Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
35
36 #include <trace/events/kmem.h>
37
38 #include "internal.h"
39
40 /*
41 * Lock order:
42 * 1. slab_mutex (Global Mutex)
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
45 *
46 * slab_mutex
47 *
48 * The role of the slab_mutex is to protect the list of all the slabs
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
85 * freed then the slab will show up again on the partial lists.
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
107 * freelist that allows lockless access to
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
113 * the fast path and disables lockless freelists.
114 */
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void sysfs_slab_remove(struct kmem_cache *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210
211 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
212 #endif
213
214 static inline void stat(const struct kmem_cache *s, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 __this_cpu_inc(s->cpu_slab->stat[si]);
218 #endif
219 }
220
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226 {
227 return s->node[node];
228 }
229
230 /* Verify that a pointer has an address that is valid within a slab page */
231 static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233 {
234 void *base;
235
236 if (!object)
237 return 1;
238
239 base = page_address(page);
240 if (object < base || object >= base + page->objects * s->size ||
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246 }
247
248 static inline void *get_freepointer(struct kmem_cache *s, void *object)
249 {
250 return *(void **)(object + s->offset);
251 }
252
253 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254 {
255 prefetch(object + s->offset);
256 }
257
258 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259 {
260 void *p;
261
262 #ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264 #else
265 p = get_freepointer(s, object);
266 #endif
267 return p;
268 }
269
270 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271 {
272 *(void **)(object + s->offset) = fp;
273 }
274
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 __p += (__s)->size)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 /* Interrupts must be disabled (for the fallback code to work right) */
349 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353 {
354 VM_BUG_ON(!irqs_disabled());
355 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357 if (s->flags & __CMPXCHG_DOUBLE) {
358 if (cmpxchg_double(&page->freelist, &page->counters,
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363 #endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378 #ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380 #endif
381
382 return 0;
383 }
384
385 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389 {
390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392 if (s->flags & __CMPXCHG_DOUBLE) {
393 if (cmpxchg_double(&page->freelist, &page->counters,
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398 #endif
399 {
400 unsigned long flags;
401
402 local_irq_save(flags);
403 slab_lock(page);
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
407 slab_unlock(page);
408 local_irq_restore(flags);
409 return 1;
410 }
411 slab_unlock(page);
412 local_irq_restore(flags);
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418 #ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420 #endif
421
422 return 0;
423 }
424
425 #ifdef CONFIG_SLUB_DEBUG
426 /*
427 * Determine a map of object in use on a page.
428 *
429 * Node listlock must be held to guarantee that the page does
430 * not vanish from under us.
431 */
432 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433 {
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439 }
440
441 /*
442 * Debug settings:
443 */
444 #ifdef CONFIG_SLUB_DEBUG_ON
445 static int slub_debug = DEBUG_DEFAULT_FLAGS;
446 #else
447 static int slub_debug;
448 #endif
449
450 static char *slub_debug_slabs;
451 static int disable_higher_order_debug;
452
453 /*
454 * Object debugging
455 */
456 static void print_section(char *text, u8 *addr, unsigned int length)
457 {
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
460 }
461
462 static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464 {
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473 }
474
475 static void set_track(struct kmem_cache *s, void *object,
476 enum track_item alloc, unsigned long addr)
477 {
478 struct track *p = get_track(s, object, alloc);
479
480 if (addr) {
481 #ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498 #endif
499 p->addr = addr;
500 p->cpu = smp_processor_id();
501 p->pid = current->pid;
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505 }
506
507 static void init_tracking(struct kmem_cache *s, void *object)
508 {
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
514 }
515
516 static void print_track(const char *s, struct track *t)
517 {
518 if (!t->addr)
519 return;
520
521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
523 #ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532 #endif
533 }
534
535 static void print_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542 }
543
544 static void print_page_info(struct page *page)
545 {
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
548
549 }
550
551 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552 {
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
564
565 add_taint(TAINT_BAD_PAGE);
566 }
567
568 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569 {
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577 }
578
579 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
580 {
581 unsigned int off; /* Offset of last byte */
582 u8 *addr = page_address(page);
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
592 print_section("Bytes b4 ", p - 16, 16);
593
594 print_section("Object ", p, min_t(unsigned long, s->object_size,
595 PAGE_SIZE));
596 if (s->flags & SLAB_RED_ZONE)
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
599
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
605 if (s->flags & SLAB_STORE_USER)
606 off += 2 * sizeof(struct track);
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
610 print_section("Padding ", p + off, s->size - off);
611
612 dump_stack();
613 }
614
615 static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617 {
618 slab_bug(s, "%s", reason);
619 print_trailer(s, page, object);
620 }
621
622 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
623 {
624 va_list args;
625 char buf[100];
626
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
629 va_end(args);
630 slab_bug(s, "%s", buf);
631 print_page_info(page);
632 dump_stack();
633 }
634
635 static void init_object(struct kmem_cache *s, void *object, u8 val)
636 {
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
645 memset(p + s->object_size, val, s->inuse - s->object_size);
646 }
647
648 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650 {
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653 }
654
655 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
657 u8 *start, unsigned int value, unsigned int bytes)
658 {
659 u8 *fault;
660 u8 *end;
661
662 fault = memchr_inv(start, value, bytes);
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
677 }
678
679 /*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
686 *
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
690 * object + s->object_size
691 * Padding to reach word boundary. This is also used for Redzoning.
692 * Padding is extended by another word if Redzoning is enabled and
693 * object_size == inuse.
694 *
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
699 * Meta data starts here.
700 *
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
703 * C. Padding to reach required alignment boundary or at mininum
704 * one word if debugging is on to be able to detect writes
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
708 *
709 * object + s->size
710 * Nothing is used beyond s->size.
711 *
712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
713 * ignored. And therefore no slab options that rely on these boundaries
714 * may be used with merged slabcaches.
715 */
716
717 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718 {
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
734 }
735
736 /* Check the pad bytes at the end of a slab page */
737 static int slab_pad_check(struct kmem_cache *s, struct page *page)
738 {
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
748 start = page_address(page);
749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
750 end = start + length;
751 remainder = length % s->size;
752 if (!remainder)
753 return 1;
754
755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
762 print_section("Padding ", end - remainder, remainder);
763
764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
765 return 0;
766 }
767
768 static int check_object(struct kmem_cache *s, struct page *page,
769 void *object, u8 val)
770 {
771 u8 *p = object;
772 u8 *endobject = object + s->object_size;
773
774 if (s->flags & SLAB_RED_ZONE) {
775 if (!check_bytes_and_report(s, page, object, "Redzone",
776 endobject, val, s->inuse - s->object_size))
777 return 0;
778 } else {
779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
780 check_bytes_and_report(s, page, p, "Alignment padding",
781 endobject, POISON_INUSE, s->inuse - s->object_size);
782 }
783 }
784
785 if (s->flags & SLAB_POISON) {
786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
787 (!check_bytes_and_report(s, page, p, "Poison", p,
788 POISON_FREE, s->object_size - 1) ||
789 !check_bytes_and_report(s, page, p, "Poison",
790 p + s->object_size - 1, POISON_END, 1)))
791 return 0;
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
798 if (!s->offset && val == SLUB_RED_ACTIVE)
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
809 * No choice but to zap it and thus lose the remainder
810 * of the free objects in this slab. May cause
811 * another error because the object count is now wrong.
812 */
813 set_freepointer(s, p, NULL);
814 return 0;
815 }
816 return 1;
817 }
818
819 static int check_slab(struct kmem_cache *s, struct page *page)
820 {
821 int maxobj;
822
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
826 slab_err(s, page, "Not a valid slab page");
827 return 0;
828 }
829
830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
837 slab_err(s, page, "inuse %u > max %u",
838 s->name, page->inuse, page->objects);
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844 }
845
846 /*
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
849 */
850 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851 {
852 int nr = 0;
853 void *fp;
854 void *object = NULL;
855 unsigned long max_objects;
856
857 fp = page->freelist;
858 while (fp && nr <= page->objects) {
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
865 set_freepointer(s, object, NULL);
866 break;
867 } else {
868 slab_err(s, page, "Freepointer corrupt");
869 page->freelist = NULL;
870 page->inuse = page->objects;
871 slab_fix(s, "Freelist cleared");
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
891 if (page->inuse != page->objects - nr) {
892 slab_err(s, page, "Wrong object count. Counter is %d but "
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
895 slab_fix(s, "Object count adjusted.");
896 }
897 return search == NULL;
898 }
899
900 static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
902 {
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
911 print_section("Object ", (void *)object, s->object_size);
912
913 dump_stack();
914 }
915 }
916
917 /*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922 {
923 flags &= gfp_allowed_mask;
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
927 return should_failslab(s->object_size, flags, s->flags);
928 }
929
930 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931 {
932 flags &= gfp_allowed_mask;
933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
935 }
936
937 static inline void slab_free_hook(struct kmem_cache *s, void *x)
938 {
939 kmemleak_free_recursive(x, s->flags);
940
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
953 local_irq_restore(flags);
954 }
955 #endif
956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
957 debug_check_no_obj_freed(x, s->object_size);
958 }
959
960 /*
961 * Tracking of fully allocated slabs for debugging purposes.
962 *
963 * list_lock must be held.
964 */
965 static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
967 {
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
971 list_add(&page->lru, &n->full);
972 }
973
974 /*
975 * list_lock must be held.
976 */
977 static void remove_full(struct kmem_cache *s, struct page *page)
978 {
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (n) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1033 void *object, unsigned long addr)
1034 {
1035 if (!check_slab(s, page))
1036 goto bad;
1037
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
1040 goto bad;
1041 }
1042
1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1044 goto bad;
1045
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
1050 init_object(s, object, SLUB_RED_ACTIVE);
1051 return 1;
1052
1053 bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
1058 * as used avoids touching the remaining objects.
1059 */
1060 slab_fix(s, "Marking all objects used");
1061 page->inuse = page->objects;
1062 page->freelist = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
1070 {
1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072
1073 spin_lock_irqsave(&n->list_lock, *flags);
1074 slab_lock(page);
1075
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
1085 object_err(s, page, object, "Object already free");
1086 goto fail;
1087 }
1088
1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1090 goto out;
1091
1092 if (unlikely(s != page->slab_cache)) {
1093 if (!PageSlab(page)) {
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1096 } else if (!page->slab_cache) {
1097 printk(KERN_ERR
1098 "SLUB <none>: no slab for object 0x%p.\n",
1099 object);
1100 dump_stack();
1101 } else
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
1104 goto fail;
1105 }
1106
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 slab_unlock(page);
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
1118
1119 fail:
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
1122 slab_fix(s, "Object at 0x%p not freed", object);
1123 return NULL;
1124 }
1125
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
1161 for (; *str && *str != ','; str++) {
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
1183 "unknown. skipped\n", *str);
1184 }
1185 }
1186
1187 check_slabs:
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
1190 out:
1191 return 1;
1192 }
1193
1194 __setup("slub_debug", setup_slub_debug);
1195
1196 static unsigned long kmem_cache_flags(unsigned long object_size,
1197 unsigned long flags, const char *name,
1198 void (*ctor)(void *))
1199 {
1200 /*
1201 * Enable debugging if selected on the kernel commandline.
1202 */
1203 if (slub_debug && (!slub_debug_slabs ||
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
1206
1207 return flags;
1208 }
1209 #else
1210 static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
1212
1213 static inline int alloc_debug_processing(struct kmem_cache *s,
1214 struct page *page, void *object, unsigned long addr) { return 0; }
1215
1216 static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
1219
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 unsigned long flags, const char *name,
1229 void (*ctor)(void *))
1230 {
1231 return flags;
1232 }
1233 #define slub_debug 0
1234
1235 #define disable_higher_order_debug 0
1236
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
1254 #endif /* CONFIG_SLUB_DEBUG */
1255
1256 /*
1257 * Slab allocation and freeing
1258 */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261 {
1262 int order = oo_order(oo);
1263
1264 flags |= __GFP_NOTRACK;
1265
1266 if (node == NUMA_NO_NODE)
1267 return alloc_pages(flags, order);
1268 else
1269 return alloc_pages_exact_node(node, flags, order);
1270 }
1271
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 struct page *page;
1275 struct kmem_cache_order_objects oo = s->oo;
1276 gfp_t alloc_gfp;
1277
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
1283 flags |= s->allocflags;
1284
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
1299
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
1302 }
1303
1304 if (kmemcheck_enabled && page
1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
1318 }
1319
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
1325 page->objects = oo_objects(oo);
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 1 << oo_order(oo));
1330
1331 return page;
1332 }
1333
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336 {
1337 setup_object_debug(s, page, object);
1338 if (unlikely(s->ctor))
1339 s->ctor(object);
1340 }
1341
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 struct page *page;
1345 void *start;
1346 void *last;
1347 void *p;
1348 int order;
1349
1350 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1351
1352 page = allocate_slab(s,
1353 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1354 if (!page)
1355 goto out;
1356
1357 order = compound_order(page);
1358 inc_slabs_node(s, page_to_nid(page), page->objects);
1359 memcg_bind_pages(s, order);
1360 page->slab_cache = s;
1361 __SetPageSlab(page);
1362 if (page->pfmemalloc)
1363 SetPageSlabPfmemalloc(page);
1364
1365 start = page_address(page);
1366
1367 if (unlikely(s->flags & SLAB_POISON))
1368 memset(start, POISON_INUSE, PAGE_SIZE << order);
1369
1370 last = start;
1371 for_each_object(p, s, start, page->objects) {
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1374 last = p;
1375 }
1376 setup_object(s, page, last);
1377 set_freepointer(s, last, NULL);
1378
1379 page->freelist = start;
1380 page->inuse = page->objects;
1381 page->frozen = 1;
1382 out:
1383 return page;
1384 }
1385
1386 static void __free_slab(struct kmem_cache *s, struct page *page)
1387 {
1388 int order = compound_order(page);
1389 int pages = 1 << order;
1390
1391 if (kmem_cache_debug(s)) {
1392 void *p;
1393
1394 slab_pad_check(s, page);
1395 for_each_object(p, s, page_address(page),
1396 page->objects)
1397 check_object(s, page, p, SLUB_RED_INACTIVE);
1398 }
1399
1400 kmemcheck_free_shadow(page, compound_order(page));
1401
1402 mod_zone_page_state(page_zone(page),
1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1405 -pages);
1406
1407 __ClearPageSlabPfmemalloc(page);
1408 __ClearPageSlab(page);
1409
1410 memcg_release_pages(s, order);
1411 reset_page_mapcount(page);
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
1414 __free_memcg_kmem_pages(page, order);
1415 }
1416
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 struct page *page;
1423
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1429 __free_slab(page->slab_cache, page);
1430 }
1431
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453 }
1454
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 dec_slabs_node(s, page_to_nid(page), page->objects);
1458 free_slab(s, page);
1459 }
1460
1461 /*
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
1465 */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 struct page *page, int tail)
1468 {
1469 n->nr_partial++;
1470 if (tail == DEACTIVATE_TO_TAIL)
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
1474 }
1475
1476 /*
1477 * list_lock must be held.
1478 */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 struct page *page)
1481 {
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484 }
1485
1486 /*
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
1489 *
1490 * Returns a list of objects or NULL if it fails.
1491 *
1492 * Must hold list_lock since we modify the partial list.
1493 */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 struct kmem_cache_node *n, struct page *page,
1496 int mode)
1497 {
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
1510 if (mode) {
1511 new.inuse = page->objects;
1512 new.freelist = NULL;
1513 } else {
1514 new.freelist = freelist;
1515 }
1516
1517 VM_BUG_ON(new.frozen);
1518 new.frozen = 1;
1519
1520 if (!__cmpxchg_double_slab(s, page,
1521 freelist, counters,
1522 new.freelist, new.counters,
1523 "acquire_slab"))
1524 return NULL;
1525
1526 remove_partial(n, page);
1527 WARN_ON(!freelist);
1528 return freelist;
1529 }
1530
1531 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1532 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1533
1534 /*
1535 * Try to allocate a partial slab from a specific node.
1536 */
1537 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1538 struct kmem_cache_cpu *c, gfp_t flags)
1539 {
1540 struct page *page, *page2;
1541 void *object = NULL;
1542
1543 /*
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
1546 * partial slab and there is none available then get_partials()
1547 * will return NULL.
1548 */
1549 if (!n || !n->nr_partial)
1550 return NULL;
1551
1552 spin_lock(&n->list_lock);
1553 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554 void *t;
1555 int available;
1556
1557 if (!pfmemalloc_match(page, flags))
1558 continue;
1559
1560 t = acquire_slab(s, n, page, object == NULL);
1561 if (!t)
1562 break;
1563
1564 if (!object) {
1565 c->page = page;
1566 stat(s, ALLOC_FROM_PARTIAL);
1567 object = t;
1568 available = page->objects - page->inuse;
1569 } else {
1570 available = put_cpu_partial(s, page, 0);
1571 stat(s, CPU_PARTIAL_NODE);
1572 }
1573 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1574 break;
1575
1576 }
1577 spin_unlock(&n->list_lock);
1578 return object;
1579 }
1580
1581 /*
1582 * Get a page from somewhere. Search in increasing NUMA distances.
1583 */
1584 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1585 struct kmem_cache_cpu *c)
1586 {
1587 #ifdef CONFIG_NUMA
1588 struct zonelist *zonelist;
1589 struct zoneref *z;
1590 struct zone *zone;
1591 enum zone_type high_zoneidx = gfp_zone(flags);
1592 void *object;
1593 unsigned int cpuset_mems_cookie;
1594
1595 /*
1596 * The defrag ratio allows a configuration of the tradeoffs between
1597 * inter node defragmentation and node local allocations. A lower
1598 * defrag_ratio increases the tendency to do local allocations
1599 * instead of attempting to obtain partial slabs from other nodes.
1600 *
1601 * If the defrag_ratio is set to 0 then kmalloc() always
1602 * returns node local objects. If the ratio is higher then kmalloc()
1603 * may return off node objects because partial slabs are obtained
1604 * from other nodes and filled up.
1605 *
1606 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1607 * defrag_ratio = 1000) then every (well almost) allocation will
1608 * first attempt to defrag slab caches on other nodes. This means
1609 * scanning over all nodes to look for partial slabs which may be
1610 * expensive if we do it every time we are trying to find a slab
1611 * with available objects.
1612 */
1613 if (!s->remote_node_defrag_ratio ||
1614 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1615 return NULL;
1616
1617 do {
1618 cpuset_mems_cookie = get_mems_allowed();
1619 zonelist = node_zonelist(slab_node(), flags);
1620 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1621 struct kmem_cache_node *n;
1622
1623 n = get_node(s, zone_to_nid(zone));
1624
1625 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1626 n->nr_partial > s->min_partial) {
1627 object = get_partial_node(s, n, c, flags);
1628 if (object) {
1629 /*
1630 * Return the object even if
1631 * put_mems_allowed indicated that
1632 * the cpuset mems_allowed was
1633 * updated in parallel. It's a
1634 * harmless race between the alloc
1635 * and the cpuset update.
1636 */
1637 put_mems_allowed(cpuset_mems_cookie);
1638 return object;
1639 }
1640 }
1641 }
1642 } while (!put_mems_allowed(cpuset_mems_cookie));
1643 #endif
1644 return NULL;
1645 }
1646
1647 /*
1648 * Get a partial page, lock it and return it.
1649 */
1650 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1651 struct kmem_cache_cpu *c)
1652 {
1653 void *object;
1654 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1655
1656 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1657 if (object || node != NUMA_NO_NODE)
1658 return object;
1659
1660 return get_any_partial(s, flags, c);
1661 }
1662
1663 #ifdef CONFIG_PREEMPT
1664 /*
1665 * Calculate the next globally unique transaction for disambiguiation
1666 * during cmpxchg. The transactions start with the cpu number and are then
1667 * incremented by CONFIG_NR_CPUS.
1668 */
1669 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1670 #else
1671 /*
1672 * No preemption supported therefore also no need to check for
1673 * different cpus.
1674 */
1675 #define TID_STEP 1
1676 #endif
1677
1678 static inline unsigned long next_tid(unsigned long tid)
1679 {
1680 return tid + TID_STEP;
1681 }
1682
1683 static inline unsigned int tid_to_cpu(unsigned long tid)
1684 {
1685 return tid % TID_STEP;
1686 }
1687
1688 static inline unsigned long tid_to_event(unsigned long tid)
1689 {
1690 return tid / TID_STEP;
1691 }
1692
1693 static inline unsigned int init_tid(int cpu)
1694 {
1695 return cpu;
1696 }
1697
1698 static inline void note_cmpxchg_failure(const char *n,
1699 const struct kmem_cache *s, unsigned long tid)
1700 {
1701 #ifdef SLUB_DEBUG_CMPXCHG
1702 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1703
1704 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1705
1706 #ifdef CONFIG_PREEMPT
1707 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1708 printk("due to cpu change %d -> %d\n",
1709 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1710 else
1711 #endif
1712 if (tid_to_event(tid) != tid_to_event(actual_tid))
1713 printk("due to cpu running other code. Event %ld->%ld\n",
1714 tid_to_event(tid), tid_to_event(actual_tid));
1715 else
1716 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1717 actual_tid, tid, next_tid(tid));
1718 #endif
1719 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1720 }
1721
1722 static void init_kmem_cache_cpus(struct kmem_cache *s)
1723 {
1724 int cpu;
1725
1726 for_each_possible_cpu(cpu)
1727 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1728 }
1729
1730 /*
1731 * Remove the cpu slab
1732 */
1733 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1734 {
1735 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1736 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1737 int lock = 0;
1738 enum slab_modes l = M_NONE, m = M_NONE;
1739 void *nextfree;
1740 int tail = DEACTIVATE_TO_HEAD;
1741 struct page new;
1742 struct page old;
1743
1744 if (page->freelist) {
1745 stat(s, DEACTIVATE_REMOTE_FREES);
1746 tail = DEACTIVATE_TO_TAIL;
1747 }
1748
1749 /*
1750 * Stage one: Free all available per cpu objects back
1751 * to the page freelist while it is still frozen. Leave the
1752 * last one.
1753 *
1754 * There is no need to take the list->lock because the page
1755 * is still frozen.
1756 */
1757 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1758 void *prior;
1759 unsigned long counters;
1760
1761 do {
1762 prior = page->freelist;
1763 counters = page->counters;
1764 set_freepointer(s, freelist, prior);
1765 new.counters = counters;
1766 new.inuse--;
1767 VM_BUG_ON(!new.frozen);
1768
1769 } while (!__cmpxchg_double_slab(s, page,
1770 prior, counters,
1771 freelist, new.counters,
1772 "drain percpu freelist"));
1773
1774 freelist = nextfree;
1775 }
1776
1777 /*
1778 * Stage two: Ensure that the page is unfrozen while the
1779 * list presence reflects the actual number of objects
1780 * during unfreeze.
1781 *
1782 * We setup the list membership and then perform a cmpxchg
1783 * with the count. If there is a mismatch then the page
1784 * is not unfrozen but the page is on the wrong list.
1785 *
1786 * Then we restart the process which may have to remove
1787 * the page from the list that we just put it on again
1788 * because the number of objects in the slab may have
1789 * changed.
1790 */
1791 redo:
1792
1793 old.freelist = page->freelist;
1794 old.counters = page->counters;
1795 VM_BUG_ON(!old.frozen);
1796
1797 /* Determine target state of the slab */
1798 new.counters = old.counters;
1799 if (freelist) {
1800 new.inuse--;
1801 set_freepointer(s, freelist, old.freelist);
1802 new.freelist = freelist;
1803 } else
1804 new.freelist = old.freelist;
1805
1806 new.frozen = 0;
1807
1808 if (!new.inuse && n->nr_partial > s->min_partial)
1809 m = M_FREE;
1810 else if (new.freelist) {
1811 m = M_PARTIAL;
1812 if (!lock) {
1813 lock = 1;
1814 /*
1815 * Taking the spinlock removes the possiblity
1816 * that acquire_slab() will see a slab page that
1817 * is frozen
1818 */
1819 spin_lock(&n->list_lock);
1820 }
1821 } else {
1822 m = M_FULL;
1823 if (kmem_cache_debug(s) && !lock) {
1824 lock = 1;
1825 /*
1826 * This also ensures that the scanning of full
1827 * slabs from diagnostic functions will not see
1828 * any frozen slabs.
1829 */
1830 spin_lock(&n->list_lock);
1831 }
1832 }
1833
1834 if (l != m) {
1835
1836 if (l == M_PARTIAL)
1837
1838 remove_partial(n, page);
1839
1840 else if (l == M_FULL)
1841
1842 remove_full(s, page);
1843
1844 if (m == M_PARTIAL) {
1845
1846 add_partial(n, page, tail);
1847 stat(s, tail);
1848
1849 } else if (m == M_FULL) {
1850
1851 stat(s, DEACTIVATE_FULL);
1852 add_full(s, n, page);
1853
1854 }
1855 }
1856
1857 l = m;
1858 if (!__cmpxchg_double_slab(s, page,
1859 old.freelist, old.counters,
1860 new.freelist, new.counters,
1861 "unfreezing slab"))
1862 goto redo;
1863
1864 if (lock)
1865 spin_unlock(&n->list_lock);
1866
1867 if (m == M_FREE) {
1868 stat(s, DEACTIVATE_EMPTY);
1869 discard_slab(s, page);
1870 stat(s, FREE_SLAB);
1871 }
1872 }
1873
1874 /*
1875 * Unfreeze all the cpu partial slabs.
1876 *
1877 * This function must be called with interrupts disabled
1878 * for the cpu using c (or some other guarantee must be there
1879 * to guarantee no concurrent accesses).
1880 */
1881 static void unfreeze_partials(struct kmem_cache *s,
1882 struct kmem_cache_cpu *c)
1883 {
1884 struct kmem_cache_node *n = NULL, *n2 = NULL;
1885 struct page *page, *discard_page = NULL;
1886
1887 while ((page = c->partial)) {
1888 struct page new;
1889 struct page old;
1890
1891 c->partial = page->next;
1892
1893 n2 = get_node(s, page_to_nid(page));
1894 if (n != n2) {
1895 if (n)
1896 spin_unlock(&n->list_lock);
1897
1898 n = n2;
1899 spin_lock(&n->list_lock);
1900 }
1901
1902 do {
1903
1904 old.freelist = page->freelist;
1905 old.counters = page->counters;
1906 VM_BUG_ON(!old.frozen);
1907
1908 new.counters = old.counters;
1909 new.freelist = old.freelist;
1910
1911 new.frozen = 0;
1912
1913 } while (!__cmpxchg_double_slab(s, page,
1914 old.freelist, old.counters,
1915 new.freelist, new.counters,
1916 "unfreezing slab"));
1917
1918 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1919 page->next = discard_page;
1920 discard_page = page;
1921 } else {
1922 add_partial(n, page, DEACTIVATE_TO_TAIL);
1923 stat(s, FREE_ADD_PARTIAL);
1924 }
1925 }
1926
1927 if (n)
1928 spin_unlock(&n->list_lock);
1929
1930 while (discard_page) {
1931 page = discard_page;
1932 discard_page = discard_page->next;
1933
1934 stat(s, DEACTIVATE_EMPTY);
1935 discard_slab(s, page);
1936 stat(s, FREE_SLAB);
1937 }
1938 }
1939
1940 /*
1941 * Put a page that was just frozen (in __slab_free) into a partial page
1942 * slot if available. This is done without interrupts disabled and without
1943 * preemption disabled. The cmpxchg is racy and may put the partial page
1944 * onto a random cpus partial slot.
1945 *
1946 * If we did not find a slot then simply move all the partials to the
1947 * per node partial list.
1948 */
1949 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1950 {
1951 struct page *oldpage;
1952 int pages;
1953 int pobjects;
1954
1955 do {
1956 pages = 0;
1957 pobjects = 0;
1958 oldpage = this_cpu_read(s->cpu_slab->partial);
1959
1960 if (oldpage) {
1961 pobjects = oldpage->pobjects;
1962 pages = oldpage->pages;
1963 if (drain && pobjects > s->cpu_partial) {
1964 unsigned long flags;
1965 /*
1966 * partial array is full. Move the existing
1967 * set to the per node partial list.
1968 */
1969 local_irq_save(flags);
1970 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1971 local_irq_restore(flags);
1972 oldpage = NULL;
1973 pobjects = 0;
1974 pages = 0;
1975 stat(s, CPU_PARTIAL_DRAIN);
1976 }
1977 }
1978
1979 pages++;
1980 pobjects += page->objects - page->inuse;
1981
1982 page->pages = pages;
1983 page->pobjects = pobjects;
1984 page->next = oldpage;
1985
1986 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1987 return pobjects;
1988 }
1989
1990 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1991 {
1992 stat(s, CPUSLAB_FLUSH);
1993 deactivate_slab(s, c->page, c->freelist);
1994
1995 c->tid = next_tid(c->tid);
1996 c->page = NULL;
1997 c->freelist = NULL;
1998 }
1999
2000 /*
2001 * Flush cpu slab.
2002 *
2003 * Called from IPI handler with interrupts disabled.
2004 */
2005 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2006 {
2007 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2008
2009 if (likely(c)) {
2010 if (c->page)
2011 flush_slab(s, c);
2012
2013 unfreeze_partials(s, c);
2014 }
2015 }
2016
2017 static void flush_cpu_slab(void *d)
2018 {
2019 struct kmem_cache *s = d;
2020
2021 __flush_cpu_slab(s, smp_processor_id());
2022 }
2023
2024 static bool has_cpu_slab(int cpu, void *info)
2025 {
2026 struct kmem_cache *s = info;
2027 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2028
2029 return c->page || c->partial;
2030 }
2031
2032 static void flush_all(struct kmem_cache *s)
2033 {
2034 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2035 }
2036
2037 /*
2038 * Check if the objects in a per cpu structure fit numa
2039 * locality expectations.
2040 */
2041 static inline int node_match(struct page *page, int node)
2042 {
2043 #ifdef CONFIG_NUMA
2044 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2045 return 0;
2046 #endif
2047 return 1;
2048 }
2049
2050 static int count_free(struct page *page)
2051 {
2052 return page->objects - page->inuse;
2053 }
2054
2055 static unsigned long count_partial(struct kmem_cache_node *n,
2056 int (*get_count)(struct page *))
2057 {
2058 unsigned long flags;
2059 unsigned long x = 0;
2060 struct page *page;
2061
2062 spin_lock_irqsave(&n->list_lock, flags);
2063 list_for_each_entry(page, &n->partial, lru)
2064 x += get_count(page);
2065 spin_unlock_irqrestore(&n->list_lock, flags);
2066 return x;
2067 }
2068
2069 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2070 {
2071 #ifdef CONFIG_SLUB_DEBUG
2072 return atomic_long_read(&n->total_objects);
2073 #else
2074 return 0;
2075 #endif
2076 }
2077
2078 static noinline void
2079 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2080 {
2081 int node;
2082
2083 printk(KERN_WARNING
2084 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2085 nid, gfpflags);
2086 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2087 "default order: %d, min order: %d\n", s->name, s->object_size,
2088 s->size, oo_order(s->oo), oo_order(s->min));
2089
2090 if (oo_order(s->min) > get_order(s->object_size))
2091 printk(KERN_WARNING " %s debugging increased min order, use "
2092 "slub_debug=O to disable.\n", s->name);
2093
2094 for_each_online_node(node) {
2095 struct kmem_cache_node *n = get_node(s, node);
2096 unsigned long nr_slabs;
2097 unsigned long nr_objs;
2098 unsigned long nr_free;
2099
2100 if (!n)
2101 continue;
2102
2103 nr_free = count_partial(n, count_free);
2104 nr_slabs = node_nr_slabs(n);
2105 nr_objs = node_nr_objs(n);
2106
2107 printk(KERN_WARNING
2108 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2109 node, nr_slabs, nr_objs, nr_free);
2110 }
2111 }
2112
2113 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2114 int node, struct kmem_cache_cpu **pc)
2115 {
2116 void *freelist;
2117 struct kmem_cache_cpu *c = *pc;
2118 struct page *page;
2119
2120 freelist = get_partial(s, flags, node, c);
2121
2122 if (freelist)
2123 return freelist;
2124
2125 page = new_slab(s, flags, node);
2126 if (page) {
2127 c = __this_cpu_ptr(s->cpu_slab);
2128 if (c->page)
2129 flush_slab(s, c);
2130
2131 /*
2132 * No other reference to the page yet so we can
2133 * muck around with it freely without cmpxchg
2134 */
2135 freelist = page->freelist;
2136 page->freelist = NULL;
2137
2138 stat(s, ALLOC_SLAB);
2139 c->page = page;
2140 *pc = c;
2141 } else
2142 freelist = NULL;
2143
2144 return freelist;
2145 }
2146
2147 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2148 {
2149 if (unlikely(PageSlabPfmemalloc(page)))
2150 return gfp_pfmemalloc_allowed(gfpflags);
2151
2152 return true;
2153 }
2154
2155 /*
2156 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2157 * or deactivate the page.
2158 *
2159 * The page is still frozen if the return value is not NULL.
2160 *
2161 * If this function returns NULL then the page has been unfrozen.
2162 *
2163 * This function must be called with interrupt disabled.
2164 */
2165 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2166 {
2167 struct page new;
2168 unsigned long counters;
2169 void *freelist;
2170
2171 do {
2172 freelist = page->freelist;
2173 counters = page->counters;
2174
2175 new.counters = counters;
2176 VM_BUG_ON(!new.frozen);
2177
2178 new.inuse = page->objects;
2179 new.frozen = freelist != NULL;
2180
2181 } while (!__cmpxchg_double_slab(s, page,
2182 freelist, counters,
2183 NULL, new.counters,
2184 "get_freelist"));
2185
2186 return freelist;
2187 }
2188
2189 /*
2190 * Slow path. The lockless freelist is empty or we need to perform
2191 * debugging duties.
2192 *
2193 * Processing is still very fast if new objects have been freed to the
2194 * regular freelist. In that case we simply take over the regular freelist
2195 * as the lockless freelist and zap the regular freelist.
2196 *
2197 * If that is not working then we fall back to the partial lists. We take the
2198 * first element of the freelist as the object to allocate now and move the
2199 * rest of the freelist to the lockless freelist.
2200 *
2201 * And if we were unable to get a new slab from the partial slab lists then
2202 * we need to allocate a new slab. This is the slowest path since it involves
2203 * a call to the page allocator and the setup of a new slab.
2204 */
2205 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2206 unsigned long addr, struct kmem_cache_cpu *c)
2207 {
2208 void *freelist;
2209 struct page *page;
2210 unsigned long flags;
2211
2212 local_irq_save(flags);
2213 #ifdef CONFIG_PREEMPT
2214 /*
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2218 */
2219 c = this_cpu_ptr(s->cpu_slab);
2220 #endif
2221
2222 page = c->page;
2223 if (!page)
2224 goto new_slab;
2225 redo:
2226
2227 if (unlikely(!node_match(page, node))) {
2228 stat(s, ALLOC_NODE_MISMATCH);
2229 deactivate_slab(s, page, c->freelist);
2230 c->page = NULL;
2231 c->freelist = NULL;
2232 goto new_slab;
2233 }
2234
2235 /*
2236 * By rights, we should be searching for a slab page that was
2237 * PFMEMALLOC but right now, we are losing the pfmemalloc
2238 * information when the page leaves the per-cpu allocator
2239 */
2240 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2241 deactivate_slab(s, page, c->freelist);
2242 c->page = NULL;
2243 c->freelist = NULL;
2244 goto new_slab;
2245 }
2246
2247 /* must check again c->freelist in case of cpu migration or IRQ */
2248 freelist = c->freelist;
2249 if (freelist)
2250 goto load_freelist;
2251
2252 stat(s, ALLOC_SLOWPATH);
2253
2254 freelist = get_freelist(s, page);
2255
2256 if (!freelist) {
2257 c->page = NULL;
2258 stat(s, DEACTIVATE_BYPASS);
2259 goto new_slab;
2260 }
2261
2262 stat(s, ALLOC_REFILL);
2263
2264 load_freelist:
2265 /*
2266 * freelist is pointing to the list of objects to be used.
2267 * page is pointing to the page from which the objects are obtained.
2268 * That page must be frozen for per cpu allocations to work.
2269 */
2270 VM_BUG_ON(!c->page->frozen);
2271 c->freelist = get_freepointer(s, freelist);
2272 c->tid = next_tid(c->tid);
2273 local_irq_restore(flags);
2274 return freelist;
2275
2276 new_slab:
2277
2278 if (c->partial) {
2279 page = c->page = c->partial;
2280 c->partial = page->next;
2281 stat(s, CPU_PARTIAL_ALLOC);
2282 c->freelist = NULL;
2283 goto redo;
2284 }
2285
2286 freelist = new_slab_objects(s, gfpflags, node, &c);
2287
2288 if (unlikely(!freelist)) {
2289 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2290 slab_out_of_memory(s, gfpflags, node);
2291
2292 local_irq_restore(flags);
2293 return NULL;
2294 }
2295
2296 page = c->page;
2297 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2298 goto load_freelist;
2299
2300 /* Only entered in the debug case */
2301 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2302 goto new_slab; /* Slab failed checks. Next slab needed */
2303
2304 deactivate_slab(s, page, get_freepointer(s, freelist));
2305 c->page = NULL;
2306 c->freelist = NULL;
2307 local_irq_restore(flags);
2308 return freelist;
2309 }
2310
2311 /*
2312 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2313 * have the fastpath folded into their functions. So no function call
2314 * overhead for requests that can be satisfied on the fastpath.
2315 *
2316 * The fastpath works by first checking if the lockless freelist can be used.
2317 * If not then __slab_alloc is called for slow processing.
2318 *
2319 * Otherwise we can simply pick the next object from the lockless free list.
2320 */
2321 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2322 gfp_t gfpflags, int node, unsigned long addr)
2323 {
2324 void **object;
2325 struct kmem_cache_cpu *c;
2326 struct page *page;
2327 unsigned long tid;
2328
2329 if (slab_pre_alloc_hook(s, gfpflags))
2330 return NULL;
2331
2332 s = memcg_kmem_get_cache(s, gfpflags);
2333 redo:
2334
2335 /*
2336 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2337 * enabled. We may switch back and forth between cpus while
2338 * reading from one cpu area. That does not matter as long
2339 * as we end up on the original cpu again when doing the cmpxchg.
2340 */
2341 c = __this_cpu_ptr(s->cpu_slab);
2342
2343 /*
2344 * The transaction ids are globally unique per cpu and per operation on
2345 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2346 * occurs on the right processor and that there was no operation on the
2347 * linked list in between.
2348 */
2349 tid = c->tid;
2350 barrier();
2351
2352 object = c->freelist;
2353 page = c->page;
2354 if (unlikely(!object || !node_match(page, node)))
2355 object = __slab_alloc(s, gfpflags, node, addr, c);
2356
2357 else {
2358 void *next_object = get_freepointer_safe(s, object);
2359
2360 /*
2361 * The cmpxchg will only match if there was no additional
2362 * operation and if we are on the right processor.
2363 *
2364 * The cmpxchg does the following atomically (without lock semantics!)
2365 * 1. Relocate first pointer to the current per cpu area.
2366 * 2. Verify that tid and freelist have not been changed
2367 * 3. If they were not changed replace tid and freelist
2368 *
2369 * Since this is without lock semantics the protection is only against
2370 * code executing on this cpu *not* from access by other cpus.
2371 */
2372 if (unlikely(!this_cpu_cmpxchg_double(
2373 s->cpu_slab->freelist, s->cpu_slab->tid,
2374 object, tid,
2375 next_object, next_tid(tid)))) {
2376
2377 note_cmpxchg_failure("slab_alloc", s, tid);
2378 goto redo;
2379 }
2380 prefetch_freepointer(s, next_object);
2381 stat(s, ALLOC_FASTPATH);
2382 }
2383
2384 if (unlikely(gfpflags & __GFP_ZERO) && object)
2385 memset(object, 0, s->object_size);
2386
2387 slab_post_alloc_hook(s, gfpflags, object);
2388
2389 return object;
2390 }
2391
2392 static __always_inline void *slab_alloc(struct kmem_cache *s,
2393 gfp_t gfpflags, unsigned long addr)
2394 {
2395 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2396 }
2397
2398 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2399 {
2400 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2401
2402 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2403
2404 return ret;
2405 }
2406 EXPORT_SYMBOL(kmem_cache_alloc);
2407
2408 #ifdef CONFIG_TRACING
2409 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2410 {
2411 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2412 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2413 return ret;
2414 }
2415 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2416
2417 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2418 {
2419 void *ret = kmalloc_order(size, flags, order);
2420 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2421 return ret;
2422 }
2423 EXPORT_SYMBOL(kmalloc_order_trace);
2424 #endif
2425
2426 #ifdef CONFIG_NUMA
2427 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2428 {
2429 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2430
2431 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2432 s->object_size, s->size, gfpflags, node);
2433
2434 return ret;
2435 }
2436 EXPORT_SYMBOL(kmem_cache_alloc_node);
2437
2438 #ifdef CONFIG_TRACING
2439 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2440 gfp_t gfpflags,
2441 int node, size_t size)
2442 {
2443 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2444
2445 trace_kmalloc_node(_RET_IP_, ret,
2446 size, s->size, gfpflags, node);
2447 return ret;
2448 }
2449 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2450 #endif
2451 #endif
2452
2453 /*
2454 * Slow patch handling. This may still be called frequently since objects
2455 * have a longer lifetime than the cpu slabs in most processing loads.
2456 *
2457 * So we still attempt to reduce cache line usage. Just take the slab
2458 * lock and free the item. If there is no additional partial page
2459 * handling required then we can return immediately.
2460 */
2461 static void __slab_free(struct kmem_cache *s, struct page *page,
2462 void *x, unsigned long addr)
2463 {
2464 void *prior;
2465 void **object = (void *)x;
2466 int was_frozen;
2467 struct page new;
2468 unsigned long counters;
2469 struct kmem_cache_node *n = NULL;
2470 unsigned long uninitialized_var(flags);
2471
2472 stat(s, FREE_SLOWPATH);
2473
2474 if (kmem_cache_debug(s) &&
2475 !(n = free_debug_processing(s, page, x, addr, &flags)))
2476 return;
2477
2478 do {
2479 if (unlikely(n)) {
2480 spin_unlock_irqrestore(&n->list_lock, flags);
2481 n = NULL;
2482 }
2483 prior = page->freelist;
2484 counters = page->counters;
2485 set_freepointer(s, object, prior);
2486 new.counters = counters;
2487 was_frozen = new.frozen;
2488 new.inuse--;
2489 if ((!new.inuse || !prior) && !was_frozen) {
2490
2491 if (!kmem_cache_debug(s) && !prior)
2492
2493 /*
2494 * Slab was on no list before and will be partially empty
2495 * We can defer the list move and instead freeze it.
2496 */
2497 new.frozen = 1;
2498
2499 else { /* Needs to be taken off a list */
2500
2501 n = get_node(s, page_to_nid(page));
2502 /*
2503 * Speculatively acquire the list_lock.
2504 * If the cmpxchg does not succeed then we may
2505 * drop the list_lock without any processing.
2506 *
2507 * Otherwise the list_lock will synchronize with
2508 * other processors updating the list of slabs.
2509 */
2510 spin_lock_irqsave(&n->list_lock, flags);
2511
2512 }
2513 }
2514
2515 } while (!cmpxchg_double_slab(s, page,
2516 prior, counters,
2517 object, new.counters,
2518 "__slab_free"));
2519
2520 if (likely(!n)) {
2521
2522 /*
2523 * If we just froze the page then put it onto the
2524 * per cpu partial list.
2525 */
2526 if (new.frozen && !was_frozen) {
2527 put_cpu_partial(s, page, 1);
2528 stat(s, CPU_PARTIAL_FREE);
2529 }
2530 /*
2531 * The list lock was not taken therefore no list
2532 * activity can be necessary.
2533 */
2534 if (was_frozen)
2535 stat(s, FREE_FROZEN);
2536 return;
2537 }
2538
2539 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2540 goto slab_empty;
2541
2542 /*
2543 * Objects left in the slab. If it was not on the partial list before
2544 * then add it.
2545 */
2546 if (kmem_cache_debug(s) && unlikely(!prior)) {
2547 remove_full(s, page);
2548 add_partial(n, page, DEACTIVATE_TO_TAIL);
2549 stat(s, FREE_ADD_PARTIAL);
2550 }
2551 spin_unlock_irqrestore(&n->list_lock, flags);
2552 return;
2553
2554 slab_empty:
2555 if (prior) {
2556 /*
2557 * Slab on the partial list.
2558 */
2559 remove_partial(n, page);
2560 stat(s, FREE_REMOVE_PARTIAL);
2561 } else
2562 /* Slab must be on the full list */
2563 remove_full(s, page);
2564
2565 spin_unlock_irqrestore(&n->list_lock, flags);
2566 stat(s, FREE_SLAB);
2567 discard_slab(s, page);
2568 }
2569
2570 /*
2571 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2572 * can perform fastpath freeing without additional function calls.
2573 *
2574 * The fastpath is only possible if we are freeing to the current cpu slab
2575 * of this processor. This typically the case if we have just allocated
2576 * the item before.
2577 *
2578 * If fastpath is not possible then fall back to __slab_free where we deal
2579 * with all sorts of special processing.
2580 */
2581 static __always_inline void slab_free(struct kmem_cache *s,
2582 struct page *page, void *x, unsigned long addr)
2583 {
2584 void **object = (void *)x;
2585 struct kmem_cache_cpu *c;
2586 unsigned long tid;
2587
2588 slab_free_hook(s, x);
2589
2590 redo:
2591 /*
2592 * Determine the currently cpus per cpu slab.
2593 * The cpu may change afterward. However that does not matter since
2594 * data is retrieved via this pointer. If we are on the same cpu
2595 * during the cmpxchg then the free will succedd.
2596 */
2597 c = __this_cpu_ptr(s->cpu_slab);
2598
2599 tid = c->tid;
2600 barrier();
2601
2602 if (likely(page == c->page)) {
2603 set_freepointer(s, object, c->freelist);
2604
2605 if (unlikely(!this_cpu_cmpxchg_double(
2606 s->cpu_slab->freelist, s->cpu_slab->tid,
2607 c->freelist, tid,
2608 object, next_tid(tid)))) {
2609
2610 note_cmpxchg_failure("slab_free", s, tid);
2611 goto redo;
2612 }
2613 stat(s, FREE_FASTPATH);
2614 } else
2615 __slab_free(s, page, x, addr);
2616
2617 }
2618
2619 void kmem_cache_free(struct kmem_cache *s, void *x)
2620 {
2621 s = cache_from_obj(s, x);
2622 if (!s)
2623 return;
2624 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2625 trace_kmem_cache_free(_RET_IP_, x);
2626 }
2627 EXPORT_SYMBOL(kmem_cache_free);
2628
2629 /*
2630 * Object placement in a slab is made very easy because we always start at
2631 * offset 0. If we tune the size of the object to the alignment then we can
2632 * get the required alignment by putting one properly sized object after
2633 * another.
2634 *
2635 * Notice that the allocation order determines the sizes of the per cpu
2636 * caches. Each processor has always one slab available for allocations.
2637 * Increasing the allocation order reduces the number of times that slabs
2638 * must be moved on and off the partial lists and is therefore a factor in
2639 * locking overhead.
2640 */
2641
2642 /*
2643 * Mininum / Maximum order of slab pages. This influences locking overhead
2644 * and slab fragmentation. A higher order reduces the number of partial slabs
2645 * and increases the number of allocations possible without having to
2646 * take the list_lock.
2647 */
2648 static int slub_min_order;
2649 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2650 static int slub_min_objects;
2651
2652 /*
2653 * Merge control. If this is set then no merging of slab caches will occur.
2654 * (Could be removed. This was introduced to pacify the merge skeptics.)
2655 */
2656 static int slub_nomerge;
2657
2658 /*
2659 * Calculate the order of allocation given an slab object size.
2660 *
2661 * The order of allocation has significant impact on performance and other
2662 * system components. Generally order 0 allocations should be preferred since
2663 * order 0 does not cause fragmentation in the page allocator. Larger objects
2664 * be problematic to put into order 0 slabs because there may be too much
2665 * unused space left. We go to a higher order if more than 1/16th of the slab
2666 * would be wasted.
2667 *
2668 * In order to reach satisfactory performance we must ensure that a minimum
2669 * number of objects is in one slab. Otherwise we may generate too much
2670 * activity on the partial lists which requires taking the list_lock. This is
2671 * less a concern for large slabs though which are rarely used.
2672 *
2673 * slub_max_order specifies the order where we begin to stop considering the
2674 * number of objects in a slab as critical. If we reach slub_max_order then
2675 * we try to keep the page order as low as possible. So we accept more waste
2676 * of space in favor of a small page order.
2677 *
2678 * Higher order allocations also allow the placement of more objects in a
2679 * slab and thereby reduce object handling overhead. If the user has
2680 * requested a higher mininum order then we start with that one instead of
2681 * the smallest order which will fit the object.
2682 */
2683 static inline int slab_order(int size, int min_objects,
2684 int max_order, int fract_leftover, int reserved)
2685 {
2686 int order;
2687 int rem;
2688 int min_order = slub_min_order;
2689
2690 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2691 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2692
2693 for (order = max(min_order,
2694 fls(min_objects * size - 1) - PAGE_SHIFT);
2695 order <= max_order; order++) {
2696
2697 unsigned long slab_size = PAGE_SIZE << order;
2698
2699 if (slab_size < min_objects * size + reserved)
2700 continue;
2701
2702 rem = (slab_size - reserved) % size;
2703
2704 if (rem <= slab_size / fract_leftover)
2705 break;
2706
2707 }
2708
2709 return order;
2710 }
2711
2712 static inline int calculate_order(int size, int reserved)
2713 {
2714 int order;
2715 int min_objects;
2716 int fraction;
2717 int max_objects;
2718
2719 /*
2720 * Attempt to find best configuration for a slab. This
2721 * works by first attempting to generate a layout with
2722 * the best configuration and backing off gradually.
2723 *
2724 * First we reduce the acceptable waste in a slab. Then
2725 * we reduce the minimum objects required in a slab.
2726 */
2727 min_objects = slub_min_objects;
2728 if (!min_objects)
2729 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2730 max_objects = order_objects(slub_max_order, size, reserved);
2731 min_objects = min(min_objects, max_objects);
2732
2733 while (min_objects > 1) {
2734 fraction = 16;
2735 while (fraction >= 4) {
2736 order = slab_order(size, min_objects,
2737 slub_max_order, fraction, reserved);
2738 if (order <= slub_max_order)
2739 return order;
2740 fraction /= 2;
2741 }
2742 min_objects--;
2743 }
2744
2745 /*
2746 * We were unable to place multiple objects in a slab. Now
2747 * lets see if we can place a single object there.
2748 */
2749 order = slab_order(size, 1, slub_max_order, 1, reserved);
2750 if (order <= slub_max_order)
2751 return order;
2752
2753 /*
2754 * Doh this slab cannot be placed using slub_max_order.
2755 */
2756 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2757 if (order < MAX_ORDER)
2758 return order;
2759 return -ENOSYS;
2760 }
2761
2762 static void
2763 init_kmem_cache_node(struct kmem_cache_node *n)
2764 {
2765 n->nr_partial = 0;
2766 spin_lock_init(&n->list_lock);
2767 INIT_LIST_HEAD(&n->partial);
2768 #ifdef CONFIG_SLUB_DEBUG
2769 atomic_long_set(&n->nr_slabs, 0);
2770 atomic_long_set(&n->total_objects, 0);
2771 INIT_LIST_HEAD(&n->full);
2772 #endif
2773 }
2774
2775 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2776 {
2777 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2778 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2779
2780 /*
2781 * Must align to double word boundary for the double cmpxchg
2782 * instructions to work; see __pcpu_double_call_return_bool().
2783 */
2784 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2785 2 * sizeof(void *));
2786
2787 if (!s->cpu_slab)
2788 return 0;
2789
2790 init_kmem_cache_cpus(s);
2791
2792 return 1;
2793 }
2794
2795 static struct kmem_cache *kmem_cache_node;
2796
2797 /*
2798 * No kmalloc_node yet so do it by hand. We know that this is the first
2799 * slab on the node for this slabcache. There are no concurrent accesses
2800 * possible.
2801 *
2802 * Note that this function only works on the kmalloc_node_cache
2803 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2804 * memory on a fresh node that has no slab structures yet.
2805 */
2806 static void early_kmem_cache_node_alloc(int node)
2807 {
2808 struct page *page;
2809 struct kmem_cache_node *n;
2810
2811 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2812
2813 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2814
2815 BUG_ON(!page);
2816 if (page_to_nid(page) != node) {
2817 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2818 "node %d\n", node);
2819 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2820 "in order to be able to continue\n");
2821 }
2822
2823 n = page->freelist;
2824 BUG_ON(!n);
2825 page->freelist = get_freepointer(kmem_cache_node, n);
2826 page->inuse = 1;
2827 page->frozen = 0;
2828 kmem_cache_node->node[node] = n;
2829 #ifdef CONFIG_SLUB_DEBUG
2830 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2831 init_tracking(kmem_cache_node, n);
2832 #endif
2833 init_kmem_cache_node(n);
2834 inc_slabs_node(kmem_cache_node, node, page->objects);
2835
2836 add_partial(n, page, DEACTIVATE_TO_HEAD);
2837 }
2838
2839 static void free_kmem_cache_nodes(struct kmem_cache *s)
2840 {
2841 int node;
2842
2843 for_each_node_state(node, N_NORMAL_MEMORY) {
2844 struct kmem_cache_node *n = s->node[node];
2845
2846 if (n)
2847 kmem_cache_free(kmem_cache_node, n);
2848
2849 s->node[node] = NULL;
2850 }
2851 }
2852
2853 static int init_kmem_cache_nodes(struct kmem_cache *s)
2854 {
2855 int node;
2856
2857 for_each_node_state(node, N_NORMAL_MEMORY) {
2858 struct kmem_cache_node *n;
2859
2860 if (slab_state == DOWN) {
2861 early_kmem_cache_node_alloc(node);
2862 continue;
2863 }
2864 n = kmem_cache_alloc_node(kmem_cache_node,
2865 GFP_KERNEL, node);
2866
2867 if (!n) {
2868 free_kmem_cache_nodes(s);
2869 return 0;
2870 }
2871
2872 s->node[node] = n;
2873 init_kmem_cache_node(n);
2874 }
2875 return 1;
2876 }
2877
2878 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2879 {
2880 if (min < MIN_PARTIAL)
2881 min = MIN_PARTIAL;
2882 else if (min > MAX_PARTIAL)
2883 min = MAX_PARTIAL;
2884 s->min_partial = min;
2885 }
2886
2887 /*
2888 * calculate_sizes() determines the order and the distribution of data within
2889 * a slab object.
2890 */
2891 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2892 {
2893 unsigned long flags = s->flags;
2894 unsigned long size = s->object_size;
2895 int order;
2896
2897 /*
2898 * Round up object size to the next word boundary. We can only
2899 * place the free pointer at word boundaries and this determines
2900 * the possible location of the free pointer.
2901 */
2902 size = ALIGN(size, sizeof(void *));
2903
2904 #ifdef CONFIG_SLUB_DEBUG
2905 /*
2906 * Determine if we can poison the object itself. If the user of
2907 * the slab may touch the object after free or before allocation
2908 * then we should never poison the object itself.
2909 */
2910 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2911 !s->ctor)
2912 s->flags |= __OBJECT_POISON;
2913 else
2914 s->flags &= ~__OBJECT_POISON;
2915
2916
2917 /*
2918 * If we are Redzoning then check if there is some space between the
2919 * end of the object and the free pointer. If not then add an
2920 * additional word to have some bytes to store Redzone information.
2921 */
2922 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2923 size += sizeof(void *);
2924 #endif
2925
2926 /*
2927 * With that we have determined the number of bytes in actual use
2928 * by the object. This is the potential offset to the free pointer.
2929 */
2930 s->inuse = size;
2931
2932 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2933 s->ctor)) {
2934 /*
2935 * Relocate free pointer after the object if it is not
2936 * permitted to overwrite the first word of the object on
2937 * kmem_cache_free.
2938 *
2939 * This is the case if we do RCU, have a constructor or
2940 * destructor or are poisoning the objects.
2941 */
2942 s->offset = size;
2943 size += sizeof(void *);
2944 }
2945
2946 #ifdef CONFIG_SLUB_DEBUG
2947 if (flags & SLAB_STORE_USER)
2948 /*
2949 * Need to store information about allocs and frees after
2950 * the object.
2951 */
2952 size += 2 * sizeof(struct track);
2953
2954 if (flags & SLAB_RED_ZONE)
2955 /*
2956 * Add some empty padding so that we can catch
2957 * overwrites from earlier objects rather than let
2958 * tracking information or the free pointer be
2959 * corrupted if a user writes before the start
2960 * of the object.
2961 */
2962 size += sizeof(void *);
2963 #endif
2964
2965 /*
2966 * SLUB stores one object immediately after another beginning from
2967 * offset 0. In order to align the objects we have to simply size
2968 * each object to conform to the alignment.
2969 */
2970 size = ALIGN(size, s->align);
2971 s->size = size;
2972 if (forced_order >= 0)
2973 order = forced_order;
2974 else
2975 order = calculate_order(size, s->reserved);
2976
2977 if (order < 0)
2978 return 0;
2979
2980 s->allocflags = 0;
2981 if (order)
2982 s->allocflags |= __GFP_COMP;
2983
2984 if (s->flags & SLAB_CACHE_DMA)
2985 s->allocflags |= SLUB_DMA;
2986
2987 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2988 s->allocflags |= __GFP_RECLAIMABLE;
2989
2990 /*
2991 * Determine the number of objects per slab
2992 */
2993 s->oo = oo_make(order, size, s->reserved);
2994 s->min = oo_make(get_order(size), size, s->reserved);
2995 if (oo_objects(s->oo) > oo_objects(s->max))
2996 s->max = s->oo;
2997
2998 return !!oo_objects(s->oo);
2999 }
3000
3001 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3002 {
3003 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3004 s->reserved = 0;
3005
3006 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3007 s->reserved = sizeof(struct rcu_head);
3008
3009 if (!calculate_sizes(s, -1))
3010 goto error;
3011 if (disable_higher_order_debug) {
3012 /*
3013 * Disable debugging flags that store metadata if the min slab
3014 * order increased.
3015 */
3016 if (get_order(s->size) > get_order(s->object_size)) {
3017 s->flags &= ~DEBUG_METADATA_FLAGS;
3018 s->offset = 0;
3019 if (!calculate_sizes(s, -1))
3020 goto error;
3021 }
3022 }
3023
3024 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3025 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3026 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3027 /* Enable fast mode */
3028 s->flags |= __CMPXCHG_DOUBLE;
3029 #endif
3030
3031 /*
3032 * The larger the object size is, the more pages we want on the partial
3033 * list to avoid pounding the page allocator excessively.
3034 */
3035 set_min_partial(s, ilog2(s->size) / 2);
3036
3037 /*
3038 * cpu_partial determined the maximum number of objects kept in the
3039 * per cpu partial lists of a processor.
3040 *
3041 * Per cpu partial lists mainly contain slabs that just have one
3042 * object freed. If they are used for allocation then they can be
3043 * filled up again with minimal effort. The slab will never hit the
3044 * per node partial lists and therefore no locking will be required.
3045 *
3046 * This setting also determines
3047 *
3048 * A) The number of objects from per cpu partial slabs dumped to the
3049 * per node list when we reach the limit.
3050 * B) The number of objects in cpu partial slabs to extract from the
3051 * per node list when we run out of per cpu objects. We only fetch 50%
3052 * to keep some capacity around for frees.
3053 */
3054 if (kmem_cache_debug(s))
3055 s->cpu_partial = 0;
3056 else if (s->size >= PAGE_SIZE)
3057 s->cpu_partial = 2;
3058 else if (s->size >= 1024)
3059 s->cpu_partial = 6;
3060 else if (s->size >= 256)
3061 s->cpu_partial = 13;
3062 else
3063 s->cpu_partial = 30;
3064
3065 #ifdef CONFIG_NUMA
3066 s->remote_node_defrag_ratio = 1000;
3067 #endif
3068 if (!init_kmem_cache_nodes(s))
3069 goto error;
3070
3071 if (alloc_kmem_cache_cpus(s))
3072 return 0;
3073
3074 free_kmem_cache_nodes(s);
3075 error:
3076 if (flags & SLAB_PANIC)
3077 panic("Cannot create slab %s size=%lu realsize=%u "
3078 "order=%u offset=%u flags=%lx\n",
3079 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3080 s->offset, flags);
3081 return -EINVAL;
3082 }
3083
3084 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3085 const char *text)
3086 {
3087 #ifdef CONFIG_SLUB_DEBUG
3088 void *addr = page_address(page);
3089 void *p;
3090 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3091 sizeof(long), GFP_ATOMIC);
3092 if (!map)
3093 return;
3094 slab_err(s, page, text, s->name);
3095 slab_lock(page);
3096
3097 get_map(s, page, map);
3098 for_each_object(p, s, addr, page->objects) {
3099
3100 if (!test_bit(slab_index(p, s, addr), map)) {
3101 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3102 p, p - addr);
3103 print_tracking(s, p);
3104 }
3105 }
3106 slab_unlock(page);
3107 kfree(map);
3108 #endif
3109 }
3110
3111 /*
3112 * Attempt to free all partial slabs on a node.
3113 * This is called from kmem_cache_close(). We must be the last thread
3114 * using the cache and therefore we do not need to lock anymore.
3115 */
3116 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3117 {
3118 struct page *page, *h;
3119
3120 list_for_each_entry_safe(page, h, &n->partial, lru) {
3121 if (!page->inuse) {
3122 remove_partial(n, page);
3123 discard_slab(s, page);
3124 } else {
3125 list_slab_objects(s, page,
3126 "Objects remaining in %s on kmem_cache_close()");
3127 }
3128 }
3129 }
3130
3131 /*
3132 * Release all resources used by a slab cache.
3133 */
3134 static inline int kmem_cache_close(struct kmem_cache *s)
3135 {
3136 int node;
3137
3138 flush_all(s);
3139 /* Attempt to free all objects */
3140 for_each_node_state(node, N_NORMAL_MEMORY) {
3141 struct kmem_cache_node *n = get_node(s, node);
3142
3143 free_partial(s, n);
3144 if (n->nr_partial || slabs_node(s, node))
3145 return 1;
3146 }
3147 free_percpu(s->cpu_slab);
3148 free_kmem_cache_nodes(s);
3149 return 0;
3150 }
3151
3152 int __kmem_cache_shutdown(struct kmem_cache *s)
3153 {
3154 int rc = kmem_cache_close(s);
3155
3156 if (!rc) {
3157 /*
3158 * We do the same lock strategy around sysfs_slab_add, see
3159 * __kmem_cache_create. Because this is pretty much the last
3160 * operation we do and the lock will be released shortly after
3161 * that in slab_common.c, we could just move sysfs_slab_remove
3162 * to a later point in common code. We should do that when we
3163 * have a common sysfs framework for all allocators.
3164 */
3165 mutex_unlock(&slab_mutex);
3166 sysfs_slab_remove(s);
3167 mutex_lock(&slab_mutex);
3168 }
3169
3170 return rc;
3171 }
3172
3173 /********************************************************************
3174 * Kmalloc subsystem
3175 *******************************************************************/
3176
3177 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3178 EXPORT_SYMBOL(kmalloc_caches);
3179
3180 #ifdef CONFIG_ZONE_DMA
3181 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3182 #endif
3183
3184 static int __init setup_slub_min_order(char *str)
3185 {
3186 get_option(&str, &slub_min_order);
3187
3188 return 1;
3189 }
3190
3191 __setup("slub_min_order=", setup_slub_min_order);
3192
3193 static int __init setup_slub_max_order(char *str)
3194 {
3195 get_option(&str, &slub_max_order);
3196 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3197
3198 return 1;
3199 }
3200
3201 __setup("slub_max_order=", setup_slub_max_order);
3202
3203 static int __init setup_slub_min_objects(char *str)
3204 {
3205 get_option(&str, &slub_min_objects);
3206
3207 return 1;
3208 }
3209
3210 __setup("slub_min_objects=", setup_slub_min_objects);
3211
3212 static int __init setup_slub_nomerge(char *str)
3213 {
3214 slub_nomerge = 1;
3215 return 1;
3216 }
3217
3218 __setup("slub_nomerge", setup_slub_nomerge);
3219
3220 /*
3221 * Conversion table for small slabs sizes / 8 to the index in the
3222 * kmalloc array. This is necessary for slabs < 192 since we have non power
3223 * of two cache sizes there. The size of larger slabs can be determined using
3224 * fls.
3225 */
3226 static s8 size_index[24] = {
3227 3, /* 8 */
3228 4, /* 16 */
3229 5, /* 24 */
3230 5, /* 32 */
3231 6, /* 40 */
3232 6, /* 48 */
3233 6, /* 56 */
3234 6, /* 64 */
3235 1, /* 72 */
3236 1, /* 80 */
3237 1, /* 88 */
3238 1, /* 96 */
3239 7, /* 104 */
3240 7, /* 112 */
3241 7, /* 120 */
3242 7, /* 128 */
3243 2, /* 136 */
3244 2, /* 144 */
3245 2, /* 152 */
3246 2, /* 160 */
3247 2, /* 168 */
3248 2, /* 176 */
3249 2, /* 184 */
3250 2 /* 192 */
3251 };
3252
3253 static inline int size_index_elem(size_t bytes)
3254 {
3255 return (bytes - 1) / 8;
3256 }
3257
3258 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3259 {
3260 int index;
3261
3262 if (size <= 192) {
3263 if (!size)
3264 return ZERO_SIZE_PTR;
3265
3266 index = size_index[size_index_elem(size)];
3267 } else
3268 index = fls(size - 1);
3269
3270 #ifdef CONFIG_ZONE_DMA
3271 if (unlikely((flags & SLUB_DMA)))
3272 return kmalloc_dma_caches[index];
3273
3274 #endif
3275 return kmalloc_caches[index];
3276 }
3277
3278 void *__kmalloc(size_t size, gfp_t flags)
3279 {
3280 struct kmem_cache *s;
3281 void *ret;
3282
3283 if (unlikely(size > SLUB_MAX_SIZE))
3284 return kmalloc_large(size, flags);
3285
3286 s = get_slab(size, flags);
3287
3288 if (unlikely(ZERO_OR_NULL_PTR(s)))
3289 return s;
3290
3291 ret = slab_alloc(s, flags, _RET_IP_);
3292
3293 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3294
3295 return ret;
3296 }
3297 EXPORT_SYMBOL(__kmalloc);
3298
3299 #ifdef CONFIG_NUMA
3300 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3301 {
3302 struct page *page;
3303 void *ptr = NULL;
3304
3305 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3306 page = alloc_pages_node(node, flags, get_order(size));
3307 if (page)
3308 ptr = page_address(page);
3309
3310 kmemleak_alloc(ptr, size, 1, flags);
3311 return ptr;
3312 }
3313
3314 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3315 {
3316 struct kmem_cache *s;
3317 void *ret;
3318
3319 if (unlikely(size > SLUB_MAX_SIZE)) {
3320 ret = kmalloc_large_node(size, flags, node);
3321
3322 trace_kmalloc_node(_RET_IP_, ret,
3323 size, PAGE_SIZE << get_order(size),
3324 flags, node);
3325
3326 return ret;
3327 }
3328
3329 s = get_slab(size, flags);
3330
3331 if (unlikely(ZERO_OR_NULL_PTR(s)))
3332 return s;
3333
3334 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3335
3336 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3337
3338 return ret;
3339 }
3340 EXPORT_SYMBOL(__kmalloc_node);
3341 #endif
3342
3343 size_t ksize(const void *object)
3344 {
3345 struct page *page;
3346
3347 if (unlikely(object == ZERO_SIZE_PTR))
3348 return 0;
3349
3350 page = virt_to_head_page(object);
3351
3352 if (unlikely(!PageSlab(page))) {
3353 WARN_ON(!PageCompound(page));
3354 return PAGE_SIZE << compound_order(page);
3355 }
3356
3357 return slab_ksize(page->slab_cache);
3358 }
3359 EXPORT_SYMBOL(ksize);
3360
3361 #ifdef CONFIG_SLUB_DEBUG
3362 bool verify_mem_not_deleted(const void *x)
3363 {
3364 struct page *page;
3365 void *object = (void *)x;
3366 unsigned long flags;
3367 bool rv;
3368
3369 if (unlikely(ZERO_OR_NULL_PTR(x)))
3370 return false;
3371
3372 local_irq_save(flags);
3373
3374 page = virt_to_head_page(x);
3375 if (unlikely(!PageSlab(page))) {
3376 /* maybe it was from stack? */
3377 rv = true;
3378 goto out_unlock;
3379 }
3380
3381 slab_lock(page);
3382 if (on_freelist(page->slab_cache, page, object)) {
3383 object_err(page->slab_cache, page, object, "Object is on free-list");
3384 rv = false;
3385 } else {
3386 rv = true;
3387 }
3388 slab_unlock(page);
3389
3390 out_unlock:
3391 local_irq_restore(flags);
3392 return rv;
3393 }
3394 EXPORT_SYMBOL(verify_mem_not_deleted);
3395 #endif
3396
3397 void kfree(const void *x)
3398 {
3399 struct page *page;
3400 void *object = (void *)x;
3401
3402 trace_kfree(_RET_IP_, x);
3403
3404 if (unlikely(ZERO_OR_NULL_PTR(x)))
3405 return;
3406
3407 page = virt_to_head_page(x);
3408 if (unlikely(!PageSlab(page))) {
3409 BUG_ON(!PageCompound(page));
3410 kmemleak_free(x);
3411 __free_memcg_kmem_pages(page, compound_order(page));
3412 return;
3413 }
3414 slab_free(page->slab_cache, page, object, _RET_IP_);
3415 }
3416 EXPORT_SYMBOL(kfree);
3417
3418 /*
3419 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3420 * the remaining slabs by the number of items in use. The slabs with the
3421 * most items in use come first. New allocations will then fill those up
3422 * and thus they can be removed from the partial lists.
3423 *
3424 * The slabs with the least items are placed last. This results in them
3425 * being allocated from last increasing the chance that the last objects
3426 * are freed in them.
3427 */
3428 int kmem_cache_shrink(struct kmem_cache *s)
3429 {
3430 int node;
3431 int i;
3432 struct kmem_cache_node *n;
3433 struct page *page;
3434 struct page *t;
3435 int objects = oo_objects(s->max);
3436 struct list_head *slabs_by_inuse =
3437 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3438 unsigned long flags;
3439
3440 if (!slabs_by_inuse)
3441 return -ENOMEM;
3442
3443 flush_all(s);
3444 for_each_node_state(node, N_NORMAL_MEMORY) {
3445 n = get_node(s, node);
3446
3447 if (!n->nr_partial)
3448 continue;
3449
3450 for (i = 0; i < objects; i++)
3451 INIT_LIST_HEAD(slabs_by_inuse + i);
3452
3453 spin_lock_irqsave(&n->list_lock, flags);
3454
3455 /*
3456 * Build lists indexed by the items in use in each slab.
3457 *
3458 * Note that concurrent frees may occur while we hold the
3459 * list_lock. page->inuse here is the upper limit.
3460 */
3461 list_for_each_entry_safe(page, t, &n->partial, lru) {
3462 list_move(&page->lru, slabs_by_inuse + page->inuse);
3463 if (!page->inuse)
3464 n->nr_partial--;
3465 }
3466
3467 /*
3468 * Rebuild the partial list with the slabs filled up most
3469 * first and the least used slabs at the end.
3470 */
3471 for (i = objects - 1; i > 0; i--)
3472 list_splice(slabs_by_inuse + i, n->partial.prev);
3473
3474 spin_unlock_irqrestore(&n->list_lock, flags);
3475
3476 /* Release empty slabs */
3477 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3478 discard_slab(s, page);
3479 }
3480
3481 kfree(slabs_by_inuse);
3482 return 0;
3483 }
3484 EXPORT_SYMBOL(kmem_cache_shrink);
3485
3486 #if defined(CONFIG_MEMORY_HOTPLUG)
3487 static int slab_mem_going_offline_callback(void *arg)
3488 {
3489 struct kmem_cache *s;
3490
3491 mutex_lock(&slab_mutex);
3492 list_for_each_entry(s, &slab_caches, list)
3493 kmem_cache_shrink(s);
3494 mutex_unlock(&slab_mutex);
3495
3496 return 0;
3497 }
3498
3499 static void slab_mem_offline_callback(void *arg)
3500 {
3501 struct kmem_cache_node *n;
3502 struct kmem_cache *s;
3503 struct memory_notify *marg = arg;
3504 int offline_node;
3505
3506 offline_node = marg->status_change_nid_normal;
3507
3508 /*
3509 * If the node still has available memory. we need kmem_cache_node
3510 * for it yet.
3511 */
3512 if (offline_node < 0)
3513 return;
3514
3515 mutex_lock(&slab_mutex);
3516 list_for_each_entry(s, &slab_caches, list) {
3517 n = get_node(s, offline_node);
3518 if (n) {
3519 /*
3520 * if n->nr_slabs > 0, slabs still exist on the node
3521 * that is going down. We were unable to free them,
3522 * and offline_pages() function shouldn't call this
3523 * callback. So, we must fail.
3524 */
3525 BUG_ON(slabs_node(s, offline_node));
3526
3527 s->node[offline_node] = NULL;
3528 kmem_cache_free(kmem_cache_node, n);
3529 }
3530 }
3531 mutex_unlock(&slab_mutex);
3532 }
3533
3534 static int slab_mem_going_online_callback(void *arg)
3535 {
3536 struct kmem_cache_node *n;
3537 struct kmem_cache *s;
3538 struct memory_notify *marg = arg;
3539 int nid = marg->status_change_nid_normal;
3540 int ret = 0;
3541
3542 /*
3543 * If the node's memory is already available, then kmem_cache_node is
3544 * already created. Nothing to do.
3545 */
3546 if (nid < 0)
3547 return 0;
3548
3549 /*
3550 * We are bringing a node online. No memory is available yet. We must
3551 * allocate a kmem_cache_node structure in order to bring the node
3552 * online.
3553 */
3554 mutex_lock(&slab_mutex);
3555 list_for_each_entry(s, &slab_caches, list) {
3556 /*
3557 * XXX: kmem_cache_alloc_node will fallback to other nodes
3558 * since memory is not yet available from the node that
3559 * is brought up.
3560 */
3561 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3562 if (!n) {
3563 ret = -ENOMEM;
3564 goto out;
3565 }
3566 init_kmem_cache_node(n);
3567 s->node[nid] = n;
3568 }
3569 out:
3570 mutex_unlock(&slab_mutex);
3571 return ret;
3572 }
3573
3574 static int slab_memory_callback(struct notifier_block *self,
3575 unsigned long action, void *arg)
3576 {
3577 int ret = 0;
3578
3579 switch (action) {
3580 case MEM_GOING_ONLINE:
3581 ret = slab_mem_going_online_callback(arg);
3582 break;
3583 case MEM_GOING_OFFLINE:
3584 ret = slab_mem_going_offline_callback(arg);
3585 break;
3586 case MEM_OFFLINE:
3587 case MEM_CANCEL_ONLINE:
3588 slab_mem_offline_callback(arg);
3589 break;
3590 case MEM_ONLINE:
3591 case MEM_CANCEL_OFFLINE:
3592 break;
3593 }
3594 if (ret)
3595 ret = notifier_from_errno(ret);
3596 else
3597 ret = NOTIFY_OK;
3598 return ret;
3599 }
3600
3601 #endif /* CONFIG_MEMORY_HOTPLUG */
3602
3603 /********************************************************************
3604 * Basic setup of slabs
3605 *******************************************************************/
3606
3607 /*
3608 * Used for early kmem_cache structures that were allocated using
3609 * the page allocator. Allocate them properly then fix up the pointers
3610 * that may be pointing to the wrong kmem_cache structure.
3611 */
3612
3613 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3614 {
3615 int node;
3616 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3617
3618 memcpy(s, static_cache, kmem_cache->object_size);
3619
3620 for_each_node_state(node, N_NORMAL_MEMORY) {
3621 struct kmem_cache_node *n = get_node(s, node);
3622 struct page *p;
3623
3624 if (n) {
3625 list_for_each_entry(p, &n->partial, lru)
3626 p->slab_cache = s;
3627
3628 #ifdef CONFIG_SLUB_DEBUG
3629 list_for_each_entry(p, &n->full, lru)
3630 p->slab_cache = s;
3631 #endif
3632 }
3633 }
3634 list_add(&s->list, &slab_caches);
3635 return s;
3636 }
3637
3638 void __init kmem_cache_init(void)
3639 {
3640 static __initdata struct kmem_cache boot_kmem_cache,
3641 boot_kmem_cache_node;
3642 int i;
3643 int caches = 2;
3644
3645 if (debug_guardpage_minorder())
3646 slub_max_order = 0;
3647
3648 kmem_cache_node = &boot_kmem_cache_node;
3649 kmem_cache = &boot_kmem_cache;
3650
3651 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3652 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3653
3654 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3655
3656 /* Able to allocate the per node structures */
3657 slab_state = PARTIAL;
3658
3659 create_boot_cache(kmem_cache, "kmem_cache",
3660 offsetof(struct kmem_cache, node) +
3661 nr_node_ids * sizeof(struct kmem_cache_node *),
3662 SLAB_HWCACHE_ALIGN);
3663
3664 kmem_cache = bootstrap(&boot_kmem_cache);
3665
3666 /*
3667 * Allocate kmem_cache_node properly from the kmem_cache slab.
3668 * kmem_cache_node is separately allocated so no need to
3669 * update any list pointers.
3670 */
3671 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3672
3673 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3674
3675 /*
3676 * Patch up the size_index table if we have strange large alignment
3677 * requirements for the kmalloc array. This is only the case for
3678 * MIPS it seems. The standard arches will not generate any code here.
3679 *
3680 * Largest permitted alignment is 256 bytes due to the way we
3681 * handle the index determination for the smaller caches.
3682 *
3683 * Make sure that nothing crazy happens if someone starts tinkering
3684 * around with ARCH_KMALLOC_MINALIGN
3685 */
3686 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3687 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3688
3689 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3690 int elem = size_index_elem(i);
3691 if (elem >= ARRAY_SIZE(size_index))
3692 break;
3693 size_index[elem] = KMALLOC_SHIFT_LOW;
3694 }
3695
3696 if (KMALLOC_MIN_SIZE == 64) {
3697 /*
3698 * The 96 byte size cache is not used if the alignment
3699 * is 64 byte.
3700 */
3701 for (i = 64 + 8; i <= 96; i += 8)
3702 size_index[size_index_elem(i)] = 7;
3703 } else if (KMALLOC_MIN_SIZE == 128) {
3704 /*
3705 * The 192 byte sized cache is not used if the alignment
3706 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3707 * instead.
3708 */
3709 for (i = 128 + 8; i <= 192; i += 8)
3710 size_index[size_index_elem(i)] = 8;
3711 }
3712
3713 /* Caches that are not of the two-to-the-power-of size */
3714 if (KMALLOC_MIN_SIZE <= 32) {
3715 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3716 caches++;
3717 }
3718
3719 if (KMALLOC_MIN_SIZE <= 64) {
3720 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3721 caches++;
3722 }
3723
3724 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3725 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3726 caches++;
3727 }
3728
3729 slab_state = UP;
3730
3731 /* Provide the correct kmalloc names now that the caches are up */
3732 if (KMALLOC_MIN_SIZE <= 32) {
3733 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3734 BUG_ON(!kmalloc_caches[1]->name);
3735 }
3736
3737 if (KMALLOC_MIN_SIZE <= 64) {
3738 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3739 BUG_ON(!kmalloc_caches[2]->name);
3740 }
3741
3742 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3743 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3744
3745 BUG_ON(!s);
3746 kmalloc_caches[i]->name = s;
3747 }
3748
3749 #ifdef CONFIG_SMP
3750 register_cpu_notifier(&slab_notifier);
3751 #endif
3752
3753 #ifdef CONFIG_ZONE_DMA
3754 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3755 struct kmem_cache *s = kmalloc_caches[i];
3756
3757 if (s && s->size) {
3758 char *name = kasprintf(GFP_NOWAIT,
3759 "dma-kmalloc-%d", s->object_size);
3760
3761 BUG_ON(!name);
3762 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3763 s->object_size, SLAB_CACHE_DMA);
3764 }
3765 }
3766 #endif
3767 printk(KERN_INFO
3768 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3769 " CPUs=%d, Nodes=%d\n",
3770 caches, cache_line_size(),
3771 slub_min_order, slub_max_order, slub_min_objects,
3772 nr_cpu_ids, nr_node_ids);
3773 }
3774
3775 void __init kmem_cache_init_late(void)
3776 {
3777 }
3778
3779 /*
3780 * Find a mergeable slab cache
3781 */
3782 static int slab_unmergeable(struct kmem_cache *s)
3783 {
3784 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3785 return 1;
3786
3787 if (s->ctor)
3788 return 1;
3789
3790 /*
3791 * We may have set a slab to be unmergeable during bootstrap.
3792 */
3793 if (s->refcount < 0)
3794 return 1;
3795
3796 return 0;
3797 }
3798
3799 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3800 size_t align, unsigned long flags, const char *name,
3801 void (*ctor)(void *))
3802 {
3803 struct kmem_cache *s;
3804
3805 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3806 return NULL;
3807
3808 if (ctor)
3809 return NULL;
3810
3811 size = ALIGN(size, sizeof(void *));
3812 align = calculate_alignment(flags, align, size);
3813 size = ALIGN(size, align);
3814 flags = kmem_cache_flags(size, flags, name, NULL);
3815
3816 list_for_each_entry(s, &slab_caches, list) {
3817 if (slab_unmergeable(s))
3818 continue;
3819
3820 if (size > s->size)
3821 continue;
3822
3823 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3824 continue;
3825 /*
3826 * Check if alignment is compatible.
3827 * Courtesy of Adrian Drzewiecki
3828 */
3829 if ((s->size & ~(align - 1)) != s->size)
3830 continue;
3831
3832 if (s->size - size >= sizeof(void *))
3833 continue;
3834
3835 if (!cache_match_memcg(s, memcg))
3836 continue;
3837
3838 return s;
3839 }
3840 return NULL;
3841 }
3842
3843 struct kmem_cache *
3844 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3845 size_t align, unsigned long flags, void (*ctor)(void *))
3846 {
3847 struct kmem_cache *s;
3848
3849 s = find_mergeable(memcg, size, align, flags, name, ctor);
3850 if (s) {
3851 s->refcount++;
3852 /*
3853 * Adjust the object sizes so that we clear
3854 * the complete object on kzalloc.
3855 */
3856 s->object_size = max(s->object_size, (int)size);
3857 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3858
3859 if (sysfs_slab_alias(s, name)) {
3860 s->refcount--;
3861 s = NULL;
3862 }
3863 }
3864
3865 return s;
3866 }
3867
3868 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3869 {
3870 int err;
3871
3872 err = kmem_cache_open(s, flags);
3873 if (err)
3874 return err;
3875
3876 /* Mutex is not taken during early boot */
3877 if (slab_state <= UP)
3878 return 0;
3879
3880 memcg_propagate_slab_attrs(s);
3881 mutex_unlock(&slab_mutex);
3882 err = sysfs_slab_add(s);
3883 mutex_lock(&slab_mutex);
3884
3885 if (err)
3886 kmem_cache_close(s);
3887
3888 return err;
3889 }
3890
3891 #ifdef CONFIG_SMP
3892 /*
3893 * Use the cpu notifier to insure that the cpu slabs are flushed when
3894 * necessary.
3895 */
3896 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3897 unsigned long action, void *hcpu)
3898 {
3899 long cpu = (long)hcpu;
3900 struct kmem_cache *s;
3901 unsigned long flags;
3902
3903 switch (action) {
3904 case CPU_UP_CANCELED:
3905 case CPU_UP_CANCELED_FROZEN:
3906 case CPU_DEAD:
3907 case CPU_DEAD_FROZEN:
3908 mutex_lock(&slab_mutex);
3909 list_for_each_entry(s, &slab_caches, list) {
3910 local_irq_save(flags);
3911 __flush_cpu_slab(s, cpu);
3912 local_irq_restore(flags);
3913 }
3914 mutex_unlock(&slab_mutex);
3915 break;
3916 default:
3917 break;
3918 }
3919 return NOTIFY_OK;
3920 }
3921
3922 static struct notifier_block __cpuinitdata slab_notifier = {
3923 .notifier_call = slab_cpuup_callback
3924 };
3925
3926 #endif
3927
3928 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3929 {
3930 struct kmem_cache *s;
3931 void *ret;
3932
3933 if (unlikely(size > SLUB_MAX_SIZE))
3934 return kmalloc_large(size, gfpflags);
3935
3936 s = get_slab(size, gfpflags);
3937
3938 if (unlikely(ZERO_OR_NULL_PTR(s)))
3939 return s;
3940
3941 ret = slab_alloc(s, gfpflags, caller);
3942
3943 /* Honor the call site pointer we received. */
3944 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3945
3946 return ret;
3947 }
3948
3949 #ifdef CONFIG_NUMA
3950 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3951 int node, unsigned long caller)
3952 {
3953 struct kmem_cache *s;
3954 void *ret;
3955
3956 if (unlikely(size > SLUB_MAX_SIZE)) {
3957 ret = kmalloc_large_node(size, gfpflags, node);
3958
3959 trace_kmalloc_node(caller, ret,
3960 size, PAGE_SIZE << get_order(size),
3961 gfpflags, node);
3962
3963 return ret;
3964 }
3965
3966 s = get_slab(size, gfpflags);
3967
3968 if (unlikely(ZERO_OR_NULL_PTR(s)))
3969 return s;
3970
3971 ret = slab_alloc_node(s, gfpflags, node, caller);
3972
3973 /* Honor the call site pointer we received. */
3974 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3975
3976 return ret;
3977 }
3978 #endif
3979
3980 #ifdef CONFIG_SYSFS
3981 static int count_inuse(struct page *page)
3982 {
3983 return page->inuse;
3984 }
3985
3986 static int count_total(struct page *page)
3987 {
3988 return page->objects;
3989 }
3990 #endif
3991
3992 #ifdef CONFIG_SLUB_DEBUG
3993 static int validate_slab(struct kmem_cache *s, struct page *page,
3994 unsigned long *map)
3995 {
3996 void *p;
3997 void *addr = page_address(page);
3998
3999 if (!check_slab(s, page) ||
4000 !on_freelist(s, page, NULL))
4001 return 0;
4002
4003 /* Now we know that a valid freelist exists */
4004 bitmap_zero(map, page->objects);
4005
4006 get_map(s, page, map);
4007 for_each_object(p, s, addr, page->objects) {
4008 if (test_bit(slab_index(p, s, addr), map))
4009 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4010 return 0;
4011 }
4012
4013 for_each_object(p, s, addr, page->objects)
4014 if (!test_bit(slab_index(p, s, addr), map))
4015 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4016 return 0;
4017 return 1;
4018 }
4019
4020 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4021 unsigned long *map)
4022 {
4023 slab_lock(page);
4024 validate_slab(s, page, map);
4025 slab_unlock(page);
4026 }
4027
4028 static int validate_slab_node(struct kmem_cache *s,
4029 struct kmem_cache_node *n, unsigned long *map)
4030 {
4031 unsigned long count = 0;
4032 struct page *page;
4033 unsigned long flags;
4034
4035 spin_lock_irqsave(&n->list_lock, flags);
4036
4037 list_for_each_entry(page, &n->partial, lru) {
4038 validate_slab_slab(s, page, map);
4039 count++;
4040 }
4041 if (count != n->nr_partial)
4042 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4043 "counter=%ld\n", s->name, count, n->nr_partial);
4044
4045 if (!(s->flags & SLAB_STORE_USER))
4046 goto out;
4047
4048 list_for_each_entry(page, &n->full, lru) {
4049 validate_slab_slab(s, page, map);
4050 count++;
4051 }
4052 if (count != atomic_long_read(&n->nr_slabs))
4053 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4054 "counter=%ld\n", s->name, count,
4055 atomic_long_read(&n->nr_slabs));
4056
4057 out:
4058 spin_unlock_irqrestore(&n->list_lock, flags);
4059 return count;
4060 }
4061
4062 static long validate_slab_cache(struct kmem_cache *s)
4063 {
4064 int node;
4065 unsigned long count = 0;
4066 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4067 sizeof(unsigned long), GFP_KERNEL);
4068
4069 if (!map)
4070 return -ENOMEM;
4071
4072 flush_all(s);
4073 for_each_node_state(node, N_NORMAL_MEMORY) {
4074 struct kmem_cache_node *n = get_node(s, node);
4075
4076 count += validate_slab_node(s, n, map);
4077 }
4078 kfree(map);
4079 return count;
4080 }
4081 /*
4082 * Generate lists of code addresses where slabcache objects are allocated
4083 * and freed.
4084 */
4085
4086 struct location {
4087 unsigned long count;
4088 unsigned long addr;
4089 long long sum_time;
4090 long min_time;
4091 long max_time;
4092 long min_pid;
4093 long max_pid;
4094 DECLARE_BITMAP(cpus, NR_CPUS);
4095 nodemask_t nodes;
4096 };
4097
4098 struct loc_track {
4099 unsigned long max;
4100 unsigned long count;
4101 struct location *loc;
4102 };
4103
4104 static void free_loc_track(struct loc_track *t)
4105 {
4106 if (t->max)
4107 free_pages((unsigned long)t->loc,
4108 get_order(sizeof(struct location) * t->max));
4109 }
4110
4111 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4112 {
4113 struct location *l;
4114 int order;
4115
4116 order = get_order(sizeof(struct location) * max);
4117
4118 l = (void *)__get_free_pages(flags, order);
4119 if (!l)
4120 return 0;
4121
4122 if (t->count) {
4123 memcpy(l, t->loc, sizeof(struct location) * t->count);
4124 free_loc_track(t);
4125 }
4126 t->max = max;
4127 t->loc = l;
4128 return 1;
4129 }
4130
4131 static int add_location(struct loc_track *t, struct kmem_cache *s,
4132 const struct track *track)
4133 {
4134 long start, end, pos;
4135 struct location *l;
4136 unsigned long caddr;
4137 unsigned long age = jiffies - track->when;
4138
4139 start = -1;
4140 end = t->count;
4141
4142 for ( ; ; ) {
4143 pos = start + (end - start + 1) / 2;
4144
4145 /*
4146 * There is nothing at "end". If we end up there
4147 * we need to add something to before end.
4148 */
4149 if (pos == end)
4150 break;
4151
4152 caddr = t->loc[pos].addr;
4153 if (track->addr == caddr) {
4154
4155 l = &t->loc[pos];
4156 l->count++;
4157 if (track->when) {
4158 l->sum_time += age;
4159 if (age < l->min_time)
4160 l->min_time = age;
4161 if (age > l->max_time)
4162 l->max_time = age;
4163
4164 if (track->pid < l->min_pid)
4165 l->min_pid = track->pid;
4166 if (track->pid > l->max_pid)
4167 l->max_pid = track->pid;
4168
4169 cpumask_set_cpu(track->cpu,
4170 to_cpumask(l->cpus));
4171 }
4172 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4173 return 1;
4174 }
4175
4176 if (track->addr < caddr)
4177 end = pos;
4178 else
4179 start = pos;
4180 }
4181
4182 /*
4183 * Not found. Insert new tracking element.
4184 */
4185 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4186 return 0;
4187
4188 l = t->loc + pos;
4189 if (pos < t->count)
4190 memmove(l + 1, l,
4191 (t->count - pos) * sizeof(struct location));
4192 t->count++;
4193 l->count = 1;
4194 l->addr = track->addr;
4195 l->sum_time = age;
4196 l->min_time = age;
4197 l->max_time = age;
4198 l->min_pid = track->pid;
4199 l->max_pid = track->pid;
4200 cpumask_clear(to_cpumask(l->cpus));
4201 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4202 nodes_clear(l->nodes);
4203 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4204 return 1;
4205 }
4206
4207 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4208 struct page *page, enum track_item alloc,
4209 unsigned long *map)
4210 {
4211 void *addr = page_address(page);
4212 void *p;
4213
4214 bitmap_zero(map, page->objects);
4215 get_map(s, page, map);
4216
4217 for_each_object(p, s, addr, page->objects)
4218 if (!test_bit(slab_index(p, s, addr), map))
4219 add_location(t, s, get_track(s, p, alloc));
4220 }
4221
4222 static int list_locations(struct kmem_cache *s, char *buf,
4223 enum track_item alloc)
4224 {
4225 int len = 0;
4226 unsigned long i;
4227 struct loc_track t = { 0, 0, NULL };
4228 int node;
4229 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4230 sizeof(unsigned long), GFP_KERNEL);
4231
4232 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4233 GFP_TEMPORARY)) {
4234 kfree(map);
4235 return sprintf(buf, "Out of memory\n");
4236 }
4237 /* Push back cpu slabs */
4238 flush_all(s);
4239
4240 for_each_node_state(node, N_NORMAL_MEMORY) {
4241 struct kmem_cache_node *n = get_node(s, node);
4242 unsigned long flags;
4243 struct page *page;
4244
4245 if (!atomic_long_read(&n->nr_slabs))
4246 continue;
4247
4248 spin_lock_irqsave(&n->list_lock, flags);
4249 list_for_each_entry(page, &n->partial, lru)
4250 process_slab(&t, s, page, alloc, map);
4251 list_for_each_entry(page, &n->full, lru)
4252 process_slab(&t, s, page, alloc, map);
4253 spin_unlock_irqrestore(&n->list_lock, flags);
4254 }
4255
4256 for (i = 0; i < t.count; i++) {
4257 struct location *l = &t.loc[i];
4258
4259 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4260 break;
4261 len += sprintf(buf + len, "%7ld ", l->count);
4262
4263 if (l->addr)
4264 len += sprintf(buf + len, "%pS", (void *)l->addr);
4265 else
4266 len += sprintf(buf + len, "<not-available>");
4267
4268 if (l->sum_time != l->min_time) {
4269 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4270 l->min_time,
4271 (long)div_u64(l->sum_time, l->count),
4272 l->max_time);
4273 } else
4274 len += sprintf(buf + len, " age=%ld",
4275 l->min_time);
4276
4277 if (l->min_pid != l->max_pid)
4278 len += sprintf(buf + len, " pid=%ld-%ld",
4279 l->min_pid, l->max_pid);
4280 else
4281 len += sprintf(buf + len, " pid=%ld",
4282 l->min_pid);
4283
4284 if (num_online_cpus() > 1 &&
4285 !cpumask_empty(to_cpumask(l->cpus)) &&
4286 len < PAGE_SIZE - 60) {
4287 len += sprintf(buf + len, " cpus=");
4288 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4289 to_cpumask(l->cpus));
4290 }
4291
4292 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4293 len < PAGE_SIZE - 60) {
4294 len += sprintf(buf + len, " nodes=");
4295 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4296 l->nodes);
4297 }
4298
4299 len += sprintf(buf + len, "\n");
4300 }
4301
4302 free_loc_track(&t);
4303 kfree(map);
4304 if (!t.count)
4305 len += sprintf(buf, "No data\n");
4306 return len;
4307 }
4308 #endif
4309
4310 #ifdef SLUB_RESILIENCY_TEST
4311 static void resiliency_test(void)
4312 {
4313 u8 *p;
4314
4315 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4316
4317 printk(KERN_ERR "SLUB resiliency testing\n");
4318 printk(KERN_ERR "-----------------------\n");
4319 printk(KERN_ERR "A. Corruption after allocation\n");
4320
4321 p = kzalloc(16, GFP_KERNEL);
4322 p[16] = 0x12;
4323 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4324 " 0x12->0x%p\n\n", p + 16);
4325
4326 validate_slab_cache(kmalloc_caches[4]);
4327
4328 /* Hmmm... The next two are dangerous */
4329 p = kzalloc(32, GFP_KERNEL);
4330 p[32 + sizeof(void *)] = 0x34;
4331 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4332 " 0x34 -> -0x%p\n", p);
4333 printk(KERN_ERR
4334 "If allocated object is overwritten then not detectable\n\n");
4335
4336 validate_slab_cache(kmalloc_caches[5]);
4337 p = kzalloc(64, GFP_KERNEL);
4338 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4339 *p = 0x56;
4340 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4341 p);
4342 printk(KERN_ERR
4343 "If allocated object is overwritten then not detectable\n\n");
4344 validate_slab_cache(kmalloc_caches[6]);
4345
4346 printk(KERN_ERR "\nB. Corruption after free\n");
4347 p = kzalloc(128, GFP_KERNEL);
4348 kfree(p);
4349 *p = 0x78;
4350 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4351 validate_slab_cache(kmalloc_caches[7]);
4352
4353 p = kzalloc(256, GFP_KERNEL);
4354 kfree(p);
4355 p[50] = 0x9a;
4356 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4357 p);
4358 validate_slab_cache(kmalloc_caches[8]);
4359
4360 p = kzalloc(512, GFP_KERNEL);
4361 kfree(p);
4362 p[512] = 0xab;
4363 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4364 validate_slab_cache(kmalloc_caches[9]);
4365 }
4366 #else
4367 #ifdef CONFIG_SYSFS
4368 static void resiliency_test(void) {};
4369 #endif
4370 #endif
4371
4372 #ifdef CONFIG_SYSFS
4373 enum slab_stat_type {
4374 SL_ALL, /* All slabs */
4375 SL_PARTIAL, /* Only partially allocated slabs */
4376 SL_CPU, /* Only slabs used for cpu caches */
4377 SL_OBJECTS, /* Determine allocated objects not slabs */
4378 SL_TOTAL /* Determine object capacity not slabs */
4379 };
4380
4381 #define SO_ALL (1 << SL_ALL)
4382 #define SO_PARTIAL (1 << SL_PARTIAL)
4383 #define SO_CPU (1 << SL_CPU)
4384 #define SO_OBJECTS (1 << SL_OBJECTS)
4385 #define SO_TOTAL (1 << SL_TOTAL)
4386
4387 static ssize_t show_slab_objects(struct kmem_cache *s,
4388 char *buf, unsigned long flags)
4389 {
4390 unsigned long total = 0;
4391 int node;
4392 int x;
4393 unsigned long *nodes;
4394 unsigned long *per_cpu;
4395
4396 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4397 if (!nodes)
4398 return -ENOMEM;
4399 per_cpu = nodes + nr_node_ids;
4400
4401 if (flags & SO_CPU) {
4402 int cpu;
4403
4404 for_each_possible_cpu(cpu) {
4405 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4406 int node;
4407 struct page *page;
4408
4409 page = ACCESS_ONCE(c->page);
4410 if (!page)
4411 continue;
4412
4413 node = page_to_nid(page);
4414 if (flags & SO_TOTAL)
4415 x = page->objects;
4416 else if (flags & SO_OBJECTS)
4417 x = page->inuse;
4418 else
4419 x = 1;
4420
4421 total += x;
4422 nodes[node] += x;
4423
4424 page = ACCESS_ONCE(c->partial);
4425 if (page) {
4426 x = page->pobjects;
4427 total += x;
4428 nodes[node] += x;
4429 }
4430
4431 per_cpu[node]++;
4432 }
4433 }
4434
4435 lock_memory_hotplug();
4436 #ifdef CONFIG_SLUB_DEBUG
4437 if (flags & SO_ALL) {
4438 for_each_node_state(node, N_NORMAL_MEMORY) {
4439 struct kmem_cache_node *n = get_node(s, node);
4440
4441 if (flags & SO_TOTAL)
4442 x = atomic_long_read(&n->total_objects);
4443 else if (flags & SO_OBJECTS)
4444 x = atomic_long_read(&n->total_objects) -
4445 count_partial(n, count_free);
4446
4447 else
4448 x = atomic_long_read(&n->nr_slabs);
4449 total += x;
4450 nodes[node] += x;
4451 }
4452
4453 } else
4454 #endif
4455 if (flags & SO_PARTIAL) {
4456 for_each_node_state(node, N_NORMAL_MEMORY) {
4457 struct kmem_cache_node *n = get_node(s, node);
4458
4459 if (flags & SO_TOTAL)
4460 x = count_partial(n, count_total);
4461 else if (flags & SO_OBJECTS)
4462 x = count_partial(n, count_inuse);
4463 else
4464 x = n->nr_partial;
4465 total += x;
4466 nodes[node] += x;
4467 }
4468 }
4469 x = sprintf(buf, "%lu", total);
4470 #ifdef CONFIG_NUMA
4471 for_each_node_state(node, N_NORMAL_MEMORY)
4472 if (nodes[node])
4473 x += sprintf(buf + x, " N%d=%lu",
4474 node, nodes[node]);
4475 #endif
4476 unlock_memory_hotplug();
4477 kfree(nodes);
4478 return x + sprintf(buf + x, "\n");
4479 }
4480
4481 #ifdef CONFIG_SLUB_DEBUG
4482 static int any_slab_objects(struct kmem_cache *s)
4483 {
4484 int node;
4485
4486 for_each_online_node(node) {
4487 struct kmem_cache_node *n = get_node(s, node);
4488
4489 if (!n)
4490 continue;
4491
4492 if (atomic_long_read(&n->total_objects))
4493 return 1;
4494 }
4495 return 0;
4496 }
4497 #endif
4498
4499 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4500 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4501
4502 struct slab_attribute {
4503 struct attribute attr;
4504 ssize_t (*show)(struct kmem_cache *s, char *buf);
4505 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4506 };
4507
4508 #define SLAB_ATTR_RO(_name) \
4509 static struct slab_attribute _name##_attr = \
4510 __ATTR(_name, 0400, _name##_show, NULL)
4511
4512 #define SLAB_ATTR(_name) \
4513 static struct slab_attribute _name##_attr = \
4514 __ATTR(_name, 0600, _name##_show, _name##_store)
4515
4516 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4517 {
4518 return sprintf(buf, "%d\n", s->size);
4519 }
4520 SLAB_ATTR_RO(slab_size);
4521
4522 static ssize_t align_show(struct kmem_cache *s, char *buf)
4523 {
4524 return sprintf(buf, "%d\n", s->align);
4525 }
4526 SLAB_ATTR_RO(align);
4527
4528 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4529 {
4530 return sprintf(buf, "%d\n", s->object_size);
4531 }
4532 SLAB_ATTR_RO(object_size);
4533
4534 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4535 {
4536 return sprintf(buf, "%d\n", oo_objects(s->oo));
4537 }
4538 SLAB_ATTR_RO(objs_per_slab);
4539
4540 static ssize_t order_store(struct kmem_cache *s,
4541 const char *buf, size_t length)
4542 {
4543 unsigned long order;
4544 int err;
4545
4546 err = strict_strtoul(buf, 10, &order);
4547 if (err)
4548 return err;
4549
4550 if (order > slub_max_order || order < slub_min_order)
4551 return -EINVAL;
4552
4553 calculate_sizes(s, order);
4554 return length;
4555 }
4556
4557 static ssize_t order_show(struct kmem_cache *s, char *buf)
4558 {
4559 return sprintf(buf, "%d\n", oo_order(s->oo));
4560 }
4561 SLAB_ATTR(order);
4562
4563 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4564 {
4565 return sprintf(buf, "%lu\n", s->min_partial);
4566 }
4567
4568 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4569 size_t length)
4570 {
4571 unsigned long min;
4572 int err;
4573
4574 err = strict_strtoul(buf, 10, &min);
4575 if (err)
4576 return err;
4577
4578 set_min_partial(s, min);
4579 return length;
4580 }
4581 SLAB_ATTR(min_partial);
4582
4583 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4584 {
4585 return sprintf(buf, "%u\n", s->cpu_partial);
4586 }
4587
4588 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4589 size_t length)
4590 {
4591 unsigned long objects;
4592 int err;
4593
4594 err = strict_strtoul(buf, 10, &objects);
4595 if (err)
4596 return err;
4597 if (objects && kmem_cache_debug(s))
4598 return -EINVAL;
4599
4600 s->cpu_partial = objects;
4601 flush_all(s);
4602 return length;
4603 }
4604 SLAB_ATTR(cpu_partial);
4605
4606 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4607 {
4608 if (!s->ctor)
4609 return 0;
4610 return sprintf(buf, "%pS\n", s->ctor);
4611 }
4612 SLAB_ATTR_RO(ctor);
4613
4614 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4615 {
4616 return sprintf(buf, "%d\n", s->refcount - 1);
4617 }
4618 SLAB_ATTR_RO(aliases);
4619
4620 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4621 {
4622 return show_slab_objects(s, buf, SO_PARTIAL);
4623 }
4624 SLAB_ATTR_RO(partial);
4625
4626 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4627 {
4628 return show_slab_objects(s, buf, SO_CPU);
4629 }
4630 SLAB_ATTR_RO(cpu_slabs);
4631
4632 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4633 {
4634 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4635 }
4636 SLAB_ATTR_RO(objects);
4637
4638 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4639 {
4640 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4641 }
4642 SLAB_ATTR_RO(objects_partial);
4643
4644 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4645 {
4646 int objects = 0;
4647 int pages = 0;
4648 int cpu;
4649 int len;
4650
4651 for_each_online_cpu(cpu) {
4652 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4653
4654 if (page) {
4655 pages += page->pages;
4656 objects += page->pobjects;
4657 }
4658 }
4659
4660 len = sprintf(buf, "%d(%d)", objects, pages);
4661
4662 #ifdef CONFIG_SMP
4663 for_each_online_cpu(cpu) {
4664 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4665
4666 if (page && len < PAGE_SIZE - 20)
4667 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4668 page->pobjects, page->pages);
4669 }
4670 #endif
4671 return len + sprintf(buf + len, "\n");
4672 }
4673 SLAB_ATTR_RO(slabs_cpu_partial);
4674
4675 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4676 {
4677 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4678 }
4679
4680 static ssize_t reclaim_account_store(struct kmem_cache *s,
4681 const char *buf, size_t length)
4682 {
4683 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4684 if (buf[0] == '1')
4685 s->flags |= SLAB_RECLAIM_ACCOUNT;
4686 return length;
4687 }
4688 SLAB_ATTR(reclaim_account);
4689
4690 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4691 {
4692 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4693 }
4694 SLAB_ATTR_RO(hwcache_align);
4695
4696 #ifdef CONFIG_ZONE_DMA
4697 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4698 {
4699 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4700 }
4701 SLAB_ATTR_RO(cache_dma);
4702 #endif
4703
4704 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4705 {
4706 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4707 }
4708 SLAB_ATTR_RO(destroy_by_rcu);
4709
4710 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4711 {
4712 return sprintf(buf, "%d\n", s->reserved);
4713 }
4714 SLAB_ATTR_RO(reserved);
4715
4716 #ifdef CONFIG_SLUB_DEBUG
4717 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4718 {
4719 return show_slab_objects(s, buf, SO_ALL);
4720 }
4721 SLAB_ATTR_RO(slabs);
4722
4723 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4724 {
4725 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4726 }
4727 SLAB_ATTR_RO(total_objects);
4728
4729 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4730 {
4731 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4732 }
4733
4734 static ssize_t sanity_checks_store(struct kmem_cache *s,
4735 const char *buf, size_t length)
4736 {
4737 s->flags &= ~SLAB_DEBUG_FREE;
4738 if (buf[0] == '1') {
4739 s->flags &= ~__CMPXCHG_DOUBLE;
4740 s->flags |= SLAB_DEBUG_FREE;
4741 }
4742 return length;
4743 }
4744 SLAB_ATTR(sanity_checks);
4745
4746 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4747 {
4748 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4749 }
4750
4751 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4752 size_t length)
4753 {
4754 s->flags &= ~SLAB_TRACE;
4755 if (buf[0] == '1') {
4756 s->flags &= ~__CMPXCHG_DOUBLE;
4757 s->flags |= SLAB_TRACE;
4758 }
4759 return length;
4760 }
4761 SLAB_ATTR(trace);
4762
4763 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4766 }
4767
4768 static ssize_t red_zone_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770 {
4771 if (any_slab_objects(s))
4772 return -EBUSY;
4773
4774 s->flags &= ~SLAB_RED_ZONE;
4775 if (buf[0] == '1') {
4776 s->flags &= ~__CMPXCHG_DOUBLE;
4777 s->flags |= SLAB_RED_ZONE;
4778 }
4779 calculate_sizes(s, -1);
4780 return length;
4781 }
4782 SLAB_ATTR(red_zone);
4783
4784 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4785 {
4786 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4787 }
4788
4789 static ssize_t poison_store(struct kmem_cache *s,
4790 const char *buf, size_t length)
4791 {
4792 if (any_slab_objects(s))
4793 return -EBUSY;
4794
4795 s->flags &= ~SLAB_POISON;
4796 if (buf[0] == '1') {
4797 s->flags &= ~__CMPXCHG_DOUBLE;
4798 s->flags |= SLAB_POISON;
4799 }
4800 calculate_sizes(s, -1);
4801 return length;
4802 }
4803 SLAB_ATTR(poison);
4804
4805 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4806 {
4807 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4808 }
4809
4810 static ssize_t store_user_store(struct kmem_cache *s,
4811 const char *buf, size_t length)
4812 {
4813 if (any_slab_objects(s))
4814 return -EBUSY;
4815
4816 s->flags &= ~SLAB_STORE_USER;
4817 if (buf[0] == '1') {
4818 s->flags &= ~__CMPXCHG_DOUBLE;
4819 s->flags |= SLAB_STORE_USER;
4820 }
4821 calculate_sizes(s, -1);
4822 return length;
4823 }
4824 SLAB_ATTR(store_user);
4825
4826 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4827 {
4828 return 0;
4829 }
4830
4831 static ssize_t validate_store(struct kmem_cache *s,
4832 const char *buf, size_t length)
4833 {
4834 int ret = -EINVAL;
4835
4836 if (buf[0] == '1') {
4837 ret = validate_slab_cache(s);
4838 if (ret >= 0)
4839 ret = length;
4840 }
4841 return ret;
4842 }
4843 SLAB_ATTR(validate);
4844
4845 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4846 {
4847 if (!(s->flags & SLAB_STORE_USER))
4848 return -ENOSYS;
4849 return list_locations(s, buf, TRACK_ALLOC);
4850 }
4851 SLAB_ATTR_RO(alloc_calls);
4852
4853 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4854 {
4855 if (!(s->flags & SLAB_STORE_USER))
4856 return -ENOSYS;
4857 return list_locations(s, buf, TRACK_FREE);
4858 }
4859 SLAB_ATTR_RO(free_calls);
4860 #endif /* CONFIG_SLUB_DEBUG */
4861
4862 #ifdef CONFIG_FAILSLAB
4863 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4864 {
4865 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4866 }
4867
4868 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4869 size_t length)
4870 {
4871 s->flags &= ~SLAB_FAILSLAB;
4872 if (buf[0] == '1')
4873 s->flags |= SLAB_FAILSLAB;
4874 return length;
4875 }
4876 SLAB_ATTR(failslab);
4877 #endif
4878
4879 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4880 {
4881 return 0;
4882 }
4883
4884 static ssize_t shrink_store(struct kmem_cache *s,
4885 const char *buf, size_t length)
4886 {
4887 if (buf[0] == '1') {
4888 int rc = kmem_cache_shrink(s);
4889
4890 if (rc)
4891 return rc;
4892 } else
4893 return -EINVAL;
4894 return length;
4895 }
4896 SLAB_ATTR(shrink);
4897
4898 #ifdef CONFIG_NUMA
4899 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4900 {
4901 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4902 }
4903
4904 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906 {
4907 unsigned long ratio;
4908 int err;
4909
4910 err = strict_strtoul(buf, 10, &ratio);
4911 if (err)
4912 return err;
4913
4914 if (ratio <= 100)
4915 s->remote_node_defrag_ratio = ratio * 10;
4916
4917 return length;
4918 }
4919 SLAB_ATTR(remote_node_defrag_ratio);
4920 #endif
4921
4922 #ifdef CONFIG_SLUB_STATS
4923 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4924 {
4925 unsigned long sum = 0;
4926 int cpu;
4927 int len;
4928 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4929
4930 if (!data)
4931 return -ENOMEM;
4932
4933 for_each_online_cpu(cpu) {
4934 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4935
4936 data[cpu] = x;
4937 sum += x;
4938 }
4939
4940 len = sprintf(buf, "%lu", sum);
4941
4942 #ifdef CONFIG_SMP
4943 for_each_online_cpu(cpu) {
4944 if (data[cpu] && len < PAGE_SIZE - 20)
4945 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4946 }
4947 #endif
4948 kfree(data);
4949 return len + sprintf(buf + len, "\n");
4950 }
4951
4952 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4953 {
4954 int cpu;
4955
4956 for_each_online_cpu(cpu)
4957 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4958 }
4959
4960 #define STAT_ATTR(si, text) \
4961 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4962 { \
4963 return show_stat(s, buf, si); \
4964 } \
4965 static ssize_t text##_store(struct kmem_cache *s, \
4966 const char *buf, size_t length) \
4967 { \
4968 if (buf[0] != '0') \
4969 return -EINVAL; \
4970 clear_stat(s, si); \
4971 return length; \
4972 } \
4973 SLAB_ATTR(text); \
4974
4975 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4976 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4977 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4978 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4979 STAT_ATTR(FREE_FROZEN, free_frozen);
4980 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4981 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4982 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4983 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4984 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4985 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4986 STAT_ATTR(FREE_SLAB, free_slab);
4987 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4988 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4989 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4990 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4991 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4992 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4993 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4994 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4995 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4996 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4997 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4998 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4999 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5000 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5001 #endif
5002
5003 static struct attribute *slab_attrs[] = {
5004 &slab_size_attr.attr,
5005 &object_size_attr.attr,
5006 &objs_per_slab_attr.attr,
5007 &order_attr.attr,
5008 &min_partial_attr.attr,
5009 &cpu_partial_attr.attr,
5010 &objects_attr.attr,
5011 &objects_partial_attr.attr,
5012 &partial_attr.attr,
5013 &cpu_slabs_attr.attr,
5014 &ctor_attr.attr,
5015 &aliases_attr.attr,
5016 &align_attr.attr,
5017 &hwcache_align_attr.attr,
5018 &reclaim_account_attr.attr,
5019 &destroy_by_rcu_attr.attr,
5020 &shrink_attr.attr,
5021 &reserved_attr.attr,
5022 &slabs_cpu_partial_attr.attr,
5023 #ifdef CONFIG_SLUB_DEBUG
5024 &total_objects_attr.attr,
5025 &slabs_attr.attr,
5026 &sanity_checks_attr.attr,
5027 &trace_attr.attr,
5028 &red_zone_attr.attr,
5029 &poison_attr.attr,
5030 &store_user_attr.attr,
5031 &validate_attr.attr,
5032 &alloc_calls_attr.attr,
5033 &free_calls_attr.attr,
5034 #endif
5035 #ifdef CONFIG_ZONE_DMA
5036 &cache_dma_attr.attr,
5037 #endif
5038 #ifdef CONFIG_NUMA
5039 &remote_node_defrag_ratio_attr.attr,
5040 #endif
5041 #ifdef CONFIG_SLUB_STATS
5042 &alloc_fastpath_attr.attr,
5043 &alloc_slowpath_attr.attr,
5044 &free_fastpath_attr.attr,
5045 &free_slowpath_attr.attr,
5046 &free_frozen_attr.attr,
5047 &free_add_partial_attr.attr,
5048 &free_remove_partial_attr.attr,
5049 &alloc_from_partial_attr.attr,
5050 &alloc_slab_attr.attr,
5051 &alloc_refill_attr.attr,
5052 &alloc_node_mismatch_attr.attr,
5053 &free_slab_attr.attr,
5054 &cpuslab_flush_attr.attr,
5055 &deactivate_full_attr.attr,
5056 &deactivate_empty_attr.attr,
5057 &deactivate_to_head_attr.attr,
5058 &deactivate_to_tail_attr.attr,
5059 &deactivate_remote_frees_attr.attr,
5060 &deactivate_bypass_attr.attr,
5061 &order_fallback_attr.attr,
5062 &cmpxchg_double_fail_attr.attr,
5063 &cmpxchg_double_cpu_fail_attr.attr,
5064 &cpu_partial_alloc_attr.attr,
5065 &cpu_partial_free_attr.attr,
5066 &cpu_partial_node_attr.attr,
5067 &cpu_partial_drain_attr.attr,
5068 #endif
5069 #ifdef CONFIG_FAILSLAB
5070 &failslab_attr.attr,
5071 #endif
5072
5073 NULL
5074 };
5075
5076 static struct attribute_group slab_attr_group = {
5077 .attrs = slab_attrs,
5078 };
5079
5080 static ssize_t slab_attr_show(struct kobject *kobj,
5081 struct attribute *attr,
5082 char *buf)
5083 {
5084 struct slab_attribute *attribute;
5085 struct kmem_cache *s;
5086 int err;
5087
5088 attribute = to_slab_attr(attr);
5089 s = to_slab(kobj);
5090
5091 if (!attribute->show)
5092 return -EIO;
5093
5094 err = attribute->show(s, buf);
5095
5096 return err;
5097 }
5098
5099 static ssize_t slab_attr_store(struct kobject *kobj,
5100 struct attribute *attr,
5101 const char *buf, size_t len)
5102 {
5103 struct slab_attribute *attribute;
5104 struct kmem_cache *s;
5105 int err;
5106
5107 attribute = to_slab_attr(attr);
5108 s = to_slab(kobj);
5109
5110 if (!attribute->store)
5111 return -EIO;
5112
5113 err = attribute->store(s, buf, len);
5114 #ifdef CONFIG_MEMCG_KMEM
5115 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5116 int i;
5117
5118 mutex_lock(&slab_mutex);
5119 if (s->max_attr_size < len)
5120 s->max_attr_size = len;
5121
5122 /*
5123 * This is a best effort propagation, so this function's return
5124 * value will be determined by the parent cache only. This is
5125 * basically because not all attributes will have a well
5126 * defined semantics for rollbacks - most of the actions will
5127 * have permanent effects.
5128 *
5129 * Returning the error value of any of the children that fail
5130 * is not 100 % defined, in the sense that users seeing the
5131 * error code won't be able to know anything about the state of
5132 * the cache.
5133 *
5134 * Only returning the error code for the parent cache at least
5135 * has well defined semantics. The cache being written to
5136 * directly either failed or succeeded, in which case we loop
5137 * through the descendants with best-effort propagation.
5138 */
5139 for_each_memcg_cache_index(i) {
5140 struct kmem_cache *c = cache_from_memcg(s, i);
5141 if (c)
5142 attribute->store(c, buf, len);
5143 }
5144 mutex_unlock(&slab_mutex);
5145 }
5146 #endif
5147 return err;
5148 }
5149
5150 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5151 {
5152 #ifdef CONFIG_MEMCG_KMEM
5153 int i;
5154 char *buffer = NULL;
5155
5156 if (!is_root_cache(s))
5157 return;
5158
5159 /*
5160 * This mean this cache had no attribute written. Therefore, no point
5161 * in copying default values around
5162 */
5163 if (!s->max_attr_size)
5164 return;
5165
5166 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5167 char mbuf[64];
5168 char *buf;
5169 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5170
5171 if (!attr || !attr->store || !attr->show)
5172 continue;
5173
5174 /*
5175 * It is really bad that we have to allocate here, so we will
5176 * do it only as a fallback. If we actually allocate, though,
5177 * we can just use the allocated buffer until the end.
5178 *
5179 * Most of the slub attributes will tend to be very small in
5180 * size, but sysfs allows buffers up to a page, so they can
5181 * theoretically happen.
5182 */
5183 if (buffer)
5184 buf = buffer;
5185 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5186 buf = mbuf;
5187 else {
5188 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5189 if (WARN_ON(!buffer))
5190 continue;
5191 buf = buffer;
5192 }
5193
5194 attr->show(s->memcg_params->root_cache, buf);
5195 attr->store(s, buf, strlen(buf));
5196 }
5197
5198 if (buffer)
5199 free_page((unsigned long)buffer);
5200 #endif
5201 }
5202
5203 static const struct sysfs_ops slab_sysfs_ops = {
5204 .show = slab_attr_show,
5205 .store = slab_attr_store,
5206 };
5207
5208 static struct kobj_type slab_ktype = {
5209 .sysfs_ops = &slab_sysfs_ops,
5210 };
5211
5212 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5213 {
5214 struct kobj_type *ktype = get_ktype(kobj);
5215
5216 if (ktype == &slab_ktype)
5217 return 1;
5218 return 0;
5219 }
5220
5221 static const struct kset_uevent_ops slab_uevent_ops = {
5222 .filter = uevent_filter,
5223 };
5224
5225 static struct kset *slab_kset;
5226
5227 #define ID_STR_LENGTH 64
5228
5229 /* Create a unique string id for a slab cache:
5230 *
5231 * Format :[flags-]size
5232 */
5233 static char *create_unique_id(struct kmem_cache *s)
5234 {
5235 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5236 char *p = name;
5237
5238 BUG_ON(!name);
5239
5240 *p++ = ':';
5241 /*
5242 * First flags affecting slabcache operations. We will only
5243 * get here for aliasable slabs so we do not need to support
5244 * too many flags. The flags here must cover all flags that
5245 * are matched during merging to guarantee that the id is
5246 * unique.
5247 */
5248 if (s->flags & SLAB_CACHE_DMA)
5249 *p++ = 'd';
5250 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5251 *p++ = 'a';
5252 if (s->flags & SLAB_DEBUG_FREE)
5253 *p++ = 'F';
5254 if (!(s->flags & SLAB_NOTRACK))
5255 *p++ = 't';
5256 if (p != name + 1)
5257 *p++ = '-';
5258 p += sprintf(p, "%07d", s->size);
5259
5260 #ifdef CONFIG_MEMCG_KMEM
5261 if (!is_root_cache(s))
5262 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5263 #endif
5264
5265 BUG_ON(p > name + ID_STR_LENGTH - 1);
5266 return name;
5267 }
5268
5269 static int sysfs_slab_add(struct kmem_cache *s)
5270 {
5271 int err;
5272 const char *name;
5273 int unmergeable = slab_unmergeable(s);
5274
5275 if (unmergeable) {
5276 /*
5277 * Slabcache can never be merged so we can use the name proper.
5278 * This is typically the case for debug situations. In that
5279 * case we can catch duplicate names easily.
5280 */
5281 sysfs_remove_link(&slab_kset->kobj, s->name);
5282 name = s->name;
5283 } else {
5284 /*
5285 * Create a unique name for the slab as a target
5286 * for the symlinks.
5287 */
5288 name = create_unique_id(s);
5289 }
5290
5291 s->kobj.kset = slab_kset;
5292 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5293 if (err) {
5294 kobject_put(&s->kobj);
5295 return err;
5296 }
5297
5298 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5299 if (err) {
5300 kobject_del(&s->kobj);
5301 kobject_put(&s->kobj);
5302 return err;
5303 }
5304 kobject_uevent(&s->kobj, KOBJ_ADD);
5305 if (!unmergeable) {
5306 /* Setup first alias */
5307 sysfs_slab_alias(s, s->name);
5308 kfree(name);
5309 }
5310 return 0;
5311 }
5312
5313 static void sysfs_slab_remove(struct kmem_cache *s)
5314 {
5315 if (slab_state < FULL)
5316 /*
5317 * Sysfs has not been setup yet so no need to remove the
5318 * cache from sysfs.
5319 */
5320 return;
5321
5322 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 kobject_del(&s->kobj);
5324 kobject_put(&s->kobj);
5325 }
5326
5327 /*
5328 * Need to buffer aliases during bootup until sysfs becomes
5329 * available lest we lose that information.
5330 */
5331 struct saved_alias {
5332 struct kmem_cache *s;
5333 const char *name;
5334 struct saved_alias *next;
5335 };
5336
5337 static struct saved_alias *alias_list;
5338
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340 {
5341 struct saved_alias *al;
5342
5343 if (slab_state == FULL) {
5344 /*
5345 * If we have a leftover link then remove it.
5346 */
5347 sysfs_remove_link(&slab_kset->kobj, name);
5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5349 }
5350
5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 if (!al)
5353 return -ENOMEM;
5354
5355 al->s = s;
5356 al->name = name;
5357 al->next = alias_list;
5358 alias_list = al;
5359 return 0;
5360 }
5361
5362 static int __init slab_sysfs_init(void)
5363 {
5364 struct kmem_cache *s;
5365 int err;
5366
5367 mutex_lock(&slab_mutex);
5368
5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 if (!slab_kset) {
5371 mutex_unlock(&slab_mutex);
5372 printk(KERN_ERR "Cannot register slab subsystem.\n");
5373 return -ENOSYS;
5374 }
5375
5376 slab_state = FULL;
5377
5378 list_for_each_entry(s, &slab_caches, list) {
5379 err = sysfs_slab_add(s);
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5382 " to sysfs\n", s->name);
5383 }
5384
5385 while (alias_list) {
5386 struct saved_alias *al = alias_list;
5387
5388 alias_list = alias_list->next;
5389 err = sysfs_slab_alias(al->s, al->name);
5390 if (err)
5391 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5392 " %s to sysfs\n", al->name);
5393 kfree(al);
5394 }
5395
5396 mutex_unlock(&slab_mutex);
5397 resiliency_test();
5398 return 0;
5399 }
5400
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5403
5404 /*
5405 * The /proc/slabinfo ABI
5406 */
5407 #ifdef CONFIG_SLABINFO
5408 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5409 {
5410 unsigned long nr_partials = 0;
5411 unsigned long nr_slabs = 0;
5412 unsigned long nr_objs = 0;
5413 unsigned long nr_free = 0;
5414 int node;
5415
5416 for_each_online_node(node) {
5417 struct kmem_cache_node *n = get_node(s, node);
5418
5419 if (!n)
5420 continue;
5421
5422 nr_partials += n->nr_partial;
5423 nr_slabs += atomic_long_read(&n->nr_slabs);
5424 nr_objs += atomic_long_read(&n->total_objects);
5425 nr_free += count_partial(n, count_free);
5426 }
5427
5428 sinfo->active_objs = nr_objs - nr_free;
5429 sinfo->num_objs = nr_objs;
5430 sinfo->active_slabs = nr_slabs;
5431 sinfo->num_slabs = nr_slabs;
5432 sinfo->objects_per_slab = oo_objects(s->oo);
5433 sinfo->cache_order = oo_order(s->oo);
5434 }
5435
5436 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5437 {
5438 }
5439
5440 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5441 size_t count, loff_t *ppos)
5442 {
5443 return -EIO;
5444 }
5445 #endif /* CONFIG_SLABINFO */
This page took 0.140583 seconds and 5 git commands to generate.