
4038
4039 static long validate_slab_cache(struct kmem_cache *s)
4040 {
4041 int node;
4042 unsigned long count = 0;
4043 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4044 sizeof(unsigned long), GFP_KERNEL);
4045 struct kmem_cache_node *n;
4046
4047 if (!map)
4048 return -ENOMEM;
4049
4050 flush_all(s);
4051 for_each_kmem_cache_node(s, node, n)
4052 count += validate_slab_node(s, n, map);
4053 kfree(map);
4054 return count;
4055 }
4056 /*
4057 * Generate lists of code addresses where slabcache objects are allocated
4058 * and freed.
4059 */
4060
4061 struct location {
4062 unsigned long count;
4063 unsigned long addr;
4064 long long sum_time;
4065 long min_time;
4066 long max_time;
4067 long min_pid;
4068 long max_pid;
4069 DECLARE_BITMAP(cpus, NR_CPUS);
4070 nodemask_t nodes;
4071 };
4072
4073 struct loc_track {
4074 unsigned long max;
4075 unsigned long count;
4076 struct location *loc;
4077 };
4078
4079 static void free_loc_track(struct loc_track *t)
4080 {
4081 if (t->max)
4082 free_pages((unsigned long)t->loc,
4083 get_order(sizeof(struct location) * t->max));
4084 }
4085
4086 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4087 {
4088 struct location *l;
4089 int order;
4090
4091 order = get_order(sizeof(struct location) * max);
4092
4093 l = (void *)__get_free_pages(flags, order);
4094 if (!l)
4095 return 0;
4096
4097 if (t->count) {
4098 memcpy(l, t->loc, sizeof(struct location) * t->count);
4099 free_loc_track(t);
4100 }
4101 t->max = max;
4102 t->loc = l;
4103 return 1;
4104 }
4105
4106 static int add_location(struct loc_track *t, struct kmem_cache *s,
4107 const struct track *track)
4108 {
4109 long start, end, pos;
4110 struct location *l;
4111 unsigned long caddr;
4112 unsigned long age = jiffies - track->when;
4113
4114 start = -1;
4115 end = t->count;
4116
4117 for ( ; ; ) {
4118 pos = start + (end - start + 1) / 2;
4119
4120 /*
4121 * There is nothing at "end". If we end up there
4122 * we need to add something to before end.
4123 */
4124 if (pos == end)
4125 break;
4126
4127 caddr = t->loc[pos].addr;
4128 if (track->addr == caddr) {
4129
4130 l = &t->loc[pos];
4131 l->count++;
4132 if (track->when) {
4133 l->sum_time += age;
4134 if (age < l->min_time)
4135 l->min_time = age;
4136 if (age > l->max_time)
4137 l->max_time = age;
4138
4139 if (track->pid < l->min_pid)
4140 l->min_pid = track->pid;
4141 if (track->pid > l->max_pid)
4142 l->max_pid = track->pid;
4143
4144 cpumask_set_cpu(track->cpu,
4145 to_cpumask(l->cpus));
4146 }
4147 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4148 return 1;
4149 }
4150
4151 if (track->addr < caddr)
4152 end = pos;
4153 else
4154 start = pos;
4155 }
4156
4157 /*
4158 * Not found. Insert new tracking element.
4159 */
4160 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4161 return 0;
4162
4163 l = t->loc + pos;
4164 if (pos < t->count)
4165 memmove(l + 1, l,
4166 (t->count - pos) * sizeof(struct location));
4167 t->count++;
4168 l->count = 1;
4169 l->addr = track->addr;
4170 l->sum_time = age;
4171 l->min_time = age;
4172 l->max_time = age;
4173 l->min_pid = track->pid;
4174 l->max_pid = track->pid;
4175 cpumask_clear(to_cpumask(l->cpus));
4176 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4177 nodes_clear(l->nodes);
4178 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4179 return 1;
4180 }
4181
4182 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4183 struct page *page, enum track_item alloc,
4184 unsigned long *map)
4185 {
4186 void *addr = page_address(page);
4187 void *p;
4188
4189 bitmap_zero(map, page->objects);
4190 get_map(s, page, map);
4191
4192 for_each_object(p, s, addr, page->objects)
4193 if (!test_bit(slab_index(p, s, addr), map))
4194 add_location(t, s, get_track(s, p, alloc));
4195 }
4196
4197 static int list_locations(struct kmem_cache *s, char *buf,
4198 enum track_item alloc)
4199 {
4200 int len = 0;
4201 unsigned long i;
4202 struct loc_track t = { 0, 0, NULL };
4203 int node;
4204 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4205 sizeof(unsigned long), GFP_KERNEL);
4206 struct kmem_cache_node *n;
4207
4208 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4209 GFP_TEMPORARY)) {
4210 kfree(map);
4211 return sprintf(buf, "Out of memory\n");
4212 }
4213 /* Push back cpu slabs */
4214 flush_all(s);
4215
4216 for_each_kmem_cache_node(s, node, n) {
4217 unsigned long flags;
4218 struct page *page;
4219
4220 if (!atomic_long_read(&n->nr_slabs))
4221 continue;
4222
4223 spin_lock_irqsave(&n->list_lock, flags);
4224 list_for_each_entry(page, &n->partial, lru)
4225 process_slab(&t, s, page, alloc, map);
4226 list_for_each_entry(page, &n->full, lru)
4227 process_slab(&t, s, page, alloc, map);
4228 spin_unlock_irqrestore(&n->list_lock, flags);
4229 }
4230
4231 for (i = 0; i < t.count; i++) {
4232 struct location *l = &t.loc[i];
4233
4234 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4235 break;
4236 len += sprintf(buf + len, "%7ld ", l->count);
4237
4238 if (l->addr)
4239 len += sprintf(buf + len, "%pS", (void *)l->addr);
4240 else
4241 len += sprintf(buf + len, "<not-available>");
4242
4243 if (l->sum_time != l->min_time) {
4244 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4245 l->min_time,
4246 (long)div_u64(l->sum_time, l->count),
4247 l->max_time);
4248 } else
4249 len += sprintf(buf + len, " age=%ld",
4250 l->min_time);
4251
4252 if (l->min_pid != l->max_pid)
4253 len += sprintf(buf + len, " pid=%ld-%ld",
4254 l->min_pid, l->max_pid);
4255 else
4256 len += sprintf(buf + len, " pid=%ld",
4257 l->min_pid);
4258
4259 if (num_online_cpus() > 1 &&
4260 !cpumask_empty(to_cpumask(l->cpus)) &&
4261 len < PAGE_SIZE - 60)
4262 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4263 " cpus=%*pbl",
4264 cpumask_pr_args(to_cpumask(l->cpus)));
4265
4266 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4267 len < PAGE_SIZE - 60)
4268 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4269 " nodes=%*pbl",
4270 nodemask_pr_args(&l->nodes));
4271
4272 len += sprintf(buf + len, "\n");
4273 }
4274
4275 free_loc_track(&t);
4276 kfree(map);
4277 if (!t.count)
4278 len += sprintf(buf, "No data\n");
4279 return len;
4280 }
4281 #endif
4282
4283 #ifdef SLUB_RESILIENCY_TEST
4284 static void __init resiliency_test(void)
4285 {
4286 u8 *p;
4287
4288 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4289
4290 pr_err("SLUB resiliency testing\n");
4291 pr_err("-----------------------\n");
4292 pr_err("A. Corruption after allocation\n");
4293
4294 p = kzalloc(16, GFP_KERNEL);
4295 p[16] = 0x12;
4296 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4297 p + 16);
4298
4299 validate_slab_cache(kmalloc_caches[4]);
4300
4301 /* Hmmm... The next two are dangerous */
4302 p = kzalloc(32, GFP_KERNEL);
4303 p[32 + sizeof(void *)] = 0x34;
4304 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4305 p);
4306 pr_err("If allocated object is overwritten then not detectable\n\n");
4307
4308 validate_slab_cache(kmalloc_caches[5]);
4309 p = kzalloc(64, GFP_KERNEL);
4310 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4311 *p = 0x56;
4312 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4313 p);
4314 pr_err("If allocated object is overwritten then not detectable\n\n");
4315 validate_slab_cache(kmalloc_caches[6]);
4316
4317 pr_err("\nB. Corruption after free\n");
4318 p = kzalloc(128, GFP_KERNEL);
4319 kfree(p);
4320 *p = 0x78;
4321 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4322 validate_slab_cache(kmalloc_caches[7]);
4323
4324 p = kzalloc(256, GFP_KERNEL);
4325 kfree(p);
4326 p[50] = 0x9a;
4327 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4328 validate_slab_cache(kmalloc_caches[8]);
4329
4330 p = kzalloc(512, GFP_KERNEL);
4331 kfree(p);
4332 p[512] = 0xab;
4333 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4334 validate_slab_cache(kmalloc_caches[9]);
4335 }
4336 #else
4337 #ifdef CONFIG_SYSFS
4338 static void resiliency_test(void) {};
4339 #endif
4340 #endif
4341
4342 #ifdef CONFIG_SYSFS
4343 enum slab_stat_type {
4344 SL_ALL, /* All slabs */
4345 SL_PARTIAL, /* Only partially allocated slabs */
4346 SL_CPU, /* Only slabs used for cpu caches */
4347 SL_OBJECTS, /* Determine allocated objects not slabs */
4348 SL_TOTAL /* Determine object capacity not slabs */
4349 };
4350
4351 #define SO_ALL (1 << SL_ALL)
4352 #define SO_PARTIAL (1 << SL_PARTIAL)
4353 #define SO_CPU (1 << SL_CPU)
4354 #define SO_OBJECTS (1 << SL_OBJECTS)
4355 #define SO_TOTAL (1 << SL_TOTAL)
4356
4357 static ssize_t show_slab_objects(struct kmem_cache *s,
4358 char *buf, unsigned long flags)
4359 {
4360 unsigned long total = 0;
4361 int node;
4362 int x;
4363 unsigned long *nodes;
4364
4365 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4366 if (!nodes)
4367 return -ENOMEM;
4368
4369 if (flags & SO_CPU) {
4370 int cpu;
4371
4372 for_each_possible_cpu(cpu) {
4373 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4374 cpu);
4375 int node;
4376 struct page *page;
4377
4378 page = READ_ONCE(c->page);
4379 if (!page)
4380 continue;
4381
4382 node = page_to_nid(page);
4383 if (flags & SO_TOTAL)
4384 x = page->objects;
4385 else if (flags & SO_OBJECTS)
4386 x = page->inuse;
4387 else
4388 x = 1;
4389
4390 total += x;
4391 nodes[node] += x;
4392
4393 page = READ_ONCE(c->partial);
4394 if (page) {
4395 node = page_to_nid(page);
4396 if (flags & SO_TOTAL)
4397 WARN_ON_ONCE(1);
4398 else if (flags & SO_OBJECTS)
4399 WARN_ON_ONCE(1);
4400 else
4401 x = page->pages;
4402 total += x;
4403 nodes[node] += x;
4404 }
4405 }
4406 }
4407
4408 get_online_mems();
4409 #ifdef CONFIG_SLUB_DEBUG
4410 if (flags & SO_ALL) {
4411 struct kmem_cache_node *n;
4412
4413 for_each_kmem_cache_node(s, node, n) {
4414
4415 if (flags & SO_TOTAL)
4416 x = atomic_long_read(&n->total_objects);
4417 else if (flags & SO_OBJECTS)
4418 x = atomic_long_read(&n->total_objects) -
4419 count_partial(n, count_free);
4420 else
4421 x = atomic_long_read(&n->nr_slabs);
4422 total += x;
4423 nodes[node] += x;
4424 }
4425
4426 } else
4427 #endif
4428 if (flags & SO_PARTIAL) {
4429 struct kmem_cache_node *n;
4430
4431 for_each_kmem_cache_node(s, node, n) {
4432 if (flags & SO_TOTAL)
4433 x = count_partial(n, count_total);
4434 else if (flags & SO_OBJECTS)
4435 x = count_partial(n, count_inuse);
4436 else
4437 x = n->nr_partial;
4438 total += x;
4439 nodes[node] += x;
4440 }
4441 }
4442 x = sprintf(buf, "%lu", total);
4443 #ifdef CONFIG_NUMA
4444 for (node = 0; node < nr_node_ids; node++)
4445 if (nodes[node])
4446 x += sprintf(buf + x, " N%d=%lu",
4447 node, nodes[node]);
4448 #endif
4449 put_online_mems();
4450 kfree(nodes);
4451 return x + sprintf(buf + x, "\n");
4452 }
4453
4454 #ifdef CONFIG_SLUB_DEBUG
4455 static int any_slab_objects(struct kmem_cache *s)
4456 {
4457 int node;
4458 struct kmem_cache_node *n;
4459
4460 for_each_kmem_cache_node(s, node, n)
4461 if (atomic_long_read(&n->total_objects))
4462 return 1;
4463
4464 return 0;
4465 }
4466 #endif
4467
4468 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4469 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4470
4471 struct slab_attribute {
4472 struct attribute attr;
4473 ssize_t (*show)(struct kmem_cache *s, char *buf);
4474 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4475 };
4476
4477 #define SLAB_ATTR_RO(_name) \
4478 static struct slab_attribute _name##_attr = \
4479 __ATTR(_name, 0400, _name##_show, NULL)
4480
4481 #define SLAB_ATTR(_name) \
4482 static struct slab_attribute _name##_attr = \
4483 __ATTR(_name, 0600, _name##_show, _name##_store)
4484
4485 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4486 {
4487 return sprintf(buf, "%d\n", s->size);
4488 }
4489 SLAB_ATTR_RO(slab_size);
4490
4491 static ssize_t align_show(struct kmem_cache *s, char *buf)
4492 {
4493 return sprintf(buf, "%d\n", s->align);
4494 }
4495 SLAB_ATTR_RO(align);
4496
4497 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4498 {
4499 return sprintf(buf, "%d\n", s->object_size);
4500 }
4501 SLAB_ATTR_RO(object_size);
4502
4503 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4504 {
4505 return sprintf(buf, "%d\n", oo_objects(s->oo));
4506 }
4507 SLAB_ATTR_RO(objs_per_slab);
4508
4509 static ssize_t order_store(struct kmem_cache *s,
4510 const char *buf, size_t length)
4511 {
4512 unsigned long order;
4513 int err;
4514
4515 err = kstrtoul(buf, 10, &order);
4516 if (err)
4517 return err;
4518
4519 if (order > slub_max_order || order < slub_min_order)
4520 return -EINVAL;
4521
4522 calculate_sizes(s, order);
4523 return length;
4524 }
4525
4526 static ssize_t order_show(struct kmem_cache *s, char *buf)
4527 {
4528 return sprintf(buf, "%d\n", oo_order(s->oo));
4529 }
4530 SLAB_ATTR(order);
4531
4532 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4533 {
4534 return sprintf(buf, "%lu\n", s->min_partial);
4535 }
4536
4537 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4538 size_t length)
4539 {
4540 unsigned long min;
4541 int err;
4542
4543 err = kstrtoul(buf, 10, &min);
4544 if (err)
4545 return err;
4546
4547 set_min_partial(s, min);
4548 return length;
4549 }
4550 SLAB_ATTR(min_partial);
4551
4552 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4553 {
4554 return sprintf(buf, "%u\n", s->cpu_partial);
4555 }
4556
4557 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4558 size_t length)
4559 {
4560 unsigned long objects;
4561 int err;
4562
4563 err = kstrtoul(buf, 10, &objects);
4564 if (err)
4565 return err;
4566 if (objects && !kmem_cache_has_cpu_partial(s))
4567 return -EINVAL;
4568
4569 s->cpu_partial = objects;
4570 flush_all(s);
4571 return length;
4572 }
4573 SLAB_ATTR(cpu_partial);
4574
4575 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4576 {
4577 if (!s->ctor)
4578 return 0;
4579 return sprintf(buf, "%pS\n", s->ctor);
4580 }
4581 SLAB_ATTR_RO(ctor);
4582
4583 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4584 {
4585 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4586 }
4587 SLAB_ATTR_RO(aliases);
4588
4589 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4590 {
4591 return show_slab_objects(s, buf, SO_PARTIAL);
4592 }
4593 SLAB_ATTR_RO(partial);
4594
4595 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4596 {
4597 return show_slab_objects(s, buf, SO_CPU);
4598 }
4599 SLAB_ATTR_RO(cpu_slabs);
4600
4601 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4602 {
4603 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4604 }
4605 SLAB_ATTR_RO(objects);
4606
4607 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4608 {
4609 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4610 }
4611 SLAB_ATTR_RO(objects_partial);
4612
4613 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4614 {
4615 int objects = 0;
4616 int pages = 0;
4617 int cpu;
4618 int len;
4619
4620 for_each_online_cpu(cpu) {
4621 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4622
4623 if (page) {
4624 pages += page->pages;
4625 objects += page->pobjects;
4626 }
4627 }
4628
4629 len = sprintf(buf, "%d(%d)", objects, pages);
4630
4631 #ifdef CONFIG_SMP
4632 for_each_online_cpu(cpu) {
4633 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4634
4635 if (page && len < PAGE_SIZE - 20)
4636 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4637 page->pobjects, page->pages);
4638 }
4639 #endif
4640 return len + sprintf(buf + len, "\n");
4641 }
4642 SLAB_ATTR_RO(slabs_cpu_partial);
4643
4644 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4645 {
4646 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4647 }
4648
4649 static ssize_t reclaim_account_store(struct kmem_cache *s,
4650 const char *buf, size_t length)
4651 {
4652 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4653 if (buf[0] == '1')
4654 s->flags |= SLAB_RECLAIM_ACCOUNT;
4655 return length;
4656 }
4657 SLAB_ATTR(reclaim_account);
4658
4659 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4660 {
4661 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4662 }
4663 SLAB_ATTR_RO(hwcache_align);
4664
4665 #ifdef CONFIG_ZONE_DMA
4666 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4667 {
4668 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4669 }
4670 SLAB_ATTR_RO(cache_dma);
4671 #endif
4672
4673 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4674 {
4675 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4676 }
4677 SLAB_ATTR_RO(destroy_by_rcu);
4678
4679 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4680 {
4681 return sprintf(buf, "%d\n", s->reserved);
4682 }
4683 SLAB_ATTR_RO(reserved);
4684
4685 #ifdef CONFIG_SLUB_DEBUG
4686 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4687 {
4688 return show_slab_objects(s, buf, SO_ALL);
4689 }
4690 SLAB_ATTR_RO(slabs);
4691
4692 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4693 {
4694 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4695 }
4696 SLAB_ATTR_RO(total_objects);
4697
4698 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4699 {
4700 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4701 }
4702
4703 static ssize_t sanity_checks_store(struct kmem_cache *s,
4704 const char *buf, size_t length)
4705 {
4706 s->flags &= ~SLAB_DEBUG_FREE;
4707 if (buf[0] == '1') {
4708 s->flags &= ~__CMPXCHG_DOUBLE;
4709 s->flags |= SLAB_DEBUG_FREE;
4710 }
4711 return length;
4712 }
4713 SLAB_ATTR(sanity_checks);
4714
4715 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4716 {
4717 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4718 }
4719
4720 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4721 size_t length)
4722 {
4723 /*
4724 * Tracing a merged cache is going to give confusing results
4725 * as well as cause other issues like converting a mergeable
4726 * cache into an umergeable one.
4727 */
4728 if (s->refcount > 1)
4729 return -EINVAL;
4730
4731 s->flags &= ~SLAB_TRACE;
4732 if (buf[0] == '1') {
4733 s->flags &= ~__CMPXCHG_DOUBLE;
4734 s->flags |= SLAB_TRACE;
4735 }
4736 return length;
4737 }
4738 SLAB_ATTR(trace);
4739
4740 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4741 {
4742 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4743 }
4744
4745 static ssize_t red_zone_store(struct kmem_cache *s,
4746 const char *buf, size_t length)
4747 {
4748 if (any_slab_objects(s))
4749 return -EBUSY;
4750
4751 s->flags &= ~SLAB_RED_ZONE;
4752 if (buf[0] == '1') {
4753 s->flags &= ~__CMPXCHG_DOUBLE;
4754 s->flags |= SLAB_RED_ZONE;
4755 }
4756 calculate_sizes(s, -1);
4757 return length;
4758 }
4759 SLAB_ATTR(red_zone);
4760
4761 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4762 {
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4764 }
4765
4766 static ssize_t poison_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4768 {
4769 if (any_slab_objects(s))
4770 return -EBUSY;
4771
4772 s->flags &= ~SLAB_POISON;
4773 if (buf[0] == '1') {
4774 s->flags &= ~__CMPXCHG_DOUBLE;
4775 s->flags |= SLAB_POISON;
4776 }
4777 calculate_sizes(s, -1);
4778 return length;
4779 }
4780 SLAB_ATTR(poison);
4781
4782 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4783 {
4784 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4785 }
4786
4787 static ssize_t store_user_store(struct kmem_cache *s,
4788 const char *buf, size_t length)
4789 {
4790 if (any_slab_objects(s))
4791 return -EBUSY;
4792
4793 s->flags &= ~SLAB_STORE_USER;
4794 if (buf[0] == '1') {
4795 s->flags &= ~__CMPXCHG_DOUBLE;
4796 s->flags |= SLAB_STORE_USER;
4797 }
4798 calculate_sizes(s, -1);
4799 return length;
4800 }
4801 SLAB_ATTR(store_user);
4802
4803 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4804 {
4805 return 0;
4806 }
4807
4808 static ssize_t validate_store(struct kmem_cache *s,
4809 const char *buf, size_t length)
4810 {
4811 int ret = -EINVAL;
4812
4813 if (buf[0] == '1') {
4814 ret = validate_slab_cache(s);
4815 if (ret >= 0)
4816 ret = length;
4817 }
4818 return ret;
4819 }
4820 SLAB_ATTR(validate);
4821
4822 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4823 {
4824 if (!(s->flags & SLAB_STORE_USER))
4825 return -ENOSYS;
4826 return list_locations(s, buf, TRACK_ALLOC);
4827 }
4828 SLAB_ATTR_RO(alloc_calls);
4829
4830 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4831 {
4832 if (!(s->flags & SLAB_STORE_USER))
4833 return -ENOSYS;
4834 return list_locations(s, buf, TRACK_FREE);
4835 }
4836 SLAB_ATTR_RO(free_calls);
4837 #endif /* CONFIG_SLUB_DEBUG */
4838
4839 #ifdef CONFIG_FAILSLAB
4840 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4841 {
4842 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4843 }
4844
4845 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4846 size_t length)
4847 {
4848 if (s->refcount > 1)
4849 return -EINVAL;
4850
4851 s->flags &= ~SLAB_FAILSLAB;
4852 if (buf[0] == '1')
4853 s->flags |= SLAB_FAILSLAB;
4854 return length;
4855 }
4856 SLAB_ATTR(failslab);
4857 #endif
4858
4859 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4860 {
4861 return 0;
4862 }
4863
4864 static ssize_t shrink_store(struct kmem_cache *s,
4865 const char *buf, size_t length)
4866 {
4867 if (buf[0] == '1')
4868 kmem_cache_shrink(s);
4869 else
4870 return -EINVAL;
4871 return length;
4872 }
4873 SLAB_ATTR(shrink);
4874
4875 #ifdef CONFIG_NUMA
4876 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4877 {
4878 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4879 }
4880
4881 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4882 const char *buf, size_t length)
4883 {
4884 unsigned long ratio;
4885 int err;
4886
4887 err = kstrtoul(buf, 10, &ratio);
4888 if (err)
4889 return err;
4890
4891 if (ratio <= 100)
4892 s->remote_node_defrag_ratio = ratio * 10;
4893
4894 return length;
4895 }
4896 SLAB_ATTR(remote_node_defrag_ratio);
4897 #endif
4898
4899 #ifdef CONFIG_SLUB_STATS
4900 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4901 {
4902 unsigned long sum = 0;
4903 int cpu;
4904 int len;
4905 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4906
4907 if (!data)
4908 return -ENOMEM;
4909
4910 for_each_online_cpu(cpu) {
4911 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4912
4913 data[cpu] = x;
4914 sum += x;
4915 }
4916
4917 len = sprintf(buf, "%lu", sum);
4918
4919 #ifdef CONFIG_SMP
4920 for_each_online_cpu(cpu) {
4921 if (data[cpu] && len < PAGE_SIZE - 20)
4922 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4923 }
4924 #endif
4925 kfree(data);
4926 return len + sprintf(buf + len, "\n");
4927 }
4928
4929 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4930 {
4931 int cpu;
4932
4933 for_each_online_cpu(cpu)
4934 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4935 }
4936
4937 #define STAT_ATTR(si, text) \
4938 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4939 { \
4940 return show_stat(s, buf, si); \
4941 } \
4942 static ssize_t text##_store(struct kmem_cache *s, \
4943 const char *buf, size_t length) \
4944 { \
4945 if (buf[0] != '0') \
4946 return -EINVAL; \
4947 clear_stat(s, si); \
4948 return length; \
4949 } \
4950 SLAB_ATTR(text); \
4951
4952 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4953 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4954 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4955 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4956 STAT_ATTR(FREE_FROZEN, free_frozen);
4957 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4958 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4959 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4960 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4961 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4962 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4963 STAT_ATTR(FREE_SLAB, free_slab);
4964 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4965 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4966 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4967 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4968 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4969 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4970 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4971 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4972 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4973 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4974 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4975 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4976 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4977 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4978 #endif
4979
4980 static struct attribute *slab_attrs[] = {
4981 &slab_size_attr.attr,
4982 &object_size_attr.attr,
4983 &objs_per_slab_attr.attr,
4984 &order_attr.attr,
4985 &min_partial_attr.attr,
4986 &cpu_partial_attr.attr,
4987 &objects_attr.attr,
4988 &objects_partial_attr.attr,
4989 &partial_attr.attr,
4990 &cpu_slabs_attr.attr,
4991 &ctor_attr.attr,
4992 &aliases_attr.attr,
4993 &align_attr.attr,
4994 &hwcache_align_attr.attr,
4995 &reclaim_account_attr.attr,
4996 &destroy_by_rcu_attr.attr,
4997 &shrink_attr.attr,
4998 &reserved_attr.attr,
4999 &slabs_cpu_partial_attr.attr,
5000 #ifdef CONFIG_SLUB_DEBUG
5001 &total_objects_attr.attr,
5002 &slabs_attr.attr,
5003 &sanity_checks_attr.attr,
5004 &trace_attr.attr,
5005 &red_zone_attr.attr,
5006 &poison_attr.attr,
5007 &store_user_attr.attr,
5008 &validate_attr.attr,
5009 &alloc_calls_attr.attr,
5010 &free_calls_attr.attr,
5011 #endif
5012 #ifdef CONFIG_ZONE_DMA
5013 &cache_dma_attr.attr,
5014 #endif
5015 #ifdef CONFIG_NUMA
5016 &remote_node_defrag_ratio_attr.attr,
5017 #endif
5018 #ifdef CONFIG_SLUB_STATS
5019 &alloc_fastpath_attr.attr,
5020 &alloc_slowpath_attr.attr,
5021 &free_fastpath_attr.attr,
5022 &free_slowpath_attr.attr,
5023 &free_frozen_attr.attr,
5024 &free_add_partial_attr.attr,
5025 &free_remove_partial_attr.attr,
5026 &alloc_from_partial_attr.attr,
5027 &alloc_slab_attr.attr,
5028 &alloc_refill_attr.attr,
5029 &alloc_node_mismatch_attr.attr,
5030 &free_slab_attr.attr,
5031 &cpuslab_flush_attr.attr,
5032 &deactivate_full_attr.attr,
5033 &deactivate_empty_attr.attr,
5034 &deactivate_to_head_attr.attr,
5035 &deactivate_to_tail_attr.attr,
5036 &deactivate_remote_frees_attr.attr,
5037 &deactivate_bypass_attr.attr,
5038 &order_fallback_attr.attr,
5039 &cmpxchg_double_fail_attr.attr,
5040 &cmpxchg_double_cpu_fail_attr.attr,
5041 &cpu_partial_alloc_attr.attr,
5042 &cpu_partial_free_attr.attr,
5043 &cpu_partial_node_attr.attr,
5044 &cpu_partial_drain_attr.attr,
5045 #endif
5046 #ifdef CONFIG_FAILSLAB
5047 &failslab_attr.attr,
5048 #endif
5049
5050 NULL
5051 };
5052
5053 static struct attribute_group slab_attr_group = {
5054 .attrs = slab_attrs,
5055 };
5056
5057 static ssize_t slab_attr_show(struct kobject *kobj,
5058 struct attribute *attr,
5059 char *buf)
5060 {
5061 struct slab_attribute *attribute;
5062 struct kmem_cache *s;
5063 int err;
5064
5065 attribute = to_slab_attr(attr);
5066 s = to_slab(kobj);
5067
5068 if (!attribute->show)
5069 return -EIO;
5070
5071 err = attribute->show(s, buf);
5072
5073 return err;
5074 }
5075
5076 static ssize_t slab_attr_store(struct kobject *kobj,
5077 struct attribute *attr,
5078 const char *buf, size_t len)
5079 {
5080 struct slab_attribute *attribute;
5081 struct kmem_cache *s;
5082 int err;
5083
5084 attribute = to_slab_attr(attr);
5085 s = to_slab(kobj);
5086
5087 if (!attribute->store)
5088 return -EIO;
5089
5090 err = attribute->store(s, buf, len);
5091 #ifdef CONFIG_MEMCG_KMEM
5092 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5093 struct kmem_cache *c;
5094
5095 mutex_lock(&slab_mutex);
5096 if (s->max_attr_size < len)
5097 s->max_attr_size = len;
5098
5099 /*
5100 * This is a best effort propagation, so this function's return
5101 * value will be determined by the parent cache only. This is
5102 * basically because not all attributes will have a well
5103 * defined semantics for rollbacks - most of the actions will
5104 * have permanent effects.
5105 *
5106 * Returning the error value of any of the children that fail
5107 * is not 100 % defined, in the sense that users seeing the
5108 * error code won't be able to know anything about the state of
5109 * the cache.
5110 *
5111 * Only returning the error code for the parent cache at least
5112 * has well defined semantics. The cache being written to
5113 * directly either failed or succeeded, in which case we loop
5114 * through the descendants with best-effort propagation.
5115 */
5116 for_each_memcg_cache(c, s)
5117 attribute->store(c, buf, len);
5118 mutex_unlock(&slab_mutex);
5119 }
5120 #endif
5121 return err;
5122 }
5123
5124 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5125 {
5126 #ifdef CONFIG_MEMCG_KMEM
5127 int i;
5128 char *buffer = NULL;
5129 struct kmem_cache *root_cache;
5130
5131 if (is_root_cache(s))
5132 return;
5133
5134 root_cache = s->memcg_params.root_cache;
5135
5136 /*
5137 * This mean this cache had no attribute written. Therefore, no point
5138 * in copying default values around
5139 */
5140 if (!root_cache->max_attr_size)
5141 return;
5142
5143 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5144 char mbuf[64];
5145 char *buf;
5146 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5147
5148 if (!attr || !attr->store || !attr->show)
5149 continue;
5150
5151 /*
5152 * It is really bad that we have to allocate here, so we will
5153 * do it only as a fallback. If we actually allocate, though,
5154 * we can just use the allocated buffer until the end.
5155 *
5156 * Most of the slub attributes will tend to be very small in
5157 * size, but sysfs allows buffers up to a page, so they can
5158 * theoretically happen.
5159 */
5160 if (buffer)
5161 buf = buffer;
5162 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5163 buf = mbuf;
5164 else {
5165 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5166 if (WARN_ON(!buffer))
5167 continue;
5168 buf = buffer;
5169 }
5170
5171 attr->show(root_cache, buf);
5172 attr->store(s, buf, strlen(buf));
5173 }
5174
5175 if (buffer)
5176 free_page((unsigned long)buffer);
5177 #endif
5178 }
5179
5180 static void kmem_cache_release(struct kobject *k)
5181 {
5182 slab_kmem_cache_release(to_slab(k));
5183 }
5184
5185 static const struct sysfs_ops slab_sysfs_ops = {
5186 .show = slab_attr_show,
5187 .store = slab_attr_store,
5188 };
5189
5190 static struct kobj_type slab_ktype = {
5191 .sysfs_ops = &slab_sysfs_ops,
5192 .release = kmem_cache_release,
5193 };
5194
5195 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5196 {
5197 struct kobj_type *ktype = get_ktype(kobj);
5198
5199 if (ktype == &slab_ktype)
5200 return 1;
5201 return 0;
5202 }
5203
5204 static const struct kset_uevent_ops slab_uevent_ops = {
5205 .filter = uevent_filter,
5206 };
5207
5208 static struct kset *slab_kset;
5209
5210 static inline struct kset *cache_kset(struct kmem_cache *s)
5211 {
5212 #ifdef CONFIG_MEMCG_KMEM
5213 if (!is_root_cache(s))
5214 return s->memcg_params.root_cache->memcg_kset;
5215 #endif
5216 return slab_kset;
5217 }
5218
5219 #define ID_STR_LENGTH 64
5220
5221 /* Create a unique string id for a slab cache:
5222 *
5223 * Format :[flags-]size
5224 */
5225 static char *create_unique_id(struct kmem_cache *s)
5226 {
5227 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5228 char *p = name;
5229
5230 BUG_ON(!name);
5231
5232 *p++ = ':';
5233 /*
5234 * First flags affecting slabcache operations. We will only
5235 * get here for aliasable slabs so we do not need to support
5236 * too many flags. The flags here must cover all flags that
5237 * are matched during merging to guarantee that the id is
5238 * unique.
5239 */
5240 if (s->flags & SLAB_CACHE_DMA)
5241 *p++ = 'd';
5242 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5243 *p++ = 'a';
5244 if (s->flags & SLAB_DEBUG_FREE)
5245 *p++ = 'F';
5246 if (!(s->flags & SLAB_NOTRACK))
5247 *p++ = 't';
5248 if (p != name + 1)
5249 *p++ = '-';
5250 p += sprintf(p, "%07d", s->size);
5251
5252 BUG_ON(p > name + ID_STR_LENGTH - 1);
5253 return name;
5254 }
5255
5256 static int sysfs_slab_add(struct kmem_cache *s)
5257 {
5258 int err;
5259 const char *name;
5260 int unmergeable = slab_unmergeable(s);
5261
5262 if (unmergeable) {
5263 /*
5264 * Slabcache can never be merged so we can use the name proper.
5265 * This is typically the case for debug situations. In that
5266 * case we can catch duplicate names easily.
5267 */
5268 sysfs_remove_link(&slab_kset->kobj, s->name);
5269 name = s->name;
5270 } else {
5271 /*
5272 * Create a unique name for the slab as a target
5273 * for the symlinks.
5274 */
5275 name = create_unique_id(s);
5276 }
5277
5278 s->kobj.kset = cache_kset(s);
5279 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5280 if (err)
5281 goto out;
5282
5283 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5284 if (err)
5285 goto out_del_kobj;
5286
5287 #ifdef CONFIG_MEMCG_KMEM
5288 if (is_root_cache(s)) {
5289 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5290 if (!s->memcg_kset) {
5291 err = -ENOMEM;
5292 goto out_del_kobj;
5293 }
5294 }
5295 #endif
5296
5297 kobject_uevent(&s->kobj, KOBJ_ADD);
5298 if (!unmergeable) {
5299 /* Setup first alias */
5300 sysfs_slab_alias(s, s->name);
5301 }
5302 out:
5303 if (!unmergeable)
5304 kfree(name);
5305 return err;
5306 out_del_kobj:
5307 kobject_del(&s->kobj);
5308 goto out;
5309 }
5310
5311 void sysfs_slab_remove(struct kmem_cache *s)
5312 {
5313 if (slab_state < FULL)
5314 /*
5315 * Sysfs has not been setup yet so no need to remove the
5316 * cache from sysfs.
5317 */
5318 return;
5319
5320 #ifdef CONFIG_MEMCG_KMEM
5321 kset_unregister(s->memcg_kset);
5322 #endif
5323 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5324 kobject_del(&s->kobj);
5325 kobject_put(&s->kobj);
5326 }
5327
5328 /*
5329 * Need to buffer aliases during bootup until sysfs becomes
5330 * available lest we lose that information.
5331 */
5332 struct saved_alias {
5333 struct kmem_cache *s;
5334 const char *name;
5335 struct saved_alias *next;
5336 };
5337
5338 static struct saved_alias *alias_list;
5339
5340 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5341 {
5342 struct saved_alias *al;
5343
5344 if (slab_state == FULL) {
5345 /*
5346 * If we have a leftover link then remove it.
5347 */
5348 sysfs_remove_link(&slab_kset->kobj, name);
5349 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5350 }
5351
5352 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5353 if (!al)
5354 return -ENOMEM;
5355
5356 al->s = s;
5357 al->name = name;
5358 al->next = alias_list;
5359 alias_list = al;
5360 return 0;
5361 }
5362
5363 static int __init slab_sysfs_init(void)
5364 {
5365 struct kmem_cache *s;
5366 int err;
5367
5368 mutex_lock(&slab_mutex);
5369
5370 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5371 if (!slab_kset) {
5372 mutex_unlock(&slab_mutex);
5373 pr_err("Cannot register slab subsystem.\n");
5374 return -ENOSYS;
5375 }
5376
5377 slab_state = FULL;
5378
5379 list_for_each_entry(s, &slab_caches, list) {
5380 err = sysfs_slab_add(s);
5381 if (err)
5382 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5383 s->name);
5384 }
5385
5386 while (alias_list) {
5387 struct saved_alias *al = alias_list;
5388
5389 alias_list = alias_list->next;
5390 err = sysfs_slab_alias(al->s, al->name);
5391 if (err)
5392 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5393 al->name);
5394 kfree(al);
5395 }
5396
5397 mutex_unlock(&slab_mutex);
5398 resiliency_test();
5399 return 0;
5400 }
5401
5402 __initcall(slab_sysfs_init);
5403 #endif /* CONFIG_SYSFS */
5404
5405 /*
5406 * The /proc/slabinfo ABI
5407 */
5408 #ifdef CONFIG_SLABINFO
5409 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5410 {
5411 unsigned long nr_slabs = 0;
5412 unsigned long nr_objs = 0;
5413 unsigned long nr_free = 0;
5414 int node;
5415 struct kmem_cache_node *n;
5416
5417 for_each_kmem_cache_node(s, node, n) {
5418 nr_slabs += node_nr_slabs(n);
5419 nr_objs += node_nr_objs(n);
5420 nr_free += count_partial(n, count_free);
5421 }
5422
5423 sinfo->active_objs = nr_objs - nr_free;
5424 sinfo->num_objs = nr_objs;
5425 sinfo->active_slabs = nr_slabs;
5426 sinfo->num_slabs = nr_slabs;
5427 sinfo->objects_per_slab = oo_objects(s->oo);
5428 sinfo->cache_order = oo_order(s->oo);
5429 }
5430
5431 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5432 {
5433 }
5434
5435 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5436 size_t count, loff_t *ppos)
5437 {
5438 return -EIO;
5439 }
5440 #endif /* CONFIG_SLABINFO */
This page took 0.182775 seconds and 5 git commands to generate.