mm/slub.c: beautify code for removing redundancy 'break' statement.
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in the.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363 {
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s->flags & __CMPXCHG_DOUBLE) {
368 if (cmpxchg_double(&page->freelist, &page->counters,
369 freelist_old, counters_old,
370 freelist_new, counters_new))
371 return 1;
372 } else
373 #endif
374 {
375 slab_lock(page);
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
378 page->freelist = freelist_new;
379 page->counters = counters_new;
380 slab_unlock(page);
381 return 1;
382 }
383 slab_unlock(page);
384 }
385
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
388
389 #ifdef SLUB_DEBUG_CMPXCHG
390 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392
393 return 0;
394 }
395
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 if (s->flags & __CMPXCHG_DOUBLE) {
404 if (cmpxchg_double(&page->freelist, &page->counters,
405 freelist_old, counters_old,
406 freelist_new, counters_new))
407 return 1;
408 } else
409 #endif
410 {
411 unsigned long flags;
412
413 local_irq_save(flags);
414 slab_lock(page);
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433
434 return 0;
435 }
436
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451 }
452
453 /*
454 * Debug settings:
455 */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464
465 /*
466 * Object debugging
467 */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
472 }
473
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476 {
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485 }
486
487 static void set_track(struct kmem_cache *s, void *object,
488 enum track_item alloc, unsigned long addr)
489 {
490 struct track *p = get_track(s, object, alloc);
491
492 if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510 #endif
511 p->addr = addr;
512 p->cpu = smp_processor_id();
513 p->pid = current->pid;
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517 }
518
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527
528 static void print_track(const char *s, struct track *t)
529 {
530 if (!t->addr)
531 return;
532
533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544 #endif
545 }
546
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555
556 static void print_page_info(struct page *page)
557 {
558 printk(KERN_ERR
559 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
560 page, page->objects, page->inuse, page->freelist, page->flags);
561
562 }
563
564 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
565 {
566 va_list args;
567 char buf[100];
568
569 va_start(args, fmt);
570 vsnprintf(buf, sizeof(buf), fmt, args);
571 va_end(args);
572 printk(KERN_ERR "========================================"
573 "=====================================\n");
574 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 printk(KERN_ERR "----------------------------------------"
576 "-------------------------------------\n\n");
577
578 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
579 }
580
581 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
582 {
583 va_list args;
584 char buf[100];
585
586 va_start(args, fmt);
587 vsnprintf(buf, sizeof(buf), fmt, args);
588 va_end(args);
589 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
590 }
591
592 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
593 {
594 unsigned int off; /* Offset of last byte */
595 u8 *addr = page_address(page);
596
597 print_tracking(s, p);
598
599 print_page_info(page);
600
601 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
602 p, p - addr, get_freepointer(s, p));
603
604 if (p > addr + 16)
605 print_section("Bytes b4 ", p - 16, 16);
606
607 print_section("Object ", p, min_t(unsigned long, s->object_size,
608 PAGE_SIZE));
609 if (s->flags & SLAB_RED_ZONE)
610 print_section("Redzone ", p + s->object_size,
611 s->inuse - s->object_size);
612
613 if (s->offset)
614 off = s->offset + sizeof(void *);
615 else
616 off = s->inuse;
617
618 if (s->flags & SLAB_STORE_USER)
619 off += 2 * sizeof(struct track);
620
621 if (off != s->size)
622 /* Beginning of the filler is the free pointer */
623 print_section("Padding ", p + off, s->size - off);
624
625 dump_stack();
626 }
627
628 static void object_err(struct kmem_cache *s, struct page *page,
629 u8 *object, char *reason)
630 {
631 slab_bug(s, "%s", reason);
632 print_trailer(s, page, object);
633 }
634
635 static void slab_err(struct kmem_cache *s, struct page *page,
636 const char *fmt, ...)
637 {
638 va_list args;
639 char buf[100];
640
641 va_start(args, fmt);
642 vsnprintf(buf, sizeof(buf), fmt, args);
643 va_end(args);
644 slab_bug(s, "%s", buf);
645 print_page_info(page);
646 dump_stack();
647 }
648
649 static void init_object(struct kmem_cache *s, void *object, u8 val)
650 {
651 u8 *p = object;
652
653 if (s->flags & __OBJECT_POISON) {
654 memset(p, POISON_FREE, s->object_size - 1);
655 p[s->object_size - 1] = POISON_END;
656 }
657
658 if (s->flags & SLAB_RED_ZONE)
659 memset(p + s->object_size, val, s->inuse - s->object_size);
660 }
661
662 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
663 void *from, void *to)
664 {
665 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
666 memset(from, data, to - from);
667 }
668
669 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
670 u8 *object, char *what,
671 u8 *start, unsigned int value, unsigned int bytes)
672 {
673 u8 *fault;
674 u8 *end;
675
676 fault = memchr_inv(start, value, bytes);
677 if (!fault)
678 return 1;
679
680 end = start + bytes;
681 while (end > fault && end[-1] == value)
682 end--;
683
684 slab_bug(s, "%s overwritten", what);
685 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
686 fault, end - 1, fault[0], value);
687 print_trailer(s, page, object);
688
689 restore_bytes(s, what, value, fault, end);
690 return 0;
691 }
692
693 /*
694 * Object layout:
695 *
696 * object address
697 * Bytes of the object to be managed.
698 * If the freepointer may overlay the object then the free
699 * pointer is the first word of the object.
700 *
701 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
702 * 0xa5 (POISON_END)
703 *
704 * object + s->object_size
705 * Padding to reach word boundary. This is also used for Redzoning.
706 * Padding is extended by another word if Redzoning is enabled and
707 * object_size == inuse.
708 *
709 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
710 * 0xcc (RED_ACTIVE) for objects in use.
711 *
712 * object + s->inuse
713 * Meta data starts here.
714 *
715 * A. Free pointer (if we cannot overwrite object on free)
716 * B. Tracking data for SLAB_STORE_USER
717 * C. Padding to reach required alignment boundary or at mininum
718 * one word if debugging is on to be able to detect writes
719 * before the word boundary.
720 *
721 * Padding is done using 0x5a (POISON_INUSE)
722 *
723 * object + s->size
724 * Nothing is used beyond s->size.
725 *
726 * If slabcaches are merged then the object_size and inuse boundaries are mostly
727 * ignored. And therefore no slab options that rely on these boundaries
728 * may be used with merged slabcaches.
729 */
730
731 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
732 {
733 unsigned long off = s->inuse; /* The end of info */
734
735 if (s->offset)
736 /* Freepointer is placed after the object. */
737 off += sizeof(void *);
738
739 if (s->flags & SLAB_STORE_USER)
740 /* We also have user information there */
741 off += 2 * sizeof(struct track);
742
743 if (s->size == off)
744 return 1;
745
746 return check_bytes_and_report(s, page, p, "Object padding",
747 p + off, POISON_INUSE, s->size - off);
748 }
749
750 /* Check the pad bytes at the end of a slab page */
751 static int slab_pad_check(struct kmem_cache *s, struct page *page)
752 {
753 u8 *start;
754 u8 *fault;
755 u8 *end;
756 int length;
757 int remainder;
758
759 if (!(s->flags & SLAB_POISON))
760 return 1;
761
762 start = page_address(page);
763 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 end = start + length;
765 remainder = length % s->size;
766 if (!remainder)
767 return 1;
768
769 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 if (!fault)
771 return 1;
772 while (end > fault && end[-1] == POISON_INUSE)
773 end--;
774
775 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776 print_section("Padding ", end - remainder, remainder);
777
778 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779 return 0;
780 }
781
782 static int check_object(struct kmem_cache *s, struct page *page,
783 void *object, u8 val)
784 {
785 u8 *p = object;
786 u8 *endobject = object + s->object_size;
787
788 if (s->flags & SLAB_RED_ZONE) {
789 if (!check_bytes_and_report(s, page, object, "Redzone",
790 endobject, val, s->inuse - s->object_size))
791 return 0;
792 } else {
793 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
794 check_bytes_and_report(s, page, p, "Alignment padding",
795 endobject, POISON_INUSE,
796 s->inuse - s->object_size);
797 }
798 }
799
800 if (s->flags & SLAB_POISON) {
801 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802 (!check_bytes_and_report(s, page, p, "Poison", p,
803 POISON_FREE, s->object_size - 1) ||
804 !check_bytes_and_report(s, page, p, "Poison",
805 p + s->object_size - 1, POISON_END, 1)))
806 return 0;
807 /*
808 * check_pad_bytes cleans up on its own.
809 */
810 check_pad_bytes(s, page, p);
811 }
812
813 if (!s->offset && val == SLUB_RED_ACTIVE)
814 /*
815 * Object and freepointer overlap. Cannot check
816 * freepointer while object is allocated.
817 */
818 return 1;
819
820 /* Check free pointer validity */
821 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
822 object_err(s, page, p, "Freepointer corrupt");
823 /*
824 * No choice but to zap it and thus lose the remainder
825 * of the free objects in this slab. May cause
826 * another error because the object count is now wrong.
827 */
828 set_freepointer(s, p, NULL);
829 return 0;
830 }
831 return 1;
832 }
833
834 static int check_slab(struct kmem_cache *s, struct page *page)
835 {
836 int maxobj;
837
838 VM_BUG_ON(!irqs_disabled());
839
840 if (!PageSlab(page)) {
841 slab_err(s, page, "Not a valid slab page");
842 return 0;
843 }
844
845 maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 if (page->objects > maxobj) {
847 slab_err(s, page, "objects %u > max %u",
848 s->name, page->objects, maxobj);
849 return 0;
850 }
851 if (page->inuse > page->objects) {
852 slab_err(s, page, "inuse %u > max %u",
853 s->name, page->inuse, page->objects);
854 return 0;
855 }
856 /* Slab_pad_check fixes things up after itself */
857 slab_pad_check(s, page);
858 return 1;
859 }
860
861 /*
862 * Determine if a certain object on a page is on the freelist. Must hold the
863 * slab lock to guarantee that the chains are in a consistent state.
864 */
865 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
866 {
867 int nr = 0;
868 void *fp;
869 void *object = NULL;
870 unsigned long max_objects;
871
872 fp = page->freelist;
873 while (fp && nr <= page->objects) {
874 if (fp == search)
875 return 1;
876 if (!check_valid_pointer(s, page, fp)) {
877 if (object) {
878 object_err(s, page, object,
879 "Freechain corrupt");
880 set_freepointer(s, object, NULL);
881 } else {
882 slab_err(s, page, "Freepointer corrupt");
883 page->freelist = NULL;
884 page->inuse = page->objects;
885 slab_fix(s, "Freelist cleared");
886 return 0;
887 }
888 break;
889 }
890 object = fp;
891 fp = get_freepointer(s, object);
892 nr++;
893 }
894
895 max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 if (max_objects > MAX_OBJS_PER_PAGE)
897 max_objects = MAX_OBJS_PER_PAGE;
898
899 if (page->objects != max_objects) {
900 slab_err(s, page, "Wrong number of objects. Found %d but "
901 "should be %d", page->objects, max_objects);
902 page->objects = max_objects;
903 slab_fix(s, "Number of objects adjusted.");
904 }
905 if (page->inuse != page->objects - nr) {
906 slab_err(s, page, "Wrong object count. Counter is %d but "
907 "counted were %d", page->inuse, page->objects - nr);
908 page->inuse = page->objects - nr;
909 slab_fix(s, "Object count adjusted.");
910 }
911 return search == NULL;
912 }
913
914 static void trace(struct kmem_cache *s, struct page *page, void *object,
915 int alloc)
916 {
917 if (s->flags & SLAB_TRACE) {
918 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
919 s->name,
920 alloc ? "alloc" : "free",
921 object, page->inuse,
922 page->freelist);
923
924 if (!alloc)
925 print_section("Object ", (void *)object,
926 s->object_size);
927
928 dump_stack();
929 }
930 }
931
932 /*
933 * Hooks for other subsystems that check memory allocations. In a typical
934 * production configuration these hooks all should produce no code at all.
935 */
936 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
937 {
938 flags &= gfp_allowed_mask;
939 lockdep_trace_alloc(flags);
940 might_sleep_if(flags & __GFP_WAIT);
941
942 return should_failslab(s->object_size, flags, s->flags);
943 }
944
945 static inline void slab_post_alloc_hook(struct kmem_cache *s,
946 gfp_t flags, void *object)
947 {
948 flags &= gfp_allowed_mask;
949 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
950 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
951 }
952
953 static inline void slab_free_hook(struct kmem_cache *s, void *x)
954 {
955 kmemleak_free_recursive(x, s->flags);
956
957 /*
958 * Trouble is that we may no longer disable interupts in the fast path
959 * So in order to make the debug calls that expect irqs to be
960 * disabled we need to disable interrupts temporarily.
961 */
962 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
963 {
964 unsigned long flags;
965
966 local_irq_save(flags);
967 kmemcheck_slab_free(s, x, s->object_size);
968 debug_check_no_locks_freed(x, s->object_size);
969 local_irq_restore(flags);
970 }
971 #endif
972 if (!(s->flags & SLAB_DEBUG_OBJECTS))
973 debug_check_no_obj_freed(x, s->object_size);
974 }
975
976 /*
977 * Tracking of fully allocated slabs for debugging purposes.
978 *
979 * list_lock must be held.
980 */
981 static void add_full(struct kmem_cache *s,
982 struct kmem_cache_node *n, struct page *page)
983 {
984 if (!(s->flags & SLAB_STORE_USER))
985 return;
986
987 list_add(&page->lru, &n->full);
988 }
989
990 /*
991 * list_lock must be held.
992 */
993 static void remove_full(struct kmem_cache *s, struct page *page)
994 {
995 if (!(s->flags & SLAB_STORE_USER))
996 return;
997
998 list_del(&page->lru);
999 }
1000
1001 /* Tracking of the number of slabs for debugging purposes */
1002 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1003 {
1004 struct kmem_cache_node *n = get_node(s, node);
1005
1006 return atomic_long_read(&n->nr_slabs);
1007 }
1008
1009 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1010 {
1011 return atomic_long_read(&n->nr_slabs);
1012 }
1013
1014 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1015 {
1016 struct kmem_cache_node *n = get_node(s, node);
1017
1018 /*
1019 * May be called early in order to allocate a slab for the
1020 * kmem_cache_node structure. Solve the chicken-egg
1021 * dilemma by deferring the increment of the count during
1022 * bootstrap (see early_kmem_cache_node_alloc).
1023 */
1024 if (likely(n)) {
1025 atomic_long_inc(&n->nr_slabs);
1026 atomic_long_add(objects, &n->total_objects);
1027 }
1028 }
1029 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1030 {
1031 struct kmem_cache_node *n = get_node(s, node);
1032
1033 atomic_long_dec(&n->nr_slabs);
1034 atomic_long_sub(objects, &n->total_objects);
1035 }
1036
1037 /* Object debug checks for alloc/free paths */
1038 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1039 void *object)
1040 {
1041 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1042 return;
1043
1044 init_object(s, object, SLUB_RED_INACTIVE);
1045 init_tracking(s, object);
1046 }
1047
1048 static noinline int alloc_debug_processing(struct kmem_cache *s,
1049 struct page *page,
1050 void *object, unsigned long addr)
1051 {
1052 if (!check_slab(s, page))
1053 goto bad;
1054
1055 if (!check_valid_pointer(s, page, object)) {
1056 object_err(s, page, object, "Freelist Pointer check fails");
1057 goto bad;
1058 }
1059
1060 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1061 goto bad;
1062
1063 /* Success perform special debug activities for allocs */
1064 if (s->flags & SLAB_STORE_USER)
1065 set_track(s, object, TRACK_ALLOC, addr);
1066 trace(s, page, object, 1);
1067 init_object(s, object, SLUB_RED_ACTIVE);
1068 return 1;
1069
1070 bad:
1071 if (PageSlab(page)) {
1072 /*
1073 * If this is a slab page then lets do the best we can
1074 * to avoid issues in the future. Marking all objects
1075 * as used avoids touching the remaining objects.
1076 */
1077 slab_fix(s, "Marking all objects used");
1078 page->inuse = page->objects;
1079 page->freelist = NULL;
1080 }
1081 return 0;
1082 }
1083
1084 static noinline struct kmem_cache_node *free_debug_processing(
1085 struct kmem_cache *s, struct page *page, void *object,
1086 unsigned long addr, unsigned long *flags)
1087 {
1088 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1089
1090 spin_lock_irqsave(&n->list_lock, *flags);
1091 slab_lock(page);
1092
1093 if (!check_slab(s, page))
1094 goto fail;
1095
1096 if (!check_valid_pointer(s, page, object)) {
1097 slab_err(s, page, "Invalid object pointer 0x%p", object);
1098 goto fail;
1099 }
1100
1101 if (on_freelist(s, page, object)) {
1102 object_err(s, page, object, "Object already free");
1103 goto fail;
1104 }
1105
1106 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1107 goto out;
1108
1109 if (unlikely(s != page->slab_cache)) {
1110 if (!PageSlab(page)) {
1111 slab_err(s, page, "Attempt to free object(0x%p) "
1112 "outside of slab", object);
1113 } else if (!page->slab_cache) {
1114 printk(KERN_ERR
1115 "SLUB <none>: no slab for object 0x%p.\n",
1116 object);
1117 dump_stack();
1118 } else
1119 object_err(s, page, object,
1120 "page slab pointer corrupt.");
1121 goto fail;
1122 }
1123
1124 if (s->flags & SLAB_STORE_USER)
1125 set_track(s, object, TRACK_FREE, addr);
1126 trace(s, page, object, 0);
1127 init_object(s, object, SLUB_RED_INACTIVE);
1128 out:
1129 slab_unlock(page);
1130 /*
1131 * Keep node_lock to preserve integrity
1132 * until the object is actually freed
1133 */
1134 return n;
1135
1136 fail:
1137 slab_unlock(page);
1138 spin_unlock_irqrestore(&n->list_lock, *flags);
1139 slab_fix(s, "Object at 0x%p not freed", object);
1140 return NULL;
1141 }
1142
1143 static int __init setup_slub_debug(char *str)
1144 {
1145 slub_debug = DEBUG_DEFAULT_FLAGS;
1146 if (*str++ != '=' || !*str)
1147 /*
1148 * No options specified. Switch on full debugging.
1149 */
1150 goto out;
1151
1152 if (*str == ',')
1153 /*
1154 * No options but restriction on slabs. This means full
1155 * debugging for slabs matching a pattern.
1156 */
1157 goto check_slabs;
1158
1159 if (tolower(*str) == 'o') {
1160 /*
1161 * Avoid enabling debugging on caches if its minimum order
1162 * would increase as a result.
1163 */
1164 disable_higher_order_debug = 1;
1165 goto out;
1166 }
1167
1168 slub_debug = 0;
1169 if (*str == '-')
1170 /*
1171 * Switch off all debugging measures.
1172 */
1173 goto out;
1174
1175 /*
1176 * Determine which debug features should be switched on
1177 */
1178 for (; *str && *str != ','; str++) {
1179 switch (tolower(*str)) {
1180 case 'f':
1181 slub_debug |= SLAB_DEBUG_FREE;
1182 break;
1183 case 'z':
1184 slub_debug |= SLAB_RED_ZONE;
1185 break;
1186 case 'p':
1187 slub_debug |= SLAB_POISON;
1188 break;
1189 case 'u':
1190 slub_debug |= SLAB_STORE_USER;
1191 break;
1192 case 't':
1193 slub_debug |= SLAB_TRACE;
1194 break;
1195 case 'a':
1196 slub_debug |= SLAB_FAILSLAB;
1197 break;
1198 default:
1199 printk(KERN_ERR "slub_debug option '%c' "
1200 "unknown. skipped\n", *str);
1201 }
1202 }
1203
1204 check_slabs:
1205 if (*str == ',')
1206 slub_debug_slabs = str + 1;
1207 out:
1208 return 1;
1209 }
1210
1211 __setup("slub_debug", setup_slub_debug);
1212
1213 static unsigned long kmem_cache_flags(unsigned long object_size,
1214 unsigned long flags, const char *name,
1215 void (*ctor)(void *))
1216 {
1217 /*
1218 * Enable debugging if selected on the kernel commandline.
1219 */
1220 if (slub_debug && (!slub_debug_slabs ||
1221 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1222 flags |= slub_debug;
1223
1224 return flags;
1225 }
1226 #else
1227 static inline void setup_object_debug(struct kmem_cache *s,
1228 struct page *page, void *object) {}
1229
1230 static inline int alloc_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233 static inline struct kmem_cache_node *free_debug_processing(
1234 struct kmem_cache *s, struct page *page, void *object,
1235 unsigned long addr, unsigned long *flags) { return NULL; }
1236
1237 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1238 { return 1; }
1239 static inline int check_object(struct kmem_cache *s, struct page *page,
1240 void *object, u8 val) { return 1; }
1241 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1242 struct page *page) {}
1243 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1244 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1245 unsigned long flags, const char *name,
1246 void (*ctor)(void *))
1247 {
1248 return flags;
1249 }
1250 #define slub_debug 0
1251
1252 #define disable_higher_order_debug 0
1253
1254 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1255 { return 0; }
1256 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1257 { return 0; }
1258 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1259 int objects) {}
1260 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1261 int objects) {}
1262
1263 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1264 { return 0; }
1265
1266 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1267 void *object) {}
1268
1269 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1270
1271 #endif /* CONFIG_SLUB_DEBUG */
1272
1273 /*
1274 * Slab allocation and freeing
1275 */
1276 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1277 struct kmem_cache_order_objects oo)
1278 {
1279 int order = oo_order(oo);
1280
1281 flags |= __GFP_NOTRACK;
1282
1283 if (node == NUMA_NO_NODE)
1284 return alloc_pages(flags, order);
1285 else
1286 return alloc_pages_exact_node(node, flags, order);
1287 }
1288
1289 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1290 {
1291 struct page *page;
1292 struct kmem_cache_order_objects oo = s->oo;
1293 gfp_t alloc_gfp;
1294
1295 flags &= gfp_allowed_mask;
1296
1297 if (flags & __GFP_WAIT)
1298 local_irq_enable();
1299
1300 flags |= s->allocflags;
1301
1302 /*
1303 * Let the initial higher-order allocation fail under memory pressure
1304 * so we fall-back to the minimum order allocation.
1305 */
1306 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1307
1308 page = alloc_slab_page(alloc_gfp, node, oo);
1309 if (unlikely(!page)) {
1310 oo = s->min;
1311 /*
1312 * Allocation may have failed due to fragmentation.
1313 * Try a lower order alloc if possible
1314 */
1315 page = alloc_slab_page(flags, node, oo);
1316
1317 if (page)
1318 stat(s, ORDER_FALLBACK);
1319 }
1320
1321 if (kmemcheck_enabled && page
1322 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1323 int pages = 1 << oo_order(oo);
1324
1325 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1326
1327 /*
1328 * Objects from caches that have a constructor don't get
1329 * cleared when they're allocated, so we need to do it here.
1330 */
1331 if (s->ctor)
1332 kmemcheck_mark_uninitialized_pages(page, pages);
1333 else
1334 kmemcheck_mark_unallocated_pages(page, pages);
1335 }
1336
1337 if (flags & __GFP_WAIT)
1338 local_irq_disable();
1339 if (!page)
1340 return NULL;
1341
1342 page->objects = oo_objects(oo);
1343 mod_zone_page_state(page_zone(page),
1344 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1345 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1346 1 << oo_order(oo));
1347
1348 return page;
1349 }
1350
1351 static void setup_object(struct kmem_cache *s, struct page *page,
1352 void *object)
1353 {
1354 setup_object_debug(s, page, object);
1355 if (unlikely(s->ctor))
1356 s->ctor(object);
1357 }
1358
1359 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1360 {
1361 struct page *page;
1362 void *start;
1363 void *last;
1364 void *p;
1365 int order;
1366
1367 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1368
1369 page = allocate_slab(s,
1370 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1371 if (!page)
1372 goto out;
1373
1374 order = compound_order(page);
1375 inc_slabs_node(s, page_to_nid(page), page->objects);
1376 memcg_bind_pages(s, order);
1377 page->slab_cache = s;
1378 __SetPageSlab(page);
1379 if (page->pfmemalloc)
1380 SetPageSlabPfmemalloc(page);
1381
1382 start = page_address(page);
1383
1384 if (unlikely(s->flags & SLAB_POISON))
1385 memset(start, POISON_INUSE, PAGE_SIZE << order);
1386
1387 last = start;
1388 for_each_object(p, s, start, page->objects) {
1389 setup_object(s, page, last);
1390 set_freepointer(s, last, p);
1391 last = p;
1392 }
1393 setup_object(s, page, last);
1394 set_freepointer(s, last, NULL);
1395
1396 page->freelist = start;
1397 page->inuse = page->objects;
1398 page->frozen = 1;
1399 out:
1400 return page;
1401 }
1402
1403 static void __free_slab(struct kmem_cache *s, struct page *page)
1404 {
1405 int order = compound_order(page);
1406 int pages = 1 << order;
1407
1408 if (kmem_cache_debug(s)) {
1409 void *p;
1410
1411 slab_pad_check(s, page);
1412 for_each_object(p, s, page_address(page),
1413 page->objects)
1414 check_object(s, page, p, SLUB_RED_INACTIVE);
1415 }
1416
1417 kmemcheck_free_shadow(page, compound_order(page));
1418
1419 mod_zone_page_state(page_zone(page),
1420 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1421 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1422 -pages);
1423
1424 __ClearPageSlabPfmemalloc(page);
1425 __ClearPageSlab(page);
1426
1427 memcg_release_pages(s, order);
1428 page_mapcount_reset(page);
1429 if (current->reclaim_state)
1430 current->reclaim_state->reclaimed_slab += pages;
1431 __free_memcg_kmem_pages(page, order);
1432 }
1433
1434 #define need_reserve_slab_rcu \
1435 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1436
1437 static void rcu_free_slab(struct rcu_head *h)
1438 {
1439 struct page *page;
1440
1441 if (need_reserve_slab_rcu)
1442 page = virt_to_head_page(h);
1443 else
1444 page = container_of((struct list_head *)h, struct page, lru);
1445
1446 __free_slab(page->slab_cache, page);
1447 }
1448
1449 static void free_slab(struct kmem_cache *s, struct page *page)
1450 {
1451 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1452 struct rcu_head *head;
1453
1454 if (need_reserve_slab_rcu) {
1455 int order = compound_order(page);
1456 int offset = (PAGE_SIZE << order) - s->reserved;
1457
1458 VM_BUG_ON(s->reserved != sizeof(*head));
1459 head = page_address(page) + offset;
1460 } else {
1461 /*
1462 * RCU free overloads the RCU head over the LRU
1463 */
1464 head = (void *)&page->lru;
1465 }
1466
1467 call_rcu(head, rcu_free_slab);
1468 } else
1469 __free_slab(s, page);
1470 }
1471
1472 static void discard_slab(struct kmem_cache *s, struct page *page)
1473 {
1474 dec_slabs_node(s, page_to_nid(page), page->objects);
1475 free_slab(s, page);
1476 }
1477
1478 /*
1479 * Management of partially allocated slabs.
1480 *
1481 * list_lock must be held.
1482 */
1483 static inline void add_partial(struct kmem_cache_node *n,
1484 struct page *page, int tail)
1485 {
1486 n->nr_partial++;
1487 if (tail == DEACTIVATE_TO_TAIL)
1488 list_add_tail(&page->lru, &n->partial);
1489 else
1490 list_add(&page->lru, &n->partial);
1491 }
1492
1493 /*
1494 * list_lock must be held.
1495 */
1496 static inline void remove_partial(struct kmem_cache_node *n,
1497 struct page *page)
1498 {
1499 list_del(&page->lru);
1500 n->nr_partial--;
1501 }
1502
1503 /*
1504 * Remove slab from the partial list, freeze it and
1505 * return the pointer to the freelist.
1506 *
1507 * Returns a list of objects or NULL if it fails.
1508 *
1509 * Must hold list_lock since we modify the partial list.
1510 */
1511 static inline void *acquire_slab(struct kmem_cache *s,
1512 struct kmem_cache_node *n, struct page *page,
1513 int mode, int *objects)
1514 {
1515 void *freelist;
1516 unsigned long counters;
1517 struct page new;
1518
1519 /*
1520 * Zap the freelist and set the frozen bit.
1521 * The old freelist is the list of objects for the
1522 * per cpu allocation list.
1523 */
1524 freelist = page->freelist;
1525 counters = page->counters;
1526 new.counters = counters;
1527 *objects = new.objects - new.inuse;
1528 if (mode) {
1529 new.inuse = page->objects;
1530 new.freelist = NULL;
1531 } else {
1532 new.freelist = freelist;
1533 }
1534
1535 VM_BUG_ON(new.frozen);
1536 new.frozen = 1;
1537
1538 if (!__cmpxchg_double_slab(s, page,
1539 freelist, counters,
1540 new.freelist, new.counters,
1541 "acquire_slab"))
1542 return NULL;
1543
1544 remove_partial(n, page);
1545 WARN_ON(!freelist);
1546 return freelist;
1547 }
1548
1549 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1550 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1551
1552 /*
1553 * Try to allocate a partial slab from a specific node.
1554 */
1555 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1556 struct kmem_cache_cpu *c, gfp_t flags)
1557 {
1558 struct page *page, *page2;
1559 void *object = NULL;
1560 int available = 0;
1561 int objects;
1562
1563 /*
1564 * Racy check. If we mistakenly see no partial slabs then we
1565 * just allocate an empty slab. If we mistakenly try to get a
1566 * partial slab and there is none available then get_partials()
1567 * will return NULL.
1568 */
1569 if (!n || !n->nr_partial)
1570 return NULL;
1571
1572 spin_lock(&n->list_lock);
1573 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1574 void *t;
1575
1576 if (!pfmemalloc_match(page, flags))
1577 continue;
1578
1579 t = acquire_slab(s, n, page, object == NULL, &objects);
1580 if (!t)
1581 break;
1582
1583 available += objects;
1584 if (!object) {
1585 c->page = page;
1586 stat(s, ALLOC_FROM_PARTIAL);
1587 object = t;
1588 } else {
1589 put_cpu_partial(s, page, 0);
1590 stat(s, CPU_PARTIAL_NODE);
1591 }
1592 if (!kmem_cache_has_cpu_partial(s)
1593 || available > s->cpu_partial / 2)
1594 break;
1595
1596 }
1597 spin_unlock(&n->list_lock);
1598 return object;
1599 }
1600
1601 /*
1602 * Get a page from somewhere. Search in increasing NUMA distances.
1603 */
1604 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1605 struct kmem_cache_cpu *c)
1606 {
1607 #ifdef CONFIG_NUMA
1608 struct zonelist *zonelist;
1609 struct zoneref *z;
1610 struct zone *zone;
1611 enum zone_type high_zoneidx = gfp_zone(flags);
1612 void *object;
1613 unsigned int cpuset_mems_cookie;
1614
1615 /*
1616 * The defrag ratio allows a configuration of the tradeoffs between
1617 * inter node defragmentation and node local allocations. A lower
1618 * defrag_ratio increases the tendency to do local allocations
1619 * instead of attempting to obtain partial slabs from other nodes.
1620 *
1621 * If the defrag_ratio is set to 0 then kmalloc() always
1622 * returns node local objects. If the ratio is higher then kmalloc()
1623 * may return off node objects because partial slabs are obtained
1624 * from other nodes and filled up.
1625 *
1626 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1627 * defrag_ratio = 1000) then every (well almost) allocation will
1628 * first attempt to defrag slab caches on other nodes. This means
1629 * scanning over all nodes to look for partial slabs which may be
1630 * expensive if we do it every time we are trying to find a slab
1631 * with available objects.
1632 */
1633 if (!s->remote_node_defrag_ratio ||
1634 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1635 return NULL;
1636
1637 do {
1638 cpuset_mems_cookie = get_mems_allowed();
1639 zonelist = node_zonelist(slab_node(), flags);
1640 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1641 struct kmem_cache_node *n;
1642
1643 n = get_node(s, zone_to_nid(zone));
1644
1645 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1646 n->nr_partial > s->min_partial) {
1647 object = get_partial_node(s, n, c, flags);
1648 if (object) {
1649 /*
1650 * Return the object even if
1651 * put_mems_allowed indicated that
1652 * the cpuset mems_allowed was
1653 * updated in parallel. It's a
1654 * harmless race between the alloc
1655 * and the cpuset update.
1656 */
1657 put_mems_allowed(cpuset_mems_cookie);
1658 return object;
1659 }
1660 }
1661 }
1662 } while (!put_mems_allowed(cpuset_mems_cookie));
1663 #endif
1664 return NULL;
1665 }
1666
1667 /*
1668 * Get a partial page, lock it and return it.
1669 */
1670 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1671 struct kmem_cache_cpu *c)
1672 {
1673 void *object;
1674 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1675
1676 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1677 if (object || node != NUMA_NO_NODE)
1678 return object;
1679
1680 return get_any_partial(s, flags, c);
1681 }
1682
1683 #ifdef CONFIG_PREEMPT
1684 /*
1685 * Calculate the next globally unique transaction for disambiguiation
1686 * during cmpxchg. The transactions start with the cpu number and are then
1687 * incremented by CONFIG_NR_CPUS.
1688 */
1689 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1690 #else
1691 /*
1692 * No preemption supported therefore also no need to check for
1693 * different cpus.
1694 */
1695 #define TID_STEP 1
1696 #endif
1697
1698 static inline unsigned long next_tid(unsigned long tid)
1699 {
1700 return tid + TID_STEP;
1701 }
1702
1703 static inline unsigned int tid_to_cpu(unsigned long tid)
1704 {
1705 return tid % TID_STEP;
1706 }
1707
1708 static inline unsigned long tid_to_event(unsigned long tid)
1709 {
1710 return tid / TID_STEP;
1711 }
1712
1713 static inline unsigned int init_tid(int cpu)
1714 {
1715 return cpu;
1716 }
1717
1718 static inline void note_cmpxchg_failure(const char *n,
1719 const struct kmem_cache *s, unsigned long tid)
1720 {
1721 #ifdef SLUB_DEBUG_CMPXCHG
1722 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1723
1724 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1725
1726 #ifdef CONFIG_PREEMPT
1727 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1728 printk("due to cpu change %d -> %d\n",
1729 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1730 else
1731 #endif
1732 if (tid_to_event(tid) != tid_to_event(actual_tid))
1733 printk("due to cpu running other code. Event %ld->%ld\n",
1734 tid_to_event(tid), tid_to_event(actual_tid));
1735 else
1736 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1737 actual_tid, tid, next_tid(tid));
1738 #endif
1739 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1740 }
1741
1742 static void init_kmem_cache_cpus(struct kmem_cache *s)
1743 {
1744 int cpu;
1745
1746 for_each_possible_cpu(cpu)
1747 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1748 }
1749
1750 /*
1751 * Remove the cpu slab
1752 */
1753 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1754 void *freelist)
1755 {
1756 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1757 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1758 int lock = 0;
1759 enum slab_modes l = M_NONE, m = M_NONE;
1760 void *nextfree;
1761 int tail = DEACTIVATE_TO_HEAD;
1762 struct page new;
1763 struct page old;
1764
1765 if (page->freelist) {
1766 stat(s, DEACTIVATE_REMOTE_FREES);
1767 tail = DEACTIVATE_TO_TAIL;
1768 }
1769
1770 /*
1771 * Stage one: Free all available per cpu objects back
1772 * to the page freelist while it is still frozen. Leave the
1773 * last one.
1774 *
1775 * There is no need to take the list->lock because the page
1776 * is still frozen.
1777 */
1778 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1779 void *prior;
1780 unsigned long counters;
1781
1782 do {
1783 prior = page->freelist;
1784 counters = page->counters;
1785 set_freepointer(s, freelist, prior);
1786 new.counters = counters;
1787 new.inuse--;
1788 VM_BUG_ON(!new.frozen);
1789
1790 } while (!__cmpxchg_double_slab(s, page,
1791 prior, counters,
1792 freelist, new.counters,
1793 "drain percpu freelist"));
1794
1795 freelist = nextfree;
1796 }
1797
1798 /*
1799 * Stage two: Ensure that the page is unfrozen while the
1800 * list presence reflects the actual number of objects
1801 * during unfreeze.
1802 *
1803 * We setup the list membership and then perform a cmpxchg
1804 * with the count. If there is a mismatch then the page
1805 * is not unfrozen but the page is on the wrong list.
1806 *
1807 * Then we restart the process which may have to remove
1808 * the page from the list that we just put it on again
1809 * because the number of objects in the slab may have
1810 * changed.
1811 */
1812 redo:
1813
1814 old.freelist = page->freelist;
1815 old.counters = page->counters;
1816 VM_BUG_ON(!old.frozen);
1817
1818 /* Determine target state of the slab */
1819 new.counters = old.counters;
1820 if (freelist) {
1821 new.inuse--;
1822 set_freepointer(s, freelist, old.freelist);
1823 new.freelist = freelist;
1824 } else
1825 new.freelist = old.freelist;
1826
1827 new.frozen = 0;
1828
1829 if (!new.inuse && n->nr_partial > s->min_partial)
1830 m = M_FREE;
1831 else if (new.freelist) {
1832 m = M_PARTIAL;
1833 if (!lock) {
1834 lock = 1;
1835 /*
1836 * Taking the spinlock removes the possiblity
1837 * that acquire_slab() will see a slab page that
1838 * is frozen
1839 */
1840 spin_lock(&n->list_lock);
1841 }
1842 } else {
1843 m = M_FULL;
1844 if (kmem_cache_debug(s) && !lock) {
1845 lock = 1;
1846 /*
1847 * This also ensures that the scanning of full
1848 * slabs from diagnostic functions will not see
1849 * any frozen slabs.
1850 */
1851 spin_lock(&n->list_lock);
1852 }
1853 }
1854
1855 if (l != m) {
1856
1857 if (l == M_PARTIAL)
1858
1859 remove_partial(n, page);
1860
1861 else if (l == M_FULL)
1862
1863 remove_full(s, page);
1864
1865 if (m == M_PARTIAL) {
1866
1867 add_partial(n, page, tail);
1868 stat(s, tail);
1869
1870 } else if (m == M_FULL) {
1871
1872 stat(s, DEACTIVATE_FULL);
1873 add_full(s, n, page);
1874
1875 }
1876 }
1877
1878 l = m;
1879 if (!__cmpxchg_double_slab(s, page,
1880 old.freelist, old.counters,
1881 new.freelist, new.counters,
1882 "unfreezing slab"))
1883 goto redo;
1884
1885 if (lock)
1886 spin_unlock(&n->list_lock);
1887
1888 if (m == M_FREE) {
1889 stat(s, DEACTIVATE_EMPTY);
1890 discard_slab(s, page);
1891 stat(s, FREE_SLAB);
1892 }
1893 }
1894
1895 /*
1896 * Unfreeze all the cpu partial slabs.
1897 *
1898 * This function must be called with interrupts disabled
1899 * for the cpu using c (or some other guarantee must be there
1900 * to guarantee no concurrent accesses).
1901 */
1902 static void unfreeze_partials(struct kmem_cache *s,
1903 struct kmem_cache_cpu *c)
1904 {
1905 #ifdef CONFIG_SLUB_CPU_PARTIAL
1906 struct kmem_cache_node *n = NULL, *n2 = NULL;
1907 struct page *page, *discard_page = NULL;
1908
1909 while ((page = c->partial)) {
1910 struct page new;
1911 struct page old;
1912
1913 c->partial = page->next;
1914
1915 n2 = get_node(s, page_to_nid(page));
1916 if (n != n2) {
1917 if (n)
1918 spin_unlock(&n->list_lock);
1919
1920 n = n2;
1921 spin_lock(&n->list_lock);
1922 }
1923
1924 do {
1925
1926 old.freelist = page->freelist;
1927 old.counters = page->counters;
1928 VM_BUG_ON(!old.frozen);
1929
1930 new.counters = old.counters;
1931 new.freelist = old.freelist;
1932
1933 new.frozen = 0;
1934
1935 } while (!__cmpxchg_double_slab(s, page,
1936 old.freelist, old.counters,
1937 new.freelist, new.counters,
1938 "unfreezing slab"));
1939
1940 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1941 page->next = discard_page;
1942 discard_page = page;
1943 } else {
1944 add_partial(n, page, DEACTIVATE_TO_TAIL);
1945 stat(s, FREE_ADD_PARTIAL);
1946 }
1947 }
1948
1949 if (n)
1950 spin_unlock(&n->list_lock);
1951
1952 while (discard_page) {
1953 page = discard_page;
1954 discard_page = discard_page->next;
1955
1956 stat(s, DEACTIVATE_EMPTY);
1957 discard_slab(s, page);
1958 stat(s, FREE_SLAB);
1959 }
1960 #endif
1961 }
1962
1963 /*
1964 * Put a page that was just frozen (in __slab_free) into a partial page
1965 * slot if available. This is done without interrupts disabled and without
1966 * preemption disabled. The cmpxchg is racy and may put the partial page
1967 * onto a random cpus partial slot.
1968 *
1969 * If we did not find a slot then simply move all the partials to the
1970 * per node partial list.
1971 */
1972 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1973 {
1974 #ifdef CONFIG_SLUB_CPU_PARTIAL
1975 struct page *oldpage;
1976 int pages;
1977 int pobjects;
1978
1979 if (!s->cpu_partial)
1980 return;
1981
1982 do {
1983 pages = 0;
1984 pobjects = 0;
1985 oldpage = this_cpu_read(s->cpu_slab->partial);
1986
1987 if (oldpage) {
1988 pobjects = oldpage->pobjects;
1989 pages = oldpage->pages;
1990 if (drain && pobjects > s->cpu_partial) {
1991 unsigned long flags;
1992 /*
1993 * partial array is full. Move the existing
1994 * set to the per node partial list.
1995 */
1996 local_irq_save(flags);
1997 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1998 local_irq_restore(flags);
1999 oldpage = NULL;
2000 pobjects = 0;
2001 pages = 0;
2002 stat(s, CPU_PARTIAL_DRAIN);
2003 }
2004 }
2005
2006 pages++;
2007 pobjects += page->objects - page->inuse;
2008
2009 page->pages = pages;
2010 page->pobjects = pobjects;
2011 page->next = oldpage;
2012
2013 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2014 != oldpage);
2015 #endif
2016 }
2017
2018 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2019 {
2020 stat(s, CPUSLAB_FLUSH);
2021 deactivate_slab(s, c->page, c->freelist);
2022
2023 c->tid = next_tid(c->tid);
2024 c->page = NULL;
2025 c->freelist = NULL;
2026 }
2027
2028 /*
2029 * Flush cpu slab.
2030 *
2031 * Called from IPI handler with interrupts disabled.
2032 */
2033 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2034 {
2035 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2036
2037 if (likely(c)) {
2038 if (c->page)
2039 flush_slab(s, c);
2040
2041 unfreeze_partials(s, c);
2042 }
2043 }
2044
2045 static void flush_cpu_slab(void *d)
2046 {
2047 struct kmem_cache *s = d;
2048
2049 __flush_cpu_slab(s, smp_processor_id());
2050 }
2051
2052 static bool has_cpu_slab(int cpu, void *info)
2053 {
2054 struct kmem_cache *s = info;
2055 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2056
2057 return c->page || c->partial;
2058 }
2059
2060 static void flush_all(struct kmem_cache *s)
2061 {
2062 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2063 }
2064
2065 /*
2066 * Check if the objects in a per cpu structure fit numa
2067 * locality expectations.
2068 */
2069 static inline int node_match(struct page *page, int node)
2070 {
2071 #ifdef CONFIG_NUMA
2072 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2073 return 0;
2074 #endif
2075 return 1;
2076 }
2077
2078 static int count_free(struct page *page)
2079 {
2080 return page->objects - page->inuse;
2081 }
2082
2083 static unsigned long count_partial(struct kmem_cache_node *n,
2084 int (*get_count)(struct page *))
2085 {
2086 unsigned long flags;
2087 unsigned long x = 0;
2088 struct page *page;
2089
2090 spin_lock_irqsave(&n->list_lock, flags);
2091 list_for_each_entry(page, &n->partial, lru)
2092 x += get_count(page);
2093 spin_unlock_irqrestore(&n->list_lock, flags);
2094 return x;
2095 }
2096
2097 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2098 {
2099 #ifdef CONFIG_SLUB_DEBUG
2100 return atomic_long_read(&n->total_objects);
2101 #else
2102 return 0;
2103 #endif
2104 }
2105
2106 static noinline void
2107 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2108 {
2109 int node;
2110
2111 printk(KERN_WARNING
2112 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2113 nid, gfpflags);
2114 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2115 "default order: %d, min order: %d\n", s->name, s->object_size,
2116 s->size, oo_order(s->oo), oo_order(s->min));
2117
2118 if (oo_order(s->min) > get_order(s->object_size))
2119 printk(KERN_WARNING " %s debugging increased min order, use "
2120 "slub_debug=O to disable.\n", s->name);
2121
2122 for_each_online_node(node) {
2123 struct kmem_cache_node *n = get_node(s, node);
2124 unsigned long nr_slabs;
2125 unsigned long nr_objs;
2126 unsigned long nr_free;
2127
2128 if (!n)
2129 continue;
2130
2131 nr_free = count_partial(n, count_free);
2132 nr_slabs = node_nr_slabs(n);
2133 nr_objs = node_nr_objs(n);
2134
2135 printk(KERN_WARNING
2136 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2137 node, nr_slabs, nr_objs, nr_free);
2138 }
2139 }
2140
2141 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2142 int node, struct kmem_cache_cpu **pc)
2143 {
2144 void *freelist;
2145 struct kmem_cache_cpu *c = *pc;
2146 struct page *page;
2147
2148 freelist = get_partial(s, flags, node, c);
2149
2150 if (freelist)
2151 return freelist;
2152
2153 page = new_slab(s, flags, node);
2154 if (page) {
2155 c = __this_cpu_ptr(s->cpu_slab);
2156 if (c->page)
2157 flush_slab(s, c);
2158
2159 /*
2160 * No other reference to the page yet so we can
2161 * muck around with it freely without cmpxchg
2162 */
2163 freelist = page->freelist;
2164 page->freelist = NULL;
2165
2166 stat(s, ALLOC_SLAB);
2167 c->page = page;
2168 *pc = c;
2169 } else
2170 freelist = NULL;
2171
2172 return freelist;
2173 }
2174
2175 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2176 {
2177 if (unlikely(PageSlabPfmemalloc(page)))
2178 return gfp_pfmemalloc_allowed(gfpflags);
2179
2180 return true;
2181 }
2182
2183 /*
2184 * Check the page->freelist of a page and either transfer the freelist to the
2185 * per cpu freelist or deactivate the page.
2186 *
2187 * The page is still frozen if the return value is not NULL.
2188 *
2189 * If this function returns NULL then the page has been unfrozen.
2190 *
2191 * This function must be called with interrupt disabled.
2192 */
2193 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2194 {
2195 struct page new;
2196 unsigned long counters;
2197 void *freelist;
2198
2199 do {
2200 freelist = page->freelist;
2201 counters = page->counters;
2202
2203 new.counters = counters;
2204 VM_BUG_ON(!new.frozen);
2205
2206 new.inuse = page->objects;
2207 new.frozen = freelist != NULL;
2208
2209 } while (!__cmpxchg_double_slab(s, page,
2210 freelist, counters,
2211 NULL, new.counters,
2212 "get_freelist"));
2213
2214 return freelist;
2215 }
2216
2217 /*
2218 * Slow path. The lockless freelist is empty or we need to perform
2219 * debugging duties.
2220 *
2221 * Processing is still very fast if new objects have been freed to the
2222 * regular freelist. In that case we simply take over the regular freelist
2223 * as the lockless freelist and zap the regular freelist.
2224 *
2225 * If that is not working then we fall back to the partial lists. We take the
2226 * first element of the freelist as the object to allocate now and move the
2227 * rest of the freelist to the lockless freelist.
2228 *
2229 * And if we were unable to get a new slab from the partial slab lists then
2230 * we need to allocate a new slab. This is the slowest path since it involves
2231 * a call to the page allocator and the setup of a new slab.
2232 */
2233 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2234 unsigned long addr, struct kmem_cache_cpu *c)
2235 {
2236 void *freelist;
2237 struct page *page;
2238 unsigned long flags;
2239
2240 local_irq_save(flags);
2241 #ifdef CONFIG_PREEMPT
2242 /*
2243 * We may have been preempted and rescheduled on a different
2244 * cpu before disabling interrupts. Need to reload cpu area
2245 * pointer.
2246 */
2247 c = this_cpu_ptr(s->cpu_slab);
2248 #endif
2249
2250 page = c->page;
2251 if (!page)
2252 goto new_slab;
2253 redo:
2254
2255 if (unlikely(!node_match(page, node))) {
2256 stat(s, ALLOC_NODE_MISMATCH);
2257 deactivate_slab(s, page, c->freelist);
2258 c->page = NULL;
2259 c->freelist = NULL;
2260 goto new_slab;
2261 }
2262
2263 /*
2264 * By rights, we should be searching for a slab page that was
2265 * PFMEMALLOC but right now, we are losing the pfmemalloc
2266 * information when the page leaves the per-cpu allocator
2267 */
2268 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2269 deactivate_slab(s, page, c->freelist);
2270 c->page = NULL;
2271 c->freelist = NULL;
2272 goto new_slab;
2273 }
2274
2275 /* must check again c->freelist in case of cpu migration or IRQ */
2276 freelist = c->freelist;
2277 if (freelist)
2278 goto load_freelist;
2279
2280 stat(s, ALLOC_SLOWPATH);
2281
2282 freelist = get_freelist(s, page);
2283
2284 if (!freelist) {
2285 c->page = NULL;
2286 stat(s, DEACTIVATE_BYPASS);
2287 goto new_slab;
2288 }
2289
2290 stat(s, ALLOC_REFILL);
2291
2292 load_freelist:
2293 /*
2294 * freelist is pointing to the list of objects to be used.
2295 * page is pointing to the page from which the objects are obtained.
2296 * That page must be frozen for per cpu allocations to work.
2297 */
2298 VM_BUG_ON(!c->page->frozen);
2299 c->freelist = get_freepointer(s, freelist);
2300 c->tid = next_tid(c->tid);
2301 local_irq_restore(flags);
2302 return freelist;
2303
2304 new_slab:
2305
2306 if (c->partial) {
2307 page = c->page = c->partial;
2308 c->partial = page->next;
2309 stat(s, CPU_PARTIAL_ALLOC);
2310 c->freelist = NULL;
2311 goto redo;
2312 }
2313
2314 freelist = new_slab_objects(s, gfpflags, node, &c);
2315
2316 if (unlikely(!freelist)) {
2317 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2318 slab_out_of_memory(s, gfpflags, node);
2319
2320 local_irq_restore(flags);
2321 return NULL;
2322 }
2323
2324 page = c->page;
2325 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2326 goto load_freelist;
2327
2328 /* Only entered in the debug case */
2329 if (kmem_cache_debug(s) &&
2330 !alloc_debug_processing(s, page, freelist, addr))
2331 goto new_slab; /* Slab failed checks. Next slab needed */
2332
2333 deactivate_slab(s, page, get_freepointer(s, freelist));
2334 c->page = NULL;
2335 c->freelist = NULL;
2336 local_irq_restore(flags);
2337 return freelist;
2338 }
2339
2340 /*
2341 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2342 * have the fastpath folded into their functions. So no function call
2343 * overhead for requests that can be satisfied on the fastpath.
2344 *
2345 * The fastpath works by first checking if the lockless freelist can be used.
2346 * If not then __slab_alloc is called for slow processing.
2347 *
2348 * Otherwise we can simply pick the next object from the lockless free list.
2349 */
2350 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2351 gfp_t gfpflags, int node, unsigned long addr)
2352 {
2353 void **object;
2354 struct kmem_cache_cpu *c;
2355 struct page *page;
2356 unsigned long tid;
2357
2358 if (slab_pre_alloc_hook(s, gfpflags))
2359 return NULL;
2360
2361 s = memcg_kmem_get_cache(s, gfpflags);
2362 redo:
2363 /*
2364 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2365 * enabled. We may switch back and forth between cpus while
2366 * reading from one cpu area. That does not matter as long
2367 * as we end up on the original cpu again when doing the cmpxchg.
2368 *
2369 * Preemption is disabled for the retrieval of the tid because that
2370 * must occur from the current processor. We cannot allow rescheduling
2371 * on a different processor between the determination of the pointer
2372 * and the retrieval of the tid.
2373 */
2374 preempt_disable();
2375 c = __this_cpu_ptr(s->cpu_slab);
2376
2377 /*
2378 * The transaction ids are globally unique per cpu and per operation on
2379 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2380 * occurs on the right processor and that there was no operation on the
2381 * linked list in between.
2382 */
2383 tid = c->tid;
2384 preempt_enable();
2385
2386 object = c->freelist;
2387 page = c->page;
2388 if (unlikely(!object || !node_match(page, node)))
2389 object = __slab_alloc(s, gfpflags, node, addr, c);
2390
2391 else {
2392 void *next_object = get_freepointer_safe(s, object);
2393
2394 /*
2395 * The cmpxchg will only match if there was no additional
2396 * operation and if we are on the right processor.
2397 *
2398 * The cmpxchg does the following atomically (without lock
2399 * semantics!)
2400 * 1. Relocate first pointer to the current per cpu area.
2401 * 2. Verify that tid and freelist have not been changed
2402 * 3. If they were not changed replace tid and freelist
2403 *
2404 * Since this is without lock semantics the protection is only
2405 * against code executing on this cpu *not* from access by
2406 * other cpus.
2407 */
2408 if (unlikely(!this_cpu_cmpxchg_double(
2409 s->cpu_slab->freelist, s->cpu_slab->tid,
2410 object, tid,
2411 next_object, next_tid(tid)))) {
2412
2413 note_cmpxchg_failure("slab_alloc", s, tid);
2414 goto redo;
2415 }
2416 prefetch_freepointer(s, next_object);
2417 stat(s, ALLOC_FASTPATH);
2418 }
2419
2420 if (unlikely(gfpflags & __GFP_ZERO) && object)
2421 memset(object, 0, s->object_size);
2422
2423 slab_post_alloc_hook(s, gfpflags, object);
2424
2425 return object;
2426 }
2427
2428 static __always_inline void *slab_alloc(struct kmem_cache *s,
2429 gfp_t gfpflags, unsigned long addr)
2430 {
2431 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2432 }
2433
2434 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2435 {
2436 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2437
2438 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2439 s->size, gfpflags);
2440
2441 return ret;
2442 }
2443 EXPORT_SYMBOL(kmem_cache_alloc);
2444
2445 #ifdef CONFIG_TRACING
2446 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2447 {
2448 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2449 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2450 return ret;
2451 }
2452 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2453
2454 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2455 {
2456 void *ret = kmalloc_order(size, flags, order);
2457 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2458 return ret;
2459 }
2460 EXPORT_SYMBOL(kmalloc_order_trace);
2461 #endif
2462
2463 #ifdef CONFIG_NUMA
2464 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2465 {
2466 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2467
2468 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2469 s->object_size, s->size, gfpflags, node);
2470
2471 return ret;
2472 }
2473 EXPORT_SYMBOL(kmem_cache_alloc_node);
2474
2475 #ifdef CONFIG_TRACING
2476 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2477 gfp_t gfpflags,
2478 int node, size_t size)
2479 {
2480 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2481
2482 trace_kmalloc_node(_RET_IP_, ret,
2483 size, s->size, gfpflags, node);
2484 return ret;
2485 }
2486 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2487 #endif
2488 #endif
2489
2490 /*
2491 * Slow patch handling. This may still be called frequently since objects
2492 * have a longer lifetime than the cpu slabs in most processing loads.
2493 *
2494 * So we still attempt to reduce cache line usage. Just take the slab
2495 * lock and free the item. If there is no additional partial page
2496 * handling required then we can return immediately.
2497 */
2498 static void __slab_free(struct kmem_cache *s, struct page *page,
2499 void *x, unsigned long addr)
2500 {
2501 void *prior;
2502 void **object = (void *)x;
2503 int was_frozen;
2504 struct page new;
2505 unsigned long counters;
2506 struct kmem_cache_node *n = NULL;
2507 unsigned long uninitialized_var(flags);
2508
2509 stat(s, FREE_SLOWPATH);
2510
2511 if (kmem_cache_debug(s) &&
2512 !(n = free_debug_processing(s, page, x, addr, &flags)))
2513 return;
2514
2515 do {
2516 if (unlikely(n)) {
2517 spin_unlock_irqrestore(&n->list_lock, flags);
2518 n = NULL;
2519 }
2520 prior = page->freelist;
2521 counters = page->counters;
2522 set_freepointer(s, object, prior);
2523 new.counters = counters;
2524 was_frozen = new.frozen;
2525 new.inuse--;
2526 if ((!new.inuse || !prior) && !was_frozen) {
2527
2528 if (kmem_cache_has_cpu_partial(s) && !prior)
2529
2530 /*
2531 * Slab was on no list before and will be
2532 * partially empty
2533 * We can defer the list move and instead
2534 * freeze it.
2535 */
2536 new.frozen = 1;
2537
2538 else { /* Needs to be taken off a list */
2539
2540 n = get_node(s, page_to_nid(page));
2541 /*
2542 * Speculatively acquire the list_lock.
2543 * If the cmpxchg does not succeed then we may
2544 * drop the list_lock without any processing.
2545 *
2546 * Otherwise the list_lock will synchronize with
2547 * other processors updating the list of slabs.
2548 */
2549 spin_lock_irqsave(&n->list_lock, flags);
2550
2551 }
2552 }
2553
2554 } while (!cmpxchg_double_slab(s, page,
2555 prior, counters,
2556 object, new.counters,
2557 "__slab_free"));
2558
2559 if (likely(!n)) {
2560
2561 /*
2562 * If we just froze the page then put it onto the
2563 * per cpu partial list.
2564 */
2565 if (new.frozen && !was_frozen) {
2566 put_cpu_partial(s, page, 1);
2567 stat(s, CPU_PARTIAL_FREE);
2568 }
2569 /*
2570 * The list lock was not taken therefore no list
2571 * activity can be necessary.
2572 */
2573 if (was_frozen)
2574 stat(s, FREE_FROZEN);
2575 return;
2576 }
2577
2578 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2579 goto slab_empty;
2580
2581 /*
2582 * Objects left in the slab. If it was not on the partial list before
2583 * then add it.
2584 */
2585 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2586 if (kmem_cache_debug(s))
2587 remove_full(s, page);
2588 add_partial(n, page, DEACTIVATE_TO_TAIL);
2589 stat(s, FREE_ADD_PARTIAL);
2590 }
2591 spin_unlock_irqrestore(&n->list_lock, flags);
2592 return;
2593
2594 slab_empty:
2595 if (prior) {
2596 /*
2597 * Slab on the partial list.
2598 */
2599 remove_partial(n, page);
2600 stat(s, FREE_REMOVE_PARTIAL);
2601 } else
2602 /* Slab must be on the full list */
2603 remove_full(s, page);
2604
2605 spin_unlock_irqrestore(&n->list_lock, flags);
2606 stat(s, FREE_SLAB);
2607 discard_slab(s, page);
2608 }
2609
2610 /*
2611 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2612 * can perform fastpath freeing without additional function calls.
2613 *
2614 * The fastpath is only possible if we are freeing to the current cpu slab
2615 * of this processor. This typically the case if we have just allocated
2616 * the item before.
2617 *
2618 * If fastpath is not possible then fall back to __slab_free where we deal
2619 * with all sorts of special processing.
2620 */
2621 static __always_inline void slab_free(struct kmem_cache *s,
2622 struct page *page, void *x, unsigned long addr)
2623 {
2624 void **object = (void *)x;
2625 struct kmem_cache_cpu *c;
2626 unsigned long tid;
2627
2628 slab_free_hook(s, x);
2629
2630 redo:
2631 /*
2632 * Determine the currently cpus per cpu slab.
2633 * The cpu may change afterward. However that does not matter since
2634 * data is retrieved via this pointer. If we are on the same cpu
2635 * during the cmpxchg then the free will succedd.
2636 */
2637 preempt_disable();
2638 c = __this_cpu_ptr(s->cpu_slab);
2639
2640 tid = c->tid;
2641 preempt_enable();
2642
2643 if (likely(page == c->page)) {
2644 set_freepointer(s, object, c->freelist);
2645
2646 if (unlikely(!this_cpu_cmpxchg_double(
2647 s->cpu_slab->freelist, s->cpu_slab->tid,
2648 c->freelist, tid,
2649 object, next_tid(tid)))) {
2650
2651 note_cmpxchg_failure("slab_free", s, tid);
2652 goto redo;
2653 }
2654 stat(s, FREE_FASTPATH);
2655 } else
2656 __slab_free(s, page, x, addr);
2657
2658 }
2659
2660 void kmem_cache_free(struct kmem_cache *s, void *x)
2661 {
2662 s = cache_from_obj(s, x);
2663 if (!s)
2664 return;
2665 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2666 trace_kmem_cache_free(_RET_IP_, x);
2667 }
2668 EXPORT_SYMBOL(kmem_cache_free);
2669
2670 /*
2671 * Object placement in a slab is made very easy because we always start at
2672 * offset 0. If we tune the size of the object to the alignment then we can
2673 * get the required alignment by putting one properly sized object after
2674 * another.
2675 *
2676 * Notice that the allocation order determines the sizes of the per cpu
2677 * caches. Each processor has always one slab available for allocations.
2678 * Increasing the allocation order reduces the number of times that slabs
2679 * must be moved on and off the partial lists and is therefore a factor in
2680 * locking overhead.
2681 */
2682
2683 /*
2684 * Mininum / Maximum order of slab pages. This influences locking overhead
2685 * and slab fragmentation. A higher order reduces the number of partial slabs
2686 * and increases the number of allocations possible without having to
2687 * take the list_lock.
2688 */
2689 static int slub_min_order;
2690 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2691 static int slub_min_objects;
2692
2693 /*
2694 * Merge control. If this is set then no merging of slab caches will occur.
2695 * (Could be removed. This was introduced to pacify the merge skeptics.)
2696 */
2697 static int slub_nomerge;
2698
2699 /*
2700 * Calculate the order of allocation given an slab object size.
2701 *
2702 * The order of allocation has significant impact on performance and other
2703 * system components. Generally order 0 allocations should be preferred since
2704 * order 0 does not cause fragmentation in the page allocator. Larger objects
2705 * be problematic to put into order 0 slabs because there may be too much
2706 * unused space left. We go to a higher order if more than 1/16th of the slab
2707 * would be wasted.
2708 *
2709 * In order to reach satisfactory performance we must ensure that a minimum
2710 * number of objects is in one slab. Otherwise we may generate too much
2711 * activity on the partial lists which requires taking the list_lock. This is
2712 * less a concern for large slabs though which are rarely used.
2713 *
2714 * slub_max_order specifies the order where we begin to stop considering the
2715 * number of objects in a slab as critical. If we reach slub_max_order then
2716 * we try to keep the page order as low as possible. So we accept more waste
2717 * of space in favor of a small page order.
2718 *
2719 * Higher order allocations also allow the placement of more objects in a
2720 * slab and thereby reduce object handling overhead. If the user has
2721 * requested a higher mininum order then we start with that one instead of
2722 * the smallest order which will fit the object.
2723 */
2724 static inline int slab_order(int size, int min_objects,
2725 int max_order, int fract_leftover, int reserved)
2726 {
2727 int order;
2728 int rem;
2729 int min_order = slub_min_order;
2730
2731 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2732 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2733
2734 for (order = max(min_order,
2735 fls(min_objects * size - 1) - PAGE_SHIFT);
2736 order <= max_order; order++) {
2737
2738 unsigned long slab_size = PAGE_SIZE << order;
2739
2740 if (slab_size < min_objects * size + reserved)
2741 continue;
2742
2743 rem = (slab_size - reserved) % size;
2744
2745 if (rem <= slab_size / fract_leftover)
2746 break;
2747
2748 }
2749
2750 return order;
2751 }
2752
2753 static inline int calculate_order(int size, int reserved)
2754 {
2755 int order;
2756 int min_objects;
2757 int fraction;
2758 int max_objects;
2759
2760 /*
2761 * Attempt to find best configuration for a slab. This
2762 * works by first attempting to generate a layout with
2763 * the best configuration and backing off gradually.
2764 *
2765 * First we reduce the acceptable waste in a slab. Then
2766 * we reduce the minimum objects required in a slab.
2767 */
2768 min_objects = slub_min_objects;
2769 if (!min_objects)
2770 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2771 max_objects = order_objects(slub_max_order, size, reserved);
2772 min_objects = min(min_objects, max_objects);
2773
2774 while (min_objects > 1) {
2775 fraction = 16;
2776 while (fraction >= 4) {
2777 order = slab_order(size, min_objects,
2778 slub_max_order, fraction, reserved);
2779 if (order <= slub_max_order)
2780 return order;
2781 fraction /= 2;
2782 }
2783 min_objects--;
2784 }
2785
2786 /*
2787 * We were unable to place multiple objects in a slab. Now
2788 * lets see if we can place a single object there.
2789 */
2790 order = slab_order(size, 1, slub_max_order, 1, reserved);
2791 if (order <= slub_max_order)
2792 return order;
2793
2794 /*
2795 * Doh this slab cannot be placed using slub_max_order.
2796 */
2797 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2798 if (order < MAX_ORDER)
2799 return order;
2800 return -ENOSYS;
2801 }
2802
2803 static void
2804 init_kmem_cache_node(struct kmem_cache_node *n)
2805 {
2806 n->nr_partial = 0;
2807 spin_lock_init(&n->list_lock);
2808 INIT_LIST_HEAD(&n->partial);
2809 #ifdef CONFIG_SLUB_DEBUG
2810 atomic_long_set(&n->nr_slabs, 0);
2811 atomic_long_set(&n->total_objects, 0);
2812 INIT_LIST_HEAD(&n->full);
2813 #endif
2814 }
2815
2816 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2817 {
2818 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2819 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2820
2821 /*
2822 * Must align to double word boundary for the double cmpxchg
2823 * instructions to work; see __pcpu_double_call_return_bool().
2824 */
2825 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2826 2 * sizeof(void *));
2827
2828 if (!s->cpu_slab)
2829 return 0;
2830
2831 init_kmem_cache_cpus(s);
2832
2833 return 1;
2834 }
2835
2836 static struct kmem_cache *kmem_cache_node;
2837
2838 /*
2839 * No kmalloc_node yet so do it by hand. We know that this is the first
2840 * slab on the node for this slabcache. There are no concurrent accesses
2841 * possible.
2842 *
2843 * Note that this function only works on the kmalloc_node_cache
2844 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2845 * memory on a fresh node that has no slab structures yet.
2846 */
2847 static void early_kmem_cache_node_alloc(int node)
2848 {
2849 struct page *page;
2850 struct kmem_cache_node *n;
2851
2852 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2853
2854 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2855
2856 BUG_ON(!page);
2857 if (page_to_nid(page) != node) {
2858 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2859 "node %d\n", node);
2860 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2861 "in order to be able to continue\n");
2862 }
2863
2864 n = page->freelist;
2865 BUG_ON(!n);
2866 page->freelist = get_freepointer(kmem_cache_node, n);
2867 page->inuse = 1;
2868 page->frozen = 0;
2869 kmem_cache_node->node[node] = n;
2870 #ifdef CONFIG_SLUB_DEBUG
2871 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2872 init_tracking(kmem_cache_node, n);
2873 #endif
2874 init_kmem_cache_node(n);
2875 inc_slabs_node(kmem_cache_node, node, page->objects);
2876
2877 add_partial(n, page, DEACTIVATE_TO_HEAD);
2878 }
2879
2880 static void free_kmem_cache_nodes(struct kmem_cache *s)
2881 {
2882 int node;
2883
2884 for_each_node_state(node, N_NORMAL_MEMORY) {
2885 struct kmem_cache_node *n = s->node[node];
2886
2887 if (n)
2888 kmem_cache_free(kmem_cache_node, n);
2889
2890 s->node[node] = NULL;
2891 }
2892 }
2893
2894 static int init_kmem_cache_nodes(struct kmem_cache *s)
2895 {
2896 int node;
2897
2898 for_each_node_state(node, N_NORMAL_MEMORY) {
2899 struct kmem_cache_node *n;
2900
2901 if (slab_state == DOWN) {
2902 early_kmem_cache_node_alloc(node);
2903 continue;
2904 }
2905 n = kmem_cache_alloc_node(kmem_cache_node,
2906 GFP_KERNEL, node);
2907
2908 if (!n) {
2909 free_kmem_cache_nodes(s);
2910 return 0;
2911 }
2912
2913 s->node[node] = n;
2914 init_kmem_cache_node(n);
2915 }
2916 return 1;
2917 }
2918
2919 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2920 {
2921 if (min < MIN_PARTIAL)
2922 min = MIN_PARTIAL;
2923 else if (min > MAX_PARTIAL)
2924 min = MAX_PARTIAL;
2925 s->min_partial = min;
2926 }
2927
2928 /*
2929 * calculate_sizes() determines the order and the distribution of data within
2930 * a slab object.
2931 */
2932 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2933 {
2934 unsigned long flags = s->flags;
2935 unsigned long size = s->object_size;
2936 int order;
2937
2938 /*
2939 * Round up object size to the next word boundary. We can only
2940 * place the free pointer at word boundaries and this determines
2941 * the possible location of the free pointer.
2942 */
2943 size = ALIGN(size, sizeof(void *));
2944
2945 #ifdef CONFIG_SLUB_DEBUG
2946 /*
2947 * Determine if we can poison the object itself. If the user of
2948 * the slab may touch the object after free or before allocation
2949 * then we should never poison the object itself.
2950 */
2951 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2952 !s->ctor)
2953 s->flags |= __OBJECT_POISON;
2954 else
2955 s->flags &= ~__OBJECT_POISON;
2956
2957
2958 /*
2959 * If we are Redzoning then check if there is some space between the
2960 * end of the object and the free pointer. If not then add an
2961 * additional word to have some bytes to store Redzone information.
2962 */
2963 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2964 size += sizeof(void *);
2965 #endif
2966
2967 /*
2968 * With that we have determined the number of bytes in actual use
2969 * by the object. This is the potential offset to the free pointer.
2970 */
2971 s->inuse = size;
2972
2973 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2974 s->ctor)) {
2975 /*
2976 * Relocate free pointer after the object if it is not
2977 * permitted to overwrite the first word of the object on
2978 * kmem_cache_free.
2979 *
2980 * This is the case if we do RCU, have a constructor or
2981 * destructor or are poisoning the objects.
2982 */
2983 s->offset = size;
2984 size += sizeof(void *);
2985 }
2986
2987 #ifdef CONFIG_SLUB_DEBUG
2988 if (flags & SLAB_STORE_USER)
2989 /*
2990 * Need to store information about allocs and frees after
2991 * the object.
2992 */
2993 size += 2 * sizeof(struct track);
2994
2995 if (flags & SLAB_RED_ZONE)
2996 /*
2997 * Add some empty padding so that we can catch
2998 * overwrites from earlier objects rather than let
2999 * tracking information or the free pointer be
3000 * corrupted if a user writes before the start
3001 * of the object.
3002 */
3003 size += sizeof(void *);
3004 #endif
3005
3006 /*
3007 * SLUB stores one object immediately after another beginning from
3008 * offset 0. In order to align the objects we have to simply size
3009 * each object to conform to the alignment.
3010 */
3011 size = ALIGN(size, s->align);
3012 s->size = size;
3013 if (forced_order >= 0)
3014 order = forced_order;
3015 else
3016 order = calculate_order(size, s->reserved);
3017
3018 if (order < 0)
3019 return 0;
3020
3021 s->allocflags = 0;
3022 if (order)
3023 s->allocflags |= __GFP_COMP;
3024
3025 if (s->flags & SLAB_CACHE_DMA)
3026 s->allocflags |= GFP_DMA;
3027
3028 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3029 s->allocflags |= __GFP_RECLAIMABLE;
3030
3031 /*
3032 * Determine the number of objects per slab
3033 */
3034 s->oo = oo_make(order, size, s->reserved);
3035 s->min = oo_make(get_order(size), size, s->reserved);
3036 if (oo_objects(s->oo) > oo_objects(s->max))
3037 s->max = s->oo;
3038
3039 return !!oo_objects(s->oo);
3040 }
3041
3042 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3043 {
3044 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3045 s->reserved = 0;
3046
3047 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3048 s->reserved = sizeof(struct rcu_head);
3049
3050 if (!calculate_sizes(s, -1))
3051 goto error;
3052 if (disable_higher_order_debug) {
3053 /*
3054 * Disable debugging flags that store metadata if the min slab
3055 * order increased.
3056 */
3057 if (get_order(s->size) > get_order(s->object_size)) {
3058 s->flags &= ~DEBUG_METADATA_FLAGS;
3059 s->offset = 0;
3060 if (!calculate_sizes(s, -1))
3061 goto error;
3062 }
3063 }
3064
3065 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3066 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3067 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3068 /* Enable fast mode */
3069 s->flags |= __CMPXCHG_DOUBLE;
3070 #endif
3071
3072 /*
3073 * The larger the object size is, the more pages we want on the partial
3074 * list to avoid pounding the page allocator excessively.
3075 */
3076 set_min_partial(s, ilog2(s->size) / 2);
3077
3078 /*
3079 * cpu_partial determined the maximum number of objects kept in the
3080 * per cpu partial lists of a processor.
3081 *
3082 * Per cpu partial lists mainly contain slabs that just have one
3083 * object freed. If they are used for allocation then they can be
3084 * filled up again with minimal effort. The slab will never hit the
3085 * per node partial lists and therefore no locking will be required.
3086 *
3087 * This setting also determines
3088 *
3089 * A) The number of objects from per cpu partial slabs dumped to the
3090 * per node list when we reach the limit.
3091 * B) The number of objects in cpu partial slabs to extract from the
3092 * per node list when we run out of per cpu objects. We only fetch
3093 * 50% to keep some capacity around for frees.
3094 */
3095 if (!kmem_cache_has_cpu_partial(s))
3096 s->cpu_partial = 0;
3097 else if (s->size >= PAGE_SIZE)
3098 s->cpu_partial = 2;
3099 else if (s->size >= 1024)
3100 s->cpu_partial = 6;
3101 else if (s->size >= 256)
3102 s->cpu_partial = 13;
3103 else
3104 s->cpu_partial = 30;
3105
3106 #ifdef CONFIG_NUMA
3107 s->remote_node_defrag_ratio = 1000;
3108 #endif
3109 if (!init_kmem_cache_nodes(s))
3110 goto error;
3111
3112 if (alloc_kmem_cache_cpus(s))
3113 return 0;
3114
3115 free_kmem_cache_nodes(s);
3116 error:
3117 if (flags & SLAB_PANIC)
3118 panic("Cannot create slab %s size=%lu realsize=%u "
3119 "order=%u offset=%u flags=%lx\n",
3120 s->name, (unsigned long)s->size, s->size,
3121 oo_order(s->oo), s->offset, flags);
3122 return -EINVAL;
3123 }
3124
3125 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3126 const char *text)
3127 {
3128 #ifdef CONFIG_SLUB_DEBUG
3129 void *addr = page_address(page);
3130 void *p;
3131 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3132 sizeof(long), GFP_ATOMIC);
3133 if (!map)
3134 return;
3135 slab_err(s, page, text, s->name);
3136 slab_lock(page);
3137
3138 get_map(s, page, map);
3139 for_each_object(p, s, addr, page->objects) {
3140
3141 if (!test_bit(slab_index(p, s, addr), map)) {
3142 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3143 p, p - addr);
3144 print_tracking(s, p);
3145 }
3146 }
3147 slab_unlock(page);
3148 kfree(map);
3149 #endif
3150 }
3151
3152 /*
3153 * Attempt to free all partial slabs on a node.
3154 * This is called from kmem_cache_close(). We must be the last thread
3155 * using the cache and therefore we do not need to lock anymore.
3156 */
3157 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3158 {
3159 struct page *page, *h;
3160
3161 list_for_each_entry_safe(page, h, &n->partial, lru) {
3162 if (!page->inuse) {
3163 remove_partial(n, page);
3164 discard_slab(s, page);
3165 } else {
3166 list_slab_objects(s, page,
3167 "Objects remaining in %s on kmem_cache_close()");
3168 }
3169 }
3170 }
3171
3172 /*
3173 * Release all resources used by a slab cache.
3174 */
3175 static inline int kmem_cache_close(struct kmem_cache *s)
3176 {
3177 int node;
3178
3179 flush_all(s);
3180 /* Attempt to free all objects */
3181 for_each_node_state(node, N_NORMAL_MEMORY) {
3182 struct kmem_cache_node *n = get_node(s, node);
3183
3184 free_partial(s, n);
3185 if (n->nr_partial || slabs_node(s, node))
3186 return 1;
3187 }
3188 free_percpu(s->cpu_slab);
3189 free_kmem_cache_nodes(s);
3190 return 0;
3191 }
3192
3193 int __kmem_cache_shutdown(struct kmem_cache *s)
3194 {
3195 int rc = kmem_cache_close(s);
3196
3197 if (!rc) {
3198 /*
3199 * We do the same lock strategy around sysfs_slab_add, see
3200 * __kmem_cache_create. Because this is pretty much the last
3201 * operation we do and the lock will be released shortly after
3202 * that in slab_common.c, we could just move sysfs_slab_remove
3203 * to a later point in common code. We should do that when we
3204 * have a common sysfs framework for all allocators.
3205 */
3206 mutex_unlock(&slab_mutex);
3207 sysfs_slab_remove(s);
3208 mutex_lock(&slab_mutex);
3209 }
3210
3211 return rc;
3212 }
3213
3214 /********************************************************************
3215 * Kmalloc subsystem
3216 *******************************************************************/
3217
3218 static int __init setup_slub_min_order(char *str)
3219 {
3220 get_option(&str, &slub_min_order);
3221
3222 return 1;
3223 }
3224
3225 __setup("slub_min_order=", setup_slub_min_order);
3226
3227 static int __init setup_slub_max_order(char *str)
3228 {
3229 get_option(&str, &slub_max_order);
3230 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3231
3232 return 1;
3233 }
3234
3235 __setup("slub_max_order=", setup_slub_max_order);
3236
3237 static int __init setup_slub_min_objects(char *str)
3238 {
3239 get_option(&str, &slub_min_objects);
3240
3241 return 1;
3242 }
3243
3244 __setup("slub_min_objects=", setup_slub_min_objects);
3245
3246 static int __init setup_slub_nomerge(char *str)
3247 {
3248 slub_nomerge = 1;
3249 return 1;
3250 }
3251
3252 __setup("slub_nomerge", setup_slub_nomerge);
3253
3254 void *__kmalloc(size_t size, gfp_t flags)
3255 {
3256 struct kmem_cache *s;
3257 void *ret;
3258
3259 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3260 return kmalloc_large(size, flags);
3261
3262 s = kmalloc_slab(size, flags);
3263
3264 if (unlikely(ZERO_OR_NULL_PTR(s)))
3265 return s;
3266
3267 ret = slab_alloc(s, flags, _RET_IP_);
3268
3269 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3270
3271 return ret;
3272 }
3273 EXPORT_SYMBOL(__kmalloc);
3274
3275 #ifdef CONFIG_NUMA
3276 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3277 {
3278 struct page *page;
3279 void *ptr = NULL;
3280
3281 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3282 page = alloc_pages_node(node, flags, get_order(size));
3283 if (page)
3284 ptr = page_address(page);
3285
3286 kmemleak_alloc(ptr, size, 1, flags);
3287 return ptr;
3288 }
3289
3290 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3291 {
3292 struct kmem_cache *s;
3293 void *ret;
3294
3295 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3296 ret = kmalloc_large_node(size, flags, node);
3297
3298 trace_kmalloc_node(_RET_IP_, ret,
3299 size, PAGE_SIZE << get_order(size),
3300 flags, node);
3301
3302 return ret;
3303 }
3304
3305 s = kmalloc_slab(size, flags);
3306
3307 if (unlikely(ZERO_OR_NULL_PTR(s)))
3308 return s;
3309
3310 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3311
3312 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3313
3314 return ret;
3315 }
3316 EXPORT_SYMBOL(__kmalloc_node);
3317 #endif
3318
3319 size_t ksize(const void *object)
3320 {
3321 struct page *page;
3322
3323 if (unlikely(object == ZERO_SIZE_PTR))
3324 return 0;
3325
3326 page = virt_to_head_page(object);
3327
3328 if (unlikely(!PageSlab(page))) {
3329 WARN_ON(!PageCompound(page));
3330 return PAGE_SIZE << compound_order(page);
3331 }
3332
3333 return slab_ksize(page->slab_cache);
3334 }
3335 EXPORT_SYMBOL(ksize);
3336
3337 #ifdef CONFIG_SLUB_DEBUG
3338 bool verify_mem_not_deleted(const void *x)
3339 {
3340 struct page *page;
3341 void *object = (void *)x;
3342 unsigned long flags;
3343 bool rv;
3344
3345 if (unlikely(ZERO_OR_NULL_PTR(x)))
3346 return false;
3347
3348 local_irq_save(flags);
3349
3350 page = virt_to_head_page(x);
3351 if (unlikely(!PageSlab(page))) {
3352 /* maybe it was from stack? */
3353 rv = true;
3354 goto out_unlock;
3355 }
3356
3357 slab_lock(page);
3358 if (on_freelist(page->slab_cache, page, object)) {
3359 object_err(page->slab_cache, page, object,
3360 "Object is on free-list");
3361 rv = false;
3362 } else {
3363 rv = true;
3364 }
3365 slab_unlock(page);
3366
3367 out_unlock:
3368 local_irq_restore(flags);
3369 return rv;
3370 }
3371 EXPORT_SYMBOL(verify_mem_not_deleted);
3372 #endif
3373
3374 void kfree(const void *x)
3375 {
3376 struct page *page;
3377 void *object = (void *)x;
3378
3379 trace_kfree(_RET_IP_, x);
3380
3381 if (unlikely(ZERO_OR_NULL_PTR(x)))
3382 return;
3383
3384 page = virt_to_head_page(x);
3385 if (unlikely(!PageSlab(page))) {
3386 BUG_ON(!PageCompound(page));
3387 kmemleak_free(x);
3388 __free_memcg_kmem_pages(page, compound_order(page));
3389 return;
3390 }
3391 slab_free(page->slab_cache, page, object, _RET_IP_);
3392 }
3393 EXPORT_SYMBOL(kfree);
3394
3395 /*
3396 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3397 * the remaining slabs by the number of items in use. The slabs with the
3398 * most items in use come first. New allocations will then fill those up
3399 * and thus they can be removed from the partial lists.
3400 *
3401 * The slabs with the least items are placed last. This results in them
3402 * being allocated from last increasing the chance that the last objects
3403 * are freed in them.
3404 */
3405 int kmem_cache_shrink(struct kmem_cache *s)
3406 {
3407 int node;
3408 int i;
3409 struct kmem_cache_node *n;
3410 struct page *page;
3411 struct page *t;
3412 int objects = oo_objects(s->max);
3413 struct list_head *slabs_by_inuse =
3414 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3415 unsigned long flags;
3416
3417 if (!slabs_by_inuse)
3418 return -ENOMEM;
3419
3420 flush_all(s);
3421 for_each_node_state(node, N_NORMAL_MEMORY) {
3422 n = get_node(s, node);
3423
3424 if (!n->nr_partial)
3425 continue;
3426
3427 for (i = 0; i < objects; i++)
3428 INIT_LIST_HEAD(slabs_by_inuse + i);
3429
3430 spin_lock_irqsave(&n->list_lock, flags);
3431
3432 /*
3433 * Build lists indexed by the items in use in each slab.
3434 *
3435 * Note that concurrent frees may occur while we hold the
3436 * list_lock. page->inuse here is the upper limit.
3437 */
3438 list_for_each_entry_safe(page, t, &n->partial, lru) {
3439 list_move(&page->lru, slabs_by_inuse + page->inuse);
3440 if (!page->inuse)
3441 n->nr_partial--;
3442 }
3443
3444 /*
3445 * Rebuild the partial list with the slabs filled up most
3446 * first and the least used slabs at the end.
3447 */
3448 for (i = objects - 1; i > 0; i--)
3449 list_splice(slabs_by_inuse + i, n->partial.prev);
3450
3451 spin_unlock_irqrestore(&n->list_lock, flags);
3452
3453 /* Release empty slabs */
3454 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3455 discard_slab(s, page);
3456 }
3457
3458 kfree(slabs_by_inuse);
3459 return 0;
3460 }
3461 EXPORT_SYMBOL(kmem_cache_shrink);
3462
3463 static int slab_mem_going_offline_callback(void *arg)
3464 {
3465 struct kmem_cache *s;
3466
3467 mutex_lock(&slab_mutex);
3468 list_for_each_entry(s, &slab_caches, list)
3469 kmem_cache_shrink(s);
3470 mutex_unlock(&slab_mutex);
3471
3472 return 0;
3473 }
3474
3475 static void slab_mem_offline_callback(void *arg)
3476 {
3477 struct kmem_cache_node *n;
3478 struct kmem_cache *s;
3479 struct memory_notify *marg = arg;
3480 int offline_node;
3481
3482 offline_node = marg->status_change_nid_normal;
3483
3484 /*
3485 * If the node still has available memory. we need kmem_cache_node
3486 * for it yet.
3487 */
3488 if (offline_node < 0)
3489 return;
3490
3491 mutex_lock(&slab_mutex);
3492 list_for_each_entry(s, &slab_caches, list) {
3493 n = get_node(s, offline_node);
3494 if (n) {
3495 /*
3496 * if n->nr_slabs > 0, slabs still exist on the node
3497 * that is going down. We were unable to free them,
3498 * and offline_pages() function shouldn't call this
3499 * callback. So, we must fail.
3500 */
3501 BUG_ON(slabs_node(s, offline_node));
3502
3503 s->node[offline_node] = NULL;
3504 kmem_cache_free(kmem_cache_node, n);
3505 }
3506 }
3507 mutex_unlock(&slab_mutex);
3508 }
3509
3510 static int slab_mem_going_online_callback(void *arg)
3511 {
3512 struct kmem_cache_node *n;
3513 struct kmem_cache *s;
3514 struct memory_notify *marg = arg;
3515 int nid = marg->status_change_nid_normal;
3516 int ret = 0;
3517
3518 /*
3519 * If the node's memory is already available, then kmem_cache_node is
3520 * already created. Nothing to do.
3521 */
3522 if (nid < 0)
3523 return 0;
3524
3525 /*
3526 * We are bringing a node online. No memory is available yet. We must
3527 * allocate a kmem_cache_node structure in order to bring the node
3528 * online.
3529 */
3530 mutex_lock(&slab_mutex);
3531 list_for_each_entry(s, &slab_caches, list) {
3532 /*
3533 * XXX: kmem_cache_alloc_node will fallback to other nodes
3534 * since memory is not yet available from the node that
3535 * is brought up.
3536 */
3537 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3538 if (!n) {
3539 ret = -ENOMEM;
3540 goto out;
3541 }
3542 init_kmem_cache_node(n);
3543 s->node[nid] = n;
3544 }
3545 out:
3546 mutex_unlock(&slab_mutex);
3547 return ret;
3548 }
3549
3550 static int slab_memory_callback(struct notifier_block *self,
3551 unsigned long action, void *arg)
3552 {
3553 int ret = 0;
3554
3555 switch (action) {
3556 case MEM_GOING_ONLINE:
3557 ret = slab_mem_going_online_callback(arg);
3558 break;
3559 case MEM_GOING_OFFLINE:
3560 ret = slab_mem_going_offline_callback(arg);
3561 break;
3562 case MEM_OFFLINE:
3563 case MEM_CANCEL_ONLINE:
3564 slab_mem_offline_callback(arg);
3565 break;
3566 case MEM_ONLINE:
3567 case MEM_CANCEL_OFFLINE:
3568 break;
3569 }
3570 if (ret)
3571 ret = notifier_from_errno(ret);
3572 else
3573 ret = NOTIFY_OK;
3574 return ret;
3575 }
3576
3577 static struct notifier_block slab_memory_callback_nb = {
3578 .notifier_call = slab_memory_callback,
3579 .priority = SLAB_CALLBACK_PRI,
3580 };
3581
3582 /********************************************************************
3583 * Basic setup of slabs
3584 *******************************************************************/
3585
3586 /*
3587 * Used for early kmem_cache structures that were allocated using
3588 * the page allocator. Allocate them properly then fix up the pointers
3589 * that may be pointing to the wrong kmem_cache structure.
3590 */
3591
3592 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3593 {
3594 int node;
3595 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3596
3597 memcpy(s, static_cache, kmem_cache->object_size);
3598
3599 /*
3600 * This runs very early, and only the boot processor is supposed to be
3601 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3602 * IPIs around.
3603 */
3604 __flush_cpu_slab(s, smp_processor_id());
3605 for_each_node_state(node, N_NORMAL_MEMORY) {
3606 struct kmem_cache_node *n = get_node(s, node);
3607 struct page *p;
3608
3609 if (n) {
3610 list_for_each_entry(p, &n->partial, lru)
3611 p->slab_cache = s;
3612
3613 #ifdef CONFIG_SLUB_DEBUG
3614 list_for_each_entry(p, &n->full, lru)
3615 p->slab_cache = s;
3616 #endif
3617 }
3618 }
3619 list_add(&s->list, &slab_caches);
3620 return s;
3621 }
3622
3623 void __init kmem_cache_init(void)
3624 {
3625 static __initdata struct kmem_cache boot_kmem_cache,
3626 boot_kmem_cache_node;
3627
3628 if (debug_guardpage_minorder())
3629 slub_max_order = 0;
3630
3631 kmem_cache_node = &boot_kmem_cache_node;
3632 kmem_cache = &boot_kmem_cache;
3633
3634 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3635 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3636
3637 register_hotmemory_notifier(&slab_memory_callback_nb);
3638
3639 /* Able to allocate the per node structures */
3640 slab_state = PARTIAL;
3641
3642 create_boot_cache(kmem_cache, "kmem_cache",
3643 offsetof(struct kmem_cache, node) +
3644 nr_node_ids * sizeof(struct kmem_cache_node *),
3645 SLAB_HWCACHE_ALIGN);
3646
3647 kmem_cache = bootstrap(&boot_kmem_cache);
3648
3649 /*
3650 * Allocate kmem_cache_node properly from the kmem_cache slab.
3651 * kmem_cache_node is separately allocated so no need to
3652 * update any list pointers.
3653 */
3654 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3655
3656 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3657 create_kmalloc_caches(0);
3658
3659 #ifdef CONFIG_SMP
3660 register_cpu_notifier(&slab_notifier);
3661 #endif
3662
3663 printk(KERN_INFO
3664 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3665 " CPUs=%d, Nodes=%d\n",
3666 cache_line_size(),
3667 slub_min_order, slub_max_order, slub_min_objects,
3668 nr_cpu_ids, nr_node_ids);
3669 }
3670
3671 void __init kmem_cache_init_late(void)
3672 {
3673 }
3674
3675 /*
3676 * Find a mergeable slab cache
3677 */
3678 static int slab_unmergeable(struct kmem_cache *s)
3679 {
3680 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3681 return 1;
3682
3683 if (s->ctor)
3684 return 1;
3685
3686 /*
3687 * We may have set a slab to be unmergeable during bootstrap.
3688 */
3689 if (s->refcount < 0)
3690 return 1;
3691
3692 return 0;
3693 }
3694
3695 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3696 size_t align, unsigned long flags, const char *name,
3697 void (*ctor)(void *))
3698 {
3699 struct kmem_cache *s;
3700
3701 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3702 return NULL;
3703
3704 if (ctor)
3705 return NULL;
3706
3707 size = ALIGN(size, sizeof(void *));
3708 align = calculate_alignment(flags, align, size);
3709 size = ALIGN(size, align);
3710 flags = kmem_cache_flags(size, flags, name, NULL);
3711
3712 list_for_each_entry(s, &slab_caches, list) {
3713 if (slab_unmergeable(s))
3714 continue;
3715
3716 if (size > s->size)
3717 continue;
3718
3719 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3720 continue;
3721 /*
3722 * Check if alignment is compatible.
3723 * Courtesy of Adrian Drzewiecki
3724 */
3725 if ((s->size & ~(align - 1)) != s->size)
3726 continue;
3727
3728 if (s->size - size >= sizeof(void *))
3729 continue;
3730
3731 if (!cache_match_memcg(s, memcg))
3732 continue;
3733
3734 return s;
3735 }
3736 return NULL;
3737 }
3738
3739 struct kmem_cache *
3740 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3741 size_t align, unsigned long flags, void (*ctor)(void *))
3742 {
3743 struct kmem_cache *s;
3744
3745 s = find_mergeable(memcg, size, align, flags, name, ctor);
3746 if (s) {
3747 s->refcount++;
3748 /*
3749 * Adjust the object sizes so that we clear
3750 * the complete object on kzalloc.
3751 */
3752 s->object_size = max(s->object_size, (int)size);
3753 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3754
3755 if (sysfs_slab_alias(s, name)) {
3756 s->refcount--;
3757 s = NULL;
3758 }
3759 }
3760
3761 return s;
3762 }
3763
3764 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3765 {
3766 int err;
3767
3768 err = kmem_cache_open(s, flags);
3769 if (err)
3770 return err;
3771
3772 /* Mutex is not taken during early boot */
3773 if (slab_state <= UP)
3774 return 0;
3775
3776 memcg_propagate_slab_attrs(s);
3777 mutex_unlock(&slab_mutex);
3778 err = sysfs_slab_add(s);
3779 mutex_lock(&slab_mutex);
3780
3781 if (err)
3782 kmem_cache_close(s);
3783
3784 return err;
3785 }
3786
3787 #ifdef CONFIG_SMP
3788 /*
3789 * Use the cpu notifier to insure that the cpu slabs are flushed when
3790 * necessary.
3791 */
3792 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3793 unsigned long action, void *hcpu)
3794 {
3795 long cpu = (long)hcpu;
3796 struct kmem_cache *s;
3797 unsigned long flags;
3798
3799 switch (action) {
3800 case CPU_UP_CANCELED:
3801 case CPU_UP_CANCELED_FROZEN:
3802 case CPU_DEAD:
3803 case CPU_DEAD_FROZEN:
3804 mutex_lock(&slab_mutex);
3805 list_for_each_entry(s, &slab_caches, list) {
3806 local_irq_save(flags);
3807 __flush_cpu_slab(s, cpu);
3808 local_irq_restore(flags);
3809 }
3810 mutex_unlock(&slab_mutex);
3811 break;
3812 default:
3813 break;
3814 }
3815 return NOTIFY_OK;
3816 }
3817
3818 static struct notifier_block __cpuinitdata slab_notifier = {
3819 .notifier_call = slab_cpuup_callback
3820 };
3821
3822 #endif
3823
3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3825 {
3826 struct kmem_cache *s;
3827 void *ret;
3828
3829 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 return kmalloc_large(size, gfpflags);
3831
3832 s = kmalloc_slab(size, gfpflags);
3833
3834 if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 return s;
3836
3837 ret = slab_alloc(s, gfpflags, caller);
3838
3839 /* Honor the call site pointer we received. */
3840 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841
3842 return ret;
3843 }
3844
3845 #ifdef CONFIG_NUMA
3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847 int node, unsigned long caller)
3848 {
3849 struct kmem_cache *s;
3850 void *ret;
3851
3852 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 ret = kmalloc_large_node(size, gfpflags, node);
3854
3855 trace_kmalloc_node(caller, ret,
3856 size, PAGE_SIZE << get_order(size),
3857 gfpflags, node);
3858
3859 return ret;
3860 }
3861
3862 s = kmalloc_slab(size, gfpflags);
3863
3864 if (unlikely(ZERO_OR_NULL_PTR(s)))
3865 return s;
3866
3867 ret = slab_alloc_node(s, gfpflags, node, caller);
3868
3869 /* Honor the call site pointer we received. */
3870 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871
3872 return ret;
3873 }
3874 #endif
3875
3876 #ifdef CONFIG_SYSFS
3877 static int count_inuse(struct page *page)
3878 {
3879 return page->inuse;
3880 }
3881
3882 static int count_total(struct page *page)
3883 {
3884 return page->objects;
3885 }
3886 #endif
3887
3888 #ifdef CONFIG_SLUB_DEBUG
3889 static int validate_slab(struct kmem_cache *s, struct page *page,
3890 unsigned long *map)
3891 {
3892 void *p;
3893 void *addr = page_address(page);
3894
3895 if (!check_slab(s, page) ||
3896 !on_freelist(s, page, NULL))
3897 return 0;
3898
3899 /* Now we know that a valid freelist exists */
3900 bitmap_zero(map, page->objects);
3901
3902 get_map(s, page, map);
3903 for_each_object(p, s, addr, page->objects) {
3904 if (test_bit(slab_index(p, s, addr), map))
3905 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3906 return 0;
3907 }
3908
3909 for_each_object(p, s, addr, page->objects)
3910 if (!test_bit(slab_index(p, s, addr), map))
3911 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 return 0;
3913 return 1;
3914 }
3915
3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3917 unsigned long *map)
3918 {
3919 slab_lock(page);
3920 validate_slab(s, page, map);
3921 slab_unlock(page);
3922 }
3923
3924 static int validate_slab_node(struct kmem_cache *s,
3925 struct kmem_cache_node *n, unsigned long *map)
3926 {
3927 unsigned long count = 0;
3928 struct page *page;
3929 unsigned long flags;
3930
3931 spin_lock_irqsave(&n->list_lock, flags);
3932
3933 list_for_each_entry(page, &n->partial, lru) {
3934 validate_slab_slab(s, page, map);
3935 count++;
3936 }
3937 if (count != n->nr_partial)
3938 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3939 "counter=%ld\n", s->name, count, n->nr_partial);
3940
3941 if (!(s->flags & SLAB_STORE_USER))
3942 goto out;
3943
3944 list_for_each_entry(page, &n->full, lru) {
3945 validate_slab_slab(s, page, map);
3946 count++;
3947 }
3948 if (count != atomic_long_read(&n->nr_slabs))
3949 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3950 "counter=%ld\n", s->name, count,
3951 atomic_long_read(&n->nr_slabs));
3952
3953 out:
3954 spin_unlock_irqrestore(&n->list_lock, flags);
3955 return count;
3956 }
3957
3958 static long validate_slab_cache(struct kmem_cache *s)
3959 {
3960 int node;
3961 unsigned long count = 0;
3962 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3963 sizeof(unsigned long), GFP_KERNEL);
3964
3965 if (!map)
3966 return -ENOMEM;
3967
3968 flush_all(s);
3969 for_each_node_state(node, N_NORMAL_MEMORY) {
3970 struct kmem_cache_node *n = get_node(s, node);
3971
3972 count += validate_slab_node(s, n, map);
3973 }
3974 kfree(map);
3975 return count;
3976 }
3977 /*
3978 * Generate lists of code addresses where slabcache objects are allocated
3979 * and freed.
3980 */
3981
3982 struct location {
3983 unsigned long count;
3984 unsigned long addr;
3985 long long sum_time;
3986 long min_time;
3987 long max_time;
3988 long min_pid;
3989 long max_pid;
3990 DECLARE_BITMAP(cpus, NR_CPUS);
3991 nodemask_t nodes;
3992 };
3993
3994 struct loc_track {
3995 unsigned long max;
3996 unsigned long count;
3997 struct location *loc;
3998 };
3999
4000 static void free_loc_track(struct loc_track *t)
4001 {
4002 if (t->max)
4003 free_pages((unsigned long)t->loc,
4004 get_order(sizeof(struct location) * t->max));
4005 }
4006
4007 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4008 {
4009 struct location *l;
4010 int order;
4011
4012 order = get_order(sizeof(struct location) * max);
4013
4014 l = (void *)__get_free_pages(flags, order);
4015 if (!l)
4016 return 0;
4017
4018 if (t->count) {
4019 memcpy(l, t->loc, sizeof(struct location) * t->count);
4020 free_loc_track(t);
4021 }
4022 t->max = max;
4023 t->loc = l;
4024 return 1;
4025 }
4026
4027 static int add_location(struct loc_track *t, struct kmem_cache *s,
4028 const struct track *track)
4029 {
4030 long start, end, pos;
4031 struct location *l;
4032 unsigned long caddr;
4033 unsigned long age = jiffies - track->when;
4034
4035 start = -1;
4036 end = t->count;
4037
4038 for ( ; ; ) {
4039 pos = start + (end - start + 1) / 2;
4040
4041 /*
4042 * There is nothing at "end". If we end up there
4043 * we need to add something to before end.
4044 */
4045 if (pos == end)
4046 break;
4047
4048 caddr = t->loc[pos].addr;
4049 if (track->addr == caddr) {
4050
4051 l = &t->loc[pos];
4052 l->count++;
4053 if (track->when) {
4054 l->sum_time += age;
4055 if (age < l->min_time)
4056 l->min_time = age;
4057 if (age > l->max_time)
4058 l->max_time = age;
4059
4060 if (track->pid < l->min_pid)
4061 l->min_pid = track->pid;
4062 if (track->pid > l->max_pid)
4063 l->max_pid = track->pid;
4064
4065 cpumask_set_cpu(track->cpu,
4066 to_cpumask(l->cpus));
4067 }
4068 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4069 return 1;
4070 }
4071
4072 if (track->addr < caddr)
4073 end = pos;
4074 else
4075 start = pos;
4076 }
4077
4078 /*
4079 * Not found. Insert new tracking element.
4080 */
4081 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4082 return 0;
4083
4084 l = t->loc + pos;
4085 if (pos < t->count)
4086 memmove(l + 1, l,
4087 (t->count - pos) * sizeof(struct location));
4088 t->count++;
4089 l->count = 1;
4090 l->addr = track->addr;
4091 l->sum_time = age;
4092 l->min_time = age;
4093 l->max_time = age;
4094 l->min_pid = track->pid;
4095 l->max_pid = track->pid;
4096 cpumask_clear(to_cpumask(l->cpus));
4097 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4098 nodes_clear(l->nodes);
4099 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4100 return 1;
4101 }
4102
4103 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4104 struct page *page, enum track_item alloc,
4105 unsigned long *map)
4106 {
4107 void *addr = page_address(page);
4108 void *p;
4109
4110 bitmap_zero(map, page->objects);
4111 get_map(s, page, map);
4112
4113 for_each_object(p, s, addr, page->objects)
4114 if (!test_bit(slab_index(p, s, addr), map))
4115 add_location(t, s, get_track(s, p, alloc));
4116 }
4117
4118 static int list_locations(struct kmem_cache *s, char *buf,
4119 enum track_item alloc)
4120 {
4121 int len = 0;
4122 unsigned long i;
4123 struct loc_track t = { 0, 0, NULL };
4124 int node;
4125 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4126 sizeof(unsigned long), GFP_KERNEL);
4127
4128 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4129 GFP_TEMPORARY)) {
4130 kfree(map);
4131 return sprintf(buf, "Out of memory\n");
4132 }
4133 /* Push back cpu slabs */
4134 flush_all(s);
4135
4136 for_each_node_state(node, N_NORMAL_MEMORY) {
4137 struct kmem_cache_node *n = get_node(s, node);
4138 unsigned long flags;
4139 struct page *page;
4140
4141 if (!atomic_long_read(&n->nr_slabs))
4142 continue;
4143
4144 spin_lock_irqsave(&n->list_lock, flags);
4145 list_for_each_entry(page, &n->partial, lru)
4146 process_slab(&t, s, page, alloc, map);
4147 list_for_each_entry(page, &n->full, lru)
4148 process_slab(&t, s, page, alloc, map);
4149 spin_unlock_irqrestore(&n->list_lock, flags);
4150 }
4151
4152 for (i = 0; i < t.count; i++) {
4153 struct location *l = &t.loc[i];
4154
4155 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4156 break;
4157 len += sprintf(buf + len, "%7ld ", l->count);
4158
4159 if (l->addr)
4160 len += sprintf(buf + len, "%pS", (void *)l->addr);
4161 else
4162 len += sprintf(buf + len, "<not-available>");
4163
4164 if (l->sum_time != l->min_time) {
4165 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4166 l->min_time,
4167 (long)div_u64(l->sum_time, l->count),
4168 l->max_time);
4169 } else
4170 len += sprintf(buf + len, " age=%ld",
4171 l->min_time);
4172
4173 if (l->min_pid != l->max_pid)
4174 len += sprintf(buf + len, " pid=%ld-%ld",
4175 l->min_pid, l->max_pid);
4176 else
4177 len += sprintf(buf + len, " pid=%ld",
4178 l->min_pid);
4179
4180 if (num_online_cpus() > 1 &&
4181 !cpumask_empty(to_cpumask(l->cpus)) &&
4182 len < PAGE_SIZE - 60) {
4183 len += sprintf(buf + len, " cpus=");
4184 len += cpulist_scnprintf(buf + len,
4185 PAGE_SIZE - len - 50,
4186 to_cpumask(l->cpus));
4187 }
4188
4189 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4190 len < PAGE_SIZE - 60) {
4191 len += sprintf(buf + len, " nodes=");
4192 len += nodelist_scnprintf(buf + len,
4193 PAGE_SIZE - len - 50,
4194 l->nodes);
4195 }
4196
4197 len += sprintf(buf + len, "\n");
4198 }
4199
4200 free_loc_track(&t);
4201 kfree(map);
4202 if (!t.count)
4203 len += sprintf(buf, "No data\n");
4204 return len;
4205 }
4206 #endif
4207
4208 #ifdef SLUB_RESILIENCY_TEST
4209 static void resiliency_test(void)
4210 {
4211 u8 *p;
4212
4213 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4214
4215 printk(KERN_ERR "SLUB resiliency testing\n");
4216 printk(KERN_ERR "-----------------------\n");
4217 printk(KERN_ERR "A. Corruption after allocation\n");
4218
4219 p = kzalloc(16, GFP_KERNEL);
4220 p[16] = 0x12;
4221 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4222 " 0x12->0x%p\n\n", p + 16);
4223
4224 validate_slab_cache(kmalloc_caches[4]);
4225
4226 /* Hmmm... The next two are dangerous */
4227 p = kzalloc(32, GFP_KERNEL);
4228 p[32 + sizeof(void *)] = 0x34;
4229 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4230 " 0x34 -> -0x%p\n", p);
4231 printk(KERN_ERR
4232 "If allocated object is overwritten then not detectable\n\n");
4233
4234 validate_slab_cache(kmalloc_caches[5]);
4235 p = kzalloc(64, GFP_KERNEL);
4236 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4237 *p = 0x56;
4238 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4239 p);
4240 printk(KERN_ERR
4241 "If allocated object is overwritten then not detectable\n\n");
4242 validate_slab_cache(kmalloc_caches[6]);
4243
4244 printk(KERN_ERR "\nB. Corruption after free\n");
4245 p = kzalloc(128, GFP_KERNEL);
4246 kfree(p);
4247 *p = 0x78;
4248 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4249 validate_slab_cache(kmalloc_caches[7]);
4250
4251 p = kzalloc(256, GFP_KERNEL);
4252 kfree(p);
4253 p[50] = 0x9a;
4254 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4255 p);
4256 validate_slab_cache(kmalloc_caches[8]);
4257
4258 p = kzalloc(512, GFP_KERNEL);
4259 kfree(p);
4260 p[512] = 0xab;
4261 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4262 validate_slab_cache(kmalloc_caches[9]);
4263 }
4264 #else
4265 #ifdef CONFIG_SYSFS
4266 static void resiliency_test(void) {};
4267 #endif
4268 #endif
4269
4270 #ifdef CONFIG_SYSFS
4271 enum slab_stat_type {
4272 SL_ALL, /* All slabs */
4273 SL_PARTIAL, /* Only partially allocated slabs */
4274 SL_CPU, /* Only slabs used for cpu caches */
4275 SL_OBJECTS, /* Determine allocated objects not slabs */
4276 SL_TOTAL /* Determine object capacity not slabs */
4277 };
4278
4279 #define SO_ALL (1 << SL_ALL)
4280 #define SO_PARTIAL (1 << SL_PARTIAL)
4281 #define SO_CPU (1 << SL_CPU)
4282 #define SO_OBJECTS (1 << SL_OBJECTS)
4283 #define SO_TOTAL (1 << SL_TOTAL)
4284
4285 static ssize_t show_slab_objects(struct kmem_cache *s,
4286 char *buf, unsigned long flags)
4287 {
4288 unsigned long total = 0;
4289 int node;
4290 int x;
4291 unsigned long *nodes;
4292
4293 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4294 if (!nodes)
4295 return -ENOMEM;
4296
4297 if (flags & SO_CPU) {
4298 int cpu;
4299
4300 for_each_possible_cpu(cpu) {
4301 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4302 cpu);
4303 int node;
4304 struct page *page;
4305
4306 page = ACCESS_ONCE(c->page);
4307 if (!page)
4308 continue;
4309
4310 node = page_to_nid(page);
4311 if (flags & SO_TOTAL)
4312 x = page->objects;
4313 else if (flags & SO_OBJECTS)
4314 x = page->inuse;
4315 else
4316 x = 1;
4317
4318 total += x;
4319 nodes[node] += x;
4320
4321 page = ACCESS_ONCE(c->partial);
4322 if (page) {
4323 x = page->pobjects;
4324 total += x;
4325 nodes[node] += x;
4326 }
4327 }
4328 }
4329
4330 lock_memory_hotplug();
4331 #ifdef CONFIG_SLUB_DEBUG
4332 if (flags & SO_ALL) {
4333 for_each_node_state(node, N_NORMAL_MEMORY) {
4334 struct kmem_cache_node *n = get_node(s, node);
4335
4336 if (flags & SO_TOTAL)
4337 x = atomic_long_read(&n->total_objects);
4338 else if (flags & SO_OBJECTS)
4339 x = atomic_long_read(&n->total_objects) -
4340 count_partial(n, count_free);
4341 else
4342 x = atomic_long_read(&n->nr_slabs);
4343 total += x;
4344 nodes[node] += x;
4345 }
4346
4347 } else
4348 #endif
4349 if (flags & SO_PARTIAL) {
4350 for_each_node_state(node, N_NORMAL_MEMORY) {
4351 struct kmem_cache_node *n = get_node(s, node);
4352
4353 if (flags & SO_TOTAL)
4354 x = count_partial(n, count_total);
4355 else if (flags & SO_OBJECTS)
4356 x = count_partial(n, count_inuse);
4357 else
4358 x = n->nr_partial;
4359 total += x;
4360 nodes[node] += x;
4361 }
4362 }
4363 x = sprintf(buf, "%lu", total);
4364 #ifdef CONFIG_NUMA
4365 for_each_node_state(node, N_NORMAL_MEMORY)
4366 if (nodes[node])
4367 x += sprintf(buf + x, " N%d=%lu",
4368 node, nodes[node]);
4369 #endif
4370 unlock_memory_hotplug();
4371 kfree(nodes);
4372 return x + sprintf(buf + x, "\n");
4373 }
4374
4375 #ifdef CONFIG_SLUB_DEBUG
4376 static int any_slab_objects(struct kmem_cache *s)
4377 {
4378 int node;
4379
4380 for_each_online_node(node) {
4381 struct kmem_cache_node *n = get_node(s, node);
4382
4383 if (!n)
4384 continue;
4385
4386 if (atomic_long_read(&n->total_objects))
4387 return 1;
4388 }
4389 return 0;
4390 }
4391 #endif
4392
4393 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4394 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4395
4396 struct slab_attribute {
4397 struct attribute attr;
4398 ssize_t (*show)(struct kmem_cache *s, char *buf);
4399 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4400 };
4401
4402 #define SLAB_ATTR_RO(_name) \
4403 static struct slab_attribute _name##_attr = \
4404 __ATTR(_name, 0400, _name##_show, NULL)
4405
4406 #define SLAB_ATTR(_name) \
4407 static struct slab_attribute _name##_attr = \
4408 __ATTR(_name, 0600, _name##_show, _name##_store)
4409
4410 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4411 {
4412 return sprintf(buf, "%d\n", s->size);
4413 }
4414 SLAB_ATTR_RO(slab_size);
4415
4416 static ssize_t align_show(struct kmem_cache *s, char *buf)
4417 {
4418 return sprintf(buf, "%d\n", s->align);
4419 }
4420 SLAB_ATTR_RO(align);
4421
4422 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4423 {
4424 return sprintf(buf, "%d\n", s->object_size);
4425 }
4426 SLAB_ATTR_RO(object_size);
4427
4428 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4429 {
4430 return sprintf(buf, "%d\n", oo_objects(s->oo));
4431 }
4432 SLAB_ATTR_RO(objs_per_slab);
4433
4434 static ssize_t order_store(struct kmem_cache *s,
4435 const char *buf, size_t length)
4436 {
4437 unsigned long order;
4438 int err;
4439
4440 err = strict_strtoul(buf, 10, &order);
4441 if (err)
4442 return err;
4443
4444 if (order > slub_max_order || order < slub_min_order)
4445 return -EINVAL;
4446
4447 calculate_sizes(s, order);
4448 return length;
4449 }
4450
4451 static ssize_t order_show(struct kmem_cache *s, char *buf)
4452 {
4453 return sprintf(buf, "%d\n", oo_order(s->oo));
4454 }
4455 SLAB_ATTR(order);
4456
4457 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4458 {
4459 return sprintf(buf, "%lu\n", s->min_partial);
4460 }
4461
4462 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4463 size_t length)
4464 {
4465 unsigned long min;
4466 int err;
4467
4468 err = strict_strtoul(buf, 10, &min);
4469 if (err)
4470 return err;
4471
4472 set_min_partial(s, min);
4473 return length;
4474 }
4475 SLAB_ATTR(min_partial);
4476
4477 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4478 {
4479 return sprintf(buf, "%u\n", s->cpu_partial);
4480 }
4481
4482 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4483 size_t length)
4484 {
4485 unsigned long objects;
4486 int err;
4487
4488 err = strict_strtoul(buf, 10, &objects);
4489 if (err)
4490 return err;
4491 if (objects && !kmem_cache_has_cpu_partial(s))
4492 return -EINVAL;
4493
4494 s->cpu_partial = objects;
4495 flush_all(s);
4496 return length;
4497 }
4498 SLAB_ATTR(cpu_partial);
4499
4500 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4501 {
4502 if (!s->ctor)
4503 return 0;
4504 return sprintf(buf, "%pS\n", s->ctor);
4505 }
4506 SLAB_ATTR_RO(ctor);
4507
4508 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4509 {
4510 return sprintf(buf, "%d\n", s->refcount - 1);
4511 }
4512 SLAB_ATTR_RO(aliases);
4513
4514 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4515 {
4516 return show_slab_objects(s, buf, SO_PARTIAL);
4517 }
4518 SLAB_ATTR_RO(partial);
4519
4520 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4521 {
4522 return show_slab_objects(s, buf, SO_CPU);
4523 }
4524 SLAB_ATTR_RO(cpu_slabs);
4525
4526 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4527 {
4528 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4529 }
4530 SLAB_ATTR_RO(objects);
4531
4532 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4533 {
4534 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4535 }
4536 SLAB_ATTR_RO(objects_partial);
4537
4538 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4539 {
4540 int objects = 0;
4541 int pages = 0;
4542 int cpu;
4543 int len;
4544
4545 for_each_online_cpu(cpu) {
4546 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4547
4548 if (page) {
4549 pages += page->pages;
4550 objects += page->pobjects;
4551 }
4552 }
4553
4554 len = sprintf(buf, "%d(%d)", objects, pages);
4555
4556 #ifdef CONFIG_SMP
4557 for_each_online_cpu(cpu) {
4558 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4559
4560 if (page && len < PAGE_SIZE - 20)
4561 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4562 page->pobjects, page->pages);
4563 }
4564 #endif
4565 return len + sprintf(buf + len, "\n");
4566 }
4567 SLAB_ATTR_RO(slabs_cpu_partial);
4568
4569 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4570 {
4571 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4572 }
4573
4574 static ssize_t reclaim_account_store(struct kmem_cache *s,
4575 const char *buf, size_t length)
4576 {
4577 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4578 if (buf[0] == '1')
4579 s->flags |= SLAB_RECLAIM_ACCOUNT;
4580 return length;
4581 }
4582 SLAB_ATTR(reclaim_account);
4583
4584 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4585 {
4586 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4587 }
4588 SLAB_ATTR_RO(hwcache_align);
4589
4590 #ifdef CONFIG_ZONE_DMA
4591 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4592 {
4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4594 }
4595 SLAB_ATTR_RO(cache_dma);
4596 #endif
4597
4598 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4599 {
4600 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4601 }
4602 SLAB_ATTR_RO(destroy_by_rcu);
4603
4604 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4605 {
4606 return sprintf(buf, "%d\n", s->reserved);
4607 }
4608 SLAB_ATTR_RO(reserved);
4609
4610 #ifdef CONFIG_SLUB_DEBUG
4611 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4612 {
4613 return show_slab_objects(s, buf, SO_ALL);
4614 }
4615 SLAB_ATTR_RO(slabs);
4616
4617 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4618 {
4619 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4620 }
4621 SLAB_ATTR_RO(total_objects);
4622
4623 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4624 {
4625 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4626 }
4627
4628 static ssize_t sanity_checks_store(struct kmem_cache *s,
4629 const char *buf, size_t length)
4630 {
4631 s->flags &= ~SLAB_DEBUG_FREE;
4632 if (buf[0] == '1') {
4633 s->flags &= ~__CMPXCHG_DOUBLE;
4634 s->flags |= SLAB_DEBUG_FREE;
4635 }
4636 return length;
4637 }
4638 SLAB_ATTR(sanity_checks);
4639
4640 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4641 {
4642 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4643 }
4644
4645 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4646 size_t length)
4647 {
4648 s->flags &= ~SLAB_TRACE;
4649 if (buf[0] == '1') {
4650 s->flags &= ~__CMPXCHG_DOUBLE;
4651 s->flags |= SLAB_TRACE;
4652 }
4653 return length;
4654 }
4655 SLAB_ATTR(trace);
4656
4657 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4658 {
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4660 }
4661
4662 static ssize_t red_zone_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664 {
4665 if (any_slab_objects(s))
4666 return -EBUSY;
4667
4668 s->flags &= ~SLAB_RED_ZONE;
4669 if (buf[0] == '1') {
4670 s->flags &= ~__CMPXCHG_DOUBLE;
4671 s->flags |= SLAB_RED_ZONE;
4672 }
4673 calculate_sizes(s, -1);
4674 return length;
4675 }
4676 SLAB_ATTR(red_zone);
4677
4678 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4681 }
4682
4683 static ssize_t poison_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4685 {
4686 if (any_slab_objects(s))
4687 return -EBUSY;
4688
4689 s->flags &= ~SLAB_POISON;
4690 if (buf[0] == '1') {
4691 s->flags &= ~__CMPXCHG_DOUBLE;
4692 s->flags |= SLAB_POISON;
4693 }
4694 calculate_sizes(s, -1);
4695 return length;
4696 }
4697 SLAB_ATTR(poison);
4698
4699 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4700 {
4701 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4702 }
4703
4704 static ssize_t store_user_store(struct kmem_cache *s,
4705 const char *buf, size_t length)
4706 {
4707 if (any_slab_objects(s))
4708 return -EBUSY;
4709
4710 s->flags &= ~SLAB_STORE_USER;
4711 if (buf[0] == '1') {
4712 s->flags &= ~__CMPXCHG_DOUBLE;
4713 s->flags |= SLAB_STORE_USER;
4714 }
4715 calculate_sizes(s, -1);
4716 return length;
4717 }
4718 SLAB_ATTR(store_user);
4719
4720 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4721 {
4722 return 0;
4723 }
4724
4725 static ssize_t validate_store(struct kmem_cache *s,
4726 const char *buf, size_t length)
4727 {
4728 int ret = -EINVAL;
4729
4730 if (buf[0] == '1') {
4731 ret = validate_slab_cache(s);
4732 if (ret >= 0)
4733 ret = length;
4734 }
4735 return ret;
4736 }
4737 SLAB_ATTR(validate);
4738
4739 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4740 {
4741 if (!(s->flags & SLAB_STORE_USER))
4742 return -ENOSYS;
4743 return list_locations(s, buf, TRACK_ALLOC);
4744 }
4745 SLAB_ATTR_RO(alloc_calls);
4746
4747 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4748 {
4749 if (!(s->flags & SLAB_STORE_USER))
4750 return -ENOSYS;
4751 return list_locations(s, buf, TRACK_FREE);
4752 }
4753 SLAB_ATTR_RO(free_calls);
4754 #endif /* CONFIG_SLUB_DEBUG */
4755
4756 #ifdef CONFIG_FAILSLAB
4757 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4758 {
4759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4760 }
4761
4762 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4763 size_t length)
4764 {
4765 s->flags &= ~SLAB_FAILSLAB;
4766 if (buf[0] == '1')
4767 s->flags |= SLAB_FAILSLAB;
4768 return length;
4769 }
4770 SLAB_ATTR(failslab);
4771 #endif
4772
4773 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4774 {
4775 return 0;
4776 }
4777
4778 static ssize_t shrink_store(struct kmem_cache *s,
4779 const char *buf, size_t length)
4780 {
4781 if (buf[0] == '1') {
4782 int rc = kmem_cache_shrink(s);
4783
4784 if (rc)
4785 return rc;
4786 } else
4787 return -EINVAL;
4788 return length;
4789 }
4790 SLAB_ATTR(shrink);
4791
4792 #ifdef CONFIG_NUMA
4793 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4794 {
4795 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4796 }
4797
4798 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4799 const char *buf, size_t length)
4800 {
4801 unsigned long ratio;
4802 int err;
4803
4804 err = strict_strtoul(buf, 10, &ratio);
4805 if (err)
4806 return err;
4807
4808 if (ratio <= 100)
4809 s->remote_node_defrag_ratio = ratio * 10;
4810
4811 return length;
4812 }
4813 SLAB_ATTR(remote_node_defrag_ratio);
4814 #endif
4815
4816 #ifdef CONFIG_SLUB_STATS
4817 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4818 {
4819 unsigned long sum = 0;
4820 int cpu;
4821 int len;
4822 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4823
4824 if (!data)
4825 return -ENOMEM;
4826
4827 for_each_online_cpu(cpu) {
4828 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4829
4830 data[cpu] = x;
4831 sum += x;
4832 }
4833
4834 len = sprintf(buf, "%lu", sum);
4835
4836 #ifdef CONFIG_SMP
4837 for_each_online_cpu(cpu) {
4838 if (data[cpu] && len < PAGE_SIZE - 20)
4839 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4840 }
4841 #endif
4842 kfree(data);
4843 return len + sprintf(buf + len, "\n");
4844 }
4845
4846 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4847 {
4848 int cpu;
4849
4850 for_each_online_cpu(cpu)
4851 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4852 }
4853
4854 #define STAT_ATTR(si, text) \
4855 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4856 { \
4857 return show_stat(s, buf, si); \
4858 } \
4859 static ssize_t text##_store(struct kmem_cache *s, \
4860 const char *buf, size_t length) \
4861 { \
4862 if (buf[0] != '0') \
4863 return -EINVAL; \
4864 clear_stat(s, si); \
4865 return length; \
4866 } \
4867 SLAB_ATTR(text); \
4868
4869 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4870 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4871 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4872 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4873 STAT_ATTR(FREE_FROZEN, free_frozen);
4874 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4875 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4876 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4877 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4878 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4879 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4880 STAT_ATTR(FREE_SLAB, free_slab);
4881 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4882 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4883 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4884 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4885 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4886 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4887 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4888 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4889 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4890 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4891 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4892 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4893 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4894 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4895 #endif
4896
4897 static struct attribute *slab_attrs[] = {
4898 &slab_size_attr.attr,
4899 &object_size_attr.attr,
4900 &objs_per_slab_attr.attr,
4901 &order_attr.attr,
4902 &min_partial_attr.attr,
4903 &cpu_partial_attr.attr,
4904 &objects_attr.attr,
4905 &objects_partial_attr.attr,
4906 &partial_attr.attr,
4907 &cpu_slabs_attr.attr,
4908 &ctor_attr.attr,
4909 &aliases_attr.attr,
4910 &align_attr.attr,
4911 &hwcache_align_attr.attr,
4912 &reclaim_account_attr.attr,
4913 &destroy_by_rcu_attr.attr,
4914 &shrink_attr.attr,
4915 &reserved_attr.attr,
4916 &slabs_cpu_partial_attr.attr,
4917 #ifdef CONFIG_SLUB_DEBUG
4918 &total_objects_attr.attr,
4919 &slabs_attr.attr,
4920 &sanity_checks_attr.attr,
4921 &trace_attr.attr,
4922 &red_zone_attr.attr,
4923 &poison_attr.attr,
4924 &store_user_attr.attr,
4925 &validate_attr.attr,
4926 &alloc_calls_attr.attr,
4927 &free_calls_attr.attr,
4928 #endif
4929 #ifdef CONFIG_ZONE_DMA
4930 &cache_dma_attr.attr,
4931 #endif
4932 #ifdef CONFIG_NUMA
4933 &remote_node_defrag_ratio_attr.attr,
4934 #endif
4935 #ifdef CONFIG_SLUB_STATS
4936 &alloc_fastpath_attr.attr,
4937 &alloc_slowpath_attr.attr,
4938 &free_fastpath_attr.attr,
4939 &free_slowpath_attr.attr,
4940 &free_frozen_attr.attr,
4941 &free_add_partial_attr.attr,
4942 &free_remove_partial_attr.attr,
4943 &alloc_from_partial_attr.attr,
4944 &alloc_slab_attr.attr,
4945 &alloc_refill_attr.attr,
4946 &alloc_node_mismatch_attr.attr,
4947 &free_slab_attr.attr,
4948 &cpuslab_flush_attr.attr,
4949 &deactivate_full_attr.attr,
4950 &deactivate_empty_attr.attr,
4951 &deactivate_to_head_attr.attr,
4952 &deactivate_to_tail_attr.attr,
4953 &deactivate_remote_frees_attr.attr,
4954 &deactivate_bypass_attr.attr,
4955 &order_fallback_attr.attr,
4956 &cmpxchg_double_fail_attr.attr,
4957 &cmpxchg_double_cpu_fail_attr.attr,
4958 &cpu_partial_alloc_attr.attr,
4959 &cpu_partial_free_attr.attr,
4960 &cpu_partial_node_attr.attr,
4961 &cpu_partial_drain_attr.attr,
4962 #endif
4963 #ifdef CONFIG_FAILSLAB
4964 &failslab_attr.attr,
4965 #endif
4966
4967 NULL
4968 };
4969
4970 static struct attribute_group slab_attr_group = {
4971 .attrs = slab_attrs,
4972 };
4973
4974 static ssize_t slab_attr_show(struct kobject *kobj,
4975 struct attribute *attr,
4976 char *buf)
4977 {
4978 struct slab_attribute *attribute;
4979 struct kmem_cache *s;
4980 int err;
4981
4982 attribute = to_slab_attr(attr);
4983 s = to_slab(kobj);
4984
4985 if (!attribute->show)
4986 return -EIO;
4987
4988 err = attribute->show(s, buf);
4989
4990 return err;
4991 }
4992
4993 static ssize_t slab_attr_store(struct kobject *kobj,
4994 struct attribute *attr,
4995 const char *buf, size_t len)
4996 {
4997 struct slab_attribute *attribute;
4998 struct kmem_cache *s;
4999 int err;
5000
5001 attribute = to_slab_attr(attr);
5002 s = to_slab(kobj);
5003
5004 if (!attribute->store)
5005 return -EIO;
5006
5007 err = attribute->store(s, buf, len);
5008 #ifdef CONFIG_MEMCG_KMEM
5009 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5010 int i;
5011
5012 mutex_lock(&slab_mutex);
5013 if (s->max_attr_size < len)
5014 s->max_attr_size = len;
5015
5016 /*
5017 * This is a best effort propagation, so this function's return
5018 * value will be determined by the parent cache only. This is
5019 * basically because not all attributes will have a well
5020 * defined semantics for rollbacks - most of the actions will
5021 * have permanent effects.
5022 *
5023 * Returning the error value of any of the children that fail
5024 * is not 100 % defined, in the sense that users seeing the
5025 * error code won't be able to know anything about the state of
5026 * the cache.
5027 *
5028 * Only returning the error code for the parent cache at least
5029 * has well defined semantics. The cache being written to
5030 * directly either failed or succeeded, in which case we loop
5031 * through the descendants with best-effort propagation.
5032 */
5033 for_each_memcg_cache_index(i) {
5034 struct kmem_cache *c = cache_from_memcg(s, i);
5035 if (c)
5036 attribute->store(c, buf, len);
5037 }
5038 mutex_unlock(&slab_mutex);
5039 }
5040 #endif
5041 return err;
5042 }
5043
5044 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5045 {
5046 #ifdef CONFIG_MEMCG_KMEM
5047 int i;
5048 char *buffer = NULL;
5049
5050 if (!is_root_cache(s))
5051 return;
5052
5053 /*
5054 * This mean this cache had no attribute written. Therefore, no point
5055 * in copying default values around
5056 */
5057 if (!s->max_attr_size)
5058 return;
5059
5060 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5061 char mbuf[64];
5062 char *buf;
5063 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5064
5065 if (!attr || !attr->store || !attr->show)
5066 continue;
5067
5068 /*
5069 * It is really bad that we have to allocate here, so we will
5070 * do it only as a fallback. If we actually allocate, though,
5071 * we can just use the allocated buffer until the end.
5072 *
5073 * Most of the slub attributes will tend to be very small in
5074 * size, but sysfs allows buffers up to a page, so they can
5075 * theoretically happen.
5076 */
5077 if (buffer)
5078 buf = buffer;
5079 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5080 buf = mbuf;
5081 else {
5082 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5083 if (WARN_ON(!buffer))
5084 continue;
5085 buf = buffer;
5086 }
5087
5088 attr->show(s->memcg_params->root_cache, buf);
5089 attr->store(s, buf, strlen(buf));
5090 }
5091
5092 if (buffer)
5093 free_page((unsigned long)buffer);
5094 #endif
5095 }
5096
5097 static const struct sysfs_ops slab_sysfs_ops = {
5098 .show = slab_attr_show,
5099 .store = slab_attr_store,
5100 };
5101
5102 static struct kobj_type slab_ktype = {
5103 .sysfs_ops = &slab_sysfs_ops,
5104 };
5105
5106 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5107 {
5108 struct kobj_type *ktype = get_ktype(kobj);
5109
5110 if (ktype == &slab_ktype)
5111 return 1;
5112 return 0;
5113 }
5114
5115 static const struct kset_uevent_ops slab_uevent_ops = {
5116 .filter = uevent_filter,
5117 };
5118
5119 static struct kset *slab_kset;
5120
5121 #define ID_STR_LENGTH 64
5122
5123 /* Create a unique string id for a slab cache:
5124 *
5125 * Format :[flags-]size
5126 */
5127 static char *create_unique_id(struct kmem_cache *s)
5128 {
5129 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5130 char *p = name;
5131
5132 BUG_ON(!name);
5133
5134 *p++ = ':';
5135 /*
5136 * First flags affecting slabcache operations. We will only
5137 * get here for aliasable slabs so we do not need to support
5138 * too many flags. The flags here must cover all flags that
5139 * are matched during merging to guarantee that the id is
5140 * unique.
5141 */
5142 if (s->flags & SLAB_CACHE_DMA)
5143 *p++ = 'd';
5144 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5145 *p++ = 'a';
5146 if (s->flags & SLAB_DEBUG_FREE)
5147 *p++ = 'F';
5148 if (!(s->flags & SLAB_NOTRACK))
5149 *p++ = 't';
5150 if (p != name + 1)
5151 *p++ = '-';
5152 p += sprintf(p, "%07d", s->size);
5153
5154 #ifdef CONFIG_MEMCG_KMEM
5155 if (!is_root_cache(s))
5156 p += sprintf(p, "-%08d",
5157 memcg_cache_id(s->memcg_params->memcg));
5158 #endif
5159
5160 BUG_ON(p > name + ID_STR_LENGTH - 1);
5161 return name;
5162 }
5163
5164 static int sysfs_slab_add(struct kmem_cache *s)
5165 {
5166 int err;
5167 const char *name;
5168 int unmergeable = slab_unmergeable(s);
5169
5170 if (unmergeable) {
5171 /*
5172 * Slabcache can never be merged so we can use the name proper.
5173 * This is typically the case for debug situations. In that
5174 * case we can catch duplicate names easily.
5175 */
5176 sysfs_remove_link(&slab_kset->kobj, s->name);
5177 name = s->name;
5178 } else {
5179 /*
5180 * Create a unique name for the slab as a target
5181 * for the symlinks.
5182 */
5183 name = create_unique_id(s);
5184 }
5185
5186 s->kobj.kset = slab_kset;
5187 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5188 if (err) {
5189 kobject_put(&s->kobj);
5190 return err;
5191 }
5192
5193 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5194 if (err) {
5195 kobject_del(&s->kobj);
5196 kobject_put(&s->kobj);
5197 return err;
5198 }
5199 kobject_uevent(&s->kobj, KOBJ_ADD);
5200 if (!unmergeable) {
5201 /* Setup first alias */
5202 sysfs_slab_alias(s, s->name);
5203 kfree(name);
5204 }
5205 return 0;
5206 }
5207
5208 static void sysfs_slab_remove(struct kmem_cache *s)
5209 {
5210 if (slab_state < FULL)
5211 /*
5212 * Sysfs has not been setup yet so no need to remove the
5213 * cache from sysfs.
5214 */
5215 return;
5216
5217 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5218 kobject_del(&s->kobj);
5219 kobject_put(&s->kobj);
5220 }
5221
5222 /*
5223 * Need to buffer aliases during bootup until sysfs becomes
5224 * available lest we lose that information.
5225 */
5226 struct saved_alias {
5227 struct kmem_cache *s;
5228 const char *name;
5229 struct saved_alias *next;
5230 };
5231
5232 static struct saved_alias *alias_list;
5233
5234 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5235 {
5236 struct saved_alias *al;
5237
5238 if (slab_state == FULL) {
5239 /*
5240 * If we have a leftover link then remove it.
5241 */
5242 sysfs_remove_link(&slab_kset->kobj, name);
5243 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5244 }
5245
5246 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5247 if (!al)
5248 return -ENOMEM;
5249
5250 al->s = s;
5251 al->name = name;
5252 al->next = alias_list;
5253 alias_list = al;
5254 return 0;
5255 }
5256
5257 static int __init slab_sysfs_init(void)
5258 {
5259 struct kmem_cache *s;
5260 int err;
5261
5262 mutex_lock(&slab_mutex);
5263
5264 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5265 if (!slab_kset) {
5266 mutex_unlock(&slab_mutex);
5267 printk(KERN_ERR "Cannot register slab subsystem.\n");
5268 return -ENOSYS;
5269 }
5270
5271 slab_state = FULL;
5272
5273 list_for_each_entry(s, &slab_caches, list) {
5274 err = sysfs_slab_add(s);
5275 if (err)
5276 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5277 " to sysfs\n", s->name);
5278 }
5279
5280 while (alias_list) {
5281 struct saved_alias *al = alias_list;
5282
5283 alias_list = alias_list->next;
5284 err = sysfs_slab_alias(al->s, al->name);
5285 if (err)
5286 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5287 " %s to sysfs\n", al->name);
5288 kfree(al);
5289 }
5290
5291 mutex_unlock(&slab_mutex);
5292 resiliency_test();
5293 return 0;
5294 }
5295
5296 __initcall(slab_sysfs_init);
5297 #endif /* CONFIG_SYSFS */
5298
5299 /*
5300 * The /proc/slabinfo ABI
5301 */
5302 #ifdef CONFIG_SLABINFO
5303 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5304 {
5305 unsigned long nr_slabs = 0;
5306 unsigned long nr_objs = 0;
5307 unsigned long nr_free = 0;
5308 int node;
5309
5310 for_each_online_node(node) {
5311 struct kmem_cache_node *n = get_node(s, node);
5312
5313 if (!n)
5314 continue;
5315
5316 nr_slabs += node_nr_slabs(n);
5317 nr_objs += node_nr_objs(n);
5318 nr_free += count_partial(n, count_free);
5319 }
5320
5321 sinfo->active_objs = nr_objs - nr_free;
5322 sinfo->num_objs = nr_objs;
5323 sinfo->active_slabs = nr_slabs;
5324 sinfo->num_slabs = nr_slabs;
5325 sinfo->objects_per_slab = oo_objects(s->oo);
5326 sinfo->cache_order = oo_order(s->oo);
5327 }
5328
5329 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5330 {
5331 }
5332
5333 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5334 size_t count, loff_t *ppos)
5335 {
5336 return -EIO;
5337 }
5338 #endif /* CONFIG_SLABINFO */
This page took 0.290844 seconds and 6 git commands to generate.