mm: allow PF_MEMALLOC from softirq context
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34
35 #include <trace/events/kmem.h>
36
37 #include "internal.h"
38
39 /*
40 * Lock order:
41 * 1. slab_mutex (Global Mutex)
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
44 *
45 * slab_mutex
46 *
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
113 */
114
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 /*
128 * Issues still to be resolved:
129 *
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
132 * - Variable sizing of the per node arrays
133 */
134
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
137
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
140
141 /*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
145 #define MIN_PARTIAL 5
146
147 /*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152 #define MAX_PARTIAL 10
153
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
156
157 /*
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
161 */
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163
164 /*
165 * Set of flags that will prevent slab merging
166 */
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
170
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
173
174 #define OO_SHIFT 16
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON 0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
181
182 static int kmem_size = sizeof(struct kmem_cache);
183
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
187
188 /*
189 * Tracking user of a slab.
190 */
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 unsigned long addr; /* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196 #endif
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s->name);
216 kfree(s);
217 }
218
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233 {
234 return s->node[node];
235 }
236
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
240 {
241 void *base;
242
243 if (!object)
244 return 1;
245
246 base = page_address(page);
247 if (object < base || object >= base + page->objects * s->size ||
248 (object - base) % s->size) {
249 return 0;
250 }
251
252 return 1;
253 }
254
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
256 {
257 return *(void **)(object + s->offset);
258 }
259
260 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261 {
262 prefetch(object + s->offset);
263 }
264
265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266 {
267 void *p;
268
269 #ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271 #else
272 p = get_freepointer(s, object);
273 #endif
274 return p;
275 }
276
277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 {
279 *(void **)(object + s->offset) = fp;
280 }
281
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 __p += (__s)->size)
286
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 {
290 return (p - addr) / s->size;
291 }
292
293 static inline size_t slab_ksize(const struct kmem_cache *s)
294 {
295 #ifdef CONFIG_SLUB_DEBUG
296 /*
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
299 */
300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
301 return s->object_size;
302
303 #endif
304 /*
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
308 */
309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 return s->inuse;
311 /*
312 * Else we can use all the padding etc for the allocation
313 */
314 return s->size;
315 }
316
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 return ((PAGE_SIZE << order) - reserved) / size;
320 }
321
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 unsigned long size, int reserved)
324 {
325 struct kmem_cache_order_objects x = {
326 (order << OO_SHIFT) + order_objects(order, size, reserved)
327 };
328
329 return x;
330 }
331
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 return x.x >> OO_SHIFT;
335 }
336
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 return x.x & OO_MASK;
340 }
341
342 /*
343 * Per slab locking using the pagelock
344 */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 bit_spin_lock(PG_locked, &page->flags);
348 }
349
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 __bit_spin_unlock(PG_locked, &page->flags);
353 }
354
355 /* Interrupts must be disabled (for the fallback code to work right) */
356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 void *freelist_old, unsigned long counters_old,
358 void *freelist_new, unsigned long counters_new,
359 const char *n)
360 {
361 VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 if (s->flags & __CMPXCHG_DOUBLE) {
365 if (cmpxchg_double(&page->freelist, &page->counters,
366 freelist_old, counters_old,
367 freelist_new, counters_new))
368 return 1;
369 } else
370 #endif
371 {
372 slab_lock(page);
373 if (page->freelist == freelist_old && page->counters == counters_old) {
374 page->freelist = freelist_new;
375 page->counters = counters_new;
376 slab_unlock(page);
377 return 1;
378 }
379 slab_unlock(page);
380 }
381
382 cpu_relax();
383 stat(s, CMPXCHG_DOUBLE_FAIL);
384
385 #ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387 #endif
388
389 return 0;
390 }
391
392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 void *freelist_old, unsigned long counters_old,
394 void *freelist_new, unsigned long counters_new,
395 const char *n)
396 {
397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
399 if (s->flags & __CMPXCHG_DOUBLE) {
400 if (cmpxchg_double(&page->freelist, &page->counters,
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405 #endif
406 {
407 unsigned long flags;
408
409 local_irq_save(flags);
410 slab_lock(page);
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
414 slab_unlock(page);
415 local_irq_restore(flags);
416 return 1;
417 }
418 slab_unlock(page);
419 local_irq_restore(flags);
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425 #ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427 #endif
428
429 return 0;
430 }
431
432 #ifdef CONFIG_SLUB_DEBUG
433 /*
434 * Determine a map of object in use on a page.
435 *
436 * Node listlock must be held to guarantee that the page does
437 * not vanish from under us.
438 */
439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440 {
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446 }
447
448 /*
449 * Debug settings:
450 */
451 #ifdef CONFIG_SLUB_DEBUG_ON
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459
460 /*
461 * Object debugging
462 */
463 static void print_section(char *text, u8 *addr, unsigned int length)
464 {
465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 length, 1);
467 }
468
469 static struct track *get_track(struct kmem_cache *s, void *object,
470 enum track_item alloc)
471 {
472 struct track *p;
473
474 if (s->offset)
475 p = object + s->offset + sizeof(void *);
476 else
477 p = object + s->inuse;
478
479 return p + alloc;
480 }
481
482 static void set_track(struct kmem_cache *s, void *object,
483 enum track_item alloc, unsigned long addr)
484 {
485 struct track *p = get_track(s, object, alloc);
486
487 if (addr) {
488 #ifdef CONFIG_STACKTRACE
489 struct stack_trace trace;
490 int i;
491
492 trace.nr_entries = 0;
493 trace.max_entries = TRACK_ADDRS_COUNT;
494 trace.entries = p->addrs;
495 trace.skip = 3;
496 save_stack_trace(&trace);
497
498 /* See rant in lockdep.c */
499 if (trace.nr_entries != 0 &&
500 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 trace.nr_entries--;
502
503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 p->addrs[i] = 0;
505 #endif
506 p->addr = addr;
507 p->cpu = smp_processor_id();
508 p->pid = current->pid;
509 p->when = jiffies;
510 } else
511 memset(p, 0, sizeof(struct track));
512 }
513
514 static void init_tracking(struct kmem_cache *s, void *object)
515 {
516 if (!(s->flags & SLAB_STORE_USER))
517 return;
518
519 set_track(s, object, TRACK_FREE, 0UL);
520 set_track(s, object, TRACK_ALLOC, 0UL);
521 }
522
523 static void print_track(const char *s, struct track *t)
524 {
525 if (!t->addr)
526 return;
527
528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
530 #ifdef CONFIG_STACKTRACE
531 {
532 int i;
533 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 if (t->addrs[i])
535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 else
537 break;
538 }
539 #endif
540 }
541
542 static void print_tracking(struct kmem_cache *s, void *object)
543 {
544 if (!(s->flags & SLAB_STORE_USER))
545 return;
546
547 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 print_track("Freed", get_track(s, object, TRACK_FREE));
549 }
550
551 static void print_page_info(struct page *page)
552 {
553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page, page->objects, page->inuse, page->freelist, page->flags);
555
556 }
557
558 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559 {
560 va_list args;
561 char buf[100];
562
563 va_start(args, fmt);
564 vsnprintf(buf, sizeof(buf), fmt, args);
565 va_end(args);
566 printk(KERN_ERR "========================================"
567 "=====================================\n");
568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
569 printk(KERN_ERR "----------------------------------------"
570 "-------------------------------------\n\n");
571 }
572
573 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574 {
575 va_list args;
576 char buf[100];
577
578 va_start(args, fmt);
579 vsnprintf(buf, sizeof(buf), fmt, args);
580 va_end(args);
581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582 }
583
584 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
585 {
586 unsigned int off; /* Offset of last byte */
587 u8 *addr = page_address(page);
588
589 print_tracking(s, p);
590
591 print_page_info(page);
592
593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 p, p - addr, get_freepointer(s, p));
595
596 if (p > addr + 16)
597 print_section("Bytes b4 ", p - 16, 16);
598
599 print_section("Object ", p, min_t(unsigned long, s->object_size,
600 PAGE_SIZE));
601 if (s->flags & SLAB_RED_ZONE)
602 print_section("Redzone ", p + s->object_size,
603 s->inuse - s->object_size);
604
605 if (s->offset)
606 off = s->offset + sizeof(void *);
607 else
608 off = s->inuse;
609
610 if (s->flags & SLAB_STORE_USER)
611 off += 2 * sizeof(struct track);
612
613 if (off != s->size)
614 /* Beginning of the filler is the free pointer */
615 print_section("Padding ", p + off, s->size - off);
616
617 dump_stack();
618 }
619
620 static void object_err(struct kmem_cache *s, struct page *page,
621 u8 *object, char *reason)
622 {
623 slab_bug(s, "%s", reason);
624 print_trailer(s, page, object);
625 }
626
627 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
628 {
629 va_list args;
630 char buf[100];
631
632 va_start(args, fmt);
633 vsnprintf(buf, sizeof(buf), fmt, args);
634 va_end(args);
635 slab_bug(s, "%s", buf);
636 print_page_info(page);
637 dump_stack();
638 }
639
640 static void init_object(struct kmem_cache *s, void *object, u8 val)
641 {
642 u8 *p = object;
643
644 if (s->flags & __OBJECT_POISON) {
645 memset(p, POISON_FREE, s->object_size - 1);
646 p[s->object_size - 1] = POISON_END;
647 }
648
649 if (s->flags & SLAB_RED_ZONE)
650 memset(p + s->object_size, val, s->inuse - s->object_size);
651 }
652
653 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 void *from, void *to)
655 {
656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 memset(from, data, to - from);
658 }
659
660 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 u8 *object, char *what,
662 u8 *start, unsigned int value, unsigned int bytes)
663 {
664 u8 *fault;
665 u8 *end;
666
667 fault = memchr_inv(start, value, bytes);
668 if (!fault)
669 return 1;
670
671 end = start + bytes;
672 while (end > fault && end[-1] == value)
673 end--;
674
675 slab_bug(s, "%s overwritten", what);
676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 fault, end - 1, fault[0], value);
678 print_trailer(s, page, object);
679
680 restore_bytes(s, what, value, fault, end);
681 return 0;
682 }
683
684 /*
685 * Object layout:
686 *
687 * object address
688 * Bytes of the object to be managed.
689 * If the freepointer may overlay the object then the free
690 * pointer is the first word of the object.
691 *
692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
693 * 0xa5 (POISON_END)
694 *
695 * object + s->object_size
696 * Padding to reach word boundary. This is also used for Redzoning.
697 * Padding is extended by another word if Redzoning is enabled and
698 * object_size == inuse.
699 *
700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701 * 0xcc (RED_ACTIVE) for objects in use.
702 *
703 * object + s->inuse
704 * Meta data starts here.
705 *
706 * A. Free pointer (if we cannot overwrite object on free)
707 * B. Tracking data for SLAB_STORE_USER
708 * C. Padding to reach required alignment boundary or at mininum
709 * one word if debugging is on to be able to detect writes
710 * before the word boundary.
711 *
712 * Padding is done using 0x5a (POISON_INUSE)
713 *
714 * object + s->size
715 * Nothing is used beyond s->size.
716 *
717 * If slabcaches are merged then the object_size and inuse boundaries are mostly
718 * ignored. And therefore no slab options that rely on these boundaries
719 * may be used with merged slabcaches.
720 */
721
722 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723 {
724 unsigned long off = s->inuse; /* The end of info */
725
726 if (s->offset)
727 /* Freepointer is placed after the object. */
728 off += sizeof(void *);
729
730 if (s->flags & SLAB_STORE_USER)
731 /* We also have user information there */
732 off += 2 * sizeof(struct track);
733
734 if (s->size == off)
735 return 1;
736
737 return check_bytes_and_report(s, page, p, "Object padding",
738 p + off, POISON_INUSE, s->size - off);
739 }
740
741 /* Check the pad bytes at the end of a slab page */
742 static int slab_pad_check(struct kmem_cache *s, struct page *page)
743 {
744 u8 *start;
745 u8 *fault;
746 u8 *end;
747 int length;
748 int remainder;
749
750 if (!(s->flags & SLAB_POISON))
751 return 1;
752
753 start = page_address(page);
754 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
755 end = start + length;
756 remainder = length % s->size;
757 if (!remainder)
758 return 1;
759
760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
761 if (!fault)
762 return 1;
763 while (end > fault && end[-1] == POISON_INUSE)
764 end--;
765
766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
767 print_section("Padding ", end - remainder, remainder);
768
769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
770 return 0;
771 }
772
773 static int check_object(struct kmem_cache *s, struct page *page,
774 void *object, u8 val)
775 {
776 u8 *p = object;
777 u8 *endobject = object + s->object_size;
778
779 if (s->flags & SLAB_RED_ZONE) {
780 if (!check_bytes_and_report(s, page, object, "Redzone",
781 endobject, val, s->inuse - s->object_size))
782 return 0;
783 } else {
784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
785 check_bytes_and_report(s, page, p, "Alignment padding",
786 endobject, POISON_INUSE, s->inuse - s->object_size);
787 }
788 }
789
790 if (s->flags & SLAB_POISON) {
791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
792 (!check_bytes_and_report(s, page, p, "Poison", p,
793 POISON_FREE, s->object_size - 1) ||
794 !check_bytes_and_report(s, page, p, "Poison",
795 p + s->object_size - 1, POISON_END, 1)))
796 return 0;
797 /*
798 * check_pad_bytes cleans up on its own.
799 */
800 check_pad_bytes(s, page, p);
801 }
802
803 if (!s->offset && val == SLUB_RED_ACTIVE)
804 /*
805 * Object and freepointer overlap. Cannot check
806 * freepointer while object is allocated.
807 */
808 return 1;
809
810 /* Check free pointer validity */
811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 object_err(s, page, p, "Freepointer corrupt");
813 /*
814 * No choice but to zap it and thus lose the remainder
815 * of the free objects in this slab. May cause
816 * another error because the object count is now wrong.
817 */
818 set_freepointer(s, p, NULL);
819 return 0;
820 }
821 return 1;
822 }
823
824 static int check_slab(struct kmem_cache *s, struct page *page)
825 {
826 int maxobj;
827
828 VM_BUG_ON(!irqs_disabled());
829
830 if (!PageSlab(page)) {
831 slab_err(s, page, "Not a valid slab page");
832 return 0;
833 }
834
835 maxobj = order_objects(compound_order(page), s->size, s->reserved);
836 if (page->objects > maxobj) {
837 slab_err(s, page, "objects %u > max %u",
838 s->name, page->objects, maxobj);
839 return 0;
840 }
841 if (page->inuse > page->objects) {
842 slab_err(s, page, "inuse %u > max %u",
843 s->name, page->inuse, page->objects);
844 return 0;
845 }
846 /* Slab_pad_check fixes things up after itself */
847 slab_pad_check(s, page);
848 return 1;
849 }
850
851 /*
852 * Determine if a certain object on a page is on the freelist. Must hold the
853 * slab lock to guarantee that the chains are in a consistent state.
854 */
855 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856 {
857 int nr = 0;
858 void *fp;
859 void *object = NULL;
860 unsigned long max_objects;
861
862 fp = page->freelist;
863 while (fp && nr <= page->objects) {
864 if (fp == search)
865 return 1;
866 if (!check_valid_pointer(s, page, fp)) {
867 if (object) {
868 object_err(s, page, object,
869 "Freechain corrupt");
870 set_freepointer(s, object, NULL);
871 break;
872 } else {
873 slab_err(s, page, "Freepointer corrupt");
874 page->freelist = NULL;
875 page->inuse = page->objects;
876 slab_fix(s, "Freelist cleared");
877 return 0;
878 }
879 break;
880 }
881 object = fp;
882 fp = get_freepointer(s, object);
883 nr++;
884 }
885
886 max_objects = order_objects(compound_order(page), s->size, s->reserved);
887 if (max_objects > MAX_OBJS_PER_PAGE)
888 max_objects = MAX_OBJS_PER_PAGE;
889
890 if (page->objects != max_objects) {
891 slab_err(s, page, "Wrong number of objects. Found %d but "
892 "should be %d", page->objects, max_objects);
893 page->objects = max_objects;
894 slab_fix(s, "Number of objects adjusted.");
895 }
896 if (page->inuse != page->objects - nr) {
897 slab_err(s, page, "Wrong object count. Counter is %d but "
898 "counted were %d", page->inuse, page->objects - nr);
899 page->inuse = page->objects - nr;
900 slab_fix(s, "Object count adjusted.");
901 }
902 return search == NULL;
903 }
904
905 static void trace(struct kmem_cache *s, struct page *page, void *object,
906 int alloc)
907 {
908 if (s->flags & SLAB_TRACE) {
909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 s->name,
911 alloc ? "alloc" : "free",
912 object, page->inuse,
913 page->freelist);
914
915 if (!alloc)
916 print_section("Object ", (void *)object, s->object_size);
917
918 dump_stack();
919 }
920 }
921
922 /*
923 * Hooks for other subsystems that check memory allocations. In a typical
924 * production configuration these hooks all should produce no code at all.
925 */
926 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927 {
928 flags &= gfp_allowed_mask;
929 lockdep_trace_alloc(flags);
930 might_sleep_if(flags & __GFP_WAIT);
931
932 return should_failslab(s->object_size, flags, s->flags);
933 }
934
935 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936 {
937 flags &= gfp_allowed_mask;
938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
940 }
941
942 static inline void slab_free_hook(struct kmem_cache *s, void *x)
943 {
944 kmemleak_free_recursive(x, s->flags);
945
946 /*
947 * Trouble is that we may no longer disable interupts in the fast path
948 * So in order to make the debug calls that expect irqs to be
949 * disabled we need to disable interrupts temporarily.
950 */
951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 {
953 unsigned long flags;
954
955 local_irq_save(flags);
956 kmemcheck_slab_free(s, x, s->object_size);
957 debug_check_no_locks_freed(x, s->object_size);
958 local_irq_restore(flags);
959 }
960 #endif
961 if (!(s->flags & SLAB_DEBUG_OBJECTS))
962 debug_check_no_obj_freed(x, s->object_size);
963 }
964
965 /*
966 * Tracking of fully allocated slabs for debugging purposes.
967 *
968 * list_lock must be held.
969 */
970 static void add_full(struct kmem_cache *s,
971 struct kmem_cache_node *n, struct page *page)
972 {
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
975
976 list_add(&page->lru, &n->full);
977 }
978
979 /*
980 * list_lock must be held.
981 */
982 static void remove_full(struct kmem_cache *s, struct page *page)
983 {
984 if (!(s->flags & SLAB_STORE_USER))
985 return;
986
987 list_del(&page->lru);
988 }
989
990 /* Tracking of the number of slabs for debugging purposes */
991 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992 {
993 struct kmem_cache_node *n = get_node(s, node);
994
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999 {
1000 return atomic_long_read(&n->nr_slabs);
1001 }
1002
1003 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1004 {
1005 struct kmem_cache_node *n = get_node(s, node);
1006
1007 /*
1008 * May be called early in order to allocate a slab for the
1009 * kmem_cache_node structure. Solve the chicken-egg
1010 * dilemma by deferring the increment of the count during
1011 * bootstrap (see early_kmem_cache_node_alloc).
1012 */
1013 if (n) {
1014 atomic_long_inc(&n->nr_slabs);
1015 atomic_long_add(objects, &n->total_objects);
1016 }
1017 }
1018 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1019 {
1020 struct kmem_cache_node *n = get_node(s, node);
1021
1022 atomic_long_dec(&n->nr_slabs);
1023 atomic_long_sub(objects, &n->total_objects);
1024 }
1025
1026 /* Object debug checks for alloc/free paths */
1027 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 void *object)
1029 {
1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 return;
1032
1033 init_object(s, object, SLUB_RED_INACTIVE);
1034 init_tracking(s, object);
1035 }
1036
1037 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1038 void *object, unsigned long addr)
1039 {
1040 if (!check_slab(s, page))
1041 goto bad;
1042
1043 if (!check_valid_pointer(s, page, object)) {
1044 object_err(s, page, object, "Freelist Pointer check fails");
1045 goto bad;
1046 }
1047
1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1049 goto bad;
1050
1051 /* Success perform special debug activities for allocs */
1052 if (s->flags & SLAB_STORE_USER)
1053 set_track(s, object, TRACK_ALLOC, addr);
1054 trace(s, page, object, 1);
1055 init_object(s, object, SLUB_RED_ACTIVE);
1056 return 1;
1057
1058 bad:
1059 if (PageSlab(page)) {
1060 /*
1061 * If this is a slab page then lets do the best we can
1062 * to avoid issues in the future. Marking all objects
1063 * as used avoids touching the remaining objects.
1064 */
1065 slab_fix(s, "Marking all objects used");
1066 page->inuse = page->objects;
1067 page->freelist = NULL;
1068 }
1069 return 0;
1070 }
1071
1072 static noinline int free_debug_processing(struct kmem_cache *s,
1073 struct page *page, void *object, unsigned long addr)
1074 {
1075 unsigned long flags;
1076 int rc = 0;
1077
1078 local_irq_save(flags);
1079 slab_lock(page);
1080
1081 if (!check_slab(s, page))
1082 goto fail;
1083
1084 if (!check_valid_pointer(s, page, object)) {
1085 slab_err(s, page, "Invalid object pointer 0x%p", object);
1086 goto fail;
1087 }
1088
1089 if (on_freelist(s, page, object)) {
1090 object_err(s, page, object, "Object already free");
1091 goto fail;
1092 }
1093
1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1095 goto out;
1096
1097 if (unlikely(s != page->slab)) {
1098 if (!PageSlab(page)) {
1099 slab_err(s, page, "Attempt to free object(0x%p) "
1100 "outside of slab", object);
1101 } else if (!page->slab) {
1102 printk(KERN_ERR
1103 "SLUB <none>: no slab for object 0x%p.\n",
1104 object);
1105 dump_stack();
1106 } else
1107 object_err(s, page, object,
1108 "page slab pointer corrupt.");
1109 goto fail;
1110 }
1111
1112 if (s->flags & SLAB_STORE_USER)
1113 set_track(s, object, TRACK_FREE, addr);
1114 trace(s, page, object, 0);
1115 init_object(s, object, SLUB_RED_INACTIVE);
1116 rc = 1;
1117 out:
1118 slab_unlock(page);
1119 local_irq_restore(flags);
1120 return rc;
1121
1122 fail:
1123 slab_fix(s, "Object at 0x%p not freed", object);
1124 goto out;
1125 }
1126
1127 static int __init setup_slub_debug(char *str)
1128 {
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1131 /*
1132 * No options specified. Switch on full debugging.
1133 */
1134 goto out;
1135
1136 if (*str == ',')
1137 /*
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1140 */
1141 goto check_slabs;
1142
1143 if (tolower(*str) == 'o') {
1144 /*
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1147 */
1148 disable_higher_order_debug = 1;
1149 goto out;
1150 }
1151
1152 slub_debug = 0;
1153 if (*str == '-')
1154 /*
1155 * Switch off all debugging measures.
1156 */
1157 goto out;
1158
1159 /*
1160 * Determine which debug features should be switched on
1161 */
1162 for (; *str && *str != ','; str++) {
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
1184 "unknown. skipped\n", *str);
1185 }
1186 }
1187
1188 check_slabs:
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
1191 out:
1192 return 1;
1193 }
1194
1195 __setup("slub_debug", setup_slub_debug);
1196
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 unsigned long flags, const char *name,
1199 void (*ctor)(void *))
1200 {
1201 /*
1202 * Enable debugging if selected on the kernel commandline.
1203 */
1204 if (slub_debug && (!slub_debug_slabs ||
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 flags |= slub_debug;
1207
1208 return flags;
1209 }
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
1213
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 struct page *page, void *object, unsigned long addr) { return 0; }
1216
1217 static inline int free_debug_processing(struct kmem_cache *s,
1218 struct page *page, void *object, unsigned long addr) { return 0; }
1219
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 unsigned long flags, const char *name,
1229 void (*ctor)(void *))
1230 {
1231 return flags;
1232 }
1233 #define slub_debug 0
1234
1235 #define disable_higher_order_debug 0
1236
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
1254 #endif /* CONFIG_SLUB_DEBUG */
1255
1256 /*
1257 * Slab allocation and freeing
1258 */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261 {
1262 int order = oo_order(oo);
1263
1264 flags |= __GFP_NOTRACK;
1265
1266 if (node == NUMA_NO_NODE)
1267 return alloc_pages(flags, order);
1268 else
1269 return alloc_pages_exact_node(node, flags, order);
1270 }
1271
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 struct page *page;
1275 struct kmem_cache_order_objects oo = s->oo;
1276 gfp_t alloc_gfp;
1277
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
1283 flags |= s->allocflags;
1284
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
1299
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
1302 }
1303
1304 if (kmemcheck_enabled && page
1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
1318 }
1319
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
1325 page->objects = oo_objects(oo);
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 1 << oo_order(oo));
1330
1331 return page;
1332 }
1333
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336 {
1337 setup_object_debug(s, page, object);
1338 if (unlikely(s->ctor))
1339 s->ctor(object);
1340 }
1341
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 struct page *page;
1345 void *start;
1346 void *last;
1347 void *p;
1348
1349 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1350
1351 page = allocate_slab(s,
1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1353 if (!page)
1354 goto out;
1355
1356 inc_slabs_node(s, page_to_nid(page), page->objects);
1357 page->slab = s;
1358 __SetPageSlab(page);
1359 if (page->pfmemalloc)
1360 SetPageSlabPfmemalloc(page);
1361
1362 start = page_address(page);
1363
1364 if (unlikely(s->flags & SLAB_POISON))
1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1366
1367 last = start;
1368 for_each_object(p, s, start, page->objects) {
1369 setup_object(s, page, last);
1370 set_freepointer(s, last, p);
1371 last = p;
1372 }
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, NULL);
1375
1376 page->freelist = start;
1377 page->inuse = page->objects;
1378 page->frozen = 1;
1379 out:
1380 return page;
1381 }
1382
1383 static void __free_slab(struct kmem_cache *s, struct page *page)
1384 {
1385 int order = compound_order(page);
1386 int pages = 1 << order;
1387
1388 if (kmem_cache_debug(s)) {
1389 void *p;
1390
1391 slab_pad_check(s, page);
1392 for_each_object(p, s, page_address(page),
1393 page->objects)
1394 check_object(s, page, p, SLUB_RED_INACTIVE);
1395 }
1396
1397 kmemcheck_free_shadow(page, compound_order(page));
1398
1399 mod_zone_page_state(page_zone(page),
1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1402 -pages);
1403
1404 __ClearPageSlabPfmemalloc(page);
1405 __ClearPageSlab(page);
1406 reset_page_mapcount(page);
1407 if (current->reclaim_state)
1408 current->reclaim_state->reclaimed_slab += pages;
1409 __free_pages(page, order);
1410 }
1411
1412 #define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414
1415 static void rcu_free_slab(struct rcu_head *h)
1416 {
1417 struct page *page;
1418
1419 if (need_reserve_slab_rcu)
1420 page = virt_to_head_page(h);
1421 else
1422 page = container_of((struct list_head *)h, struct page, lru);
1423
1424 __free_slab(page->slab, page);
1425 }
1426
1427 static void free_slab(struct kmem_cache *s, struct page *page)
1428 {
1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1430 struct rcu_head *head;
1431
1432 if (need_reserve_slab_rcu) {
1433 int order = compound_order(page);
1434 int offset = (PAGE_SIZE << order) - s->reserved;
1435
1436 VM_BUG_ON(s->reserved != sizeof(*head));
1437 head = page_address(page) + offset;
1438 } else {
1439 /*
1440 * RCU free overloads the RCU head over the LRU
1441 */
1442 head = (void *)&page->lru;
1443 }
1444
1445 call_rcu(head, rcu_free_slab);
1446 } else
1447 __free_slab(s, page);
1448 }
1449
1450 static void discard_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 dec_slabs_node(s, page_to_nid(page), page->objects);
1453 free_slab(s, page);
1454 }
1455
1456 /*
1457 * Management of partially allocated slabs.
1458 *
1459 * list_lock must be held.
1460 */
1461 static inline void add_partial(struct kmem_cache_node *n,
1462 struct page *page, int tail)
1463 {
1464 n->nr_partial++;
1465 if (tail == DEACTIVATE_TO_TAIL)
1466 list_add_tail(&page->lru, &n->partial);
1467 else
1468 list_add(&page->lru, &n->partial);
1469 }
1470
1471 /*
1472 * list_lock must be held.
1473 */
1474 static inline void remove_partial(struct kmem_cache_node *n,
1475 struct page *page)
1476 {
1477 list_del(&page->lru);
1478 n->nr_partial--;
1479 }
1480
1481 /*
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
1484 *
1485 * Returns a list of objects or NULL if it fails.
1486 *
1487 * Must hold list_lock since we modify the partial list.
1488 */
1489 static inline void *acquire_slab(struct kmem_cache *s,
1490 struct kmem_cache_node *n, struct page *page,
1491 int mode)
1492 {
1493 void *freelist;
1494 unsigned long counters;
1495 struct page new;
1496
1497 /*
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1501 */
1502 freelist = page->freelist;
1503 counters = page->counters;
1504 new.counters = counters;
1505 if (mode) {
1506 new.inuse = page->objects;
1507 new.freelist = NULL;
1508 } else {
1509 new.freelist = freelist;
1510 }
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1515 if (!__cmpxchg_double_slab(s, page,
1516 freelist, counters,
1517 new.freelist, new.counters,
1518 "acquire_slab"))
1519 return NULL;
1520
1521 remove_partial(n, page);
1522 WARN_ON(!freelist);
1523 return freelist;
1524 }
1525
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
1528 /*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531 static void *get_partial_node(struct kmem_cache *s,
1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533 {
1534 struct page *page, *page2;
1535 void *object = NULL;
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 void *t = acquire_slab(s, n, page, object == NULL);
1549 int available;
1550
1551 if (!t)
1552 break;
1553
1554 if (!object) {
1555 c->page = page;
1556 stat(s, ALLOC_FROM_PARTIAL);
1557 object = t;
1558 available = page->objects - page->inuse;
1559 } else {
1560 available = put_cpu_partial(s, page, 0);
1561 stat(s, CPU_PARTIAL_NODE);
1562 }
1563 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1564 break;
1565
1566 }
1567 spin_unlock(&n->list_lock);
1568 return object;
1569 }
1570
1571 /*
1572 * Get a page from somewhere. Search in increasing NUMA distances.
1573 */
1574 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1575 struct kmem_cache_cpu *c)
1576 {
1577 #ifdef CONFIG_NUMA
1578 struct zonelist *zonelist;
1579 struct zoneref *z;
1580 struct zone *zone;
1581 enum zone_type high_zoneidx = gfp_zone(flags);
1582 void *object;
1583 unsigned int cpuset_mems_cookie;
1584
1585 /*
1586 * The defrag ratio allows a configuration of the tradeoffs between
1587 * inter node defragmentation and node local allocations. A lower
1588 * defrag_ratio increases the tendency to do local allocations
1589 * instead of attempting to obtain partial slabs from other nodes.
1590 *
1591 * If the defrag_ratio is set to 0 then kmalloc() always
1592 * returns node local objects. If the ratio is higher then kmalloc()
1593 * may return off node objects because partial slabs are obtained
1594 * from other nodes and filled up.
1595 *
1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597 * defrag_ratio = 1000) then every (well almost) allocation will
1598 * first attempt to defrag slab caches on other nodes. This means
1599 * scanning over all nodes to look for partial slabs which may be
1600 * expensive if we do it every time we are trying to find a slab
1601 * with available objects.
1602 */
1603 if (!s->remote_node_defrag_ratio ||
1604 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1605 return NULL;
1606
1607 do {
1608 cpuset_mems_cookie = get_mems_allowed();
1609 zonelist = node_zonelist(slab_node(), flags);
1610 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1611 struct kmem_cache_node *n;
1612
1613 n = get_node(s, zone_to_nid(zone));
1614
1615 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1616 n->nr_partial > s->min_partial) {
1617 object = get_partial_node(s, n, c);
1618 if (object) {
1619 /*
1620 * Return the object even if
1621 * put_mems_allowed indicated that
1622 * the cpuset mems_allowed was
1623 * updated in parallel. It's a
1624 * harmless race between the alloc
1625 * and the cpuset update.
1626 */
1627 put_mems_allowed(cpuset_mems_cookie);
1628 return object;
1629 }
1630 }
1631 }
1632 } while (!put_mems_allowed(cpuset_mems_cookie));
1633 #endif
1634 return NULL;
1635 }
1636
1637 /*
1638 * Get a partial page, lock it and return it.
1639 */
1640 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1641 struct kmem_cache_cpu *c)
1642 {
1643 void *object;
1644 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1645
1646 object = get_partial_node(s, get_node(s, searchnode), c);
1647 if (object || node != NUMA_NO_NODE)
1648 return object;
1649
1650 return get_any_partial(s, flags, c);
1651 }
1652
1653 #ifdef CONFIG_PREEMPT
1654 /*
1655 * Calculate the next globally unique transaction for disambiguiation
1656 * during cmpxchg. The transactions start with the cpu number and are then
1657 * incremented by CONFIG_NR_CPUS.
1658 */
1659 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1660 #else
1661 /*
1662 * No preemption supported therefore also no need to check for
1663 * different cpus.
1664 */
1665 #define TID_STEP 1
1666 #endif
1667
1668 static inline unsigned long next_tid(unsigned long tid)
1669 {
1670 return tid + TID_STEP;
1671 }
1672
1673 static inline unsigned int tid_to_cpu(unsigned long tid)
1674 {
1675 return tid % TID_STEP;
1676 }
1677
1678 static inline unsigned long tid_to_event(unsigned long tid)
1679 {
1680 return tid / TID_STEP;
1681 }
1682
1683 static inline unsigned int init_tid(int cpu)
1684 {
1685 return cpu;
1686 }
1687
1688 static inline void note_cmpxchg_failure(const char *n,
1689 const struct kmem_cache *s, unsigned long tid)
1690 {
1691 #ifdef SLUB_DEBUG_CMPXCHG
1692 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1693
1694 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1695
1696 #ifdef CONFIG_PREEMPT
1697 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1698 printk("due to cpu change %d -> %d\n",
1699 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1700 else
1701 #endif
1702 if (tid_to_event(tid) != tid_to_event(actual_tid))
1703 printk("due to cpu running other code. Event %ld->%ld\n",
1704 tid_to_event(tid), tid_to_event(actual_tid));
1705 else
1706 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1707 actual_tid, tid, next_tid(tid));
1708 #endif
1709 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1710 }
1711
1712 void init_kmem_cache_cpus(struct kmem_cache *s)
1713 {
1714 int cpu;
1715
1716 for_each_possible_cpu(cpu)
1717 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1718 }
1719
1720 /*
1721 * Remove the cpu slab
1722 */
1723 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1724 {
1725 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1726 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1727 int lock = 0;
1728 enum slab_modes l = M_NONE, m = M_NONE;
1729 void *nextfree;
1730 int tail = DEACTIVATE_TO_HEAD;
1731 struct page new;
1732 struct page old;
1733
1734 if (page->freelist) {
1735 stat(s, DEACTIVATE_REMOTE_FREES);
1736 tail = DEACTIVATE_TO_TAIL;
1737 }
1738
1739 /*
1740 * Stage one: Free all available per cpu objects back
1741 * to the page freelist while it is still frozen. Leave the
1742 * last one.
1743 *
1744 * There is no need to take the list->lock because the page
1745 * is still frozen.
1746 */
1747 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1748 void *prior;
1749 unsigned long counters;
1750
1751 do {
1752 prior = page->freelist;
1753 counters = page->counters;
1754 set_freepointer(s, freelist, prior);
1755 new.counters = counters;
1756 new.inuse--;
1757 VM_BUG_ON(!new.frozen);
1758
1759 } while (!__cmpxchg_double_slab(s, page,
1760 prior, counters,
1761 freelist, new.counters,
1762 "drain percpu freelist"));
1763
1764 freelist = nextfree;
1765 }
1766
1767 /*
1768 * Stage two: Ensure that the page is unfrozen while the
1769 * list presence reflects the actual number of objects
1770 * during unfreeze.
1771 *
1772 * We setup the list membership and then perform a cmpxchg
1773 * with the count. If there is a mismatch then the page
1774 * is not unfrozen but the page is on the wrong list.
1775 *
1776 * Then we restart the process which may have to remove
1777 * the page from the list that we just put it on again
1778 * because the number of objects in the slab may have
1779 * changed.
1780 */
1781 redo:
1782
1783 old.freelist = page->freelist;
1784 old.counters = page->counters;
1785 VM_BUG_ON(!old.frozen);
1786
1787 /* Determine target state of the slab */
1788 new.counters = old.counters;
1789 if (freelist) {
1790 new.inuse--;
1791 set_freepointer(s, freelist, old.freelist);
1792 new.freelist = freelist;
1793 } else
1794 new.freelist = old.freelist;
1795
1796 new.frozen = 0;
1797
1798 if (!new.inuse && n->nr_partial > s->min_partial)
1799 m = M_FREE;
1800 else if (new.freelist) {
1801 m = M_PARTIAL;
1802 if (!lock) {
1803 lock = 1;
1804 /*
1805 * Taking the spinlock removes the possiblity
1806 * that acquire_slab() will see a slab page that
1807 * is frozen
1808 */
1809 spin_lock(&n->list_lock);
1810 }
1811 } else {
1812 m = M_FULL;
1813 if (kmem_cache_debug(s) && !lock) {
1814 lock = 1;
1815 /*
1816 * This also ensures that the scanning of full
1817 * slabs from diagnostic functions will not see
1818 * any frozen slabs.
1819 */
1820 spin_lock(&n->list_lock);
1821 }
1822 }
1823
1824 if (l != m) {
1825
1826 if (l == M_PARTIAL)
1827
1828 remove_partial(n, page);
1829
1830 else if (l == M_FULL)
1831
1832 remove_full(s, page);
1833
1834 if (m == M_PARTIAL) {
1835
1836 add_partial(n, page, tail);
1837 stat(s, tail);
1838
1839 } else if (m == M_FULL) {
1840
1841 stat(s, DEACTIVATE_FULL);
1842 add_full(s, n, page);
1843
1844 }
1845 }
1846
1847 l = m;
1848 if (!__cmpxchg_double_slab(s, page,
1849 old.freelist, old.counters,
1850 new.freelist, new.counters,
1851 "unfreezing slab"))
1852 goto redo;
1853
1854 if (lock)
1855 spin_unlock(&n->list_lock);
1856
1857 if (m == M_FREE) {
1858 stat(s, DEACTIVATE_EMPTY);
1859 discard_slab(s, page);
1860 stat(s, FREE_SLAB);
1861 }
1862 }
1863
1864 /*
1865 * Unfreeze all the cpu partial slabs.
1866 *
1867 * This function must be called with interrupt disabled.
1868 */
1869 static void unfreeze_partials(struct kmem_cache *s)
1870 {
1871 struct kmem_cache_node *n = NULL, *n2 = NULL;
1872 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1873 struct page *page, *discard_page = NULL;
1874
1875 while ((page = c->partial)) {
1876 struct page new;
1877 struct page old;
1878
1879 c->partial = page->next;
1880
1881 n2 = get_node(s, page_to_nid(page));
1882 if (n != n2) {
1883 if (n)
1884 spin_unlock(&n->list_lock);
1885
1886 n = n2;
1887 spin_lock(&n->list_lock);
1888 }
1889
1890 do {
1891
1892 old.freelist = page->freelist;
1893 old.counters = page->counters;
1894 VM_BUG_ON(!old.frozen);
1895
1896 new.counters = old.counters;
1897 new.freelist = old.freelist;
1898
1899 new.frozen = 0;
1900
1901 } while (!__cmpxchg_double_slab(s, page,
1902 old.freelist, old.counters,
1903 new.freelist, new.counters,
1904 "unfreezing slab"));
1905
1906 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1907 page->next = discard_page;
1908 discard_page = page;
1909 } else {
1910 add_partial(n, page, DEACTIVATE_TO_TAIL);
1911 stat(s, FREE_ADD_PARTIAL);
1912 }
1913 }
1914
1915 if (n)
1916 spin_unlock(&n->list_lock);
1917
1918 while (discard_page) {
1919 page = discard_page;
1920 discard_page = discard_page->next;
1921
1922 stat(s, DEACTIVATE_EMPTY);
1923 discard_slab(s, page);
1924 stat(s, FREE_SLAB);
1925 }
1926 }
1927
1928 /*
1929 * Put a page that was just frozen (in __slab_free) into a partial page
1930 * slot if available. This is done without interrupts disabled and without
1931 * preemption disabled. The cmpxchg is racy and may put the partial page
1932 * onto a random cpus partial slot.
1933 *
1934 * If we did not find a slot then simply move all the partials to the
1935 * per node partial list.
1936 */
1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1938 {
1939 struct page *oldpage;
1940 int pages;
1941 int pobjects;
1942
1943 do {
1944 pages = 0;
1945 pobjects = 0;
1946 oldpage = this_cpu_read(s->cpu_slab->partial);
1947
1948 if (oldpage) {
1949 pobjects = oldpage->pobjects;
1950 pages = oldpage->pages;
1951 if (drain && pobjects > s->cpu_partial) {
1952 unsigned long flags;
1953 /*
1954 * partial array is full. Move the existing
1955 * set to the per node partial list.
1956 */
1957 local_irq_save(flags);
1958 unfreeze_partials(s);
1959 local_irq_restore(flags);
1960 pobjects = 0;
1961 pages = 0;
1962 stat(s, CPU_PARTIAL_DRAIN);
1963 }
1964 }
1965
1966 pages++;
1967 pobjects += page->objects - page->inuse;
1968
1969 page->pages = pages;
1970 page->pobjects = pobjects;
1971 page->next = oldpage;
1972
1973 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1974 return pobjects;
1975 }
1976
1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1978 {
1979 stat(s, CPUSLAB_FLUSH);
1980 deactivate_slab(s, c->page, c->freelist);
1981
1982 c->tid = next_tid(c->tid);
1983 c->page = NULL;
1984 c->freelist = NULL;
1985 }
1986
1987 /*
1988 * Flush cpu slab.
1989 *
1990 * Called from IPI handler with interrupts disabled.
1991 */
1992 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1993 {
1994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1995
1996 if (likely(c)) {
1997 if (c->page)
1998 flush_slab(s, c);
1999
2000 unfreeze_partials(s);
2001 }
2002 }
2003
2004 static void flush_cpu_slab(void *d)
2005 {
2006 struct kmem_cache *s = d;
2007
2008 __flush_cpu_slab(s, smp_processor_id());
2009 }
2010
2011 static bool has_cpu_slab(int cpu, void *info)
2012 {
2013 struct kmem_cache *s = info;
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
2016 return c->page || c->partial;
2017 }
2018
2019 static void flush_all(struct kmem_cache *s)
2020 {
2021 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2022 }
2023
2024 /*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
2028 static inline int node_match(struct page *page, int node)
2029 {
2030 #ifdef CONFIG_NUMA
2031 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2032 return 0;
2033 #endif
2034 return 1;
2035 }
2036
2037 static int count_free(struct page *page)
2038 {
2039 return page->objects - page->inuse;
2040 }
2041
2042 static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044 {
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054 }
2055
2056 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057 {
2058 #ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060 #else
2061 return 0;
2062 #endif
2063 }
2064
2065 static noinline void
2066 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067 {
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2074 "default order: %d, min order: %d\n", s->name, s->object_size,
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
2077 if (oo_order(s->min) > get_order(s->object_size))
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098 }
2099
2100 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102 {
2103 void *freelist;
2104 struct kmem_cache_cpu *c = *pc;
2105 struct page *page;
2106
2107 freelist = get_partial(s, flags, node, c);
2108
2109 if (freelist)
2110 return freelist;
2111
2112 page = new_slab(s, flags, node);
2113 if (page) {
2114 c = __this_cpu_ptr(s->cpu_slab);
2115 if (c->page)
2116 flush_slab(s, c);
2117
2118 /*
2119 * No other reference to the page yet so we can
2120 * muck around with it freely without cmpxchg
2121 */
2122 freelist = page->freelist;
2123 page->freelist = NULL;
2124
2125 stat(s, ALLOC_SLAB);
2126 c->page = page;
2127 *pc = c;
2128 } else
2129 freelist = NULL;
2130
2131 return freelist;
2132 }
2133
2134 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2135 {
2136 if (unlikely(PageSlabPfmemalloc(page)))
2137 return gfp_pfmemalloc_allowed(gfpflags);
2138
2139 return true;
2140 }
2141
2142 /*
2143 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2144 * or deactivate the page.
2145 *
2146 * The page is still frozen if the return value is not NULL.
2147 *
2148 * If this function returns NULL then the page has been unfrozen.
2149 *
2150 * This function must be called with interrupt disabled.
2151 */
2152 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2153 {
2154 struct page new;
2155 unsigned long counters;
2156 void *freelist;
2157
2158 do {
2159 freelist = page->freelist;
2160 counters = page->counters;
2161
2162 new.counters = counters;
2163 VM_BUG_ON(!new.frozen);
2164
2165 new.inuse = page->objects;
2166 new.frozen = freelist != NULL;
2167
2168 } while (!__cmpxchg_double_slab(s, page,
2169 freelist, counters,
2170 NULL, new.counters,
2171 "get_freelist"));
2172
2173 return freelist;
2174 }
2175
2176 /*
2177 * Slow path. The lockless freelist is empty or we need to perform
2178 * debugging duties.
2179 *
2180 * Processing is still very fast if new objects have been freed to the
2181 * regular freelist. In that case we simply take over the regular freelist
2182 * as the lockless freelist and zap the regular freelist.
2183 *
2184 * If that is not working then we fall back to the partial lists. We take the
2185 * first element of the freelist as the object to allocate now and move the
2186 * rest of the freelist to the lockless freelist.
2187 *
2188 * And if we were unable to get a new slab from the partial slab lists then
2189 * we need to allocate a new slab. This is the slowest path since it involves
2190 * a call to the page allocator and the setup of a new slab.
2191 */
2192 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2193 unsigned long addr, struct kmem_cache_cpu *c)
2194 {
2195 void *freelist;
2196 struct page *page;
2197 unsigned long flags;
2198
2199 local_irq_save(flags);
2200 #ifdef CONFIG_PREEMPT
2201 /*
2202 * We may have been preempted and rescheduled on a different
2203 * cpu before disabling interrupts. Need to reload cpu area
2204 * pointer.
2205 */
2206 c = this_cpu_ptr(s->cpu_slab);
2207 #endif
2208
2209 page = c->page;
2210 if (!page)
2211 goto new_slab;
2212 redo:
2213
2214 if (unlikely(!node_match(page, node))) {
2215 stat(s, ALLOC_NODE_MISMATCH);
2216 deactivate_slab(s, page, c->freelist);
2217 c->page = NULL;
2218 c->freelist = NULL;
2219 goto new_slab;
2220 }
2221
2222 /*
2223 * By rights, we should be searching for a slab page that was
2224 * PFMEMALLOC but right now, we are losing the pfmemalloc
2225 * information when the page leaves the per-cpu allocator
2226 */
2227 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2228 deactivate_slab(s, page, c->freelist);
2229 c->page = NULL;
2230 c->freelist = NULL;
2231 goto new_slab;
2232 }
2233
2234 /* must check again c->freelist in case of cpu migration or IRQ */
2235 freelist = c->freelist;
2236 if (freelist)
2237 goto load_freelist;
2238
2239 stat(s, ALLOC_SLOWPATH);
2240
2241 freelist = get_freelist(s, page);
2242
2243 if (!freelist) {
2244 c->page = NULL;
2245 stat(s, DEACTIVATE_BYPASS);
2246 goto new_slab;
2247 }
2248
2249 stat(s, ALLOC_REFILL);
2250
2251 load_freelist:
2252 /*
2253 * freelist is pointing to the list of objects to be used.
2254 * page is pointing to the page from which the objects are obtained.
2255 * That page must be frozen for per cpu allocations to work.
2256 */
2257 VM_BUG_ON(!c->page->frozen);
2258 c->freelist = get_freepointer(s, freelist);
2259 c->tid = next_tid(c->tid);
2260 local_irq_restore(flags);
2261 return freelist;
2262
2263 new_slab:
2264
2265 if (c->partial) {
2266 page = c->page = c->partial;
2267 c->partial = page->next;
2268 stat(s, CPU_PARTIAL_ALLOC);
2269 c->freelist = NULL;
2270 goto redo;
2271 }
2272
2273 freelist = new_slab_objects(s, gfpflags, node, &c);
2274
2275 if (unlikely(!freelist)) {
2276 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2277 slab_out_of_memory(s, gfpflags, node);
2278
2279 local_irq_restore(flags);
2280 return NULL;
2281 }
2282
2283 page = c->page;
2284 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2285 goto load_freelist;
2286
2287 /* Only entered in the debug case */
2288 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2289 goto new_slab; /* Slab failed checks. Next slab needed */
2290
2291 deactivate_slab(s, page, get_freepointer(s, freelist));
2292 c->page = NULL;
2293 c->freelist = NULL;
2294 local_irq_restore(flags);
2295 return freelist;
2296 }
2297
2298 /*
2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300 * have the fastpath folded into their functions. So no function call
2301 * overhead for requests that can be satisfied on the fastpath.
2302 *
2303 * The fastpath works by first checking if the lockless freelist can be used.
2304 * If not then __slab_alloc is called for slow processing.
2305 *
2306 * Otherwise we can simply pick the next object from the lockless free list.
2307 */
2308 static __always_inline void *slab_alloc(struct kmem_cache *s,
2309 gfp_t gfpflags, int node, unsigned long addr)
2310 {
2311 void **object;
2312 struct kmem_cache_cpu *c;
2313 struct page *page;
2314 unsigned long tid;
2315
2316 if (slab_pre_alloc_hook(s, gfpflags))
2317 return NULL;
2318
2319 redo:
2320
2321 /*
2322 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2323 * enabled. We may switch back and forth between cpus while
2324 * reading from one cpu area. That does not matter as long
2325 * as we end up on the original cpu again when doing the cmpxchg.
2326 */
2327 c = __this_cpu_ptr(s->cpu_slab);
2328
2329 /*
2330 * The transaction ids are globally unique per cpu and per operation on
2331 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2332 * occurs on the right processor and that there was no operation on the
2333 * linked list in between.
2334 */
2335 tid = c->tid;
2336 barrier();
2337
2338 object = c->freelist;
2339 page = c->page;
2340 if (unlikely(!object || !node_match(page, node)))
2341 object = __slab_alloc(s, gfpflags, node, addr, c);
2342
2343 else {
2344 void *next_object = get_freepointer_safe(s, object);
2345
2346 /*
2347 * The cmpxchg will only match if there was no additional
2348 * operation and if we are on the right processor.
2349 *
2350 * The cmpxchg does the following atomically (without lock semantics!)
2351 * 1. Relocate first pointer to the current per cpu area.
2352 * 2. Verify that tid and freelist have not been changed
2353 * 3. If they were not changed replace tid and freelist
2354 *
2355 * Since this is without lock semantics the protection is only against
2356 * code executing on this cpu *not* from access by other cpus.
2357 */
2358 if (unlikely(!this_cpu_cmpxchg_double(
2359 s->cpu_slab->freelist, s->cpu_slab->tid,
2360 object, tid,
2361 next_object, next_tid(tid)))) {
2362
2363 note_cmpxchg_failure("slab_alloc", s, tid);
2364 goto redo;
2365 }
2366 prefetch_freepointer(s, next_object);
2367 stat(s, ALLOC_FASTPATH);
2368 }
2369
2370 if (unlikely(gfpflags & __GFP_ZERO) && object)
2371 memset(object, 0, s->object_size);
2372
2373 slab_post_alloc_hook(s, gfpflags, object);
2374
2375 return object;
2376 }
2377
2378 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2379 {
2380 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2381
2382 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2383
2384 return ret;
2385 }
2386 EXPORT_SYMBOL(kmem_cache_alloc);
2387
2388 #ifdef CONFIG_TRACING
2389 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2390 {
2391 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2392 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2393 return ret;
2394 }
2395 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2396
2397 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2398 {
2399 void *ret = kmalloc_order(size, flags, order);
2400 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2401 return ret;
2402 }
2403 EXPORT_SYMBOL(kmalloc_order_trace);
2404 #endif
2405
2406 #ifdef CONFIG_NUMA
2407 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2408 {
2409 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2410
2411 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2412 s->object_size, s->size, gfpflags, node);
2413
2414 return ret;
2415 }
2416 EXPORT_SYMBOL(kmem_cache_alloc_node);
2417
2418 #ifdef CONFIG_TRACING
2419 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2420 gfp_t gfpflags,
2421 int node, size_t size)
2422 {
2423 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2424
2425 trace_kmalloc_node(_RET_IP_, ret,
2426 size, s->size, gfpflags, node);
2427 return ret;
2428 }
2429 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2430 #endif
2431 #endif
2432
2433 /*
2434 * Slow patch handling. This may still be called frequently since objects
2435 * have a longer lifetime than the cpu slabs in most processing loads.
2436 *
2437 * So we still attempt to reduce cache line usage. Just take the slab
2438 * lock and free the item. If there is no additional partial page
2439 * handling required then we can return immediately.
2440 */
2441 static void __slab_free(struct kmem_cache *s, struct page *page,
2442 void *x, unsigned long addr)
2443 {
2444 void *prior;
2445 void **object = (void *)x;
2446 int was_frozen;
2447 int inuse;
2448 struct page new;
2449 unsigned long counters;
2450 struct kmem_cache_node *n = NULL;
2451 unsigned long uninitialized_var(flags);
2452
2453 stat(s, FREE_SLOWPATH);
2454
2455 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2456 return;
2457
2458 do {
2459 prior = page->freelist;
2460 counters = page->counters;
2461 set_freepointer(s, object, prior);
2462 new.counters = counters;
2463 was_frozen = new.frozen;
2464 new.inuse--;
2465 if ((!new.inuse || !prior) && !was_frozen && !n) {
2466
2467 if (!kmem_cache_debug(s) && !prior)
2468
2469 /*
2470 * Slab was on no list before and will be partially empty
2471 * We can defer the list move and instead freeze it.
2472 */
2473 new.frozen = 1;
2474
2475 else { /* Needs to be taken off a list */
2476
2477 n = get_node(s, page_to_nid(page));
2478 /*
2479 * Speculatively acquire the list_lock.
2480 * If the cmpxchg does not succeed then we may
2481 * drop the list_lock without any processing.
2482 *
2483 * Otherwise the list_lock will synchronize with
2484 * other processors updating the list of slabs.
2485 */
2486 spin_lock_irqsave(&n->list_lock, flags);
2487
2488 }
2489 }
2490 inuse = new.inuse;
2491
2492 } while (!cmpxchg_double_slab(s, page,
2493 prior, counters,
2494 object, new.counters,
2495 "__slab_free"));
2496
2497 if (likely(!n)) {
2498
2499 /*
2500 * If we just froze the page then put it onto the
2501 * per cpu partial list.
2502 */
2503 if (new.frozen && !was_frozen) {
2504 put_cpu_partial(s, page, 1);
2505 stat(s, CPU_PARTIAL_FREE);
2506 }
2507 /*
2508 * The list lock was not taken therefore no list
2509 * activity can be necessary.
2510 */
2511 if (was_frozen)
2512 stat(s, FREE_FROZEN);
2513 return;
2514 }
2515
2516 /*
2517 * was_frozen may have been set after we acquired the list_lock in
2518 * an earlier loop. So we need to check it here again.
2519 */
2520 if (was_frozen)
2521 stat(s, FREE_FROZEN);
2522 else {
2523 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2524 goto slab_empty;
2525
2526 /*
2527 * Objects left in the slab. If it was not on the partial list before
2528 * then add it.
2529 */
2530 if (unlikely(!prior)) {
2531 remove_full(s, page);
2532 add_partial(n, page, DEACTIVATE_TO_TAIL);
2533 stat(s, FREE_ADD_PARTIAL);
2534 }
2535 }
2536 spin_unlock_irqrestore(&n->list_lock, flags);
2537 return;
2538
2539 slab_empty:
2540 if (prior) {
2541 /*
2542 * Slab on the partial list.
2543 */
2544 remove_partial(n, page);
2545 stat(s, FREE_REMOVE_PARTIAL);
2546 } else
2547 /* Slab must be on the full list */
2548 remove_full(s, page);
2549
2550 spin_unlock_irqrestore(&n->list_lock, flags);
2551 stat(s, FREE_SLAB);
2552 discard_slab(s, page);
2553 }
2554
2555 /*
2556 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2557 * can perform fastpath freeing without additional function calls.
2558 *
2559 * The fastpath is only possible if we are freeing to the current cpu slab
2560 * of this processor. This typically the case if we have just allocated
2561 * the item before.
2562 *
2563 * If fastpath is not possible then fall back to __slab_free where we deal
2564 * with all sorts of special processing.
2565 */
2566 static __always_inline void slab_free(struct kmem_cache *s,
2567 struct page *page, void *x, unsigned long addr)
2568 {
2569 void **object = (void *)x;
2570 struct kmem_cache_cpu *c;
2571 unsigned long tid;
2572
2573 slab_free_hook(s, x);
2574
2575 redo:
2576 /*
2577 * Determine the currently cpus per cpu slab.
2578 * The cpu may change afterward. However that does not matter since
2579 * data is retrieved via this pointer. If we are on the same cpu
2580 * during the cmpxchg then the free will succedd.
2581 */
2582 c = __this_cpu_ptr(s->cpu_slab);
2583
2584 tid = c->tid;
2585 barrier();
2586
2587 if (likely(page == c->page)) {
2588 set_freepointer(s, object, c->freelist);
2589
2590 if (unlikely(!this_cpu_cmpxchg_double(
2591 s->cpu_slab->freelist, s->cpu_slab->tid,
2592 c->freelist, tid,
2593 object, next_tid(tid)))) {
2594
2595 note_cmpxchg_failure("slab_free", s, tid);
2596 goto redo;
2597 }
2598 stat(s, FREE_FASTPATH);
2599 } else
2600 __slab_free(s, page, x, addr);
2601
2602 }
2603
2604 void kmem_cache_free(struct kmem_cache *s, void *x)
2605 {
2606 struct page *page;
2607
2608 page = virt_to_head_page(x);
2609
2610 slab_free(s, page, x, _RET_IP_);
2611
2612 trace_kmem_cache_free(_RET_IP_, x);
2613 }
2614 EXPORT_SYMBOL(kmem_cache_free);
2615
2616 /*
2617 * Object placement in a slab is made very easy because we always start at
2618 * offset 0. If we tune the size of the object to the alignment then we can
2619 * get the required alignment by putting one properly sized object after
2620 * another.
2621 *
2622 * Notice that the allocation order determines the sizes of the per cpu
2623 * caches. Each processor has always one slab available for allocations.
2624 * Increasing the allocation order reduces the number of times that slabs
2625 * must be moved on and off the partial lists and is therefore a factor in
2626 * locking overhead.
2627 */
2628
2629 /*
2630 * Mininum / Maximum order of slab pages. This influences locking overhead
2631 * and slab fragmentation. A higher order reduces the number of partial slabs
2632 * and increases the number of allocations possible without having to
2633 * take the list_lock.
2634 */
2635 static int slub_min_order;
2636 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2637 static int slub_min_objects;
2638
2639 /*
2640 * Merge control. If this is set then no merging of slab caches will occur.
2641 * (Could be removed. This was introduced to pacify the merge skeptics.)
2642 */
2643 static int slub_nomerge;
2644
2645 /*
2646 * Calculate the order of allocation given an slab object size.
2647 *
2648 * The order of allocation has significant impact on performance and other
2649 * system components. Generally order 0 allocations should be preferred since
2650 * order 0 does not cause fragmentation in the page allocator. Larger objects
2651 * be problematic to put into order 0 slabs because there may be too much
2652 * unused space left. We go to a higher order if more than 1/16th of the slab
2653 * would be wasted.
2654 *
2655 * In order to reach satisfactory performance we must ensure that a minimum
2656 * number of objects is in one slab. Otherwise we may generate too much
2657 * activity on the partial lists which requires taking the list_lock. This is
2658 * less a concern for large slabs though which are rarely used.
2659 *
2660 * slub_max_order specifies the order where we begin to stop considering the
2661 * number of objects in a slab as critical. If we reach slub_max_order then
2662 * we try to keep the page order as low as possible. So we accept more waste
2663 * of space in favor of a small page order.
2664 *
2665 * Higher order allocations also allow the placement of more objects in a
2666 * slab and thereby reduce object handling overhead. If the user has
2667 * requested a higher mininum order then we start with that one instead of
2668 * the smallest order which will fit the object.
2669 */
2670 static inline int slab_order(int size, int min_objects,
2671 int max_order, int fract_leftover, int reserved)
2672 {
2673 int order;
2674 int rem;
2675 int min_order = slub_min_order;
2676
2677 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2678 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2679
2680 for (order = max(min_order,
2681 fls(min_objects * size - 1) - PAGE_SHIFT);
2682 order <= max_order; order++) {
2683
2684 unsigned long slab_size = PAGE_SIZE << order;
2685
2686 if (slab_size < min_objects * size + reserved)
2687 continue;
2688
2689 rem = (slab_size - reserved) % size;
2690
2691 if (rem <= slab_size / fract_leftover)
2692 break;
2693
2694 }
2695
2696 return order;
2697 }
2698
2699 static inline int calculate_order(int size, int reserved)
2700 {
2701 int order;
2702 int min_objects;
2703 int fraction;
2704 int max_objects;
2705
2706 /*
2707 * Attempt to find best configuration for a slab. This
2708 * works by first attempting to generate a layout with
2709 * the best configuration and backing off gradually.
2710 *
2711 * First we reduce the acceptable waste in a slab. Then
2712 * we reduce the minimum objects required in a slab.
2713 */
2714 min_objects = slub_min_objects;
2715 if (!min_objects)
2716 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2717 max_objects = order_objects(slub_max_order, size, reserved);
2718 min_objects = min(min_objects, max_objects);
2719
2720 while (min_objects > 1) {
2721 fraction = 16;
2722 while (fraction >= 4) {
2723 order = slab_order(size, min_objects,
2724 slub_max_order, fraction, reserved);
2725 if (order <= slub_max_order)
2726 return order;
2727 fraction /= 2;
2728 }
2729 min_objects--;
2730 }
2731
2732 /*
2733 * We were unable to place multiple objects in a slab. Now
2734 * lets see if we can place a single object there.
2735 */
2736 order = slab_order(size, 1, slub_max_order, 1, reserved);
2737 if (order <= slub_max_order)
2738 return order;
2739
2740 /*
2741 * Doh this slab cannot be placed using slub_max_order.
2742 */
2743 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2744 if (order < MAX_ORDER)
2745 return order;
2746 return -ENOSYS;
2747 }
2748
2749 /*
2750 * Figure out what the alignment of the objects will be.
2751 */
2752 static unsigned long calculate_alignment(unsigned long flags,
2753 unsigned long align, unsigned long size)
2754 {
2755 /*
2756 * If the user wants hardware cache aligned objects then follow that
2757 * suggestion if the object is sufficiently large.
2758 *
2759 * The hardware cache alignment cannot override the specified
2760 * alignment though. If that is greater then use it.
2761 */
2762 if (flags & SLAB_HWCACHE_ALIGN) {
2763 unsigned long ralign = cache_line_size();
2764 while (size <= ralign / 2)
2765 ralign /= 2;
2766 align = max(align, ralign);
2767 }
2768
2769 if (align < ARCH_SLAB_MINALIGN)
2770 align = ARCH_SLAB_MINALIGN;
2771
2772 return ALIGN(align, sizeof(void *));
2773 }
2774
2775 static void
2776 init_kmem_cache_node(struct kmem_cache_node *n)
2777 {
2778 n->nr_partial = 0;
2779 spin_lock_init(&n->list_lock);
2780 INIT_LIST_HEAD(&n->partial);
2781 #ifdef CONFIG_SLUB_DEBUG
2782 atomic_long_set(&n->nr_slabs, 0);
2783 atomic_long_set(&n->total_objects, 0);
2784 INIT_LIST_HEAD(&n->full);
2785 #endif
2786 }
2787
2788 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2789 {
2790 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2791 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2792
2793 /*
2794 * Must align to double word boundary for the double cmpxchg
2795 * instructions to work; see __pcpu_double_call_return_bool().
2796 */
2797 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2798 2 * sizeof(void *));
2799
2800 if (!s->cpu_slab)
2801 return 0;
2802
2803 init_kmem_cache_cpus(s);
2804
2805 return 1;
2806 }
2807
2808 static struct kmem_cache *kmem_cache_node;
2809
2810 /*
2811 * No kmalloc_node yet so do it by hand. We know that this is the first
2812 * slab on the node for this slabcache. There are no concurrent accesses
2813 * possible.
2814 *
2815 * Note that this function only works on the kmalloc_node_cache
2816 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2817 * memory on a fresh node that has no slab structures yet.
2818 */
2819 static void early_kmem_cache_node_alloc(int node)
2820 {
2821 struct page *page;
2822 struct kmem_cache_node *n;
2823
2824 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2825
2826 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2827
2828 BUG_ON(!page);
2829 if (page_to_nid(page) != node) {
2830 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2831 "node %d\n", node);
2832 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2833 "in order to be able to continue\n");
2834 }
2835
2836 n = page->freelist;
2837 BUG_ON(!n);
2838 page->freelist = get_freepointer(kmem_cache_node, n);
2839 page->inuse = 1;
2840 page->frozen = 0;
2841 kmem_cache_node->node[node] = n;
2842 #ifdef CONFIG_SLUB_DEBUG
2843 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2844 init_tracking(kmem_cache_node, n);
2845 #endif
2846 init_kmem_cache_node(n);
2847 inc_slabs_node(kmem_cache_node, node, page->objects);
2848
2849 add_partial(n, page, DEACTIVATE_TO_HEAD);
2850 }
2851
2852 static void free_kmem_cache_nodes(struct kmem_cache *s)
2853 {
2854 int node;
2855
2856 for_each_node_state(node, N_NORMAL_MEMORY) {
2857 struct kmem_cache_node *n = s->node[node];
2858
2859 if (n)
2860 kmem_cache_free(kmem_cache_node, n);
2861
2862 s->node[node] = NULL;
2863 }
2864 }
2865
2866 static int init_kmem_cache_nodes(struct kmem_cache *s)
2867 {
2868 int node;
2869
2870 for_each_node_state(node, N_NORMAL_MEMORY) {
2871 struct kmem_cache_node *n;
2872
2873 if (slab_state == DOWN) {
2874 early_kmem_cache_node_alloc(node);
2875 continue;
2876 }
2877 n = kmem_cache_alloc_node(kmem_cache_node,
2878 GFP_KERNEL, node);
2879
2880 if (!n) {
2881 free_kmem_cache_nodes(s);
2882 return 0;
2883 }
2884
2885 s->node[node] = n;
2886 init_kmem_cache_node(n);
2887 }
2888 return 1;
2889 }
2890
2891 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2892 {
2893 if (min < MIN_PARTIAL)
2894 min = MIN_PARTIAL;
2895 else if (min > MAX_PARTIAL)
2896 min = MAX_PARTIAL;
2897 s->min_partial = min;
2898 }
2899
2900 /*
2901 * calculate_sizes() determines the order and the distribution of data within
2902 * a slab object.
2903 */
2904 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2905 {
2906 unsigned long flags = s->flags;
2907 unsigned long size = s->object_size;
2908 unsigned long align = s->align;
2909 int order;
2910
2911 /*
2912 * Round up object size to the next word boundary. We can only
2913 * place the free pointer at word boundaries and this determines
2914 * the possible location of the free pointer.
2915 */
2916 size = ALIGN(size, sizeof(void *));
2917
2918 #ifdef CONFIG_SLUB_DEBUG
2919 /*
2920 * Determine if we can poison the object itself. If the user of
2921 * the slab may touch the object after free or before allocation
2922 * then we should never poison the object itself.
2923 */
2924 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2925 !s->ctor)
2926 s->flags |= __OBJECT_POISON;
2927 else
2928 s->flags &= ~__OBJECT_POISON;
2929
2930
2931 /*
2932 * If we are Redzoning then check if there is some space between the
2933 * end of the object and the free pointer. If not then add an
2934 * additional word to have some bytes to store Redzone information.
2935 */
2936 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2937 size += sizeof(void *);
2938 #endif
2939
2940 /*
2941 * With that we have determined the number of bytes in actual use
2942 * by the object. This is the potential offset to the free pointer.
2943 */
2944 s->inuse = size;
2945
2946 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2947 s->ctor)) {
2948 /*
2949 * Relocate free pointer after the object if it is not
2950 * permitted to overwrite the first word of the object on
2951 * kmem_cache_free.
2952 *
2953 * This is the case if we do RCU, have a constructor or
2954 * destructor or are poisoning the objects.
2955 */
2956 s->offset = size;
2957 size += sizeof(void *);
2958 }
2959
2960 #ifdef CONFIG_SLUB_DEBUG
2961 if (flags & SLAB_STORE_USER)
2962 /*
2963 * Need to store information about allocs and frees after
2964 * the object.
2965 */
2966 size += 2 * sizeof(struct track);
2967
2968 if (flags & SLAB_RED_ZONE)
2969 /*
2970 * Add some empty padding so that we can catch
2971 * overwrites from earlier objects rather than let
2972 * tracking information or the free pointer be
2973 * corrupted if a user writes before the start
2974 * of the object.
2975 */
2976 size += sizeof(void *);
2977 #endif
2978
2979 /*
2980 * Determine the alignment based on various parameters that the
2981 * user specified and the dynamic determination of cache line size
2982 * on bootup.
2983 */
2984 align = calculate_alignment(flags, align, s->object_size);
2985 s->align = align;
2986
2987 /*
2988 * SLUB stores one object immediately after another beginning from
2989 * offset 0. In order to align the objects we have to simply size
2990 * each object to conform to the alignment.
2991 */
2992 size = ALIGN(size, align);
2993 s->size = size;
2994 if (forced_order >= 0)
2995 order = forced_order;
2996 else
2997 order = calculate_order(size, s->reserved);
2998
2999 if (order < 0)
3000 return 0;
3001
3002 s->allocflags = 0;
3003 if (order)
3004 s->allocflags |= __GFP_COMP;
3005
3006 if (s->flags & SLAB_CACHE_DMA)
3007 s->allocflags |= SLUB_DMA;
3008
3009 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3010 s->allocflags |= __GFP_RECLAIMABLE;
3011
3012 /*
3013 * Determine the number of objects per slab
3014 */
3015 s->oo = oo_make(order, size, s->reserved);
3016 s->min = oo_make(get_order(size), size, s->reserved);
3017 if (oo_objects(s->oo) > oo_objects(s->max))
3018 s->max = s->oo;
3019
3020 return !!oo_objects(s->oo);
3021
3022 }
3023
3024 static int kmem_cache_open(struct kmem_cache *s,
3025 const char *name, size_t size,
3026 size_t align, unsigned long flags,
3027 void (*ctor)(void *))
3028 {
3029 memset(s, 0, kmem_size);
3030 s->name = name;
3031 s->ctor = ctor;
3032 s->object_size = size;
3033 s->align = align;
3034 s->flags = kmem_cache_flags(size, flags, name, ctor);
3035 s->reserved = 0;
3036
3037 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3038 s->reserved = sizeof(struct rcu_head);
3039
3040 if (!calculate_sizes(s, -1))
3041 goto error;
3042 if (disable_higher_order_debug) {
3043 /*
3044 * Disable debugging flags that store metadata if the min slab
3045 * order increased.
3046 */
3047 if (get_order(s->size) > get_order(s->object_size)) {
3048 s->flags &= ~DEBUG_METADATA_FLAGS;
3049 s->offset = 0;
3050 if (!calculate_sizes(s, -1))
3051 goto error;
3052 }
3053 }
3054
3055 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3056 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3057 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3058 /* Enable fast mode */
3059 s->flags |= __CMPXCHG_DOUBLE;
3060 #endif
3061
3062 /*
3063 * The larger the object size is, the more pages we want on the partial
3064 * list to avoid pounding the page allocator excessively.
3065 */
3066 set_min_partial(s, ilog2(s->size) / 2);
3067
3068 /*
3069 * cpu_partial determined the maximum number of objects kept in the
3070 * per cpu partial lists of a processor.
3071 *
3072 * Per cpu partial lists mainly contain slabs that just have one
3073 * object freed. If they are used for allocation then they can be
3074 * filled up again with minimal effort. The slab will never hit the
3075 * per node partial lists and therefore no locking will be required.
3076 *
3077 * This setting also determines
3078 *
3079 * A) The number of objects from per cpu partial slabs dumped to the
3080 * per node list when we reach the limit.
3081 * B) The number of objects in cpu partial slabs to extract from the
3082 * per node list when we run out of per cpu objects. We only fetch 50%
3083 * to keep some capacity around for frees.
3084 */
3085 if (kmem_cache_debug(s))
3086 s->cpu_partial = 0;
3087 else if (s->size >= PAGE_SIZE)
3088 s->cpu_partial = 2;
3089 else if (s->size >= 1024)
3090 s->cpu_partial = 6;
3091 else if (s->size >= 256)
3092 s->cpu_partial = 13;
3093 else
3094 s->cpu_partial = 30;
3095
3096 s->refcount = 1;
3097 #ifdef CONFIG_NUMA
3098 s->remote_node_defrag_ratio = 1000;
3099 #endif
3100 if (!init_kmem_cache_nodes(s))
3101 goto error;
3102
3103 if (alloc_kmem_cache_cpus(s))
3104 return 1;
3105
3106 free_kmem_cache_nodes(s);
3107 error:
3108 if (flags & SLAB_PANIC)
3109 panic("Cannot create slab %s size=%lu realsize=%u "
3110 "order=%u offset=%u flags=%lx\n",
3111 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3112 s->offset, flags);
3113 return 0;
3114 }
3115
3116 /*
3117 * Determine the size of a slab object
3118 */
3119 unsigned int kmem_cache_size(struct kmem_cache *s)
3120 {
3121 return s->object_size;
3122 }
3123 EXPORT_SYMBOL(kmem_cache_size);
3124
3125 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3126 const char *text)
3127 {
3128 #ifdef CONFIG_SLUB_DEBUG
3129 void *addr = page_address(page);
3130 void *p;
3131 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3132 sizeof(long), GFP_ATOMIC);
3133 if (!map)
3134 return;
3135 slab_err(s, page, "%s", text);
3136 slab_lock(page);
3137
3138 get_map(s, page, map);
3139 for_each_object(p, s, addr, page->objects) {
3140
3141 if (!test_bit(slab_index(p, s, addr), map)) {
3142 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3143 p, p - addr);
3144 print_tracking(s, p);
3145 }
3146 }
3147 slab_unlock(page);
3148 kfree(map);
3149 #endif
3150 }
3151
3152 /*
3153 * Attempt to free all partial slabs on a node.
3154 * This is called from kmem_cache_close(). We must be the last thread
3155 * using the cache and therefore we do not need to lock anymore.
3156 */
3157 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3158 {
3159 struct page *page, *h;
3160
3161 list_for_each_entry_safe(page, h, &n->partial, lru) {
3162 if (!page->inuse) {
3163 remove_partial(n, page);
3164 discard_slab(s, page);
3165 } else {
3166 list_slab_objects(s, page,
3167 "Objects remaining on kmem_cache_close()");
3168 }
3169 }
3170 }
3171
3172 /*
3173 * Release all resources used by a slab cache.
3174 */
3175 static inline int kmem_cache_close(struct kmem_cache *s)
3176 {
3177 int node;
3178
3179 flush_all(s);
3180 free_percpu(s->cpu_slab);
3181 /* Attempt to free all objects */
3182 for_each_node_state(node, N_NORMAL_MEMORY) {
3183 struct kmem_cache_node *n = get_node(s, node);
3184
3185 free_partial(s, n);
3186 if (n->nr_partial || slabs_node(s, node))
3187 return 1;
3188 }
3189 free_kmem_cache_nodes(s);
3190 return 0;
3191 }
3192
3193 /*
3194 * Close a cache and release the kmem_cache structure
3195 * (must be used for caches created using kmem_cache_create)
3196 */
3197 void kmem_cache_destroy(struct kmem_cache *s)
3198 {
3199 mutex_lock(&slab_mutex);
3200 s->refcount--;
3201 if (!s->refcount) {
3202 list_del(&s->list);
3203 mutex_unlock(&slab_mutex);
3204 if (kmem_cache_close(s)) {
3205 printk(KERN_ERR "SLUB %s: %s called for cache that "
3206 "still has objects.\n", s->name, __func__);
3207 dump_stack();
3208 }
3209 if (s->flags & SLAB_DESTROY_BY_RCU)
3210 rcu_barrier();
3211 sysfs_slab_remove(s);
3212 } else
3213 mutex_unlock(&slab_mutex);
3214 }
3215 EXPORT_SYMBOL(kmem_cache_destroy);
3216
3217 /********************************************************************
3218 * Kmalloc subsystem
3219 *******************************************************************/
3220
3221 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3222 EXPORT_SYMBOL(kmalloc_caches);
3223
3224 static struct kmem_cache *kmem_cache;
3225
3226 #ifdef CONFIG_ZONE_DMA
3227 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3228 #endif
3229
3230 static int __init setup_slub_min_order(char *str)
3231 {
3232 get_option(&str, &slub_min_order);
3233
3234 return 1;
3235 }
3236
3237 __setup("slub_min_order=", setup_slub_min_order);
3238
3239 static int __init setup_slub_max_order(char *str)
3240 {
3241 get_option(&str, &slub_max_order);
3242 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3243
3244 return 1;
3245 }
3246
3247 __setup("slub_max_order=", setup_slub_max_order);
3248
3249 static int __init setup_slub_min_objects(char *str)
3250 {
3251 get_option(&str, &slub_min_objects);
3252
3253 return 1;
3254 }
3255
3256 __setup("slub_min_objects=", setup_slub_min_objects);
3257
3258 static int __init setup_slub_nomerge(char *str)
3259 {
3260 slub_nomerge = 1;
3261 return 1;
3262 }
3263
3264 __setup("slub_nomerge", setup_slub_nomerge);
3265
3266 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3267 int size, unsigned int flags)
3268 {
3269 struct kmem_cache *s;
3270
3271 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3272
3273 /*
3274 * This function is called with IRQs disabled during early-boot on
3275 * single CPU so there's no need to take slab_mutex here.
3276 */
3277 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3278 flags, NULL))
3279 goto panic;
3280
3281 list_add(&s->list, &slab_caches);
3282 return s;
3283
3284 panic:
3285 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3286 return NULL;
3287 }
3288
3289 /*
3290 * Conversion table for small slabs sizes / 8 to the index in the
3291 * kmalloc array. This is necessary for slabs < 192 since we have non power
3292 * of two cache sizes there. The size of larger slabs can be determined using
3293 * fls.
3294 */
3295 static s8 size_index[24] = {
3296 3, /* 8 */
3297 4, /* 16 */
3298 5, /* 24 */
3299 5, /* 32 */
3300 6, /* 40 */
3301 6, /* 48 */
3302 6, /* 56 */
3303 6, /* 64 */
3304 1, /* 72 */
3305 1, /* 80 */
3306 1, /* 88 */
3307 1, /* 96 */
3308 7, /* 104 */
3309 7, /* 112 */
3310 7, /* 120 */
3311 7, /* 128 */
3312 2, /* 136 */
3313 2, /* 144 */
3314 2, /* 152 */
3315 2, /* 160 */
3316 2, /* 168 */
3317 2, /* 176 */
3318 2, /* 184 */
3319 2 /* 192 */
3320 };
3321
3322 static inline int size_index_elem(size_t bytes)
3323 {
3324 return (bytes - 1) / 8;
3325 }
3326
3327 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3328 {
3329 int index;
3330
3331 if (size <= 192) {
3332 if (!size)
3333 return ZERO_SIZE_PTR;
3334
3335 index = size_index[size_index_elem(size)];
3336 } else
3337 index = fls(size - 1);
3338
3339 #ifdef CONFIG_ZONE_DMA
3340 if (unlikely((flags & SLUB_DMA)))
3341 return kmalloc_dma_caches[index];
3342
3343 #endif
3344 return kmalloc_caches[index];
3345 }
3346
3347 void *__kmalloc(size_t size, gfp_t flags)
3348 {
3349 struct kmem_cache *s;
3350 void *ret;
3351
3352 if (unlikely(size > SLUB_MAX_SIZE))
3353 return kmalloc_large(size, flags);
3354
3355 s = get_slab(size, flags);
3356
3357 if (unlikely(ZERO_OR_NULL_PTR(s)))
3358 return s;
3359
3360 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3361
3362 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3363
3364 return ret;
3365 }
3366 EXPORT_SYMBOL(__kmalloc);
3367
3368 #ifdef CONFIG_NUMA
3369 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3370 {
3371 struct page *page;
3372 void *ptr = NULL;
3373
3374 flags |= __GFP_COMP | __GFP_NOTRACK;
3375 page = alloc_pages_node(node, flags, get_order(size));
3376 if (page)
3377 ptr = page_address(page);
3378
3379 kmemleak_alloc(ptr, size, 1, flags);
3380 return ptr;
3381 }
3382
3383 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3384 {
3385 struct kmem_cache *s;
3386 void *ret;
3387
3388 if (unlikely(size > SLUB_MAX_SIZE)) {
3389 ret = kmalloc_large_node(size, flags, node);
3390
3391 trace_kmalloc_node(_RET_IP_, ret,
3392 size, PAGE_SIZE << get_order(size),
3393 flags, node);
3394
3395 return ret;
3396 }
3397
3398 s = get_slab(size, flags);
3399
3400 if (unlikely(ZERO_OR_NULL_PTR(s)))
3401 return s;
3402
3403 ret = slab_alloc(s, flags, node, _RET_IP_);
3404
3405 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3406
3407 return ret;
3408 }
3409 EXPORT_SYMBOL(__kmalloc_node);
3410 #endif
3411
3412 size_t ksize(const void *object)
3413 {
3414 struct page *page;
3415
3416 if (unlikely(object == ZERO_SIZE_PTR))
3417 return 0;
3418
3419 page = virt_to_head_page(object);
3420
3421 if (unlikely(!PageSlab(page))) {
3422 WARN_ON(!PageCompound(page));
3423 return PAGE_SIZE << compound_order(page);
3424 }
3425
3426 return slab_ksize(page->slab);
3427 }
3428 EXPORT_SYMBOL(ksize);
3429
3430 #ifdef CONFIG_SLUB_DEBUG
3431 bool verify_mem_not_deleted(const void *x)
3432 {
3433 struct page *page;
3434 void *object = (void *)x;
3435 unsigned long flags;
3436 bool rv;
3437
3438 if (unlikely(ZERO_OR_NULL_PTR(x)))
3439 return false;
3440
3441 local_irq_save(flags);
3442
3443 page = virt_to_head_page(x);
3444 if (unlikely(!PageSlab(page))) {
3445 /* maybe it was from stack? */
3446 rv = true;
3447 goto out_unlock;
3448 }
3449
3450 slab_lock(page);
3451 if (on_freelist(page->slab, page, object)) {
3452 object_err(page->slab, page, object, "Object is on free-list");
3453 rv = false;
3454 } else {
3455 rv = true;
3456 }
3457 slab_unlock(page);
3458
3459 out_unlock:
3460 local_irq_restore(flags);
3461 return rv;
3462 }
3463 EXPORT_SYMBOL(verify_mem_not_deleted);
3464 #endif
3465
3466 void kfree(const void *x)
3467 {
3468 struct page *page;
3469 void *object = (void *)x;
3470
3471 trace_kfree(_RET_IP_, x);
3472
3473 if (unlikely(ZERO_OR_NULL_PTR(x)))
3474 return;
3475
3476 page = virt_to_head_page(x);
3477 if (unlikely(!PageSlab(page))) {
3478 BUG_ON(!PageCompound(page));
3479 kmemleak_free(x);
3480 put_page(page);
3481 return;
3482 }
3483 slab_free(page->slab, page, object, _RET_IP_);
3484 }
3485 EXPORT_SYMBOL(kfree);
3486
3487 /*
3488 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3489 * the remaining slabs by the number of items in use. The slabs with the
3490 * most items in use come first. New allocations will then fill those up
3491 * and thus they can be removed from the partial lists.
3492 *
3493 * The slabs with the least items are placed last. This results in them
3494 * being allocated from last increasing the chance that the last objects
3495 * are freed in them.
3496 */
3497 int kmem_cache_shrink(struct kmem_cache *s)
3498 {
3499 int node;
3500 int i;
3501 struct kmem_cache_node *n;
3502 struct page *page;
3503 struct page *t;
3504 int objects = oo_objects(s->max);
3505 struct list_head *slabs_by_inuse =
3506 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3507 unsigned long flags;
3508
3509 if (!slabs_by_inuse)
3510 return -ENOMEM;
3511
3512 flush_all(s);
3513 for_each_node_state(node, N_NORMAL_MEMORY) {
3514 n = get_node(s, node);
3515
3516 if (!n->nr_partial)
3517 continue;
3518
3519 for (i = 0; i < objects; i++)
3520 INIT_LIST_HEAD(slabs_by_inuse + i);
3521
3522 spin_lock_irqsave(&n->list_lock, flags);
3523
3524 /*
3525 * Build lists indexed by the items in use in each slab.
3526 *
3527 * Note that concurrent frees may occur while we hold the
3528 * list_lock. page->inuse here is the upper limit.
3529 */
3530 list_for_each_entry_safe(page, t, &n->partial, lru) {
3531 list_move(&page->lru, slabs_by_inuse + page->inuse);
3532 if (!page->inuse)
3533 n->nr_partial--;
3534 }
3535
3536 /*
3537 * Rebuild the partial list with the slabs filled up most
3538 * first and the least used slabs at the end.
3539 */
3540 for (i = objects - 1; i > 0; i--)
3541 list_splice(slabs_by_inuse + i, n->partial.prev);
3542
3543 spin_unlock_irqrestore(&n->list_lock, flags);
3544
3545 /* Release empty slabs */
3546 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3547 discard_slab(s, page);
3548 }
3549
3550 kfree(slabs_by_inuse);
3551 return 0;
3552 }
3553 EXPORT_SYMBOL(kmem_cache_shrink);
3554
3555 #if defined(CONFIG_MEMORY_HOTPLUG)
3556 static int slab_mem_going_offline_callback(void *arg)
3557 {
3558 struct kmem_cache *s;
3559
3560 mutex_lock(&slab_mutex);
3561 list_for_each_entry(s, &slab_caches, list)
3562 kmem_cache_shrink(s);
3563 mutex_unlock(&slab_mutex);
3564
3565 return 0;
3566 }
3567
3568 static void slab_mem_offline_callback(void *arg)
3569 {
3570 struct kmem_cache_node *n;
3571 struct kmem_cache *s;
3572 struct memory_notify *marg = arg;
3573 int offline_node;
3574
3575 offline_node = marg->status_change_nid;
3576
3577 /*
3578 * If the node still has available memory. we need kmem_cache_node
3579 * for it yet.
3580 */
3581 if (offline_node < 0)
3582 return;
3583
3584 mutex_lock(&slab_mutex);
3585 list_for_each_entry(s, &slab_caches, list) {
3586 n = get_node(s, offline_node);
3587 if (n) {
3588 /*
3589 * if n->nr_slabs > 0, slabs still exist on the node
3590 * that is going down. We were unable to free them,
3591 * and offline_pages() function shouldn't call this
3592 * callback. So, we must fail.
3593 */
3594 BUG_ON(slabs_node(s, offline_node));
3595
3596 s->node[offline_node] = NULL;
3597 kmem_cache_free(kmem_cache_node, n);
3598 }
3599 }
3600 mutex_unlock(&slab_mutex);
3601 }
3602
3603 static int slab_mem_going_online_callback(void *arg)
3604 {
3605 struct kmem_cache_node *n;
3606 struct kmem_cache *s;
3607 struct memory_notify *marg = arg;
3608 int nid = marg->status_change_nid;
3609 int ret = 0;
3610
3611 /*
3612 * If the node's memory is already available, then kmem_cache_node is
3613 * already created. Nothing to do.
3614 */
3615 if (nid < 0)
3616 return 0;
3617
3618 /*
3619 * We are bringing a node online. No memory is available yet. We must
3620 * allocate a kmem_cache_node structure in order to bring the node
3621 * online.
3622 */
3623 mutex_lock(&slab_mutex);
3624 list_for_each_entry(s, &slab_caches, list) {
3625 /*
3626 * XXX: kmem_cache_alloc_node will fallback to other nodes
3627 * since memory is not yet available from the node that
3628 * is brought up.
3629 */
3630 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3631 if (!n) {
3632 ret = -ENOMEM;
3633 goto out;
3634 }
3635 init_kmem_cache_node(n);
3636 s->node[nid] = n;
3637 }
3638 out:
3639 mutex_unlock(&slab_mutex);
3640 return ret;
3641 }
3642
3643 static int slab_memory_callback(struct notifier_block *self,
3644 unsigned long action, void *arg)
3645 {
3646 int ret = 0;
3647
3648 switch (action) {
3649 case MEM_GOING_ONLINE:
3650 ret = slab_mem_going_online_callback(arg);
3651 break;
3652 case MEM_GOING_OFFLINE:
3653 ret = slab_mem_going_offline_callback(arg);
3654 break;
3655 case MEM_OFFLINE:
3656 case MEM_CANCEL_ONLINE:
3657 slab_mem_offline_callback(arg);
3658 break;
3659 case MEM_ONLINE:
3660 case MEM_CANCEL_OFFLINE:
3661 break;
3662 }
3663 if (ret)
3664 ret = notifier_from_errno(ret);
3665 else
3666 ret = NOTIFY_OK;
3667 return ret;
3668 }
3669
3670 #endif /* CONFIG_MEMORY_HOTPLUG */
3671
3672 /********************************************************************
3673 * Basic setup of slabs
3674 *******************************************************************/
3675
3676 /*
3677 * Used for early kmem_cache structures that were allocated using
3678 * the page allocator
3679 */
3680
3681 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3682 {
3683 int node;
3684
3685 list_add(&s->list, &slab_caches);
3686 s->refcount = -1;
3687
3688 for_each_node_state(node, N_NORMAL_MEMORY) {
3689 struct kmem_cache_node *n = get_node(s, node);
3690 struct page *p;
3691
3692 if (n) {
3693 list_for_each_entry(p, &n->partial, lru)
3694 p->slab = s;
3695
3696 #ifdef CONFIG_SLUB_DEBUG
3697 list_for_each_entry(p, &n->full, lru)
3698 p->slab = s;
3699 #endif
3700 }
3701 }
3702 }
3703
3704 void __init kmem_cache_init(void)
3705 {
3706 int i;
3707 int caches = 0;
3708 struct kmem_cache *temp_kmem_cache;
3709 int order;
3710 struct kmem_cache *temp_kmem_cache_node;
3711 unsigned long kmalloc_size;
3712
3713 if (debug_guardpage_minorder())
3714 slub_max_order = 0;
3715
3716 kmem_size = offsetof(struct kmem_cache, node) +
3717 nr_node_ids * sizeof(struct kmem_cache_node *);
3718
3719 /* Allocate two kmem_caches from the page allocator */
3720 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3721 order = get_order(2 * kmalloc_size);
3722 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3723
3724 /*
3725 * Must first have the slab cache available for the allocations of the
3726 * struct kmem_cache_node's. There is special bootstrap code in
3727 * kmem_cache_open for slab_state == DOWN.
3728 */
3729 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3730
3731 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3732 sizeof(struct kmem_cache_node),
3733 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3734
3735 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3736
3737 /* Able to allocate the per node structures */
3738 slab_state = PARTIAL;
3739
3740 temp_kmem_cache = kmem_cache;
3741 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3742 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3743 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3744 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3745
3746 /*
3747 * Allocate kmem_cache_node properly from the kmem_cache slab.
3748 * kmem_cache_node is separately allocated so no need to
3749 * update any list pointers.
3750 */
3751 temp_kmem_cache_node = kmem_cache_node;
3752
3753 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3754 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3755
3756 kmem_cache_bootstrap_fixup(kmem_cache_node);
3757
3758 caches++;
3759 kmem_cache_bootstrap_fixup(kmem_cache);
3760 caches++;
3761 /* Free temporary boot structure */
3762 free_pages((unsigned long)temp_kmem_cache, order);
3763
3764 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3765
3766 /*
3767 * Patch up the size_index table if we have strange large alignment
3768 * requirements for the kmalloc array. This is only the case for
3769 * MIPS it seems. The standard arches will not generate any code here.
3770 *
3771 * Largest permitted alignment is 256 bytes due to the way we
3772 * handle the index determination for the smaller caches.
3773 *
3774 * Make sure that nothing crazy happens if someone starts tinkering
3775 * around with ARCH_KMALLOC_MINALIGN
3776 */
3777 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3778 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3779
3780 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3781 int elem = size_index_elem(i);
3782 if (elem >= ARRAY_SIZE(size_index))
3783 break;
3784 size_index[elem] = KMALLOC_SHIFT_LOW;
3785 }
3786
3787 if (KMALLOC_MIN_SIZE == 64) {
3788 /*
3789 * The 96 byte size cache is not used if the alignment
3790 * is 64 byte.
3791 */
3792 for (i = 64 + 8; i <= 96; i += 8)
3793 size_index[size_index_elem(i)] = 7;
3794 } else if (KMALLOC_MIN_SIZE == 128) {
3795 /*
3796 * The 192 byte sized cache is not used if the alignment
3797 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3798 * instead.
3799 */
3800 for (i = 128 + 8; i <= 192; i += 8)
3801 size_index[size_index_elem(i)] = 8;
3802 }
3803
3804 /* Caches that are not of the two-to-the-power-of size */
3805 if (KMALLOC_MIN_SIZE <= 32) {
3806 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3807 caches++;
3808 }
3809
3810 if (KMALLOC_MIN_SIZE <= 64) {
3811 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3812 caches++;
3813 }
3814
3815 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3816 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3817 caches++;
3818 }
3819
3820 slab_state = UP;
3821
3822 /* Provide the correct kmalloc names now that the caches are up */
3823 if (KMALLOC_MIN_SIZE <= 32) {
3824 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3825 BUG_ON(!kmalloc_caches[1]->name);
3826 }
3827
3828 if (KMALLOC_MIN_SIZE <= 64) {
3829 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3830 BUG_ON(!kmalloc_caches[2]->name);
3831 }
3832
3833 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3834 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3835
3836 BUG_ON(!s);
3837 kmalloc_caches[i]->name = s;
3838 }
3839
3840 #ifdef CONFIG_SMP
3841 register_cpu_notifier(&slab_notifier);
3842 #endif
3843
3844 #ifdef CONFIG_ZONE_DMA
3845 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3846 struct kmem_cache *s = kmalloc_caches[i];
3847
3848 if (s && s->size) {
3849 char *name = kasprintf(GFP_NOWAIT,
3850 "dma-kmalloc-%d", s->object_size);
3851
3852 BUG_ON(!name);
3853 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3854 s->object_size, SLAB_CACHE_DMA);
3855 }
3856 }
3857 #endif
3858 printk(KERN_INFO
3859 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3860 " CPUs=%d, Nodes=%d\n",
3861 caches, cache_line_size(),
3862 slub_min_order, slub_max_order, slub_min_objects,
3863 nr_cpu_ids, nr_node_ids);
3864 }
3865
3866 void __init kmem_cache_init_late(void)
3867 {
3868 }
3869
3870 /*
3871 * Find a mergeable slab cache
3872 */
3873 static int slab_unmergeable(struct kmem_cache *s)
3874 {
3875 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3876 return 1;
3877
3878 if (s->ctor)
3879 return 1;
3880
3881 /*
3882 * We may have set a slab to be unmergeable during bootstrap.
3883 */
3884 if (s->refcount < 0)
3885 return 1;
3886
3887 return 0;
3888 }
3889
3890 static struct kmem_cache *find_mergeable(size_t size,
3891 size_t align, unsigned long flags, const char *name,
3892 void (*ctor)(void *))
3893 {
3894 struct kmem_cache *s;
3895
3896 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3897 return NULL;
3898
3899 if (ctor)
3900 return NULL;
3901
3902 size = ALIGN(size, sizeof(void *));
3903 align = calculate_alignment(flags, align, size);
3904 size = ALIGN(size, align);
3905 flags = kmem_cache_flags(size, flags, name, NULL);
3906
3907 list_for_each_entry(s, &slab_caches, list) {
3908 if (slab_unmergeable(s))
3909 continue;
3910
3911 if (size > s->size)
3912 continue;
3913
3914 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3915 continue;
3916 /*
3917 * Check if alignment is compatible.
3918 * Courtesy of Adrian Drzewiecki
3919 */
3920 if ((s->size & ~(align - 1)) != s->size)
3921 continue;
3922
3923 if (s->size - size >= sizeof(void *))
3924 continue;
3925
3926 return s;
3927 }
3928 return NULL;
3929 }
3930
3931 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3932 size_t align, unsigned long flags, void (*ctor)(void *))
3933 {
3934 struct kmem_cache *s;
3935 char *n;
3936
3937 s = find_mergeable(size, align, flags, name, ctor);
3938 if (s) {
3939 s->refcount++;
3940 /*
3941 * Adjust the object sizes so that we clear
3942 * the complete object on kzalloc.
3943 */
3944 s->object_size = max(s->object_size, (int)size);
3945 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3946
3947 if (sysfs_slab_alias(s, name)) {
3948 s->refcount--;
3949 return NULL;
3950 }
3951 return s;
3952 }
3953
3954 n = kstrdup(name, GFP_KERNEL);
3955 if (!n)
3956 return NULL;
3957
3958 s = kmalloc(kmem_size, GFP_KERNEL);
3959 if (s) {
3960 if (kmem_cache_open(s, n,
3961 size, align, flags, ctor)) {
3962 int r;
3963
3964 list_add(&s->list, &slab_caches);
3965 mutex_unlock(&slab_mutex);
3966 r = sysfs_slab_add(s);
3967 mutex_lock(&slab_mutex);
3968
3969 if (!r)
3970 return s;
3971
3972 list_del(&s->list);
3973 kmem_cache_close(s);
3974 }
3975 kfree(s);
3976 }
3977 kfree(n);
3978 return NULL;
3979 }
3980
3981 #ifdef CONFIG_SMP
3982 /*
3983 * Use the cpu notifier to insure that the cpu slabs are flushed when
3984 * necessary.
3985 */
3986 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3987 unsigned long action, void *hcpu)
3988 {
3989 long cpu = (long)hcpu;
3990 struct kmem_cache *s;
3991 unsigned long flags;
3992
3993 switch (action) {
3994 case CPU_UP_CANCELED:
3995 case CPU_UP_CANCELED_FROZEN:
3996 case CPU_DEAD:
3997 case CPU_DEAD_FROZEN:
3998 mutex_lock(&slab_mutex);
3999 list_for_each_entry(s, &slab_caches, list) {
4000 local_irq_save(flags);
4001 __flush_cpu_slab(s, cpu);
4002 local_irq_restore(flags);
4003 }
4004 mutex_unlock(&slab_mutex);
4005 break;
4006 default:
4007 break;
4008 }
4009 return NOTIFY_OK;
4010 }
4011
4012 static struct notifier_block __cpuinitdata slab_notifier = {
4013 .notifier_call = slab_cpuup_callback
4014 };
4015
4016 #endif
4017
4018 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4019 {
4020 struct kmem_cache *s;
4021 void *ret;
4022
4023 if (unlikely(size > SLUB_MAX_SIZE))
4024 return kmalloc_large(size, gfpflags);
4025
4026 s = get_slab(size, gfpflags);
4027
4028 if (unlikely(ZERO_OR_NULL_PTR(s)))
4029 return s;
4030
4031 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4032
4033 /* Honor the call site pointer we received. */
4034 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4035
4036 return ret;
4037 }
4038
4039 #ifdef CONFIG_NUMA
4040 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4041 int node, unsigned long caller)
4042 {
4043 struct kmem_cache *s;
4044 void *ret;
4045
4046 if (unlikely(size > SLUB_MAX_SIZE)) {
4047 ret = kmalloc_large_node(size, gfpflags, node);
4048
4049 trace_kmalloc_node(caller, ret,
4050 size, PAGE_SIZE << get_order(size),
4051 gfpflags, node);
4052
4053 return ret;
4054 }
4055
4056 s = get_slab(size, gfpflags);
4057
4058 if (unlikely(ZERO_OR_NULL_PTR(s)))
4059 return s;
4060
4061 ret = slab_alloc(s, gfpflags, node, caller);
4062
4063 /* Honor the call site pointer we received. */
4064 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4065
4066 return ret;
4067 }
4068 #endif
4069
4070 #ifdef CONFIG_SYSFS
4071 static int count_inuse(struct page *page)
4072 {
4073 return page->inuse;
4074 }
4075
4076 static int count_total(struct page *page)
4077 {
4078 return page->objects;
4079 }
4080 #endif
4081
4082 #ifdef CONFIG_SLUB_DEBUG
4083 static int validate_slab(struct kmem_cache *s, struct page *page,
4084 unsigned long *map)
4085 {
4086 void *p;
4087 void *addr = page_address(page);
4088
4089 if (!check_slab(s, page) ||
4090 !on_freelist(s, page, NULL))
4091 return 0;
4092
4093 /* Now we know that a valid freelist exists */
4094 bitmap_zero(map, page->objects);
4095
4096 get_map(s, page, map);
4097 for_each_object(p, s, addr, page->objects) {
4098 if (test_bit(slab_index(p, s, addr), map))
4099 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4100 return 0;
4101 }
4102
4103 for_each_object(p, s, addr, page->objects)
4104 if (!test_bit(slab_index(p, s, addr), map))
4105 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4106 return 0;
4107 return 1;
4108 }
4109
4110 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4111 unsigned long *map)
4112 {
4113 slab_lock(page);
4114 validate_slab(s, page, map);
4115 slab_unlock(page);
4116 }
4117
4118 static int validate_slab_node(struct kmem_cache *s,
4119 struct kmem_cache_node *n, unsigned long *map)
4120 {
4121 unsigned long count = 0;
4122 struct page *page;
4123 unsigned long flags;
4124
4125 spin_lock_irqsave(&n->list_lock, flags);
4126
4127 list_for_each_entry(page, &n->partial, lru) {
4128 validate_slab_slab(s, page, map);
4129 count++;
4130 }
4131 if (count != n->nr_partial)
4132 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4133 "counter=%ld\n", s->name, count, n->nr_partial);
4134
4135 if (!(s->flags & SLAB_STORE_USER))
4136 goto out;
4137
4138 list_for_each_entry(page, &n->full, lru) {
4139 validate_slab_slab(s, page, map);
4140 count++;
4141 }
4142 if (count != atomic_long_read(&n->nr_slabs))
4143 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4144 "counter=%ld\n", s->name, count,
4145 atomic_long_read(&n->nr_slabs));
4146
4147 out:
4148 spin_unlock_irqrestore(&n->list_lock, flags);
4149 return count;
4150 }
4151
4152 static long validate_slab_cache(struct kmem_cache *s)
4153 {
4154 int node;
4155 unsigned long count = 0;
4156 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4157 sizeof(unsigned long), GFP_KERNEL);
4158
4159 if (!map)
4160 return -ENOMEM;
4161
4162 flush_all(s);
4163 for_each_node_state(node, N_NORMAL_MEMORY) {
4164 struct kmem_cache_node *n = get_node(s, node);
4165
4166 count += validate_slab_node(s, n, map);
4167 }
4168 kfree(map);
4169 return count;
4170 }
4171 /*
4172 * Generate lists of code addresses where slabcache objects are allocated
4173 * and freed.
4174 */
4175
4176 struct location {
4177 unsigned long count;
4178 unsigned long addr;
4179 long long sum_time;
4180 long min_time;
4181 long max_time;
4182 long min_pid;
4183 long max_pid;
4184 DECLARE_BITMAP(cpus, NR_CPUS);
4185 nodemask_t nodes;
4186 };
4187
4188 struct loc_track {
4189 unsigned long max;
4190 unsigned long count;
4191 struct location *loc;
4192 };
4193
4194 static void free_loc_track(struct loc_track *t)
4195 {
4196 if (t->max)
4197 free_pages((unsigned long)t->loc,
4198 get_order(sizeof(struct location) * t->max));
4199 }
4200
4201 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4202 {
4203 struct location *l;
4204 int order;
4205
4206 order = get_order(sizeof(struct location) * max);
4207
4208 l = (void *)__get_free_pages(flags, order);
4209 if (!l)
4210 return 0;
4211
4212 if (t->count) {
4213 memcpy(l, t->loc, sizeof(struct location) * t->count);
4214 free_loc_track(t);
4215 }
4216 t->max = max;
4217 t->loc = l;
4218 return 1;
4219 }
4220
4221 static int add_location(struct loc_track *t, struct kmem_cache *s,
4222 const struct track *track)
4223 {
4224 long start, end, pos;
4225 struct location *l;
4226 unsigned long caddr;
4227 unsigned long age = jiffies - track->when;
4228
4229 start = -1;
4230 end = t->count;
4231
4232 for ( ; ; ) {
4233 pos = start + (end - start + 1) / 2;
4234
4235 /*
4236 * There is nothing at "end". If we end up there
4237 * we need to add something to before end.
4238 */
4239 if (pos == end)
4240 break;
4241
4242 caddr = t->loc[pos].addr;
4243 if (track->addr == caddr) {
4244
4245 l = &t->loc[pos];
4246 l->count++;
4247 if (track->when) {
4248 l->sum_time += age;
4249 if (age < l->min_time)
4250 l->min_time = age;
4251 if (age > l->max_time)
4252 l->max_time = age;
4253
4254 if (track->pid < l->min_pid)
4255 l->min_pid = track->pid;
4256 if (track->pid > l->max_pid)
4257 l->max_pid = track->pid;
4258
4259 cpumask_set_cpu(track->cpu,
4260 to_cpumask(l->cpus));
4261 }
4262 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4263 return 1;
4264 }
4265
4266 if (track->addr < caddr)
4267 end = pos;
4268 else
4269 start = pos;
4270 }
4271
4272 /*
4273 * Not found. Insert new tracking element.
4274 */
4275 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4276 return 0;
4277
4278 l = t->loc + pos;
4279 if (pos < t->count)
4280 memmove(l + 1, l,
4281 (t->count - pos) * sizeof(struct location));
4282 t->count++;
4283 l->count = 1;
4284 l->addr = track->addr;
4285 l->sum_time = age;
4286 l->min_time = age;
4287 l->max_time = age;
4288 l->min_pid = track->pid;
4289 l->max_pid = track->pid;
4290 cpumask_clear(to_cpumask(l->cpus));
4291 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4292 nodes_clear(l->nodes);
4293 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4294 return 1;
4295 }
4296
4297 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4298 struct page *page, enum track_item alloc,
4299 unsigned long *map)
4300 {
4301 void *addr = page_address(page);
4302 void *p;
4303
4304 bitmap_zero(map, page->objects);
4305 get_map(s, page, map);
4306
4307 for_each_object(p, s, addr, page->objects)
4308 if (!test_bit(slab_index(p, s, addr), map))
4309 add_location(t, s, get_track(s, p, alloc));
4310 }
4311
4312 static int list_locations(struct kmem_cache *s, char *buf,
4313 enum track_item alloc)
4314 {
4315 int len = 0;
4316 unsigned long i;
4317 struct loc_track t = { 0, 0, NULL };
4318 int node;
4319 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4320 sizeof(unsigned long), GFP_KERNEL);
4321
4322 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4323 GFP_TEMPORARY)) {
4324 kfree(map);
4325 return sprintf(buf, "Out of memory\n");
4326 }
4327 /* Push back cpu slabs */
4328 flush_all(s);
4329
4330 for_each_node_state(node, N_NORMAL_MEMORY) {
4331 struct kmem_cache_node *n = get_node(s, node);
4332 unsigned long flags;
4333 struct page *page;
4334
4335 if (!atomic_long_read(&n->nr_slabs))
4336 continue;
4337
4338 spin_lock_irqsave(&n->list_lock, flags);
4339 list_for_each_entry(page, &n->partial, lru)
4340 process_slab(&t, s, page, alloc, map);
4341 list_for_each_entry(page, &n->full, lru)
4342 process_slab(&t, s, page, alloc, map);
4343 spin_unlock_irqrestore(&n->list_lock, flags);
4344 }
4345
4346 for (i = 0; i < t.count; i++) {
4347 struct location *l = &t.loc[i];
4348
4349 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4350 break;
4351 len += sprintf(buf + len, "%7ld ", l->count);
4352
4353 if (l->addr)
4354 len += sprintf(buf + len, "%pS", (void *)l->addr);
4355 else
4356 len += sprintf(buf + len, "<not-available>");
4357
4358 if (l->sum_time != l->min_time) {
4359 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4360 l->min_time,
4361 (long)div_u64(l->sum_time, l->count),
4362 l->max_time);
4363 } else
4364 len += sprintf(buf + len, " age=%ld",
4365 l->min_time);
4366
4367 if (l->min_pid != l->max_pid)
4368 len += sprintf(buf + len, " pid=%ld-%ld",
4369 l->min_pid, l->max_pid);
4370 else
4371 len += sprintf(buf + len, " pid=%ld",
4372 l->min_pid);
4373
4374 if (num_online_cpus() > 1 &&
4375 !cpumask_empty(to_cpumask(l->cpus)) &&
4376 len < PAGE_SIZE - 60) {
4377 len += sprintf(buf + len, " cpus=");
4378 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4379 to_cpumask(l->cpus));
4380 }
4381
4382 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4383 len < PAGE_SIZE - 60) {
4384 len += sprintf(buf + len, " nodes=");
4385 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4386 l->nodes);
4387 }
4388
4389 len += sprintf(buf + len, "\n");
4390 }
4391
4392 free_loc_track(&t);
4393 kfree(map);
4394 if (!t.count)
4395 len += sprintf(buf, "No data\n");
4396 return len;
4397 }
4398 #endif
4399
4400 #ifdef SLUB_RESILIENCY_TEST
4401 static void resiliency_test(void)
4402 {
4403 u8 *p;
4404
4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4406
4407 printk(KERN_ERR "SLUB resiliency testing\n");
4408 printk(KERN_ERR "-----------------------\n");
4409 printk(KERN_ERR "A. Corruption after allocation\n");
4410
4411 p = kzalloc(16, GFP_KERNEL);
4412 p[16] = 0x12;
4413 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4414 " 0x12->0x%p\n\n", p + 16);
4415
4416 validate_slab_cache(kmalloc_caches[4]);
4417
4418 /* Hmmm... The next two are dangerous */
4419 p = kzalloc(32, GFP_KERNEL);
4420 p[32 + sizeof(void *)] = 0x34;
4421 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4422 " 0x34 -> -0x%p\n", p);
4423 printk(KERN_ERR
4424 "If allocated object is overwritten then not detectable\n\n");
4425
4426 validate_slab_cache(kmalloc_caches[5]);
4427 p = kzalloc(64, GFP_KERNEL);
4428 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4429 *p = 0x56;
4430 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4431 p);
4432 printk(KERN_ERR
4433 "If allocated object is overwritten then not detectable\n\n");
4434 validate_slab_cache(kmalloc_caches[6]);
4435
4436 printk(KERN_ERR "\nB. Corruption after free\n");
4437 p = kzalloc(128, GFP_KERNEL);
4438 kfree(p);
4439 *p = 0x78;
4440 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4441 validate_slab_cache(kmalloc_caches[7]);
4442
4443 p = kzalloc(256, GFP_KERNEL);
4444 kfree(p);
4445 p[50] = 0x9a;
4446 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4447 p);
4448 validate_slab_cache(kmalloc_caches[8]);
4449
4450 p = kzalloc(512, GFP_KERNEL);
4451 kfree(p);
4452 p[512] = 0xab;
4453 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4454 validate_slab_cache(kmalloc_caches[9]);
4455 }
4456 #else
4457 #ifdef CONFIG_SYSFS
4458 static void resiliency_test(void) {};
4459 #endif
4460 #endif
4461
4462 #ifdef CONFIG_SYSFS
4463 enum slab_stat_type {
4464 SL_ALL, /* All slabs */
4465 SL_PARTIAL, /* Only partially allocated slabs */
4466 SL_CPU, /* Only slabs used for cpu caches */
4467 SL_OBJECTS, /* Determine allocated objects not slabs */
4468 SL_TOTAL /* Determine object capacity not slabs */
4469 };
4470
4471 #define SO_ALL (1 << SL_ALL)
4472 #define SO_PARTIAL (1 << SL_PARTIAL)
4473 #define SO_CPU (1 << SL_CPU)
4474 #define SO_OBJECTS (1 << SL_OBJECTS)
4475 #define SO_TOTAL (1 << SL_TOTAL)
4476
4477 static ssize_t show_slab_objects(struct kmem_cache *s,
4478 char *buf, unsigned long flags)
4479 {
4480 unsigned long total = 0;
4481 int node;
4482 int x;
4483 unsigned long *nodes;
4484 unsigned long *per_cpu;
4485
4486 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4487 if (!nodes)
4488 return -ENOMEM;
4489 per_cpu = nodes + nr_node_ids;
4490
4491 if (flags & SO_CPU) {
4492 int cpu;
4493
4494 for_each_possible_cpu(cpu) {
4495 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4496 int node;
4497 struct page *page;
4498
4499 page = ACCESS_ONCE(c->page);
4500 if (!page)
4501 continue;
4502
4503 node = page_to_nid(page);
4504 if (flags & SO_TOTAL)
4505 x = page->objects;
4506 else if (flags & SO_OBJECTS)
4507 x = page->inuse;
4508 else
4509 x = 1;
4510
4511 total += x;
4512 nodes[node] += x;
4513
4514 page = ACCESS_ONCE(c->partial);
4515 if (page) {
4516 x = page->pobjects;
4517 total += x;
4518 nodes[node] += x;
4519 }
4520
4521 per_cpu[node]++;
4522 }
4523 }
4524
4525 lock_memory_hotplug();
4526 #ifdef CONFIG_SLUB_DEBUG
4527 if (flags & SO_ALL) {
4528 for_each_node_state(node, N_NORMAL_MEMORY) {
4529 struct kmem_cache_node *n = get_node(s, node);
4530
4531 if (flags & SO_TOTAL)
4532 x = atomic_long_read(&n->total_objects);
4533 else if (flags & SO_OBJECTS)
4534 x = atomic_long_read(&n->total_objects) -
4535 count_partial(n, count_free);
4536
4537 else
4538 x = atomic_long_read(&n->nr_slabs);
4539 total += x;
4540 nodes[node] += x;
4541 }
4542
4543 } else
4544 #endif
4545 if (flags & SO_PARTIAL) {
4546 for_each_node_state(node, N_NORMAL_MEMORY) {
4547 struct kmem_cache_node *n = get_node(s, node);
4548
4549 if (flags & SO_TOTAL)
4550 x = count_partial(n, count_total);
4551 else if (flags & SO_OBJECTS)
4552 x = count_partial(n, count_inuse);
4553 else
4554 x = n->nr_partial;
4555 total += x;
4556 nodes[node] += x;
4557 }
4558 }
4559 x = sprintf(buf, "%lu", total);
4560 #ifdef CONFIG_NUMA
4561 for_each_node_state(node, N_NORMAL_MEMORY)
4562 if (nodes[node])
4563 x += sprintf(buf + x, " N%d=%lu",
4564 node, nodes[node]);
4565 #endif
4566 unlock_memory_hotplug();
4567 kfree(nodes);
4568 return x + sprintf(buf + x, "\n");
4569 }
4570
4571 #ifdef CONFIG_SLUB_DEBUG
4572 static int any_slab_objects(struct kmem_cache *s)
4573 {
4574 int node;
4575
4576 for_each_online_node(node) {
4577 struct kmem_cache_node *n = get_node(s, node);
4578
4579 if (!n)
4580 continue;
4581
4582 if (atomic_long_read(&n->total_objects))
4583 return 1;
4584 }
4585 return 0;
4586 }
4587 #endif
4588
4589 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4590 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4591
4592 struct slab_attribute {
4593 struct attribute attr;
4594 ssize_t (*show)(struct kmem_cache *s, char *buf);
4595 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4596 };
4597
4598 #define SLAB_ATTR_RO(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0400, _name##_show, NULL)
4601
4602 #define SLAB_ATTR(_name) \
4603 static struct slab_attribute _name##_attr = \
4604 __ATTR(_name, 0600, _name##_show, _name##_store)
4605
4606 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4607 {
4608 return sprintf(buf, "%d\n", s->size);
4609 }
4610 SLAB_ATTR_RO(slab_size);
4611
4612 static ssize_t align_show(struct kmem_cache *s, char *buf)
4613 {
4614 return sprintf(buf, "%d\n", s->align);
4615 }
4616 SLAB_ATTR_RO(align);
4617
4618 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4619 {
4620 return sprintf(buf, "%d\n", s->object_size);
4621 }
4622 SLAB_ATTR_RO(object_size);
4623
4624 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4625 {
4626 return sprintf(buf, "%d\n", oo_objects(s->oo));
4627 }
4628 SLAB_ATTR_RO(objs_per_slab);
4629
4630 static ssize_t order_store(struct kmem_cache *s,
4631 const char *buf, size_t length)
4632 {
4633 unsigned long order;
4634 int err;
4635
4636 err = strict_strtoul(buf, 10, &order);
4637 if (err)
4638 return err;
4639
4640 if (order > slub_max_order || order < slub_min_order)
4641 return -EINVAL;
4642
4643 calculate_sizes(s, order);
4644 return length;
4645 }
4646
4647 static ssize_t order_show(struct kmem_cache *s, char *buf)
4648 {
4649 return sprintf(buf, "%d\n", oo_order(s->oo));
4650 }
4651 SLAB_ATTR(order);
4652
4653 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4654 {
4655 return sprintf(buf, "%lu\n", s->min_partial);
4656 }
4657
4658 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4659 size_t length)
4660 {
4661 unsigned long min;
4662 int err;
4663
4664 err = strict_strtoul(buf, 10, &min);
4665 if (err)
4666 return err;
4667
4668 set_min_partial(s, min);
4669 return length;
4670 }
4671 SLAB_ATTR(min_partial);
4672
4673 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4674 {
4675 return sprintf(buf, "%u\n", s->cpu_partial);
4676 }
4677
4678 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4679 size_t length)
4680 {
4681 unsigned long objects;
4682 int err;
4683
4684 err = strict_strtoul(buf, 10, &objects);
4685 if (err)
4686 return err;
4687 if (objects && kmem_cache_debug(s))
4688 return -EINVAL;
4689
4690 s->cpu_partial = objects;
4691 flush_all(s);
4692 return length;
4693 }
4694 SLAB_ATTR(cpu_partial);
4695
4696 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4697 {
4698 if (!s->ctor)
4699 return 0;
4700 return sprintf(buf, "%pS\n", s->ctor);
4701 }
4702 SLAB_ATTR_RO(ctor);
4703
4704 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4705 {
4706 return sprintf(buf, "%d\n", s->refcount - 1);
4707 }
4708 SLAB_ATTR_RO(aliases);
4709
4710 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4711 {
4712 return show_slab_objects(s, buf, SO_PARTIAL);
4713 }
4714 SLAB_ATTR_RO(partial);
4715
4716 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4717 {
4718 return show_slab_objects(s, buf, SO_CPU);
4719 }
4720 SLAB_ATTR_RO(cpu_slabs);
4721
4722 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4723 {
4724 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4725 }
4726 SLAB_ATTR_RO(objects);
4727
4728 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4729 {
4730 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4731 }
4732 SLAB_ATTR_RO(objects_partial);
4733
4734 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4735 {
4736 int objects = 0;
4737 int pages = 0;
4738 int cpu;
4739 int len;
4740
4741 for_each_online_cpu(cpu) {
4742 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4743
4744 if (page) {
4745 pages += page->pages;
4746 objects += page->pobjects;
4747 }
4748 }
4749
4750 len = sprintf(buf, "%d(%d)", objects, pages);
4751
4752 #ifdef CONFIG_SMP
4753 for_each_online_cpu(cpu) {
4754 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4755
4756 if (page && len < PAGE_SIZE - 20)
4757 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4758 page->pobjects, page->pages);
4759 }
4760 #endif
4761 return len + sprintf(buf + len, "\n");
4762 }
4763 SLAB_ATTR_RO(slabs_cpu_partial);
4764
4765 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4766 {
4767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4768 }
4769
4770 static ssize_t reclaim_account_store(struct kmem_cache *s,
4771 const char *buf, size_t length)
4772 {
4773 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4774 if (buf[0] == '1')
4775 s->flags |= SLAB_RECLAIM_ACCOUNT;
4776 return length;
4777 }
4778 SLAB_ATTR(reclaim_account);
4779
4780 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4781 {
4782 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4783 }
4784 SLAB_ATTR_RO(hwcache_align);
4785
4786 #ifdef CONFIG_ZONE_DMA
4787 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4788 {
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4790 }
4791 SLAB_ATTR_RO(cache_dma);
4792 #endif
4793
4794 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4795 {
4796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4797 }
4798 SLAB_ATTR_RO(destroy_by_rcu);
4799
4800 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4801 {
4802 return sprintf(buf, "%d\n", s->reserved);
4803 }
4804 SLAB_ATTR_RO(reserved);
4805
4806 #ifdef CONFIG_SLUB_DEBUG
4807 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4808 {
4809 return show_slab_objects(s, buf, SO_ALL);
4810 }
4811 SLAB_ATTR_RO(slabs);
4812
4813 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4814 {
4815 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4816 }
4817 SLAB_ATTR_RO(total_objects);
4818
4819 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4820 {
4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4822 }
4823
4824 static ssize_t sanity_checks_store(struct kmem_cache *s,
4825 const char *buf, size_t length)
4826 {
4827 s->flags &= ~SLAB_DEBUG_FREE;
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
4830 s->flags |= SLAB_DEBUG_FREE;
4831 }
4832 return length;
4833 }
4834 SLAB_ATTR(sanity_checks);
4835
4836 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4837 {
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4839 }
4840
4841 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4842 size_t length)
4843 {
4844 s->flags &= ~SLAB_TRACE;
4845 if (buf[0] == '1') {
4846 s->flags &= ~__CMPXCHG_DOUBLE;
4847 s->flags |= SLAB_TRACE;
4848 }
4849 return length;
4850 }
4851 SLAB_ATTR(trace);
4852
4853 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4854 {
4855 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4856 }
4857
4858 static ssize_t red_zone_store(struct kmem_cache *s,
4859 const char *buf, size_t length)
4860 {
4861 if (any_slab_objects(s))
4862 return -EBUSY;
4863
4864 s->flags &= ~SLAB_RED_ZONE;
4865 if (buf[0] == '1') {
4866 s->flags &= ~__CMPXCHG_DOUBLE;
4867 s->flags |= SLAB_RED_ZONE;
4868 }
4869 calculate_sizes(s, -1);
4870 return length;
4871 }
4872 SLAB_ATTR(red_zone);
4873
4874 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4875 {
4876 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4877 }
4878
4879 static ssize_t poison_store(struct kmem_cache *s,
4880 const char *buf, size_t length)
4881 {
4882 if (any_slab_objects(s))
4883 return -EBUSY;
4884
4885 s->flags &= ~SLAB_POISON;
4886 if (buf[0] == '1') {
4887 s->flags &= ~__CMPXCHG_DOUBLE;
4888 s->flags |= SLAB_POISON;
4889 }
4890 calculate_sizes(s, -1);
4891 return length;
4892 }
4893 SLAB_ATTR(poison);
4894
4895 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4896 {
4897 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4898 }
4899
4900 static ssize_t store_user_store(struct kmem_cache *s,
4901 const char *buf, size_t length)
4902 {
4903 if (any_slab_objects(s))
4904 return -EBUSY;
4905
4906 s->flags &= ~SLAB_STORE_USER;
4907 if (buf[0] == '1') {
4908 s->flags &= ~__CMPXCHG_DOUBLE;
4909 s->flags |= SLAB_STORE_USER;
4910 }
4911 calculate_sizes(s, -1);
4912 return length;
4913 }
4914 SLAB_ATTR(store_user);
4915
4916 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4917 {
4918 return 0;
4919 }
4920
4921 static ssize_t validate_store(struct kmem_cache *s,
4922 const char *buf, size_t length)
4923 {
4924 int ret = -EINVAL;
4925
4926 if (buf[0] == '1') {
4927 ret = validate_slab_cache(s);
4928 if (ret >= 0)
4929 ret = length;
4930 }
4931 return ret;
4932 }
4933 SLAB_ATTR(validate);
4934
4935 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4936 {
4937 if (!(s->flags & SLAB_STORE_USER))
4938 return -ENOSYS;
4939 return list_locations(s, buf, TRACK_ALLOC);
4940 }
4941 SLAB_ATTR_RO(alloc_calls);
4942
4943 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4944 {
4945 if (!(s->flags & SLAB_STORE_USER))
4946 return -ENOSYS;
4947 return list_locations(s, buf, TRACK_FREE);
4948 }
4949 SLAB_ATTR_RO(free_calls);
4950 #endif /* CONFIG_SLUB_DEBUG */
4951
4952 #ifdef CONFIG_FAILSLAB
4953 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4954 {
4955 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4956 }
4957
4958 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4959 size_t length)
4960 {
4961 s->flags &= ~SLAB_FAILSLAB;
4962 if (buf[0] == '1')
4963 s->flags |= SLAB_FAILSLAB;
4964 return length;
4965 }
4966 SLAB_ATTR(failslab);
4967 #endif
4968
4969 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4970 {
4971 return 0;
4972 }
4973
4974 static ssize_t shrink_store(struct kmem_cache *s,
4975 const char *buf, size_t length)
4976 {
4977 if (buf[0] == '1') {
4978 int rc = kmem_cache_shrink(s);
4979
4980 if (rc)
4981 return rc;
4982 } else
4983 return -EINVAL;
4984 return length;
4985 }
4986 SLAB_ATTR(shrink);
4987
4988 #ifdef CONFIG_NUMA
4989 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4990 {
4991 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4992 }
4993
4994 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4995 const char *buf, size_t length)
4996 {
4997 unsigned long ratio;
4998 int err;
4999
5000 err = strict_strtoul(buf, 10, &ratio);
5001 if (err)
5002 return err;
5003
5004 if (ratio <= 100)
5005 s->remote_node_defrag_ratio = ratio * 10;
5006
5007 return length;
5008 }
5009 SLAB_ATTR(remote_node_defrag_ratio);
5010 #endif
5011
5012 #ifdef CONFIG_SLUB_STATS
5013 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5014 {
5015 unsigned long sum = 0;
5016 int cpu;
5017 int len;
5018 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5019
5020 if (!data)
5021 return -ENOMEM;
5022
5023 for_each_online_cpu(cpu) {
5024 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5025
5026 data[cpu] = x;
5027 sum += x;
5028 }
5029
5030 len = sprintf(buf, "%lu", sum);
5031
5032 #ifdef CONFIG_SMP
5033 for_each_online_cpu(cpu) {
5034 if (data[cpu] && len < PAGE_SIZE - 20)
5035 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5036 }
5037 #endif
5038 kfree(data);
5039 return len + sprintf(buf + len, "\n");
5040 }
5041
5042 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5043 {
5044 int cpu;
5045
5046 for_each_online_cpu(cpu)
5047 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5048 }
5049
5050 #define STAT_ATTR(si, text) \
5051 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5052 { \
5053 return show_stat(s, buf, si); \
5054 } \
5055 static ssize_t text##_store(struct kmem_cache *s, \
5056 const char *buf, size_t length) \
5057 { \
5058 if (buf[0] != '0') \
5059 return -EINVAL; \
5060 clear_stat(s, si); \
5061 return length; \
5062 } \
5063 SLAB_ATTR(text); \
5064
5065 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5066 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5067 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5068 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5069 STAT_ATTR(FREE_FROZEN, free_frozen);
5070 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5071 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5072 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5073 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5074 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5075 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5076 STAT_ATTR(FREE_SLAB, free_slab);
5077 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5078 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5079 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5080 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5081 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5082 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5083 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5084 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5085 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5086 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5087 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5088 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5089 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5090 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5091 #endif
5092
5093 static struct attribute *slab_attrs[] = {
5094 &slab_size_attr.attr,
5095 &object_size_attr.attr,
5096 &objs_per_slab_attr.attr,
5097 &order_attr.attr,
5098 &min_partial_attr.attr,
5099 &cpu_partial_attr.attr,
5100 &objects_attr.attr,
5101 &objects_partial_attr.attr,
5102 &partial_attr.attr,
5103 &cpu_slabs_attr.attr,
5104 &ctor_attr.attr,
5105 &aliases_attr.attr,
5106 &align_attr.attr,
5107 &hwcache_align_attr.attr,
5108 &reclaim_account_attr.attr,
5109 &destroy_by_rcu_attr.attr,
5110 &shrink_attr.attr,
5111 &reserved_attr.attr,
5112 &slabs_cpu_partial_attr.attr,
5113 #ifdef CONFIG_SLUB_DEBUG
5114 &total_objects_attr.attr,
5115 &slabs_attr.attr,
5116 &sanity_checks_attr.attr,
5117 &trace_attr.attr,
5118 &red_zone_attr.attr,
5119 &poison_attr.attr,
5120 &store_user_attr.attr,
5121 &validate_attr.attr,
5122 &alloc_calls_attr.attr,
5123 &free_calls_attr.attr,
5124 #endif
5125 #ifdef CONFIG_ZONE_DMA
5126 &cache_dma_attr.attr,
5127 #endif
5128 #ifdef CONFIG_NUMA
5129 &remote_node_defrag_ratio_attr.attr,
5130 #endif
5131 #ifdef CONFIG_SLUB_STATS
5132 &alloc_fastpath_attr.attr,
5133 &alloc_slowpath_attr.attr,
5134 &free_fastpath_attr.attr,
5135 &free_slowpath_attr.attr,
5136 &free_frozen_attr.attr,
5137 &free_add_partial_attr.attr,
5138 &free_remove_partial_attr.attr,
5139 &alloc_from_partial_attr.attr,
5140 &alloc_slab_attr.attr,
5141 &alloc_refill_attr.attr,
5142 &alloc_node_mismatch_attr.attr,
5143 &free_slab_attr.attr,
5144 &cpuslab_flush_attr.attr,
5145 &deactivate_full_attr.attr,
5146 &deactivate_empty_attr.attr,
5147 &deactivate_to_head_attr.attr,
5148 &deactivate_to_tail_attr.attr,
5149 &deactivate_remote_frees_attr.attr,
5150 &deactivate_bypass_attr.attr,
5151 &order_fallback_attr.attr,
5152 &cmpxchg_double_fail_attr.attr,
5153 &cmpxchg_double_cpu_fail_attr.attr,
5154 &cpu_partial_alloc_attr.attr,
5155 &cpu_partial_free_attr.attr,
5156 &cpu_partial_node_attr.attr,
5157 &cpu_partial_drain_attr.attr,
5158 #endif
5159 #ifdef CONFIG_FAILSLAB
5160 &failslab_attr.attr,
5161 #endif
5162
5163 NULL
5164 };
5165
5166 static struct attribute_group slab_attr_group = {
5167 .attrs = slab_attrs,
5168 };
5169
5170 static ssize_t slab_attr_show(struct kobject *kobj,
5171 struct attribute *attr,
5172 char *buf)
5173 {
5174 struct slab_attribute *attribute;
5175 struct kmem_cache *s;
5176 int err;
5177
5178 attribute = to_slab_attr(attr);
5179 s = to_slab(kobj);
5180
5181 if (!attribute->show)
5182 return -EIO;
5183
5184 err = attribute->show(s, buf);
5185
5186 return err;
5187 }
5188
5189 static ssize_t slab_attr_store(struct kobject *kobj,
5190 struct attribute *attr,
5191 const char *buf, size_t len)
5192 {
5193 struct slab_attribute *attribute;
5194 struct kmem_cache *s;
5195 int err;
5196
5197 attribute = to_slab_attr(attr);
5198 s = to_slab(kobj);
5199
5200 if (!attribute->store)
5201 return -EIO;
5202
5203 err = attribute->store(s, buf, len);
5204
5205 return err;
5206 }
5207
5208 static void kmem_cache_release(struct kobject *kobj)
5209 {
5210 struct kmem_cache *s = to_slab(kobj);
5211
5212 kfree(s->name);
5213 kfree(s);
5214 }
5215
5216 static const struct sysfs_ops slab_sysfs_ops = {
5217 .show = slab_attr_show,
5218 .store = slab_attr_store,
5219 };
5220
5221 static struct kobj_type slab_ktype = {
5222 .sysfs_ops = &slab_sysfs_ops,
5223 .release = kmem_cache_release
5224 };
5225
5226 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5227 {
5228 struct kobj_type *ktype = get_ktype(kobj);
5229
5230 if (ktype == &slab_ktype)
5231 return 1;
5232 return 0;
5233 }
5234
5235 static const struct kset_uevent_ops slab_uevent_ops = {
5236 .filter = uevent_filter,
5237 };
5238
5239 static struct kset *slab_kset;
5240
5241 #define ID_STR_LENGTH 64
5242
5243 /* Create a unique string id for a slab cache:
5244 *
5245 * Format :[flags-]size
5246 */
5247 static char *create_unique_id(struct kmem_cache *s)
5248 {
5249 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5250 char *p = name;
5251
5252 BUG_ON(!name);
5253
5254 *p++ = ':';
5255 /*
5256 * First flags affecting slabcache operations. We will only
5257 * get here for aliasable slabs so we do not need to support
5258 * too many flags. The flags here must cover all flags that
5259 * are matched during merging to guarantee that the id is
5260 * unique.
5261 */
5262 if (s->flags & SLAB_CACHE_DMA)
5263 *p++ = 'd';
5264 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5265 *p++ = 'a';
5266 if (s->flags & SLAB_DEBUG_FREE)
5267 *p++ = 'F';
5268 if (!(s->flags & SLAB_NOTRACK))
5269 *p++ = 't';
5270 if (p != name + 1)
5271 *p++ = '-';
5272 p += sprintf(p, "%07d", s->size);
5273 BUG_ON(p > name + ID_STR_LENGTH - 1);
5274 return name;
5275 }
5276
5277 static int sysfs_slab_add(struct kmem_cache *s)
5278 {
5279 int err;
5280 const char *name;
5281 int unmergeable;
5282
5283 if (slab_state < FULL)
5284 /* Defer until later */
5285 return 0;
5286
5287 unmergeable = slab_unmergeable(s);
5288 if (unmergeable) {
5289 /*
5290 * Slabcache can never be merged so we can use the name proper.
5291 * This is typically the case for debug situations. In that
5292 * case we can catch duplicate names easily.
5293 */
5294 sysfs_remove_link(&slab_kset->kobj, s->name);
5295 name = s->name;
5296 } else {
5297 /*
5298 * Create a unique name for the slab as a target
5299 * for the symlinks.
5300 */
5301 name = create_unique_id(s);
5302 }
5303
5304 s->kobj.kset = slab_kset;
5305 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5306 if (err) {
5307 kobject_put(&s->kobj);
5308 return err;
5309 }
5310
5311 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5312 if (err) {
5313 kobject_del(&s->kobj);
5314 kobject_put(&s->kobj);
5315 return err;
5316 }
5317 kobject_uevent(&s->kobj, KOBJ_ADD);
5318 if (!unmergeable) {
5319 /* Setup first alias */
5320 sysfs_slab_alias(s, s->name);
5321 kfree(name);
5322 }
5323 return 0;
5324 }
5325
5326 static void sysfs_slab_remove(struct kmem_cache *s)
5327 {
5328 if (slab_state < FULL)
5329 /*
5330 * Sysfs has not been setup yet so no need to remove the
5331 * cache from sysfs.
5332 */
5333 return;
5334
5335 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5336 kobject_del(&s->kobj);
5337 kobject_put(&s->kobj);
5338 }
5339
5340 /*
5341 * Need to buffer aliases during bootup until sysfs becomes
5342 * available lest we lose that information.
5343 */
5344 struct saved_alias {
5345 struct kmem_cache *s;
5346 const char *name;
5347 struct saved_alias *next;
5348 };
5349
5350 static struct saved_alias *alias_list;
5351
5352 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5353 {
5354 struct saved_alias *al;
5355
5356 if (slab_state == FULL) {
5357 /*
5358 * If we have a leftover link then remove it.
5359 */
5360 sysfs_remove_link(&slab_kset->kobj, name);
5361 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5362 }
5363
5364 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5365 if (!al)
5366 return -ENOMEM;
5367
5368 al->s = s;
5369 al->name = name;
5370 al->next = alias_list;
5371 alias_list = al;
5372 return 0;
5373 }
5374
5375 static int __init slab_sysfs_init(void)
5376 {
5377 struct kmem_cache *s;
5378 int err;
5379
5380 mutex_lock(&slab_mutex);
5381
5382 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5383 if (!slab_kset) {
5384 mutex_unlock(&slab_mutex);
5385 printk(KERN_ERR "Cannot register slab subsystem.\n");
5386 return -ENOSYS;
5387 }
5388
5389 slab_state = FULL;
5390
5391 list_for_each_entry(s, &slab_caches, list) {
5392 err = sysfs_slab_add(s);
5393 if (err)
5394 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5395 " to sysfs\n", s->name);
5396 }
5397
5398 while (alias_list) {
5399 struct saved_alias *al = alias_list;
5400
5401 alias_list = alias_list->next;
5402 err = sysfs_slab_alias(al->s, al->name);
5403 if (err)
5404 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5405 " %s to sysfs\n", al->name);
5406 kfree(al);
5407 }
5408
5409 mutex_unlock(&slab_mutex);
5410 resiliency_test();
5411 return 0;
5412 }
5413
5414 __initcall(slab_sysfs_init);
5415 #endif /* CONFIG_SYSFS */
5416
5417 /*
5418 * The /proc/slabinfo ABI
5419 */
5420 #ifdef CONFIG_SLABINFO
5421 static void print_slabinfo_header(struct seq_file *m)
5422 {
5423 seq_puts(m, "slabinfo - version: 2.1\n");
5424 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5425 "<objperslab> <pagesperslab>");
5426 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5427 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5428 seq_putc(m, '\n');
5429 }
5430
5431 static void *s_start(struct seq_file *m, loff_t *pos)
5432 {
5433 loff_t n = *pos;
5434
5435 mutex_lock(&slab_mutex);
5436 if (!n)
5437 print_slabinfo_header(m);
5438
5439 return seq_list_start(&slab_caches, *pos);
5440 }
5441
5442 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5443 {
5444 return seq_list_next(p, &slab_caches, pos);
5445 }
5446
5447 static void s_stop(struct seq_file *m, void *p)
5448 {
5449 mutex_unlock(&slab_mutex);
5450 }
5451
5452 static int s_show(struct seq_file *m, void *p)
5453 {
5454 unsigned long nr_partials = 0;
5455 unsigned long nr_slabs = 0;
5456 unsigned long nr_inuse = 0;
5457 unsigned long nr_objs = 0;
5458 unsigned long nr_free = 0;
5459 struct kmem_cache *s;
5460 int node;
5461
5462 s = list_entry(p, struct kmem_cache, list);
5463
5464 for_each_online_node(node) {
5465 struct kmem_cache_node *n = get_node(s, node);
5466
5467 if (!n)
5468 continue;
5469
5470 nr_partials += n->nr_partial;
5471 nr_slabs += atomic_long_read(&n->nr_slabs);
5472 nr_objs += atomic_long_read(&n->total_objects);
5473 nr_free += count_partial(n, count_free);
5474 }
5475
5476 nr_inuse = nr_objs - nr_free;
5477
5478 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5479 nr_objs, s->size, oo_objects(s->oo),
5480 (1 << oo_order(s->oo)));
5481 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5482 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5483 0UL);
5484 seq_putc(m, '\n');
5485 return 0;
5486 }
5487
5488 static const struct seq_operations slabinfo_op = {
5489 .start = s_start,
5490 .next = s_next,
5491 .stop = s_stop,
5492 .show = s_show,
5493 };
5494
5495 static int slabinfo_open(struct inode *inode, struct file *file)
5496 {
5497 return seq_open(file, &slabinfo_op);
5498 }
5499
5500 static const struct file_operations proc_slabinfo_operations = {
5501 .open = slabinfo_open,
5502 .read = seq_read,
5503 .llseek = seq_lseek,
5504 .release = seq_release,
5505 };
5506
5507 static int __init slab_proc_init(void)
5508 {
5509 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5510 return 0;
5511 }
5512 module_init(slab_proc_init);
5513 #endif /* CONFIG_SLABINFO */
This page took 0.146443 seconds and 5 git commands to generate.