slub: do not put a slab to cpu partial list when cpu_partial is 0
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
35
36 #include <trace/events/kmem.h>
37
38 #include "internal.h"
39
40 /*
41 * Lock order:
42 * 1. slab_mutex (Global Mutex)
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
45 *
46 * slab_mutex
47 *
48 * The role of the slab_mutex is to protect the list of all the slabs
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
85 * freed then the slab will show up again on the partial lists.
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
107 * freelist that allows lockless access to
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
113 * the fast path and disables lockless freelists.
114 */
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void sysfs_slab_remove(struct kmem_cache *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210
211 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
212 #endif
213
214 static inline void stat(const struct kmem_cache *s, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 __this_cpu_inc(s->cpu_slab->stat[si]);
218 #endif
219 }
220
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226 {
227 return s->node[node];
228 }
229
230 /* Verify that a pointer has an address that is valid within a slab page */
231 static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233 {
234 void *base;
235
236 if (!object)
237 return 1;
238
239 base = page_address(page);
240 if (object < base || object >= base + page->objects * s->size ||
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246 }
247
248 static inline void *get_freepointer(struct kmem_cache *s, void *object)
249 {
250 return *(void **)(object + s->offset);
251 }
252
253 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254 {
255 prefetch(object + s->offset);
256 }
257
258 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259 {
260 void *p;
261
262 #ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264 #else
265 p = get_freepointer(s, object);
266 #endif
267 return p;
268 }
269
270 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271 {
272 *(void **)(object + s->offset) = fp;
273 }
274
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 __p += (__s)->size)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 /* Interrupts must be disabled (for the fallback code to work right) */
349 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353 {
354 VM_BUG_ON(!irqs_disabled());
355 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357 if (s->flags & __CMPXCHG_DOUBLE) {
358 if (cmpxchg_double(&page->freelist, &page->counters,
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363 #endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378 #ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380 #endif
381
382 return 0;
383 }
384
385 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389 {
390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392 if (s->flags & __CMPXCHG_DOUBLE) {
393 if (cmpxchg_double(&page->freelist, &page->counters,
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398 #endif
399 {
400 unsigned long flags;
401
402 local_irq_save(flags);
403 slab_lock(page);
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
407 slab_unlock(page);
408 local_irq_restore(flags);
409 return 1;
410 }
411 slab_unlock(page);
412 local_irq_restore(flags);
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418 #ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420 #endif
421
422 return 0;
423 }
424
425 #ifdef CONFIG_SLUB_DEBUG
426 /*
427 * Determine a map of object in use on a page.
428 *
429 * Node listlock must be held to guarantee that the page does
430 * not vanish from under us.
431 */
432 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433 {
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439 }
440
441 /*
442 * Debug settings:
443 */
444 #ifdef CONFIG_SLUB_DEBUG_ON
445 static int slub_debug = DEBUG_DEFAULT_FLAGS;
446 #else
447 static int slub_debug;
448 #endif
449
450 static char *slub_debug_slabs;
451 static int disable_higher_order_debug;
452
453 /*
454 * Object debugging
455 */
456 static void print_section(char *text, u8 *addr, unsigned int length)
457 {
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
460 }
461
462 static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464 {
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473 }
474
475 static void set_track(struct kmem_cache *s, void *object,
476 enum track_item alloc, unsigned long addr)
477 {
478 struct track *p = get_track(s, object, alloc);
479
480 if (addr) {
481 #ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498 #endif
499 p->addr = addr;
500 p->cpu = smp_processor_id();
501 p->pid = current->pid;
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505 }
506
507 static void init_tracking(struct kmem_cache *s, void *object)
508 {
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
514 }
515
516 static void print_track(const char *s, struct track *t)
517 {
518 if (!t->addr)
519 return;
520
521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
523 #ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532 #endif
533 }
534
535 static void print_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542 }
543
544 static void print_page_info(struct page *page)
545 {
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
548
549 }
550
551 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552 {
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
564
565 add_taint(TAINT_BAD_PAGE);
566 }
567
568 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569 {
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577 }
578
579 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
580 {
581 unsigned int off; /* Offset of last byte */
582 u8 *addr = page_address(page);
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
592 print_section("Bytes b4 ", p - 16, 16);
593
594 print_section("Object ", p, min_t(unsigned long, s->object_size,
595 PAGE_SIZE));
596 if (s->flags & SLAB_RED_ZONE)
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
599
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
605 if (s->flags & SLAB_STORE_USER)
606 off += 2 * sizeof(struct track);
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
610 print_section("Padding ", p + off, s->size - off);
611
612 dump_stack();
613 }
614
615 static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617 {
618 slab_bug(s, "%s", reason);
619 print_trailer(s, page, object);
620 }
621
622 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
623 {
624 va_list args;
625 char buf[100];
626
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
629 va_end(args);
630 slab_bug(s, "%s", buf);
631 print_page_info(page);
632 dump_stack();
633 }
634
635 static void init_object(struct kmem_cache *s, void *object, u8 val)
636 {
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
645 memset(p + s->object_size, val, s->inuse - s->object_size);
646 }
647
648 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650 {
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653 }
654
655 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
657 u8 *start, unsigned int value, unsigned int bytes)
658 {
659 u8 *fault;
660 u8 *end;
661
662 fault = memchr_inv(start, value, bytes);
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
677 }
678
679 /*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
686 *
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
690 * object + s->object_size
691 * Padding to reach word boundary. This is also used for Redzoning.
692 * Padding is extended by another word if Redzoning is enabled and
693 * object_size == inuse.
694 *
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
699 * Meta data starts here.
700 *
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
703 * C. Padding to reach required alignment boundary or at mininum
704 * one word if debugging is on to be able to detect writes
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
708 *
709 * object + s->size
710 * Nothing is used beyond s->size.
711 *
712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
713 * ignored. And therefore no slab options that rely on these boundaries
714 * may be used with merged slabcaches.
715 */
716
717 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718 {
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
734 }
735
736 /* Check the pad bytes at the end of a slab page */
737 static int slab_pad_check(struct kmem_cache *s, struct page *page)
738 {
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
748 start = page_address(page);
749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
750 end = start + length;
751 remainder = length % s->size;
752 if (!remainder)
753 return 1;
754
755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
762 print_section("Padding ", end - remainder, remainder);
763
764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
765 return 0;
766 }
767
768 static int check_object(struct kmem_cache *s, struct page *page,
769 void *object, u8 val)
770 {
771 u8 *p = object;
772 u8 *endobject = object + s->object_size;
773
774 if (s->flags & SLAB_RED_ZONE) {
775 if (!check_bytes_and_report(s, page, object, "Redzone",
776 endobject, val, s->inuse - s->object_size))
777 return 0;
778 } else {
779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
780 check_bytes_and_report(s, page, p, "Alignment padding",
781 endobject, POISON_INUSE, s->inuse - s->object_size);
782 }
783 }
784
785 if (s->flags & SLAB_POISON) {
786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
787 (!check_bytes_and_report(s, page, p, "Poison", p,
788 POISON_FREE, s->object_size - 1) ||
789 !check_bytes_and_report(s, page, p, "Poison",
790 p + s->object_size - 1, POISON_END, 1)))
791 return 0;
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
798 if (!s->offset && val == SLUB_RED_ACTIVE)
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
809 * No choice but to zap it and thus lose the remainder
810 * of the free objects in this slab. May cause
811 * another error because the object count is now wrong.
812 */
813 set_freepointer(s, p, NULL);
814 return 0;
815 }
816 return 1;
817 }
818
819 static int check_slab(struct kmem_cache *s, struct page *page)
820 {
821 int maxobj;
822
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
826 slab_err(s, page, "Not a valid slab page");
827 return 0;
828 }
829
830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
837 slab_err(s, page, "inuse %u > max %u",
838 s->name, page->inuse, page->objects);
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844 }
845
846 /*
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
849 */
850 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851 {
852 int nr = 0;
853 void *fp;
854 void *object = NULL;
855 unsigned long max_objects;
856
857 fp = page->freelist;
858 while (fp && nr <= page->objects) {
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
865 set_freepointer(s, object, NULL);
866 break;
867 } else {
868 slab_err(s, page, "Freepointer corrupt");
869 page->freelist = NULL;
870 page->inuse = page->objects;
871 slab_fix(s, "Freelist cleared");
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
891 if (page->inuse != page->objects - nr) {
892 slab_err(s, page, "Wrong object count. Counter is %d but "
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
895 slab_fix(s, "Object count adjusted.");
896 }
897 return search == NULL;
898 }
899
900 static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
902 {
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
911 print_section("Object ", (void *)object, s->object_size);
912
913 dump_stack();
914 }
915 }
916
917 /*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922 {
923 flags &= gfp_allowed_mask;
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
927 return should_failslab(s->object_size, flags, s->flags);
928 }
929
930 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931 {
932 flags &= gfp_allowed_mask;
933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
935 }
936
937 static inline void slab_free_hook(struct kmem_cache *s, void *x)
938 {
939 kmemleak_free_recursive(x, s->flags);
940
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
953 local_irq_restore(flags);
954 }
955 #endif
956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
957 debug_check_no_obj_freed(x, s->object_size);
958 }
959
960 /*
961 * Tracking of fully allocated slabs for debugging purposes.
962 *
963 * list_lock must be held.
964 */
965 static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
967 {
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
971 list_add(&page->lru, &n->full);
972 }
973
974 /*
975 * list_lock must be held.
976 */
977 static void remove_full(struct kmem_cache *s, struct page *page)
978 {
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (likely(n)) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1033 void *object, unsigned long addr)
1034 {
1035 if (!check_slab(s, page))
1036 goto bad;
1037
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
1040 goto bad;
1041 }
1042
1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1044 goto bad;
1045
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
1050 init_object(s, object, SLUB_RED_ACTIVE);
1051 return 1;
1052
1053 bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
1058 * as used avoids touching the remaining objects.
1059 */
1060 slab_fix(s, "Marking all objects used");
1061 page->inuse = page->objects;
1062 page->freelist = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
1070 {
1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072
1073 spin_lock_irqsave(&n->list_lock, *flags);
1074 slab_lock(page);
1075
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
1085 object_err(s, page, object, "Object already free");
1086 goto fail;
1087 }
1088
1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1090 goto out;
1091
1092 if (unlikely(s != page->slab_cache)) {
1093 if (!PageSlab(page)) {
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1096 } else if (!page->slab_cache) {
1097 printk(KERN_ERR
1098 "SLUB <none>: no slab for object 0x%p.\n",
1099 object);
1100 dump_stack();
1101 } else
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
1104 goto fail;
1105 }
1106
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
1110 init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 slab_unlock(page);
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
1118
1119 fail:
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
1122 slab_fix(s, "Object at 0x%p not freed", object);
1123 return NULL;
1124 }
1125
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
1161 for (; *str && *str != ','; str++) {
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
1183 "unknown. skipped\n", *str);
1184 }
1185 }
1186
1187 check_slabs:
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
1190 out:
1191 return 1;
1192 }
1193
1194 __setup("slub_debug", setup_slub_debug);
1195
1196 static unsigned long kmem_cache_flags(unsigned long object_size,
1197 unsigned long flags, const char *name,
1198 void (*ctor)(void *))
1199 {
1200 /*
1201 * Enable debugging if selected on the kernel commandline.
1202 */
1203 if (slub_debug && (!slub_debug_slabs ||
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
1206
1207 return flags;
1208 }
1209 #else
1210 static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
1212
1213 static inline int alloc_debug_processing(struct kmem_cache *s,
1214 struct page *page, void *object, unsigned long addr) { return 0; }
1215
1216 static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
1219
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 unsigned long flags, const char *name,
1229 void (*ctor)(void *))
1230 {
1231 return flags;
1232 }
1233 #define slub_debug 0
1234
1235 #define disable_higher_order_debug 0
1236
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
1245
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
1254 #endif /* CONFIG_SLUB_DEBUG */
1255
1256 /*
1257 * Slab allocation and freeing
1258 */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261 {
1262 int order = oo_order(oo);
1263
1264 flags |= __GFP_NOTRACK;
1265
1266 if (node == NUMA_NO_NODE)
1267 return alloc_pages(flags, order);
1268 else
1269 return alloc_pages_exact_node(node, flags, order);
1270 }
1271
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 struct page *page;
1275 struct kmem_cache_order_objects oo = s->oo;
1276 gfp_t alloc_gfp;
1277
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
1283 flags |= s->allocflags;
1284
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
1299
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
1302 }
1303
1304 if (kmemcheck_enabled && page
1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
1318 }
1319
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
1325 page->objects = oo_objects(oo);
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 1 << oo_order(oo));
1330
1331 return page;
1332 }
1333
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336 {
1337 setup_object_debug(s, page, object);
1338 if (unlikely(s->ctor))
1339 s->ctor(object);
1340 }
1341
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 struct page *page;
1345 void *start;
1346 void *last;
1347 void *p;
1348 int order;
1349
1350 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1351
1352 page = allocate_slab(s,
1353 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1354 if (!page)
1355 goto out;
1356
1357 order = compound_order(page);
1358 inc_slabs_node(s, page_to_nid(page), page->objects);
1359 memcg_bind_pages(s, order);
1360 page->slab_cache = s;
1361 __SetPageSlab(page);
1362 if (page->pfmemalloc)
1363 SetPageSlabPfmemalloc(page);
1364
1365 start = page_address(page);
1366
1367 if (unlikely(s->flags & SLAB_POISON))
1368 memset(start, POISON_INUSE, PAGE_SIZE << order);
1369
1370 last = start;
1371 for_each_object(p, s, start, page->objects) {
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1374 last = p;
1375 }
1376 setup_object(s, page, last);
1377 set_freepointer(s, last, NULL);
1378
1379 page->freelist = start;
1380 page->inuse = page->objects;
1381 page->frozen = 1;
1382 out:
1383 return page;
1384 }
1385
1386 static void __free_slab(struct kmem_cache *s, struct page *page)
1387 {
1388 int order = compound_order(page);
1389 int pages = 1 << order;
1390
1391 if (kmem_cache_debug(s)) {
1392 void *p;
1393
1394 slab_pad_check(s, page);
1395 for_each_object(p, s, page_address(page),
1396 page->objects)
1397 check_object(s, page, p, SLUB_RED_INACTIVE);
1398 }
1399
1400 kmemcheck_free_shadow(page, compound_order(page));
1401
1402 mod_zone_page_state(page_zone(page),
1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1405 -pages);
1406
1407 __ClearPageSlabPfmemalloc(page);
1408 __ClearPageSlab(page);
1409
1410 memcg_release_pages(s, order);
1411 reset_page_mapcount(page);
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
1414 __free_memcg_kmem_pages(page, order);
1415 }
1416
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 struct page *page;
1423
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1429 __free_slab(page->slab_cache, page);
1430 }
1431
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453 }
1454
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 dec_slabs_node(s, page_to_nid(page), page->objects);
1458 free_slab(s, page);
1459 }
1460
1461 /*
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
1465 */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 struct page *page, int tail)
1468 {
1469 n->nr_partial++;
1470 if (tail == DEACTIVATE_TO_TAIL)
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
1474 }
1475
1476 /*
1477 * list_lock must be held.
1478 */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 struct page *page)
1481 {
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484 }
1485
1486 /*
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
1489 *
1490 * Returns a list of objects or NULL if it fails.
1491 *
1492 * Must hold list_lock since we modify the partial list.
1493 */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 struct kmem_cache_node *n, struct page *page,
1496 int mode, int *objects)
1497 {
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
1510 *objects = new.objects - new.inuse;
1511 if (mode) {
1512 new.inuse = page->objects;
1513 new.freelist = NULL;
1514 } else {
1515 new.freelist = freelist;
1516 }
1517
1518 VM_BUG_ON(new.frozen);
1519 new.frozen = 1;
1520
1521 if (!__cmpxchg_double_slab(s, page,
1522 freelist, counters,
1523 new.freelist, new.counters,
1524 "acquire_slab"))
1525 return NULL;
1526
1527 remove_partial(n, page);
1528 WARN_ON(!freelist);
1529 return freelist;
1530 }
1531
1532 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1534
1535 /*
1536 * Try to allocate a partial slab from a specific node.
1537 */
1538 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct kmem_cache_cpu *c, gfp_t flags)
1540 {
1541 struct page *page, *page2;
1542 void *object = NULL;
1543 int available = 0;
1544 int objects;
1545
1546 /*
1547 * Racy check. If we mistakenly see no partial slabs then we
1548 * just allocate an empty slab. If we mistakenly try to get a
1549 * partial slab and there is none available then get_partials()
1550 * will return NULL.
1551 */
1552 if (!n || !n->nr_partial)
1553 return NULL;
1554
1555 spin_lock(&n->list_lock);
1556 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1557 void *t;
1558
1559 if (!pfmemalloc_match(page, flags))
1560 continue;
1561
1562 t = acquire_slab(s, n, page, object == NULL, &objects);
1563 if (!t)
1564 break;
1565
1566 available += objects;
1567 if (!object) {
1568 c->page = page;
1569 stat(s, ALLOC_FROM_PARTIAL);
1570 object = t;
1571 } else {
1572 put_cpu_partial(s, page, 0);
1573 stat(s, CPU_PARTIAL_NODE);
1574 }
1575 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1576 break;
1577
1578 }
1579 spin_unlock(&n->list_lock);
1580 return object;
1581 }
1582
1583 /*
1584 * Get a page from somewhere. Search in increasing NUMA distances.
1585 */
1586 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1587 struct kmem_cache_cpu *c)
1588 {
1589 #ifdef CONFIG_NUMA
1590 struct zonelist *zonelist;
1591 struct zoneref *z;
1592 struct zone *zone;
1593 enum zone_type high_zoneidx = gfp_zone(flags);
1594 void *object;
1595 unsigned int cpuset_mems_cookie;
1596
1597 /*
1598 * The defrag ratio allows a configuration of the tradeoffs between
1599 * inter node defragmentation and node local allocations. A lower
1600 * defrag_ratio increases the tendency to do local allocations
1601 * instead of attempting to obtain partial slabs from other nodes.
1602 *
1603 * If the defrag_ratio is set to 0 then kmalloc() always
1604 * returns node local objects. If the ratio is higher then kmalloc()
1605 * may return off node objects because partial slabs are obtained
1606 * from other nodes and filled up.
1607 *
1608 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1609 * defrag_ratio = 1000) then every (well almost) allocation will
1610 * first attempt to defrag slab caches on other nodes. This means
1611 * scanning over all nodes to look for partial slabs which may be
1612 * expensive if we do it every time we are trying to find a slab
1613 * with available objects.
1614 */
1615 if (!s->remote_node_defrag_ratio ||
1616 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1617 return NULL;
1618
1619 do {
1620 cpuset_mems_cookie = get_mems_allowed();
1621 zonelist = node_zonelist(slab_node(), flags);
1622 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1623 struct kmem_cache_node *n;
1624
1625 n = get_node(s, zone_to_nid(zone));
1626
1627 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1628 n->nr_partial > s->min_partial) {
1629 object = get_partial_node(s, n, c, flags);
1630 if (object) {
1631 /*
1632 * Return the object even if
1633 * put_mems_allowed indicated that
1634 * the cpuset mems_allowed was
1635 * updated in parallel. It's a
1636 * harmless race between the alloc
1637 * and the cpuset update.
1638 */
1639 put_mems_allowed(cpuset_mems_cookie);
1640 return object;
1641 }
1642 }
1643 }
1644 } while (!put_mems_allowed(cpuset_mems_cookie));
1645 #endif
1646 return NULL;
1647 }
1648
1649 /*
1650 * Get a partial page, lock it and return it.
1651 */
1652 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1653 struct kmem_cache_cpu *c)
1654 {
1655 void *object;
1656 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1657
1658 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1659 if (object || node != NUMA_NO_NODE)
1660 return object;
1661
1662 return get_any_partial(s, flags, c);
1663 }
1664
1665 #ifdef CONFIG_PREEMPT
1666 /*
1667 * Calculate the next globally unique transaction for disambiguiation
1668 * during cmpxchg. The transactions start with the cpu number and are then
1669 * incremented by CONFIG_NR_CPUS.
1670 */
1671 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1672 #else
1673 /*
1674 * No preemption supported therefore also no need to check for
1675 * different cpus.
1676 */
1677 #define TID_STEP 1
1678 #endif
1679
1680 static inline unsigned long next_tid(unsigned long tid)
1681 {
1682 return tid + TID_STEP;
1683 }
1684
1685 static inline unsigned int tid_to_cpu(unsigned long tid)
1686 {
1687 return tid % TID_STEP;
1688 }
1689
1690 static inline unsigned long tid_to_event(unsigned long tid)
1691 {
1692 return tid / TID_STEP;
1693 }
1694
1695 static inline unsigned int init_tid(int cpu)
1696 {
1697 return cpu;
1698 }
1699
1700 static inline void note_cmpxchg_failure(const char *n,
1701 const struct kmem_cache *s, unsigned long tid)
1702 {
1703 #ifdef SLUB_DEBUG_CMPXCHG
1704 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1705
1706 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1707
1708 #ifdef CONFIG_PREEMPT
1709 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1710 printk("due to cpu change %d -> %d\n",
1711 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1712 else
1713 #endif
1714 if (tid_to_event(tid) != tid_to_event(actual_tid))
1715 printk("due to cpu running other code. Event %ld->%ld\n",
1716 tid_to_event(tid), tid_to_event(actual_tid));
1717 else
1718 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1719 actual_tid, tid, next_tid(tid));
1720 #endif
1721 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1722 }
1723
1724 static void init_kmem_cache_cpus(struct kmem_cache *s)
1725 {
1726 int cpu;
1727
1728 for_each_possible_cpu(cpu)
1729 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1730 }
1731
1732 /*
1733 * Remove the cpu slab
1734 */
1735 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1736 {
1737 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1738 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1739 int lock = 0;
1740 enum slab_modes l = M_NONE, m = M_NONE;
1741 void *nextfree;
1742 int tail = DEACTIVATE_TO_HEAD;
1743 struct page new;
1744 struct page old;
1745
1746 if (page->freelist) {
1747 stat(s, DEACTIVATE_REMOTE_FREES);
1748 tail = DEACTIVATE_TO_TAIL;
1749 }
1750
1751 /*
1752 * Stage one: Free all available per cpu objects back
1753 * to the page freelist while it is still frozen. Leave the
1754 * last one.
1755 *
1756 * There is no need to take the list->lock because the page
1757 * is still frozen.
1758 */
1759 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1760 void *prior;
1761 unsigned long counters;
1762
1763 do {
1764 prior = page->freelist;
1765 counters = page->counters;
1766 set_freepointer(s, freelist, prior);
1767 new.counters = counters;
1768 new.inuse--;
1769 VM_BUG_ON(!new.frozen);
1770
1771 } while (!__cmpxchg_double_slab(s, page,
1772 prior, counters,
1773 freelist, new.counters,
1774 "drain percpu freelist"));
1775
1776 freelist = nextfree;
1777 }
1778
1779 /*
1780 * Stage two: Ensure that the page is unfrozen while the
1781 * list presence reflects the actual number of objects
1782 * during unfreeze.
1783 *
1784 * We setup the list membership and then perform a cmpxchg
1785 * with the count. If there is a mismatch then the page
1786 * is not unfrozen but the page is on the wrong list.
1787 *
1788 * Then we restart the process which may have to remove
1789 * the page from the list that we just put it on again
1790 * because the number of objects in the slab may have
1791 * changed.
1792 */
1793 redo:
1794
1795 old.freelist = page->freelist;
1796 old.counters = page->counters;
1797 VM_BUG_ON(!old.frozen);
1798
1799 /* Determine target state of the slab */
1800 new.counters = old.counters;
1801 if (freelist) {
1802 new.inuse--;
1803 set_freepointer(s, freelist, old.freelist);
1804 new.freelist = freelist;
1805 } else
1806 new.freelist = old.freelist;
1807
1808 new.frozen = 0;
1809
1810 if (!new.inuse && n->nr_partial > s->min_partial)
1811 m = M_FREE;
1812 else if (new.freelist) {
1813 m = M_PARTIAL;
1814 if (!lock) {
1815 lock = 1;
1816 /*
1817 * Taking the spinlock removes the possiblity
1818 * that acquire_slab() will see a slab page that
1819 * is frozen
1820 */
1821 spin_lock(&n->list_lock);
1822 }
1823 } else {
1824 m = M_FULL;
1825 if (kmem_cache_debug(s) && !lock) {
1826 lock = 1;
1827 /*
1828 * This also ensures that the scanning of full
1829 * slabs from diagnostic functions will not see
1830 * any frozen slabs.
1831 */
1832 spin_lock(&n->list_lock);
1833 }
1834 }
1835
1836 if (l != m) {
1837
1838 if (l == M_PARTIAL)
1839
1840 remove_partial(n, page);
1841
1842 else if (l == M_FULL)
1843
1844 remove_full(s, page);
1845
1846 if (m == M_PARTIAL) {
1847
1848 add_partial(n, page, tail);
1849 stat(s, tail);
1850
1851 } else if (m == M_FULL) {
1852
1853 stat(s, DEACTIVATE_FULL);
1854 add_full(s, n, page);
1855
1856 }
1857 }
1858
1859 l = m;
1860 if (!__cmpxchg_double_slab(s, page,
1861 old.freelist, old.counters,
1862 new.freelist, new.counters,
1863 "unfreezing slab"))
1864 goto redo;
1865
1866 if (lock)
1867 spin_unlock(&n->list_lock);
1868
1869 if (m == M_FREE) {
1870 stat(s, DEACTIVATE_EMPTY);
1871 discard_slab(s, page);
1872 stat(s, FREE_SLAB);
1873 }
1874 }
1875
1876 /*
1877 * Unfreeze all the cpu partial slabs.
1878 *
1879 * This function must be called with interrupts disabled
1880 * for the cpu using c (or some other guarantee must be there
1881 * to guarantee no concurrent accesses).
1882 */
1883 static void unfreeze_partials(struct kmem_cache *s,
1884 struct kmem_cache_cpu *c)
1885 {
1886 struct kmem_cache_node *n = NULL, *n2 = NULL;
1887 struct page *page, *discard_page = NULL;
1888
1889 while ((page = c->partial)) {
1890 struct page new;
1891 struct page old;
1892
1893 c->partial = page->next;
1894
1895 n2 = get_node(s, page_to_nid(page));
1896 if (n != n2) {
1897 if (n)
1898 spin_unlock(&n->list_lock);
1899
1900 n = n2;
1901 spin_lock(&n->list_lock);
1902 }
1903
1904 do {
1905
1906 old.freelist = page->freelist;
1907 old.counters = page->counters;
1908 VM_BUG_ON(!old.frozen);
1909
1910 new.counters = old.counters;
1911 new.freelist = old.freelist;
1912
1913 new.frozen = 0;
1914
1915 } while (!__cmpxchg_double_slab(s, page,
1916 old.freelist, old.counters,
1917 new.freelist, new.counters,
1918 "unfreezing slab"));
1919
1920 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1921 page->next = discard_page;
1922 discard_page = page;
1923 } else {
1924 add_partial(n, page, DEACTIVATE_TO_TAIL);
1925 stat(s, FREE_ADD_PARTIAL);
1926 }
1927 }
1928
1929 if (n)
1930 spin_unlock(&n->list_lock);
1931
1932 while (discard_page) {
1933 page = discard_page;
1934 discard_page = discard_page->next;
1935
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
1939 }
1940 }
1941
1942 /*
1943 * Put a page that was just frozen (in __slab_free) into a partial page
1944 * slot if available. This is done without interrupts disabled and without
1945 * preemption disabled. The cmpxchg is racy and may put the partial page
1946 * onto a random cpus partial slot.
1947 *
1948 * If we did not find a slot then simply move all the partials to the
1949 * per node partial list.
1950 */
1951 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1952 {
1953 struct page *oldpage;
1954 int pages;
1955 int pobjects;
1956
1957 if (!s->cpu_partial)
1958 return;
1959
1960 do {
1961 pages = 0;
1962 pobjects = 0;
1963 oldpage = this_cpu_read(s->cpu_slab->partial);
1964
1965 if (oldpage) {
1966 pobjects = oldpage->pobjects;
1967 pages = oldpage->pages;
1968 if (drain && pobjects > s->cpu_partial) {
1969 unsigned long flags;
1970 /*
1971 * partial array is full. Move the existing
1972 * set to the per node partial list.
1973 */
1974 local_irq_save(flags);
1975 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1976 local_irq_restore(flags);
1977 oldpage = NULL;
1978 pobjects = 0;
1979 pages = 0;
1980 stat(s, CPU_PARTIAL_DRAIN);
1981 }
1982 }
1983
1984 pages++;
1985 pobjects += page->objects - page->inuse;
1986
1987 page->pages = pages;
1988 page->pobjects = pobjects;
1989 page->next = oldpage;
1990
1991 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1992 }
1993
1994 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1995 {
1996 stat(s, CPUSLAB_FLUSH);
1997 deactivate_slab(s, c->page, c->freelist);
1998
1999 c->tid = next_tid(c->tid);
2000 c->page = NULL;
2001 c->freelist = NULL;
2002 }
2003
2004 /*
2005 * Flush cpu slab.
2006 *
2007 * Called from IPI handler with interrupts disabled.
2008 */
2009 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2010 {
2011 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2012
2013 if (likely(c)) {
2014 if (c->page)
2015 flush_slab(s, c);
2016
2017 unfreeze_partials(s, c);
2018 }
2019 }
2020
2021 static void flush_cpu_slab(void *d)
2022 {
2023 struct kmem_cache *s = d;
2024
2025 __flush_cpu_slab(s, smp_processor_id());
2026 }
2027
2028 static bool has_cpu_slab(int cpu, void *info)
2029 {
2030 struct kmem_cache *s = info;
2031 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2032
2033 return c->page || c->partial;
2034 }
2035
2036 static void flush_all(struct kmem_cache *s)
2037 {
2038 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2039 }
2040
2041 /*
2042 * Check if the objects in a per cpu structure fit numa
2043 * locality expectations.
2044 */
2045 static inline int node_match(struct page *page, int node)
2046 {
2047 #ifdef CONFIG_NUMA
2048 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2049 return 0;
2050 #endif
2051 return 1;
2052 }
2053
2054 static int count_free(struct page *page)
2055 {
2056 return page->objects - page->inuse;
2057 }
2058
2059 static unsigned long count_partial(struct kmem_cache_node *n,
2060 int (*get_count)(struct page *))
2061 {
2062 unsigned long flags;
2063 unsigned long x = 0;
2064 struct page *page;
2065
2066 spin_lock_irqsave(&n->list_lock, flags);
2067 list_for_each_entry(page, &n->partial, lru)
2068 x += get_count(page);
2069 spin_unlock_irqrestore(&n->list_lock, flags);
2070 return x;
2071 }
2072
2073 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2074 {
2075 #ifdef CONFIG_SLUB_DEBUG
2076 return atomic_long_read(&n->total_objects);
2077 #else
2078 return 0;
2079 #endif
2080 }
2081
2082 static noinline void
2083 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2084 {
2085 int node;
2086
2087 printk(KERN_WARNING
2088 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2089 nid, gfpflags);
2090 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2091 "default order: %d, min order: %d\n", s->name, s->object_size,
2092 s->size, oo_order(s->oo), oo_order(s->min));
2093
2094 if (oo_order(s->min) > get_order(s->object_size))
2095 printk(KERN_WARNING " %s debugging increased min order, use "
2096 "slub_debug=O to disable.\n", s->name);
2097
2098 for_each_online_node(node) {
2099 struct kmem_cache_node *n = get_node(s, node);
2100 unsigned long nr_slabs;
2101 unsigned long nr_objs;
2102 unsigned long nr_free;
2103
2104 if (!n)
2105 continue;
2106
2107 nr_free = count_partial(n, count_free);
2108 nr_slabs = node_nr_slabs(n);
2109 nr_objs = node_nr_objs(n);
2110
2111 printk(KERN_WARNING
2112 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2113 node, nr_slabs, nr_objs, nr_free);
2114 }
2115 }
2116
2117 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2118 int node, struct kmem_cache_cpu **pc)
2119 {
2120 void *freelist;
2121 struct kmem_cache_cpu *c = *pc;
2122 struct page *page;
2123
2124 freelist = get_partial(s, flags, node, c);
2125
2126 if (freelist)
2127 return freelist;
2128
2129 page = new_slab(s, flags, node);
2130 if (page) {
2131 c = __this_cpu_ptr(s->cpu_slab);
2132 if (c->page)
2133 flush_slab(s, c);
2134
2135 /*
2136 * No other reference to the page yet so we can
2137 * muck around with it freely without cmpxchg
2138 */
2139 freelist = page->freelist;
2140 page->freelist = NULL;
2141
2142 stat(s, ALLOC_SLAB);
2143 c->page = page;
2144 *pc = c;
2145 } else
2146 freelist = NULL;
2147
2148 return freelist;
2149 }
2150
2151 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2152 {
2153 if (unlikely(PageSlabPfmemalloc(page)))
2154 return gfp_pfmemalloc_allowed(gfpflags);
2155
2156 return true;
2157 }
2158
2159 /*
2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2161 * or deactivate the page.
2162 *
2163 * The page is still frozen if the return value is not NULL.
2164 *
2165 * If this function returns NULL then the page has been unfrozen.
2166 *
2167 * This function must be called with interrupt disabled.
2168 */
2169 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2170 {
2171 struct page new;
2172 unsigned long counters;
2173 void *freelist;
2174
2175 do {
2176 freelist = page->freelist;
2177 counters = page->counters;
2178
2179 new.counters = counters;
2180 VM_BUG_ON(!new.frozen);
2181
2182 new.inuse = page->objects;
2183 new.frozen = freelist != NULL;
2184
2185 } while (!__cmpxchg_double_slab(s, page,
2186 freelist, counters,
2187 NULL, new.counters,
2188 "get_freelist"));
2189
2190 return freelist;
2191 }
2192
2193 /*
2194 * Slow path. The lockless freelist is empty or we need to perform
2195 * debugging duties.
2196 *
2197 * Processing is still very fast if new objects have been freed to the
2198 * regular freelist. In that case we simply take over the regular freelist
2199 * as the lockless freelist and zap the regular freelist.
2200 *
2201 * If that is not working then we fall back to the partial lists. We take the
2202 * first element of the freelist as the object to allocate now and move the
2203 * rest of the freelist to the lockless freelist.
2204 *
2205 * And if we were unable to get a new slab from the partial slab lists then
2206 * we need to allocate a new slab. This is the slowest path since it involves
2207 * a call to the page allocator and the setup of a new slab.
2208 */
2209 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2210 unsigned long addr, struct kmem_cache_cpu *c)
2211 {
2212 void *freelist;
2213 struct page *page;
2214 unsigned long flags;
2215
2216 local_irq_save(flags);
2217 #ifdef CONFIG_PREEMPT
2218 /*
2219 * We may have been preempted and rescheduled on a different
2220 * cpu before disabling interrupts. Need to reload cpu area
2221 * pointer.
2222 */
2223 c = this_cpu_ptr(s->cpu_slab);
2224 #endif
2225
2226 page = c->page;
2227 if (!page)
2228 goto new_slab;
2229 redo:
2230
2231 if (unlikely(!node_match(page, node))) {
2232 stat(s, ALLOC_NODE_MISMATCH);
2233 deactivate_slab(s, page, c->freelist);
2234 c->page = NULL;
2235 c->freelist = NULL;
2236 goto new_slab;
2237 }
2238
2239 /*
2240 * By rights, we should be searching for a slab page that was
2241 * PFMEMALLOC but right now, we are losing the pfmemalloc
2242 * information when the page leaves the per-cpu allocator
2243 */
2244 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2245 deactivate_slab(s, page, c->freelist);
2246 c->page = NULL;
2247 c->freelist = NULL;
2248 goto new_slab;
2249 }
2250
2251 /* must check again c->freelist in case of cpu migration or IRQ */
2252 freelist = c->freelist;
2253 if (freelist)
2254 goto load_freelist;
2255
2256 stat(s, ALLOC_SLOWPATH);
2257
2258 freelist = get_freelist(s, page);
2259
2260 if (!freelist) {
2261 c->page = NULL;
2262 stat(s, DEACTIVATE_BYPASS);
2263 goto new_slab;
2264 }
2265
2266 stat(s, ALLOC_REFILL);
2267
2268 load_freelist:
2269 /*
2270 * freelist is pointing to the list of objects to be used.
2271 * page is pointing to the page from which the objects are obtained.
2272 * That page must be frozen for per cpu allocations to work.
2273 */
2274 VM_BUG_ON(!c->page->frozen);
2275 c->freelist = get_freepointer(s, freelist);
2276 c->tid = next_tid(c->tid);
2277 local_irq_restore(flags);
2278 return freelist;
2279
2280 new_slab:
2281
2282 if (c->partial) {
2283 page = c->page = c->partial;
2284 c->partial = page->next;
2285 stat(s, CPU_PARTIAL_ALLOC);
2286 c->freelist = NULL;
2287 goto redo;
2288 }
2289
2290 freelist = new_slab_objects(s, gfpflags, node, &c);
2291
2292 if (unlikely(!freelist)) {
2293 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2294 slab_out_of_memory(s, gfpflags, node);
2295
2296 local_irq_restore(flags);
2297 return NULL;
2298 }
2299
2300 page = c->page;
2301 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2302 goto load_freelist;
2303
2304 /* Only entered in the debug case */
2305 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2306 goto new_slab; /* Slab failed checks. Next slab needed */
2307
2308 deactivate_slab(s, page, get_freepointer(s, freelist));
2309 c->page = NULL;
2310 c->freelist = NULL;
2311 local_irq_restore(flags);
2312 return freelist;
2313 }
2314
2315 /*
2316 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2317 * have the fastpath folded into their functions. So no function call
2318 * overhead for requests that can be satisfied on the fastpath.
2319 *
2320 * The fastpath works by first checking if the lockless freelist can be used.
2321 * If not then __slab_alloc is called for slow processing.
2322 *
2323 * Otherwise we can simply pick the next object from the lockless free list.
2324 */
2325 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2326 gfp_t gfpflags, int node, unsigned long addr)
2327 {
2328 void **object;
2329 struct kmem_cache_cpu *c;
2330 struct page *page;
2331 unsigned long tid;
2332
2333 if (slab_pre_alloc_hook(s, gfpflags))
2334 return NULL;
2335
2336 s = memcg_kmem_get_cache(s, gfpflags);
2337 redo:
2338 /*
2339 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2340 * enabled. We may switch back and forth between cpus while
2341 * reading from one cpu area. That does not matter as long
2342 * as we end up on the original cpu again when doing the cmpxchg.
2343 *
2344 * Preemption is disabled for the retrieval of the tid because that
2345 * must occur from the current processor. We cannot allow rescheduling
2346 * on a different processor between the determination of the pointer
2347 * and the retrieval of the tid.
2348 */
2349 preempt_disable();
2350 c = __this_cpu_ptr(s->cpu_slab);
2351
2352 /*
2353 * The transaction ids are globally unique per cpu and per operation on
2354 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2355 * occurs on the right processor and that there was no operation on the
2356 * linked list in between.
2357 */
2358 tid = c->tid;
2359 preempt_enable();
2360
2361 object = c->freelist;
2362 page = c->page;
2363 if (unlikely(!object || !node_match(page, node)))
2364 object = __slab_alloc(s, gfpflags, node, addr, c);
2365
2366 else {
2367 void *next_object = get_freepointer_safe(s, object);
2368
2369 /*
2370 * The cmpxchg will only match if there was no additional
2371 * operation and if we are on the right processor.
2372 *
2373 * The cmpxchg does the following atomically (without lock semantics!)
2374 * 1. Relocate first pointer to the current per cpu area.
2375 * 2. Verify that tid and freelist have not been changed
2376 * 3. If they were not changed replace tid and freelist
2377 *
2378 * Since this is without lock semantics the protection is only against
2379 * code executing on this cpu *not* from access by other cpus.
2380 */
2381 if (unlikely(!this_cpu_cmpxchg_double(
2382 s->cpu_slab->freelist, s->cpu_slab->tid,
2383 object, tid,
2384 next_object, next_tid(tid)))) {
2385
2386 note_cmpxchg_failure("slab_alloc", s, tid);
2387 goto redo;
2388 }
2389 prefetch_freepointer(s, next_object);
2390 stat(s, ALLOC_FASTPATH);
2391 }
2392
2393 if (unlikely(gfpflags & __GFP_ZERO) && object)
2394 memset(object, 0, s->object_size);
2395
2396 slab_post_alloc_hook(s, gfpflags, object);
2397
2398 return object;
2399 }
2400
2401 static __always_inline void *slab_alloc(struct kmem_cache *s,
2402 gfp_t gfpflags, unsigned long addr)
2403 {
2404 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2405 }
2406
2407 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2408 {
2409 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2410
2411 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2412
2413 return ret;
2414 }
2415 EXPORT_SYMBOL(kmem_cache_alloc);
2416
2417 #ifdef CONFIG_TRACING
2418 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2419 {
2420 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2421 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2422 return ret;
2423 }
2424 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2425
2426 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2427 {
2428 void *ret = kmalloc_order(size, flags, order);
2429 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2430 return ret;
2431 }
2432 EXPORT_SYMBOL(kmalloc_order_trace);
2433 #endif
2434
2435 #ifdef CONFIG_NUMA
2436 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2437 {
2438 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2439
2440 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2441 s->object_size, s->size, gfpflags, node);
2442
2443 return ret;
2444 }
2445 EXPORT_SYMBOL(kmem_cache_alloc_node);
2446
2447 #ifdef CONFIG_TRACING
2448 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2449 gfp_t gfpflags,
2450 int node, size_t size)
2451 {
2452 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2453
2454 trace_kmalloc_node(_RET_IP_, ret,
2455 size, s->size, gfpflags, node);
2456 return ret;
2457 }
2458 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2459 #endif
2460 #endif
2461
2462 /*
2463 * Slow patch handling. This may still be called frequently since objects
2464 * have a longer lifetime than the cpu slabs in most processing loads.
2465 *
2466 * So we still attempt to reduce cache line usage. Just take the slab
2467 * lock and free the item. If there is no additional partial page
2468 * handling required then we can return immediately.
2469 */
2470 static void __slab_free(struct kmem_cache *s, struct page *page,
2471 void *x, unsigned long addr)
2472 {
2473 void *prior;
2474 void **object = (void *)x;
2475 int was_frozen;
2476 struct page new;
2477 unsigned long counters;
2478 struct kmem_cache_node *n = NULL;
2479 unsigned long uninitialized_var(flags);
2480
2481 stat(s, FREE_SLOWPATH);
2482
2483 if (kmem_cache_debug(s) &&
2484 !(n = free_debug_processing(s, page, x, addr, &flags)))
2485 return;
2486
2487 do {
2488 if (unlikely(n)) {
2489 spin_unlock_irqrestore(&n->list_lock, flags);
2490 n = NULL;
2491 }
2492 prior = page->freelist;
2493 counters = page->counters;
2494 set_freepointer(s, object, prior);
2495 new.counters = counters;
2496 was_frozen = new.frozen;
2497 new.inuse--;
2498 if ((!new.inuse || !prior) && !was_frozen) {
2499
2500 if (!kmem_cache_debug(s) && !prior)
2501
2502 /*
2503 * Slab was on no list before and will be partially empty
2504 * We can defer the list move and instead freeze it.
2505 */
2506 new.frozen = 1;
2507
2508 else { /* Needs to be taken off a list */
2509
2510 n = get_node(s, page_to_nid(page));
2511 /*
2512 * Speculatively acquire the list_lock.
2513 * If the cmpxchg does not succeed then we may
2514 * drop the list_lock without any processing.
2515 *
2516 * Otherwise the list_lock will synchronize with
2517 * other processors updating the list of slabs.
2518 */
2519 spin_lock_irqsave(&n->list_lock, flags);
2520
2521 }
2522 }
2523
2524 } while (!cmpxchg_double_slab(s, page,
2525 prior, counters,
2526 object, new.counters,
2527 "__slab_free"));
2528
2529 if (likely(!n)) {
2530
2531 /*
2532 * If we just froze the page then put it onto the
2533 * per cpu partial list.
2534 */
2535 if (new.frozen && !was_frozen) {
2536 put_cpu_partial(s, page, 1);
2537 stat(s, CPU_PARTIAL_FREE);
2538 }
2539 /*
2540 * The list lock was not taken therefore no list
2541 * activity can be necessary.
2542 */
2543 if (was_frozen)
2544 stat(s, FREE_FROZEN);
2545 return;
2546 }
2547
2548 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2549 goto slab_empty;
2550
2551 /*
2552 * Objects left in the slab. If it was not on the partial list before
2553 * then add it.
2554 */
2555 if (kmem_cache_debug(s) && unlikely(!prior)) {
2556 remove_full(s, page);
2557 add_partial(n, page, DEACTIVATE_TO_TAIL);
2558 stat(s, FREE_ADD_PARTIAL);
2559 }
2560 spin_unlock_irqrestore(&n->list_lock, flags);
2561 return;
2562
2563 slab_empty:
2564 if (prior) {
2565 /*
2566 * Slab on the partial list.
2567 */
2568 remove_partial(n, page);
2569 stat(s, FREE_REMOVE_PARTIAL);
2570 } else
2571 /* Slab must be on the full list */
2572 remove_full(s, page);
2573
2574 spin_unlock_irqrestore(&n->list_lock, flags);
2575 stat(s, FREE_SLAB);
2576 discard_slab(s, page);
2577 }
2578
2579 /*
2580 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2581 * can perform fastpath freeing without additional function calls.
2582 *
2583 * The fastpath is only possible if we are freeing to the current cpu slab
2584 * of this processor. This typically the case if we have just allocated
2585 * the item before.
2586 *
2587 * If fastpath is not possible then fall back to __slab_free where we deal
2588 * with all sorts of special processing.
2589 */
2590 static __always_inline void slab_free(struct kmem_cache *s,
2591 struct page *page, void *x, unsigned long addr)
2592 {
2593 void **object = (void *)x;
2594 struct kmem_cache_cpu *c;
2595 unsigned long tid;
2596
2597 slab_free_hook(s, x);
2598
2599 redo:
2600 /*
2601 * Determine the currently cpus per cpu slab.
2602 * The cpu may change afterward. However that does not matter since
2603 * data is retrieved via this pointer. If we are on the same cpu
2604 * during the cmpxchg then the free will succedd.
2605 */
2606 preempt_disable();
2607 c = __this_cpu_ptr(s->cpu_slab);
2608
2609 tid = c->tid;
2610 preempt_enable();
2611
2612 if (likely(page == c->page)) {
2613 set_freepointer(s, object, c->freelist);
2614
2615 if (unlikely(!this_cpu_cmpxchg_double(
2616 s->cpu_slab->freelist, s->cpu_slab->tid,
2617 c->freelist, tid,
2618 object, next_tid(tid)))) {
2619
2620 note_cmpxchg_failure("slab_free", s, tid);
2621 goto redo;
2622 }
2623 stat(s, FREE_FASTPATH);
2624 } else
2625 __slab_free(s, page, x, addr);
2626
2627 }
2628
2629 void kmem_cache_free(struct kmem_cache *s, void *x)
2630 {
2631 s = cache_from_obj(s, x);
2632 if (!s)
2633 return;
2634 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2635 trace_kmem_cache_free(_RET_IP_, x);
2636 }
2637 EXPORT_SYMBOL(kmem_cache_free);
2638
2639 /*
2640 * Object placement in a slab is made very easy because we always start at
2641 * offset 0. If we tune the size of the object to the alignment then we can
2642 * get the required alignment by putting one properly sized object after
2643 * another.
2644 *
2645 * Notice that the allocation order determines the sizes of the per cpu
2646 * caches. Each processor has always one slab available for allocations.
2647 * Increasing the allocation order reduces the number of times that slabs
2648 * must be moved on and off the partial lists and is therefore a factor in
2649 * locking overhead.
2650 */
2651
2652 /*
2653 * Mininum / Maximum order of slab pages. This influences locking overhead
2654 * and slab fragmentation. A higher order reduces the number of partial slabs
2655 * and increases the number of allocations possible without having to
2656 * take the list_lock.
2657 */
2658 static int slub_min_order;
2659 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2660 static int slub_min_objects;
2661
2662 /*
2663 * Merge control. If this is set then no merging of slab caches will occur.
2664 * (Could be removed. This was introduced to pacify the merge skeptics.)
2665 */
2666 static int slub_nomerge;
2667
2668 /*
2669 * Calculate the order of allocation given an slab object size.
2670 *
2671 * The order of allocation has significant impact on performance and other
2672 * system components. Generally order 0 allocations should be preferred since
2673 * order 0 does not cause fragmentation in the page allocator. Larger objects
2674 * be problematic to put into order 0 slabs because there may be too much
2675 * unused space left. We go to a higher order if more than 1/16th of the slab
2676 * would be wasted.
2677 *
2678 * In order to reach satisfactory performance we must ensure that a minimum
2679 * number of objects is in one slab. Otherwise we may generate too much
2680 * activity on the partial lists which requires taking the list_lock. This is
2681 * less a concern for large slabs though which are rarely used.
2682 *
2683 * slub_max_order specifies the order where we begin to stop considering the
2684 * number of objects in a slab as critical. If we reach slub_max_order then
2685 * we try to keep the page order as low as possible. So we accept more waste
2686 * of space in favor of a small page order.
2687 *
2688 * Higher order allocations also allow the placement of more objects in a
2689 * slab and thereby reduce object handling overhead. If the user has
2690 * requested a higher mininum order then we start with that one instead of
2691 * the smallest order which will fit the object.
2692 */
2693 static inline int slab_order(int size, int min_objects,
2694 int max_order, int fract_leftover, int reserved)
2695 {
2696 int order;
2697 int rem;
2698 int min_order = slub_min_order;
2699
2700 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2701 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2702
2703 for (order = max(min_order,
2704 fls(min_objects * size - 1) - PAGE_SHIFT);
2705 order <= max_order; order++) {
2706
2707 unsigned long slab_size = PAGE_SIZE << order;
2708
2709 if (slab_size < min_objects * size + reserved)
2710 continue;
2711
2712 rem = (slab_size - reserved) % size;
2713
2714 if (rem <= slab_size / fract_leftover)
2715 break;
2716
2717 }
2718
2719 return order;
2720 }
2721
2722 static inline int calculate_order(int size, int reserved)
2723 {
2724 int order;
2725 int min_objects;
2726 int fraction;
2727 int max_objects;
2728
2729 /*
2730 * Attempt to find best configuration for a slab. This
2731 * works by first attempting to generate a layout with
2732 * the best configuration and backing off gradually.
2733 *
2734 * First we reduce the acceptable waste in a slab. Then
2735 * we reduce the minimum objects required in a slab.
2736 */
2737 min_objects = slub_min_objects;
2738 if (!min_objects)
2739 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2740 max_objects = order_objects(slub_max_order, size, reserved);
2741 min_objects = min(min_objects, max_objects);
2742
2743 while (min_objects > 1) {
2744 fraction = 16;
2745 while (fraction >= 4) {
2746 order = slab_order(size, min_objects,
2747 slub_max_order, fraction, reserved);
2748 if (order <= slub_max_order)
2749 return order;
2750 fraction /= 2;
2751 }
2752 min_objects--;
2753 }
2754
2755 /*
2756 * We were unable to place multiple objects in a slab. Now
2757 * lets see if we can place a single object there.
2758 */
2759 order = slab_order(size, 1, slub_max_order, 1, reserved);
2760 if (order <= slub_max_order)
2761 return order;
2762
2763 /*
2764 * Doh this slab cannot be placed using slub_max_order.
2765 */
2766 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2767 if (order < MAX_ORDER)
2768 return order;
2769 return -ENOSYS;
2770 }
2771
2772 static void
2773 init_kmem_cache_node(struct kmem_cache_node *n)
2774 {
2775 n->nr_partial = 0;
2776 spin_lock_init(&n->list_lock);
2777 INIT_LIST_HEAD(&n->partial);
2778 #ifdef CONFIG_SLUB_DEBUG
2779 atomic_long_set(&n->nr_slabs, 0);
2780 atomic_long_set(&n->total_objects, 0);
2781 INIT_LIST_HEAD(&n->full);
2782 #endif
2783 }
2784
2785 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2786 {
2787 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2788 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2789
2790 /*
2791 * Must align to double word boundary for the double cmpxchg
2792 * instructions to work; see __pcpu_double_call_return_bool().
2793 */
2794 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2795 2 * sizeof(void *));
2796
2797 if (!s->cpu_slab)
2798 return 0;
2799
2800 init_kmem_cache_cpus(s);
2801
2802 return 1;
2803 }
2804
2805 static struct kmem_cache *kmem_cache_node;
2806
2807 /*
2808 * No kmalloc_node yet so do it by hand. We know that this is the first
2809 * slab on the node for this slabcache. There are no concurrent accesses
2810 * possible.
2811 *
2812 * Note that this function only works on the kmalloc_node_cache
2813 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2814 * memory on a fresh node that has no slab structures yet.
2815 */
2816 static void early_kmem_cache_node_alloc(int node)
2817 {
2818 struct page *page;
2819 struct kmem_cache_node *n;
2820
2821 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2822
2823 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2824
2825 BUG_ON(!page);
2826 if (page_to_nid(page) != node) {
2827 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2828 "node %d\n", node);
2829 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2830 "in order to be able to continue\n");
2831 }
2832
2833 n = page->freelist;
2834 BUG_ON(!n);
2835 page->freelist = get_freepointer(kmem_cache_node, n);
2836 page->inuse = 1;
2837 page->frozen = 0;
2838 kmem_cache_node->node[node] = n;
2839 #ifdef CONFIG_SLUB_DEBUG
2840 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2841 init_tracking(kmem_cache_node, n);
2842 #endif
2843 init_kmem_cache_node(n);
2844 inc_slabs_node(kmem_cache_node, node, page->objects);
2845
2846 add_partial(n, page, DEACTIVATE_TO_HEAD);
2847 }
2848
2849 static void free_kmem_cache_nodes(struct kmem_cache *s)
2850 {
2851 int node;
2852
2853 for_each_node_state(node, N_NORMAL_MEMORY) {
2854 struct kmem_cache_node *n = s->node[node];
2855
2856 if (n)
2857 kmem_cache_free(kmem_cache_node, n);
2858
2859 s->node[node] = NULL;
2860 }
2861 }
2862
2863 static int init_kmem_cache_nodes(struct kmem_cache *s)
2864 {
2865 int node;
2866
2867 for_each_node_state(node, N_NORMAL_MEMORY) {
2868 struct kmem_cache_node *n;
2869
2870 if (slab_state == DOWN) {
2871 early_kmem_cache_node_alloc(node);
2872 continue;
2873 }
2874 n = kmem_cache_alloc_node(kmem_cache_node,
2875 GFP_KERNEL, node);
2876
2877 if (!n) {
2878 free_kmem_cache_nodes(s);
2879 return 0;
2880 }
2881
2882 s->node[node] = n;
2883 init_kmem_cache_node(n);
2884 }
2885 return 1;
2886 }
2887
2888 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2889 {
2890 if (min < MIN_PARTIAL)
2891 min = MIN_PARTIAL;
2892 else if (min > MAX_PARTIAL)
2893 min = MAX_PARTIAL;
2894 s->min_partial = min;
2895 }
2896
2897 /*
2898 * calculate_sizes() determines the order and the distribution of data within
2899 * a slab object.
2900 */
2901 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2902 {
2903 unsigned long flags = s->flags;
2904 unsigned long size = s->object_size;
2905 int order;
2906
2907 /*
2908 * Round up object size to the next word boundary. We can only
2909 * place the free pointer at word boundaries and this determines
2910 * the possible location of the free pointer.
2911 */
2912 size = ALIGN(size, sizeof(void *));
2913
2914 #ifdef CONFIG_SLUB_DEBUG
2915 /*
2916 * Determine if we can poison the object itself. If the user of
2917 * the slab may touch the object after free or before allocation
2918 * then we should never poison the object itself.
2919 */
2920 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2921 !s->ctor)
2922 s->flags |= __OBJECT_POISON;
2923 else
2924 s->flags &= ~__OBJECT_POISON;
2925
2926
2927 /*
2928 * If we are Redzoning then check if there is some space between the
2929 * end of the object and the free pointer. If not then add an
2930 * additional word to have some bytes to store Redzone information.
2931 */
2932 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2933 size += sizeof(void *);
2934 #endif
2935
2936 /*
2937 * With that we have determined the number of bytes in actual use
2938 * by the object. This is the potential offset to the free pointer.
2939 */
2940 s->inuse = size;
2941
2942 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2943 s->ctor)) {
2944 /*
2945 * Relocate free pointer after the object if it is not
2946 * permitted to overwrite the first word of the object on
2947 * kmem_cache_free.
2948 *
2949 * This is the case if we do RCU, have a constructor or
2950 * destructor or are poisoning the objects.
2951 */
2952 s->offset = size;
2953 size += sizeof(void *);
2954 }
2955
2956 #ifdef CONFIG_SLUB_DEBUG
2957 if (flags & SLAB_STORE_USER)
2958 /*
2959 * Need to store information about allocs and frees after
2960 * the object.
2961 */
2962 size += 2 * sizeof(struct track);
2963
2964 if (flags & SLAB_RED_ZONE)
2965 /*
2966 * Add some empty padding so that we can catch
2967 * overwrites from earlier objects rather than let
2968 * tracking information or the free pointer be
2969 * corrupted if a user writes before the start
2970 * of the object.
2971 */
2972 size += sizeof(void *);
2973 #endif
2974
2975 /*
2976 * SLUB stores one object immediately after another beginning from
2977 * offset 0. In order to align the objects we have to simply size
2978 * each object to conform to the alignment.
2979 */
2980 size = ALIGN(size, s->align);
2981 s->size = size;
2982 if (forced_order >= 0)
2983 order = forced_order;
2984 else
2985 order = calculate_order(size, s->reserved);
2986
2987 if (order < 0)
2988 return 0;
2989
2990 s->allocflags = 0;
2991 if (order)
2992 s->allocflags |= __GFP_COMP;
2993
2994 if (s->flags & SLAB_CACHE_DMA)
2995 s->allocflags |= GFP_DMA;
2996
2997 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2998 s->allocflags |= __GFP_RECLAIMABLE;
2999
3000 /*
3001 * Determine the number of objects per slab
3002 */
3003 s->oo = oo_make(order, size, s->reserved);
3004 s->min = oo_make(get_order(size), size, s->reserved);
3005 if (oo_objects(s->oo) > oo_objects(s->max))
3006 s->max = s->oo;
3007
3008 return !!oo_objects(s->oo);
3009 }
3010
3011 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3012 {
3013 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3014 s->reserved = 0;
3015
3016 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3017 s->reserved = sizeof(struct rcu_head);
3018
3019 if (!calculate_sizes(s, -1))
3020 goto error;
3021 if (disable_higher_order_debug) {
3022 /*
3023 * Disable debugging flags that store metadata if the min slab
3024 * order increased.
3025 */
3026 if (get_order(s->size) > get_order(s->object_size)) {
3027 s->flags &= ~DEBUG_METADATA_FLAGS;
3028 s->offset = 0;
3029 if (!calculate_sizes(s, -1))
3030 goto error;
3031 }
3032 }
3033
3034 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3035 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3036 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3037 /* Enable fast mode */
3038 s->flags |= __CMPXCHG_DOUBLE;
3039 #endif
3040
3041 /*
3042 * The larger the object size is, the more pages we want on the partial
3043 * list to avoid pounding the page allocator excessively.
3044 */
3045 set_min_partial(s, ilog2(s->size) / 2);
3046
3047 /*
3048 * cpu_partial determined the maximum number of objects kept in the
3049 * per cpu partial lists of a processor.
3050 *
3051 * Per cpu partial lists mainly contain slabs that just have one
3052 * object freed. If they are used for allocation then they can be
3053 * filled up again with minimal effort. The slab will never hit the
3054 * per node partial lists and therefore no locking will be required.
3055 *
3056 * This setting also determines
3057 *
3058 * A) The number of objects from per cpu partial slabs dumped to the
3059 * per node list when we reach the limit.
3060 * B) The number of objects in cpu partial slabs to extract from the
3061 * per node list when we run out of per cpu objects. We only fetch 50%
3062 * to keep some capacity around for frees.
3063 */
3064 if (kmem_cache_debug(s))
3065 s->cpu_partial = 0;
3066 else if (s->size >= PAGE_SIZE)
3067 s->cpu_partial = 2;
3068 else if (s->size >= 1024)
3069 s->cpu_partial = 6;
3070 else if (s->size >= 256)
3071 s->cpu_partial = 13;
3072 else
3073 s->cpu_partial = 30;
3074
3075 #ifdef CONFIG_NUMA
3076 s->remote_node_defrag_ratio = 1000;
3077 #endif
3078 if (!init_kmem_cache_nodes(s))
3079 goto error;
3080
3081 if (alloc_kmem_cache_cpus(s))
3082 return 0;
3083
3084 free_kmem_cache_nodes(s);
3085 error:
3086 if (flags & SLAB_PANIC)
3087 panic("Cannot create slab %s size=%lu realsize=%u "
3088 "order=%u offset=%u flags=%lx\n",
3089 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3090 s->offset, flags);
3091 return -EINVAL;
3092 }
3093
3094 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3095 const char *text)
3096 {
3097 #ifdef CONFIG_SLUB_DEBUG
3098 void *addr = page_address(page);
3099 void *p;
3100 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3101 sizeof(long), GFP_ATOMIC);
3102 if (!map)
3103 return;
3104 slab_err(s, page, text, s->name);
3105 slab_lock(page);
3106
3107 get_map(s, page, map);
3108 for_each_object(p, s, addr, page->objects) {
3109
3110 if (!test_bit(slab_index(p, s, addr), map)) {
3111 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3112 p, p - addr);
3113 print_tracking(s, p);
3114 }
3115 }
3116 slab_unlock(page);
3117 kfree(map);
3118 #endif
3119 }
3120
3121 /*
3122 * Attempt to free all partial slabs on a node.
3123 * This is called from kmem_cache_close(). We must be the last thread
3124 * using the cache and therefore we do not need to lock anymore.
3125 */
3126 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3127 {
3128 struct page *page, *h;
3129
3130 list_for_each_entry_safe(page, h, &n->partial, lru) {
3131 if (!page->inuse) {
3132 remove_partial(n, page);
3133 discard_slab(s, page);
3134 } else {
3135 list_slab_objects(s, page,
3136 "Objects remaining in %s on kmem_cache_close()");
3137 }
3138 }
3139 }
3140
3141 /*
3142 * Release all resources used by a slab cache.
3143 */
3144 static inline int kmem_cache_close(struct kmem_cache *s)
3145 {
3146 int node;
3147
3148 flush_all(s);
3149 /* Attempt to free all objects */
3150 for_each_node_state(node, N_NORMAL_MEMORY) {
3151 struct kmem_cache_node *n = get_node(s, node);
3152
3153 free_partial(s, n);
3154 if (n->nr_partial || slabs_node(s, node))
3155 return 1;
3156 }
3157 free_percpu(s->cpu_slab);
3158 free_kmem_cache_nodes(s);
3159 return 0;
3160 }
3161
3162 int __kmem_cache_shutdown(struct kmem_cache *s)
3163 {
3164 int rc = kmem_cache_close(s);
3165
3166 if (!rc) {
3167 /*
3168 * We do the same lock strategy around sysfs_slab_add, see
3169 * __kmem_cache_create. Because this is pretty much the last
3170 * operation we do and the lock will be released shortly after
3171 * that in slab_common.c, we could just move sysfs_slab_remove
3172 * to a later point in common code. We should do that when we
3173 * have a common sysfs framework for all allocators.
3174 */
3175 mutex_unlock(&slab_mutex);
3176 sysfs_slab_remove(s);
3177 mutex_lock(&slab_mutex);
3178 }
3179
3180 return rc;
3181 }
3182
3183 /********************************************************************
3184 * Kmalloc subsystem
3185 *******************************************************************/
3186
3187 static int __init setup_slub_min_order(char *str)
3188 {
3189 get_option(&str, &slub_min_order);
3190
3191 return 1;
3192 }
3193
3194 __setup("slub_min_order=", setup_slub_min_order);
3195
3196 static int __init setup_slub_max_order(char *str)
3197 {
3198 get_option(&str, &slub_max_order);
3199 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3200
3201 return 1;
3202 }
3203
3204 __setup("slub_max_order=", setup_slub_max_order);
3205
3206 static int __init setup_slub_min_objects(char *str)
3207 {
3208 get_option(&str, &slub_min_objects);
3209
3210 return 1;
3211 }
3212
3213 __setup("slub_min_objects=", setup_slub_min_objects);
3214
3215 static int __init setup_slub_nomerge(char *str)
3216 {
3217 slub_nomerge = 1;
3218 return 1;
3219 }
3220
3221 __setup("slub_nomerge", setup_slub_nomerge);
3222
3223 void *__kmalloc(size_t size, gfp_t flags)
3224 {
3225 struct kmem_cache *s;
3226 void *ret;
3227
3228 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3229 return kmalloc_large(size, flags);
3230
3231 s = kmalloc_slab(size, flags);
3232
3233 if (unlikely(ZERO_OR_NULL_PTR(s)))
3234 return s;
3235
3236 ret = slab_alloc(s, flags, _RET_IP_);
3237
3238 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3239
3240 return ret;
3241 }
3242 EXPORT_SYMBOL(__kmalloc);
3243
3244 #ifdef CONFIG_NUMA
3245 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3246 {
3247 struct page *page;
3248 void *ptr = NULL;
3249
3250 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3251 page = alloc_pages_node(node, flags, get_order(size));
3252 if (page)
3253 ptr = page_address(page);
3254
3255 kmemleak_alloc(ptr, size, 1, flags);
3256 return ptr;
3257 }
3258
3259 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3260 {
3261 struct kmem_cache *s;
3262 void *ret;
3263
3264 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3265 ret = kmalloc_large_node(size, flags, node);
3266
3267 trace_kmalloc_node(_RET_IP_, ret,
3268 size, PAGE_SIZE << get_order(size),
3269 flags, node);
3270
3271 return ret;
3272 }
3273
3274 s = kmalloc_slab(size, flags);
3275
3276 if (unlikely(ZERO_OR_NULL_PTR(s)))
3277 return s;
3278
3279 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3280
3281 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3282
3283 return ret;
3284 }
3285 EXPORT_SYMBOL(__kmalloc_node);
3286 #endif
3287
3288 size_t ksize(const void *object)
3289 {
3290 struct page *page;
3291
3292 if (unlikely(object == ZERO_SIZE_PTR))
3293 return 0;
3294
3295 page = virt_to_head_page(object);
3296
3297 if (unlikely(!PageSlab(page))) {
3298 WARN_ON(!PageCompound(page));
3299 return PAGE_SIZE << compound_order(page);
3300 }
3301
3302 return slab_ksize(page->slab_cache);
3303 }
3304 EXPORT_SYMBOL(ksize);
3305
3306 #ifdef CONFIG_SLUB_DEBUG
3307 bool verify_mem_not_deleted(const void *x)
3308 {
3309 struct page *page;
3310 void *object = (void *)x;
3311 unsigned long flags;
3312 bool rv;
3313
3314 if (unlikely(ZERO_OR_NULL_PTR(x)))
3315 return false;
3316
3317 local_irq_save(flags);
3318
3319 page = virt_to_head_page(x);
3320 if (unlikely(!PageSlab(page))) {
3321 /* maybe it was from stack? */
3322 rv = true;
3323 goto out_unlock;
3324 }
3325
3326 slab_lock(page);
3327 if (on_freelist(page->slab_cache, page, object)) {
3328 object_err(page->slab_cache, page, object, "Object is on free-list");
3329 rv = false;
3330 } else {
3331 rv = true;
3332 }
3333 slab_unlock(page);
3334
3335 out_unlock:
3336 local_irq_restore(flags);
3337 return rv;
3338 }
3339 EXPORT_SYMBOL(verify_mem_not_deleted);
3340 #endif
3341
3342 void kfree(const void *x)
3343 {
3344 struct page *page;
3345 void *object = (void *)x;
3346
3347 trace_kfree(_RET_IP_, x);
3348
3349 if (unlikely(ZERO_OR_NULL_PTR(x)))
3350 return;
3351
3352 page = virt_to_head_page(x);
3353 if (unlikely(!PageSlab(page))) {
3354 BUG_ON(!PageCompound(page));
3355 kmemleak_free(x);
3356 __free_memcg_kmem_pages(page, compound_order(page));
3357 return;
3358 }
3359 slab_free(page->slab_cache, page, object, _RET_IP_);
3360 }
3361 EXPORT_SYMBOL(kfree);
3362
3363 /*
3364 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3365 * the remaining slabs by the number of items in use. The slabs with the
3366 * most items in use come first. New allocations will then fill those up
3367 * and thus they can be removed from the partial lists.
3368 *
3369 * The slabs with the least items are placed last. This results in them
3370 * being allocated from last increasing the chance that the last objects
3371 * are freed in them.
3372 */
3373 int kmem_cache_shrink(struct kmem_cache *s)
3374 {
3375 int node;
3376 int i;
3377 struct kmem_cache_node *n;
3378 struct page *page;
3379 struct page *t;
3380 int objects = oo_objects(s->max);
3381 struct list_head *slabs_by_inuse =
3382 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3383 unsigned long flags;
3384
3385 if (!slabs_by_inuse)
3386 return -ENOMEM;
3387
3388 flush_all(s);
3389 for_each_node_state(node, N_NORMAL_MEMORY) {
3390 n = get_node(s, node);
3391
3392 if (!n->nr_partial)
3393 continue;
3394
3395 for (i = 0; i < objects; i++)
3396 INIT_LIST_HEAD(slabs_by_inuse + i);
3397
3398 spin_lock_irqsave(&n->list_lock, flags);
3399
3400 /*
3401 * Build lists indexed by the items in use in each slab.
3402 *
3403 * Note that concurrent frees may occur while we hold the
3404 * list_lock. page->inuse here is the upper limit.
3405 */
3406 list_for_each_entry_safe(page, t, &n->partial, lru) {
3407 list_move(&page->lru, slabs_by_inuse + page->inuse);
3408 if (!page->inuse)
3409 n->nr_partial--;
3410 }
3411
3412 /*
3413 * Rebuild the partial list with the slabs filled up most
3414 * first and the least used slabs at the end.
3415 */
3416 for (i = objects - 1; i > 0; i--)
3417 list_splice(slabs_by_inuse + i, n->partial.prev);
3418
3419 spin_unlock_irqrestore(&n->list_lock, flags);
3420
3421 /* Release empty slabs */
3422 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3423 discard_slab(s, page);
3424 }
3425
3426 kfree(slabs_by_inuse);
3427 return 0;
3428 }
3429 EXPORT_SYMBOL(kmem_cache_shrink);
3430
3431 #if defined(CONFIG_MEMORY_HOTPLUG)
3432 static int slab_mem_going_offline_callback(void *arg)
3433 {
3434 struct kmem_cache *s;
3435
3436 mutex_lock(&slab_mutex);
3437 list_for_each_entry(s, &slab_caches, list)
3438 kmem_cache_shrink(s);
3439 mutex_unlock(&slab_mutex);
3440
3441 return 0;
3442 }
3443
3444 static void slab_mem_offline_callback(void *arg)
3445 {
3446 struct kmem_cache_node *n;
3447 struct kmem_cache *s;
3448 struct memory_notify *marg = arg;
3449 int offline_node;
3450
3451 offline_node = marg->status_change_nid_normal;
3452
3453 /*
3454 * If the node still has available memory. we need kmem_cache_node
3455 * for it yet.
3456 */
3457 if (offline_node < 0)
3458 return;
3459
3460 mutex_lock(&slab_mutex);
3461 list_for_each_entry(s, &slab_caches, list) {
3462 n = get_node(s, offline_node);
3463 if (n) {
3464 /*
3465 * if n->nr_slabs > 0, slabs still exist on the node
3466 * that is going down. We were unable to free them,
3467 * and offline_pages() function shouldn't call this
3468 * callback. So, we must fail.
3469 */
3470 BUG_ON(slabs_node(s, offline_node));
3471
3472 s->node[offline_node] = NULL;
3473 kmem_cache_free(kmem_cache_node, n);
3474 }
3475 }
3476 mutex_unlock(&slab_mutex);
3477 }
3478
3479 static int slab_mem_going_online_callback(void *arg)
3480 {
3481 struct kmem_cache_node *n;
3482 struct kmem_cache *s;
3483 struct memory_notify *marg = arg;
3484 int nid = marg->status_change_nid_normal;
3485 int ret = 0;
3486
3487 /*
3488 * If the node's memory is already available, then kmem_cache_node is
3489 * already created. Nothing to do.
3490 */
3491 if (nid < 0)
3492 return 0;
3493
3494 /*
3495 * We are bringing a node online. No memory is available yet. We must
3496 * allocate a kmem_cache_node structure in order to bring the node
3497 * online.
3498 */
3499 mutex_lock(&slab_mutex);
3500 list_for_each_entry(s, &slab_caches, list) {
3501 /*
3502 * XXX: kmem_cache_alloc_node will fallback to other nodes
3503 * since memory is not yet available from the node that
3504 * is brought up.
3505 */
3506 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3507 if (!n) {
3508 ret = -ENOMEM;
3509 goto out;
3510 }
3511 init_kmem_cache_node(n);
3512 s->node[nid] = n;
3513 }
3514 out:
3515 mutex_unlock(&slab_mutex);
3516 return ret;
3517 }
3518
3519 static int slab_memory_callback(struct notifier_block *self,
3520 unsigned long action, void *arg)
3521 {
3522 int ret = 0;
3523
3524 switch (action) {
3525 case MEM_GOING_ONLINE:
3526 ret = slab_mem_going_online_callback(arg);
3527 break;
3528 case MEM_GOING_OFFLINE:
3529 ret = slab_mem_going_offline_callback(arg);
3530 break;
3531 case MEM_OFFLINE:
3532 case MEM_CANCEL_ONLINE:
3533 slab_mem_offline_callback(arg);
3534 break;
3535 case MEM_ONLINE:
3536 case MEM_CANCEL_OFFLINE:
3537 break;
3538 }
3539 if (ret)
3540 ret = notifier_from_errno(ret);
3541 else
3542 ret = NOTIFY_OK;
3543 return ret;
3544 }
3545
3546 #endif /* CONFIG_MEMORY_HOTPLUG */
3547
3548 /********************************************************************
3549 * Basic setup of slabs
3550 *******************************************************************/
3551
3552 /*
3553 * Used for early kmem_cache structures that were allocated using
3554 * the page allocator. Allocate them properly then fix up the pointers
3555 * that may be pointing to the wrong kmem_cache structure.
3556 */
3557
3558 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3559 {
3560 int node;
3561 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3562
3563 memcpy(s, static_cache, kmem_cache->object_size);
3564
3565 /*
3566 * This runs very early, and only the boot processor is supposed to be
3567 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3568 * IPIs around.
3569 */
3570 __flush_cpu_slab(s, smp_processor_id());
3571 for_each_node_state(node, N_NORMAL_MEMORY) {
3572 struct kmem_cache_node *n = get_node(s, node);
3573 struct page *p;
3574
3575 if (n) {
3576 list_for_each_entry(p, &n->partial, lru)
3577 p->slab_cache = s;
3578
3579 #ifdef CONFIG_SLUB_DEBUG
3580 list_for_each_entry(p, &n->full, lru)
3581 p->slab_cache = s;
3582 #endif
3583 }
3584 }
3585 list_add(&s->list, &slab_caches);
3586 return s;
3587 }
3588
3589 void __init kmem_cache_init(void)
3590 {
3591 static __initdata struct kmem_cache boot_kmem_cache,
3592 boot_kmem_cache_node;
3593
3594 if (debug_guardpage_minorder())
3595 slub_max_order = 0;
3596
3597 kmem_cache_node = &boot_kmem_cache_node;
3598 kmem_cache = &boot_kmem_cache;
3599
3600 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3601 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3602
3603 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3604
3605 /* Able to allocate the per node structures */
3606 slab_state = PARTIAL;
3607
3608 create_boot_cache(kmem_cache, "kmem_cache",
3609 offsetof(struct kmem_cache, node) +
3610 nr_node_ids * sizeof(struct kmem_cache_node *),
3611 SLAB_HWCACHE_ALIGN);
3612
3613 kmem_cache = bootstrap(&boot_kmem_cache);
3614
3615 /*
3616 * Allocate kmem_cache_node properly from the kmem_cache slab.
3617 * kmem_cache_node is separately allocated so no need to
3618 * update any list pointers.
3619 */
3620 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3621
3622 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3623 create_kmalloc_caches(0);
3624
3625 #ifdef CONFIG_SMP
3626 register_cpu_notifier(&slab_notifier);
3627 #endif
3628
3629 printk(KERN_INFO
3630 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3631 " CPUs=%d, Nodes=%d\n",
3632 cache_line_size(),
3633 slub_min_order, slub_max_order, slub_min_objects,
3634 nr_cpu_ids, nr_node_ids);
3635 }
3636
3637 void __init kmem_cache_init_late(void)
3638 {
3639 }
3640
3641 /*
3642 * Find a mergeable slab cache
3643 */
3644 static int slab_unmergeable(struct kmem_cache *s)
3645 {
3646 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3647 return 1;
3648
3649 if (s->ctor)
3650 return 1;
3651
3652 /*
3653 * We may have set a slab to be unmergeable during bootstrap.
3654 */
3655 if (s->refcount < 0)
3656 return 1;
3657
3658 return 0;
3659 }
3660
3661 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3662 size_t align, unsigned long flags, const char *name,
3663 void (*ctor)(void *))
3664 {
3665 struct kmem_cache *s;
3666
3667 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3668 return NULL;
3669
3670 if (ctor)
3671 return NULL;
3672
3673 size = ALIGN(size, sizeof(void *));
3674 align = calculate_alignment(flags, align, size);
3675 size = ALIGN(size, align);
3676 flags = kmem_cache_flags(size, flags, name, NULL);
3677
3678 list_for_each_entry(s, &slab_caches, list) {
3679 if (slab_unmergeable(s))
3680 continue;
3681
3682 if (size > s->size)
3683 continue;
3684
3685 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3686 continue;
3687 /*
3688 * Check if alignment is compatible.
3689 * Courtesy of Adrian Drzewiecki
3690 */
3691 if ((s->size & ~(align - 1)) != s->size)
3692 continue;
3693
3694 if (s->size - size >= sizeof(void *))
3695 continue;
3696
3697 if (!cache_match_memcg(s, memcg))
3698 continue;
3699
3700 return s;
3701 }
3702 return NULL;
3703 }
3704
3705 struct kmem_cache *
3706 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3707 size_t align, unsigned long flags, void (*ctor)(void *))
3708 {
3709 struct kmem_cache *s;
3710
3711 s = find_mergeable(memcg, size, align, flags, name, ctor);
3712 if (s) {
3713 s->refcount++;
3714 /*
3715 * Adjust the object sizes so that we clear
3716 * the complete object on kzalloc.
3717 */
3718 s->object_size = max(s->object_size, (int)size);
3719 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3720
3721 if (sysfs_slab_alias(s, name)) {
3722 s->refcount--;
3723 s = NULL;
3724 }
3725 }
3726
3727 return s;
3728 }
3729
3730 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3731 {
3732 int err;
3733
3734 err = kmem_cache_open(s, flags);
3735 if (err)
3736 return err;
3737
3738 /* Mutex is not taken during early boot */
3739 if (slab_state <= UP)
3740 return 0;
3741
3742 memcg_propagate_slab_attrs(s);
3743 mutex_unlock(&slab_mutex);
3744 err = sysfs_slab_add(s);
3745 mutex_lock(&slab_mutex);
3746
3747 if (err)
3748 kmem_cache_close(s);
3749
3750 return err;
3751 }
3752
3753 #ifdef CONFIG_SMP
3754 /*
3755 * Use the cpu notifier to insure that the cpu slabs are flushed when
3756 * necessary.
3757 */
3758 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3759 unsigned long action, void *hcpu)
3760 {
3761 long cpu = (long)hcpu;
3762 struct kmem_cache *s;
3763 unsigned long flags;
3764
3765 switch (action) {
3766 case CPU_UP_CANCELED:
3767 case CPU_UP_CANCELED_FROZEN:
3768 case CPU_DEAD:
3769 case CPU_DEAD_FROZEN:
3770 mutex_lock(&slab_mutex);
3771 list_for_each_entry(s, &slab_caches, list) {
3772 local_irq_save(flags);
3773 __flush_cpu_slab(s, cpu);
3774 local_irq_restore(flags);
3775 }
3776 mutex_unlock(&slab_mutex);
3777 break;
3778 default:
3779 break;
3780 }
3781 return NOTIFY_OK;
3782 }
3783
3784 static struct notifier_block __cpuinitdata slab_notifier = {
3785 .notifier_call = slab_cpuup_callback
3786 };
3787
3788 #endif
3789
3790 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3791 {
3792 struct kmem_cache *s;
3793 void *ret;
3794
3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3796 return kmalloc_large(size, gfpflags);
3797
3798 s = kmalloc_slab(size, gfpflags);
3799
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 return s;
3802
3803 ret = slab_alloc(s, gfpflags, caller);
3804
3805 /* Honor the call site pointer we received. */
3806 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3807
3808 return ret;
3809 }
3810
3811 #ifdef CONFIG_NUMA
3812 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3813 int node, unsigned long caller)
3814 {
3815 struct kmem_cache *s;
3816 void *ret;
3817
3818 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3819 ret = kmalloc_large_node(size, gfpflags, node);
3820
3821 trace_kmalloc_node(caller, ret,
3822 size, PAGE_SIZE << get_order(size),
3823 gfpflags, node);
3824
3825 return ret;
3826 }
3827
3828 s = kmalloc_slab(size, gfpflags);
3829
3830 if (unlikely(ZERO_OR_NULL_PTR(s)))
3831 return s;
3832
3833 ret = slab_alloc_node(s, gfpflags, node, caller);
3834
3835 /* Honor the call site pointer we received. */
3836 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3837
3838 return ret;
3839 }
3840 #endif
3841
3842 #ifdef CONFIG_SYSFS
3843 static int count_inuse(struct page *page)
3844 {
3845 return page->inuse;
3846 }
3847
3848 static int count_total(struct page *page)
3849 {
3850 return page->objects;
3851 }
3852 #endif
3853
3854 #ifdef CONFIG_SLUB_DEBUG
3855 static int validate_slab(struct kmem_cache *s, struct page *page,
3856 unsigned long *map)
3857 {
3858 void *p;
3859 void *addr = page_address(page);
3860
3861 if (!check_slab(s, page) ||
3862 !on_freelist(s, page, NULL))
3863 return 0;
3864
3865 /* Now we know that a valid freelist exists */
3866 bitmap_zero(map, page->objects);
3867
3868 get_map(s, page, map);
3869 for_each_object(p, s, addr, page->objects) {
3870 if (test_bit(slab_index(p, s, addr), map))
3871 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3872 return 0;
3873 }
3874
3875 for_each_object(p, s, addr, page->objects)
3876 if (!test_bit(slab_index(p, s, addr), map))
3877 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3878 return 0;
3879 return 1;
3880 }
3881
3882 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3883 unsigned long *map)
3884 {
3885 slab_lock(page);
3886 validate_slab(s, page, map);
3887 slab_unlock(page);
3888 }
3889
3890 static int validate_slab_node(struct kmem_cache *s,
3891 struct kmem_cache_node *n, unsigned long *map)
3892 {
3893 unsigned long count = 0;
3894 struct page *page;
3895 unsigned long flags;
3896
3897 spin_lock_irqsave(&n->list_lock, flags);
3898
3899 list_for_each_entry(page, &n->partial, lru) {
3900 validate_slab_slab(s, page, map);
3901 count++;
3902 }
3903 if (count != n->nr_partial)
3904 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3905 "counter=%ld\n", s->name, count, n->nr_partial);
3906
3907 if (!(s->flags & SLAB_STORE_USER))
3908 goto out;
3909
3910 list_for_each_entry(page, &n->full, lru) {
3911 validate_slab_slab(s, page, map);
3912 count++;
3913 }
3914 if (count != atomic_long_read(&n->nr_slabs))
3915 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3916 "counter=%ld\n", s->name, count,
3917 atomic_long_read(&n->nr_slabs));
3918
3919 out:
3920 spin_unlock_irqrestore(&n->list_lock, flags);
3921 return count;
3922 }
3923
3924 static long validate_slab_cache(struct kmem_cache *s)
3925 {
3926 int node;
3927 unsigned long count = 0;
3928 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3929 sizeof(unsigned long), GFP_KERNEL);
3930
3931 if (!map)
3932 return -ENOMEM;
3933
3934 flush_all(s);
3935 for_each_node_state(node, N_NORMAL_MEMORY) {
3936 struct kmem_cache_node *n = get_node(s, node);
3937
3938 count += validate_slab_node(s, n, map);
3939 }
3940 kfree(map);
3941 return count;
3942 }
3943 /*
3944 * Generate lists of code addresses where slabcache objects are allocated
3945 * and freed.
3946 */
3947
3948 struct location {
3949 unsigned long count;
3950 unsigned long addr;
3951 long long sum_time;
3952 long min_time;
3953 long max_time;
3954 long min_pid;
3955 long max_pid;
3956 DECLARE_BITMAP(cpus, NR_CPUS);
3957 nodemask_t nodes;
3958 };
3959
3960 struct loc_track {
3961 unsigned long max;
3962 unsigned long count;
3963 struct location *loc;
3964 };
3965
3966 static void free_loc_track(struct loc_track *t)
3967 {
3968 if (t->max)
3969 free_pages((unsigned long)t->loc,
3970 get_order(sizeof(struct location) * t->max));
3971 }
3972
3973 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3974 {
3975 struct location *l;
3976 int order;
3977
3978 order = get_order(sizeof(struct location) * max);
3979
3980 l = (void *)__get_free_pages(flags, order);
3981 if (!l)
3982 return 0;
3983
3984 if (t->count) {
3985 memcpy(l, t->loc, sizeof(struct location) * t->count);
3986 free_loc_track(t);
3987 }
3988 t->max = max;
3989 t->loc = l;
3990 return 1;
3991 }
3992
3993 static int add_location(struct loc_track *t, struct kmem_cache *s,
3994 const struct track *track)
3995 {
3996 long start, end, pos;
3997 struct location *l;
3998 unsigned long caddr;
3999 unsigned long age = jiffies - track->when;
4000
4001 start = -1;
4002 end = t->count;
4003
4004 for ( ; ; ) {
4005 pos = start + (end - start + 1) / 2;
4006
4007 /*
4008 * There is nothing at "end". If we end up there
4009 * we need to add something to before end.
4010 */
4011 if (pos == end)
4012 break;
4013
4014 caddr = t->loc[pos].addr;
4015 if (track->addr == caddr) {
4016
4017 l = &t->loc[pos];
4018 l->count++;
4019 if (track->when) {
4020 l->sum_time += age;
4021 if (age < l->min_time)
4022 l->min_time = age;
4023 if (age > l->max_time)
4024 l->max_time = age;
4025
4026 if (track->pid < l->min_pid)
4027 l->min_pid = track->pid;
4028 if (track->pid > l->max_pid)
4029 l->max_pid = track->pid;
4030
4031 cpumask_set_cpu(track->cpu,
4032 to_cpumask(l->cpus));
4033 }
4034 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4035 return 1;
4036 }
4037
4038 if (track->addr < caddr)
4039 end = pos;
4040 else
4041 start = pos;
4042 }
4043
4044 /*
4045 * Not found. Insert new tracking element.
4046 */
4047 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4048 return 0;
4049
4050 l = t->loc + pos;
4051 if (pos < t->count)
4052 memmove(l + 1, l,
4053 (t->count - pos) * sizeof(struct location));
4054 t->count++;
4055 l->count = 1;
4056 l->addr = track->addr;
4057 l->sum_time = age;
4058 l->min_time = age;
4059 l->max_time = age;
4060 l->min_pid = track->pid;
4061 l->max_pid = track->pid;
4062 cpumask_clear(to_cpumask(l->cpus));
4063 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4064 nodes_clear(l->nodes);
4065 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4066 return 1;
4067 }
4068
4069 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4070 struct page *page, enum track_item alloc,
4071 unsigned long *map)
4072 {
4073 void *addr = page_address(page);
4074 void *p;
4075
4076 bitmap_zero(map, page->objects);
4077 get_map(s, page, map);
4078
4079 for_each_object(p, s, addr, page->objects)
4080 if (!test_bit(slab_index(p, s, addr), map))
4081 add_location(t, s, get_track(s, p, alloc));
4082 }
4083
4084 static int list_locations(struct kmem_cache *s, char *buf,
4085 enum track_item alloc)
4086 {
4087 int len = 0;
4088 unsigned long i;
4089 struct loc_track t = { 0, 0, NULL };
4090 int node;
4091 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4092 sizeof(unsigned long), GFP_KERNEL);
4093
4094 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4095 GFP_TEMPORARY)) {
4096 kfree(map);
4097 return sprintf(buf, "Out of memory\n");
4098 }
4099 /* Push back cpu slabs */
4100 flush_all(s);
4101
4102 for_each_node_state(node, N_NORMAL_MEMORY) {
4103 struct kmem_cache_node *n = get_node(s, node);
4104 unsigned long flags;
4105 struct page *page;
4106
4107 if (!atomic_long_read(&n->nr_slabs))
4108 continue;
4109
4110 spin_lock_irqsave(&n->list_lock, flags);
4111 list_for_each_entry(page, &n->partial, lru)
4112 process_slab(&t, s, page, alloc, map);
4113 list_for_each_entry(page, &n->full, lru)
4114 process_slab(&t, s, page, alloc, map);
4115 spin_unlock_irqrestore(&n->list_lock, flags);
4116 }
4117
4118 for (i = 0; i < t.count; i++) {
4119 struct location *l = &t.loc[i];
4120
4121 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4122 break;
4123 len += sprintf(buf + len, "%7ld ", l->count);
4124
4125 if (l->addr)
4126 len += sprintf(buf + len, "%pS", (void *)l->addr);
4127 else
4128 len += sprintf(buf + len, "<not-available>");
4129
4130 if (l->sum_time != l->min_time) {
4131 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4132 l->min_time,
4133 (long)div_u64(l->sum_time, l->count),
4134 l->max_time);
4135 } else
4136 len += sprintf(buf + len, " age=%ld",
4137 l->min_time);
4138
4139 if (l->min_pid != l->max_pid)
4140 len += sprintf(buf + len, " pid=%ld-%ld",
4141 l->min_pid, l->max_pid);
4142 else
4143 len += sprintf(buf + len, " pid=%ld",
4144 l->min_pid);
4145
4146 if (num_online_cpus() > 1 &&
4147 !cpumask_empty(to_cpumask(l->cpus)) &&
4148 len < PAGE_SIZE - 60) {
4149 len += sprintf(buf + len, " cpus=");
4150 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4151 to_cpumask(l->cpus));
4152 }
4153
4154 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4155 len < PAGE_SIZE - 60) {
4156 len += sprintf(buf + len, " nodes=");
4157 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4158 l->nodes);
4159 }
4160
4161 len += sprintf(buf + len, "\n");
4162 }
4163
4164 free_loc_track(&t);
4165 kfree(map);
4166 if (!t.count)
4167 len += sprintf(buf, "No data\n");
4168 return len;
4169 }
4170 #endif
4171
4172 #ifdef SLUB_RESILIENCY_TEST
4173 static void resiliency_test(void)
4174 {
4175 u8 *p;
4176
4177 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4178
4179 printk(KERN_ERR "SLUB resiliency testing\n");
4180 printk(KERN_ERR "-----------------------\n");
4181 printk(KERN_ERR "A. Corruption after allocation\n");
4182
4183 p = kzalloc(16, GFP_KERNEL);
4184 p[16] = 0x12;
4185 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4186 " 0x12->0x%p\n\n", p + 16);
4187
4188 validate_slab_cache(kmalloc_caches[4]);
4189
4190 /* Hmmm... The next two are dangerous */
4191 p = kzalloc(32, GFP_KERNEL);
4192 p[32 + sizeof(void *)] = 0x34;
4193 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4194 " 0x34 -> -0x%p\n", p);
4195 printk(KERN_ERR
4196 "If allocated object is overwritten then not detectable\n\n");
4197
4198 validate_slab_cache(kmalloc_caches[5]);
4199 p = kzalloc(64, GFP_KERNEL);
4200 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4201 *p = 0x56;
4202 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4203 p);
4204 printk(KERN_ERR
4205 "If allocated object is overwritten then not detectable\n\n");
4206 validate_slab_cache(kmalloc_caches[6]);
4207
4208 printk(KERN_ERR "\nB. Corruption after free\n");
4209 p = kzalloc(128, GFP_KERNEL);
4210 kfree(p);
4211 *p = 0x78;
4212 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4213 validate_slab_cache(kmalloc_caches[7]);
4214
4215 p = kzalloc(256, GFP_KERNEL);
4216 kfree(p);
4217 p[50] = 0x9a;
4218 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4219 p);
4220 validate_slab_cache(kmalloc_caches[8]);
4221
4222 p = kzalloc(512, GFP_KERNEL);
4223 kfree(p);
4224 p[512] = 0xab;
4225 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4226 validate_slab_cache(kmalloc_caches[9]);
4227 }
4228 #else
4229 #ifdef CONFIG_SYSFS
4230 static void resiliency_test(void) {};
4231 #endif
4232 #endif
4233
4234 #ifdef CONFIG_SYSFS
4235 enum slab_stat_type {
4236 SL_ALL, /* All slabs */
4237 SL_PARTIAL, /* Only partially allocated slabs */
4238 SL_CPU, /* Only slabs used for cpu caches */
4239 SL_OBJECTS, /* Determine allocated objects not slabs */
4240 SL_TOTAL /* Determine object capacity not slabs */
4241 };
4242
4243 #define SO_ALL (1 << SL_ALL)
4244 #define SO_PARTIAL (1 << SL_PARTIAL)
4245 #define SO_CPU (1 << SL_CPU)
4246 #define SO_OBJECTS (1 << SL_OBJECTS)
4247 #define SO_TOTAL (1 << SL_TOTAL)
4248
4249 static ssize_t show_slab_objects(struct kmem_cache *s,
4250 char *buf, unsigned long flags)
4251 {
4252 unsigned long total = 0;
4253 int node;
4254 int x;
4255 unsigned long *nodes;
4256 unsigned long *per_cpu;
4257
4258 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4259 if (!nodes)
4260 return -ENOMEM;
4261 per_cpu = nodes + nr_node_ids;
4262
4263 if (flags & SO_CPU) {
4264 int cpu;
4265
4266 for_each_possible_cpu(cpu) {
4267 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4268 int node;
4269 struct page *page;
4270
4271 page = ACCESS_ONCE(c->page);
4272 if (!page)
4273 continue;
4274
4275 node = page_to_nid(page);
4276 if (flags & SO_TOTAL)
4277 x = page->objects;
4278 else if (flags & SO_OBJECTS)
4279 x = page->inuse;
4280 else
4281 x = 1;
4282
4283 total += x;
4284 nodes[node] += x;
4285
4286 page = ACCESS_ONCE(c->partial);
4287 if (page) {
4288 x = page->pobjects;
4289 total += x;
4290 nodes[node] += x;
4291 }
4292
4293 per_cpu[node]++;
4294 }
4295 }
4296
4297 lock_memory_hotplug();
4298 #ifdef CONFIG_SLUB_DEBUG
4299 if (flags & SO_ALL) {
4300 for_each_node_state(node, N_NORMAL_MEMORY) {
4301 struct kmem_cache_node *n = get_node(s, node);
4302
4303 if (flags & SO_TOTAL)
4304 x = atomic_long_read(&n->total_objects);
4305 else if (flags & SO_OBJECTS)
4306 x = atomic_long_read(&n->total_objects) -
4307 count_partial(n, count_free);
4308
4309 else
4310 x = atomic_long_read(&n->nr_slabs);
4311 total += x;
4312 nodes[node] += x;
4313 }
4314
4315 } else
4316 #endif
4317 if (flags & SO_PARTIAL) {
4318 for_each_node_state(node, N_NORMAL_MEMORY) {
4319 struct kmem_cache_node *n = get_node(s, node);
4320
4321 if (flags & SO_TOTAL)
4322 x = count_partial(n, count_total);
4323 else if (flags & SO_OBJECTS)
4324 x = count_partial(n, count_inuse);
4325 else
4326 x = n->nr_partial;
4327 total += x;
4328 nodes[node] += x;
4329 }
4330 }
4331 x = sprintf(buf, "%lu", total);
4332 #ifdef CONFIG_NUMA
4333 for_each_node_state(node, N_NORMAL_MEMORY)
4334 if (nodes[node])
4335 x += sprintf(buf + x, " N%d=%lu",
4336 node, nodes[node]);
4337 #endif
4338 unlock_memory_hotplug();
4339 kfree(nodes);
4340 return x + sprintf(buf + x, "\n");
4341 }
4342
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int any_slab_objects(struct kmem_cache *s)
4345 {
4346 int node;
4347
4348 for_each_online_node(node) {
4349 struct kmem_cache_node *n = get_node(s, node);
4350
4351 if (!n)
4352 continue;
4353
4354 if (atomic_long_read(&n->total_objects))
4355 return 1;
4356 }
4357 return 0;
4358 }
4359 #endif
4360
4361 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4362 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4363
4364 struct slab_attribute {
4365 struct attribute attr;
4366 ssize_t (*show)(struct kmem_cache *s, char *buf);
4367 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4368 };
4369
4370 #define SLAB_ATTR_RO(_name) \
4371 static struct slab_attribute _name##_attr = \
4372 __ATTR(_name, 0400, _name##_show, NULL)
4373
4374 #define SLAB_ATTR(_name) \
4375 static struct slab_attribute _name##_attr = \
4376 __ATTR(_name, 0600, _name##_show, _name##_store)
4377
4378 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4379 {
4380 return sprintf(buf, "%d\n", s->size);
4381 }
4382 SLAB_ATTR_RO(slab_size);
4383
4384 static ssize_t align_show(struct kmem_cache *s, char *buf)
4385 {
4386 return sprintf(buf, "%d\n", s->align);
4387 }
4388 SLAB_ATTR_RO(align);
4389
4390 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4391 {
4392 return sprintf(buf, "%d\n", s->object_size);
4393 }
4394 SLAB_ATTR_RO(object_size);
4395
4396 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4397 {
4398 return sprintf(buf, "%d\n", oo_objects(s->oo));
4399 }
4400 SLAB_ATTR_RO(objs_per_slab);
4401
4402 static ssize_t order_store(struct kmem_cache *s,
4403 const char *buf, size_t length)
4404 {
4405 unsigned long order;
4406 int err;
4407
4408 err = strict_strtoul(buf, 10, &order);
4409 if (err)
4410 return err;
4411
4412 if (order > slub_max_order || order < slub_min_order)
4413 return -EINVAL;
4414
4415 calculate_sizes(s, order);
4416 return length;
4417 }
4418
4419 static ssize_t order_show(struct kmem_cache *s, char *buf)
4420 {
4421 return sprintf(buf, "%d\n", oo_order(s->oo));
4422 }
4423 SLAB_ATTR(order);
4424
4425 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4426 {
4427 return sprintf(buf, "%lu\n", s->min_partial);
4428 }
4429
4430 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4431 size_t length)
4432 {
4433 unsigned long min;
4434 int err;
4435
4436 err = strict_strtoul(buf, 10, &min);
4437 if (err)
4438 return err;
4439
4440 set_min_partial(s, min);
4441 return length;
4442 }
4443 SLAB_ATTR(min_partial);
4444
4445 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4446 {
4447 return sprintf(buf, "%u\n", s->cpu_partial);
4448 }
4449
4450 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4451 size_t length)
4452 {
4453 unsigned long objects;
4454 int err;
4455
4456 err = strict_strtoul(buf, 10, &objects);
4457 if (err)
4458 return err;
4459 if (objects && kmem_cache_debug(s))
4460 return -EINVAL;
4461
4462 s->cpu_partial = objects;
4463 flush_all(s);
4464 return length;
4465 }
4466 SLAB_ATTR(cpu_partial);
4467
4468 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4469 {
4470 if (!s->ctor)
4471 return 0;
4472 return sprintf(buf, "%pS\n", s->ctor);
4473 }
4474 SLAB_ATTR_RO(ctor);
4475
4476 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4477 {
4478 return sprintf(buf, "%d\n", s->refcount - 1);
4479 }
4480 SLAB_ATTR_RO(aliases);
4481
4482 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4483 {
4484 return show_slab_objects(s, buf, SO_PARTIAL);
4485 }
4486 SLAB_ATTR_RO(partial);
4487
4488 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4489 {
4490 return show_slab_objects(s, buf, SO_CPU);
4491 }
4492 SLAB_ATTR_RO(cpu_slabs);
4493
4494 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4495 {
4496 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4497 }
4498 SLAB_ATTR_RO(objects);
4499
4500 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4501 {
4502 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4503 }
4504 SLAB_ATTR_RO(objects_partial);
4505
4506 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4507 {
4508 int objects = 0;
4509 int pages = 0;
4510 int cpu;
4511 int len;
4512
4513 for_each_online_cpu(cpu) {
4514 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4515
4516 if (page) {
4517 pages += page->pages;
4518 objects += page->pobjects;
4519 }
4520 }
4521
4522 len = sprintf(buf, "%d(%d)", objects, pages);
4523
4524 #ifdef CONFIG_SMP
4525 for_each_online_cpu(cpu) {
4526 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4527
4528 if (page && len < PAGE_SIZE - 20)
4529 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4530 page->pobjects, page->pages);
4531 }
4532 #endif
4533 return len + sprintf(buf + len, "\n");
4534 }
4535 SLAB_ATTR_RO(slabs_cpu_partial);
4536
4537 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4538 {
4539 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4540 }
4541
4542 static ssize_t reclaim_account_store(struct kmem_cache *s,
4543 const char *buf, size_t length)
4544 {
4545 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4546 if (buf[0] == '1')
4547 s->flags |= SLAB_RECLAIM_ACCOUNT;
4548 return length;
4549 }
4550 SLAB_ATTR(reclaim_account);
4551
4552 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4553 {
4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4555 }
4556 SLAB_ATTR_RO(hwcache_align);
4557
4558 #ifdef CONFIG_ZONE_DMA
4559 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4560 {
4561 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4562 }
4563 SLAB_ATTR_RO(cache_dma);
4564 #endif
4565
4566 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4567 {
4568 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4569 }
4570 SLAB_ATTR_RO(destroy_by_rcu);
4571
4572 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4573 {
4574 return sprintf(buf, "%d\n", s->reserved);
4575 }
4576 SLAB_ATTR_RO(reserved);
4577
4578 #ifdef CONFIG_SLUB_DEBUG
4579 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4580 {
4581 return show_slab_objects(s, buf, SO_ALL);
4582 }
4583 SLAB_ATTR_RO(slabs);
4584
4585 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4586 {
4587 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4588 }
4589 SLAB_ATTR_RO(total_objects);
4590
4591 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4592 {
4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4594 }
4595
4596 static ssize_t sanity_checks_store(struct kmem_cache *s,
4597 const char *buf, size_t length)
4598 {
4599 s->flags &= ~SLAB_DEBUG_FREE;
4600 if (buf[0] == '1') {
4601 s->flags &= ~__CMPXCHG_DOUBLE;
4602 s->flags |= SLAB_DEBUG_FREE;
4603 }
4604 return length;
4605 }
4606 SLAB_ATTR(sanity_checks);
4607
4608 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4609 {
4610 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4611 }
4612
4613 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4614 size_t length)
4615 {
4616 s->flags &= ~SLAB_TRACE;
4617 if (buf[0] == '1') {
4618 s->flags &= ~__CMPXCHG_DOUBLE;
4619 s->flags |= SLAB_TRACE;
4620 }
4621 return length;
4622 }
4623 SLAB_ATTR(trace);
4624
4625 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4626 {
4627 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4628 }
4629
4630 static ssize_t red_zone_store(struct kmem_cache *s,
4631 const char *buf, size_t length)
4632 {
4633 if (any_slab_objects(s))
4634 return -EBUSY;
4635
4636 s->flags &= ~SLAB_RED_ZONE;
4637 if (buf[0] == '1') {
4638 s->flags &= ~__CMPXCHG_DOUBLE;
4639 s->flags |= SLAB_RED_ZONE;
4640 }
4641 calculate_sizes(s, -1);
4642 return length;
4643 }
4644 SLAB_ATTR(red_zone);
4645
4646 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4647 {
4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4649 }
4650
4651 static ssize_t poison_store(struct kmem_cache *s,
4652 const char *buf, size_t length)
4653 {
4654 if (any_slab_objects(s))
4655 return -EBUSY;
4656
4657 s->flags &= ~SLAB_POISON;
4658 if (buf[0] == '1') {
4659 s->flags &= ~__CMPXCHG_DOUBLE;
4660 s->flags |= SLAB_POISON;
4661 }
4662 calculate_sizes(s, -1);
4663 return length;
4664 }
4665 SLAB_ATTR(poison);
4666
4667 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4668 {
4669 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4670 }
4671
4672 static ssize_t store_user_store(struct kmem_cache *s,
4673 const char *buf, size_t length)
4674 {
4675 if (any_slab_objects(s))
4676 return -EBUSY;
4677
4678 s->flags &= ~SLAB_STORE_USER;
4679 if (buf[0] == '1') {
4680 s->flags &= ~__CMPXCHG_DOUBLE;
4681 s->flags |= SLAB_STORE_USER;
4682 }
4683 calculate_sizes(s, -1);
4684 return length;
4685 }
4686 SLAB_ATTR(store_user);
4687
4688 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4689 {
4690 return 0;
4691 }
4692
4693 static ssize_t validate_store(struct kmem_cache *s,
4694 const char *buf, size_t length)
4695 {
4696 int ret = -EINVAL;
4697
4698 if (buf[0] == '1') {
4699 ret = validate_slab_cache(s);
4700 if (ret >= 0)
4701 ret = length;
4702 }
4703 return ret;
4704 }
4705 SLAB_ATTR(validate);
4706
4707 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4708 {
4709 if (!(s->flags & SLAB_STORE_USER))
4710 return -ENOSYS;
4711 return list_locations(s, buf, TRACK_ALLOC);
4712 }
4713 SLAB_ATTR_RO(alloc_calls);
4714
4715 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4716 {
4717 if (!(s->flags & SLAB_STORE_USER))
4718 return -ENOSYS;
4719 return list_locations(s, buf, TRACK_FREE);
4720 }
4721 SLAB_ATTR_RO(free_calls);
4722 #endif /* CONFIG_SLUB_DEBUG */
4723
4724 #ifdef CONFIG_FAILSLAB
4725 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4726 {
4727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4728 }
4729
4730 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4731 size_t length)
4732 {
4733 s->flags &= ~SLAB_FAILSLAB;
4734 if (buf[0] == '1')
4735 s->flags |= SLAB_FAILSLAB;
4736 return length;
4737 }
4738 SLAB_ATTR(failslab);
4739 #endif
4740
4741 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4742 {
4743 return 0;
4744 }
4745
4746 static ssize_t shrink_store(struct kmem_cache *s,
4747 const char *buf, size_t length)
4748 {
4749 if (buf[0] == '1') {
4750 int rc = kmem_cache_shrink(s);
4751
4752 if (rc)
4753 return rc;
4754 } else
4755 return -EINVAL;
4756 return length;
4757 }
4758 SLAB_ATTR(shrink);
4759
4760 #ifdef CONFIG_NUMA
4761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4762 {
4763 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4764 }
4765
4766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4768 {
4769 unsigned long ratio;
4770 int err;
4771
4772 err = strict_strtoul(buf, 10, &ratio);
4773 if (err)
4774 return err;
4775
4776 if (ratio <= 100)
4777 s->remote_node_defrag_ratio = ratio * 10;
4778
4779 return length;
4780 }
4781 SLAB_ATTR(remote_node_defrag_ratio);
4782 #endif
4783
4784 #ifdef CONFIG_SLUB_STATS
4785 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4786 {
4787 unsigned long sum = 0;
4788 int cpu;
4789 int len;
4790 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4791
4792 if (!data)
4793 return -ENOMEM;
4794
4795 for_each_online_cpu(cpu) {
4796 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4797
4798 data[cpu] = x;
4799 sum += x;
4800 }
4801
4802 len = sprintf(buf, "%lu", sum);
4803
4804 #ifdef CONFIG_SMP
4805 for_each_online_cpu(cpu) {
4806 if (data[cpu] && len < PAGE_SIZE - 20)
4807 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4808 }
4809 #endif
4810 kfree(data);
4811 return len + sprintf(buf + len, "\n");
4812 }
4813
4814 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4815 {
4816 int cpu;
4817
4818 for_each_online_cpu(cpu)
4819 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4820 }
4821
4822 #define STAT_ATTR(si, text) \
4823 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4824 { \
4825 return show_stat(s, buf, si); \
4826 } \
4827 static ssize_t text##_store(struct kmem_cache *s, \
4828 const char *buf, size_t length) \
4829 { \
4830 if (buf[0] != '0') \
4831 return -EINVAL; \
4832 clear_stat(s, si); \
4833 return length; \
4834 } \
4835 SLAB_ATTR(text); \
4836
4837 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4838 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4839 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4840 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4841 STAT_ATTR(FREE_FROZEN, free_frozen);
4842 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4843 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4844 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4845 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4846 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4847 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4848 STAT_ATTR(FREE_SLAB, free_slab);
4849 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4850 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4851 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4852 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4853 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4854 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4855 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4856 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4857 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4858 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4859 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4860 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4861 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4862 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4863 #endif
4864
4865 static struct attribute *slab_attrs[] = {
4866 &slab_size_attr.attr,
4867 &object_size_attr.attr,
4868 &objs_per_slab_attr.attr,
4869 &order_attr.attr,
4870 &min_partial_attr.attr,
4871 &cpu_partial_attr.attr,
4872 &objects_attr.attr,
4873 &objects_partial_attr.attr,
4874 &partial_attr.attr,
4875 &cpu_slabs_attr.attr,
4876 &ctor_attr.attr,
4877 &aliases_attr.attr,
4878 &align_attr.attr,
4879 &hwcache_align_attr.attr,
4880 &reclaim_account_attr.attr,
4881 &destroy_by_rcu_attr.attr,
4882 &shrink_attr.attr,
4883 &reserved_attr.attr,
4884 &slabs_cpu_partial_attr.attr,
4885 #ifdef CONFIG_SLUB_DEBUG
4886 &total_objects_attr.attr,
4887 &slabs_attr.attr,
4888 &sanity_checks_attr.attr,
4889 &trace_attr.attr,
4890 &red_zone_attr.attr,
4891 &poison_attr.attr,
4892 &store_user_attr.attr,
4893 &validate_attr.attr,
4894 &alloc_calls_attr.attr,
4895 &free_calls_attr.attr,
4896 #endif
4897 #ifdef CONFIG_ZONE_DMA
4898 &cache_dma_attr.attr,
4899 #endif
4900 #ifdef CONFIG_NUMA
4901 &remote_node_defrag_ratio_attr.attr,
4902 #endif
4903 #ifdef CONFIG_SLUB_STATS
4904 &alloc_fastpath_attr.attr,
4905 &alloc_slowpath_attr.attr,
4906 &free_fastpath_attr.attr,
4907 &free_slowpath_attr.attr,
4908 &free_frozen_attr.attr,
4909 &free_add_partial_attr.attr,
4910 &free_remove_partial_attr.attr,
4911 &alloc_from_partial_attr.attr,
4912 &alloc_slab_attr.attr,
4913 &alloc_refill_attr.attr,
4914 &alloc_node_mismatch_attr.attr,
4915 &free_slab_attr.attr,
4916 &cpuslab_flush_attr.attr,
4917 &deactivate_full_attr.attr,
4918 &deactivate_empty_attr.attr,
4919 &deactivate_to_head_attr.attr,
4920 &deactivate_to_tail_attr.attr,
4921 &deactivate_remote_frees_attr.attr,
4922 &deactivate_bypass_attr.attr,
4923 &order_fallback_attr.attr,
4924 &cmpxchg_double_fail_attr.attr,
4925 &cmpxchg_double_cpu_fail_attr.attr,
4926 &cpu_partial_alloc_attr.attr,
4927 &cpu_partial_free_attr.attr,
4928 &cpu_partial_node_attr.attr,
4929 &cpu_partial_drain_attr.attr,
4930 #endif
4931 #ifdef CONFIG_FAILSLAB
4932 &failslab_attr.attr,
4933 #endif
4934
4935 NULL
4936 };
4937
4938 static struct attribute_group slab_attr_group = {
4939 .attrs = slab_attrs,
4940 };
4941
4942 static ssize_t slab_attr_show(struct kobject *kobj,
4943 struct attribute *attr,
4944 char *buf)
4945 {
4946 struct slab_attribute *attribute;
4947 struct kmem_cache *s;
4948 int err;
4949
4950 attribute = to_slab_attr(attr);
4951 s = to_slab(kobj);
4952
4953 if (!attribute->show)
4954 return -EIO;
4955
4956 err = attribute->show(s, buf);
4957
4958 return err;
4959 }
4960
4961 static ssize_t slab_attr_store(struct kobject *kobj,
4962 struct attribute *attr,
4963 const char *buf, size_t len)
4964 {
4965 struct slab_attribute *attribute;
4966 struct kmem_cache *s;
4967 int err;
4968
4969 attribute = to_slab_attr(attr);
4970 s = to_slab(kobj);
4971
4972 if (!attribute->store)
4973 return -EIO;
4974
4975 err = attribute->store(s, buf, len);
4976 #ifdef CONFIG_MEMCG_KMEM
4977 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4978 int i;
4979
4980 mutex_lock(&slab_mutex);
4981 if (s->max_attr_size < len)
4982 s->max_attr_size = len;
4983
4984 /*
4985 * This is a best effort propagation, so this function's return
4986 * value will be determined by the parent cache only. This is
4987 * basically because not all attributes will have a well
4988 * defined semantics for rollbacks - most of the actions will
4989 * have permanent effects.
4990 *
4991 * Returning the error value of any of the children that fail
4992 * is not 100 % defined, in the sense that users seeing the
4993 * error code won't be able to know anything about the state of
4994 * the cache.
4995 *
4996 * Only returning the error code for the parent cache at least
4997 * has well defined semantics. The cache being written to
4998 * directly either failed or succeeded, in which case we loop
4999 * through the descendants with best-effort propagation.
5000 */
5001 for_each_memcg_cache_index(i) {
5002 struct kmem_cache *c = cache_from_memcg(s, i);
5003 if (c)
5004 attribute->store(c, buf, len);
5005 }
5006 mutex_unlock(&slab_mutex);
5007 }
5008 #endif
5009 return err;
5010 }
5011
5012 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5013 {
5014 #ifdef CONFIG_MEMCG_KMEM
5015 int i;
5016 char *buffer = NULL;
5017
5018 if (!is_root_cache(s))
5019 return;
5020
5021 /*
5022 * This mean this cache had no attribute written. Therefore, no point
5023 * in copying default values around
5024 */
5025 if (!s->max_attr_size)
5026 return;
5027
5028 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5029 char mbuf[64];
5030 char *buf;
5031 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5032
5033 if (!attr || !attr->store || !attr->show)
5034 continue;
5035
5036 /*
5037 * It is really bad that we have to allocate here, so we will
5038 * do it only as a fallback. If we actually allocate, though,
5039 * we can just use the allocated buffer until the end.
5040 *
5041 * Most of the slub attributes will tend to be very small in
5042 * size, but sysfs allows buffers up to a page, so they can
5043 * theoretically happen.
5044 */
5045 if (buffer)
5046 buf = buffer;
5047 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5048 buf = mbuf;
5049 else {
5050 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5051 if (WARN_ON(!buffer))
5052 continue;
5053 buf = buffer;
5054 }
5055
5056 attr->show(s->memcg_params->root_cache, buf);
5057 attr->store(s, buf, strlen(buf));
5058 }
5059
5060 if (buffer)
5061 free_page((unsigned long)buffer);
5062 #endif
5063 }
5064
5065 static const struct sysfs_ops slab_sysfs_ops = {
5066 .show = slab_attr_show,
5067 .store = slab_attr_store,
5068 };
5069
5070 static struct kobj_type slab_ktype = {
5071 .sysfs_ops = &slab_sysfs_ops,
5072 };
5073
5074 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5075 {
5076 struct kobj_type *ktype = get_ktype(kobj);
5077
5078 if (ktype == &slab_ktype)
5079 return 1;
5080 return 0;
5081 }
5082
5083 static const struct kset_uevent_ops slab_uevent_ops = {
5084 .filter = uevent_filter,
5085 };
5086
5087 static struct kset *slab_kset;
5088
5089 #define ID_STR_LENGTH 64
5090
5091 /* Create a unique string id for a slab cache:
5092 *
5093 * Format :[flags-]size
5094 */
5095 static char *create_unique_id(struct kmem_cache *s)
5096 {
5097 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5098 char *p = name;
5099
5100 BUG_ON(!name);
5101
5102 *p++ = ':';
5103 /*
5104 * First flags affecting slabcache operations. We will only
5105 * get here for aliasable slabs so we do not need to support
5106 * too many flags. The flags here must cover all flags that
5107 * are matched during merging to guarantee that the id is
5108 * unique.
5109 */
5110 if (s->flags & SLAB_CACHE_DMA)
5111 *p++ = 'd';
5112 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5113 *p++ = 'a';
5114 if (s->flags & SLAB_DEBUG_FREE)
5115 *p++ = 'F';
5116 if (!(s->flags & SLAB_NOTRACK))
5117 *p++ = 't';
5118 if (p != name + 1)
5119 *p++ = '-';
5120 p += sprintf(p, "%07d", s->size);
5121
5122 #ifdef CONFIG_MEMCG_KMEM
5123 if (!is_root_cache(s))
5124 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5125 #endif
5126
5127 BUG_ON(p > name + ID_STR_LENGTH - 1);
5128 return name;
5129 }
5130
5131 static int sysfs_slab_add(struct kmem_cache *s)
5132 {
5133 int err;
5134 const char *name;
5135 int unmergeable = slab_unmergeable(s);
5136
5137 if (unmergeable) {
5138 /*
5139 * Slabcache can never be merged so we can use the name proper.
5140 * This is typically the case for debug situations. In that
5141 * case we can catch duplicate names easily.
5142 */
5143 sysfs_remove_link(&slab_kset->kobj, s->name);
5144 name = s->name;
5145 } else {
5146 /*
5147 * Create a unique name for the slab as a target
5148 * for the symlinks.
5149 */
5150 name = create_unique_id(s);
5151 }
5152
5153 s->kobj.kset = slab_kset;
5154 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5155 if (err) {
5156 kobject_put(&s->kobj);
5157 return err;
5158 }
5159
5160 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5161 if (err) {
5162 kobject_del(&s->kobj);
5163 kobject_put(&s->kobj);
5164 return err;
5165 }
5166 kobject_uevent(&s->kobj, KOBJ_ADD);
5167 if (!unmergeable) {
5168 /* Setup first alias */
5169 sysfs_slab_alias(s, s->name);
5170 kfree(name);
5171 }
5172 return 0;
5173 }
5174
5175 static void sysfs_slab_remove(struct kmem_cache *s)
5176 {
5177 if (slab_state < FULL)
5178 /*
5179 * Sysfs has not been setup yet so no need to remove the
5180 * cache from sysfs.
5181 */
5182 return;
5183
5184 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5185 kobject_del(&s->kobj);
5186 kobject_put(&s->kobj);
5187 }
5188
5189 /*
5190 * Need to buffer aliases during bootup until sysfs becomes
5191 * available lest we lose that information.
5192 */
5193 struct saved_alias {
5194 struct kmem_cache *s;
5195 const char *name;
5196 struct saved_alias *next;
5197 };
5198
5199 static struct saved_alias *alias_list;
5200
5201 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5202 {
5203 struct saved_alias *al;
5204
5205 if (slab_state == FULL) {
5206 /*
5207 * If we have a leftover link then remove it.
5208 */
5209 sysfs_remove_link(&slab_kset->kobj, name);
5210 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5211 }
5212
5213 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5214 if (!al)
5215 return -ENOMEM;
5216
5217 al->s = s;
5218 al->name = name;
5219 al->next = alias_list;
5220 alias_list = al;
5221 return 0;
5222 }
5223
5224 static int __init slab_sysfs_init(void)
5225 {
5226 struct kmem_cache *s;
5227 int err;
5228
5229 mutex_lock(&slab_mutex);
5230
5231 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5232 if (!slab_kset) {
5233 mutex_unlock(&slab_mutex);
5234 printk(KERN_ERR "Cannot register slab subsystem.\n");
5235 return -ENOSYS;
5236 }
5237
5238 slab_state = FULL;
5239
5240 list_for_each_entry(s, &slab_caches, list) {
5241 err = sysfs_slab_add(s);
5242 if (err)
5243 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5244 " to sysfs\n", s->name);
5245 }
5246
5247 while (alias_list) {
5248 struct saved_alias *al = alias_list;
5249
5250 alias_list = alias_list->next;
5251 err = sysfs_slab_alias(al->s, al->name);
5252 if (err)
5253 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5254 " %s to sysfs\n", al->name);
5255 kfree(al);
5256 }
5257
5258 mutex_unlock(&slab_mutex);
5259 resiliency_test();
5260 return 0;
5261 }
5262
5263 __initcall(slab_sysfs_init);
5264 #endif /* CONFIG_SYSFS */
5265
5266 /*
5267 * The /proc/slabinfo ABI
5268 */
5269 #ifdef CONFIG_SLABINFO
5270 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5271 {
5272 unsigned long nr_slabs = 0;
5273 unsigned long nr_objs = 0;
5274 unsigned long nr_free = 0;
5275 int node;
5276
5277 for_each_online_node(node) {
5278 struct kmem_cache_node *n = get_node(s, node);
5279
5280 if (!n)
5281 continue;
5282
5283 nr_slabs += node_nr_slabs(n);
5284 nr_objs += node_nr_objs(n);
5285 nr_free += count_partial(n, count_free);
5286 }
5287
5288 sinfo->active_objs = nr_objs - nr_free;
5289 sinfo->num_objs = nr_objs;
5290 sinfo->active_slabs = nr_slabs;
5291 sinfo->num_slabs = nr_slabs;
5292 sinfo->objects_per_slab = oo_objects(s->oo);
5293 sinfo->cache_order = oo_order(s->oo);
5294 }
5295
5296 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5297 {
5298 }
5299
5300 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5301 size_t count, loff_t *ppos)
5302 {
5303 return -EIO;
5304 }
5305 #endif /* CONFIG_SLABINFO */
This page took 0.151262 seconds and 6 git commands to generate.