slub: avoid label inside conditional
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 #include <trace/events/kmem.h>
32
33 /*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138 #define MIN_PARTIAL 5
139
140 /*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145 #define MAX_PARTIAL 10
146
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157 /*
158 * Set of flags that will prevent slab merging
159 */
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
163
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
173
174 static int kmem_size = sizeof(struct kmem_cache);
175
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
179
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* Kmem_cache_node works */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
186
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190
191 /*
192 * Tracking user of a slab.
193 */
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199 };
200
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 kfree(s->name);
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(const struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 return s->node[node];
239 }
240
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244 {
245 void *base;
246
247 if (!object)
248 return 1;
249
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257 }
258
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 return *(void **)(object + s->offset);
262 }
263
264 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265 {
266 void *p;
267
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270 #else
271 p = get_freepointer(s, object);
272 #endif
273 return p;
274 }
275
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 {
278 *(void **)(object + s->offset) = fp;
279 }
280
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 __p += (__s)->size)
285
286 /* Determine object index from a given position */
287 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288 {
289 return (p - addr) / s->size;
290 }
291
292 static inline size_t slab_ksize(const struct kmem_cache *s)
293 {
294 #ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300 return s->objsize;
301
302 #endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314 }
315
316 static inline int order_objects(int order, unsigned long size, int reserved)
317 {
318 return ((PAGE_SIZE << order) - reserved) / size;
319 }
320
321 static inline struct kmem_cache_order_objects oo_make(int order,
322 unsigned long size, int reserved)
323 {
324 struct kmem_cache_order_objects x = {
325 (order << OO_SHIFT) + order_objects(order, size, reserved)
326 };
327
328 return x;
329 }
330
331 static inline int oo_order(struct kmem_cache_order_objects x)
332 {
333 return x.x >> OO_SHIFT;
334 }
335
336 static inline int oo_objects(struct kmem_cache_order_objects x)
337 {
338 return x.x & OO_MASK;
339 }
340
341 #ifdef CONFIG_SLUB_DEBUG
342 /*
343 * Determine a map of object in use on a page.
344 *
345 * Slab lock or node listlock must be held to guarantee that the page does
346 * not vanish from under us.
347 */
348 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
349 {
350 void *p;
351 void *addr = page_address(page);
352
353 for (p = page->freelist; p; p = get_freepointer(s, p))
354 set_bit(slab_index(p, s, addr), map);
355 }
356
357 /*
358 * Debug settings:
359 */
360 #ifdef CONFIG_SLUB_DEBUG_ON
361 static int slub_debug = DEBUG_DEFAULT_FLAGS;
362 #else
363 static int slub_debug;
364 #endif
365
366 static char *slub_debug_slabs;
367 static int disable_higher_order_debug;
368
369 /*
370 * Object debugging
371 */
372 static void print_section(char *text, u8 *addr, unsigned int length)
373 {
374 int i, offset;
375 int newline = 1;
376 char ascii[17];
377
378 ascii[16] = 0;
379
380 for (i = 0; i < length; i++) {
381 if (newline) {
382 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
383 newline = 0;
384 }
385 printk(KERN_CONT " %02x", addr[i]);
386 offset = i % 16;
387 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
388 if (offset == 15) {
389 printk(KERN_CONT " %s\n", ascii);
390 newline = 1;
391 }
392 }
393 if (!newline) {
394 i %= 16;
395 while (i < 16) {
396 printk(KERN_CONT " ");
397 ascii[i] = ' ';
398 i++;
399 }
400 printk(KERN_CONT " %s\n", ascii);
401 }
402 }
403
404 static struct track *get_track(struct kmem_cache *s, void *object,
405 enum track_item alloc)
406 {
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 return p + alloc;
415 }
416
417 static void set_track(struct kmem_cache *s, void *object,
418 enum track_item alloc, unsigned long addr)
419 {
420 struct track *p = get_track(s, object, alloc);
421
422 if (addr) {
423 p->addr = addr;
424 p->cpu = smp_processor_id();
425 p->pid = current->pid;
426 p->when = jiffies;
427 } else
428 memset(p, 0, sizeof(struct track));
429 }
430
431 static void init_tracking(struct kmem_cache *s, void *object)
432 {
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
435
436 set_track(s, object, TRACK_FREE, 0UL);
437 set_track(s, object, TRACK_ALLOC, 0UL);
438 }
439
440 static void print_track(const char *s, struct track *t)
441 {
442 if (!t->addr)
443 return;
444
445 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
446 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
447 }
448
449 static void print_tracking(struct kmem_cache *s, void *object)
450 {
451 if (!(s->flags & SLAB_STORE_USER))
452 return;
453
454 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
455 print_track("Freed", get_track(s, object, TRACK_FREE));
456 }
457
458 static void print_page_info(struct page *page)
459 {
460 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
461 page, page->objects, page->inuse, page->freelist, page->flags);
462
463 }
464
465 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
466 {
467 va_list args;
468 char buf[100];
469
470 va_start(args, fmt);
471 vsnprintf(buf, sizeof(buf), fmt, args);
472 va_end(args);
473 printk(KERN_ERR "========================================"
474 "=====================================\n");
475 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
476 printk(KERN_ERR "----------------------------------------"
477 "-------------------------------------\n\n");
478 }
479
480 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
481 {
482 va_list args;
483 char buf[100];
484
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
489 }
490
491 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
492 {
493 unsigned int off; /* Offset of last byte */
494 u8 *addr = page_address(page);
495
496 print_tracking(s, p);
497
498 print_page_info(page);
499
500 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
501 p, p - addr, get_freepointer(s, p));
502
503 if (p > addr + 16)
504 print_section("Bytes b4", p - 16, 16);
505
506 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
507
508 if (s->flags & SLAB_RED_ZONE)
509 print_section("Redzone", p + s->objsize,
510 s->inuse - s->objsize);
511
512 if (s->offset)
513 off = s->offset + sizeof(void *);
514 else
515 off = s->inuse;
516
517 if (s->flags & SLAB_STORE_USER)
518 off += 2 * sizeof(struct track);
519
520 if (off != s->size)
521 /* Beginning of the filler is the free pointer */
522 print_section("Padding", p + off, s->size - off);
523
524 dump_stack();
525 }
526
527 static void object_err(struct kmem_cache *s, struct page *page,
528 u8 *object, char *reason)
529 {
530 slab_bug(s, "%s", reason);
531 print_trailer(s, page, object);
532 }
533
534 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
535 {
536 va_list args;
537 char buf[100];
538
539 va_start(args, fmt);
540 vsnprintf(buf, sizeof(buf), fmt, args);
541 va_end(args);
542 slab_bug(s, "%s", buf);
543 print_page_info(page);
544 dump_stack();
545 }
546
547 static void init_object(struct kmem_cache *s, void *object, u8 val)
548 {
549 u8 *p = object;
550
551 if (s->flags & __OBJECT_POISON) {
552 memset(p, POISON_FREE, s->objsize - 1);
553 p[s->objsize - 1] = POISON_END;
554 }
555
556 if (s->flags & SLAB_RED_ZONE)
557 memset(p + s->objsize, val, s->inuse - s->objsize);
558 }
559
560 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
561 {
562 while (bytes) {
563 if (*start != (u8)value)
564 return start;
565 start++;
566 bytes--;
567 }
568 return NULL;
569 }
570
571 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
572 void *from, void *to)
573 {
574 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
575 memset(from, data, to - from);
576 }
577
578 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
579 u8 *object, char *what,
580 u8 *start, unsigned int value, unsigned int bytes)
581 {
582 u8 *fault;
583 u8 *end;
584
585 fault = check_bytes(start, value, bytes);
586 if (!fault)
587 return 1;
588
589 end = start + bytes;
590 while (end > fault && end[-1] == value)
591 end--;
592
593 slab_bug(s, "%s overwritten", what);
594 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
595 fault, end - 1, fault[0], value);
596 print_trailer(s, page, object);
597
598 restore_bytes(s, what, value, fault, end);
599 return 0;
600 }
601
602 /*
603 * Object layout:
604 *
605 * object address
606 * Bytes of the object to be managed.
607 * If the freepointer may overlay the object then the free
608 * pointer is the first word of the object.
609 *
610 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
611 * 0xa5 (POISON_END)
612 *
613 * object + s->objsize
614 * Padding to reach word boundary. This is also used for Redzoning.
615 * Padding is extended by another word if Redzoning is enabled and
616 * objsize == inuse.
617 *
618 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
619 * 0xcc (RED_ACTIVE) for objects in use.
620 *
621 * object + s->inuse
622 * Meta data starts here.
623 *
624 * A. Free pointer (if we cannot overwrite object on free)
625 * B. Tracking data for SLAB_STORE_USER
626 * C. Padding to reach required alignment boundary or at mininum
627 * one word if debugging is on to be able to detect writes
628 * before the word boundary.
629 *
630 * Padding is done using 0x5a (POISON_INUSE)
631 *
632 * object + s->size
633 * Nothing is used beyond s->size.
634 *
635 * If slabcaches are merged then the objsize and inuse boundaries are mostly
636 * ignored. And therefore no slab options that rely on these boundaries
637 * may be used with merged slabcaches.
638 */
639
640 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
641 {
642 unsigned long off = s->inuse; /* The end of info */
643
644 if (s->offset)
645 /* Freepointer is placed after the object. */
646 off += sizeof(void *);
647
648 if (s->flags & SLAB_STORE_USER)
649 /* We also have user information there */
650 off += 2 * sizeof(struct track);
651
652 if (s->size == off)
653 return 1;
654
655 return check_bytes_and_report(s, page, p, "Object padding",
656 p + off, POISON_INUSE, s->size - off);
657 }
658
659 /* Check the pad bytes at the end of a slab page */
660 static int slab_pad_check(struct kmem_cache *s, struct page *page)
661 {
662 u8 *start;
663 u8 *fault;
664 u8 *end;
665 int length;
666 int remainder;
667
668 if (!(s->flags & SLAB_POISON))
669 return 1;
670
671 start = page_address(page);
672 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
673 end = start + length;
674 remainder = length % s->size;
675 if (!remainder)
676 return 1;
677
678 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
679 if (!fault)
680 return 1;
681 while (end > fault && end[-1] == POISON_INUSE)
682 end--;
683
684 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
685 print_section("Padding", end - remainder, remainder);
686
687 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
688 return 0;
689 }
690
691 static int check_object(struct kmem_cache *s, struct page *page,
692 void *object, u8 val)
693 {
694 u8 *p = object;
695 u8 *endobject = object + s->objsize;
696
697 if (s->flags & SLAB_RED_ZONE) {
698 if (!check_bytes_and_report(s, page, object, "Redzone",
699 endobject, val, s->inuse - s->objsize))
700 return 0;
701 } else {
702 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
703 check_bytes_and_report(s, page, p, "Alignment padding",
704 endobject, POISON_INUSE, s->inuse - s->objsize);
705 }
706 }
707
708 if (s->flags & SLAB_POISON) {
709 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
710 (!check_bytes_and_report(s, page, p, "Poison", p,
711 POISON_FREE, s->objsize - 1) ||
712 !check_bytes_and_report(s, page, p, "Poison",
713 p + s->objsize - 1, POISON_END, 1)))
714 return 0;
715 /*
716 * check_pad_bytes cleans up on its own.
717 */
718 check_pad_bytes(s, page, p);
719 }
720
721 if (!s->offset && val == SLUB_RED_ACTIVE)
722 /*
723 * Object and freepointer overlap. Cannot check
724 * freepointer while object is allocated.
725 */
726 return 1;
727
728 /* Check free pointer validity */
729 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
730 object_err(s, page, p, "Freepointer corrupt");
731 /*
732 * No choice but to zap it and thus lose the remainder
733 * of the free objects in this slab. May cause
734 * another error because the object count is now wrong.
735 */
736 set_freepointer(s, p, NULL);
737 return 0;
738 }
739 return 1;
740 }
741
742 static int check_slab(struct kmem_cache *s, struct page *page)
743 {
744 int maxobj;
745
746 VM_BUG_ON(!irqs_disabled());
747
748 if (!PageSlab(page)) {
749 slab_err(s, page, "Not a valid slab page");
750 return 0;
751 }
752
753 maxobj = order_objects(compound_order(page), s->size, s->reserved);
754 if (page->objects > maxobj) {
755 slab_err(s, page, "objects %u > max %u",
756 s->name, page->objects, maxobj);
757 return 0;
758 }
759 if (page->inuse > page->objects) {
760 slab_err(s, page, "inuse %u > max %u",
761 s->name, page->inuse, page->objects);
762 return 0;
763 }
764 /* Slab_pad_check fixes things up after itself */
765 slab_pad_check(s, page);
766 return 1;
767 }
768
769 /*
770 * Determine if a certain object on a page is on the freelist. Must hold the
771 * slab lock to guarantee that the chains are in a consistent state.
772 */
773 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
774 {
775 int nr = 0;
776 void *fp = page->freelist;
777 void *object = NULL;
778 unsigned long max_objects;
779
780 while (fp && nr <= page->objects) {
781 if (fp == search)
782 return 1;
783 if (!check_valid_pointer(s, page, fp)) {
784 if (object) {
785 object_err(s, page, object,
786 "Freechain corrupt");
787 set_freepointer(s, object, NULL);
788 break;
789 } else {
790 slab_err(s, page, "Freepointer corrupt");
791 page->freelist = NULL;
792 page->inuse = page->objects;
793 slab_fix(s, "Freelist cleared");
794 return 0;
795 }
796 break;
797 }
798 object = fp;
799 fp = get_freepointer(s, object);
800 nr++;
801 }
802
803 max_objects = order_objects(compound_order(page), s->size, s->reserved);
804 if (max_objects > MAX_OBJS_PER_PAGE)
805 max_objects = MAX_OBJS_PER_PAGE;
806
807 if (page->objects != max_objects) {
808 slab_err(s, page, "Wrong number of objects. Found %d but "
809 "should be %d", page->objects, max_objects);
810 page->objects = max_objects;
811 slab_fix(s, "Number of objects adjusted.");
812 }
813 if (page->inuse != page->objects - nr) {
814 slab_err(s, page, "Wrong object count. Counter is %d but "
815 "counted were %d", page->inuse, page->objects - nr);
816 page->inuse = page->objects - nr;
817 slab_fix(s, "Object count adjusted.");
818 }
819 return search == NULL;
820 }
821
822 static void trace(struct kmem_cache *s, struct page *page, void *object,
823 int alloc)
824 {
825 if (s->flags & SLAB_TRACE) {
826 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
827 s->name,
828 alloc ? "alloc" : "free",
829 object, page->inuse,
830 page->freelist);
831
832 if (!alloc)
833 print_section("Object", (void *)object, s->objsize);
834
835 dump_stack();
836 }
837 }
838
839 /*
840 * Hooks for other subsystems that check memory allocations. In a typical
841 * production configuration these hooks all should produce no code at all.
842 */
843 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
844 {
845 flags &= gfp_allowed_mask;
846 lockdep_trace_alloc(flags);
847 might_sleep_if(flags & __GFP_WAIT);
848
849 return should_failslab(s->objsize, flags, s->flags);
850 }
851
852 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
853 {
854 flags &= gfp_allowed_mask;
855 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
856 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
857 }
858
859 static inline void slab_free_hook(struct kmem_cache *s, void *x)
860 {
861 kmemleak_free_recursive(x, s->flags);
862
863 /*
864 * Trouble is that we may no longer disable interupts in the fast path
865 * So in order to make the debug calls that expect irqs to be
866 * disabled we need to disable interrupts temporarily.
867 */
868 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
869 {
870 unsigned long flags;
871
872 local_irq_save(flags);
873 kmemcheck_slab_free(s, x, s->objsize);
874 debug_check_no_locks_freed(x, s->objsize);
875 local_irq_restore(flags);
876 }
877 #endif
878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
879 debug_check_no_obj_freed(x, s->objsize);
880 }
881
882 /*
883 * Tracking of fully allocated slabs for debugging purposes.
884 */
885 static void add_full(struct kmem_cache_node *n, struct page *page)
886 {
887 spin_lock(&n->list_lock);
888 list_add(&page->lru, &n->full);
889 spin_unlock(&n->list_lock);
890 }
891
892 static void remove_full(struct kmem_cache *s, struct page *page)
893 {
894 struct kmem_cache_node *n;
895
896 if (!(s->flags & SLAB_STORE_USER))
897 return;
898
899 n = get_node(s, page_to_nid(page));
900
901 spin_lock(&n->list_lock);
902 list_del(&page->lru);
903 spin_unlock(&n->list_lock);
904 }
905
906 /* Tracking of the number of slabs for debugging purposes */
907 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
908 {
909 struct kmem_cache_node *n = get_node(s, node);
910
911 return atomic_long_read(&n->nr_slabs);
912 }
913
914 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
915 {
916 return atomic_long_read(&n->nr_slabs);
917 }
918
919 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
920 {
921 struct kmem_cache_node *n = get_node(s, node);
922
923 /*
924 * May be called early in order to allocate a slab for the
925 * kmem_cache_node structure. Solve the chicken-egg
926 * dilemma by deferring the increment of the count during
927 * bootstrap (see early_kmem_cache_node_alloc).
928 */
929 if (n) {
930 atomic_long_inc(&n->nr_slabs);
931 atomic_long_add(objects, &n->total_objects);
932 }
933 }
934 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
935 {
936 struct kmem_cache_node *n = get_node(s, node);
937
938 atomic_long_dec(&n->nr_slabs);
939 atomic_long_sub(objects, &n->total_objects);
940 }
941
942 /* Object debug checks for alloc/free paths */
943 static void setup_object_debug(struct kmem_cache *s, struct page *page,
944 void *object)
945 {
946 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
947 return;
948
949 init_object(s, object, SLUB_RED_INACTIVE);
950 init_tracking(s, object);
951 }
952
953 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
954 void *object, unsigned long addr)
955 {
956 if (!check_slab(s, page))
957 goto bad;
958
959 if (!on_freelist(s, page, object)) {
960 object_err(s, page, object, "Object already allocated");
961 goto bad;
962 }
963
964 if (!check_valid_pointer(s, page, object)) {
965 object_err(s, page, object, "Freelist Pointer check fails");
966 goto bad;
967 }
968
969 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
970 goto bad;
971
972 /* Success perform special debug activities for allocs */
973 if (s->flags & SLAB_STORE_USER)
974 set_track(s, object, TRACK_ALLOC, addr);
975 trace(s, page, object, 1);
976 init_object(s, object, SLUB_RED_ACTIVE);
977 return 1;
978
979 bad:
980 if (PageSlab(page)) {
981 /*
982 * If this is a slab page then lets do the best we can
983 * to avoid issues in the future. Marking all objects
984 * as used avoids touching the remaining objects.
985 */
986 slab_fix(s, "Marking all objects used");
987 page->inuse = page->objects;
988 page->freelist = NULL;
989 }
990 return 0;
991 }
992
993 static noinline int free_debug_processing(struct kmem_cache *s,
994 struct page *page, void *object, unsigned long addr)
995 {
996 if (!check_slab(s, page))
997 goto fail;
998
999 if (!check_valid_pointer(s, page, object)) {
1000 slab_err(s, page, "Invalid object pointer 0x%p", object);
1001 goto fail;
1002 }
1003
1004 if (on_freelist(s, page, object)) {
1005 object_err(s, page, object, "Object already free");
1006 goto fail;
1007 }
1008
1009 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1010 return 0;
1011
1012 if (unlikely(s != page->slab)) {
1013 if (!PageSlab(page)) {
1014 slab_err(s, page, "Attempt to free object(0x%p) "
1015 "outside of slab", object);
1016 } else if (!page->slab) {
1017 printk(KERN_ERR
1018 "SLUB <none>: no slab for object 0x%p.\n",
1019 object);
1020 dump_stack();
1021 } else
1022 object_err(s, page, object,
1023 "page slab pointer corrupt.");
1024 goto fail;
1025 }
1026
1027 /* Special debug activities for freeing objects */
1028 if (!PageSlubFrozen(page) && !page->freelist)
1029 remove_full(s, page);
1030 if (s->flags & SLAB_STORE_USER)
1031 set_track(s, object, TRACK_FREE, addr);
1032 trace(s, page, object, 0);
1033 init_object(s, object, SLUB_RED_INACTIVE);
1034 return 1;
1035
1036 fail:
1037 slab_fix(s, "Object at 0x%p not freed", object);
1038 return 0;
1039 }
1040
1041 static int __init setup_slub_debug(char *str)
1042 {
1043 slub_debug = DEBUG_DEFAULT_FLAGS;
1044 if (*str++ != '=' || !*str)
1045 /*
1046 * No options specified. Switch on full debugging.
1047 */
1048 goto out;
1049
1050 if (*str == ',')
1051 /*
1052 * No options but restriction on slabs. This means full
1053 * debugging for slabs matching a pattern.
1054 */
1055 goto check_slabs;
1056
1057 if (tolower(*str) == 'o') {
1058 /*
1059 * Avoid enabling debugging on caches if its minimum order
1060 * would increase as a result.
1061 */
1062 disable_higher_order_debug = 1;
1063 goto out;
1064 }
1065
1066 slub_debug = 0;
1067 if (*str == '-')
1068 /*
1069 * Switch off all debugging measures.
1070 */
1071 goto out;
1072
1073 /*
1074 * Determine which debug features should be switched on
1075 */
1076 for (; *str && *str != ','; str++) {
1077 switch (tolower(*str)) {
1078 case 'f':
1079 slub_debug |= SLAB_DEBUG_FREE;
1080 break;
1081 case 'z':
1082 slub_debug |= SLAB_RED_ZONE;
1083 break;
1084 case 'p':
1085 slub_debug |= SLAB_POISON;
1086 break;
1087 case 'u':
1088 slub_debug |= SLAB_STORE_USER;
1089 break;
1090 case 't':
1091 slub_debug |= SLAB_TRACE;
1092 break;
1093 case 'a':
1094 slub_debug |= SLAB_FAILSLAB;
1095 break;
1096 default:
1097 printk(KERN_ERR "slub_debug option '%c' "
1098 "unknown. skipped\n", *str);
1099 }
1100 }
1101
1102 check_slabs:
1103 if (*str == ',')
1104 slub_debug_slabs = str + 1;
1105 out:
1106 return 1;
1107 }
1108
1109 __setup("slub_debug", setup_slub_debug);
1110
1111 static unsigned long kmem_cache_flags(unsigned long objsize,
1112 unsigned long flags, const char *name,
1113 void (*ctor)(void *))
1114 {
1115 /*
1116 * Enable debugging if selected on the kernel commandline.
1117 */
1118 if (slub_debug && (!slub_debug_slabs ||
1119 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1120 flags |= slub_debug;
1121
1122 return flags;
1123 }
1124 #else
1125 static inline void setup_object_debug(struct kmem_cache *s,
1126 struct page *page, void *object) {}
1127
1128 static inline int alloc_debug_processing(struct kmem_cache *s,
1129 struct page *page, void *object, unsigned long addr) { return 0; }
1130
1131 static inline int free_debug_processing(struct kmem_cache *s,
1132 struct page *page, void *object, unsigned long addr) { return 0; }
1133
1134 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1135 { return 1; }
1136 static inline int check_object(struct kmem_cache *s, struct page *page,
1137 void *object, u8 val) { return 1; }
1138 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1139 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1140 unsigned long flags, const char *name,
1141 void (*ctor)(void *))
1142 {
1143 return flags;
1144 }
1145 #define slub_debug 0
1146
1147 #define disable_higher_order_debug 0
1148
1149 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1150 { return 0; }
1151 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1152 { return 0; }
1153 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1154 int objects) {}
1155 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1156 int objects) {}
1157
1158 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1159 { return 0; }
1160
1161 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1162 void *object) {}
1163
1164 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1165
1166 #endif /* CONFIG_SLUB_DEBUG */
1167
1168 /*
1169 * Slab allocation and freeing
1170 */
1171 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1172 struct kmem_cache_order_objects oo)
1173 {
1174 int order = oo_order(oo);
1175
1176 flags |= __GFP_NOTRACK;
1177
1178 if (node == NUMA_NO_NODE)
1179 return alloc_pages(flags, order);
1180 else
1181 return alloc_pages_exact_node(node, flags, order);
1182 }
1183
1184 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1185 {
1186 struct page *page;
1187 struct kmem_cache_order_objects oo = s->oo;
1188 gfp_t alloc_gfp;
1189
1190 flags |= s->allocflags;
1191
1192 /*
1193 * Let the initial higher-order allocation fail under memory pressure
1194 * so we fall-back to the minimum order allocation.
1195 */
1196 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1197
1198 page = alloc_slab_page(alloc_gfp, node, oo);
1199 if (unlikely(!page)) {
1200 oo = s->min;
1201 /*
1202 * Allocation may have failed due to fragmentation.
1203 * Try a lower order alloc if possible
1204 */
1205 page = alloc_slab_page(flags, node, oo);
1206 if (!page)
1207 return NULL;
1208
1209 stat(s, ORDER_FALLBACK);
1210 }
1211
1212 if (kmemcheck_enabled
1213 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1214 int pages = 1 << oo_order(oo);
1215
1216 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1217
1218 /*
1219 * Objects from caches that have a constructor don't get
1220 * cleared when they're allocated, so we need to do it here.
1221 */
1222 if (s->ctor)
1223 kmemcheck_mark_uninitialized_pages(page, pages);
1224 else
1225 kmemcheck_mark_unallocated_pages(page, pages);
1226 }
1227
1228 page->objects = oo_objects(oo);
1229 mod_zone_page_state(page_zone(page),
1230 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1231 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1232 1 << oo_order(oo));
1233
1234 return page;
1235 }
1236
1237 static void setup_object(struct kmem_cache *s, struct page *page,
1238 void *object)
1239 {
1240 setup_object_debug(s, page, object);
1241 if (unlikely(s->ctor))
1242 s->ctor(object);
1243 }
1244
1245 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1246 {
1247 struct page *page;
1248 void *start;
1249 void *last;
1250 void *p;
1251
1252 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1253
1254 page = allocate_slab(s,
1255 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1256 if (!page)
1257 goto out;
1258
1259 inc_slabs_node(s, page_to_nid(page), page->objects);
1260 page->slab = s;
1261 page->flags |= 1 << PG_slab;
1262
1263 start = page_address(page);
1264
1265 if (unlikely(s->flags & SLAB_POISON))
1266 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1267
1268 last = start;
1269 for_each_object(p, s, start, page->objects) {
1270 setup_object(s, page, last);
1271 set_freepointer(s, last, p);
1272 last = p;
1273 }
1274 setup_object(s, page, last);
1275 set_freepointer(s, last, NULL);
1276
1277 page->freelist = start;
1278 page->inuse = 0;
1279 out:
1280 return page;
1281 }
1282
1283 static void __free_slab(struct kmem_cache *s, struct page *page)
1284 {
1285 int order = compound_order(page);
1286 int pages = 1 << order;
1287
1288 if (kmem_cache_debug(s)) {
1289 void *p;
1290
1291 slab_pad_check(s, page);
1292 for_each_object(p, s, page_address(page),
1293 page->objects)
1294 check_object(s, page, p, SLUB_RED_INACTIVE);
1295 }
1296
1297 kmemcheck_free_shadow(page, compound_order(page));
1298
1299 mod_zone_page_state(page_zone(page),
1300 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1301 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1302 -pages);
1303
1304 __ClearPageSlab(page);
1305 reset_page_mapcount(page);
1306 if (current->reclaim_state)
1307 current->reclaim_state->reclaimed_slab += pages;
1308 __free_pages(page, order);
1309 }
1310
1311 #define need_reserve_slab_rcu \
1312 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1313
1314 static void rcu_free_slab(struct rcu_head *h)
1315 {
1316 struct page *page;
1317
1318 if (need_reserve_slab_rcu)
1319 page = virt_to_head_page(h);
1320 else
1321 page = container_of((struct list_head *)h, struct page, lru);
1322
1323 __free_slab(page->slab, page);
1324 }
1325
1326 static void free_slab(struct kmem_cache *s, struct page *page)
1327 {
1328 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1329 struct rcu_head *head;
1330
1331 if (need_reserve_slab_rcu) {
1332 int order = compound_order(page);
1333 int offset = (PAGE_SIZE << order) - s->reserved;
1334
1335 VM_BUG_ON(s->reserved != sizeof(*head));
1336 head = page_address(page) + offset;
1337 } else {
1338 /*
1339 * RCU free overloads the RCU head over the LRU
1340 */
1341 head = (void *)&page->lru;
1342 }
1343
1344 call_rcu(head, rcu_free_slab);
1345 } else
1346 __free_slab(s, page);
1347 }
1348
1349 static void discard_slab(struct kmem_cache *s, struct page *page)
1350 {
1351 dec_slabs_node(s, page_to_nid(page), page->objects);
1352 free_slab(s, page);
1353 }
1354
1355 /*
1356 * Per slab locking using the pagelock
1357 */
1358 static __always_inline void slab_lock(struct page *page)
1359 {
1360 bit_spin_lock(PG_locked, &page->flags);
1361 }
1362
1363 static __always_inline void slab_unlock(struct page *page)
1364 {
1365 __bit_spin_unlock(PG_locked, &page->flags);
1366 }
1367
1368 static __always_inline int slab_trylock(struct page *page)
1369 {
1370 int rc = 1;
1371
1372 rc = bit_spin_trylock(PG_locked, &page->flags);
1373 return rc;
1374 }
1375
1376 /*
1377 * Management of partially allocated slabs
1378 */
1379 static void add_partial(struct kmem_cache_node *n,
1380 struct page *page, int tail)
1381 {
1382 spin_lock(&n->list_lock);
1383 n->nr_partial++;
1384 if (tail)
1385 list_add_tail(&page->lru, &n->partial);
1386 else
1387 list_add(&page->lru, &n->partial);
1388 spin_unlock(&n->list_lock);
1389 }
1390
1391 static inline void __remove_partial(struct kmem_cache_node *n,
1392 struct page *page)
1393 {
1394 list_del(&page->lru);
1395 n->nr_partial--;
1396 }
1397
1398 static void remove_partial(struct kmem_cache *s, struct page *page)
1399 {
1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1401
1402 spin_lock(&n->list_lock);
1403 __remove_partial(n, page);
1404 spin_unlock(&n->list_lock);
1405 }
1406
1407 /*
1408 * Lock slab and remove from the partial list.
1409 *
1410 * Must hold list_lock.
1411 */
1412 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1413 struct page *page)
1414 {
1415 if (slab_trylock(page)) {
1416 __remove_partial(n, page);
1417 __SetPageSlubFrozen(page);
1418 return 1;
1419 }
1420 return 0;
1421 }
1422
1423 /*
1424 * Try to allocate a partial slab from a specific node.
1425 */
1426 static struct page *get_partial_node(struct kmem_cache_node *n)
1427 {
1428 struct page *page;
1429
1430 /*
1431 * Racy check. If we mistakenly see no partial slabs then we
1432 * just allocate an empty slab. If we mistakenly try to get a
1433 * partial slab and there is none available then get_partials()
1434 * will return NULL.
1435 */
1436 if (!n || !n->nr_partial)
1437 return NULL;
1438
1439 spin_lock(&n->list_lock);
1440 list_for_each_entry(page, &n->partial, lru)
1441 if (lock_and_freeze_slab(n, page))
1442 goto out;
1443 page = NULL;
1444 out:
1445 spin_unlock(&n->list_lock);
1446 return page;
1447 }
1448
1449 /*
1450 * Get a page from somewhere. Search in increasing NUMA distances.
1451 */
1452 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1453 {
1454 #ifdef CONFIG_NUMA
1455 struct zonelist *zonelist;
1456 struct zoneref *z;
1457 struct zone *zone;
1458 enum zone_type high_zoneidx = gfp_zone(flags);
1459 struct page *page;
1460
1461 /*
1462 * The defrag ratio allows a configuration of the tradeoffs between
1463 * inter node defragmentation and node local allocations. A lower
1464 * defrag_ratio increases the tendency to do local allocations
1465 * instead of attempting to obtain partial slabs from other nodes.
1466 *
1467 * If the defrag_ratio is set to 0 then kmalloc() always
1468 * returns node local objects. If the ratio is higher then kmalloc()
1469 * may return off node objects because partial slabs are obtained
1470 * from other nodes and filled up.
1471 *
1472 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1473 * defrag_ratio = 1000) then every (well almost) allocation will
1474 * first attempt to defrag slab caches on other nodes. This means
1475 * scanning over all nodes to look for partial slabs which may be
1476 * expensive if we do it every time we are trying to find a slab
1477 * with available objects.
1478 */
1479 if (!s->remote_node_defrag_ratio ||
1480 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1481 return NULL;
1482
1483 get_mems_allowed();
1484 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1485 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1486 struct kmem_cache_node *n;
1487
1488 n = get_node(s, zone_to_nid(zone));
1489
1490 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1491 n->nr_partial > s->min_partial) {
1492 page = get_partial_node(n);
1493 if (page) {
1494 put_mems_allowed();
1495 return page;
1496 }
1497 }
1498 }
1499 put_mems_allowed();
1500 #endif
1501 return NULL;
1502 }
1503
1504 /*
1505 * Get a partial page, lock it and return it.
1506 */
1507 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1508 {
1509 struct page *page;
1510 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1511
1512 page = get_partial_node(get_node(s, searchnode));
1513 if (page || node != NUMA_NO_NODE)
1514 return page;
1515
1516 return get_any_partial(s, flags);
1517 }
1518
1519 /*
1520 * Move a page back to the lists.
1521 *
1522 * Must be called with the slab lock held.
1523 *
1524 * On exit the slab lock will have been dropped.
1525 */
1526 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1527 __releases(bitlock)
1528 {
1529 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1530
1531 __ClearPageSlubFrozen(page);
1532 if (page->inuse) {
1533
1534 if (page->freelist) {
1535 add_partial(n, page, tail);
1536 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1537 } else {
1538 stat(s, DEACTIVATE_FULL);
1539 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1540 add_full(n, page);
1541 }
1542 slab_unlock(page);
1543 } else {
1544 stat(s, DEACTIVATE_EMPTY);
1545 if (n->nr_partial < s->min_partial) {
1546 /*
1547 * Adding an empty slab to the partial slabs in order
1548 * to avoid page allocator overhead. This slab needs
1549 * to come after the other slabs with objects in
1550 * so that the others get filled first. That way the
1551 * size of the partial list stays small.
1552 *
1553 * kmem_cache_shrink can reclaim any empty slabs from
1554 * the partial list.
1555 */
1556 add_partial(n, page, 1);
1557 slab_unlock(page);
1558 } else {
1559 slab_unlock(page);
1560 stat(s, FREE_SLAB);
1561 discard_slab(s, page);
1562 }
1563 }
1564 }
1565
1566 #ifdef CONFIG_PREEMPT
1567 /*
1568 * Calculate the next globally unique transaction for disambiguiation
1569 * during cmpxchg. The transactions start with the cpu number and are then
1570 * incremented by CONFIG_NR_CPUS.
1571 */
1572 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1573 #else
1574 /*
1575 * No preemption supported therefore also no need to check for
1576 * different cpus.
1577 */
1578 #define TID_STEP 1
1579 #endif
1580
1581 static inline unsigned long next_tid(unsigned long tid)
1582 {
1583 return tid + TID_STEP;
1584 }
1585
1586 static inline unsigned int tid_to_cpu(unsigned long tid)
1587 {
1588 return tid % TID_STEP;
1589 }
1590
1591 static inline unsigned long tid_to_event(unsigned long tid)
1592 {
1593 return tid / TID_STEP;
1594 }
1595
1596 static inline unsigned int init_tid(int cpu)
1597 {
1598 return cpu;
1599 }
1600
1601 static inline void note_cmpxchg_failure(const char *n,
1602 const struct kmem_cache *s, unsigned long tid)
1603 {
1604 #ifdef SLUB_DEBUG_CMPXCHG
1605 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1606
1607 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1608
1609 #ifdef CONFIG_PREEMPT
1610 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1611 printk("due to cpu change %d -> %d\n",
1612 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1613 else
1614 #endif
1615 if (tid_to_event(tid) != tid_to_event(actual_tid))
1616 printk("due to cpu running other code. Event %ld->%ld\n",
1617 tid_to_event(tid), tid_to_event(actual_tid));
1618 else
1619 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1620 actual_tid, tid, next_tid(tid));
1621 #endif
1622 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1623 }
1624
1625 void init_kmem_cache_cpus(struct kmem_cache *s)
1626 {
1627 int cpu;
1628
1629 for_each_possible_cpu(cpu)
1630 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1631 }
1632 /*
1633 * Remove the cpu slab
1634 */
1635 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1636 __releases(bitlock)
1637 {
1638 struct page *page = c->page;
1639 int tail = 1;
1640
1641 if (page->freelist)
1642 stat(s, DEACTIVATE_REMOTE_FREES);
1643 /*
1644 * Merge cpu freelist into slab freelist. Typically we get here
1645 * because both freelists are empty. So this is unlikely
1646 * to occur.
1647 */
1648 while (unlikely(c->freelist)) {
1649 void **object;
1650
1651 tail = 0; /* Hot objects. Put the slab first */
1652
1653 /* Retrieve object from cpu_freelist */
1654 object = c->freelist;
1655 c->freelist = get_freepointer(s, c->freelist);
1656
1657 /* And put onto the regular freelist */
1658 set_freepointer(s, object, page->freelist);
1659 page->freelist = object;
1660 page->inuse--;
1661 }
1662 c->page = NULL;
1663 c->tid = next_tid(c->tid);
1664 unfreeze_slab(s, page, tail);
1665 }
1666
1667 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1668 {
1669 stat(s, CPUSLAB_FLUSH);
1670 slab_lock(c->page);
1671 deactivate_slab(s, c);
1672 }
1673
1674 /*
1675 * Flush cpu slab.
1676 *
1677 * Called from IPI handler with interrupts disabled.
1678 */
1679 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1680 {
1681 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1682
1683 if (likely(c && c->page))
1684 flush_slab(s, c);
1685 }
1686
1687 static void flush_cpu_slab(void *d)
1688 {
1689 struct kmem_cache *s = d;
1690
1691 __flush_cpu_slab(s, smp_processor_id());
1692 }
1693
1694 static void flush_all(struct kmem_cache *s)
1695 {
1696 on_each_cpu(flush_cpu_slab, s, 1);
1697 }
1698
1699 /*
1700 * Check if the objects in a per cpu structure fit numa
1701 * locality expectations.
1702 */
1703 static inline int node_match(struct kmem_cache_cpu *c, int node)
1704 {
1705 #ifdef CONFIG_NUMA
1706 if (node != NUMA_NO_NODE && c->node != node)
1707 return 0;
1708 #endif
1709 return 1;
1710 }
1711
1712 static int count_free(struct page *page)
1713 {
1714 return page->objects - page->inuse;
1715 }
1716
1717 static unsigned long count_partial(struct kmem_cache_node *n,
1718 int (*get_count)(struct page *))
1719 {
1720 unsigned long flags;
1721 unsigned long x = 0;
1722 struct page *page;
1723
1724 spin_lock_irqsave(&n->list_lock, flags);
1725 list_for_each_entry(page, &n->partial, lru)
1726 x += get_count(page);
1727 spin_unlock_irqrestore(&n->list_lock, flags);
1728 return x;
1729 }
1730
1731 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1732 {
1733 #ifdef CONFIG_SLUB_DEBUG
1734 return atomic_long_read(&n->total_objects);
1735 #else
1736 return 0;
1737 #endif
1738 }
1739
1740 static noinline void
1741 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1742 {
1743 int node;
1744
1745 printk(KERN_WARNING
1746 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1747 nid, gfpflags);
1748 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1749 "default order: %d, min order: %d\n", s->name, s->objsize,
1750 s->size, oo_order(s->oo), oo_order(s->min));
1751
1752 if (oo_order(s->min) > get_order(s->objsize))
1753 printk(KERN_WARNING " %s debugging increased min order, use "
1754 "slub_debug=O to disable.\n", s->name);
1755
1756 for_each_online_node(node) {
1757 struct kmem_cache_node *n = get_node(s, node);
1758 unsigned long nr_slabs;
1759 unsigned long nr_objs;
1760 unsigned long nr_free;
1761
1762 if (!n)
1763 continue;
1764
1765 nr_free = count_partial(n, count_free);
1766 nr_slabs = node_nr_slabs(n);
1767 nr_objs = node_nr_objs(n);
1768
1769 printk(KERN_WARNING
1770 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1771 node, nr_slabs, nr_objs, nr_free);
1772 }
1773 }
1774
1775 /*
1776 * Slow path. The lockless freelist is empty or we need to perform
1777 * debugging duties.
1778 *
1779 * Interrupts are disabled.
1780 *
1781 * Processing is still very fast if new objects have been freed to the
1782 * regular freelist. In that case we simply take over the regular freelist
1783 * as the lockless freelist and zap the regular freelist.
1784 *
1785 * If that is not working then we fall back to the partial lists. We take the
1786 * first element of the freelist as the object to allocate now and move the
1787 * rest of the freelist to the lockless freelist.
1788 *
1789 * And if we were unable to get a new slab from the partial slab lists then
1790 * we need to allocate a new slab. This is the slowest path since it involves
1791 * a call to the page allocator and the setup of a new slab.
1792 */
1793 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1794 unsigned long addr, struct kmem_cache_cpu *c)
1795 {
1796 void **object;
1797 struct page *page;
1798 unsigned long flags;
1799
1800 local_irq_save(flags);
1801 #ifdef CONFIG_PREEMPT
1802 /*
1803 * We may have been preempted and rescheduled on a different
1804 * cpu before disabling interrupts. Need to reload cpu area
1805 * pointer.
1806 */
1807 c = this_cpu_ptr(s->cpu_slab);
1808 #endif
1809
1810 /* We handle __GFP_ZERO in the caller */
1811 gfpflags &= ~__GFP_ZERO;
1812
1813 page = c->page;
1814 if (!page)
1815 goto new_slab;
1816
1817 slab_lock(page);
1818 if (unlikely(!node_match(c, node)))
1819 goto another_slab;
1820
1821 stat(s, ALLOC_REFILL);
1822
1823 load_freelist:
1824 object = page->freelist;
1825 if (unlikely(!object))
1826 goto another_slab;
1827 if (kmem_cache_debug(s))
1828 goto debug;
1829
1830 c->freelist = get_freepointer(s, object);
1831 page->inuse = page->objects;
1832 page->freelist = NULL;
1833
1834 unlock_out:
1835 slab_unlock(page);
1836 c->tid = next_tid(c->tid);
1837 local_irq_restore(flags);
1838 stat(s, ALLOC_SLOWPATH);
1839 return object;
1840
1841 another_slab:
1842 deactivate_slab(s, c);
1843
1844 new_slab:
1845 page = get_partial(s, gfpflags, node);
1846 if (page) {
1847 stat(s, ALLOC_FROM_PARTIAL);
1848 c->node = page_to_nid(page);
1849 c->page = page;
1850 goto load_freelist;
1851 }
1852
1853 gfpflags &= gfp_allowed_mask;
1854 if (gfpflags & __GFP_WAIT)
1855 local_irq_enable();
1856
1857 page = new_slab(s, gfpflags, node);
1858
1859 if (gfpflags & __GFP_WAIT)
1860 local_irq_disable();
1861
1862 if (page) {
1863 c = __this_cpu_ptr(s->cpu_slab);
1864 stat(s, ALLOC_SLAB);
1865 if (c->page)
1866 flush_slab(s, c);
1867
1868 slab_lock(page);
1869 __SetPageSlubFrozen(page);
1870 c->node = page_to_nid(page);
1871 c->page = page;
1872 goto load_freelist;
1873 }
1874 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1875 slab_out_of_memory(s, gfpflags, node);
1876 local_irq_restore(flags);
1877 return NULL;
1878 debug:
1879 if (!alloc_debug_processing(s, page, object, addr))
1880 goto another_slab;
1881
1882 page->inuse++;
1883 page->freelist = get_freepointer(s, object);
1884 c->node = NUMA_NO_NODE;
1885 goto unlock_out;
1886 }
1887
1888 /*
1889 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1890 * have the fastpath folded into their functions. So no function call
1891 * overhead for requests that can be satisfied on the fastpath.
1892 *
1893 * The fastpath works by first checking if the lockless freelist can be used.
1894 * If not then __slab_alloc is called for slow processing.
1895 *
1896 * Otherwise we can simply pick the next object from the lockless free list.
1897 */
1898 static __always_inline void *slab_alloc(struct kmem_cache *s,
1899 gfp_t gfpflags, int node, unsigned long addr)
1900 {
1901 void **object;
1902 struct kmem_cache_cpu *c;
1903 unsigned long tid;
1904
1905 if (slab_pre_alloc_hook(s, gfpflags))
1906 return NULL;
1907
1908 redo:
1909
1910 /*
1911 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1912 * enabled. We may switch back and forth between cpus while
1913 * reading from one cpu area. That does not matter as long
1914 * as we end up on the original cpu again when doing the cmpxchg.
1915 */
1916 c = __this_cpu_ptr(s->cpu_slab);
1917
1918 /*
1919 * The transaction ids are globally unique per cpu and per operation on
1920 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1921 * occurs on the right processor and that there was no operation on the
1922 * linked list in between.
1923 */
1924 tid = c->tid;
1925 barrier();
1926
1927 object = c->freelist;
1928 if (unlikely(!object || !node_match(c, node)))
1929
1930 object = __slab_alloc(s, gfpflags, node, addr, c);
1931
1932 else {
1933 /*
1934 * The cmpxchg will only match if there was no additonal
1935 * operation and if we are on the right processor.
1936 *
1937 * The cmpxchg does the following atomically (without lock semantics!)
1938 * 1. Relocate first pointer to the current per cpu area.
1939 * 2. Verify that tid and freelist have not been changed
1940 * 3. If they were not changed replace tid and freelist
1941 *
1942 * Since this is without lock semantics the protection is only against
1943 * code executing on this cpu *not* from access by other cpus.
1944 */
1945 if (unlikely(!this_cpu_cmpxchg_double(
1946 s->cpu_slab->freelist, s->cpu_slab->tid,
1947 object, tid,
1948 get_freepointer_safe(s, object), next_tid(tid)))) {
1949
1950 note_cmpxchg_failure("slab_alloc", s, tid);
1951 goto redo;
1952 }
1953 stat(s, ALLOC_FASTPATH);
1954 }
1955
1956 if (unlikely(gfpflags & __GFP_ZERO) && object)
1957 memset(object, 0, s->objsize);
1958
1959 slab_post_alloc_hook(s, gfpflags, object);
1960
1961 return object;
1962 }
1963
1964 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1965 {
1966 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1967
1968 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1969
1970 return ret;
1971 }
1972 EXPORT_SYMBOL(kmem_cache_alloc);
1973
1974 #ifdef CONFIG_TRACING
1975 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1976 {
1977 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1978 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1982
1983 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1984 {
1985 void *ret = kmalloc_order(size, flags, order);
1986 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1987 return ret;
1988 }
1989 EXPORT_SYMBOL(kmalloc_order_trace);
1990 #endif
1991
1992 #ifdef CONFIG_NUMA
1993 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1994 {
1995 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1996
1997 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1998 s->objsize, s->size, gfpflags, node);
1999
2000 return ret;
2001 }
2002 EXPORT_SYMBOL(kmem_cache_alloc_node);
2003
2004 #ifdef CONFIG_TRACING
2005 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2006 gfp_t gfpflags,
2007 int node, size_t size)
2008 {
2009 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2010
2011 trace_kmalloc_node(_RET_IP_, ret,
2012 size, s->size, gfpflags, node);
2013 return ret;
2014 }
2015 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2016 #endif
2017 #endif
2018
2019 /*
2020 * Slow patch handling. This may still be called frequently since objects
2021 * have a longer lifetime than the cpu slabs in most processing loads.
2022 *
2023 * So we still attempt to reduce cache line usage. Just take the slab
2024 * lock and free the item. If there is no additional partial page
2025 * handling required then we can return immediately.
2026 */
2027 static void __slab_free(struct kmem_cache *s, struct page *page,
2028 void *x, unsigned long addr)
2029 {
2030 void *prior;
2031 void **object = (void *)x;
2032 unsigned long flags;
2033
2034 local_irq_save(flags);
2035 slab_lock(page);
2036 stat(s, FREE_SLOWPATH);
2037
2038 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2039 goto out_unlock;
2040
2041 prior = page->freelist;
2042 set_freepointer(s, object, prior);
2043 page->freelist = object;
2044 page->inuse--;
2045
2046 if (unlikely(PageSlubFrozen(page))) {
2047 stat(s, FREE_FROZEN);
2048 goto out_unlock;
2049 }
2050
2051 if (unlikely(!page->inuse))
2052 goto slab_empty;
2053
2054 /*
2055 * Objects left in the slab. If it was not on the partial list before
2056 * then add it.
2057 */
2058 if (unlikely(!prior)) {
2059 add_partial(get_node(s, page_to_nid(page)), page, 1);
2060 stat(s, FREE_ADD_PARTIAL);
2061 }
2062
2063 out_unlock:
2064 slab_unlock(page);
2065 local_irq_restore(flags);
2066 return;
2067
2068 slab_empty:
2069 if (prior) {
2070 /*
2071 * Slab still on the partial list.
2072 */
2073 remove_partial(s, page);
2074 stat(s, FREE_REMOVE_PARTIAL);
2075 }
2076 slab_unlock(page);
2077 local_irq_restore(flags);
2078 stat(s, FREE_SLAB);
2079 discard_slab(s, page);
2080 }
2081
2082 /*
2083 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2084 * can perform fastpath freeing without additional function calls.
2085 *
2086 * The fastpath is only possible if we are freeing to the current cpu slab
2087 * of this processor. This typically the case if we have just allocated
2088 * the item before.
2089 *
2090 * If fastpath is not possible then fall back to __slab_free where we deal
2091 * with all sorts of special processing.
2092 */
2093 static __always_inline void slab_free(struct kmem_cache *s,
2094 struct page *page, void *x, unsigned long addr)
2095 {
2096 void **object = (void *)x;
2097 struct kmem_cache_cpu *c;
2098 unsigned long tid;
2099
2100 slab_free_hook(s, x);
2101
2102 redo:
2103
2104 /*
2105 * Determine the currently cpus per cpu slab.
2106 * The cpu may change afterward. However that does not matter since
2107 * data is retrieved via this pointer. If we are on the same cpu
2108 * during the cmpxchg then the free will succedd.
2109 */
2110 c = __this_cpu_ptr(s->cpu_slab);
2111
2112 tid = c->tid;
2113 barrier();
2114
2115 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
2116 set_freepointer(s, object, c->freelist);
2117
2118 if (unlikely(!this_cpu_cmpxchg_double(
2119 s->cpu_slab->freelist, s->cpu_slab->tid,
2120 c->freelist, tid,
2121 object, next_tid(tid)))) {
2122
2123 note_cmpxchg_failure("slab_free", s, tid);
2124 goto redo;
2125 }
2126 stat(s, FREE_FASTPATH);
2127 } else
2128 __slab_free(s, page, x, addr);
2129
2130 }
2131
2132 void kmem_cache_free(struct kmem_cache *s, void *x)
2133 {
2134 struct page *page;
2135
2136 page = virt_to_head_page(x);
2137
2138 slab_free(s, page, x, _RET_IP_);
2139
2140 trace_kmem_cache_free(_RET_IP_, x);
2141 }
2142 EXPORT_SYMBOL(kmem_cache_free);
2143
2144 /*
2145 * Object placement in a slab is made very easy because we always start at
2146 * offset 0. If we tune the size of the object to the alignment then we can
2147 * get the required alignment by putting one properly sized object after
2148 * another.
2149 *
2150 * Notice that the allocation order determines the sizes of the per cpu
2151 * caches. Each processor has always one slab available for allocations.
2152 * Increasing the allocation order reduces the number of times that slabs
2153 * must be moved on and off the partial lists and is therefore a factor in
2154 * locking overhead.
2155 */
2156
2157 /*
2158 * Mininum / Maximum order of slab pages. This influences locking overhead
2159 * and slab fragmentation. A higher order reduces the number of partial slabs
2160 * and increases the number of allocations possible without having to
2161 * take the list_lock.
2162 */
2163 static int slub_min_order;
2164 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2165 static int slub_min_objects;
2166
2167 /*
2168 * Merge control. If this is set then no merging of slab caches will occur.
2169 * (Could be removed. This was introduced to pacify the merge skeptics.)
2170 */
2171 static int slub_nomerge;
2172
2173 /*
2174 * Calculate the order of allocation given an slab object size.
2175 *
2176 * The order of allocation has significant impact on performance and other
2177 * system components. Generally order 0 allocations should be preferred since
2178 * order 0 does not cause fragmentation in the page allocator. Larger objects
2179 * be problematic to put into order 0 slabs because there may be too much
2180 * unused space left. We go to a higher order if more than 1/16th of the slab
2181 * would be wasted.
2182 *
2183 * In order to reach satisfactory performance we must ensure that a minimum
2184 * number of objects is in one slab. Otherwise we may generate too much
2185 * activity on the partial lists which requires taking the list_lock. This is
2186 * less a concern for large slabs though which are rarely used.
2187 *
2188 * slub_max_order specifies the order where we begin to stop considering the
2189 * number of objects in a slab as critical. If we reach slub_max_order then
2190 * we try to keep the page order as low as possible. So we accept more waste
2191 * of space in favor of a small page order.
2192 *
2193 * Higher order allocations also allow the placement of more objects in a
2194 * slab and thereby reduce object handling overhead. If the user has
2195 * requested a higher mininum order then we start with that one instead of
2196 * the smallest order which will fit the object.
2197 */
2198 static inline int slab_order(int size, int min_objects,
2199 int max_order, int fract_leftover, int reserved)
2200 {
2201 int order;
2202 int rem;
2203 int min_order = slub_min_order;
2204
2205 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2206 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2207
2208 for (order = max(min_order,
2209 fls(min_objects * size - 1) - PAGE_SHIFT);
2210 order <= max_order; order++) {
2211
2212 unsigned long slab_size = PAGE_SIZE << order;
2213
2214 if (slab_size < min_objects * size + reserved)
2215 continue;
2216
2217 rem = (slab_size - reserved) % size;
2218
2219 if (rem <= slab_size / fract_leftover)
2220 break;
2221
2222 }
2223
2224 return order;
2225 }
2226
2227 static inline int calculate_order(int size, int reserved)
2228 {
2229 int order;
2230 int min_objects;
2231 int fraction;
2232 int max_objects;
2233
2234 /*
2235 * Attempt to find best configuration for a slab. This
2236 * works by first attempting to generate a layout with
2237 * the best configuration and backing off gradually.
2238 *
2239 * First we reduce the acceptable waste in a slab. Then
2240 * we reduce the minimum objects required in a slab.
2241 */
2242 min_objects = slub_min_objects;
2243 if (!min_objects)
2244 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2245 max_objects = order_objects(slub_max_order, size, reserved);
2246 min_objects = min(min_objects, max_objects);
2247
2248 while (min_objects > 1) {
2249 fraction = 16;
2250 while (fraction >= 4) {
2251 order = slab_order(size, min_objects,
2252 slub_max_order, fraction, reserved);
2253 if (order <= slub_max_order)
2254 return order;
2255 fraction /= 2;
2256 }
2257 min_objects--;
2258 }
2259
2260 /*
2261 * We were unable to place multiple objects in a slab. Now
2262 * lets see if we can place a single object there.
2263 */
2264 order = slab_order(size, 1, slub_max_order, 1, reserved);
2265 if (order <= slub_max_order)
2266 return order;
2267
2268 /*
2269 * Doh this slab cannot be placed using slub_max_order.
2270 */
2271 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2272 if (order < MAX_ORDER)
2273 return order;
2274 return -ENOSYS;
2275 }
2276
2277 /*
2278 * Figure out what the alignment of the objects will be.
2279 */
2280 static unsigned long calculate_alignment(unsigned long flags,
2281 unsigned long align, unsigned long size)
2282 {
2283 /*
2284 * If the user wants hardware cache aligned objects then follow that
2285 * suggestion if the object is sufficiently large.
2286 *
2287 * The hardware cache alignment cannot override the specified
2288 * alignment though. If that is greater then use it.
2289 */
2290 if (flags & SLAB_HWCACHE_ALIGN) {
2291 unsigned long ralign = cache_line_size();
2292 while (size <= ralign / 2)
2293 ralign /= 2;
2294 align = max(align, ralign);
2295 }
2296
2297 if (align < ARCH_SLAB_MINALIGN)
2298 align = ARCH_SLAB_MINALIGN;
2299
2300 return ALIGN(align, sizeof(void *));
2301 }
2302
2303 static void
2304 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2305 {
2306 n->nr_partial = 0;
2307 spin_lock_init(&n->list_lock);
2308 INIT_LIST_HEAD(&n->partial);
2309 #ifdef CONFIG_SLUB_DEBUG
2310 atomic_long_set(&n->nr_slabs, 0);
2311 atomic_long_set(&n->total_objects, 0);
2312 INIT_LIST_HEAD(&n->full);
2313 #endif
2314 }
2315
2316 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2317 {
2318 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2319 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2320
2321 #ifdef CONFIG_CMPXCHG_LOCAL
2322 /*
2323 * Must align to double word boundary for the double cmpxchg instructions
2324 * to work.
2325 */
2326 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2327 #else
2328 /* Regular alignment is sufficient */
2329 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2330 #endif
2331
2332 if (!s->cpu_slab)
2333 return 0;
2334
2335 init_kmem_cache_cpus(s);
2336
2337 return 1;
2338 }
2339
2340 static struct kmem_cache *kmem_cache_node;
2341
2342 /*
2343 * No kmalloc_node yet so do it by hand. We know that this is the first
2344 * slab on the node for this slabcache. There are no concurrent accesses
2345 * possible.
2346 *
2347 * Note that this function only works on the kmalloc_node_cache
2348 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2349 * memory on a fresh node that has no slab structures yet.
2350 */
2351 static void early_kmem_cache_node_alloc(int node)
2352 {
2353 struct page *page;
2354 struct kmem_cache_node *n;
2355 unsigned long flags;
2356
2357 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2358
2359 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2360
2361 BUG_ON(!page);
2362 if (page_to_nid(page) != node) {
2363 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2364 "node %d\n", node);
2365 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2366 "in order to be able to continue\n");
2367 }
2368
2369 n = page->freelist;
2370 BUG_ON(!n);
2371 page->freelist = get_freepointer(kmem_cache_node, n);
2372 page->inuse++;
2373 kmem_cache_node->node[node] = n;
2374 #ifdef CONFIG_SLUB_DEBUG
2375 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2376 init_tracking(kmem_cache_node, n);
2377 #endif
2378 init_kmem_cache_node(n, kmem_cache_node);
2379 inc_slabs_node(kmem_cache_node, node, page->objects);
2380
2381 /*
2382 * lockdep requires consistent irq usage for each lock
2383 * so even though there cannot be a race this early in
2384 * the boot sequence, we still disable irqs.
2385 */
2386 local_irq_save(flags);
2387 add_partial(n, page, 0);
2388 local_irq_restore(flags);
2389 }
2390
2391 static void free_kmem_cache_nodes(struct kmem_cache *s)
2392 {
2393 int node;
2394
2395 for_each_node_state(node, N_NORMAL_MEMORY) {
2396 struct kmem_cache_node *n = s->node[node];
2397
2398 if (n)
2399 kmem_cache_free(kmem_cache_node, n);
2400
2401 s->node[node] = NULL;
2402 }
2403 }
2404
2405 static int init_kmem_cache_nodes(struct kmem_cache *s)
2406 {
2407 int node;
2408
2409 for_each_node_state(node, N_NORMAL_MEMORY) {
2410 struct kmem_cache_node *n;
2411
2412 if (slab_state == DOWN) {
2413 early_kmem_cache_node_alloc(node);
2414 continue;
2415 }
2416 n = kmem_cache_alloc_node(kmem_cache_node,
2417 GFP_KERNEL, node);
2418
2419 if (!n) {
2420 free_kmem_cache_nodes(s);
2421 return 0;
2422 }
2423
2424 s->node[node] = n;
2425 init_kmem_cache_node(n, s);
2426 }
2427 return 1;
2428 }
2429
2430 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2431 {
2432 if (min < MIN_PARTIAL)
2433 min = MIN_PARTIAL;
2434 else if (min > MAX_PARTIAL)
2435 min = MAX_PARTIAL;
2436 s->min_partial = min;
2437 }
2438
2439 /*
2440 * calculate_sizes() determines the order and the distribution of data within
2441 * a slab object.
2442 */
2443 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2444 {
2445 unsigned long flags = s->flags;
2446 unsigned long size = s->objsize;
2447 unsigned long align = s->align;
2448 int order;
2449
2450 /*
2451 * Round up object size to the next word boundary. We can only
2452 * place the free pointer at word boundaries and this determines
2453 * the possible location of the free pointer.
2454 */
2455 size = ALIGN(size, sizeof(void *));
2456
2457 #ifdef CONFIG_SLUB_DEBUG
2458 /*
2459 * Determine if we can poison the object itself. If the user of
2460 * the slab may touch the object after free or before allocation
2461 * then we should never poison the object itself.
2462 */
2463 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2464 !s->ctor)
2465 s->flags |= __OBJECT_POISON;
2466 else
2467 s->flags &= ~__OBJECT_POISON;
2468
2469
2470 /*
2471 * If we are Redzoning then check if there is some space between the
2472 * end of the object and the free pointer. If not then add an
2473 * additional word to have some bytes to store Redzone information.
2474 */
2475 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2476 size += sizeof(void *);
2477 #endif
2478
2479 /*
2480 * With that we have determined the number of bytes in actual use
2481 * by the object. This is the potential offset to the free pointer.
2482 */
2483 s->inuse = size;
2484
2485 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2486 s->ctor)) {
2487 /*
2488 * Relocate free pointer after the object if it is not
2489 * permitted to overwrite the first word of the object on
2490 * kmem_cache_free.
2491 *
2492 * This is the case if we do RCU, have a constructor or
2493 * destructor or are poisoning the objects.
2494 */
2495 s->offset = size;
2496 size += sizeof(void *);
2497 }
2498
2499 #ifdef CONFIG_SLUB_DEBUG
2500 if (flags & SLAB_STORE_USER)
2501 /*
2502 * Need to store information about allocs and frees after
2503 * the object.
2504 */
2505 size += 2 * sizeof(struct track);
2506
2507 if (flags & SLAB_RED_ZONE)
2508 /*
2509 * Add some empty padding so that we can catch
2510 * overwrites from earlier objects rather than let
2511 * tracking information or the free pointer be
2512 * corrupted if a user writes before the start
2513 * of the object.
2514 */
2515 size += sizeof(void *);
2516 #endif
2517
2518 /*
2519 * Determine the alignment based on various parameters that the
2520 * user specified and the dynamic determination of cache line size
2521 * on bootup.
2522 */
2523 align = calculate_alignment(flags, align, s->objsize);
2524 s->align = align;
2525
2526 /*
2527 * SLUB stores one object immediately after another beginning from
2528 * offset 0. In order to align the objects we have to simply size
2529 * each object to conform to the alignment.
2530 */
2531 size = ALIGN(size, align);
2532 s->size = size;
2533 if (forced_order >= 0)
2534 order = forced_order;
2535 else
2536 order = calculate_order(size, s->reserved);
2537
2538 if (order < 0)
2539 return 0;
2540
2541 s->allocflags = 0;
2542 if (order)
2543 s->allocflags |= __GFP_COMP;
2544
2545 if (s->flags & SLAB_CACHE_DMA)
2546 s->allocflags |= SLUB_DMA;
2547
2548 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2549 s->allocflags |= __GFP_RECLAIMABLE;
2550
2551 /*
2552 * Determine the number of objects per slab
2553 */
2554 s->oo = oo_make(order, size, s->reserved);
2555 s->min = oo_make(get_order(size), size, s->reserved);
2556 if (oo_objects(s->oo) > oo_objects(s->max))
2557 s->max = s->oo;
2558
2559 return !!oo_objects(s->oo);
2560
2561 }
2562
2563 static int kmem_cache_open(struct kmem_cache *s,
2564 const char *name, size_t size,
2565 size_t align, unsigned long flags,
2566 void (*ctor)(void *))
2567 {
2568 memset(s, 0, kmem_size);
2569 s->name = name;
2570 s->ctor = ctor;
2571 s->objsize = size;
2572 s->align = align;
2573 s->flags = kmem_cache_flags(size, flags, name, ctor);
2574 s->reserved = 0;
2575
2576 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2577 s->reserved = sizeof(struct rcu_head);
2578
2579 if (!calculate_sizes(s, -1))
2580 goto error;
2581 if (disable_higher_order_debug) {
2582 /*
2583 * Disable debugging flags that store metadata if the min slab
2584 * order increased.
2585 */
2586 if (get_order(s->size) > get_order(s->objsize)) {
2587 s->flags &= ~DEBUG_METADATA_FLAGS;
2588 s->offset = 0;
2589 if (!calculate_sizes(s, -1))
2590 goto error;
2591 }
2592 }
2593
2594 /*
2595 * The larger the object size is, the more pages we want on the partial
2596 * list to avoid pounding the page allocator excessively.
2597 */
2598 set_min_partial(s, ilog2(s->size));
2599 s->refcount = 1;
2600 #ifdef CONFIG_NUMA
2601 s->remote_node_defrag_ratio = 1000;
2602 #endif
2603 if (!init_kmem_cache_nodes(s))
2604 goto error;
2605
2606 if (alloc_kmem_cache_cpus(s))
2607 return 1;
2608
2609 free_kmem_cache_nodes(s);
2610 error:
2611 if (flags & SLAB_PANIC)
2612 panic("Cannot create slab %s size=%lu realsize=%u "
2613 "order=%u offset=%u flags=%lx\n",
2614 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2615 s->offset, flags);
2616 return 0;
2617 }
2618
2619 /*
2620 * Determine the size of a slab object
2621 */
2622 unsigned int kmem_cache_size(struct kmem_cache *s)
2623 {
2624 return s->objsize;
2625 }
2626 EXPORT_SYMBOL(kmem_cache_size);
2627
2628 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2629 const char *text)
2630 {
2631 #ifdef CONFIG_SLUB_DEBUG
2632 void *addr = page_address(page);
2633 void *p;
2634 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2635 sizeof(long), GFP_ATOMIC);
2636 if (!map)
2637 return;
2638 slab_err(s, page, "%s", text);
2639 slab_lock(page);
2640
2641 get_map(s, page, map);
2642 for_each_object(p, s, addr, page->objects) {
2643
2644 if (!test_bit(slab_index(p, s, addr), map)) {
2645 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2646 p, p - addr);
2647 print_tracking(s, p);
2648 }
2649 }
2650 slab_unlock(page);
2651 kfree(map);
2652 #endif
2653 }
2654
2655 /*
2656 * Attempt to free all partial slabs on a node.
2657 */
2658 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2659 {
2660 unsigned long flags;
2661 struct page *page, *h;
2662
2663 spin_lock_irqsave(&n->list_lock, flags);
2664 list_for_each_entry_safe(page, h, &n->partial, lru) {
2665 if (!page->inuse) {
2666 __remove_partial(n, page);
2667 discard_slab(s, page);
2668 } else {
2669 list_slab_objects(s, page,
2670 "Objects remaining on kmem_cache_close()");
2671 }
2672 }
2673 spin_unlock_irqrestore(&n->list_lock, flags);
2674 }
2675
2676 /*
2677 * Release all resources used by a slab cache.
2678 */
2679 static inline int kmem_cache_close(struct kmem_cache *s)
2680 {
2681 int node;
2682
2683 flush_all(s);
2684 free_percpu(s->cpu_slab);
2685 /* Attempt to free all objects */
2686 for_each_node_state(node, N_NORMAL_MEMORY) {
2687 struct kmem_cache_node *n = get_node(s, node);
2688
2689 free_partial(s, n);
2690 if (n->nr_partial || slabs_node(s, node))
2691 return 1;
2692 }
2693 free_kmem_cache_nodes(s);
2694 return 0;
2695 }
2696
2697 /*
2698 * Close a cache and release the kmem_cache structure
2699 * (must be used for caches created using kmem_cache_create)
2700 */
2701 void kmem_cache_destroy(struct kmem_cache *s)
2702 {
2703 down_write(&slub_lock);
2704 s->refcount--;
2705 if (!s->refcount) {
2706 list_del(&s->list);
2707 if (kmem_cache_close(s)) {
2708 printk(KERN_ERR "SLUB %s: %s called for cache that "
2709 "still has objects.\n", s->name, __func__);
2710 dump_stack();
2711 }
2712 if (s->flags & SLAB_DESTROY_BY_RCU)
2713 rcu_barrier();
2714 sysfs_slab_remove(s);
2715 }
2716 up_write(&slub_lock);
2717 }
2718 EXPORT_SYMBOL(kmem_cache_destroy);
2719
2720 /********************************************************************
2721 * Kmalloc subsystem
2722 *******************************************************************/
2723
2724 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2725 EXPORT_SYMBOL(kmalloc_caches);
2726
2727 static struct kmem_cache *kmem_cache;
2728
2729 #ifdef CONFIG_ZONE_DMA
2730 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2731 #endif
2732
2733 static int __init setup_slub_min_order(char *str)
2734 {
2735 get_option(&str, &slub_min_order);
2736
2737 return 1;
2738 }
2739
2740 __setup("slub_min_order=", setup_slub_min_order);
2741
2742 static int __init setup_slub_max_order(char *str)
2743 {
2744 get_option(&str, &slub_max_order);
2745 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2746
2747 return 1;
2748 }
2749
2750 __setup("slub_max_order=", setup_slub_max_order);
2751
2752 static int __init setup_slub_min_objects(char *str)
2753 {
2754 get_option(&str, &slub_min_objects);
2755
2756 return 1;
2757 }
2758
2759 __setup("slub_min_objects=", setup_slub_min_objects);
2760
2761 static int __init setup_slub_nomerge(char *str)
2762 {
2763 slub_nomerge = 1;
2764 return 1;
2765 }
2766
2767 __setup("slub_nomerge", setup_slub_nomerge);
2768
2769 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2770 int size, unsigned int flags)
2771 {
2772 struct kmem_cache *s;
2773
2774 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2775
2776 /*
2777 * This function is called with IRQs disabled during early-boot on
2778 * single CPU so there's no need to take slub_lock here.
2779 */
2780 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2781 flags, NULL))
2782 goto panic;
2783
2784 list_add(&s->list, &slab_caches);
2785 return s;
2786
2787 panic:
2788 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2789 return NULL;
2790 }
2791
2792 /*
2793 * Conversion table for small slabs sizes / 8 to the index in the
2794 * kmalloc array. This is necessary for slabs < 192 since we have non power
2795 * of two cache sizes there. The size of larger slabs can be determined using
2796 * fls.
2797 */
2798 static s8 size_index[24] = {
2799 3, /* 8 */
2800 4, /* 16 */
2801 5, /* 24 */
2802 5, /* 32 */
2803 6, /* 40 */
2804 6, /* 48 */
2805 6, /* 56 */
2806 6, /* 64 */
2807 1, /* 72 */
2808 1, /* 80 */
2809 1, /* 88 */
2810 1, /* 96 */
2811 7, /* 104 */
2812 7, /* 112 */
2813 7, /* 120 */
2814 7, /* 128 */
2815 2, /* 136 */
2816 2, /* 144 */
2817 2, /* 152 */
2818 2, /* 160 */
2819 2, /* 168 */
2820 2, /* 176 */
2821 2, /* 184 */
2822 2 /* 192 */
2823 };
2824
2825 static inline int size_index_elem(size_t bytes)
2826 {
2827 return (bytes - 1) / 8;
2828 }
2829
2830 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2831 {
2832 int index;
2833
2834 if (size <= 192) {
2835 if (!size)
2836 return ZERO_SIZE_PTR;
2837
2838 index = size_index[size_index_elem(size)];
2839 } else
2840 index = fls(size - 1);
2841
2842 #ifdef CONFIG_ZONE_DMA
2843 if (unlikely((flags & SLUB_DMA)))
2844 return kmalloc_dma_caches[index];
2845
2846 #endif
2847 return kmalloc_caches[index];
2848 }
2849
2850 void *__kmalloc(size_t size, gfp_t flags)
2851 {
2852 struct kmem_cache *s;
2853 void *ret;
2854
2855 if (unlikely(size > SLUB_MAX_SIZE))
2856 return kmalloc_large(size, flags);
2857
2858 s = get_slab(size, flags);
2859
2860 if (unlikely(ZERO_OR_NULL_PTR(s)))
2861 return s;
2862
2863 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2864
2865 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2866
2867 return ret;
2868 }
2869 EXPORT_SYMBOL(__kmalloc);
2870
2871 #ifdef CONFIG_NUMA
2872 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2873 {
2874 struct page *page;
2875 void *ptr = NULL;
2876
2877 flags |= __GFP_COMP | __GFP_NOTRACK;
2878 page = alloc_pages_node(node, flags, get_order(size));
2879 if (page)
2880 ptr = page_address(page);
2881
2882 kmemleak_alloc(ptr, size, 1, flags);
2883 return ptr;
2884 }
2885
2886 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2887 {
2888 struct kmem_cache *s;
2889 void *ret;
2890
2891 if (unlikely(size > SLUB_MAX_SIZE)) {
2892 ret = kmalloc_large_node(size, flags, node);
2893
2894 trace_kmalloc_node(_RET_IP_, ret,
2895 size, PAGE_SIZE << get_order(size),
2896 flags, node);
2897
2898 return ret;
2899 }
2900
2901 s = get_slab(size, flags);
2902
2903 if (unlikely(ZERO_OR_NULL_PTR(s)))
2904 return s;
2905
2906 ret = slab_alloc(s, flags, node, _RET_IP_);
2907
2908 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2909
2910 return ret;
2911 }
2912 EXPORT_SYMBOL(__kmalloc_node);
2913 #endif
2914
2915 size_t ksize(const void *object)
2916 {
2917 struct page *page;
2918
2919 if (unlikely(object == ZERO_SIZE_PTR))
2920 return 0;
2921
2922 page = virt_to_head_page(object);
2923
2924 if (unlikely(!PageSlab(page))) {
2925 WARN_ON(!PageCompound(page));
2926 return PAGE_SIZE << compound_order(page);
2927 }
2928
2929 return slab_ksize(page->slab);
2930 }
2931 EXPORT_SYMBOL(ksize);
2932
2933 void kfree(const void *x)
2934 {
2935 struct page *page;
2936 void *object = (void *)x;
2937
2938 trace_kfree(_RET_IP_, x);
2939
2940 if (unlikely(ZERO_OR_NULL_PTR(x)))
2941 return;
2942
2943 page = virt_to_head_page(x);
2944 if (unlikely(!PageSlab(page))) {
2945 BUG_ON(!PageCompound(page));
2946 kmemleak_free(x);
2947 put_page(page);
2948 return;
2949 }
2950 slab_free(page->slab, page, object, _RET_IP_);
2951 }
2952 EXPORT_SYMBOL(kfree);
2953
2954 /*
2955 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2956 * the remaining slabs by the number of items in use. The slabs with the
2957 * most items in use come first. New allocations will then fill those up
2958 * and thus they can be removed from the partial lists.
2959 *
2960 * The slabs with the least items are placed last. This results in them
2961 * being allocated from last increasing the chance that the last objects
2962 * are freed in them.
2963 */
2964 int kmem_cache_shrink(struct kmem_cache *s)
2965 {
2966 int node;
2967 int i;
2968 struct kmem_cache_node *n;
2969 struct page *page;
2970 struct page *t;
2971 int objects = oo_objects(s->max);
2972 struct list_head *slabs_by_inuse =
2973 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2974 unsigned long flags;
2975
2976 if (!slabs_by_inuse)
2977 return -ENOMEM;
2978
2979 flush_all(s);
2980 for_each_node_state(node, N_NORMAL_MEMORY) {
2981 n = get_node(s, node);
2982
2983 if (!n->nr_partial)
2984 continue;
2985
2986 for (i = 0; i < objects; i++)
2987 INIT_LIST_HEAD(slabs_by_inuse + i);
2988
2989 spin_lock_irqsave(&n->list_lock, flags);
2990
2991 /*
2992 * Build lists indexed by the items in use in each slab.
2993 *
2994 * Note that concurrent frees may occur while we hold the
2995 * list_lock. page->inuse here is the upper limit.
2996 */
2997 list_for_each_entry_safe(page, t, &n->partial, lru) {
2998 if (!page->inuse && slab_trylock(page)) {
2999 /*
3000 * Must hold slab lock here because slab_free
3001 * may have freed the last object and be
3002 * waiting to release the slab.
3003 */
3004 __remove_partial(n, page);
3005 slab_unlock(page);
3006 discard_slab(s, page);
3007 } else {
3008 list_move(&page->lru,
3009 slabs_by_inuse + page->inuse);
3010 }
3011 }
3012
3013 /*
3014 * Rebuild the partial list with the slabs filled up most
3015 * first and the least used slabs at the end.
3016 */
3017 for (i = objects - 1; i >= 0; i--)
3018 list_splice(slabs_by_inuse + i, n->partial.prev);
3019
3020 spin_unlock_irqrestore(&n->list_lock, flags);
3021 }
3022
3023 kfree(slabs_by_inuse);
3024 return 0;
3025 }
3026 EXPORT_SYMBOL(kmem_cache_shrink);
3027
3028 #if defined(CONFIG_MEMORY_HOTPLUG)
3029 static int slab_mem_going_offline_callback(void *arg)
3030 {
3031 struct kmem_cache *s;
3032
3033 down_read(&slub_lock);
3034 list_for_each_entry(s, &slab_caches, list)
3035 kmem_cache_shrink(s);
3036 up_read(&slub_lock);
3037
3038 return 0;
3039 }
3040
3041 static void slab_mem_offline_callback(void *arg)
3042 {
3043 struct kmem_cache_node *n;
3044 struct kmem_cache *s;
3045 struct memory_notify *marg = arg;
3046 int offline_node;
3047
3048 offline_node = marg->status_change_nid;
3049
3050 /*
3051 * If the node still has available memory. we need kmem_cache_node
3052 * for it yet.
3053 */
3054 if (offline_node < 0)
3055 return;
3056
3057 down_read(&slub_lock);
3058 list_for_each_entry(s, &slab_caches, list) {
3059 n = get_node(s, offline_node);
3060 if (n) {
3061 /*
3062 * if n->nr_slabs > 0, slabs still exist on the node
3063 * that is going down. We were unable to free them,
3064 * and offline_pages() function shouldn't call this
3065 * callback. So, we must fail.
3066 */
3067 BUG_ON(slabs_node(s, offline_node));
3068
3069 s->node[offline_node] = NULL;
3070 kmem_cache_free(kmem_cache_node, n);
3071 }
3072 }
3073 up_read(&slub_lock);
3074 }
3075
3076 static int slab_mem_going_online_callback(void *arg)
3077 {
3078 struct kmem_cache_node *n;
3079 struct kmem_cache *s;
3080 struct memory_notify *marg = arg;
3081 int nid = marg->status_change_nid;
3082 int ret = 0;
3083
3084 /*
3085 * If the node's memory is already available, then kmem_cache_node is
3086 * already created. Nothing to do.
3087 */
3088 if (nid < 0)
3089 return 0;
3090
3091 /*
3092 * We are bringing a node online. No memory is available yet. We must
3093 * allocate a kmem_cache_node structure in order to bring the node
3094 * online.
3095 */
3096 down_read(&slub_lock);
3097 list_for_each_entry(s, &slab_caches, list) {
3098 /*
3099 * XXX: kmem_cache_alloc_node will fallback to other nodes
3100 * since memory is not yet available from the node that
3101 * is brought up.
3102 */
3103 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3104 if (!n) {
3105 ret = -ENOMEM;
3106 goto out;
3107 }
3108 init_kmem_cache_node(n, s);
3109 s->node[nid] = n;
3110 }
3111 out:
3112 up_read(&slub_lock);
3113 return ret;
3114 }
3115
3116 static int slab_memory_callback(struct notifier_block *self,
3117 unsigned long action, void *arg)
3118 {
3119 int ret = 0;
3120
3121 switch (action) {
3122 case MEM_GOING_ONLINE:
3123 ret = slab_mem_going_online_callback(arg);
3124 break;
3125 case MEM_GOING_OFFLINE:
3126 ret = slab_mem_going_offline_callback(arg);
3127 break;
3128 case MEM_OFFLINE:
3129 case MEM_CANCEL_ONLINE:
3130 slab_mem_offline_callback(arg);
3131 break;
3132 case MEM_ONLINE:
3133 case MEM_CANCEL_OFFLINE:
3134 break;
3135 }
3136 if (ret)
3137 ret = notifier_from_errno(ret);
3138 else
3139 ret = NOTIFY_OK;
3140 return ret;
3141 }
3142
3143 #endif /* CONFIG_MEMORY_HOTPLUG */
3144
3145 /********************************************************************
3146 * Basic setup of slabs
3147 *******************************************************************/
3148
3149 /*
3150 * Used for early kmem_cache structures that were allocated using
3151 * the page allocator
3152 */
3153
3154 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3155 {
3156 int node;
3157
3158 list_add(&s->list, &slab_caches);
3159 s->refcount = -1;
3160
3161 for_each_node_state(node, N_NORMAL_MEMORY) {
3162 struct kmem_cache_node *n = get_node(s, node);
3163 struct page *p;
3164
3165 if (n) {
3166 list_for_each_entry(p, &n->partial, lru)
3167 p->slab = s;
3168
3169 #ifdef CONFIG_SLUB_DEBUG
3170 list_for_each_entry(p, &n->full, lru)
3171 p->slab = s;
3172 #endif
3173 }
3174 }
3175 }
3176
3177 void __init kmem_cache_init(void)
3178 {
3179 int i;
3180 int caches = 0;
3181 struct kmem_cache *temp_kmem_cache;
3182 int order;
3183 struct kmem_cache *temp_kmem_cache_node;
3184 unsigned long kmalloc_size;
3185
3186 kmem_size = offsetof(struct kmem_cache, node) +
3187 nr_node_ids * sizeof(struct kmem_cache_node *);
3188
3189 /* Allocate two kmem_caches from the page allocator */
3190 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3191 order = get_order(2 * kmalloc_size);
3192 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3193
3194 /*
3195 * Must first have the slab cache available for the allocations of the
3196 * struct kmem_cache_node's. There is special bootstrap code in
3197 * kmem_cache_open for slab_state == DOWN.
3198 */
3199 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3200
3201 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3202 sizeof(struct kmem_cache_node),
3203 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3204
3205 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3206
3207 /* Able to allocate the per node structures */
3208 slab_state = PARTIAL;
3209
3210 temp_kmem_cache = kmem_cache;
3211 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3212 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3213 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3214 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3215
3216 /*
3217 * Allocate kmem_cache_node properly from the kmem_cache slab.
3218 * kmem_cache_node is separately allocated so no need to
3219 * update any list pointers.
3220 */
3221 temp_kmem_cache_node = kmem_cache_node;
3222
3223 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3224 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3225
3226 kmem_cache_bootstrap_fixup(kmem_cache_node);
3227
3228 caches++;
3229 kmem_cache_bootstrap_fixup(kmem_cache);
3230 caches++;
3231 /* Free temporary boot structure */
3232 free_pages((unsigned long)temp_kmem_cache, order);
3233
3234 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3235
3236 /*
3237 * Patch up the size_index table if we have strange large alignment
3238 * requirements for the kmalloc array. This is only the case for
3239 * MIPS it seems. The standard arches will not generate any code here.
3240 *
3241 * Largest permitted alignment is 256 bytes due to the way we
3242 * handle the index determination for the smaller caches.
3243 *
3244 * Make sure that nothing crazy happens if someone starts tinkering
3245 * around with ARCH_KMALLOC_MINALIGN
3246 */
3247 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3248 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3249
3250 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3251 int elem = size_index_elem(i);
3252 if (elem >= ARRAY_SIZE(size_index))
3253 break;
3254 size_index[elem] = KMALLOC_SHIFT_LOW;
3255 }
3256
3257 if (KMALLOC_MIN_SIZE == 64) {
3258 /*
3259 * The 96 byte size cache is not used if the alignment
3260 * is 64 byte.
3261 */
3262 for (i = 64 + 8; i <= 96; i += 8)
3263 size_index[size_index_elem(i)] = 7;
3264 } else if (KMALLOC_MIN_SIZE == 128) {
3265 /*
3266 * The 192 byte sized cache is not used if the alignment
3267 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3268 * instead.
3269 */
3270 for (i = 128 + 8; i <= 192; i += 8)
3271 size_index[size_index_elem(i)] = 8;
3272 }
3273
3274 /* Caches that are not of the two-to-the-power-of size */
3275 if (KMALLOC_MIN_SIZE <= 32) {
3276 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3277 caches++;
3278 }
3279
3280 if (KMALLOC_MIN_SIZE <= 64) {
3281 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3282 caches++;
3283 }
3284
3285 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3286 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3287 caches++;
3288 }
3289
3290 slab_state = UP;
3291
3292 /* Provide the correct kmalloc names now that the caches are up */
3293 if (KMALLOC_MIN_SIZE <= 32) {
3294 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3295 BUG_ON(!kmalloc_caches[1]->name);
3296 }
3297
3298 if (KMALLOC_MIN_SIZE <= 64) {
3299 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3300 BUG_ON(!kmalloc_caches[2]->name);
3301 }
3302
3303 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3304 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3305
3306 BUG_ON(!s);
3307 kmalloc_caches[i]->name = s;
3308 }
3309
3310 #ifdef CONFIG_SMP
3311 register_cpu_notifier(&slab_notifier);
3312 #endif
3313
3314 #ifdef CONFIG_ZONE_DMA
3315 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3316 struct kmem_cache *s = kmalloc_caches[i];
3317
3318 if (s && s->size) {
3319 char *name = kasprintf(GFP_NOWAIT,
3320 "dma-kmalloc-%d", s->objsize);
3321
3322 BUG_ON(!name);
3323 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3324 s->objsize, SLAB_CACHE_DMA);
3325 }
3326 }
3327 #endif
3328 printk(KERN_INFO
3329 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3330 " CPUs=%d, Nodes=%d\n",
3331 caches, cache_line_size(),
3332 slub_min_order, slub_max_order, slub_min_objects,
3333 nr_cpu_ids, nr_node_ids);
3334 }
3335
3336 void __init kmem_cache_init_late(void)
3337 {
3338 }
3339
3340 /*
3341 * Find a mergeable slab cache
3342 */
3343 static int slab_unmergeable(struct kmem_cache *s)
3344 {
3345 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3346 return 1;
3347
3348 if (s->ctor)
3349 return 1;
3350
3351 /*
3352 * We may have set a slab to be unmergeable during bootstrap.
3353 */
3354 if (s->refcount < 0)
3355 return 1;
3356
3357 return 0;
3358 }
3359
3360 static struct kmem_cache *find_mergeable(size_t size,
3361 size_t align, unsigned long flags, const char *name,
3362 void (*ctor)(void *))
3363 {
3364 struct kmem_cache *s;
3365
3366 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3367 return NULL;
3368
3369 if (ctor)
3370 return NULL;
3371
3372 size = ALIGN(size, sizeof(void *));
3373 align = calculate_alignment(flags, align, size);
3374 size = ALIGN(size, align);
3375 flags = kmem_cache_flags(size, flags, name, NULL);
3376
3377 list_for_each_entry(s, &slab_caches, list) {
3378 if (slab_unmergeable(s))
3379 continue;
3380
3381 if (size > s->size)
3382 continue;
3383
3384 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3385 continue;
3386 /*
3387 * Check if alignment is compatible.
3388 * Courtesy of Adrian Drzewiecki
3389 */
3390 if ((s->size & ~(align - 1)) != s->size)
3391 continue;
3392
3393 if (s->size - size >= sizeof(void *))
3394 continue;
3395
3396 return s;
3397 }
3398 return NULL;
3399 }
3400
3401 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3402 size_t align, unsigned long flags, void (*ctor)(void *))
3403 {
3404 struct kmem_cache *s;
3405 char *n;
3406
3407 if (WARN_ON(!name))
3408 return NULL;
3409
3410 down_write(&slub_lock);
3411 s = find_mergeable(size, align, flags, name, ctor);
3412 if (s) {
3413 s->refcount++;
3414 /*
3415 * Adjust the object sizes so that we clear
3416 * the complete object on kzalloc.
3417 */
3418 s->objsize = max(s->objsize, (int)size);
3419 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3420
3421 if (sysfs_slab_alias(s, name)) {
3422 s->refcount--;
3423 goto err;
3424 }
3425 up_write(&slub_lock);
3426 return s;
3427 }
3428
3429 n = kstrdup(name, GFP_KERNEL);
3430 if (!n)
3431 goto err;
3432
3433 s = kmalloc(kmem_size, GFP_KERNEL);
3434 if (s) {
3435 if (kmem_cache_open(s, n,
3436 size, align, flags, ctor)) {
3437 list_add(&s->list, &slab_caches);
3438 if (sysfs_slab_add(s)) {
3439 list_del(&s->list);
3440 kfree(n);
3441 kfree(s);
3442 goto err;
3443 }
3444 up_write(&slub_lock);
3445 return s;
3446 }
3447 kfree(n);
3448 kfree(s);
3449 }
3450 err:
3451 up_write(&slub_lock);
3452
3453 if (flags & SLAB_PANIC)
3454 panic("Cannot create slabcache %s\n", name);
3455 else
3456 s = NULL;
3457 return s;
3458 }
3459 EXPORT_SYMBOL(kmem_cache_create);
3460
3461 #ifdef CONFIG_SMP
3462 /*
3463 * Use the cpu notifier to insure that the cpu slabs are flushed when
3464 * necessary.
3465 */
3466 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3467 unsigned long action, void *hcpu)
3468 {
3469 long cpu = (long)hcpu;
3470 struct kmem_cache *s;
3471 unsigned long flags;
3472
3473 switch (action) {
3474 case CPU_UP_CANCELED:
3475 case CPU_UP_CANCELED_FROZEN:
3476 case CPU_DEAD:
3477 case CPU_DEAD_FROZEN:
3478 down_read(&slub_lock);
3479 list_for_each_entry(s, &slab_caches, list) {
3480 local_irq_save(flags);
3481 __flush_cpu_slab(s, cpu);
3482 local_irq_restore(flags);
3483 }
3484 up_read(&slub_lock);
3485 break;
3486 default:
3487 break;
3488 }
3489 return NOTIFY_OK;
3490 }
3491
3492 static struct notifier_block __cpuinitdata slab_notifier = {
3493 .notifier_call = slab_cpuup_callback
3494 };
3495
3496 #endif
3497
3498 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3499 {
3500 struct kmem_cache *s;
3501 void *ret;
3502
3503 if (unlikely(size > SLUB_MAX_SIZE))
3504 return kmalloc_large(size, gfpflags);
3505
3506 s = get_slab(size, gfpflags);
3507
3508 if (unlikely(ZERO_OR_NULL_PTR(s)))
3509 return s;
3510
3511 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3512
3513 /* Honor the call site pointer we recieved. */
3514 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3515
3516 return ret;
3517 }
3518
3519 #ifdef CONFIG_NUMA
3520 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3521 int node, unsigned long caller)
3522 {
3523 struct kmem_cache *s;
3524 void *ret;
3525
3526 if (unlikely(size > SLUB_MAX_SIZE)) {
3527 ret = kmalloc_large_node(size, gfpflags, node);
3528
3529 trace_kmalloc_node(caller, ret,
3530 size, PAGE_SIZE << get_order(size),
3531 gfpflags, node);
3532
3533 return ret;
3534 }
3535
3536 s = get_slab(size, gfpflags);
3537
3538 if (unlikely(ZERO_OR_NULL_PTR(s)))
3539 return s;
3540
3541 ret = slab_alloc(s, gfpflags, node, caller);
3542
3543 /* Honor the call site pointer we recieved. */
3544 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3545
3546 return ret;
3547 }
3548 #endif
3549
3550 #ifdef CONFIG_SYSFS
3551 static int count_inuse(struct page *page)
3552 {
3553 return page->inuse;
3554 }
3555
3556 static int count_total(struct page *page)
3557 {
3558 return page->objects;
3559 }
3560 #endif
3561
3562 #ifdef CONFIG_SLUB_DEBUG
3563 static int validate_slab(struct kmem_cache *s, struct page *page,
3564 unsigned long *map)
3565 {
3566 void *p;
3567 void *addr = page_address(page);
3568
3569 if (!check_slab(s, page) ||
3570 !on_freelist(s, page, NULL))
3571 return 0;
3572
3573 /* Now we know that a valid freelist exists */
3574 bitmap_zero(map, page->objects);
3575
3576 get_map(s, page, map);
3577 for_each_object(p, s, addr, page->objects) {
3578 if (test_bit(slab_index(p, s, addr), map))
3579 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3580 return 0;
3581 }
3582
3583 for_each_object(p, s, addr, page->objects)
3584 if (!test_bit(slab_index(p, s, addr), map))
3585 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3586 return 0;
3587 return 1;
3588 }
3589
3590 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3591 unsigned long *map)
3592 {
3593 if (slab_trylock(page)) {
3594 validate_slab(s, page, map);
3595 slab_unlock(page);
3596 } else
3597 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3598 s->name, page);
3599 }
3600
3601 static int validate_slab_node(struct kmem_cache *s,
3602 struct kmem_cache_node *n, unsigned long *map)
3603 {
3604 unsigned long count = 0;
3605 struct page *page;
3606 unsigned long flags;
3607
3608 spin_lock_irqsave(&n->list_lock, flags);
3609
3610 list_for_each_entry(page, &n->partial, lru) {
3611 validate_slab_slab(s, page, map);
3612 count++;
3613 }
3614 if (count != n->nr_partial)
3615 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3616 "counter=%ld\n", s->name, count, n->nr_partial);
3617
3618 if (!(s->flags & SLAB_STORE_USER))
3619 goto out;
3620
3621 list_for_each_entry(page, &n->full, lru) {
3622 validate_slab_slab(s, page, map);
3623 count++;
3624 }
3625 if (count != atomic_long_read(&n->nr_slabs))
3626 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3627 "counter=%ld\n", s->name, count,
3628 atomic_long_read(&n->nr_slabs));
3629
3630 out:
3631 spin_unlock_irqrestore(&n->list_lock, flags);
3632 return count;
3633 }
3634
3635 static long validate_slab_cache(struct kmem_cache *s)
3636 {
3637 int node;
3638 unsigned long count = 0;
3639 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3640 sizeof(unsigned long), GFP_KERNEL);
3641
3642 if (!map)
3643 return -ENOMEM;
3644
3645 flush_all(s);
3646 for_each_node_state(node, N_NORMAL_MEMORY) {
3647 struct kmem_cache_node *n = get_node(s, node);
3648
3649 count += validate_slab_node(s, n, map);
3650 }
3651 kfree(map);
3652 return count;
3653 }
3654 /*
3655 * Generate lists of code addresses where slabcache objects are allocated
3656 * and freed.
3657 */
3658
3659 struct location {
3660 unsigned long count;
3661 unsigned long addr;
3662 long long sum_time;
3663 long min_time;
3664 long max_time;
3665 long min_pid;
3666 long max_pid;
3667 DECLARE_BITMAP(cpus, NR_CPUS);
3668 nodemask_t nodes;
3669 };
3670
3671 struct loc_track {
3672 unsigned long max;
3673 unsigned long count;
3674 struct location *loc;
3675 };
3676
3677 static void free_loc_track(struct loc_track *t)
3678 {
3679 if (t->max)
3680 free_pages((unsigned long)t->loc,
3681 get_order(sizeof(struct location) * t->max));
3682 }
3683
3684 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3685 {
3686 struct location *l;
3687 int order;
3688
3689 order = get_order(sizeof(struct location) * max);
3690
3691 l = (void *)__get_free_pages(flags, order);
3692 if (!l)
3693 return 0;
3694
3695 if (t->count) {
3696 memcpy(l, t->loc, sizeof(struct location) * t->count);
3697 free_loc_track(t);
3698 }
3699 t->max = max;
3700 t->loc = l;
3701 return 1;
3702 }
3703
3704 static int add_location(struct loc_track *t, struct kmem_cache *s,
3705 const struct track *track)
3706 {
3707 long start, end, pos;
3708 struct location *l;
3709 unsigned long caddr;
3710 unsigned long age = jiffies - track->when;
3711
3712 start = -1;
3713 end = t->count;
3714
3715 for ( ; ; ) {
3716 pos = start + (end - start + 1) / 2;
3717
3718 /*
3719 * There is nothing at "end". If we end up there
3720 * we need to add something to before end.
3721 */
3722 if (pos == end)
3723 break;
3724
3725 caddr = t->loc[pos].addr;
3726 if (track->addr == caddr) {
3727
3728 l = &t->loc[pos];
3729 l->count++;
3730 if (track->when) {
3731 l->sum_time += age;
3732 if (age < l->min_time)
3733 l->min_time = age;
3734 if (age > l->max_time)
3735 l->max_time = age;
3736
3737 if (track->pid < l->min_pid)
3738 l->min_pid = track->pid;
3739 if (track->pid > l->max_pid)
3740 l->max_pid = track->pid;
3741
3742 cpumask_set_cpu(track->cpu,
3743 to_cpumask(l->cpus));
3744 }
3745 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3746 return 1;
3747 }
3748
3749 if (track->addr < caddr)
3750 end = pos;
3751 else
3752 start = pos;
3753 }
3754
3755 /*
3756 * Not found. Insert new tracking element.
3757 */
3758 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3759 return 0;
3760
3761 l = t->loc + pos;
3762 if (pos < t->count)
3763 memmove(l + 1, l,
3764 (t->count - pos) * sizeof(struct location));
3765 t->count++;
3766 l->count = 1;
3767 l->addr = track->addr;
3768 l->sum_time = age;
3769 l->min_time = age;
3770 l->max_time = age;
3771 l->min_pid = track->pid;
3772 l->max_pid = track->pid;
3773 cpumask_clear(to_cpumask(l->cpus));
3774 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3775 nodes_clear(l->nodes);
3776 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3777 return 1;
3778 }
3779
3780 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3781 struct page *page, enum track_item alloc,
3782 unsigned long *map)
3783 {
3784 void *addr = page_address(page);
3785 void *p;
3786
3787 bitmap_zero(map, page->objects);
3788 get_map(s, page, map);
3789
3790 for_each_object(p, s, addr, page->objects)
3791 if (!test_bit(slab_index(p, s, addr), map))
3792 add_location(t, s, get_track(s, p, alloc));
3793 }
3794
3795 static int list_locations(struct kmem_cache *s, char *buf,
3796 enum track_item alloc)
3797 {
3798 int len = 0;
3799 unsigned long i;
3800 struct loc_track t = { 0, 0, NULL };
3801 int node;
3802 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3803 sizeof(unsigned long), GFP_KERNEL);
3804
3805 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3806 GFP_TEMPORARY)) {
3807 kfree(map);
3808 return sprintf(buf, "Out of memory\n");
3809 }
3810 /* Push back cpu slabs */
3811 flush_all(s);
3812
3813 for_each_node_state(node, N_NORMAL_MEMORY) {
3814 struct kmem_cache_node *n = get_node(s, node);
3815 unsigned long flags;
3816 struct page *page;
3817
3818 if (!atomic_long_read(&n->nr_slabs))
3819 continue;
3820
3821 spin_lock_irqsave(&n->list_lock, flags);
3822 list_for_each_entry(page, &n->partial, lru)
3823 process_slab(&t, s, page, alloc, map);
3824 list_for_each_entry(page, &n->full, lru)
3825 process_slab(&t, s, page, alloc, map);
3826 spin_unlock_irqrestore(&n->list_lock, flags);
3827 }
3828
3829 for (i = 0; i < t.count; i++) {
3830 struct location *l = &t.loc[i];
3831
3832 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3833 break;
3834 len += sprintf(buf + len, "%7ld ", l->count);
3835
3836 if (l->addr)
3837 len += sprintf(buf + len, "%pS", (void *)l->addr);
3838 else
3839 len += sprintf(buf + len, "<not-available>");
3840
3841 if (l->sum_time != l->min_time) {
3842 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3843 l->min_time,
3844 (long)div_u64(l->sum_time, l->count),
3845 l->max_time);
3846 } else
3847 len += sprintf(buf + len, " age=%ld",
3848 l->min_time);
3849
3850 if (l->min_pid != l->max_pid)
3851 len += sprintf(buf + len, " pid=%ld-%ld",
3852 l->min_pid, l->max_pid);
3853 else
3854 len += sprintf(buf + len, " pid=%ld",
3855 l->min_pid);
3856
3857 if (num_online_cpus() > 1 &&
3858 !cpumask_empty(to_cpumask(l->cpus)) &&
3859 len < PAGE_SIZE - 60) {
3860 len += sprintf(buf + len, " cpus=");
3861 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3862 to_cpumask(l->cpus));
3863 }
3864
3865 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3866 len < PAGE_SIZE - 60) {
3867 len += sprintf(buf + len, " nodes=");
3868 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3869 l->nodes);
3870 }
3871
3872 len += sprintf(buf + len, "\n");
3873 }
3874
3875 free_loc_track(&t);
3876 kfree(map);
3877 if (!t.count)
3878 len += sprintf(buf, "No data\n");
3879 return len;
3880 }
3881 #endif
3882
3883 #ifdef SLUB_RESILIENCY_TEST
3884 static void resiliency_test(void)
3885 {
3886 u8 *p;
3887
3888 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3889
3890 printk(KERN_ERR "SLUB resiliency testing\n");
3891 printk(KERN_ERR "-----------------------\n");
3892 printk(KERN_ERR "A. Corruption after allocation\n");
3893
3894 p = kzalloc(16, GFP_KERNEL);
3895 p[16] = 0x12;
3896 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3897 " 0x12->0x%p\n\n", p + 16);
3898
3899 validate_slab_cache(kmalloc_caches[4]);
3900
3901 /* Hmmm... The next two are dangerous */
3902 p = kzalloc(32, GFP_KERNEL);
3903 p[32 + sizeof(void *)] = 0x34;
3904 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3905 " 0x34 -> -0x%p\n", p);
3906 printk(KERN_ERR
3907 "If allocated object is overwritten then not detectable\n\n");
3908
3909 validate_slab_cache(kmalloc_caches[5]);
3910 p = kzalloc(64, GFP_KERNEL);
3911 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3912 *p = 0x56;
3913 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3914 p);
3915 printk(KERN_ERR
3916 "If allocated object is overwritten then not detectable\n\n");
3917 validate_slab_cache(kmalloc_caches[6]);
3918
3919 printk(KERN_ERR "\nB. Corruption after free\n");
3920 p = kzalloc(128, GFP_KERNEL);
3921 kfree(p);
3922 *p = 0x78;
3923 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3924 validate_slab_cache(kmalloc_caches[7]);
3925
3926 p = kzalloc(256, GFP_KERNEL);
3927 kfree(p);
3928 p[50] = 0x9a;
3929 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3930 p);
3931 validate_slab_cache(kmalloc_caches[8]);
3932
3933 p = kzalloc(512, GFP_KERNEL);
3934 kfree(p);
3935 p[512] = 0xab;
3936 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3937 validate_slab_cache(kmalloc_caches[9]);
3938 }
3939 #else
3940 #ifdef CONFIG_SYSFS
3941 static void resiliency_test(void) {};
3942 #endif
3943 #endif
3944
3945 #ifdef CONFIG_SYSFS
3946 enum slab_stat_type {
3947 SL_ALL, /* All slabs */
3948 SL_PARTIAL, /* Only partially allocated slabs */
3949 SL_CPU, /* Only slabs used for cpu caches */
3950 SL_OBJECTS, /* Determine allocated objects not slabs */
3951 SL_TOTAL /* Determine object capacity not slabs */
3952 };
3953
3954 #define SO_ALL (1 << SL_ALL)
3955 #define SO_PARTIAL (1 << SL_PARTIAL)
3956 #define SO_CPU (1 << SL_CPU)
3957 #define SO_OBJECTS (1 << SL_OBJECTS)
3958 #define SO_TOTAL (1 << SL_TOTAL)
3959
3960 static ssize_t show_slab_objects(struct kmem_cache *s,
3961 char *buf, unsigned long flags)
3962 {
3963 unsigned long total = 0;
3964 int node;
3965 int x;
3966 unsigned long *nodes;
3967 unsigned long *per_cpu;
3968
3969 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3970 if (!nodes)
3971 return -ENOMEM;
3972 per_cpu = nodes + nr_node_ids;
3973
3974 if (flags & SO_CPU) {
3975 int cpu;
3976
3977 for_each_possible_cpu(cpu) {
3978 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3979
3980 if (!c || c->node < 0)
3981 continue;
3982
3983 if (c->page) {
3984 if (flags & SO_TOTAL)
3985 x = c->page->objects;
3986 else if (flags & SO_OBJECTS)
3987 x = c->page->inuse;
3988 else
3989 x = 1;
3990
3991 total += x;
3992 nodes[c->node] += x;
3993 }
3994 per_cpu[c->node]++;
3995 }
3996 }
3997
3998 lock_memory_hotplug();
3999 #ifdef CONFIG_SLUB_DEBUG
4000 if (flags & SO_ALL) {
4001 for_each_node_state(node, N_NORMAL_MEMORY) {
4002 struct kmem_cache_node *n = get_node(s, node);
4003
4004 if (flags & SO_TOTAL)
4005 x = atomic_long_read(&n->total_objects);
4006 else if (flags & SO_OBJECTS)
4007 x = atomic_long_read(&n->total_objects) -
4008 count_partial(n, count_free);
4009
4010 else
4011 x = atomic_long_read(&n->nr_slabs);
4012 total += x;
4013 nodes[node] += x;
4014 }
4015
4016 } else
4017 #endif
4018 if (flags & SO_PARTIAL) {
4019 for_each_node_state(node, N_NORMAL_MEMORY) {
4020 struct kmem_cache_node *n = get_node(s, node);
4021
4022 if (flags & SO_TOTAL)
4023 x = count_partial(n, count_total);
4024 else if (flags & SO_OBJECTS)
4025 x = count_partial(n, count_inuse);
4026 else
4027 x = n->nr_partial;
4028 total += x;
4029 nodes[node] += x;
4030 }
4031 }
4032 x = sprintf(buf, "%lu", total);
4033 #ifdef CONFIG_NUMA
4034 for_each_node_state(node, N_NORMAL_MEMORY)
4035 if (nodes[node])
4036 x += sprintf(buf + x, " N%d=%lu",
4037 node, nodes[node]);
4038 #endif
4039 unlock_memory_hotplug();
4040 kfree(nodes);
4041 return x + sprintf(buf + x, "\n");
4042 }
4043
4044 #ifdef CONFIG_SLUB_DEBUG
4045 static int any_slab_objects(struct kmem_cache *s)
4046 {
4047 int node;
4048
4049 for_each_online_node(node) {
4050 struct kmem_cache_node *n = get_node(s, node);
4051
4052 if (!n)
4053 continue;
4054
4055 if (atomic_long_read(&n->total_objects))
4056 return 1;
4057 }
4058 return 0;
4059 }
4060 #endif
4061
4062 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4063 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4064
4065 struct slab_attribute {
4066 struct attribute attr;
4067 ssize_t (*show)(struct kmem_cache *s, char *buf);
4068 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4069 };
4070
4071 #define SLAB_ATTR_RO(_name) \
4072 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4073
4074 #define SLAB_ATTR(_name) \
4075 static struct slab_attribute _name##_attr = \
4076 __ATTR(_name, 0644, _name##_show, _name##_store)
4077
4078 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4079 {
4080 return sprintf(buf, "%d\n", s->size);
4081 }
4082 SLAB_ATTR_RO(slab_size);
4083
4084 static ssize_t align_show(struct kmem_cache *s, char *buf)
4085 {
4086 return sprintf(buf, "%d\n", s->align);
4087 }
4088 SLAB_ATTR_RO(align);
4089
4090 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4091 {
4092 return sprintf(buf, "%d\n", s->objsize);
4093 }
4094 SLAB_ATTR_RO(object_size);
4095
4096 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4097 {
4098 return sprintf(buf, "%d\n", oo_objects(s->oo));
4099 }
4100 SLAB_ATTR_RO(objs_per_slab);
4101
4102 static ssize_t order_store(struct kmem_cache *s,
4103 const char *buf, size_t length)
4104 {
4105 unsigned long order;
4106 int err;
4107
4108 err = strict_strtoul(buf, 10, &order);
4109 if (err)
4110 return err;
4111
4112 if (order > slub_max_order || order < slub_min_order)
4113 return -EINVAL;
4114
4115 calculate_sizes(s, order);
4116 return length;
4117 }
4118
4119 static ssize_t order_show(struct kmem_cache *s, char *buf)
4120 {
4121 return sprintf(buf, "%d\n", oo_order(s->oo));
4122 }
4123 SLAB_ATTR(order);
4124
4125 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4126 {
4127 return sprintf(buf, "%lu\n", s->min_partial);
4128 }
4129
4130 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4131 size_t length)
4132 {
4133 unsigned long min;
4134 int err;
4135
4136 err = strict_strtoul(buf, 10, &min);
4137 if (err)
4138 return err;
4139
4140 set_min_partial(s, min);
4141 return length;
4142 }
4143 SLAB_ATTR(min_partial);
4144
4145 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4146 {
4147 if (!s->ctor)
4148 return 0;
4149 return sprintf(buf, "%pS\n", s->ctor);
4150 }
4151 SLAB_ATTR_RO(ctor);
4152
4153 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4154 {
4155 return sprintf(buf, "%d\n", s->refcount - 1);
4156 }
4157 SLAB_ATTR_RO(aliases);
4158
4159 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4160 {
4161 return show_slab_objects(s, buf, SO_PARTIAL);
4162 }
4163 SLAB_ATTR_RO(partial);
4164
4165 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4166 {
4167 return show_slab_objects(s, buf, SO_CPU);
4168 }
4169 SLAB_ATTR_RO(cpu_slabs);
4170
4171 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4172 {
4173 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4174 }
4175 SLAB_ATTR_RO(objects);
4176
4177 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4178 {
4179 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4180 }
4181 SLAB_ATTR_RO(objects_partial);
4182
4183 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4184 {
4185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4186 }
4187
4188 static ssize_t reclaim_account_store(struct kmem_cache *s,
4189 const char *buf, size_t length)
4190 {
4191 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4192 if (buf[0] == '1')
4193 s->flags |= SLAB_RECLAIM_ACCOUNT;
4194 return length;
4195 }
4196 SLAB_ATTR(reclaim_account);
4197
4198 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4199 {
4200 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4201 }
4202 SLAB_ATTR_RO(hwcache_align);
4203
4204 #ifdef CONFIG_ZONE_DMA
4205 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4206 {
4207 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4208 }
4209 SLAB_ATTR_RO(cache_dma);
4210 #endif
4211
4212 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4213 {
4214 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4215 }
4216 SLAB_ATTR_RO(destroy_by_rcu);
4217
4218 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4219 {
4220 return sprintf(buf, "%d\n", s->reserved);
4221 }
4222 SLAB_ATTR_RO(reserved);
4223
4224 #ifdef CONFIG_SLUB_DEBUG
4225 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4226 {
4227 return show_slab_objects(s, buf, SO_ALL);
4228 }
4229 SLAB_ATTR_RO(slabs);
4230
4231 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4232 {
4233 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4234 }
4235 SLAB_ATTR_RO(total_objects);
4236
4237 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4238 {
4239 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4240 }
4241
4242 static ssize_t sanity_checks_store(struct kmem_cache *s,
4243 const char *buf, size_t length)
4244 {
4245 s->flags &= ~SLAB_DEBUG_FREE;
4246 if (buf[0] == '1')
4247 s->flags |= SLAB_DEBUG_FREE;
4248 return length;
4249 }
4250 SLAB_ATTR(sanity_checks);
4251
4252 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4253 {
4254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4255 }
4256
4257 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4258 size_t length)
4259 {
4260 s->flags &= ~SLAB_TRACE;
4261 if (buf[0] == '1')
4262 s->flags |= SLAB_TRACE;
4263 return length;
4264 }
4265 SLAB_ATTR(trace);
4266
4267 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4268 {
4269 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4270 }
4271
4272 static ssize_t red_zone_store(struct kmem_cache *s,
4273 const char *buf, size_t length)
4274 {
4275 if (any_slab_objects(s))
4276 return -EBUSY;
4277
4278 s->flags &= ~SLAB_RED_ZONE;
4279 if (buf[0] == '1')
4280 s->flags |= SLAB_RED_ZONE;
4281 calculate_sizes(s, -1);
4282 return length;
4283 }
4284 SLAB_ATTR(red_zone);
4285
4286 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4287 {
4288 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4289 }
4290
4291 static ssize_t poison_store(struct kmem_cache *s,
4292 const char *buf, size_t length)
4293 {
4294 if (any_slab_objects(s))
4295 return -EBUSY;
4296
4297 s->flags &= ~SLAB_POISON;
4298 if (buf[0] == '1')
4299 s->flags |= SLAB_POISON;
4300 calculate_sizes(s, -1);
4301 return length;
4302 }
4303 SLAB_ATTR(poison);
4304
4305 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4306 {
4307 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4308 }
4309
4310 static ssize_t store_user_store(struct kmem_cache *s,
4311 const char *buf, size_t length)
4312 {
4313 if (any_slab_objects(s))
4314 return -EBUSY;
4315
4316 s->flags &= ~SLAB_STORE_USER;
4317 if (buf[0] == '1')
4318 s->flags |= SLAB_STORE_USER;
4319 calculate_sizes(s, -1);
4320 return length;
4321 }
4322 SLAB_ATTR(store_user);
4323
4324 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4325 {
4326 return 0;
4327 }
4328
4329 static ssize_t validate_store(struct kmem_cache *s,
4330 const char *buf, size_t length)
4331 {
4332 int ret = -EINVAL;
4333
4334 if (buf[0] == '1') {
4335 ret = validate_slab_cache(s);
4336 if (ret >= 0)
4337 ret = length;
4338 }
4339 return ret;
4340 }
4341 SLAB_ATTR(validate);
4342
4343 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4344 {
4345 if (!(s->flags & SLAB_STORE_USER))
4346 return -ENOSYS;
4347 return list_locations(s, buf, TRACK_ALLOC);
4348 }
4349 SLAB_ATTR_RO(alloc_calls);
4350
4351 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4352 {
4353 if (!(s->flags & SLAB_STORE_USER))
4354 return -ENOSYS;
4355 return list_locations(s, buf, TRACK_FREE);
4356 }
4357 SLAB_ATTR_RO(free_calls);
4358 #endif /* CONFIG_SLUB_DEBUG */
4359
4360 #ifdef CONFIG_FAILSLAB
4361 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4362 {
4363 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4364 }
4365
4366 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4367 size_t length)
4368 {
4369 s->flags &= ~SLAB_FAILSLAB;
4370 if (buf[0] == '1')
4371 s->flags |= SLAB_FAILSLAB;
4372 return length;
4373 }
4374 SLAB_ATTR(failslab);
4375 #endif
4376
4377 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4378 {
4379 return 0;
4380 }
4381
4382 static ssize_t shrink_store(struct kmem_cache *s,
4383 const char *buf, size_t length)
4384 {
4385 if (buf[0] == '1') {
4386 int rc = kmem_cache_shrink(s);
4387
4388 if (rc)
4389 return rc;
4390 } else
4391 return -EINVAL;
4392 return length;
4393 }
4394 SLAB_ATTR(shrink);
4395
4396 #ifdef CONFIG_NUMA
4397 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4398 {
4399 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4400 }
4401
4402 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4403 const char *buf, size_t length)
4404 {
4405 unsigned long ratio;
4406 int err;
4407
4408 err = strict_strtoul(buf, 10, &ratio);
4409 if (err)
4410 return err;
4411
4412 if (ratio <= 100)
4413 s->remote_node_defrag_ratio = ratio * 10;
4414
4415 return length;
4416 }
4417 SLAB_ATTR(remote_node_defrag_ratio);
4418 #endif
4419
4420 #ifdef CONFIG_SLUB_STATS
4421 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4422 {
4423 unsigned long sum = 0;
4424 int cpu;
4425 int len;
4426 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4427
4428 if (!data)
4429 return -ENOMEM;
4430
4431 for_each_online_cpu(cpu) {
4432 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4433
4434 data[cpu] = x;
4435 sum += x;
4436 }
4437
4438 len = sprintf(buf, "%lu", sum);
4439
4440 #ifdef CONFIG_SMP
4441 for_each_online_cpu(cpu) {
4442 if (data[cpu] && len < PAGE_SIZE - 20)
4443 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4444 }
4445 #endif
4446 kfree(data);
4447 return len + sprintf(buf + len, "\n");
4448 }
4449
4450 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4451 {
4452 int cpu;
4453
4454 for_each_online_cpu(cpu)
4455 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4456 }
4457
4458 #define STAT_ATTR(si, text) \
4459 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4460 { \
4461 return show_stat(s, buf, si); \
4462 } \
4463 static ssize_t text##_store(struct kmem_cache *s, \
4464 const char *buf, size_t length) \
4465 { \
4466 if (buf[0] != '0') \
4467 return -EINVAL; \
4468 clear_stat(s, si); \
4469 return length; \
4470 } \
4471 SLAB_ATTR(text); \
4472
4473 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4474 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4475 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4476 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4477 STAT_ATTR(FREE_FROZEN, free_frozen);
4478 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4479 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4480 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4481 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4482 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4483 STAT_ATTR(FREE_SLAB, free_slab);
4484 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4485 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4486 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4487 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4488 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4489 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4490 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4491 #endif
4492
4493 static struct attribute *slab_attrs[] = {
4494 &slab_size_attr.attr,
4495 &object_size_attr.attr,
4496 &objs_per_slab_attr.attr,
4497 &order_attr.attr,
4498 &min_partial_attr.attr,
4499 &objects_attr.attr,
4500 &objects_partial_attr.attr,
4501 &partial_attr.attr,
4502 &cpu_slabs_attr.attr,
4503 &ctor_attr.attr,
4504 &aliases_attr.attr,
4505 &align_attr.attr,
4506 &hwcache_align_attr.attr,
4507 &reclaim_account_attr.attr,
4508 &destroy_by_rcu_attr.attr,
4509 &shrink_attr.attr,
4510 &reserved_attr.attr,
4511 #ifdef CONFIG_SLUB_DEBUG
4512 &total_objects_attr.attr,
4513 &slabs_attr.attr,
4514 &sanity_checks_attr.attr,
4515 &trace_attr.attr,
4516 &red_zone_attr.attr,
4517 &poison_attr.attr,
4518 &store_user_attr.attr,
4519 &validate_attr.attr,
4520 &alloc_calls_attr.attr,
4521 &free_calls_attr.attr,
4522 #endif
4523 #ifdef CONFIG_ZONE_DMA
4524 &cache_dma_attr.attr,
4525 #endif
4526 #ifdef CONFIG_NUMA
4527 &remote_node_defrag_ratio_attr.attr,
4528 #endif
4529 #ifdef CONFIG_SLUB_STATS
4530 &alloc_fastpath_attr.attr,
4531 &alloc_slowpath_attr.attr,
4532 &free_fastpath_attr.attr,
4533 &free_slowpath_attr.attr,
4534 &free_frozen_attr.attr,
4535 &free_add_partial_attr.attr,
4536 &free_remove_partial_attr.attr,
4537 &alloc_from_partial_attr.attr,
4538 &alloc_slab_attr.attr,
4539 &alloc_refill_attr.attr,
4540 &free_slab_attr.attr,
4541 &cpuslab_flush_attr.attr,
4542 &deactivate_full_attr.attr,
4543 &deactivate_empty_attr.attr,
4544 &deactivate_to_head_attr.attr,
4545 &deactivate_to_tail_attr.attr,
4546 &deactivate_remote_frees_attr.attr,
4547 &order_fallback_attr.attr,
4548 #endif
4549 #ifdef CONFIG_FAILSLAB
4550 &failslab_attr.attr,
4551 #endif
4552
4553 NULL
4554 };
4555
4556 static struct attribute_group slab_attr_group = {
4557 .attrs = slab_attrs,
4558 };
4559
4560 static ssize_t slab_attr_show(struct kobject *kobj,
4561 struct attribute *attr,
4562 char *buf)
4563 {
4564 struct slab_attribute *attribute;
4565 struct kmem_cache *s;
4566 int err;
4567
4568 attribute = to_slab_attr(attr);
4569 s = to_slab(kobj);
4570
4571 if (!attribute->show)
4572 return -EIO;
4573
4574 err = attribute->show(s, buf);
4575
4576 return err;
4577 }
4578
4579 static ssize_t slab_attr_store(struct kobject *kobj,
4580 struct attribute *attr,
4581 const char *buf, size_t len)
4582 {
4583 struct slab_attribute *attribute;
4584 struct kmem_cache *s;
4585 int err;
4586
4587 attribute = to_slab_attr(attr);
4588 s = to_slab(kobj);
4589
4590 if (!attribute->store)
4591 return -EIO;
4592
4593 err = attribute->store(s, buf, len);
4594
4595 return err;
4596 }
4597
4598 static void kmem_cache_release(struct kobject *kobj)
4599 {
4600 struct kmem_cache *s = to_slab(kobj);
4601
4602 kfree(s->name);
4603 kfree(s);
4604 }
4605
4606 static const struct sysfs_ops slab_sysfs_ops = {
4607 .show = slab_attr_show,
4608 .store = slab_attr_store,
4609 };
4610
4611 static struct kobj_type slab_ktype = {
4612 .sysfs_ops = &slab_sysfs_ops,
4613 .release = kmem_cache_release
4614 };
4615
4616 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4617 {
4618 struct kobj_type *ktype = get_ktype(kobj);
4619
4620 if (ktype == &slab_ktype)
4621 return 1;
4622 return 0;
4623 }
4624
4625 static const struct kset_uevent_ops slab_uevent_ops = {
4626 .filter = uevent_filter,
4627 };
4628
4629 static struct kset *slab_kset;
4630
4631 #define ID_STR_LENGTH 64
4632
4633 /* Create a unique string id for a slab cache:
4634 *
4635 * Format :[flags-]size
4636 */
4637 static char *create_unique_id(struct kmem_cache *s)
4638 {
4639 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4640 char *p = name;
4641
4642 BUG_ON(!name);
4643
4644 *p++ = ':';
4645 /*
4646 * First flags affecting slabcache operations. We will only
4647 * get here for aliasable slabs so we do not need to support
4648 * too many flags. The flags here must cover all flags that
4649 * are matched during merging to guarantee that the id is
4650 * unique.
4651 */
4652 if (s->flags & SLAB_CACHE_DMA)
4653 *p++ = 'd';
4654 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4655 *p++ = 'a';
4656 if (s->flags & SLAB_DEBUG_FREE)
4657 *p++ = 'F';
4658 if (!(s->flags & SLAB_NOTRACK))
4659 *p++ = 't';
4660 if (p != name + 1)
4661 *p++ = '-';
4662 p += sprintf(p, "%07d", s->size);
4663 BUG_ON(p > name + ID_STR_LENGTH - 1);
4664 return name;
4665 }
4666
4667 static int sysfs_slab_add(struct kmem_cache *s)
4668 {
4669 int err;
4670 const char *name;
4671 int unmergeable;
4672
4673 if (slab_state < SYSFS)
4674 /* Defer until later */
4675 return 0;
4676
4677 unmergeable = slab_unmergeable(s);
4678 if (unmergeable) {
4679 /*
4680 * Slabcache can never be merged so we can use the name proper.
4681 * This is typically the case for debug situations. In that
4682 * case we can catch duplicate names easily.
4683 */
4684 sysfs_remove_link(&slab_kset->kobj, s->name);
4685 name = s->name;
4686 } else {
4687 /*
4688 * Create a unique name for the slab as a target
4689 * for the symlinks.
4690 */
4691 name = create_unique_id(s);
4692 }
4693
4694 s->kobj.kset = slab_kset;
4695 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4696 if (err) {
4697 kobject_put(&s->kobj);
4698 return err;
4699 }
4700
4701 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4702 if (err) {
4703 kobject_del(&s->kobj);
4704 kobject_put(&s->kobj);
4705 return err;
4706 }
4707 kobject_uevent(&s->kobj, KOBJ_ADD);
4708 if (!unmergeable) {
4709 /* Setup first alias */
4710 sysfs_slab_alias(s, s->name);
4711 kfree(name);
4712 }
4713 return 0;
4714 }
4715
4716 static void sysfs_slab_remove(struct kmem_cache *s)
4717 {
4718 if (slab_state < SYSFS)
4719 /*
4720 * Sysfs has not been setup yet so no need to remove the
4721 * cache from sysfs.
4722 */
4723 return;
4724
4725 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4726 kobject_del(&s->kobj);
4727 kobject_put(&s->kobj);
4728 }
4729
4730 /*
4731 * Need to buffer aliases during bootup until sysfs becomes
4732 * available lest we lose that information.
4733 */
4734 struct saved_alias {
4735 struct kmem_cache *s;
4736 const char *name;
4737 struct saved_alias *next;
4738 };
4739
4740 static struct saved_alias *alias_list;
4741
4742 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4743 {
4744 struct saved_alias *al;
4745
4746 if (slab_state == SYSFS) {
4747 /*
4748 * If we have a leftover link then remove it.
4749 */
4750 sysfs_remove_link(&slab_kset->kobj, name);
4751 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4752 }
4753
4754 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4755 if (!al)
4756 return -ENOMEM;
4757
4758 al->s = s;
4759 al->name = name;
4760 al->next = alias_list;
4761 alias_list = al;
4762 return 0;
4763 }
4764
4765 static int __init slab_sysfs_init(void)
4766 {
4767 struct kmem_cache *s;
4768 int err;
4769
4770 down_write(&slub_lock);
4771
4772 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4773 if (!slab_kset) {
4774 up_write(&slub_lock);
4775 printk(KERN_ERR "Cannot register slab subsystem.\n");
4776 return -ENOSYS;
4777 }
4778
4779 slab_state = SYSFS;
4780
4781 list_for_each_entry(s, &slab_caches, list) {
4782 err = sysfs_slab_add(s);
4783 if (err)
4784 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4785 " to sysfs\n", s->name);
4786 }
4787
4788 while (alias_list) {
4789 struct saved_alias *al = alias_list;
4790
4791 alias_list = alias_list->next;
4792 err = sysfs_slab_alias(al->s, al->name);
4793 if (err)
4794 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4795 " %s to sysfs\n", s->name);
4796 kfree(al);
4797 }
4798
4799 up_write(&slub_lock);
4800 resiliency_test();
4801 return 0;
4802 }
4803
4804 __initcall(slab_sysfs_init);
4805 #endif /* CONFIG_SYSFS */
4806
4807 /*
4808 * The /proc/slabinfo ABI
4809 */
4810 #ifdef CONFIG_SLABINFO
4811 static void print_slabinfo_header(struct seq_file *m)
4812 {
4813 seq_puts(m, "slabinfo - version: 2.1\n");
4814 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4815 "<objperslab> <pagesperslab>");
4816 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4817 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4818 seq_putc(m, '\n');
4819 }
4820
4821 static void *s_start(struct seq_file *m, loff_t *pos)
4822 {
4823 loff_t n = *pos;
4824
4825 down_read(&slub_lock);
4826 if (!n)
4827 print_slabinfo_header(m);
4828
4829 return seq_list_start(&slab_caches, *pos);
4830 }
4831
4832 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4833 {
4834 return seq_list_next(p, &slab_caches, pos);
4835 }
4836
4837 static void s_stop(struct seq_file *m, void *p)
4838 {
4839 up_read(&slub_lock);
4840 }
4841
4842 static int s_show(struct seq_file *m, void *p)
4843 {
4844 unsigned long nr_partials = 0;
4845 unsigned long nr_slabs = 0;
4846 unsigned long nr_inuse = 0;
4847 unsigned long nr_objs = 0;
4848 unsigned long nr_free = 0;
4849 struct kmem_cache *s;
4850 int node;
4851
4852 s = list_entry(p, struct kmem_cache, list);
4853
4854 for_each_online_node(node) {
4855 struct kmem_cache_node *n = get_node(s, node);
4856
4857 if (!n)
4858 continue;
4859
4860 nr_partials += n->nr_partial;
4861 nr_slabs += atomic_long_read(&n->nr_slabs);
4862 nr_objs += atomic_long_read(&n->total_objects);
4863 nr_free += count_partial(n, count_free);
4864 }
4865
4866 nr_inuse = nr_objs - nr_free;
4867
4868 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4869 nr_objs, s->size, oo_objects(s->oo),
4870 (1 << oo_order(s->oo)));
4871 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4872 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4873 0UL);
4874 seq_putc(m, '\n');
4875 return 0;
4876 }
4877
4878 static const struct seq_operations slabinfo_op = {
4879 .start = s_start,
4880 .next = s_next,
4881 .stop = s_stop,
4882 .show = s_show,
4883 };
4884
4885 static int slabinfo_open(struct inode *inode, struct file *file)
4886 {
4887 return seq_open(file, &slabinfo_op);
4888 }
4889
4890 static const struct file_operations proc_slabinfo_operations = {
4891 .open = slabinfo_open,
4892 .read = seq_read,
4893 .llseek = seq_lseek,
4894 .release = seq_release,
4895 };
4896
4897 static int __init slab_proc_init(void)
4898 {
4899 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4900 return 0;
4901 }
4902 module_init(slab_proc_init);
4903 #endif /* CONFIG_SLABINFO */
This page took 0.186939 seconds and 5 git commands to generate.