slab: get_online_mems for kmem_cache_{create,destroy,shrink}
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 return s->node[node];
239 }
240
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244 {
245 void *base;
246
247 if (!object)
248 return 1;
249
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257 }
258
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 return *(void **)(object + s->offset);
262 }
263
264 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265 {
266 prefetch(object + s->offset);
267 }
268
269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 {
271 void *p;
272
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275 #else
276 p = get_freepointer(s, object);
277 #endif
278 return p;
279 }
280
281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 {
283 *(void **)(object + s->offset) = fp;
284 }
285
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 __p += (__s)->size)
290
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 return (p - addr) / s->size;
295 }
296
297 static inline size_t slab_ksize(const struct kmem_cache *s)
298 {
299 #ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 return s->object_size;
306
307 #endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319 }
320
321 static inline int order_objects(int order, unsigned long size, int reserved)
322 {
323 return ((PAGE_SIZE << order) - reserved) / size;
324 }
325
326 static inline struct kmem_cache_order_objects oo_make(int order,
327 unsigned long size, int reserved)
328 {
329 struct kmem_cache_order_objects x = {
330 (order << OO_SHIFT) + order_objects(order, size, reserved)
331 };
332
333 return x;
334 }
335
336 static inline int oo_order(struct kmem_cache_order_objects x)
337 {
338 return x.x >> OO_SHIFT;
339 }
340
341 static inline int oo_objects(struct kmem_cache_order_objects x)
342 {
343 return x.x & OO_MASK;
344 }
345
346 /*
347 * Per slab locking using the pagelock
348 */
349 static __always_inline void slab_lock(struct page *page)
350 {
351 bit_spin_lock(PG_locked, &page->flags);
352 }
353
354 static __always_inline void slab_unlock(struct page *page)
355 {
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return 1;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return 1;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return 0;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return 1;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return 1;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return 0;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 /*
470 * Debug settings:
471 */
472 #ifdef CONFIG_SLUB_DEBUG_ON
473 static int slub_debug = DEBUG_DEFAULT_FLAGS;
474 #else
475 static int slub_debug;
476 #endif
477
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480
481 /*
482 * Object debugging
483 */
484 static void print_section(char *text, u8 *addr, unsigned int length)
485 {
486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 length, 1);
488 }
489
490 static struct track *get_track(struct kmem_cache *s, void *object,
491 enum track_item alloc)
492 {
493 struct track *p;
494
495 if (s->offset)
496 p = object + s->offset + sizeof(void *);
497 else
498 p = object + s->inuse;
499
500 return p + alloc;
501 }
502
503 static void set_track(struct kmem_cache *s, void *object,
504 enum track_item alloc, unsigned long addr)
505 {
506 struct track *p = get_track(s, object, alloc);
507
508 if (addr) {
509 #ifdef CONFIG_STACKTRACE
510 struct stack_trace trace;
511 int i;
512
513 trace.nr_entries = 0;
514 trace.max_entries = TRACK_ADDRS_COUNT;
515 trace.entries = p->addrs;
516 trace.skip = 3;
517 save_stack_trace(&trace);
518
519 /* See rant in lockdep.c */
520 if (trace.nr_entries != 0 &&
521 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 trace.nr_entries--;
523
524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 p->addrs[i] = 0;
526 #endif
527 p->addr = addr;
528 p->cpu = smp_processor_id();
529 p->pid = current->pid;
530 p->when = jiffies;
531 } else
532 memset(p, 0, sizeof(struct track));
533 }
534
535 static void init_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 set_track(s, object, TRACK_FREE, 0UL);
541 set_track(s, object, TRACK_ALLOC, 0UL);
542 }
543
544 static void print_track(const char *s, struct track *t)
545 {
546 if (!t->addr)
547 return;
548
549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 #ifdef CONFIG_STACKTRACE
552 {
553 int i;
554 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 if (t->addrs[i])
556 pr_err("\t%pS\n", (void *)t->addrs[i]);
557 else
558 break;
559 }
560 #endif
561 }
562
563 static void print_tracking(struct kmem_cache *s, void *object)
564 {
565 if (!(s->flags & SLAB_STORE_USER))
566 return;
567
568 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 print_track("Freed", get_track(s, object, TRACK_FREE));
570 }
571
572 static void print_page_info(struct page *page)
573 {
574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
576
577 }
578
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 struct va_format vaf;
582 va_list args;
583
584 va_start(args, fmt);
585 vaf.fmt = fmt;
586 vaf.va = &args;
587 pr_err("=============================================================================\n");
588 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
589 pr_err("-----------------------------------------------------------------------------\n\n");
590
591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592 va_end(args);
593 }
594
595 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
596 {
597 struct va_format vaf;
598 va_list args;
599
600 va_start(args, fmt);
601 vaf.fmt = fmt;
602 vaf.va = &args;
603 pr_err("FIX %s: %pV\n", s->name, &vaf);
604 va_end(args);
605 }
606
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 unsigned int off; /* Offset of last byte */
610 u8 *addr = page_address(page);
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
620 print_section("Bytes b4 ", p - 16, 16);
621
622 print_section("Object ", p, min_t(unsigned long, s->object_size,
623 PAGE_SIZE));
624 if (s->flags & SLAB_RED_ZONE)
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
627
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
633 if (s->flags & SLAB_STORE_USER)
634 off += 2 * sizeof(struct track);
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p + off, s->size - off);
639
640 dump_stack();
641 }
642
643 static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645 {
646 slab_bug(s, "%s", reason);
647 print_trailer(s, page, object);
648 }
649
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
652 {
653 va_list args;
654 char buf[100];
655
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
658 va_end(args);
659 slab_bug(s, "%s", buf);
660 print_page_info(page);
661 dump_stack();
662 }
663
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
674 memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679 {
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682 }
683
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
686 u8 *start, unsigned int value, unsigned int bytes)
687 {
688 u8 *fault;
689 u8 *end;
690
691 fault = memchr_inv(start, value, bytes);
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
706 }
707
708 /*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
715 *
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
723 *
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
728 * Meta data starts here.
729 *
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
737 *
738 * object + s->size
739 * Nothing is used beyond s->size.
740 *
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
744 */
745
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
763 }
764
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
777 start = page_address(page);
778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 end = start + length;
780 remainder = length % s->size;
781 if (!remainder)
782 return 1;
783
784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 print_section("Padding ", end - remainder, remainder);
792
793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 return 0;
795 }
796
797 static int check_object(struct kmem_cache *s, struct page *page,
798 void *object, u8 val)
799 {
800 u8 *p = object;
801 u8 *endobject = object + s->object_size;
802
803 if (s->flags & SLAB_RED_ZONE) {
804 if (!check_bytes_and_report(s, page, object, "Redzone",
805 endobject, val, s->inuse - s->object_size))
806 return 0;
807 } else {
808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 check_bytes_and_report(s, page, p, "Alignment padding",
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
812 }
813 }
814
815 if (s->flags & SLAB_POISON) {
816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 (!check_bytes_and_report(s, page, p, "Poison", p,
818 POISON_FREE, s->object_size - 1) ||
819 !check_bytes_and_report(s, page, p, "Poison",
820 p + s->object_size - 1, POISON_END, 1)))
821 return 0;
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
828 if (!s->offset && val == SLUB_RED_ACTIVE)
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
842 */
843 set_freepointer(s, p, NULL);
844 return 0;
845 }
846 return 1;
847 }
848
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 int maxobj;
852
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
856 slab_err(s, page, "Not a valid slab page");
857 return 0;
858 }
859
860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
867 slab_err(s, page, "inuse %u > max %u",
868 s->name, page->inuse, page->objects);
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874 }
875
876 /*
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
879 */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 int nr = 0;
883 void *fp;
884 void *object = NULL;
885 unsigned long max_objects;
886
887 fp = page->freelist;
888 while (fp && nr <= page->objects) {
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
895 set_freepointer(s, object, NULL);
896 } else {
897 slab_err(s, page, "Freepointer corrupt");
898 page->freelist = NULL;
899 page->inuse = page->objects;
900 slab_fix(s, "Freelist cleared");
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
920 if (page->inuse != page->objects - nr) {
921 slab_err(s, page, "Wrong object count. Counter is %d but "
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
924 slab_fix(s, "Object count adjusted.");
925 }
926 return search == NULL;
927 }
928
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
931 {
932 if (s->flags & SLAB_TRACE) {
933 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
940 print_section("Object ", (void *)object,
941 s->object_size);
942
943 dump_stack();
944 }
945 }
946
947 /*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 kmemleak_alloc(ptr, size, 1, flags);
954 }
955
956 static inline void kfree_hook(const void *x)
957 {
958 kmemleak_free(x);
959 }
960
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 flags &= gfp_allowed_mask;
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
967 return should_failslab(s->object_size, flags, s->flags);
968 }
969
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
972 {
973 flags &= gfp_allowed_mask;
974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 kmemleak_free_recursive(x, s->flags);
981
982 /*
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
994 local_irq_restore(flags);
995 }
996 #endif
997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 debug_check_no_obj_freed(x, s->object_size);
999 }
1000
1001 /*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 */
1004 static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
1006 {
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
1010 lockdep_assert_held(&n->list_lock);
1011 list_add(&page->lru, &n->full);
1012 }
1013
1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 {
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
1019 lockdep_assert_held(&n->list_lock);
1020 list_del(&page->lru);
1021 }
1022
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025 {
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029 }
1030
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032 {
1033 return atomic_long_read(&n->nr_slabs);
1034 }
1035
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
1046 if (likely(n)) {
1047 atomic_long_inc(&n->nr_slabs);
1048 atomic_long_add(objects, &n->total_objects);
1049 }
1050 }
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
1056 atomic_long_sub(objects, &n->total_objects);
1057 }
1058
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062 {
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
1066 init_object(s, object, SLUB_RED_INACTIVE);
1067 init_tracking(s, object);
1068 }
1069
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
1072 void *object, unsigned long addr)
1073 {
1074 if (!check_slab(s, page))
1075 goto bad;
1076
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
1079 goto bad;
1080 }
1081
1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083 goto bad;
1084
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
1089 init_object(s, object, SLUB_RED_ACTIVE);
1090 return 1;
1091
1092 bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
1097 * as used avoids touching the remaining objects.
1098 */
1099 slab_fix(s, "Marking all objects used");
1100 page->inuse = page->objects;
1101 page->freelist = NULL;
1102 }
1103 return 0;
1104 }
1105
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
1109 {
1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111
1112 spin_lock_irqsave(&n->list_lock, *flags);
1113 slab_lock(page);
1114
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
1124 object_err(s, page, object, "Object already free");
1125 goto fail;
1126 }
1127
1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129 goto out;
1130
1131 if (unlikely(s != page->slab_cache)) {
1132 if (!PageSlab(page)) {
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1135 } else if (!page->slab_cache) {
1136 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1137 object);
1138 dump_stack();
1139 } else
1140 object_err(s, page, object,
1141 "page slab pointer corrupt.");
1142 goto fail;
1143 }
1144
1145 if (s->flags & SLAB_STORE_USER)
1146 set_track(s, object, TRACK_FREE, addr);
1147 trace(s, page, object, 0);
1148 init_object(s, object, SLUB_RED_INACTIVE);
1149 out:
1150 slab_unlock(page);
1151 /*
1152 * Keep node_lock to preserve integrity
1153 * until the object is actually freed
1154 */
1155 return n;
1156
1157 fail:
1158 slab_unlock(page);
1159 spin_unlock_irqrestore(&n->list_lock, *flags);
1160 slab_fix(s, "Object at 0x%p not freed", object);
1161 return NULL;
1162 }
1163
1164 static int __init setup_slub_debug(char *str)
1165 {
1166 slub_debug = DEBUG_DEFAULT_FLAGS;
1167 if (*str++ != '=' || !*str)
1168 /*
1169 * No options specified. Switch on full debugging.
1170 */
1171 goto out;
1172
1173 if (*str == ',')
1174 /*
1175 * No options but restriction on slabs. This means full
1176 * debugging for slabs matching a pattern.
1177 */
1178 goto check_slabs;
1179
1180 if (tolower(*str) == 'o') {
1181 /*
1182 * Avoid enabling debugging on caches if its minimum order
1183 * would increase as a result.
1184 */
1185 disable_higher_order_debug = 1;
1186 goto out;
1187 }
1188
1189 slub_debug = 0;
1190 if (*str == '-')
1191 /*
1192 * Switch off all debugging measures.
1193 */
1194 goto out;
1195
1196 /*
1197 * Determine which debug features should be switched on
1198 */
1199 for (; *str && *str != ','; str++) {
1200 switch (tolower(*str)) {
1201 case 'f':
1202 slub_debug |= SLAB_DEBUG_FREE;
1203 break;
1204 case 'z':
1205 slub_debug |= SLAB_RED_ZONE;
1206 break;
1207 case 'p':
1208 slub_debug |= SLAB_POISON;
1209 break;
1210 case 'u':
1211 slub_debug |= SLAB_STORE_USER;
1212 break;
1213 case 't':
1214 slub_debug |= SLAB_TRACE;
1215 break;
1216 case 'a':
1217 slub_debug |= SLAB_FAILSLAB;
1218 break;
1219 default:
1220 pr_err("slub_debug option '%c' unknown. skipped\n",
1221 *str);
1222 }
1223 }
1224
1225 check_slabs:
1226 if (*str == ',')
1227 slub_debug_slabs = str + 1;
1228 out:
1229 return 1;
1230 }
1231
1232 __setup("slub_debug", setup_slub_debug);
1233
1234 static unsigned long kmem_cache_flags(unsigned long object_size,
1235 unsigned long flags, const char *name,
1236 void (*ctor)(void *))
1237 {
1238 /*
1239 * Enable debugging if selected on the kernel commandline.
1240 */
1241 if (slub_debug && (!slub_debug_slabs || (name &&
1242 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1243 flags |= slub_debug;
1244
1245 return flags;
1246 }
1247 #else
1248 static inline void setup_object_debug(struct kmem_cache *s,
1249 struct page *page, void *object) {}
1250
1251 static inline int alloc_debug_processing(struct kmem_cache *s,
1252 struct page *page, void *object, unsigned long addr) { return 0; }
1253
1254 static inline struct kmem_cache_node *free_debug_processing(
1255 struct kmem_cache *s, struct page *page, void *object,
1256 unsigned long addr, unsigned long *flags) { return NULL; }
1257
1258 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1259 { return 1; }
1260 static inline int check_object(struct kmem_cache *s, struct page *page,
1261 void *object, u8 val) { return 1; }
1262 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263 struct page *page) {}
1264 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 struct page *page) {}
1266 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1267 unsigned long flags, const char *name,
1268 void (*ctor)(void *))
1269 {
1270 return flags;
1271 }
1272 #define slub_debug 0
1273
1274 #define disable_higher_order_debug 0
1275
1276 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1277 { return 0; }
1278 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1279 { return 0; }
1280 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1281 int objects) {}
1282 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1283 int objects) {}
1284
1285 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1286 {
1287 kmemleak_alloc(ptr, size, 1, flags);
1288 }
1289
1290 static inline void kfree_hook(const void *x)
1291 {
1292 kmemleak_free(x);
1293 }
1294
1295 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1296 { return 0; }
1297
1298 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1299 void *object)
1300 {
1301 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1302 flags & gfp_allowed_mask);
1303 }
1304
1305 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306 {
1307 kmemleak_free_recursive(x, s->flags);
1308 }
1309
1310 #endif /* CONFIG_SLUB_DEBUG */
1311
1312 /*
1313 * Slab allocation and freeing
1314 */
1315 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1316 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1317 {
1318 struct page *page;
1319 int order = oo_order(oo);
1320
1321 flags |= __GFP_NOTRACK;
1322
1323 if (memcg_charge_slab(s, flags, order))
1324 return NULL;
1325
1326 if (node == NUMA_NO_NODE)
1327 page = alloc_pages(flags, order);
1328 else
1329 page = alloc_pages_exact_node(node, flags, order);
1330
1331 if (!page)
1332 memcg_uncharge_slab(s, order);
1333
1334 return page;
1335 }
1336
1337 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1338 {
1339 struct page *page;
1340 struct kmem_cache_order_objects oo = s->oo;
1341 gfp_t alloc_gfp;
1342
1343 flags &= gfp_allowed_mask;
1344
1345 if (flags & __GFP_WAIT)
1346 local_irq_enable();
1347
1348 flags |= s->allocflags;
1349
1350 /*
1351 * Let the initial higher-order allocation fail under memory pressure
1352 * so we fall-back to the minimum order allocation.
1353 */
1354 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1355
1356 page = alloc_slab_page(s, alloc_gfp, node, oo);
1357 if (unlikely(!page)) {
1358 oo = s->min;
1359 alloc_gfp = flags;
1360 /*
1361 * Allocation may have failed due to fragmentation.
1362 * Try a lower order alloc if possible
1363 */
1364 page = alloc_slab_page(s, alloc_gfp, node, oo);
1365
1366 if (page)
1367 stat(s, ORDER_FALLBACK);
1368 }
1369
1370 if (kmemcheck_enabled && page
1371 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1372 int pages = 1 << oo_order(oo);
1373
1374 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1375
1376 /*
1377 * Objects from caches that have a constructor don't get
1378 * cleared when they're allocated, so we need to do it here.
1379 */
1380 if (s->ctor)
1381 kmemcheck_mark_uninitialized_pages(page, pages);
1382 else
1383 kmemcheck_mark_unallocated_pages(page, pages);
1384 }
1385
1386 if (flags & __GFP_WAIT)
1387 local_irq_disable();
1388 if (!page)
1389 return NULL;
1390
1391 page->objects = oo_objects(oo);
1392 mod_zone_page_state(page_zone(page),
1393 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1394 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1395 1 << oo_order(oo));
1396
1397 return page;
1398 }
1399
1400 static void setup_object(struct kmem_cache *s, struct page *page,
1401 void *object)
1402 {
1403 setup_object_debug(s, page, object);
1404 if (unlikely(s->ctor))
1405 s->ctor(object);
1406 }
1407
1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409 {
1410 struct page *page;
1411 void *start;
1412 void *last;
1413 void *p;
1414 int order;
1415
1416 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1417
1418 page = allocate_slab(s,
1419 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1420 if (!page)
1421 goto out;
1422
1423 order = compound_order(page);
1424 inc_slabs_node(s, page_to_nid(page), page->objects);
1425 memcg_bind_pages(s, order);
1426 page->slab_cache = s;
1427 __SetPageSlab(page);
1428 if (page->pfmemalloc)
1429 SetPageSlabPfmemalloc(page);
1430
1431 start = page_address(page);
1432
1433 if (unlikely(s->flags & SLAB_POISON))
1434 memset(start, POISON_INUSE, PAGE_SIZE << order);
1435
1436 last = start;
1437 for_each_object(p, s, start, page->objects) {
1438 setup_object(s, page, last);
1439 set_freepointer(s, last, p);
1440 last = p;
1441 }
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, NULL);
1444
1445 page->freelist = start;
1446 page->inuse = page->objects;
1447 page->frozen = 1;
1448 out:
1449 return page;
1450 }
1451
1452 static void __free_slab(struct kmem_cache *s, struct page *page)
1453 {
1454 int order = compound_order(page);
1455 int pages = 1 << order;
1456
1457 if (kmem_cache_debug(s)) {
1458 void *p;
1459
1460 slab_pad_check(s, page);
1461 for_each_object(p, s, page_address(page),
1462 page->objects)
1463 check_object(s, page, p, SLUB_RED_INACTIVE);
1464 }
1465
1466 kmemcheck_free_shadow(page, compound_order(page));
1467
1468 mod_zone_page_state(page_zone(page),
1469 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1470 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1471 -pages);
1472
1473 __ClearPageSlabPfmemalloc(page);
1474 __ClearPageSlab(page);
1475
1476 memcg_release_pages(s, order);
1477 page_mapcount_reset(page);
1478 if (current->reclaim_state)
1479 current->reclaim_state->reclaimed_slab += pages;
1480 __free_pages(page, order);
1481 memcg_uncharge_slab(s, order);
1482 }
1483
1484 #define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
1487 static void rcu_free_slab(struct rcu_head *h)
1488 {
1489 struct page *page;
1490
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
1496 __free_slab(page->slab_cache, page);
1497 }
1498
1499 static void free_slab(struct kmem_cache *s, struct page *page)
1500 {
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520 }
1521
1522 static void discard_slab(struct kmem_cache *s, struct page *page)
1523 {
1524 dec_slabs_node(s, page_to_nid(page), page->objects);
1525 free_slab(s, page);
1526 }
1527
1528 /*
1529 * Management of partially allocated slabs.
1530 */
1531 static inline void
1532 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1533 {
1534 n->nr_partial++;
1535 if (tail == DEACTIVATE_TO_TAIL)
1536 list_add_tail(&page->lru, &n->partial);
1537 else
1538 list_add(&page->lru, &n->partial);
1539 }
1540
1541 static inline void add_partial(struct kmem_cache_node *n,
1542 struct page *page, int tail)
1543 {
1544 lockdep_assert_held(&n->list_lock);
1545 __add_partial(n, page, tail);
1546 }
1547
1548 static inline void
1549 __remove_partial(struct kmem_cache_node *n, struct page *page)
1550 {
1551 list_del(&page->lru);
1552 n->nr_partial--;
1553 }
1554
1555 static inline void remove_partial(struct kmem_cache_node *n,
1556 struct page *page)
1557 {
1558 lockdep_assert_held(&n->list_lock);
1559 __remove_partial(n, page);
1560 }
1561
1562 /*
1563 * Remove slab from the partial list, freeze it and
1564 * return the pointer to the freelist.
1565 *
1566 * Returns a list of objects or NULL if it fails.
1567 */
1568 static inline void *acquire_slab(struct kmem_cache *s,
1569 struct kmem_cache_node *n, struct page *page,
1570 int mode, int *objects)
1571 {
1572 void *freelist;
1573 unsigned long counters;
1574 struct page new;
1575
1576 lockdep_assert_held(&n->list_lock);
1577
1578 /*
1579 * Zap the freelist and set the frozen bit.
1580 * The old freelist is the list of objects for the
1581 * per cpu allocation list.
1582 */
1583 freelist = page->freelist;
1584 counters = page->counters;
1585 new.counters = counters;
1586 *objects = new.objects - new.inuse;
1587 if (mode) {
1588 new.inuse = page->objects;
1589 new.freelist = NULL;
1590 } else {
1591 new.freelist = freelist;
1592 }
1593
1594 VM_BUG_ON(new.frozen);
1595 new.frozen = 1;
1596
1597 if (!__cmpxchg_double_slab(s, page,
1598 freelist, counters,
1599 new.freelist, new.counters,
1600 "acquire_slab"))
1601 return NULL;
1602
1603 remove_partial(n, page);
1604 WARN_ON(!freelist);
1605 return freelist;
1606 }
1607
1608 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1609 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1610
1611 /*
1612 * Try to allocate a partial slab from a specific node.
1613 */
1614 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1615 struct kmem_cache_cpu *c, gfp_t flags)
1616 {
1617 struct page *page, *page2;
1618 void *object = NULL;
1619 int available = 0;
1620 int objects;
1621
1622 /*
1623 * Racy check. If we mistakenly see no partial slabs then we
1624 * just allocate an empty slab. If we mistakenly try to get a
1625 * partial slab and there is none available then get_partials()
1626 * will return NULL.
1627 */
1628 if (!n || !n->nr_partial)
1629 return NULL;
1630
1631 spin_lock(&n->list_lock);
1632 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1633 void *t;
1634
1635 if (!pfmemalloc_match(page, flags))
1636 continue;
1637
1638 t = acquire_slab(s, n, page, object == NULL, &objects);
1639 if (!t)
1640 break;
1641
1642 available += objects;
1643 if (!object) {
1644 c->page = page;
1645 stat(s, ALLOC_FROM_PARTIAL);
1646 object = t;
1647 } else {
1648 put_cpu_partial(s, page, 0);
1649 stat(s, CPU_PARTIAL_NODE);
1650 }
1651 if (!kmem_cache_has_cpu_partial(s)
1652 || available > s->cpu_partial / 2)
1653 break;
1654
1655 }
1656 spin_unlock(&n->list_lock);
1657 return object;
1658 }
1659
1660 /*
1661 * Get a page from somewhere. Search in increasing NUMA distances.
1662 */
1663 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1664 struct kmem_cache_cpu *c)
1665 {
1666 #ifdef CONFIG_NUMA
1667 struct zonelist *zonelist;
1668 struct zoneref *z;
1669 struct zone *zone;
1670 enum zone_type high_zoneidx = gfp_zone(flags);
1671 void *object;
1672 unsigned int cpuset_mems_cookie;
1673
1674 /*
1675 * The defrag ratio allows a configuration of the tradeoffs between
1676 * inter node defragmentation and node local allocations. A lower
1677 * defrag_ratio increases the tendency to do local allocations
1678 * instead of attempting to obtain partial slabs from other nodes.
1679 *
1680 * If the defrag_ratio is set to 0 then kmalloc() always
1681 * returns node local objects. If the ratio is higher then kmalloc()
1682 * may return off node objects because partial slabs are obtained
1683 * from other nodes and filled up.
1684 *
1685 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1686 * defrag_ratio = 1000) then every (well almost) allocation will
1687 * first attempt to defrag slab caches on other nodes. This means
1688 * scanning over all nodes to look for partial slabs which may be
1689 * expensive if we do it every time we are trying to find a slab
1690 * with available objects.
1691 */
1692 if (!s->remote_node_defrag_ratio ||
1693 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1694 return NULL;
1695
1696 do {
1697 cpuset_mems_cookie = read_mems_allowed_begin();
1698 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1699 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1700 struct kmem_cache_node *n;
1701
1702 n = get_node(s, zone_to_nid(zone));
1703
1704 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1705 n->nr_partial > s->min_partial) {
1706 object = get_partial_node(s, n, c, flags);
1707 if (object) {
1708 /*
1709 * Don't check read_mems_allowed_retry()
1710 * here - if mems_allowed was updated in
1711 * parallel, that was a harmless race
1712 * between allocation and the cpuset
1713 * update
1714 */
1715 return object;
1716 }
1717 }
1718 }
1719 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1720 #endif
1721 return NULL;
1722 }
1723
1724 /*
1725 * Get a partial page, lock it and return it.
1726 */
1727 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1728 struct kmem_cache_cpu *c)
1729 {
1730 void *object;
1731 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1732
1733 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1734 if (object || node != NUMA_NO_NODE)
1735 return object;
1736
1737 return get_any_partial(s, flags, c);
1738 }
1739
1740 #ifdef CONFIG_PREEMPT
1741 /*
1742 * Calculate the next globally unique transaction for disambiguiation
1743 * during cmpxchg. The transactions start with the cpu number and are then
1744 * incremented by CONFIG_NR_CPUS.
1745 */
1746 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1747 #else
1748 /*
1749 * No preemption supported therefore also no need to check for
1750 * different cpus.
1751 */
1752 #define TID_STEP 1
1753 #endif
1754
1755 static inline unsigned long next_tid(unsigned long tid)
1756 {
1757 return tid + TID_STEP;
1758 }
1759
1760 static inline unsigned int tid_to_cpu(unsigned long tid)
1761 {
1762 return tid % TID_STEP;
1763 }
1764
1765 static inline unsigned long tid_to_event(unsigned long tid)
1766 {
1767 return tid / TID_STEP;
1768 }
1769
1770 static inline unsigned int init_tid(int cpu)
1771 {
1772 return cpu;
1773 }
1774
1775 static inline void note_cmpxchg_failure(const char *n,
1776 const struct kmem_cache *s, unsigned long tid)
1777 {
1778 #ifdef SLUB_DEBUG_CMPXCHG
1779 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1780
1781 pr_info("%s %s: cmpxchg redo ", n, s->name);
1782
1783 #ifdef CONFIG_PREEMPT
1784 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1785 pr_warn("due to cpu change %d -> %d\n",
1786 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1787 else
1788 #endif
1789 if (tid_to_event(tid) != tid_to_event(actual_tid))
1790 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1791 tid_to_event(tid), tid_to_event(actual_tid));
1792 else
1793 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1794 actual_tid, tid, next_tid(tid));
1795 #endif
1796 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1797 }
1798
1799 static void init_kmem_cache_cpus(struct kmem_cache *s)
1800 {
1801 int cpu;
1802
1803 for_each_possible_cpu(cpu)
1804 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1805 }
1806
1807 /*
1808 * Remove the cpu slab
1809 */
1810 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1811 void *freelist)
1812 {
1813 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1814 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1815 int lock = 0;
1816 enum slab_modes l = M_NONE, m = M_NONE;
1817 void *nextfree;
1818 int tail = DEACTIVATE_TO_HEAD;
1819 struct page new;
1820 struct page old;
1821
1822 if (page->freelist) {
1823 stat(s, DEACTIVATE_REMOTE_FREES);
1824 tail = DEACTIVATE_TO_TAIL;
1825 }
1826
1827 /*
1828 * Stage one: Free all available per cpu objects back
1829 * to the page freelist while it is still frozen. Leave the
1830 * last one.
1831 *
1832 * There is no need to take the list->lock because the page
1833 * is still frozen.
1834 */
1835 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1836 void *prior;
1837 unsigned long counters;
1838
1839 do {
1840 prior = page->freelist;
1841 counters = page->counters;
1842 set_freepointer(s, freelist, prior);
1843 new.counters = counters;
1844 new.inuse--;
1845 VM_BUG_ON(!new.frozen);
1846
1847 } while (!__cmpxchg_double_slab(s, page,
1848 prior, counters,
1849 freelist, new.counters,
1850 "drain percpu freelist"));
1851
1852 freelist = nextfree;
1853 }
1854
1855 /*
1856 * Stage two: Ensure that the page is unfrozen while the
1857 * list presence reflects the actual number of objects
1858 * during unfreeze.
1859 *
1860 * We setup the list membership and then perform a cmpxchg
1861 * with the count. If there is a mismatch then the page
1862 * is not unfrozen but the page is on the wrong list.
1863 *
1864 * Then we restart the process which may have to remove
1865 * the page from the list that we just put it on again
1866 * because the number of objects in the slab may have
1867 * changed.
1868 */
1869 redo:
1870
1871 old.freelist = page->freelist;
1872 old.counters = page->counters;
1873 VM_BUG_ON(!old.frozen);
1874
1875 /* Determine target state of the slab */
1876 new.counters = old.counters;
1877 if (freelist) {
1878 new.inuse--;
1879 set_freepointer(s, freelist, old.freelist);
1880 new.freelist = freelist;
1881 } else
1882 new.freelist = old.freelist;
1883
1884 new.frozen = 0;
1885
1886 if (!new.inuse && n->nr_partial > s->min_partial)
1887 m = M_FREE;
1888 else if (new.freelist) {
1889 m = M_PARTIAL;
1890 if (!lock) {
1891 lock = 1;
1892 /*
1893 * Taking the spinlock removes the possiblity
1894 * that acquire_slab() will see a slab page that
1895 * is frozen
1896 */
1897 spin_lock(&n->list_lock);
1898 }
1899 } else {
1900 m = M_FULL;
1901 if (kmem_cache_debug(s) && !lock) {
1902 lock = 1;
1903 /*
1904 * This also ensures that the scanning of full
1905 * slabs from diagnostic functions will not see
1906 * any frozen slabs.
1907 */
1908 spin_lock(&n->list_lock);
1909 }
1910 }
1911
1912 if (l != m) {
1913
1914 if (l == M_PARTIAL)
1915
1916 remove_partial(n, page);
1917
1918 else if (l == M_FULL)
1919
1920 remove_full(s, n, page);
1921
1922 if (m == M_PARTIAL) {
1923
1924 add_partial(n, page, tail);
1925 stat(s, tail);
1926
1927 } else if (m == M_FULL) {
1928
1929 stat(s, DEACTIVATE_FULL);
1930 add_full(s, n, page);
1931
1932 }
1933 }
1934
1935 l = m;
1936 if (!__cmpxchg_double_slab(s, page,
1937 old.freelist, old.counters,
1938 new.freelist, new.counters,
1939 "unfreezing slab"))
1940 goto redo;
1941
1942 if (lock)
1943 spin_unlock(&n->list_lock);
1944
1945 if (m == M_FREE) {
1946 stat(s, DEACTIVATE_EMPTY);
1947 discard_slab(s, page);
1948 stat(s, FREE_SLAB);
1949 }
1950 }
1951
1952 /*
1953 * Unfreeze all the cpu partial slabs.
1954 *
1955 * This function must be called with interrupts disabled
1956 * for the cpu using c (or some other guarantee must be there
1957 * to guarantee no concurrent accesses).
1958 */
1959 static void unfreeze_partials(struct kmem_cache *s,
1960 struct kmem_cache_cpu *c)
1961 {
1962 #ifdef CONFIG_SLUB_CPU_PARTIAL
1963 struct kmem_cache_node *n = NULL, *n2 = NULL;
1964 struct page *page, *discard_page = NULL;
1965
1966 while ((page = c->partial)) {
1967 struct page new;
1968 struct page old;
1969
1970 c->partial = page->next;
1971
1972 n2 = get_node(s, page_to_nid(page));
1973 if (n != n2) {
1974 if (n)
1975 spin_unlock(&n->list_lock);
1976
1977 n = n2;
1978 spin_lock(&n->list_lock);
1979 }
1980
1981 do {
1982
1983 old.freelist = page->freelist;
1984 old.counters = page->counters;
1985 VM_BUG_ON(!old.frozen);
1986
1987 new.counters = old.counters;
1988 new.freelist = old.freelist;
1989
1990 new.frozen = 0;
1991
1992 } while (!__cmpxchg_double_slab(s, page,
1993 old.freelist, old.counters,
1994 new.freelist, new.counters,
1995 "unfreezing slab"));
1996
1997 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1998 page->next = discard_page;
1999 discard_page = page;
2000 } else {
2001 add_partial(n, page, DEACTIVATE_TO_TAIL);
2002 stat(s, FREE_ADD_PARTIAL);
2003 }
2004 }
2005
2006 if (n)
2007 spin_unlock(&n->list_lock);
2008
2009 while (discard_page) {
2010 page = discard_page;
2011 discard_page = discard_page->next;
2012
2013 stat(s, DEACTIVATE_EMPTY);
2014 discard_slab(s, page);
2015 stat(s, FREE_SLAB);
2016 }
2017 #endif
2018 }
2019
2020 /*
2021 * Put a page that was just frozen (in __slab_free) into a partial page
2022 * slot if available. This is done without interrupts disabled and without
2023 * preemption disabled. The cmpxchg is racy and may put the partial page
2024 * onto a random cpus partial slot.
2025 *
2026 * If we did not find a slot then simply move all the partials to the
2027 * per node partial list.
2028 */
2029 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2030 {
2031 #ifdef CONFIG_SLUB_CPU_PARTIAL
2032 struct page *oldpage;
2033 int pages;
2034 int pobjects;
2035
2036 do {
2037 pages = 0;
2038 pobjects = 0;
2039 oldpage = this_cpu_read(s->cpu_slab->partial);
2040
2041 if (oldpage) {
2042 pobjects = oldpage->pobjects;
2043 pages = oldpage->pages;
2044 if (drain && pobjects > s->cpu_partial) {
2045 unsigned long flags;
2046 /*
2047 * partial array is full. Move the existing
2048 * set to the per node partial list.
2049 */
2050 local_irq_save(flags);
2051 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2052 local_irq_restore(flags);
2053 oldpage = NULL;
2054 pobjects = 0;
2055 pages = 0;
2056 stat(s, CPU_PARTIAL_DRAIN);
2057 }
2058 }
2059
2060 pages++;
2061 pobjects += page->objects - page->inuse;
2062
2063 page->pages = pages;
2064 page->pobjects = pobjects;
2065 page->next = oldpage;
2066
2067 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2068 != oldpage);
2069 #endif
2070 }
2071
2072 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2073 {
2074 stat(s, CPUSLAB_FLUSH);
2075 deactivate_slab(s, c->page, c->freelist);
2076
2077 c->tid = next_tid(c->tid);
2078 c->page = NULL;
2079 c->freelist = NULL;
2080 }
2081
2082 /*
2083 * Flush cpu slab.
2084 *
2085 * Called from IPI handler with interrupts disabled.
2086 */
2087 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2088 {
2089 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2090
2091 if (likely(c)) {
2092 if (c->page)
2093 flush_slab(s, c);
2094
2095 unfreeze_partials(s, c);
2096 }
2097 }
2098
2099 static void flush_cpu_slab(void *d)
2100 {
2101 struct kmem_cache *s = d;
2102
2103 __flush_cpu_slab(s, smp_processor_id());
2104 }
2105
2106 static bool has_cpu_slab(int cpu, void *info)
2107 {
2108 struct kmem_cache *s = info;
2109 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2110
2111 return c->page || c->partial;
2112 }
2113
2114 static void flush_all(struct kmem_cache *s)
2115 {
2116 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2117 }
2118
2119 /*
2120 * Check if the objects in a per cpu structure fit numa
2121 * locality expectations.
2122 */
2123 static inline int node_match(struct page *page, int node)
2124 {
2125 #ifdef CONFIG_NUMA
2126 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2127 return 0;
2128 #endif
2129 return 1;
2130 }
2131
2132 #ifdef CONFIG_SLUB_DEBUG
2133 static int count_free(struct page *page)
2134 {
2135 return page->objects - page->inuse;
2136 }
2137
2138 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2139 {
2140 return atomic_long_read(&n->total_objects);
2141 }
2142 #endif /* CONFIG_SLUB_DEBUG */
2143
2144 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2145 static unsigned long count_partial(struct kmem_cache_node *n,
2146 int (*get_count)(struct page *))
2147 {
2148 unsigned long flags;
2149 unsigned long x = 0;
2150 struct page *page;
2151
2152 spin_lock_irqsave(&n->list_lock, flags);
2153 list_for_each_entry(page, &n->partial, lru)
2154 x += get_count(page);
2155 spin_unlock_irqrestore(&n->list_lock, flags);
2156 return x;
2157 }
2158 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2159
2160 static noinline void
2161 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2162 {
2163 #ifdef CONFIG_SLUB_DEBUG
2164 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2165 DEFAULT_RATELIMIT_BURST);
2166 int node;
2167
2168 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2169 return;
2170
2171 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2172 nid, gfpflags);
2173 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2174 s->name, s->object_size, s->size, oo_order(s->oo),
2175 oo_order(s->min));
2176
2177 if (oo_order(s->min) > get_order(s->object_size))
2178 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2179 s->name);
2180
2181 for_each_online_node(node) {
2182 struct kmem_cache_node *n = get_node(s, node);
2183 unsigned long nr_slabs;
2184 unsigned long nr_objs;
2185 unsigned long nr_free;
2186
2187 if (!n)
2188 continue;
2189
2190 nr_free = count_partial(n, count_free);
2191 nr_slabs = node_nr_slabs(n);
2192 nr_objs = node_nr_objs(n);
2193
2194 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2195 node, nr_slabs, nr_objs, nr_free);
2196 }
2197 #endif
2198 }
2199
2200 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2201 int node, struct kmem_cache_cpu **pc)
2202 {
2203 void *freelist;
2204 struct kmem_cache_cpu *c = *pc;
2205 struct page *page;
2206
2207 freelist = get_partial(s, flags, node, c);
2208
2209 if (freelist)
2210 return freelist;
2211
2212 page = new_slab(s, flags, node);
2213 if (page) {
2214 c = __this_cpu_ptr(s->cpu_slab);
2215 if (c->page)
2216 flush_slab(s, c);
2217
2218 /*
2219 * No other reference to the page yet so we can
2220 * muck around with it freely without cmpxchg
2221 */
2222 freelist = page->freelist;
2223 page->freelist = NULL;
2224
2225 stat(s, ALLOC_SLAB);
2226 c->page = page;
2227 *pc = c;
2228 } else
2229 freelist = NULL;
2230
2231 return freelist;
2232 }
2233
2234 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2235 {
2236 if (unlikely(PageSlabPfmemalloc(page)))
2237 return gfp_pfmemalloc_allowed(gfpflags);
2238
2239 return true;
2240 }
2241
2242 /*
2243 * Check the page->freelist of a page and either transfer the freelist to the
2244 * per cpu freelist or deactivate the page.
2245 *
2246 * The page is still frozen if the return value is not NULL.
2247 *
2248 * If this function returns NULL then the page has been unfrozen.
2249 *
2250 * This function must be called with interrupt disabled.
2251 */
2252 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2253 {
2254 struct page new;
2255 unsigned long counters;
2256 void *freelist;
2257
2258 do {
2259 freelist = page->freelist;
2260 counters = page->counters;
2261
2262 new.counters = counters;
2263 VM_BUG_ON(!new.frozen);
2264
2265 new.inuse = page->objects;
2266 new.frozen = freelist != NULL;
2267
2268 } while (!__cmpxchg_double_slab(s, page,
2269 freelist, counters,
2270 NULL, new.counters,
2271 "get_freelist"));
2272
2273 return freelist;
2274 }
2275
2276 /*
2277 * Slow path. The lockless freelist is empty or we need to perform
2278 * debugging duties.
2279 *
2280 * Processing is still very fast if new objects have been freed to the
2281 * regular freelist. In that case we simply take over the regular freelist
2282 * as the lockless freelist and zap the regular freelist.
2283 *
2284 * If that is not working then we fall back to the partial lists. We take the
2285 * first element of the freelist as the object to allocate now and move the
2286 * rest of the freelist to the lockless freelist.
2287 *
2288 * And if we were unable to get a new slab from the partial slab lists then
2289 * we need to allocate a new slab. This is the slowest path since it involves
2290 * a call to the page allocator and the setup of a new slab.
2291 */
2292 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2293 unsigned long addr, struct kmem_cache_cpu *c)
2294 {
2295 void *freelist;
2296 struct page *page;
2297 unsigned long flags;
2298
2299 local_irq_save(flags);
2300 #ifdef CONFIG_PREEMPT
2301 /*
2302 * We may have been preempted and rescheduled on a different
2303 * cpu before disabling interrupts. Need to reload cpu area
2304 * pointer.
2305 */
2306 c = this_cpu_ptr(s->cpu_slab);
2307 #endif
2308
2309 page = c->page;
2310 if (!page)
2311 goto new_slab;
2312 redo:
2313
2314 if (unlikely(!node_match(page, node))) {
2315 stat(s, ALLOC_NODE_MISMATCH);
2316 deactivate_slab(s, page, c->freelist);
2317 c->page = NULL;
2318 c->freelist = NULL;
2319 goto new_slab;
2320 }
2321
2322 /*
2323 * By rights, we should be searching for a slab page that was
2324 * PFMEMALLOC but right now, we are losing the pfmemalloc
2325 * information when the page leaves the per-cpu allocator
2326 */
2327 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2328 deactivate_slab(s, page, c->freelist);
2329 c->page = NULL;
2330 c->freelist = NULL;
2331 goto new_slab;
2332 }
2333
2334 /* must check again c->freelist in case of cpu migration or IRQ */
2335 freelist = c->freelist;
2336 if (freelist)
2337 goto load_freelist;
2338
2339 freelist = get_freelist(s, page);
2340
2341 if (!freelist) {
2342 c->page = NULL;
2343 stat(s, DEACTIVATE_BYPASS);
2344 goto new_slab;
2345 }
2346
2347 stat(s, ALLOC_REFILL);
2348
2349 load_freelist:
2350 /*
2351 * freelist is pointing to the list of objects to be used.
2352 * page is pointing to the page from which the objects are obtained.
2353 * That page must be frozen for per cpu allocations to work.
2354 */
2355 VM_BUG_ON(!c->page->frozen);
2356 c->freelist = get_freepointer(s, freelist);
2357 c->tid = next_tid(c->tid);
2358 local_irq_restore(flags);
2359 return freelist;
2360
2361 new_slab:
2362
2363 if (c->partial) {
2364 page = c->page = c->partial;
2365 c->partial = page->next;
2366 stat(s, CPU_PARTIAL_ALLOC);
2367 c->freelist = NULL;
2368 goto redo;
2369 }
2370
2371 freelist = new_slab_objects(s, gfpflags, node, &c);
2372
2373 if (unlikely(!freelist)) {
2374 slab_out_of_memory(s, gfpflags, node);
2375 local_irq_restore(flags);
2376 return NULL;
2377 }
2378
2379 page = c->page;
2380 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2381 goto load_freelist;
2382
2383 /* Only entered in the debug case */
2384 if (kmem_cache_debug(s) &&
2385 !alloc_debug_processing(s, page, freelist, addr))
2386 goto new_slab; /* Slab failed checks. Next slab needed */
2387
2388 deactivate_slab(s, page, get_freepointer(s, freelist));
2389 c->page = NULL;
2390 c->freelist = NULL;
2391 local_irq_restore(flags);
2392 return freelist;
2393 }
2394
2395 /*
2396 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2397 * have the fastpath folded into their functions. So no function call
2398 * overhead for requests that can be satisfied on the fastpath.
2399 *
2400 * The fastpath works by first checking if the lockless freelist can be used.
2401 * If not then __slab_alloc is called for slow processing.
2402 *
2403 * Otherwise we can simply pick the next object from the lockless free list.
2404 */
2405 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2406 gfp_t gfpflags, int node, unsigned long addr)
2407 {
2408 void **object;
2409 struct kmem_cache_cpu *c;
2410 struct page *page;
2411 unsigned long tid;
2412
2413 if (slab_pre_alloc_hook(s, gfpflags))
2414 return NULL;
2415
2416 s = memcg_kmem_get_cache(s, gfpflags);
2417 redo:
2418 /*
2419 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2420 * enabled. We may switch back and forth between cpus while
2421 * reading from one cpu area. That does not matter as long
2422 * as we end up on the original cpu again when doing the cmpxchg.
2423 *
2424 * Preemption is disabled for the retrieval of the tid because that
2425 * must occur from the current processor. We cannot allow rescheduling
2426 * on a different processor between the determination of the pointer
2427 * and the retrieval of the tid.
2428 */
2429 preempt_disable();
2430 c = __this_cpu_ptr(s->cpu_slab);
2431
2432 /*
2433 * The transaction ids are globally unique per cpu and per operation on
2434 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2435 * occurs on the right processor and that there was no operation on the
2436 * linked list in between.
2437 */
2438 tid = c->tid;
2439 preempt_enable();
2440
2441 object = c->freelist;
2442 page = c->page;
2443 if (unlikely(!object || !node_match(page, node))) {
2444 object = __slab_alloc(s, gfpflags, node, addr, c);
2445 stat(s, ALLOC_SLOWPATH);
2446 } else {
2447 void *next_object = get_freepointer_safe(s, object);
2448
2449 /*
2450 * The cmpxchg will only match if there was no additional
2451 * operation and if we are on the right processor.
2452 *
2453 * The cmpxchg does the following atomically (without lock
2454 * semantics!)
2455 * 1. Relocate first pointer to the current per cpu area.
2456 * 2. Verify that tid and freelist have not been changed
2457 * 3. If they were not changed replace tid and freelist
2458 *
2459 * Since this is without lock semantics the protection is only
2460 * against code executing on this cpu *not* from access by
2461 * other cpus.
2462 */
2463 if (unlikely(!this_cpu_cmpxchg_double(
2464 s->cpu_slab->freelist, s->cpu_slab->tid,
2465 object, tid,
2466 next_object, next_tid(tid)))) {
2467
2468 note_cmpxchg_failure("slab_alloc", s, tid);
2469 goto redo;
2470 }
2471 prefetch_freepointer(s, next_object);
2472 stat(s, ALLOC_FASTPATH);
2473 }
2474
2475 if (unlikely(gfpflags & __GFP_ZERO) && object)
2476 memset(object, 0, s->object_size);
2477
2478 slab_post_alloc_hook(s, gfpflags, object);
2479
2480 return object;
2481 }
2482
2483 static __always_inline void *slab_alloc(struct kmem_cache *s,
2484 gfp_t gfpflags, unsigned long addr)
2485 {
2486 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2487 }
2488
2489 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2490 {
2491 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2492
2493 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2494 s->size, gfpflags);
2495
2496 return ret;
2497 }
2498 EXPORT_SYMBOL(kmem_cache_alloc);
2499
2500 #ifdef CONFIG_TRACING
2501 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2502 {
2503 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2504 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2505 return ret;
2506 }
2507 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2508 #endif
2509
2510 #ifdef CONFIG_NUMA
2511 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2512 {
2513 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2514
2515 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2516 s->object_size, s->size, gfpflags, node);
2517
2518 return ret;
2519 }
2520 EXPORT_SYMBOL(kmem_cache_alloc_node);
2521
2522 #ifdef CONFIG_TRACING
2523 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2524 gfp_t gfpflags,
2525 int node, size_t size)
2526 {
2527 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2528
2529 trace_kmalloc_node(_RET_IP_, ret,
2530 size, s->size, gfpflags, node);
2531 return ret;
2532 }
2533 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2534 #endif
2535 #endif
2536
2537 /*
2538 * Slow patch handling. This may still be called frequently since objects
2539 * have a longer lifetime than the cpu slabs in most processing loads.
2540 *
2541 * So we still attempt to reduce cache line usage. Just take the slab
2542 * lock and free the item. If there is no additional partial page
2543 * handling required then we can return immediately.
2544 */
2545 static void __slab_free(struct kmem_cache *s, struct page *page,
2546 void *x, unsigned long addr)
2547 {
2548 void *prior;
2549 void **object = (void *)x;
2550 int was_frozen;
2551 struct page new;
2552 unsigned long counters;
2553 struct kmem_cache_node *n = NULL;
2554 unsigned long uninitialized_var(flags);
2555
2556 stat(s, FREE_SLOWPATH);
2557
2558 if (kmem_cache_debug(s) &&
2559 !(n = free_debug_processing(s, page, x, addr, &flags)))
2560 return;
2561
2562 do {
2563 if (unlikely(n)) {
2564 spin_unlock_irqrestore(&n->list_lock, flags);
2565 n = NULL;
2566 }
2567 prior = page->freelist;
2568 counters = page->counters;
2569 set_freepointer(s, object, prior);
2570 new.counters = counters;
2571 was_frozen = new.frozen;
2572 new.inuse--;
2573 if ((!new.inuse || !prior) && !was_frozen) {
2574
2575 if (kmem_cache_has_cpu_partial(s) && !prior) {
2576
2577 /*
2578 * Slab was on no list before and will be
2579 * partially empty
2580 * We can defer the list move and instead
2581 * freeze it.
2582 */
2583 new.frozen = 1;
2584
2585 } else { /* Needs to be taken off a list */
2586
2587 n = get_node(s, page_to_nid(page));
2588 /*
2589 * Speculatively acquire the list_lock.
2590 * If the cmpxchg does not succeed then we may
2591 * drop the list_lock without any processing.
2592 *
2593 * Otherwise the list_lock will synchronize with
2594 * other processors updating the list of slabs.
2595 */
2596 spin_lock_irqsave(&n->list_lock, flags);
2597
2598 }
2599 }
2600
2601 } while (!cmpxchg_double_slab(s, page,
2602 prior, counters,
2603 object, new.counters,
2604 "__slab_free"));
2605
2606 if (likely(!n)) {
2607
2608 /*
2609 * If we just froze the page then put it onto the
2610 * per cpu partial list.
2611 */
2612 if (new.frozen && !was_frozen) {
2613 put_cpu_partial(s, page, 1);
2614 stat(s, CPU_PARTIAL_FREE);
2615 }
2616 /*
2617 * The list lock was not taken therefore no list
2618 * activity can be necessary.
2619 */
2620 if (was_frozen)
2621 stat(s, FREE_FROZEN);
2622 return;
2623 }
2624
2625 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2626 goto slab_empty;
2627
2628 /*
2629 * Objects left in the slab. If it was not on the partial list before
2630 * then add it.
2631 */
2632 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2633 if (kmem_cache_debug(s))
2634 remove_full(s, n, page);
2635 add_partial(n, page, DEACTIVATE_TO_TAIL);
2636 stat(s, FREE_ADD_PARTIAL);
2637 }
2638 spin_unlock_irqrestore(&n->list_lock, flags);
2639 return;
2640
2641 slab_empty:
2642 if (prior) {
2643 /*
2644 * Slab on the partial list.
2645 */
2646 remove_partial(n, page);
2647 stat(s, FREE_REMOVE_PARTIAL);
2648 } else {
2649 /* Slab must be on the full list */
2650 remove_full(s, n, page);
2651 }
2652
2653 spin_unlock_irqrestore(&n->list_lock, flags);
2654 stat(s, FREE_SLAB);
2655 discard_slab(s, page);
2656 }
2657
2658 /*
2659 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2660 * can perform fastpath freeing without additional function calls.
2661 *
2662 * The fastpath is only possible if we are freeing to the current cpu slab
2663 * of this processor. This typically the case if we have just allocated
2664 * the item before.
2665 *
2666 * If fastpath is not possible then fall back to __slab_free where we deal
2667 * with all sorts of special processing.
2668 */
2669 static __always_inline void slab_free(struct kmem_cache *s,
2670 struct page *page, void *x, unsigned long addr)
2671 {
2672 void **object = (void *)x;
2673 struct kmem_cache_cpu *c;
2674 unsigned long tid;
2675
2676 slab_free_hook(s, x);
2677
2678 redo:
2679 /*
2680 * Determine the currently cpus per cpu slab.
2681 * The cpu may change afterward. However that does not matter since
2682 * data is retrieved via this pointer. If we are on the same cpu
2683 * during the cmpxchg then the free will succedd.
2684 */
2685 preempt_disable();
2686 c = __this_cpu_ptr(s->cpu_slab);
2687
2688 tid = c->tid;
2689 preempt_enable();
2690
2691 if (likely(page == c->page)) {
2692 set_freepointer(s, object, c->freelist);
2693
2694 if (unlikely(!this_cpu_cmpxchg_double(
2695 s->cpu_slab->freelist, s->cpu_slab->tid,
2696 c->freelist, tid,
2697 object, next_tid(tid)))) {
2698
2699 note_cmpxchg_failure("slab_free", s, tid);
2700 goto redo;
2701 }
2702 stat(s, FREE_FASTPATH);
2703 } else
2704 __slab_free(s, page, x, addr);
2705
2706 }
2707
2708 void kmem_cache_free(struct kmem_cache *s, void *x)
2709 {
2710 s = cache_from_obj(s, x);
2711 if (!s)
2712 return;
2713 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2714 trace_kmem_cache_free(_RET_IP_, x);
2715 }
2716 EXPORT_SYMBOL(kmem_cache_free);
2717
2718 /*
2719 * Object placement in a slab is made very easy because we always start at
2720 * offset 0. If we tune the size of the object to the alignment then we can
2721 * get the required alignment by putting one properly sized object after
2722 * another.
2723 *
2724 * Notice that the allocation order determines the sizes of the per cpu
2725 * caches. Each processor has always one slab available for allocations.
2726 * Increasing the allocation order reduces the number of times that slabs
2727 * must be moved on and off the partial lists and is therefore a factor in
2728 * locking overhead.
2729 */
2730
2731 /*
2732 * Mininum / Maximum order of slab pages. This influences locking overhead
2733 * and slab fragmentation. A higher order reduces the number of partial slabs
2734 * and increases the number of allocations possible without having to
2735 * take the list_lock.
2736 */
2737 static int slub_min_order;
2738 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2739 static int slub_min_objects;
2740
2741 /*
2742 * Merge control. If this is set then no merging of slab caches will occur.
2743 * (Could be removed. This was introduced to pacify the merge skeptics.)
2744 */
2745 static int slub_nomerge;
2746
2747 /*
2748 * Calculate the order of allocation given an slab object size.
2749 *
2750 * The order of allocation has significant impact on performance and other
2751 * system components. Generally order 0 allocations should be preferred since
2752 * order 0 does not cause fragmentation in the page allocator. Larger objects
2753 * be problematic to put into order 0 slabs because there may be too much
2754 * unused space left. We go to a higher order if more than 1/16th of the slab
2755 * would be wasted.
2756 *
2757 * In order to reach satisfactory performance we must ensure that a minimum
2758 * number of objects is in one slab. Otherwise we may generate too much
2759 * activity on the partial lists which requires taking the list_lock. This is
2760 * less a concern for large slabs though which are rarely used.
2761 *
2762 * slub_max_order specifies the order where we begin to stop considering the
2763 * number of objects in a slab as critical. If we reach slub_max_order then
2764 * we try to keep the page order as low as possible. So we accept more waste
2765 * of space in favor of a small page order.
2766 *
2767 * Higher order allocations also allow the placement of more objects in a
2768 * slab and thereby reduce object handling overhead. If the user has
2769 * requested a higher mininum order then we start with that one instead of
2770 * the smallest order which will fit the object.
2771 */
2772 static inline int slab_order(int size, int min_objects,
2773 int max_order, int fract_leftover, int reserved)
2774 {
2775 int order;
2776 int rem;
2777 int min_order = slub_min_order;
2778
2779 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2780 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2781
2782 for (order = max(min_order,
2783 fls(min_objects * size - 1) - PAGE_SHIFT);
2784 order <= max_order; order++) {
2785
2786 unsigned long slab_size = PAGE_SIZE << order;
2787
2788 if (slab_size < min_objects * size + reserved)
2789 continue;
2790
2791 rem = (slab_size - reserved) % size;
2792
2793 if (rem <= slab_size / fract_leftover)
2794 break;
2795
2796 }
2797
2798 return order;
2799 }
2800
2801 static inline int calculate_order(int size, int reserved)
2802 {
2803 int order;
2804 int min_objects;
2805 int fraction;
2806 int max_objects;
2807
2808 /*
2809 * Attempt to find best configuration for a slab. This
2810 * works by first attempting to generate a layout with
2811 * the best configuration and backing off gradually.
2812 *
2813 * First we reduce the acceptable waste in a slab. Then
2814 * we reduce the minimum objects required in a slab.
2815 */
2816 min_objects = slub_min_objects;
2817 if (!min_objects)
2818 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2819 max_objects = order_objects(slub_max_order, size, reserved);
2820 min_objects = min(min_objects, max_objects);
2821
2822 while (min_objects > 1) {
2823 fraction = 16;
2824 while (fraction >= 4) {
2825 order = slab_order(size, min_objects,
2826 slub_max_order, fraction, reserved);
2827 if (order <= slub_max_order)
2828 return order;
2829 fraction /= 2;
2830 }
2831 min_objects--;
2832 }
2833
2834 /*
2835 * We were unable to place multiple objects in a slab. Now
2836 * lets see if we can place a single object there.
2837 */
2838 order = slab_order(size, 1, slub_max_order, 1, reserved);
2839 if (order <= slub_max_order)
2840 return order;
2841
2842 /*
2843 * Doh this slab cannot be placed using slub_max_order.
2844 */
2845 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2846 if (order < MAX_ORDER)
2847 return order;
2848 return -ENOSYS;
2849 }
2850
2851 static void
2852 init_kmem_cache_node(struct kmem_cache_node *n)
2853 {
2854 n->nr_partial = 0;
2855 spin_lock_init(&n->list_lock);
2856 INIT_LIST_HEAD(&n->partial);
2857 #ifdef CONFIG_SLUB_DEBUG
2858 atomic_long_set(&n->nr_slabs, 0);
2859 atomic_long_set(&n->total_objects, 0);
2860 INIT_LIST_HEAD(&n->full);
2861 #endif
2862 }
2863
2864 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2865 {
2866 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2867 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2868
2869 /*
2870 * Must align to double word boundary for the double cmpxchg
2871 * instructions to work; see __pcpu_double_call_return_bool().
2872 */
2873 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2874 2 * sizeof(void *));
2875
2876 if (!s->cpu_slab)
2877 return 0;
2878
2879 init_kmem_cache_cpus(s);
2880
2881 return 1;
2882 }
2883
2884 static struct kmem_cache *kmem_cache_node;
2885
2886 /*
2887 * No kmalloc_node yet so do it by hand. We know that this is the first
2888 * slab on the node for this slabcache. There are no concurrent accesses
2889 * possible.
2890 *
2891 * Note that this function only works on the kmem_cache_node
2892 * when allocating for the kmem_cache_node. This is used for bootstrapping
2893 * memory on a fresh node that has no slab structures yet.
2894 */
2895 static void early_kmem_cache_node_alloc(int node)
2896 {
2897 struct page *page;
2898 struct kmem_cache_node *n;
2899
2900 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2901
2902 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2903
2904 BUG_ON(!page);
2905 if (page_to_nid(page) != node) {
2906 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2907 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2908 }
2909
2910 n = page->freelist;
2911 BUG_ON(!n);
2912 page->freelist = get_freepointer(kmem_cache_node, n);
2913 page->inuse = 1;
2914 page->frozen = 0;
2915 kmem_cache_node->node[node] = n;
2916 #ifdef CONFIG_SLUB_DEBUG
2917 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2918 init_tracking(kmem_cache_node, n);
2919 #endif
2920 init_kmem_cache_node(n);
2921 inc_slabs_node(kmem_cache_node, node, page->objects);
2922
2923 /*
2924 * No locks need to be taken here as it has just been
2925 * initialized and there is no concurrent access.
2926 */
2927 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2928 }
2929
2930 static void free_kmem_cache_nodes(struct kmem_cache *s)
2931 {
2932 int node;
2933
2934 for_each_node_state(node, N_NORMAL_MEMORY) {
2935 struct kmem_cache_node *n = s->node[node];
2936
2937 if (n)
2938 kmem_cache_free(kmem_cache_node, n);
2939
2940 s->node[node] = NULL;
2941 }
2942 }
2943
2944 static int init_kmem_cache_nodes(struct kmem_cache *s)
2945 {
2946 int node;
2947
2948 for_each_node_state(node, N_NORMAL_MEMORY) {
2949 struct kmem_cache_node *n;
2950
2951 if (slab_state == DOWN) {
2952 early_kmem_cache_node_alloc(node);
2953 continue;
2954 }
2955 n = kmem_cache_alloc_node(kmem_cache_node,
2956 GFP_KERNEL, node);
2957
2958 if (!n) {
2959 free_kmem_cache_nodes(s);
2960 return 0;
2961 }
2962
2963 s->node[node] = n;
2964 init_kmem_cache_node(n);
2965 }
2966 return 1;
2967 }
2968
2969 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2970 {
2971 if (min < MIN_PARTIAL)
2972 min = MIN_PARTIAL;
2973 else if (min > MAX_PARTIAL)
2974 min = MAX_PARTIAL;
2975 s->min_partial = min;
2976 }
2977
2978 /*
2979 * calculate_sizes() determines the order and the distribution of data within
2980 * a slab object.
2981 */
2982 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2983 {
2984 unsigned long flags = s->flags;
2985 unsigned long size = s->object_size;
2986 int order;
2987
2988 /*
2989 * Round up object size to the next word boundary. We can only
2990 * place the free pointer at word boundaries and this determines
2991 * the possible location of the free pointer.
2992 */
2993 size = ALIGN(size, sizeof(void *));
2994
2995 #ifdef CONFIG_SLUB_DEBUG
2996 /*
2997 * Determine if we can poison the object itself. If the user of
2998 * the slab may touch the object after free or before allocation
2999 * then we should never poison the object itself.
3000 */
3001 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3002 !s->ctor)
3003 s->flags |= __OBJECT_POISON;
3004 else
3005 s->flags &= ~__OBJECT_POISON;
3006
3007
3008 /*
3009 * If we are Redzoning then check if there is some space between the
3010 * end of the object and the free pointer. If not then add an
3011 * additional word to have some bytes to store Redzone information.
3012 */
3013 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3014 size += sizeof(void *);
3015 #endif
3016
3017 /*
3018 * With that we have determined the number of bytes in actual use
3019 * by the object. This is the potential offset to the free pointer.
3020 */
3021 s->inuse = size;
3022
3023 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3024 s->ctor)) {
3025 /*
3026 * Relocate free pointer after the object if it is not
3027 * permitted to overwrite the first word of the object on
3028 * kmem_cache_free.
3029 *
3030 * This is the case if we do RCU, have a constructor or
3031 * destructor or are poisoning the objects.
3032 */
3033 s->offset = size;
3034 size += sizeof(void *);
3035 }
3036
3037 #ifdef CONFIG_SLUB_DEBUG
3038 if (flags & SLAB_STORE_USER)
3039 /*
3040 * Need to store information about allocs and frees after
3041 * the object.
3042 */
3043 size += 2 * sizeof(struct track);
3044
3045 if (flags & SLAB_RED_ZONE)
3046 /*
3047 * Add some empty padding so that we can catch
3048 * overwrites from earlier objects rather than let
3049 * tracking information or the free pointer be
3050 * corrupted if a user writes before the start
3051 * of the object.
3052 */
3053 size += sizeof(void *);
3054 #endif
3055
3056 /*
3057 * SLUB stores one object immediately after another beginning from
3058 * offset 0. In order to align the objects we have to simply size
3059 * each object to conform to the alignment.
3060 */
3061 size = ALIGN(size, s->align);
3062 s->size = size;
3063 if (forced_order >= 0)
3064 order = forced_order;
3065 else
3066 order = calculate_order(size, s->reserved);
3067
3068 if (order < 0)
3069 return 0;
3070
3071 s->allocflags = 0;
3072 if (order)
3073 s->allocflags |= __GFP_COMP;
3074
3075 if (s->flags & SLAB_CACHE_DMA)
3076 s->allocflags |= GFP_DMA;
3077
3078 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3079 s->allocflags |= __GFP_RECLAIMABLE;
3080
3081 /*
3082 * Determine the number of objects per slab
3083 */
3084 s->oo = oo_make(order, size, s->reserved);
3085 s->min = oo_make(get_order(size), size, s->reserved);
3086 if (oo_objects(s->oo) > oo_objects(s->max))
3087 s->max = s->oo;
3088
3089 return !!oo_objects(s->oo);
3090 }
3091
3092 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3093 {
3094 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3095 s->reserved = 0;
3096
3097 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3098 s->reserved = sizeof(struct rcu_head);
3099
3100 if (!calculate_sizes(s, -1))
3101 goto error;
3102 if (disable_higher_order_debug) {
3103 /*
3104 * Disable debugging flags that store metadata if the min slab
3105 * order increased.
3106 */
3107 if (get_order(s->size) > get_order(s->object_size)) {
3108 s->flags &= ~DEBUG_METADATA_FLAGS;
3109 s->offset = 0;
3110 if (!calculate_sizes(s, -1))
3111 goto error;
3112 }
3113 }
3114
3115 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3116 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3117 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3118 /* Enable fast mode */
3119 s->flags |= __CMPXCHG_DOUBLE;
3120 #endif
3121
3122 /*
3123 * The larger the object size is, the more pages we want on the partial
3124 * list to avoid pounding the page allocator excessively.
3125 */
3126 set_min_partial(s, ilog2(s->size) / 2);
3127
3128 /*
3129 * cpu_partial determined the maximum number of objects kept in the
3130 * per cpu partial lists of a processor.
3131 *
3132 * Per cpu partial lists mainly contain slabs that just have one
3133 * object freed. If they are used for allocation then they can be
3134 * filled up again with minimal effort. The slab will never hit the
3135 * per node partial lists and therefore no locking will be required.
3136 *
3137 * This setting also determines
3138 *
3139 * A) The number of objects from per cpu partial slabs dumped to the
3140 * per node list when we reach the limit.
3141 * B) The number of objects in cpu partial slabs to extract from the
3142 * per node list when we run out of per cpu objects. We only fetch
3143 * 50% to keep some capacity around for frees.
3144 */
3145 if (!kmem_cache_has_cpu_partial(s))
3146 s->cpu_partial = 0;
3147 else if (s->size >= PAGE_SIZE)
3148 s->cpu_partial = 2;
3149 else if (s->size >= 1024)
3150 s->cpu_partial = 6;
3151 else if (s->size >= 256)
3152 s->cpu_partial = 13;
3153 else
3154 s->cpu_partial = 30;
3155
3156 #ifdef CONFIG_NUMA
3157 s->remote_node_defrag_ratio = 1000;
3158 #endif
3159 if (!init_kmem_cache_nodes(s))
3160 goto error;
3161
3162 if (alloc_kmem_cache_cpus(s))
3163 return 0;
3164
3165 free_kmem_cache_nodes(s);
3166 error:
3167 if (flags & SLAB_PANIC)
3168 panic("Cannot create slab %s size=%lu realsize=%u "
3169 "order=%u offset=%u flags=%lx\n",
3170 s->name, (unsigned long)s->size, s->size,
3171 oo_order(s->oo), s->offset, flags);
3172 return -EINVAL;
3173 }
3174
3175 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3176 const char *text)
3177 {
3178 #ifdef CONFIG_SLUB_DEBUG
3179 void *addr = page_address(page);
3180 void *p;
3181 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3182 sizeof(long), GFP_ATOMIC);
3183 if (!map)
3184 return;
3185 slab_err(s, page, text, s->name);
3186 slab_lock(page);
3187
3188 get_map(s, page, map);
3189 for_each_object(p, s, addr, page->objects) {
3190
3191 if (!test_bit(slab_index(p, s, addr), map)) {
3192 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3193 print_tracking(s, p);
3194 }
3195 }
3196 slab_unlock(page);
3197 kfree(map);
3198 #endif
3199 }
3200
3201 /*
3202 * Attempt to free all partial slabs on a node.
3203 * This is called from kmem_cache_close(). We must be the last thread
3204 * using the cache and therefore we do not need to lock anymore.
3205 */
3206 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3207 {
3208 struct page *page, *h;
3209
3210 list_for_each_entry_safe(page, h, &n->partial, lru) {
3211 if (!page->inuse) {
3212 __remove_partial(n, page);
3213 discard_slab(s, page);
3214 } else {
3215 list_slab_objects(s, page,
3216 "Objects remaining in %s on kmem_cache_close()");
3217 }
3218 }
3219 }
3220
3221 /*
3222 * Release all resources used by a slab cache.
3223 */
3224 static inline int kmem_cache_close(struct kmem_cache *s)
3225 {
3226 int node;
3227
3228 flush_all(s);
3229 /* Attempt to free all objects */
3230 for_each_node_state(node, N_NORMAL_MEMORY) {
3231 struct kmem_cache_node *n = get_node(s, node);
3232
3233 free_partial(s, n);
3234 if (n->nr_partial || slabs_node(s, node))
3235 return 1;
3236 }
3237 free_percpu(s->cpu_slab);
3238 free_kmem_cache_nodes(s);
3239 return 0;
3240 }
3241
3242 int __kmem_cache_shutdown(struct kmem_cache *s)
3243 {
3244 return kmem_cache_close(s);
3245 }
3246
3247 /********************************************************************
3248 * Kmalloc subsystem
3249 *******************************************************************/
3250
3251 static int __init setup_slub_min_order(char *str)
3252 {
3253 get_option(&str, &slub_min_order);
3254
3255 return 1;
3256 }
3257
3258 __setup("slub_min_order=", setup_slub_min_order);
3259
3260 static int __init setup_slub_max_order(char *str)
3261 {
3262 get_option(&str, &slub_max_order);
3263 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3264
3265 return 1;
3266 }
3267
3268 __setup("slub_max_order=", setup_slub_max_order);
3269
3270 static int __init setup_slub_min_objects(char *str)
3271 {
3272 get_option(&str, &slub_min_objects);
3273
3274 return 1;
3275 }
3276
3277 __setup("slub_min_objects=", setup_slub_min_objects);
3278
3279 static int __init setup_slub_nomerge(char *str)
3280 {
3281 slub_nomerge = 1;
3282 return 1;
3283 }
3284
3285 __setup("slub_nomerge", setup_slub_nomerge);
3286
3287 void *__kmalloc(size_t size, gfp_t flags)
3288 {
3289 struct kmem_cache *s;
3290 void *ret;
3291
3292 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3293 return kmalloc_large(size, flags);
3294
3295 s = kmalloc_slab(size, flags);
3296
3297 if (unlikely(ZERO_OR_NULL_PTR(s)))
3298 return s;
3299
3300 ret = slab_alloc(s, flags, _RET_IP_);
3301
3302 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3303
3304 return ret;
3305 }
3306 EXPORT_SYMBOL(__kmalloc);
3307
3308 #ifdef CONFIG_NUMA
3309 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3310 {
3311 struct page *page;
3312 void *ptr = NULL;
3313
3314 flags |= __GFP_COMP | __GFP_NOTRACK;
3315 page = alloc_kmem_pages_node(node, flags, get_order(size));
3316 if (page)
3317 ptr = page_address(page);
3318
3319 kmalloc_large_node_hook(ptr, size, flags);
3320 return ptr;
3321 }
3322
3323 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3324 {
3325 struct kmem_cache *s;
3326 void *ret;
3327
3328 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3329 ret = kmalloc_large_node(size, flags, node);
3330
3331 trace_kmalloc_node(_RET_IP_, ret,
3332 size, PAGE_SIZE << get_order(size),
3333 flags, node);
3334
3335 return ret;
3336 }
3337
3338 s = kmalloc_slab(size, flags);
3339
3340 if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 return s;
3342
3343 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3344
3345 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3346
3347 return ret;
3348 }
3349 EXPORT_SYMBOL(__kmalloc_node);
3350 #endif
3351
3352 size_t ksize(const void *object)
3353 {
3354 struct page *page;
3355
3356 if (unlikely(object == ZERO_SIZE_PTR))
3357 return 0;
3358
3359 page = virt_to_head_page(object);
3360
3361 if (unlikely(!PageSlab(page))) {
3362 WARN_ON(!PageCompound(page));
3363 return PAGE_SIZE << compound_order(page);
3364 }
3365
3366 return slab_ksize(page->slab_cache);
3367 }
3368 EXPORT_SYMBOL(ksize);
3369
3370 void kfree(const void *x)
3371 {
3372 struct page *page;
3373 void *object = (void *)x;
3374
3375 trace_kfree(_RET_IP_, x);
3376
3377 if (unlikely(ZERO_OR_NULL_PTR(x)))
3378 return;
3379
3380 page = virt_to_head_page(x);
3381 if (unlikely(!PageSlab(page))) {
3382 BUG_ON(!PageCompound(page));
3383 kfree_hook(x);
3384 __free_kmem_pages(page, compound_order(page));
3385 return;
3386 }
3387 slab_free(page->slab_cache, page, object, _RET_IP_);
3388 }
3389 EXPORT_SYMBOL(kfree);
3390
3391 /*
3392 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3393 * the remaining slabs by the number of items in use. The slabs with the
3394 * most items in use come first. New allocations will then fill those up
3395 * and thus they can be removed from the partial lists.
3396 *
3397 * The slabs with the least items are placed last. This results in them
3398 * being allocated from last increasing the chance that the last objects
3399 * are freed in them.
3400 */
3401 int __kmem_cache_shrink(struct kmem_cache *s)
3402 {
3403 int node;
3404 int i;
3405 struct kmem_cache_node *n;
3406 struct page *page;
3407 struct page *t;
3408 int objects = oo_objects(s->max);
3409 struct list_head *slabs_by_inuse =
3410 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3411 unsigned long flags;
3412
3413 if (!slabs_by_inuse)
3414 return -ENOMEM;
3415
3416 flush_all(s);
3417 for_each_node_state(node, N_NORMAL_MEMORY) {
3418 n = get_node(s, node);
3419
3420 if (!n->nr_partial)
3421 continue;
3422
3423 for (i = 0; i < objects; i++)
3424 INIT_LIST_HEAD(slabs_by_inuse + i);
3425
3426 spin_lock_irqsave(&n->list_lock, flags);
3427
3428 /*
3429 * Build lists indexed by the items in use in each slab.
3430 *
3431 * Note that concurrent frees may occur while we hold the
3432 * list_lock. page->inuse here is the upper limit.
3433 */
3434 list_for_each_entry_safe(page, t, &n->partial, lru) {
3435 list_move(&page->lru, slabs_by_inuse + page->inuse);
3436 if (!page->inuse)
3437 n->nr_partial--;
3438 }
3439
3440 /*
3441 * Rebuild the partial list with the slabs filled up most
3442 * first and the least used slabs at the end.
3443 */
3444 for (i = objects - 1; i > 0; i--)
3445 list_splice(slabs_by_inuse + i, n->partial.prev);
3446
3447 spin_unlock_irqrestore(&n->list_lock, flags);
3448
3449 /* Release empty slabs */
3450 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3451 discard_slab(s, page);
3452 }
3453
3454 kfree(slabs_by_inuse);
3455 return 0;
3456 }
3457
3458 static int slab_mem_going_offline_callback(void *arg)
3459 {
3460 struct kmem_cache *s;
3461
3462 mutex_lock(&slab_mutex);
3463 list_for_each_entry(s, &slab_caches, list)
3464 __kmem_cache_shrink(s);
3465 mutex_unlock(&slab_mutex);
3466
3467 return 0;
3468 }
3469
3470 static void slab_mem_offline_callback(void *arg)
3471 {
3472 struct kmem_cache_node *n;
3473 struct kmem_cache *s;
3474 struct memory_notify *marg = arg;
3475 int offline_node;
3476
3477 offline_node = marg->status_change_nid_normal;
3478
3479 /*
3480 * If the node still has available memory. we need kmem_cache_node
3481 * for it yet.
3482 */
3483 if (offline_node < 0)
3484 return;
3485
3486 mutex_lock(&slab_mutex);
3487 list_for_each_entry(s, &slab_caches, list) {
3488 n = get_node(s, offline_node);
3489 if (n) {
3490 /*
3491 * if n->nr_slabs > 0, slabs still exist on the node
3492 * that is going down. We were unable to free them,
3493 * and offline_pages() function shouldn't call this
3494 * callback. So, we must fail.
3495 */
3496 BUG_ON(slabs_node(s, offline_node));
3497
3498 s->node[offline_node] = NULL;
3499 kmem_cache_free(kmem_cache_node, n);
3500 }
3501 }
3502 mutex_unlock(&slab_mutex);
3503 }
3504
3505 static int slab_mem_going_online_callback(void *arg)
3506 {
3507 struct kmem_cache_node *n;
3508 struct kmem_cache *s;
3509 struct memory_notify *marg = arg;
3510 int nid = marg->status_change_nid_normal;
3511 int ret = 0;
3512
3513 /*
3514 * If the node's memory is already available, then kmem_cache_node is
3515 * already created. Nothing to do.
3516 */
3517 if (nid < 0)
3518 return 0;
3519
3520 /*
3521 * We are bringing a node online. No memory is available yet. We must
3522 * allocate a kmem_cache_node structure in order to bring the node
3523 * online.
3524 */
3525 mutex_lock(&slab_mutex);
3526 list_for_each_entry(s, &slab_caches, list) {
3527 /*
3528 * XXX: kmem_cache_alloc_node will fallback to other nodes
3529 * since memory is not yet available from the node that
3530 * is brought up.
3531 */
3532 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3533 if (!n) {
3534 ret = -ENOMEM;
3535 goto out;
3536 }
3537 init_kmem_cache_node(n);
3538 s->node[nid] = n;
3539 }
3540 out:
3541 mutex_unlock(&slab_mutex);
3542 return ret;
3543 }
3544
3545 static int slab_memory_callback(struct notifier_block *self,
3546 unsigned long action, void *arg)
3547 {
3548 int ret = 0;
3549
3550 switch (action) {
3551 case MEM_GOING_ONLINE:
3552 ret = slab_mem_going_online_callback(arg);
3553 break;
3554 case MEM_GOING_OFFLINE:
3555 ret = slab_mem_going_offline_callback(arg);
3556 break;
3557 case MEM_OFFLINE:
3558 case MEM_CANCEL_ONLINE:
3559 slab_mem_offline_callback(arg);
3560 break;
3561 case MEM_ONLINE:
3562 case MEM_CANCEL_OFFLINE:
3563 break;
3564 }
3565 if (ret)
3566 ret = notifier_from_errno(ret);
3567 else
3568 ret = NOTIFY_OK;
3569 return ret;
3570 }
3571
3572 static struct notifier_block slab_memory_callback_nb = {
3573 .notifier_call = slab_memory_callback,
3574 .priority = SLAB_CALLBACK_PRI,
3575 };
3576
3577 /********************************************************************
3578 * Basic setup of slabs
3579 *******************************************************************/
3580
3581 /*
3582 * Used for early kmem_cache structures that were allocated using
3583 * the page allocator. Allocate them properly then fix up the pointers
3584 * that may be pointing to the wrong kmem_cache structure.
3585 */
3586
3587 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3588 {
3589 int node;
3590 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3591
3592 memcpy(s, static_cache, kmem_cache->object_size);
3593
3594 /*
3595 * This runs very early, and only the boot processor is supposed to be
3596 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3597 * IPIs around.
3598 */
3599 __flush_cpu_slab(s, smp_processor_id());
3600 for_each_node_state(node, N_NORMAL_MEMORY) {
3601 struct kmem_cache_node *n = get_node(s, node);
3602 struct page *p;
3603
3604 if (n) {
3605 list_for_each_entry(p, &n->partial, lru)
3606 p->slab_cache = s;
3607
3608 #ifdef CONFIG_SLUB_DEBUG
3609 list_for_each_entry(p, &n->full, lru)
3610 p->slab_cache = s;
3611 #endif
3612 }
3613 }
3614 list_add(&s->list, &slab_caches);
3615 return s;
3616 }
3617
3618 void __init kmem_cache_init(void)
3619 {
3620 static __initdata struct kmem_cache boot_kmem_cache,
3621 boot_kmem_cache_node;
3622
3623 if (debug_guardpage_minorder())
3624 slub_max_order = 0;
3625
3626 kmem_cache_node = &boot_kmem_cache_node;
3627 kmem_cache = &boot_kmem_cache;
3628
3629 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3630 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3631
3632 register_hotmemory_notifier(&slab_memory_callback_nb);
3633
3634 /* Able to allocate the per node structures */
3635 slab_state = PARTIAL;
3636
3637 create_boot_cache(kmem_cache, "kmem_cache",
3638 offsetof(struct kmem_cache, node) +
3639 nr_node_ids * sizeof(struct kmem_cache_node *),
3640 SLAB_HWCACHE_ALIGN);
3641
3642 kmem_cache = bootstrap(&boot_kmem_cache);
3643
3644 /*
3645 * Allocate kmem_cache_node properly from the kmem_cache slab.
3646 * kmem_cache_node is separately allocated so no need to
3647 * update any list pointers.
3648 */
3649 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3650
3651 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3652 create_kmalloc_caches(0);
3653
3654 #ifdef CONFIG_SMP
3655 register_cpu_notifier(&slab_notifier);
3656 #endif
3657
3658 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3659 cache_line_size(),
3660 slub_min_order, slub_max_order, slub_min_objects,
3661 nr_cpu_ids, nr_node_ids);
3662 }
3663
3664 void __init kmem_cache_init_late(void)
3665 {
3666 }
3667
3668 /*
3669 * Find a mergeable slab cache
3670 */
3671 static int slab_unmergeable(struct kmem_cache *s)
3672 {
3673 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3674 return 1;
3675
3676 if (!is_root_cache(s))
3677 return 1;
3678
3679 if (s->ctor)
3680 return 1;
3681
3682 /*
3683 * We may have set a slab to be unmergeable during bootstrap.
3684 */
3685 if (s->refcount < 0)
3686 return 1;
3687
3688 return 0;
3689 }
3690
3691 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3692 unsigned long flags, const char *name, void (*ctor)(void *))
3693 {
3694 struct kmem_cache *s;
3695
3696 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3697 return NULL;
3698
3699 if (ctor)
3700 return NULL;
3701
3702 size = ALIGN(size, sizeof(void *));
3703 align = calculate_alignment(flags, align, size);
3704 size = ALIGN(size, align);
3705 flags = kmem_cache_flags(size, flags, name, NULL);
3706
3707 list_for_each_entry(s, &slab_caches, list) {
3708 if (slab_unmergeable(s))
3709 continue;
3710
3711 if (size > s->size)
3712 continue;
3713
3714 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3715 continue;
3716 /*
3717 * Check if alignment is compatible.
3718 * Courtesy of Adrian Drzewiecki
3719 */
3720 if ((s->size & ~(align - 1)) != s->size)
3721 continue;
3722
3723 if (s->size - size >= sizeof(void *))
3724 continue;
3725
3726 return s;
3727 }
3728 return NULL;
3729 }
3730
3731 struct kmem_cache *
3732 __kmem_cache_alias(const char *name, size_t size, size_t align,
3733 unsigned long flags, void (*ctor)(void *))
3734 {
3735 struct kmem_cache *s;
3736
3737 s = find_mergeable(size, align, flags, name, ctor);
3738 if (s) {
3739 int i;
3740 struct kmem_cache *c;
3741
3742 s->refcount++;
3743
3744 /*
3745 * Adjust the object sizes so that we clear
3746 * the complete object on kzalloc.
3747 */
3748 s->object_size = max(s->object_size, (int)size);
3749 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3750
3751 for_each_memcg_cache_index(i) {
3752 c = cache_from_memcg_idx(s, i);
3753 if (!c)
3754 continue;
3755 c->object_size = s->object_size;
3756 c->inuse = max_t(int, c->inuse,
3757 ALIGN(size, sizeof(void *)));
3758 }
3759
3760 if (sysfs_slab_alias(s, name)) {
3761 s->refcount--;
3762 s = NULL;
3763 }
3764 }
3765
3766 return s;
3767 }
3768
3769 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3770 {
3771 int err;
3772
3773 err = kmem_cache_open(s, flags);
3774 if (err)
3775 return err;
3776
3777 /* Mutex is not taken during early boot */
3778 if (slab_state <= UP)
3779 return 0;
3780
3781 memcg_propagate_slab_attrs(s);
3782 err = sysfs_slab_add(s);
3783 if (err)
3784 kmem_cache_close(s);
3785
3786 return err;
3787 }
3788
3789 #ifdef CONFIG_SMP
3790 /*
3791 * Use the cpu notifier to insure that the cpu slabs are flushed when
3792 * necessary.
3793 */
3794 static int slab_cpuup_callback(struct notifier_block *nfb,
3795 unsigned long action, void *hcpu)
3796 {
3797 long cpu = (long)hcpu;
3798 struct kmem_cache *s;
3799 unsigned long flags;
3800
3801 switch (action) {
3802 case CPU_UP_CANCELED:
3803 case CPU_UP_CANCELED_FROZEN:
3804 case CPU_DEAD:
3805 case CPU_DEAD_FROZEN:
3806 mutex_lock(&slab_mutex);
3807 list_for_each_entry(s, &slab_caches, list) {
3808 local_irq_save(flags);
3809 __flush_cpu_slab(s, cpu);
3810 local_irq_restore(flags);
3811 }
3812 mutex_unlock(&slab_mutex);
3813 break;
3814 default:
3815 break;
3816 }
3817 return NOTIFY_OK;
3818 }
3819
3820 static struct notifier_block slab_notifier = {
3821 .notifier_call = slab_cpuup_callback
3822 };
3823
3824 #endif
3825
3826 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3827 {
3828 struct kmem_cache *s;
3829 void *ret;
3830
3831 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3832 return kmalloc_large(size, gfpflags);
3833
3834 s = kmalloc_slab(size, gfpflags);
3835
3836 if (unlikely(ZERO_OR_NULL_PTR(s)))
3837 return s;
3838
3839 ret = slab_alloc(s, gfpflags, caller);
3840
3841 /* Honor the call site pointer we received. */
3842 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3843
3844 return ret;
3845 }
3846
3847 #ifdef CONFIG_NUMA
3848 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3849 int node, unsigned long caller)
3850 {
3851 struct kmem_cache *s;
3852 void *ret;
3853
3854 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3855 ret = kmalloc_large_node(size, gfpflags, node);
3856
3857 trace_kmalloc_node(caller, ret,
3858 size, PAGE_SIZE << get_order(size),
3859 gfpflags, node);
3860
3861 return ret;
3862 }
3863
3864 s = kmalloc_slab(size, gfpflags);
3865
3866 if (unlikely(ZERO_OR_NULL_PTR(s)))
3867 return s;
3868
3869 ret = slab_alloc_node(s, gfpflags, node, caller);
3870
3871 /* Honor the call site pointer we received. */
3872 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3873
3874 return ret;
3875 }
3876 #endif
3877
3878 #ifdef CONFIG_SYSFS
3879 static int count_inuse(struct page *page)
3880 {
3881 return page->inuse;
3882 }
3883
3884 static int count_total(struct page *page)
3885 {
3886 return page->objects;
3887 }
3888 #endif
3889
3890 #ifdef CONFIG_SLUB_DEBUG
3891 static int validate_slab(struct kmem_cache *s, struct page *page,
3892 unsigned long *map)
3893 {
3894 void *p;
3895 void *addr = page_address(page);
3896
3897 if (!check_slab(s, page) ||
3898 !on_freelist(s, page, NULL))
3899 return 0;
3900
3901 /* Now we know that a valid freelist exists */
3902 bitmap_zero(map, page->objects);
3903
3904 get_map(s, page, map);
3905 for_each_object(p, s, addr, page->objects) {
3906 if (test_bit(slab_index(p, s, addr), map))
3907 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3908 return 0;
3909 }
3910
3911 for_each_object(p, s, addr, page->objects)
3912 if (!test_bit(slab_index(p, s, addr), map))
3913 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3914 return 0;
3915 return 1;
3916 }
3917
3918 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3919 unsigned long *map)
3920 {
3921 slab_lock(page);
3922 validate_slab(s, page, map);
3923 slab_unlock(page);
3924 }
3925
3926 static int validate_slab_node(struct kmem_cache *s,
3927 struct kmem_cache_node *n, unsigned long *map)
3928 {
3929 unsigned long count = 0;
3930 struct page *page;
3931 unsigned long flags;
3932
3933 spin_lock_irqsave(&n->list_lock, flags);
3934
3935 list_for_each_entry(page, &n->partial, lru) {
3936 validate_slab_slab(s, page, map);
3937 count++;
3938 }
3939 if (count != n->nr_partial)
3940 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3941 s->name, count, n->nr_partial);
3942
3943 if (!(s->flags & SLAB_STORE_USER))
3944 goto out;
3945
3946 list_for_each_entry(page, &n->full, lru) {
3947 validate_slab_slab(s, page, map);
3948 count++;
3949 }
3950 if (count != atomic_long_read(&n->nr_slabs))
3951 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3952 s->name, count, atomic_long_read(&n->nr_slabs));
3953
3954 out:
3955 spin_unlock_irqrestore(&n->list_lock, flags);
3956 return count;
3957 }
3958
3959 static long validate_slab_cache(struct kmem_cache *s)
3960 {
3961 int node;
3962 unsigned long count = 0;
3963 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3964 sizeof(unsigned long), GFP_KERNEL);
3965
3966 if (!map)
3967 return -ENOMEM;
3968
3969 flush_all(s);
3970 for_each_node_state(node, N_NORMAL_MEMORY) {
3971 struct kmem_cache_node *n = get_node(s, node);
3972
3973 count += validate_slab_node(s, n, map);
3974 }
3975 kfree(map);
3976 return count;
3977 }
3978 /*
3979 * Generate lists of code addresses where slabcache objects are allocated
3980 * and freed.
3981 */
3982
3983 struct location {
3984 unsigned long count;
3985 unsigned long addr;
3986 long long sum_time;
3987 long min_time;
3988 long max_time;
3989 long min_pid;
3990 long max_pid;
3991 DECLARE_BITMAP(cpus, NR_CPUS);
3992 nodemask_t nodes;
3993 };
3994
3995 struct loc_track {
3996 unsigned long max;
3997 unsigned long count;
3998 struct location *loc;
3999 };
4000
4001 static void free_loc_track(struct loc_track *t)
4002 {
4003 if (t->max)
4004 free_pages((unsigned long)t->loc,
4005 get_order(sizeof(struct location) * t->max));
4006 }
4007
4008 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4009 {
4010 struct location *l;
4011 int order;
4012
4013 order = get_order(sizeof(struct location) * max);
4014
4015 l = (void *)__get_free_pages(flags, order);
4016 if (!l)
4017 return 0;
4018
4019 if (t->count) {
4020 memcpy(l, t->loc, sizeof(struct location) * t->count);
4021 free_loc_track(t);
4022 }
4023 t->max = max;
4024 t->loc = l;
4025 return 1;
4026 }
4027
4028 static int add_location(struct loc_track *t, struct kmem_cache *s,
4029 const struct track *track)
4030 {
4031 long start, end, pos;
4032 struct location *l;
4033 unsigned long caddr;
4034 unsigned long age = jiffies - track->when;
4035
4036 start = -1;
4037 end = t->count;
4038
4039 for ( ; ; ) {
4040 pos = start + (end - start + 1) / 2;
4041
4042 /*
4043 * There is nothing at "end". If we end up there
4044 * we need to add something to before end.
4045 */
4046 if (pos == end)
4047 break;
4048
4049 caddr = t->loc[pos].addr;
4050 if (track->addr == caddr) {
4051
4052 l = &t->loc[pos];
4053 l->count++;
4054 if (track->when) {
4055 l->sum_time += age;
4056 if (age < l->min_time)
4057 l->min_time = age;
4058 if (age > l->max_time)
4059 l->max_time = age;
4060
4061 if (track->pid < l->min_pid)
4062 l->min_pid = track->pid;
4063 if (track->pid > l->max_pid)
4064 l->max_pid = track->pid;
4065
4066 cpumask_set_cpu(track->cpu,
4067 to_cpumask(l->cpus));
4068 }
4069 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4070 return 1;
4071 }
4072
4073 if (track->addr < caddr)
4074 end = pos;
4075 else
4076 start = pos;
4077 }
4078
4079 /*
4080 * Not found. Insert new tracking element.
4081 */
4082 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4083 return 0;
4084
4085 l = t->loc + pos;
4086 if (pos < t->count)
4087 memmove(l + 1, l,
4088 (t->count - pos) * sizeof(struct location));
4089 t->count++;
4090 l->count = 1;
4091 l->addr = track->addr;
4092 l->sum_time = age;
4093 l->min_time = age;
4094 l->max_time = age;
4095 l->min_pid = track->pid;
4096 l->max_pid = track->pid;
4097 cpumask_clear(to_cpumask(l->cpus));
4098 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4099 nodes_clear(l->nodes);
4100 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4101 return 1;
4102 }
4103
4104 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4105 struct page *page, enum track_item alloc,
4106 unsigned long *map)
4107 {
4108 void *addr = page_address(page);
4109 void *p;
4110
4111 bitmap_zero(map, page->objects);
4112 get_map(s, page, map);
4113
4114 for_each_object(p, s, addr, page->objects)
4115 if (!test_bit(slab_index(p, s, addr), map))
4116 add_location(t, s, get_track(s, p, alloc));
4117 }
4118
4119 static int list_locations(struct kmem_cache *s, char *buf,
4120 enum track_item alloc)
4121 {
4122 int len = 0;
4123 unsigned long i;
4124 struct loc_track t = { 0, 0, NULL };
4125 int node;
4126 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4127 sizeof(unsigned long), GFP_KERNEL);
4128
4129 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4130 GFP_TEMPORARY)) {
4131 kfree(map);
4132 return sprintf(buf, "Out of memory\n");
4133 }
4134 /* Push back cpu slabs */
4135 flush_all(s);
4136
4137 for_each_node_state(node, N_NORMAL_MEMORY) {
4138 struct kmem_cache_node *n = get_node(s, node);
4139 unsigned long flags;
4140 struct page *page;
4141
4142 if (!atomic_long_read(&n->nr_slabs))
4143 continue;
4144
4145 spin_lock_irqsave(&n->list_lock, flags);
4146 list_for_each_entry(page, &n->partial, lru)
4147 process_slab(&t, s, page, alloc, map);
4148 list_for_each_entry(page, &n->full, lru)
4149 process_slab(&t, s, page, alloc, map);
4150 spin_unlock_irqrestore(&n->list_lock, flags);
4151 }
4152
4153 for (i = 0; i < t.count; i++) {
4154 struct location *l = &t.loc[i];
4155
4156 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4157 break;
4158 len += sprintf(buf + len, "%7ld ", l->count);
4159
4160 if (l->addr)
4161 len += sprintf(buf + len, "%pS", (void *)l->addr);
4162 else
4163 len += sprintf(buf + len, "<not-available>");
4164
4165 if (l->sum_time != l->min_time) {
4166 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4167 l->min_time,
4168 (long)div_u64(l->sum_time, l->count),
4169 l->max_time);
4170 } else
4171 len += sprintf(buf + len, " age=%ld",
4172 l->min_time);
4173
4174 if (l->min_pid != l->max_pid)
4175 len += sprintf(buf + len, " pid=%ld-%ld",
4176 l->min_pid, l->max_pid);
4177 else
4178 len += sprintf(buf + len, " pid=%ld",
4179 l->min_pid);
4180
4181 if (num_online_cpus() > 1 &&
4182 !cpumask_empty(to_cpumask(l->cpus)) &&
4183 len < PAGE_SIZE - 60) {
4184 len += sprintf(buf + len, " cpus=");
4185 len += cpulist_scnprintf(buf + len,
4186 PAGE_SIZE - len - 50,
4187 to_cpumask(l->cpus));
4188 }
4189
4190 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4191 len < PAGE_SIZE - 60) {
4192 len += sprintf(buf + len, " nodes=");
4193 len += nodelist_scnprintf(buf + len,
4194 PAGE_SIZE - len - 50,
4195 l->nodes);
4196 }
4197
4198 len += sprintf(buf + len, "\n");
4199 }
4200
4201 free_loc_track(&t);
4202 kfree(map);
4203 if (!t.count)
4204 len += sprintf(buf, "No data\n");
4205 return len;
4206 }
4207 #endif
4208
4209 #ifdef SLUB_RESILIENCY_TEST
4210 static void resiliency_test(void)
4211 {
4212 u8 *p;
4213
4214 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4215
4216 pr_err("SLUB resiliency testing\n");
4217 pr_err("-----------------------\n");
4218 pr_err("A. Corruption after allocation\n");
4219
4220 p = kzalloc(16, GFP_KERNEL);
4221 p[16] = 0x12;
4222 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4223 p + 16);
4224
4225 validate_slab_cache(kmalloc_caches[4]);
4226
4227 /* Hmmm... The next two are dangerous */
4228 p = kzalloc(32, GFP_KERNEL);
4229 p[32 + sizeof(void *)] = 0x34;
4230 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4231 p);
4232 pr_err("If allocated object is overwritten then not detectable\n\n");
4233
4234 validate_slab_cache(kmalloc_caches[5]);
4235 p = kzalloc(64, GFP_KERNEL);
4236 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4237 *p = 0x56;
4238 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4239 p);
4240 pr_err("If allocated object is overwritten then not detectable\n\n");
4241 validate_slab_cache(kmalloc_caches[6]);
4242
4243 pr_err("\nB. Corruption after free\n");
4244 p = kzalloc(128, GFP_KERNEL);
4245 kfree(p);
4246 *p = 0x78;
4247 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4248 validate_slab_cache(kmalloc_caches[7]);
4249
4250 p = kzalloc(256, GFP_KERNEL);
4251 kfree(p);
4252 p[50] = 0x9a;
4253 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4254 validate_slab_cache(kmalloc_caches[8]);
4255
4256 p = kzalloc(512, GFP_KERNEL);
4257 kfree(p);
4258 p[512] = 0xab;
4259 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4260 validate_slab_cache(kmalloc_caches[9]);
4261 }
4262 #else
4263 #ifdef CONFIG_SYSFS
4264 static void resiliency_test(void) {};
4265 #endif
4266 #endif
4267
4268 #ifdef CONFIG_SYSFS
4269 enum slab_stat_type {
4270 SL_ALL, /* All slabs */
4271 SL_PARTIAL, /* Only partially allocated slabs */
4272 SL_CPU, /* Only slabs used for cpu caches */
4273 SL_OBJECTS, /* Determine allocated objects not slabs */
4274 SL_TOTAL /* Determine object capacity not slabs */
4275 };
4276
4277 #define SO_ALL (1 << SL_ALL)
4278 #define SO_PARTIAL (1 << SL_PARTIAL)
4279 #define SO_CPU (1 << SL_CPU)
4280 #define SO_OBJECTS (1 << SL_OBJECTS)
4281 #define SO_TOTAL (1 << SL_TOTAL)
4282
4283 static ssize_t show_slab_objects(struct kmem_cache *s,
4284 char *buf, unsigned long flags)
4285 {
4286 unsigned long total = 0;
4287 int node;
4288 int x;
4289 unsigned long *nodes;
4290
4291 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4292 if (!nodes)
4293 return -ENOMEM;
4294
4295 if (flags & SO_CPU) {
4296 int cpu;
4297
4298 for_each_possible_cpu(cpu) {
4299 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4300 cpu);
4301 int node;
4302 struct page *page;
4303
4304 page = ACCESS_ONCE(c->page);
4305 if (!page)
4306 continue;
4307
4308 node = page_to_nid(page);
4309 if (flags & SO_TOTAL)
4310 x = page->objects;
4311 else if (flags & SO_OBJECTS)
4312 x = page->inuse;
4313 else
4314 x = 1;
4315
4316 total += x;
4317 nodes[node] += x;
4318
4319 page = ACCESS_ONCE(c->partial);
4320 if (page) {
4321 node = page_to_nid(page);
4322 if (flags & SO_TOTAL)
4323 WARN_ON_ONCE(1);
4324 else if (flags & SO_OBJECTS)
4325 WARN_ON_ONCE(1);
4326 else
4327 x = page->pages;
4328 total += x;
4329 nodes[node] += x;
4330 }
4331 }
4332 }
4333
4334 get_online_mems();
4335 #ifdef CONFIG_SLUB_DEBUG
4336 if (flags & SO_ALL) {
4337 for_each_node_state(node, N_NORMAL_MEMORY) {
4338 struct kmem_cache_node *n = get_node(s, node);
4339
4340 if (flags & SO_TOTAL)
4341 x = atomic_long_read(&n->total_objects);
4342 else if (flags & SO_OBJECTS)
4343 x = atomic_long_read(&n->total_objects) -
4344 count_partial(n, count_free);
4345 else
4346 x = atomic_long_read(&n->nr_slabs);
4347 total += x;
4348 nodes[node] += x;
4349 }
4350
4351 } else
4352 #endif
4353 if (flags & SO_PARTIAL) {
4354 for_each_node_state(node, N_NORMAL_MEMORY) {
4355 struct kmem_cache_node *n = get_node(s, node);
4356
4357 if (flags & SO_TOTAL)
4358 x = count_partial(n, count_total);
4359 else if (flags & SO_OBJECTS)
4360 x = count_partial(n, count_inuse);
4361 else
4362 x = n->nr_partial;
4363 total += x;
4364 nodes[node] += x;
4365 }
4366 }
4367 x = sprintf(buf, "%lu", total);
4368 #ifdef CONFIG_NUMA
4369 for_each_node_state(node, N_NORMAL_MEMORY)
4370 if (nodes[node])
4371 x += sprintf(buf + x, " N%d=%lu",
4372 node, nodes[node]);
4373 #endif
4374 put_online_mems();
4375 kfree(nodes);
4376 return x + sprintf(buf + x, "\n");
4377 }
4378
4379 #ifdef CONFIG_SLUB_DEBUG
4380 static int any_slab_objects(struct kmem_cache *s)
4381 {
4382 int node;
4383
4384 for_each_online_node(node) {
4385 struct kmem_cache_node *n = get_node(s, node);
4386
4387 if (!n)
4388 continue;
4389
4390 if (atomic_long_read(&n->total_objects))
4391 return 1;
4392 }
4393 return 0;
4394 }
4395 #endif
4396
4397 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4398 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4399
4400 struct slab_attribute {
4401 struct attribute attr;
4402 ssize_t (*show)(struct kmem_cache *s, char *buf);
4403 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4404 };
4405
4406 #define SLAB_ATTR_RO(_name) \
4407 static struct slab_attribute _name##_attr = \
4408 __ATTR(_name, 0400, _name##_show, NULL)
4409
4410 #define SLAB_ATTR(_name) \
4411 static struct slab_attribute _name##_attr = \
4412 __ATTR(_name, 0600, _name##_show, _name##_store)
4413
4414 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4415 {
4416 return sprintf(buf, "%d\n", s->size);
4417 }
4418 SLAB_ATTR_RO(slab_size);
4419
4420 static ssize_t align_show(struct kmem_cache *s, char *buf)
4421 {
4422 return sprintf(buf, "%d\n", s->align);
4423 }
4424 SLAB_ATTR_RO(align);
4425
4426 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4427 {
4428 return sprintf(buf, "%d\n", s->object_size);
4429 }
4430 SLAB_ATTR_RO(object_size);
4431
4432 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4433 {
4434 return sprintf(buf, "%d\n", oo_objects(s->oo));
4435 }
4436 SLAB_ATTR_RO(objs_per_slab);
4437
4438 static ssize_t order_store(struct kmem_cache *s,
4439 const char *buf, size_t length)
4440 {
4441 unsigned long order;
4442 int err;
4443
4444 err = kstrtoul(buf, 10, &order);
4445 if (err)
4446 return err;
4447
4448 if (order > slub_max_order || order < slub_min_order)
4449 return -EINVAL;
4450
4451 calculate_sizes(s, order);
4452 return length;
4453 }
4454
4455 static ssize_t order_show(struct kmem_cache *s, char *buf)
4456 {
4457 return sprintf(buf, "%d\n", oo_order(s->oo));
4458 }
4459 SLAB_ATTR(order);
4460
4461 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4462 {
4463 return sprintf(buf, "%lu\n", s->min_partial);
4464 }
4465
4466 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4467 size_t length)
4468 {
4469 unsigned long min;
4470 int err;
4471
4472 err = kstrtoul(buf, 10, &min);
4473 if (err)
4474 return err;
4475
4476 set_min_partial(s, min);
4477 return length;
4478 }
4479 SLAB_ATTR(min_partial);
4480
4481 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4482 {
4483 return sprintf(buf, "%u\n", s->cpu_partial);
4484 }
4485
4486 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4487 size_t length)
4488 {
4489 unsigned long objects;
4490 int err;
4491
4492 err = kstrtoul(buf, 10, &objects);
4493 if (err)
4494 return err;
4495 if (objects && !kmem_cache_has_cpu_partial(s))
4496 return -EINVAL;
4497
4498 s->cpu_partial = objects;
4499 flush_all(s);
4500 return length;
4501 }
4502 SLAB_ATTR(cpu_partial);
4503
4504 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4505 {
4506 if (!s->ctor)
4507 return 0;
4508 return sprintf(buf, "%pS\n", s->ctor);
4509 }
4510 SLAB_ATTR_RO(ctor);
4511
4512 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4513 {
4514 return sprintf(buf, "%d\n", s->refcount - 1);
4515 }
4516 SLAB_ATTR_RO(aliases);
4517
4518 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4519 {
4520 return show_slab_objects(s, buf, SO_PARTIAL);
4521 }
4522 SLAB_ATTR_RO(partial);
4523
4524 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4525 {
4526 return show_slab_objects(s, buf, SO_CPU);
4527 }
4528 SLAB_ATTR_RO(cpu_slabs);
4529
4530 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4531 {
4532 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4533 }
4534 SLAB_ATTR_RO(objects);
4535
4536 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4537 {
4538 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4539 }
4540 SLAB_ATTR_RO(objects_partial);
4541
4542 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4543 {
4544 int objects = 0;
4545 int pages = 0;
4546 int cpu;
4547 int len;
4548
4549 for_each_online_cpu(cpu) {
4550 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4551
4552 if (page) {
4553 pages += page->pages;
4554 objects += page->pobjects;
4555 }
4556 }
4557
4558 len = sprintf(buf, "%d(%d)", objects, pages);
4559
4560 #ifdef CONFIG_SMP
4561 for_each_online_cpu(cpu) {
4562 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4563
4564 if (page && len < PAGE_SIZE - 20)
4565 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4566 page->pobjects, page->pages);
4567 }
4568 #endif
4569 return len + sprintf(buf + len, "\n");
4570 }
4571 SLAB_ATTR_RO(slabs_cpu_partial);
4572
4573 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4574 {
4575 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4576 }
4577
4578 static ssize_t reclaim_account_store(struct kmem_cache *s,
4579 const char *buf, size_t length)
4580 {
4581 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4582 if (buf[0] == '1')
4583 s->flags |= SLAB_RECLAIM_ACCOUNT;
4584 return length;
4585 }
4586 SLAB_ATTR(reclaim_account);
4587
4588 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4589 {
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4591 }
4592 SLAB_ATTR_RO(hwcache_align);
4593
4594 #ifdef CONFIG_ZONE_DMA
4595 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4598 }
4599 SLAB_ATTR_RO(cache_dma);
4600 #endif
4601
4602 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4603 {
4604 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4605 }
4606 SLAB_ATTR_RO(destroy_by_rcu);
4607
4608 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4609 {
4610 return sprintf(buf, "%d\n", s->reserved);
4611 }
4612 SLAB_ATTR_RO(reserved);
4613
4614 #ifdef CONFIG_SLUB_DEBUG
4615 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4616 {
4617 return show_slab_objects(s, buf, SO_ALL);
4618 }
4619 SLAB_ATTR_RO(slabs);
4620
4621 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4622 {
4623 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4624 }
4625 SLAB_ATTR_RO(total_objects);
4626
4627 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4628 {
4629 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4630 }
4631
4632 static ssize_t sanity_checks_store(struct kmem_cache *s,
4633 const char *buf, size_t length)
4634 {
4635 s->flags &= ~SLAB_DEBUG_FREE;
4636 if (buf[0] == '1') {
4637 s->flags &= ~__CMPXCHG_DOUBLE;
4638 s->flags |= SLAB_DEBUG_FREE;
4639 }
4640 return length;
4641 }
4642 SLAB_ATTR(sanity_checks);
4643
4644 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4645 {
4646 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4647 }
4648
4649 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4650 size_t length)
4651 {
4652 s->flags &= ~SLAB_TRACE;
4653 if (buf[0] == '1') {
4654 s->flags &= ~__CMPXCHG_DOUBLE;
4655 s->flags |= SLAB_TRACE;
4656 }
4657 return length;
4658 }
4659 SLAB_ATTR(trace);
4660
4661 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4662 {
4663 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4664 }
4665
4666 static ssize_t red_zone_store(struct kmem_cache *s,
4667 const char *buf, size_t length)
4668 {
4669 if (any_slab_objects(s))
4670 return -EBUSY;
4671
4672 s->flags &= ~SLAB_RED_ZONE;
4673 if (buf[0] == '1') {
4674 s->flags &= ~__CMPXCHG_DOUBLE;
4675 s->flags |= SLAB_RED_ZONE;
4676 }
4677 calculate_sizes(s, -1);
4678 return length;
4679 }
4680 SLAB_ATTR(red_zone);
4681
4682 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4683 {
4684 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4685 }
4686
4687 static ssize_t poison_store(struct kmem_cache *s,
4688 const char *buf, size_t length)
4689 {
4690 if (any_slab_objects(s))
4691 return -EBUSY;
4692
4693 s->flags &= ~SLAB_POISON;
4694 if (buf[0] == '1') {
4695 s->flags &= ~__CMPXCHG_DOUBLE;
4696 s->flags |= SLAB_POISON;
4697 }
4698 calculate_sizes(s, -1);
4699 return length;
4700 }
4701 SLAB_ATTR(poison);
4702
4703 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4704 {
4705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4706 }
4707
4708 static ssize_t store_user_store(struct kmem_cache *s,
4709 const char *buf, size_t length)
4710 {
4711 if (any_slab_objects(s))
4712 return -EBUSY;
4713
4714 s->flags &= ~SLAB_STORE_USER;
4715 if (buf[0] == '1') {
4716 s->flags &= ~__CMPXCHG_DOUBLE;
4717 s->flags |= SLAB_STORE_USER;
4718 }
4719 calculate_sizes(s, -1);
4720 return length;
4721 }
4722 SLAB_ATTR(store_user);
4723
4724 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4725 {
4726 return 0;
4727 }
4728
4729 static ssize_t validate_store(struct kmem_cache *s,
4730 const char *buf, size_t length)
4731 {
4732 int ret = -EINVAL;
4733
4734 if (buf[0] == '1') {
4735 ret = validate_slab_cache(s);
4736 if (ret >= 0)
4737 ret = length;
4738 }
4739 return ret;
4740 }
4741 SLAB_ATTR(validate);
4742
4743 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4744 {
4745 if (!(s->flags & SLAB_STORE_USER))
4746 return -ENOSYS;
4747 return list_locations(s, buf, TRACK_ALLOC);
4748 }
4749 SLAB_ATTR_RO(alloc_calls);
4750
4751 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4752 {
4753 if (!(s->flags & SLAB_STORE_USER))
4754 return -ENOSYS;
4755 return list_locations(s, buf, TRACK_FREE);
4756 }
4757 SLAB_ATTR_RO(free_calls);
4758 #endif /* CONFIG_SLUB_DEBUG */
4759
4760 #ifdef CONFIG_FAILSLAB
4761 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4762 {
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4764 }
4765
4766 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4767 size_t length)
4768 {
4769 s->flags &= ~SLAB_FAILSLAB;
4770 if (buf[0] == '1')
4771 s->flags |= SLAB_FAILSLAB;
4772 return length;
4773 }
4774 SLAB_ATTR(failslab);
4775 #endif
4776
4777 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4778 {
4779 return 0;
4780 }
4781
4782 static ssize_t shrink_store(struct kmem_cache *s,
4783 const char *buf, size_t length)
4784 {
4785 if (buf[0] == '1') {
4786 int rc = kmem_cache_shrink(s);
4787
4788 if (rc)
4789 return rc;
4790 } else
4791 return -EINVAL;
4792 return length;
4793 }
4794 SLAB_ATTR(shrink);
4795
4796 #ifdef CONFIG_NUMA
4797 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4798 {
4799 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4800 }
4801
4802 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4803 const char *buf, size_t length)
4804 {
4805 unsigned long ratio;
4806 int err;
4807
4808 err = kstrtoul(buf, 10, &ratio);
4809 if (err)
4810 return err;
4811
4812 if (ratio <= 100)
4813 s->remote_node_defrag_ratio = ratio * 10;
4814
4815 return length;
4816 }
4817 SLAB_ATTR(remote_node_defrag_ratio);
4818 #endif
4819
4820 #ifdef CONFIG_SLUB_STATS
4821 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4822 {
4823 unsigned long sum = 0;
4824 int cpu;
4825 int len;
4826 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4827
4828 if (!data)
4829 return -ENOMEM;
4830
4831 for_each_online_cpu(cpu) {
4832 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4833
4834 data[cpu] = x;
4835 sum += x;
4836 }
4837
4838 len = sprintf(buf, "%lu", sum);
4839
4840 #ifdef CONFIG_SMP
4841 for_each_online_cpu(cpu) {
4842 if (data[cpu] && len < PAGE_SIZE - 20)
4843 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4844 }
4845 #endif
4846 kfree(data);
4847 return len + sprintf(buf + len, "\n");
4848 }
4849
4850 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4851 {
4852 int cpu;
4853
4854 for_each_online_cpu(cpu)
4855 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4856 }
4857
4858 #define STAT_ATTR(si, text) \
4859 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4860 { \
4861 return show_stat(s, buf, si); \
4862 } \
4863 static ssize_t text##_store(struct kmem_cache *s, \
4864 const char *buf, size_t length) \
4865 { \
4866 if (buf[0] != '0') \
4867 return -EINVAL; \
4868 clear_stat(s, si); \
4869 return length; \
4870 } \
4871 SLAB_ATTR(text); \
4872
4873 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4874 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4875 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4876 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4877 STAT_ATTR(FREE_FROZEN, free_frozen);
4878 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4879 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4880 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4881 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4882 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4883 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4884 STAT_ATTR(FREE_SLAB, free_slab);
4885 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4886 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4887 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4888 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4889 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4890 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4891 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4892 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4893 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4894 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4895 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4896 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4897 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4898 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4899 #endif
4900
4901 static struct attribute *slab_attrs[] = {
4902 &slab_size_attr.attr,
4903 &object_size_attr.attr,
4904 &objs_per_slab_attr.attr,
4905 &order_attr.attr,
4906 &min_partial_attr.attr,
4907 &cpu_partial_attr.attr,
4908 &objects_attr.attr,
4909 &objects_partial_attr.attr,
4910 &partial_attr.attr,
4911 &cpu_slabs_attr.attr,
4912 &ctor_attr.attr,
4913 &aliases_attr.attr,
4914 &align_attr.attr,
4915 &hwcache_align_attr.attr,
4916 &reclaim_account_attr.attr,
4917 &destroy_by_rcu_attr.attr,
4918 &shrink_attr.attr,
4919 &reserved_attr.attr,
4920 &slabs_cpu_partial_attr.attr,
4921 #ifdef CONFIG_SLUB_DEBUG
4922 &total_objects_attr.attr,
4923 &slabs_attr.attr,
4924 &sanity_checks_attr.attr,
4925 &trace_attr.attr,
4926 &red_zone_attr.attr,
4927 &poison_attr.attr,
4928 &store_user_attr.attr,
4929 &validate_attr.attr,
4930 &alloc_calls_attr.attr,
4931 &free_calls_attr.attr,
4932 #endif
4933 #ifdef CONFIG_ZONE_DMA
4934 &cache_dma_attr.attr,
4935 #endif
4936 #ifdef CONFIG_NUMA
4937 &remote_node_defrag_ratio_attr.attr,
4938 #endif
4939 #ifdef CONFIG_SLUB_STATS
4940 &alloc_fastpath_attr.attr,
4941 &alloc_slowpath_attr.attr,
4942 &free_fastpath_attr.attr,
4943 &free_slowpath_attr.attr,
4944 &free_frozen_attr.attr,
4945 &free_add_partial_attr.attr,
4946 &free_remove_partial_attr.attr,
4947 &alloc_from_partial_attr.attr,
4948 &alloc_slab_attr.attr,
4949 &alloc_refill_attr.attr,
4950 &alloc_node_mismatch_attr.attr,
4951 &free_slab_attr.attr,
4952 &cpuslab_flush_attr.attr,
4953 &deactivate_full_attr.attr,
4954 &deactivate_empty_attr.attr,
4955 &deactivate_to_head_attr.attr,
4956 &deactivate_to_tail_attr.attr,
4957 &deactivate_remote_frees_attr.attr,
4958 &deactivate_bypass_attr.attr,
4959 &order_fallback_attr.attr,
4960 &cmpxchg_double_fail_attr.attr,
4961 &cmpxchg_double_cpu_fail_attr.attr,
4962 &cpu_partial_alloc_attr.attr,
4963 &cpu_partial_free_attr.attr,
4964 &cpu_partial_node_attr.attr,
4965 &cpu_partial_drain_attr.attr,
4966 #endif
4967 #ifdef CONFIG_FAILSLAB
4968 &failslab_attr.attr,
4969 #endif
4970
4971 NULL
4972 };
4973
4974 static struct attribute_group slab_attr_group = {
4975 .attrs = slab_attrs,
4976 };
4977
4978 static ssize_t slab_attr_show(struct kobject *kobj,
4979 struct attribute *attr,
4980 char *buf)
4981 {
4982 struct slab_attribute *attribute;
4983 struct kmem_cache *s;
4984 int err;
4985
4986 attribute = to_slab_attr(attr);
4987 s = to_slab(kobj);
4988
4989 if (!attribute->show)
4990 return -EIO;
4991
4992 err = attribute->show(s, buf);
4993
4994 return err;
4995 }
4996
4997 static ssize_t slab_attr_store(struct kobject *kobj,
4998 struct attribute *attr,
4999 const char *buf, size_t len)
5000 {
5001 struct slab_attribute *attribute;
5002 struct kmem_cache *s;
5003 int err;
5004
5005 attribute = to_slab_attr(attr);
5006 s = to_slab(kobj);
5007
5008 if (!attribute->store)
5009 return -EIO;
5010
5011 err = attribute->store(s, buf, len);
5012 #ifdef CONFIG_MEMCG_KMEM
5013 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5014 int i;
5015
5016 mutex_lock(&slab_mutex);
5017 if (s->max_attr_size < len)
5018 s->max_attr_size = len;
5019
5020 /*
5021 * This is a best effort propagation, so this function's return
5022 * value will be determined by the parent cache only. This is
5023 * basically because not all attributes will have a well
5024 * defined semantics for rollbacks - most of the actions will
5025 * have permanent effects.
5026 *
5027 * Returning the error value of any of the children that fail
5028 * is not 100 % defined, in the sense that users seeing the
5029 * error code won't be able to know anything about the state of
5030 * the cache.
5031 *
5032 * Only returning the error code for the parent cache at least
5033 * has well defined semantics. The cache being written to
5034 * directly either failed or succeeded, in which case we loop
5035 * through the descendants with best-effort propagation.
5036 */
5037 for_each_memcg_cache_index(i) {
5038 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5039 if (c)
5040 attribute->store(c, buf, len);
5041 }
5042 mutex_unlock(&slab_mutex);
5043 }
5044 #endif
5045 return err;
5046 }
5047
5048 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5049 {
5050 #ifdef CONFIG_MEMCG_KMEM
5051 int i;
5052 char *buffer = NULL;
5053 struct kmem_cache *root_cache;
5054
5055 if (is_root_cache(s))
5056 return;
5057
5058 root_cache = s->memcg_params->root_cache;
5059
5060 /*
5061 * This mean this cache had no attribute written. Therefore, no point
5062 * in copying default values around
5063 */
5064 if (!root_cache->max_attr_size)
5065 return;
5066
5067 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5068 char mbuf[64];
5069 char *buf;
5070 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5071
5072 if (!attr || !attr->store || !attr->show)
5073 continue;
5074
5075 /*
5076 * It is really bad that we have to allocate here, so we will
5077 * do it only as a fallback. If we actually allocate, though,
5078 * we can just use the allocated buffer until the end.
5079 *
5080 * Most of the slub attributes will tend to be very small in
5081 * size, but sysfs allows buffers up to a page, so they can
5082 * theoretically happen.
5083 */
5084 if (buffer)
5085 buf = buffer;
5086 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5087 buf = mbuf;
5088 else {
5089 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5090 if (WARN_ON(!buffer))
5091 continue;
5092 buf = buffer;
5093 }
5094
5095 attr->show(root_cache, buf);
5096 attr->store(s, buf, strlen(buf));
5097 }
5098
5099 if (buffer)
5100 free_page((unsigned long)buffer);
5101 #endif
5102 }
5103
5104 static void kmem_cache_release(struct kobject *k)
5105 {
5106 slab_kmem_cache_release(to_slab(k));
5107 }
5108
5109 static const struct sysfs_ops slab_sysfs_ops = {
5110 .show = slab_attr_show,
5111 .store = slab_attr_store,
5112 };
5113
5114 static struct kobj_type slab_ktype = {
5115 .sysfs_ops = &slab_sysfs_ops,
5116 .release = kmem_cache_release,
5117 };
5118
5119 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5120 {
5121 struct kobj_type *ktype = get_ktype(kobj);
5122
5123 if (ktype == &slab_ktype)
5124 return 1;
5125 return 0;
5126 }
5127
5128 static const struct kset_uevent_ops slab_uevent_ops = {
5129 .filter = uevent_filter,
5130 };
5131
5132 static struct kset *slab_kset;
5133
5134 static inline struct kset *cache_kset(struct kmem_cache *s)
5135 {
5136 #ifdef CONFIG_MEMCG_KMEM
5137 if (!is_root_cache(s))
5138 return s->memcg_params->root_cache->memcg_kset;
5139 #endif
5140 return slab_kset;
5141 }
5142
5143 #define ID_STR_LENGTH 64
5144
5145 /* Create a unique string id for a slab cache:
5146 *
5147 * Format :[flags-]size
5148 */
5149 static char *create_unique_id(struct kmem_cache *s)
5150 {
5151 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5152 char *p = name;
5153
5154 BUG_ON(!name);
5155
5156 *p++ = ':';
5157 /*
5158 * First flags affecting slabcache operations. We will only
5159 * get here for aliasable slabs so we do not need to support
5160 * too many flags. The flags here must cover all flags that
5161 * are matched during merging to guarantee that the id is
5162 * unique.
5163 */
5164 if (s->flags & SLAB_CACHE_DMA)
5165 *p++ = 'd';
5166 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5167 *p++ = 'a';
5168 if (s->flags & SLAB_DEBUG_FREE)
5169 *p++ = 'F';
5170 if (!(s->flags & SLAB_NOTRACK))
5171 *p++ = 't';
5172 if (p != name + 1)
5173 *p++ = '-';
5174 p += sprintf(p, "%07d", s->size);
5175
5176 #ifdef CONFIG_MEMCG_KMEM
5177 if (!is_root_cache(s))
5178 p += sprintf(p, "-%08d",
5179 memcg_cache_id(s->memcg_params->memcg));
5180 #endif
5181
5182 BUG_ON(p > name + ID_STR_LENGTH - 1);
5183 return name;
5184 }
5185
5186 static int sysfs_slab_add(struct kmem_cache *s)
5187 {
5188 int err;
5189 const char *name;
5190 int unmergeable = slab_unmergeable(s);
5191
5192 if (unmergeable) {
5193 /*
5194 * Slabcache can never be merged so we can use the name proper.
5195 * This is typically the case for debug situations. In that
5196 * case we can catch duplicate names easily.
5197 */
5198 sysfs_remove_link(&slab_kset->kobj, s->name);
5199 name = s->name;
5200 } else {
5201 /*
5202 * Create a unique name for the slab as a target
5203 * for the symlinks.
5204 */
5205 name = create_unique_id(s);
5206 }
5207
5208 s->kobj.kset = cache_kset(s);
5209 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5210 if (err)
5211 goto out_put_kobj;
5212
5213 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5214 if (err)
5215 goto out_del_kobj;
5216
5217 #ifdef CONFIG_MEMCG_KMEM
5218 if (is_root_cache(s)) {
5219 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5220 if (!s->memcg_kset) {
5221 err = -ENOMEM;
5222 goto out_del_kobj;
5223 }
5224 }
5225 #endif
5226
5227 kobject_uevent(&s->kobj, KOBJ_ADD);
5228 if (!unmergeable) {
5229 /* Setup first alias */
5230 sysfs_slab_alias(s, s->name);
5231 }
5232 out:
5233 if (!unmergeable)
5234 kfree(name);
5235 return err;
5236 out_del_kobj:
5237 kobject_del(&s->kobj);
5238 out_put_kobj:
5239 kobject_put(&s->kobj);
5240 goto out;
5241 }
5242
5243 void sysfs_slab_remove(struct kmem_cache *s)
5244 {
5245 if (slab_state < FULL)
5246 /*
5247 * Sysfs has not been setup yet so no need to remove the
5248 * cache from sysfs.
5249 */
5250 return;
5251
5252 #ifdef CONFIG_MEMCG_KMEM
5253 kset_unregister(s->memcg_kset);
5254 #endif
5255 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5256 kobject_del(&s->kobj);
5257 kobject_put(&s->kobj);
5258 }
5259
5260 /*
5261 * Need to buffer aliases during bootup until sysfs becomes
5262 * available lest we lose that information.
5263 */
5264 struct saved_alias {
5265 struct kmem_cache *s;
5266 const char *name;
5267 struct saved_alias *next;
5268 };
5269
5270 static struct saved_alias *alias_list;
5271
5272 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5273 {
5274 struct saved_alias *al;
5275
5276 if (slab_state == FULL) {
5277 /*
5278 * If we have a leftover link then remove it.
5279 */
5280 sysfs_remove_link(&slab_kset->kobj, name);
5281 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5282 }
5283
5284 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5285 if (!al)
5286 return -ENOMEM;
5287
5288 al->s = s;
5289 al->name = name;
5290 al->next = alias_list;
5291 alias_list = al;
5292 return 0;
5293 }
5294
5295 static int __init slab_sysfs_init(void)
5296 {
5297 struct kmem_cache *s;
5298 int err;
5299
5300 mutex_lock(&slab_mutex);
5301
5302 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5303 if (!slab_kset) {
5304 mutex_unlock(&slab_mutex);
5305 pr_err("Cannot register slab subsystem.\n");
5306 return -ENOSYS;
5307 }
5308
5309 slab_state = FULL;
5310
5311 list_for_each_entry(s, &slab_caches, list) {
5312 err = sysfs_slab_add(s);
5313 if (err)
5314 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5315 s->name);
5316 }
5317
5318 while (alias_list) {
5319 struct saved_alias *al = alias_list;
5320
5321 alias_list = alias_list->next;
5322 err = sysfs_slab_alias(al->s, al->name);
5323 if (err)
5324 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5325 al->name);
5326 kfree(al);
5327 }
5328
5329 mutex_unlock(&slab_mutex);
5330 resiliency_test();
5331 return 0;
5332 }
5333
5334 __initcall(slab_sysfs_init);
5335 #endif /* CONFIG_SYSFS */
5336
5337 /*
5338 * The /proc/slabinfo ABI
5339 */
5340 #ifdef CONFIG_SLABINFO
5341 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5342 {
5343 unsigned long nr_slabs = 0;
5344 unsigned long nr_objs = 0;
5345 unsigned long nr_free = 0;
5346 int node;
5347
5348 for_each_online_node(node) {
5349 struct kmem_cache_node *n = get_node(s, node);
5350
5351 if (!n)
5352 continue;
5353
5354 nr_slabs += node_nr_slabs(n);
5355 nr_objs += node_nr_objs(n);
5356 nr_free += count_partial(n, count_free);
5357 }
5358
5359 sinfo->active_objs = nr_objs - nr_free;
5360 sinfo->num_objs = nr_objs;
5361 sinfo->active_slabs = nr_slabs;
5362 sinfo->num_slabs = nr_slabs;
5363 sinfo->objects_per_slab = oo_objects(s->oo);
5364 sinfo->cache_order = oo_order(s->oo);
5365 }
5366
5367 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5368 {
5369 }
5370
5371 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5372 size_t count, loff_t *ppos)
5373 {
5374 return -EIO;
5375 }
5376 #endif /* CONFIG_SLABINFO */
This page took 0.294077 seconds and 6 git commands to generate.