Merge branch 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <trace/kmemtrace.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuset.h>
22 #include <linux/mempolicy.h>
23 #include <linux/ctype.h>
24 #include <linux/debugobjects.h>
25 #include <linux/kallsyms.h>
26 #include <linux/memory.h>
27 #include <linux/math64.h>
28 #include <linux/fault-inject.h>
29
30 /*
31 * Lock order:
32 * 1. slab_lock(page)
33 * 2. slab->list_lock
34 *
35 * The slab_lock protects operations on the object of a particular
36 * slab and its metadata in the page struct. If the slab lock
37 * has been taken then no allocations nor frees can be performed
38 * on the objects in the slab nor can the slab be added or removed
39 * from the partial or full lists since this would mean modifying
40 * the page_struct of the slab.
41 *
42 * The list_lock protects the partial and full list on each node and
43 * the partial slab counter. If taken then no new slabs may be added or
44 * removed from the lists nor make the number of partial slabs be modified.
45 * (Note that the total number of slabs is an atomic value that may be
46 * modified without taking the list lock).
47 *
48 * The list_lock is a centralized lock and thus we avoid taking it as
49 * much as possible. As long as SLUB does not have to handle partial
50 * slabs, operations can continue without any centralized lock. F.e.
51 * allocating a long series of objects that fill up slabs does not require
52 * the list lock.
53 *
54 * The lock order is sometimes inverted when we are trying to get a slab
55 * off a list. We take the list_lock and then look for a page on the list
56 * to use. While we do that objects in the slabs may be freed. We can
57 * only operate on the slab if we have also taken the slab_lock. So we use
58 * a slab_trylock() on the slab. If trylock was successful then no frees
59 * can occur anymore and we can use the slab for allocations etc. If the
60 * slab_trylock() does not succeed then frees are in progress in the slab and
61 * we must stay away from it for a while since we may cause a bouncing
62 * cacheline if we try to acquire the lock. So go onto the next slab.
63 * If all pages are busy then we may allocate a new slab instead of reusing
64 * a partial slab. A new slab has noone operating on it and thus there is
65 * no danger of cacheline contention.
66 *
67 * Interrupts are disabled during allocation and deallocation in order to
68 * make the slab allocator safe to use in the context of an irq. In addition
69 * interrupts are disabled to ensure that the processor does not change
70 * while handling per_cpu slabs, due to kernel preemption.
71 *
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
74 *
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
77 * freed then the slab will show up again on the partial lists.
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
80 *
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
84 *
85 * Overloading of page flags that are otherwise used for LRU management.
86 *
87 * PageActive The slab is frozen and exempt from list processing.
88 * This means that the slab is dedicated to a purpose
89 * such as satisfying allocations for a specific
90 * processor. Objects may be freed in the slab while
91 * it is frozen but slab_free will then skip the usual
92 * list operations. It is up to the processor holding
93 * the slab to integrate the slab into the slab lists
94 * when the slab is no longer needed.
95 *
96 * One use of this flag is to mark slabs that are
97 * used for allocations. Then such a slab becomes a cpu
98 * slab. The cpu slab may be equipped with an additional
99 * freelist that allows lockless access to
100 * free objects in addition to the regular freelist
101 * that requires the slab lock.
102 *
103 * PageError Slab requires special handling due to debug
104 * options set. This moves slab handling out of
105 * the fast path and disables lockless freelists.
106 */
107
108 #ifdef CONFIG_SLUB_DEBUG
109 #define SLABDEBUG 1
110 #else
111 #define SLABDEBUG 0
112 #endif
113
114 /*
115 * Issues still to be resolved:
116 *
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 *
119 * - Variable sizing of the per node arrays
120 */
121
122 /* Enable to test recovery from slab corruption on boot */
123 #undef SLUB_RESILIENCY_TEST
124
125 /*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
129 #define MIN_PARTIAL 5
130
131 /*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136 #define MAX_PARTIAL 10
137
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
140
141 /*
142 * Set of flags that will prevent slab merging
143 */
144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146
147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 SLAB_CACHE_DMA)
149
150 #ifndef ARCH_KMALLOC_MINALIGN
151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152 #endif
153
154 #ifndef ARCH_SLAB_MINALIGN
155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
156 #endif
157
158 #define OO_SHIFT 16
159 #define OO_MASK ((1 << OO_SHIFT) - 1)
160 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
161
162 /* Internal SLUB flags */
163 #define __OBJECT_POISON 0x80000000 /* Poison object */
164 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
165
166 static int kmem_size = sizeof(struct kmem_cache);
167
168 #ifdef CONFIG_SMP
169 static struct notifier_block slab_notifier;
170 #endif
171
172 static enum {
173 DOWN, /* No slab functionality available */
174 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
175 UP, /* Everything works but does not show up in sysfs */
176 SYSFS /* Sysfs up */
177 } slab_state = DOWN;
178
179 /* A list of all slab caches on the system */
180 static DECLARE_RWSEM(slub_lock);
181 static LIST_HEAD(slab_caches);
182
183 /*
184 * Tracking user of a slab.
185 */
186 struct track {
187 unsigned long addr; /* Called from address */
188 int cpu; /* Was running on cpu */
189 int pid; /* Pid context */
190 unsigned long when; /* When did the operation occur */
191 };
192
193 enum track_item { TRACK_ALLOC, TRACK_FREE };
194
195 #ifdef CONFIG_SLUB_DEBUG
196 static int sysfs_slab_add(struct kmem_cache *);
197 static int sysfs_slab_alias(struct kmem_cache *, const char *);
198 static void sysfs_slab_remove(struct kmem_cache *);
199
200 #else
201 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
202 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
203 { return 0; }
204 static inline void sysfs_slab_remove(struct kmem_cache *s)
205 {
206 kfree(s);
207 }
208
209 #endif
210
211 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 c->stat[si]++;
215 #endif
216 }
217
218 /********************************************************************
219 * Core slab cache functions
220 *******************************************************************/
221
222 int slab_is_available(void)
223 {
224 return slab_state >= UP;
225 }
226
227 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 {
229 #ifdef CONFIG_NUMA
230 return s->node[node];
231 #else
232 return &s->local_node;
233 #endif
234 }
235
236 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237 {
238 #ifdef CONFIG_SMP
239 return s->cpu_slab[cpu];
240 #else
241 return &s->cpu_slab;
242 #endif
243 }
244
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248 {
249 void *base;
250
251 if (!object)
252 return 1;
253
254 base = page_address(page);
255 if (object < base || object >= base + page->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261 }
262
263 /*
264 * Slow version of get and set free pointer.
265 *
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
269 */
270 static inline void *get_freepointer(struct kmem_cache *s, void *object)
271 {
272 return *(void **)(object + s->offset);
273 }
274
275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276 {
277 *(void **)(object + s->offset) = fp;
278 }
279
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 __p += (__s)->size)
284
285 /* Scan freelist */
286 #define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291 {
292 return (p - addr) / s->size;
293 }
294
295 static inline struct kmem_cache_order_objects oo_make(int order,
296 unsigned long size)
297 {
298 struct kmem_cache_order_objects x = {
299 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
300 };
301
302 return x;
303 }
304
305 static inline int oo_order(struct kmem_cache_order_objects x)
306 {
307 return x.x >> OO_SHIFT;
308 }
309
310 static inline int oo_objects(struct kmem_cache_order_objects x)
311 {
312 return x.x & OO_MASK;
313 }
314
315 #ifdef CONFIG_SLUB_DEBUG
316 /*
317 * Debug settings:
318 */
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug = DEBUG_DEFAULT_FLAGS;
321 #else
322 static int slub_debug;
323 #endif
324
325 static char *slub_debug_slabs;
326
327 /*
328 * Object debugging
329 */
330 static void print_section(char *text, u8 *addr, unsigned int length)
331 {
332 int i, offset;
333 int newline = 1;
334 char ascii[17];
335
336 ascii[16] = 0;
337
338 for (i = 0; i < length; i++) {
339 if (newline) {
340 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
341 newline = 0;
342 }
343 printk(KERN_CONT " %02x", addr[i]);
344 offset = i % 16;
345 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
346 if (offset == 15) {
347 printk(KERN_CONT " %s\n", ascii);
348 newline = 1;
349 }
350 }
351 if (!newline) {
352 i %= 16;
353 while (i < 16) {
354 printk(KERN_CONT " ");
355 ascii[i] = ' ';
356 i++;
357 }
358 printk(KERN_CONT " %s\n", ascii);
359 }
360 }
361
362 static struct track *get_track(struct kmem_cache *s, void *object,
363 enum track_item alloc)
364 {
365 struct track *p;
366
367 if (s->offset)
368 p = object + s->offset + sizeof(void *);
369 else
370 p = object + s->inuse;
371
372 return p + alloc;
373 }
374
375 static void set_track(struct kmem_cache *s, void *object,
376 enum track_item alloc, unsigned long addr)
377 {
378 struct track *p = get_track(s, object, alloc);
379
380 if (addr) {
381 p->addr = addr;
382 p->cpu = smp_processor_id();
383 p->pid = current->pid;
384 p->when = jiffies;
385 } else
386 memset(p, 0, sizeof(struct track));
387 }
388
389 static void init_tracking(struct kmem_cache *s, void *object)
390 {
391 if (!(s->flags & SLAB_STORE_USER))
392 return;
393
394 set_track(s, object, TRACK_FREE, 0UL);
395 set_track(s, object, TRACK_ALLOC, 0UL);
396 }
397
398 static void print_track(const char *s, struct track *t)
399 {
400 if (!t->addr)
401 return;
402
403 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
405 }
406
407 static void print_tracking(struct kmem_cache *s, void *object)
408 {
409 if (!(s->flags & SLAB_STORE_USER))
410 return;
411
412 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
413 print_track("Freed", get_track(s, object, TRACK_FREE));
414 }
415
416 static void print_page_info(struct page *page)
417 {
418 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419 page, page->objects, page->inuse, page->freelist, page->flags);
420
421 }
422
423 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424 {
425 va_list args;
426 char buf[100];
427
428 va_start(args, fmt);
429 vsnprintf(buf, sizeof(buf), fmt, args);
430 va_end(args);
431 printk(KERN_ERR "========================================"
432 "=====================================\n");
433 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
434 printk(KERN_ERR "----------------------------------------"
435 "-------------------------------------\n\n");
436 }
437
438 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439 {
440 va_list args;
441 char buf[100];
442
443 va_start(args, fmt);
444 vsnprintf(buf, sizeof(buf), fmt, args);
445 va_end(args);
446 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
447 }
448
449 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450 {
451 unsigned int off; /* Offset of last byte */
452 u8 *addr = page_address(page);
453
454 print_tracking(s, p);
455
456 print_page_info(page);
457
458 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459 p, p - addr, get_freepointer(s, p));
460
461 if (p > addr + 16)
462 print_section("Bytes b4", p - 16, 16);
463
464 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465
466 if (s->flags & SLAB_RED_ZONE)
467 print_section("Redzone", p + s->objsize,
468 s->inuse - s->objsize);
469
470 if (s->offset)
471 off = s->offset + sizeof(void *);
472 else
473 off = s->inuse;
474
475 if (s->flags & SLAB_STORE_USER)
476 off += 2 * sizeof(struct track);
477
478 if (off != s->size)
479 /* Beginning of the filler is the free pointer */
480 print_section("Padding", p + off, s->size - off);
481
482 dump_stack();
483 }
484
485 static void object_err(struct kmem_cache *s, struct page *page,
486 u8 *object, char *reason)
487 {
488 slab_bug(s, "%s", reason);
489 print_trailer(s, page, object);
490 }
491
492 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
493 {
494 va_list args;
495 char buf[100];
496
497 va_start(args, fmt);
498 vsnprintf(buf, sizeof(buf), fmt, args);
499 va_end(args);
500 slab_bug(s, "%s", buf);
501 print_page_info(page);
502 dump_stack();
503 }
504
505 static void init_object(struct kmem_cache *s, void *object, int active)
506 {
507 u8 *p = object;
508
509 if (s->flags & __OBJECT_POISON) {
510 memset(p, POISON_FREE, s->objsize - 1);
511 p[s->objsize - 1] = POISON_END;
512 }
513
514 if (s->flags & SLAB_RED_ZONE)
515 memset(p + s->objsize,
516 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
517 s->inuse - s->objsize);
518 }
519
520 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
521 {
522 while (bytes) {
523 if (*start != (u8)value)
524 return start;
525 start++;
526 bytes--;
527 }
528 return NULL;
529 }
530
531 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
532 void *from, void *to)
533 {
534 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
535 memset(from, data, to - from);
536 }
537
538 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
539 u8 *object, char *what,
540 u8 *start, unsigned int value, unsigned int bytes)
541 {
542 u8 *fault;
543 u8 *end;
544
545 fault = check_bytes(start, value, bytes);
546 if (!fault)
547 return 1;
548
549 end = start + bytes;
550 while (end > fault && end[-1] == value)
551 end--;
552
553 slab_bug(s, "%s overwritten", what);
554 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555 fault, end - 1, fault[0], value);
556 print_trailer(s, page, object);
557
558 restore_bytes(s, what, value, fault, end);
559 return 0;
560 }
561
562 /*
563 * Object layout:
564 *
565 * object address
566 * Bytes of the object to be managed.
567 * If the freepointer may overlay the object then the free
568 * pointer is the first word of the object.
569 *
570 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
571 * 0xa5 (POISON_END)
572 *
573 * object + s->objsize
574 * Padding to reach word boundary. This is also used for Redzoning.
575 * Padding is extended by another word if Redzoning is enabled and
576 * objsize == inuse.
577 *
578 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579 * 0xcc (RED_ACTIVE) for objects in use.
580 *
581 * object + s->inuse
582 * Meta data starts here.
583 *
584 * A. Free pointer (if we cannot overwrite object on free)
585 * B. Tracking data for SLAB_STORE_USER
586 * C. Padding to reach required alignment boundary or at mininum
587 * one word if debugging is on to be able to detect writes
588 * before the word boundary.
589 *
590 * Padding is done using 0x5a (POISON_INUSE)
591 *
592 * object + s->size
593 * Nothing is used beyond s->size.
594 *
595 * If slabcaches are merged then the objsize and inuse boundaries are mostly
596 * ignored. And therefore no slab options that rely on these boundaries
597 * may be used with merged slabcaches.
598 */
599
600 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601 {
602 unsigned long off = s->inuse; /* The end of info */
603
604 if (s->offset)
605 /* Freepointer is placed after the object. */
606 off += sizeof(void *);
607
608 if (s->flags & SLAB_STORE_USER)
609 /* We also have user information there */
610 off += 2 * sizeof(struct track);
611
612 if (s->size == off)
613 return 1;
614
615 return check_bytes_and_report(s, page, p, "Object padding",
616 p + off, POISON_INUSE, s->size - off);
617 }
618
619 /* Check the pad bytes at the end of a slab page */
620 static int slab_pad_check(struct kmem_cache *s, struct page *page)
621 {
622 u8 *start;
623 u8 *fault;
624 u8 *end;
625 int length;
626 int remainder;
627
628 if (!(s->flags & SLAB_POISON))
629 return 1;
630
631 start = page_address(page);
632 length = (PAGE_SIZE << compound_order(page));
633 end = start + length;
634 remainder = length % s->size;
635 if (!remainder)
636 return 1;
637
638 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
639 if (!fault)
640 return 1;
641 while (end > fault && end[-1] == POISON_INUSE)
642 end--;
643
644 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
645 print_section("Padding", end - remainder, remainder);
646
647 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
648 return 0;
649 }
650
651 static int check_object(struct kmem_cache *s, struct page *page,
652 void *object, int active)
653 {
654 u8 *p = object;
655 u8 *endobject = object + s->objsize;
656
657 if (s->flags & SLAB_RED_ZONE) {
658 unsigned int red =
659 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660
661 if (!check_bytes_and_report(s, page, object, "Redzone",
662 endobject, red, s->inuse - s->objsize))
663 return 0;
664 } else {
665 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
666 check_bytes_and_report(s, page, p, "Alignment padding",
667 endobject, POISON_INUSE, s->inuse - s->objsize);
668 }
669 }
670
671 if (s->flags & SLAB_POISON) {
672 if (!active && (s->flags & __OBJECT_POISON) &&
673 (!check_bytes_and_report(s, page, p, "Poison", p,
674 POISON_FREE, s->objsize - 1) ||
675 !check_bytes_and_report(s, page, p, "Poison",
676 p + s->objsize - 1, POISON_END, 1)))
677 return 0;
678 /*
679 * check_pad_bytes cleans up on its own.
680 */
681 check_pad_bytes(s, page, p);
682 }
683
684 if (!s->offset && active)
685 /*
686 * Object and freepointer overlap. Cannot check
687 * freepointer while object is allocated.
688 */
689 return 1;
690
691 /* Check free pointer validity */
692 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
693 object_err(s, page, p, "Freepointer corrupt");
694 /*
695 * No choice but to zap it and thus lose the remainder
696 * of the free objects in this slab. May cause
697 * another error because the object count is now wrong.
698 */
699 set_freepointer(s, p, NULL);
700 return 0;
701 }
702 return 1;
703 }
704
705 static int check_slab(struct kmem_cache *s, struct page *page)
706 {
707 int maxobj;
708
709 VM_BUG_ON(!irqs_disabled());
710
711 if (!PageSlab(page)) {
712 slab_err(s, page, "Not a valid slab page");
713 return 0;
714 }
715
716 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
717 if (page->objects > maxobj) {
718 slab_err(s, page, "objects %u > max %u",
719 s->name, page->objects, maxobj);
720 return 0;
721 }
722 if (page->inuse > page->objects) {
723 slab_err(s, page, "inuse %u > max %u",
724 s->name, page->inuse, page->objects);
725 return 0;
726 }
727 /* Slab_pad_check fixes things up after itself */
728 slab_pad_check(s, page);
729 return 1;
730 }
731
732 /*
733 * Determine if a certain object on a page is on the freelist. Must hold the
734 * slab lock to guarantee that the chains are in a consistent state.
735 */
736 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737 {
738 int nr = 0;
739 void *fp = page->freelist;
740 void *object = NULL;
741 unsigned long max_objects;
742
743 while (fp && nr <= page->objects) {
744 if (fp == search)
745 return 1;
746 if (!check_valid_pointer(s, page, fp)) {
747 if (object) {
748 object_err(s, page, object,
749 "Freechain corrupt");
750 set_freepointer(s, object, NULL);
751 break;
752 } else {
753 slab_err(s, page, "Freepointer corrupt");
754 page->freelist = NULL;
755 page->inuse = page->objects;
756 slab_fix(s, "Freelist cleared");
757 return 0;
758 }
759 break;
760 }
761 object = fp;
762 fp = get_freepointer(s, object);
763 nr++;
764 }
765
766 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
767 if (max_objects > MAX_OBJS_PER_PAGE)
768 max_objects = MAX_OBJS_PER_PAGE;
769
770 if (page->objects != max_objects) {
771 slab_err(s, page, "Wrong number of objects. Found %d but "
772 "should be %d", page->objects, max_objects);
773 page->objects = max_objects;
774 slab_fix(s, "Number of objects adjusted.");
775 }
776 if (page->inuse != page->objects - nr) {
777 slab_err(s, page, "Wrong object count. Counter is %d but "
778 "counted were %d", page->inuse, page->objects - nr);
779 page->inuse = page->objects - nr;
780 slab_fix(s, "Object count adjusted.");
781 }
782 return search == NULL;
783 }
784
785 static void trace(struct kmem_cache *s, struct page *page, void *object,
786 int alloc)
787 {
788 if (s->flags & SLAB_TRACE) {
789 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 s->name,
791 alloc ? "alloc" : "free",
792 object, page->inuse,
793 page->freelist);
794
795 if (!alloc)
796 print_section("Object", (void *)object, s->objsize);
797
798 dump_stack();
799 }
800 }
801
802 /*
803 * Tracking of fully allocated slabs for debugging purposes.
804 */
805 static void add_full(struct kmem_cache_node *n, struct page *page)
806 {
807 spin_lock(&n->list_lock);
808 list_add(&page->lru, &n->full);
809 spin_unlock(&n->list_lock);
810 }
811
812 static void remove_full(struct kmem_cache *s, struct page *page)
813 {
814 struct kmem_cache_node *n;
815
816 if (!(s->flags & SLAB_STORE_USER))
817 return;
818
819 n = get_node(s, page_to_nid(page));
820
821 spin_lock(&n->list_lock);
822 list_del(&page->lru);
823 spin_unlock(&n->list_lock);
824 }
825
826 /* Tracking of the number of slabs for debugging purposes */
827 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828 {
829 struct kmem_cache_node *n = get_node(s, node);
830
831 return atomic_long_read(&n->nr_slabs);
832 }
833
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 {
836 struct kmem_cache_node *n = get_node(s, node);
837
838 /*
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
843 */
844 if (!NUMA_BUILD || n) {
845 atomic_long_inc(&n->nr_slabs);
846 atomic_long_add(objects, &n->total_objects);
847 }
848 }
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 struct kmem_cache_node *n = get_node(s, node);
852
853 atomic_long_dec(&n->nr_slabs);
854 atomic_long_sub(objects, &n->total_objects);
855 }
856
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 void *object)
860 {
861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 return;
863
864 init_object(s, object, 0);
865 init_tracking(s, object);
866 }
867
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 void *object, unsigned long addr)
870 {
871 if (!check_slab(s, page))
872 goto bad;
873
874 if (!on_freelist(s, page, object)) {
875 object_err(s, page, object, "Object already allocated");
876 goto bad;
877 }
878
879 if (!check_valid_pointer(s, page, object)) {
880 object_err(s, page, object, "Freelist Pointer check fails");
881 goto bad;
882 }
883
884 if (!check_object(s, page, object, 0))
885 goto bad;
886
887 /* Success perform special debug activities for allocs */
888 if (s->flags & SLAB_STORE_USER)
889 set_track(s, object, TRACK_ALLOC, addr);
890 trace(s, page, object, 1);
891 init_object(s, object, 1);
892 return 1;
893
894 bad:
895 if (PageSlab(page)) {
896 /*
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
899 * as used avoids touching the remaining objects.
900 */
901 slab_fix(s, "Marking all objects used");
902 page->inuse = page->objects;
903 page->freelist = NULL;
904 }
905 return 0;
906 }
907
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 void *object, unsigned long addr)
910 {
911 if (!check_slab(s, page))
912 goto fail;
913
914 if (!check_valid_pointer(s, page, object)) {
915 slab_err(s, page, "Invalid object pointer 0x%p", object);
916 goto fail;
917 }
918
919 if (on_freelist(s, page, object)) {
920 object_err(s, page, object, "Object already free");
921 goto fail;
922 }
923
924 if (!check_object(s, page, object, 1))
925 return 0;
926
927 if (unlikely(s != page->slab)) {
928 if (!PageSlab(page)) {
929 slab_err(s, page, "Attempt to free object(0x%p) "
930 "outside of slab", object);
931 } else if (!page->slab) {
932 printk(KERN_ERR
933 "SLUB <none>: no slab for object 0x%p.\n",
934 object);
935 dump_stack();
936 } else
937 object_err(s, page, object,
938 "page slab pointer corrupt.");
939 goto fail;
940 }
941
942 /* Special debug activities for freeing objects */
943 if (!PageSlubFrozen(page) && !page->freelist)
944 remove_full(s, page);
945 if (s->flags & SLAB_STORE_USER)
946 set_track(s, object, TRACK_FREE, addr);
947 trace(s, page, object, 0);
948 init_object(s, object, 0);
949 return 1;
950
951 fail:
952 slab_fix(s, "Object at 0x%p not freed", object);
953 return 0;
954 }
955
956 static int __init setup_slub_debug(char *str)
957 {
958 slub_debug = DEBUG_DEFAULT_FLAGS;
959 if (*str++ != '=' || !*str)
960 /*
961 * No options specified. Switch on full debugging.
962 */
963 goto out;
964
965 if (*str == ',')
966 /*
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
969 */
970 goto check_slabs;
971
972 slub_debug = 0;
973 if (*str == '-')
974 /*
975 * Switch off all debugging measures.
976 */
977 goto out;
978
979 /*
980 * Determine which debug features should be switched on
981 */
982 for (; *str && *str != ','; str++) {
983 switch (tolower(*str)) {
984 case 'f':
985 slub_debug |= SLAB_DEBUG_FREE;
986 break;
987 case 'z':
988 slub_debug |= SLAB_RED_ZONE;
989 break;
990 case 'p':
991 slub_debug |= SLAB_POISON;
992 break;
993 case 'u':
994 slub_debug |= SLAB_STORE_USER;
995 break;
996 case 't':
997 slub_debug |= SLAB_TRACE;
998 break;
999 default:
1000 printk(KERN_ERR "slub_debug option '%c' "
1001 "unknown. skipped\n", *str);
1002 }
1003 }
1004
1005 check_slabs:
1006 if (*str == ',')
1007 slub_debug_slabs = str + 1;
1008 out:
1009 return 1;
1010 }
1011
1012 __setup("slub_debug", setup_slub_debug);
1013
1014 static unsigned long kmem_cache_flags(unsigned long objsize,
1015 unsigned long flags, const char *name,
1016 void (*ctor)(void *))
1017 {
1018 /*
1019 * Enable debugging if selected on the kernel commandline.
1020 */
1021 if (slub_debug && (!slub_debug_slabs ||
1022 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1023 flags |= slub_debug;
1024
1025 return flags;
1026 }
1027 #else
1028 static inline void setup_object_debug(struct kmem_cache *s,
1029 struct page *page, void *object) {}
1030
1031 static inline int alloc_debug_processing(struct kmem_cache *s,
1032 struct page *page, void *object, unsigned long addr) { return 0; }
1033
1034 static inline int free_debug_processing(struct kmem_cache *s,
1035 struct page *page, void *object, unsigned long addr) { return 0; }
1036
1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 { return 1; }
1039 static inline int check_object(struct kmem_cache *s, struct page *page,
1040 void *object, int active) { return 1; }
1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1042 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043 unsigned long flags, const char *name,
1044 void (*ctor)(void *))
1045 {
1046 return flags;
1047 }
1048 #define slub_debug 0
1049
1050 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 { return 0; }
1052 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053 int objects) {}
1054 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1055 int objects) {}
1056 #endif
1057
1058 /*
1059 * Slab allocation and freeing
1060 */
1061 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1062 struct kmem_cache_order_objects oo)
1063 {
1064 int order = oo_order(oo);
1065
1066 if (node == -1)
1067 return alloc_pages(flags, order);
1068 else
1069 return alloc_pages_node(node, flags, order);
1070 }
1071
1072 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 {
1074 struct page *page;
1075 struct kmem_cache_order_objects oo = s->oo;
1076
1077 flags |= s->allocflags;
1078
1079 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080 oo);
1081 if (unlikely(!page)) {
1082 oo = s->min;
1083 /*
1084 * Allocation may have failed due to fragmentation.
1085 * Try a lower order alloc if possible
1086 */
1087 page = alloc_slab_page(flags, node, oo);
1088 if (!page)
1089 return NULL;
1090
1091 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 }
1093 page->objects = oo_objects(oo);
1094 mod_zone_page_state(page_zone(page),
1095 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1096 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1097 1 << oo_order(oo));
1098
1099 return page;
1100 }
1101
1102 static void setup_object(struct kmem_cache *s, struct page *page,
1103 void *object)
1104 {
1105 setup_object_debug(s, page, object);
1106 if (unlikely(s->ctor))
1107 s->ctor(object);
1108 }
1109
1110 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111 {
1112 struct page *page;
1113 void *start;
1114 void *last;
1115 void *p;
1116
1117 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118
1119 page = allocate_slab(s,
1120 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1121 if (!page)
1122 goto out;
1123
1124 inc_slabs_node(s, page_to_nid(page), page->objects);
1125 page->slab = s;
1126 page->flags |= 1 << PG_slab;
1127 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1128 SLAB_STORE_USER | SLAB_TRACE))
1129 __SetPageSlubDebug(page);
1130
1131 start = page_address(page);
1132
1133 if (unlikely(s->flags & SLAB_POISON))
1134 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1135
1136 last = start;
1137 for_each_object(p, s, start, page->objects) {
1138 setup_object(s, page, last);
1139 set_freepointer(s, last, p);
1140 last = p;
1141 }
1142 setup_object(s, page, last);
1143 set_freepointer(s, last, NULL);
1144
1145 page->freelist = start;
1146 page->inuse = 0;
1147 out:
1148 return page;
1149 }
1150
1151 static void __free_slab(struct kmem_cache *s, struct page *page)
1152 {
1153 int order = compound_order(page);
1154 int pages = 1 << order;
1155
1156 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1157 void *p;
1158
1159 slab_pad_check(s, page);
1160 for_each_object(p, s, page_address(page),
1161 page->objects)
1162 check_object(s, page, p, 0);
1163 __ClearPageSlubDebug(page);
1164 }
1165
1166 mod_zone_page_state(page_zone(page),
1167 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1168 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1169 -pages);
1170
1171 __ClearPageSlab(page);
1172 reset_page_mapcount(page);
1173 __free_pages(page, order);
1174 }
1175
1176 static void rcu_free_slab(struct rcu_head *h)
1177 {
1178 struct page *page;
1179
1180 page = container_of((struct list_head *)h, struct page, lru);
1181 __free_slab(page->slab, page);
1182 }
1183
1184 static void free_slab(struct kmem_cache *s, struct page *page)
1185 {
1186 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 /*
1188 * RCU free overloads the RCU head over the LRU
1189 */
1190 struct rcu_head *head = (void *)&page->lru;
1191
1192 call_rcu(head, rcu_free_slab);
1193 } else
1194 __free_slab(s, page);
1195 }
1196
1197 static void discard_slab(struct kmem_cache *s, struct page *page)
1198 {
1199 dec_slabs_node(s, page_to_nid(page), page->objects);
1200 free_slab(s, page);
1201 }
1202
1203 /*
1204 * Per slab locking using the pagelock
1205 */
1206 static __always_inline void slab_lock(struct page *page)
1207 {
1208 bit_spin_lock(PG_locked, &page->flags);
1209 }
1210
1211 static __always_inline void slab_unlock(struct page *page)
1212 {
1213 __bit_spin_unlock(PG_locked, &page->flags);
1214 }
1215
1216 static __always_inline int slab_trylock(struct page *page)
1217 {
1218 int rc = 1;
1219
1220 rc = bit_spin_trylock(PG_locked, &page->flags);
1221 return rc;
1222 }
1223
1224 /*
1225 * Management of partially allocated slabs
1226 */
1227 static void add_partial(struct kmem_cache_node *n,
1228 struct page *page, int tail)
1229 {
1230 spin_lock(&n->list_lock);
1231 n->nr_partial++;
1232 if (tail)
1233 list_add_tail(&page->lru, &n->partial);
1234 else
1235 list_add(&page->lru, &n->partial);
1236 spin_unlock(&n->list_lock);
1237 }
1238
1239 static void remove_partial(struct kmem_cache *s, struct page *page)
1240 {
1241 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242
1243 spin_lock(&n->list_lock);
1244 list_del(&page->lru);
1245 n->nr_partial--;
1246 spin_unlock(&n->list_lock);
1247 }
1248
1249 /*
1250 * Lock slab and remove from the partial list.
1251 *
1252 * Must hold list_lock.
1253 */
1254 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1255 struct page *page)
1256 {
1257 if (slab_trylock(page)) {
1258 list_del(&page->lru);
1259 n->nr_partial--;
1260 __SetPageSlubFrozen(page);
1261 return 1;
1262 }
1263 return 0;
1264 }
1265
1266 /*
1267 * Try to allocate a partial slab from a specific node.
1268 */
1269 static struct page *get_partial_node(struct kmem_cache_node *n)
1270 {
1271 struct page *page;
1272
1273 /*
1274 * Racy check. If we mistakenly see no partial slabs then we
1275 * just allocate an empty slab. If we mistakenly try to get a
1276 * partial slab and there is none available then get_partials()
1277 * will return NULL.
1278 */
1279 if (!n || !n->nr_partial)
1280 return NULL;
1281
1282 spin_lock(&n->list_lock);
1283 list_for_each_entry(page, &n->partial, lru)
1284 if (lock_and_freeze_slab(n, page))
1285 goto out;
1286 page = NULL;
1287 out:
1288 spin_unlock(&n->list_lock);
1289 return page;
1290 }
1291
1292 /*
1293 * Get a page from somewhere. Search in increasing NUMA distances.
1294 */
1295 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296 {
1297 #ifdef CONFIG_NUMA
1298 struct zonelist *zonelist;
1299 struct zoneref *z;
1300 struct zone *zone;
1301 enum zone_type high_zoneidx = gfp_zone(flags);
1302 struct page *page;
1303
1304 /*
1305 * The defrag ratio allows a configuration of the tradeoffs between
1306 * inter node defragmentation and node local allocations. A lower
1307 * defrag_ratio increases the tendency to do local allocations
1308 * instead of attempting to obtain partial slabs from other nodes.
1309 *
1310 * If the defrag_ratio is set to 0 then kmalloc() always
1311 * returns node local objects. If the ratio is higher then kmalloc()
1312 * may return off node objects because partial slabs are obtained
1313 * from other nodes and filled up.
1314 *
1315 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1316 * defrag_ratio = 1000) then every (well almost) allocation will
1317 * first attempt to defrag slab caches on other nodes. This means
1318 * scanning over all nodes to look for partial slabs which may be
1319 * expensive if we do it every time we are trying to find a slab
1320 * with available objects.
1321 */
1322 if (!s->remote_node_defrag_ratio ||
1323 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1324 return NULL;
1325
1326 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1328 struct kmem_cache_node *n;
1329
1330 n = get_node(s, zone_to_nid(zone));
1331
1332 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1333 n->nr_partial > s->min_partial) {
1334 page = get_partial_node(n);
1335 if (page)
1336 return page;
1337 }
1338 }
1339 #endif
1340 return NULL;
1341 }
1342
1343 /*
1344 * Get a partial page, lock it and return it.
1345 */
1346 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 struct page *page;
1349 int searchnode = (node == -1) ? numa_node_id() : node;
1350
1351 page = get_partial_node(get_node(s, searchnode));
1352 if (page || (flags & __GFP_THISNODE))
1353 return page;
1354
1355 return get_any_partial(s, flags);
1356 }
1357
1358 /*
1359 * Move a page back to the lists.
1360 *
1361 * Must be called with the slab lock held.
1362 *
1363 * On exit the slab lock will have been dropped.
1364 */
1365 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366 {
1367 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1368 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369
1370 __ClearPageSlubFrozen(page);
1371 if (page->inuse) {
1372
1373 if (page->freelist) {
1374 add_partial(n, page, tail);
1375 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376 } else {
1377 stat(c, DEACTIVATE_FULL);
1378 if (SLABDEBUG && PageSlubDebug(page) &&
1379 (s->flags & SLAB_STORE_USER))
1380 add_full(n, page);
1381 }
1382 slab_unlock(page);
1383 } else {
1384 stat(c, DEACTIVATE_EMPTY);
1385 if (n->nr_partial < s->min_partial) {
1386 /*
1387 * Adding an empty slab to the partial slabs in order
1388 * to avoid page allocator overhead. This slab needs
1389 * to come after the other slabs with objects in
1390 * so that the others get filled first. That way the
1391 * size of the partial list stays small.
1392 *
1393 * kmem_cache_shrink can reclaim any empty slabs from
1394 * the partial list.
1395 */
1396 add_partial(n, page, 1);
1397 slab_unlock(page);
1398 } else {
1399 slab_unlock(page);
1400 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1401 discard_slab(s, page);
1402 }
1403 }
1404 }
1405
1406 /*
1407 * Remove the cpu slab
1408 */
1409 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410 {
1411 struct page *page = c->page;
1412 int tail = 1;
1413
1414 if (page->freelist)
1415 stat(c, DEACTIVATE_REMOTE_FREES);
1416 /*
1417 * Merge cpu freelist into slab freelist. Typically we get here
1418 * because both freelists are empty. So this is unlikely
1419 * to occur.
1420 */
1421 while (unlikely(c->freelist)) {
1422 void **object;
1423
1424 tail = 0; /* Hot objects. Put the slab first */
1425
1426 /* Retrieve object from cpu_freelist */
1427 object = c->freelist;
1428 c->freelist = c->freelist[c->offset];
1429
1430 /* And put onto the regular freelist */
1431 object[c->offset] = page->freelist;
1432 page->freelist = object;
1433 page->inuse--;
1434 }
1435 c->page = NULL;
1436 unfreeze_slab(s, page, tail);
1437 }
1438
1439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 {
1441 stat(c, CPUSLAB_FLUSH);
1442 slab_lock(c->page);
1443 deactivate_slab(s, c);
1444 }
1445
1446 /*
1447 * Flush cpu slab.
1448 *
1449 * Called from IPI handler with interrupts disabled.
1450 */
1451 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452 {
1453 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454
1455 if (likely(c && c->page))
1456 flush_slab(s, c);
1457 }
1458
1459 static void flush_cpu_slab(void *d)
1460 {
1461 struct kmem_cache *s = d;
1462
1463 __flush_cpu_slab(s, smp_processor_id());
1464 }
1465
1466 static void flush_all(struct kmem_cache *s)
1467 {
1468 on_each_cpu(flush_cpu_slab, s, 1);
1469 }
1470
1471 /*
1472 * Check if the objects in a per cpu structure fit numa
1473 * locality expectations.
1474 */
1475 static inline int node_match(struct kmem_cache_cpu *c, int node)
1476 {
1477 #ifdef CONFIG_NUMA
1478 if (node != -1 && c->node != node)
1479 return 0;
1480 #endif
1481 return 1;
1482 }
1483
1484 /*
1485 * Slow path. The lockless freelist is empty or we need to perform
1486 * debugging duties.
1487 *
1488 * Interrupts are disabled.
1489 *
1490 * Processing is still very fast if new objects have been freed to the
1491 * regular freelist. In that case we simply take over the regular freelist
1492 * as the lockless freelist and zap the regular freelist.
1493 *
1494 * If that is not working then we fall back to the partial lists. We take the
1495 * first element of the freelist as the object to allocate now and move the
1496 * rest of the freelist to the lockless freelist.
1497 *
1498 * And if we were unable to get a new slab from the partial slab lists then
1499 * we need to allocate a new slab. This is the slowest path since it involves
1500 * a call to the page allocator and the setup of a new slab.
1501 */
1502 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1503 unsigned long addr, struct kmem_cache_cpu *c)
1504 {
1505 void **object;
1506 struct page *new;
1507
1508 /* We handle __GFP_ZERO in the caller */
1509 gfpflags &= ~__GFP_ZERO;
1510
1511 if (!c->page)
1512 goto new_slab;
1513
1514 slab_lock(c->page);
1515 if (unlikely(!node_match(c, node)))
1516 goto another_slab;
1517
1518 stat(c, ALLOC_REFILL);
1519
1520 load_freelist:
1521 object = c->page->freelist;
1522 if (unlikely(!object))
1523 goto another_slab;
1524 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1525 goto debug;
1526
1527 c->freelist = object[c->offset];
1528 c->page->inuse = c->page->objects;
1529 c->page->freelist = NULL;
1530 c->node = page_to_nid(c->page);
1531 unlock_out:
1532 slab_unlock(c->page);
1533 stat(c, ALLOC_SLOWPATH);
1534 return object;
1535
1536 another_slab:
1537 deactivate_slab(s, c);
1538
1539 new_slab:
1540 new = get_partial(s, gfpflags, node);
1541 if (new) {
1542 c->page = new;
1543 stat(c, ALLOC_FROM_PARTIAL);
1544 goto load_freelist;
1545 }
1546
1547 if (gfpflags & __GFP_WAIT)
1548 local_irq_enable();
1549
1550 new = new_slab(s, gfpflags, node);
1551
1552 if (gfpflags & __GFP_WAIT)
1553 local_irq_disable();
1554
1555 if (new) {
1556 c = get_cpu_slab(s, smp_processor_id());
1557 stat(c, ALLOC_SLAB);
1558 if (c->page)
1559 flush_slab(s, c);
1560 slab_lock(new);
1561 __SetPageSlubFrozen(new);
1562 c->page = new;
1563 goto load_freelist;
1564 }
1565 return NULL;
1566 debug:
1567 if (!alloc_debug_processing(s, c->page, object, addr))
1568 goto another_slab;
1569
1570 c->page->inuse++;
1571 c->page->freelist = object[c->offset];
1572 c->node = -1;
1573 goto unlock_out;
1574 }
1575
1576 /*
1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578 * have the fastpath folded into their functions. So no function call
1579 * overhead for requests that can be satisfied on the fastpath.
1580 *
1581 * The fastpath works by first checking if the lockless freelist can be used.
1582 * If not then __slab_alloc is called for slow processing.
1583 *
1584 * Otherwise we can simply pick the next object from the lockless free list.
1585 */
1586 static __always_inline void *slab_alloc(struct kmem_cache *s,
1587 gfp_t gfpflags, int node, unsigned long addr)
1588 {
1589 void **object;
1590 struct kmem_cache_cpu *c;
1591 unsigned long flags;
1592 unsigned int objsize;
1593
1594 lockdep_trace_alloc(gfpflags);
1595 might_sleep_if(gfpflags & __GFP_WAIT);
1596
1597 if (should_failslab(s->objsize, gfpflags))
1598 return NULL;
1599
1600 local_irq_save(flags);
1601 c = get_cpu_slab(s, smp_processor_id());
1602 objsize = c->objsize;
1603 if (unlikely(!c->freelist || !node_match(c, node)))
1604
1605 object = __slab_alloc(s, gfpflags, node, addr, c);
1606
1607 else {
1608 object = c->freelist;
1609 c->freelist = object[c->offset];
1610 stat(c, ALLOC_FASTPATH);
1611 }
1612 local_irq_restore(flags);
1613
1614 if (unlikely((gfpflags & __GFP_ZERO) && object))
1615 memset(object, 0, objsize);
1616
1617 return object;
1618 }
1619
1620 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1621 {
1622 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1623
1624 kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
1625 s->objsize, s->size, gfpflags);
1626
1627 return ret;
1628 }
1629 EXPORT_SYMBOL(kmem_cache_alloc);
1630
1631 #ifdef CONFIG_KMEMTRACE
1632 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1633 {
1634 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1635 }
1636 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1637 #endif
1638
1639 #ifdef CONFIG_NUMA
1640 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1641 {
1642 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1643
1644 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
1645 s->objsize, s->size, gfpflags, node);
1646
1647 return ret;
1648 }
1649 EXPORT_SYMBOL(kmem_cache_alloc_node);
1650 #endif
1651
1652 #ifdef CONFIG_KMEMTRACE
1653 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1654 gfp_t gfpflags,
1655 int node)
1656 {
1657 return slab_alloc(s, gfpflags, node, _RET_IP_);
1658 }
1659 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1660 #endif
1661
1662 /*
1663 * Slow patch handling. This may still be called frequently since objects
1664 * have a longer lifetime than the cpu slabs in most processing loads.
1665 *
1666 * So we still attempt to reduce cache line usage. Just take the slab
1667 * lock and free the item. If there is no additional partial page
1668 * handling required then we can return immediately.
1669 */
1670 static void __slab_free(struct kmem_cache *s, struct page *page,
1671 void *x, unsigned long addr, unsigned int offset)
1672 {
1673 void *prior;
1674 void **object = (void *)x;
1675 struct kmem_cache_cpu *c;
1676
1677 c = get_cpu_slab(s, raw_smp_processor_id());
1678 stat(c, FREE_SLOWPATH);
1679 slab_lock(page);
1680
1681 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1682 goto debug;
1683
1684 checks_ok:
1685 prior = object[offset] = page->freelist;
1686 page->freelist = object;
1687 page->inuse--;
1688
1689 if (unlikely(PageSlubFrozen(page))) {
1690 stat(c, FREE_FROZEN);
1691 goto out_unlock;
1692 }
1693
1694 if (unlikely(!page->inuse))
1695 goto slab_empty;
1696
1697 /*
1698 * Objects left in the slab. If it was not on the partial list before
1699 * then add it.
1700 */
1701 if (unlikely(!prior)) {
1702 add_partial(get_node(s, page_to_nid(page)), page, 1);
1703 stat(c, FREE_ADD_PARTIAL);
1704 }
1705
1706 out_unlock:
1707 slab_unlock(page);
1708 return;
1709
1710 slab_empty:
1711 if (prior) {
1712 /*
1713 * Slab still on the partial list.
1714 */
1715 remove_partial(s, page);
1716 stat(c, FREE_REMOVE_PARTIAL);
1717 }
1718 slab_unlock(page);
1719 stat(c, FREE_SLAB);
1720 discard_slab(s, page);
1721 return;
1722
1723 debug:
1724 if (!free_debug_processing(s, page, x, addr))
1725 goto out_unlock;
1726 goto checks_ok;
1727 }
1728
1729 /*
1730 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1731 * can perform fastpath freeing without additional function calls.
1732 *
1733 * The fastpath is only possible if we are freeing to the current cpu slab
1734 * of this processor. This typically the case if we have just allocated
1735 * the item before.
1736 *
1737 * If fastpath is not possible then fall back to __slab_free where we deal
1738 * with all sorts of special processing.
1739 */
1740 static __always_inline void slab_free(struct kmem_cache *s,
1741 struct page *page, void *x, unsigned long addr)
1742 {
1743 void **object = (void *)x;
1744 struct kmem_cache_cpu *c;
1745 unsigned long flags;
1746
1747 local_irq_save(flags);
1748 c = get_cpu_slab(s, smp_processor_id());
1749 debug_check_no_locks_freed(object, c->objsize);
1750 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1751 debug_check_no_obj_freed(object, c->objsize);
1752 if (likely(page == c->page && c->node >= 0)) {
1753 object[c->offset] = c->freelist;
1754 c->freelist = object;
1755 stat(c, FREE_FASTPATH);
1756 } else
1757 __slab_free(s, page, x, addr, c->offset);
1758
1759 local_irq_restore(flags);
1760 }
1761
1762 void kmem_cache_free(struct kmem_cache *s, void *x)
1763 {
1764 struct page *page;
1765
1766 page = virt_to_head_page(x);
1767
1768 slab_free(s, page, x, _RET_IP_);
1769
1770 kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, x);
1771 }
1772 EXPORT_SYMBOL(kmem_cache_free);
1773
1774 /* Figure out on which slab page the object resides */
1775 static struct page *get_object_page(const void *x)
1776 {
1777 struct page *page = virt_to_head_page(x);
1778
1779 if (!PageSlab(page))
1780 return NULL;
1781
1782 return page;
1783 }
1784
1785 /*
1786 * Object placement in a slab is made very easy because we always start at
1787 * offset 0. If we tune the size of the object to the alignment then we can
1788 * get the required alignment by putting one properly sized object after
1789 * another.
1790 *
1791 * Notice that the allocation order determines the sizes of the per cpu
1792 * caches. Each processor has always one slab available for allocations.
1793 * Increasing the allocation order reduces the number of times that slabs
1794 * must be moved on and off the partial lists and is therefore a factor in
1795 * locking overhead.
1796 */
1797
1798 /*
1799 * Mininum / Maximum order of slab pages. This influences locking overhead
1800 * and slab fragmentation. A higher order reduces the number of partial slabs
1801 * and increases the number of allocations possible without having to
1802 * take the list_lock.
1803 */
1804 static int slub_min_order;
1805 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1806 static int slub_min_objects;
1807
1808 /*
1809 * Merge control. If this is set then no merging of slab caches will occur.
1810 * (Could be removed. This was introduced to pacify the merge skeptics.)
1811 */
1812 static int slub_nomerge;
1813
1814 /*
1815 * Calculate the order of allocation given an slab object size.
1816 *
1817 * The order of allocation has significant impact on performance and other
1818 * system components. Generally order 0 allocations should be preferred since
1819 * order 0 does not cause fragmentation in the page allocator. Larger objects
1820 * be problematic to put into order 0 slabs because there may be too much
1821 * unused space left. We go to a higher order if more than 1/16th of the slab
1822 * would be wasted.
1823 *
1824 * In order to reach satisfactory performance we must ensure that a minimum
1825 * number of objects is in one slab. Otherwise we may generate too much
1826 * activity on the partial lists which requires taking the list_lock. This is
1827 * less a concern for large slabs though which are rarely used.
1828 *
1829 * slub_max_order specifies the order where we begin to stop considering the
1830 * number of objects in a slab as critical. If we reach slub_max_order then
1831 * we try to keep the page order as low as possible. So we accept more waste
1832 * of space in favor of a small page order.
1833 *
1834 * Higher order allocations also allow the placement of more objects in a
1835 * slab and thereby reduce object handling overhead. If the user has
1836 * requested a higher mininum order then we start with that one instead of
1837 * the smallest order which will fit the object.
1838 */
1839 static inline int slab_order(int size, int min_objects,
1840 int max_order, int fract_leftover)
1841 {
1842 int order;
1843 int rem;
1844 int min_order = slub_min_order;
1845
1846 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1847 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1848
1849 for (order = max(min_order,
1850 fls(min_objects * size - 1) - PAGE_SHIFT);
1851 order <= max_order; order++) {
1852
1853 unsigned long slab_size = PAGE_SIZE << order;
1854
1855 if (slab_size < min_objects * size)
1856 continue;
1857
1858 rem = slab_size % size;
1859
1860 if (rem <= slab_size / fract_leftover)
1861 break;
1862
1863 }
1864
1865 return order;
1866 }
1867
1868 static inline int calculate_order(int size)
1869 {
1870 int order;
1871 int min_objects;
1872 int fraction;
1873 int max_objects;
1874
1875 /*
1876 * Attempt to find best configuration for a slab. This
1877 * works by first attempting to generate a layout with
1878 * the best configuration and backing off gradually.
1879 *
1880 * First we reduce the acceptable waste in a slab. Then
1881 * we reduce the minimum objects required in a slab.
1882 */
1883 min_objects = slub_min_objects;
1884 if (!min_objects)
1885 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1886 max_objects = (PAGE_SIZE << slub_max_order)/size;
1887 min_objects = min(min_objects, max_objects);
1888
1889 while (min_objects > 1) {
1890 fraction = 16;
1891 while (fraction >= 4) {
1892 order = slab_order(size, min_objects,
1893 slub_max_order, fraction);
1894 if (order <= slub_max_order)
1895 return order;
1896 fraction /= 2;
1897 }
1898 min_objects --;
1899 }
1900
1901 /*
1902 * We were unable to place multiple objects in a slab. Now
1903 * lets see if we can place a single object there.
1904 */
1905 order = slab_order(size, 1, slub_max_order, 1);
1906 if (order <= slub_max_order)
1907 return order;
1908
1909 /*
1910 * Doh this slab cannot be placed using slub_max_order.
1911 */
1912 order = slab_order(size, 1, MAX_ORDER, 1);
1913 if (order <= MAX_ORDER)
1914 return order;
1915 return -ENOSYS;
1916 }
1917
1918 /*
1919 * Figure out what the alignment of the objects will be.
1920 */
1921 static unsigned long calculate_alignment(unsigned long flags,
1922 unsigned long align, unsigned long size)
1923 {
1924 /*
1925 * If the user wants hardware cache aligned objects then follow that
1926 * suggestion if the object is sufficiently large.
1927 *
1928 * The hardware cache alignment cannot override the specified
1929 * alignment though. If that is greater then use it.
1930 */
1931 if (flags & SLAB_HWCACHE_ALIGN) {
1932 unsigned long ralign = cache_line_size();
1933 while (size <= ralign / 2)
1934 ralign /= 2;
1935 align = max(align, ralign);
1936 }
1937
1938 if (align < ARCH_SLAB_MINALIGN)
1939 align = ARCH_SLAB_MINALIGN;
1940
1941 return ALIGN(align, sizeof(void *));
1942 }
1943
1944 static void init_kmem_cache_cpu(struct kmem_cache *s,
1945 struct kmem_cache_cpu *c)
1946 {
1947 c->page = NULL;
1948 c->freelist = NULL;
1949 c->node = 0;
1950 c->offset = s->offset / sizeof(void *);
1951 c->objsize = s->objsize;
1952 #ifdef CONFIG_SLUB_STATS
1953 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1954 #endif
1955 }
1956
1957 static void
1958 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1959 {
1960 n->nr_partial = 0;
1961 spin_lock_init(&n->list_lock);
1962 INIT_LIST_HEAD(&n->partial);
1963 #ifdef CONFIG_SLUB_DEBUG
1964 atomic_long_set(&n->nr_slabs, 0);
1965 atomic_long_set(&n->total_objects, 0);
1966 INIT_LIST_HEAD(&n->full);
1967 #endif
1968 }
1969
1970 #ifdef CONFIG_SMP
1971 /*
1972 * Per cpu array for per cpu structures.
1973 *
1974 * The per cpu array places all kmem_cache_cpu structures from one processor
1975 * close together meaning that it becomes possible that multiple per cpu
1976 * structures are contained in one cacheline. This may be particularly
1977 * beneficial for the kmalloc caches.
1978 *
1979 * A desktop system typically has around 60-80 slabs. With 100 here we are
1980 * likely able to get per cpu structures for all caches from the array defined
1981 * here. We must be able to cover all kmalloc caches during bootstrap.
1982 *
1983 * If the per cpu array is exhausted then fall back to kmalloc
1984 * of individual cachelines. No sharing is possible then.
1985 */
1986 #define NR_KMEM_CACHE_CPU 100
1987
1988 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1989 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1990
1991 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1992 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1993
1994 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1995 int cpu, gfp_t flags)
1996 {
1997 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1998
1999 if (c)
2000 per_cpu(kmem_cache_cpu_free, cpu) =
2001 (void *)c->freelist;
2002 else {
2003 /* Table overflow: So allocate ourselves */
2004 c = kmalloc_node(
2005 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2006 flags, cpu_to_node(cpu));
2007 if (!c)
2008 return NULL;
2009 }
2010
2011 init_kmem_cache_cpu(s, c);
2012 return c;
2013 }
2014
2015 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2016 {
2017 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2018 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2019 kfree(c);
2020 return;
2021 }
2022 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2023 per_cpu(kmem_cache_cpu_free, cpu) = c;
2024 }
2025
2026 static void free_kmem_cache_cpus(struct kmem_cache *s)
2027 {
2028 int cpu;
2029
2030 for_each_online_cpu(cpu) {
2031 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2032
2033 if (c) {
2034 s->cpu_slab[cpu] = NULL;
2035 free_kmem_cache_cpu(c, cpu);
2036 }
2037 }
2038 }
2039
2040 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2041 {
2042 int cpu;
2043
2044 for_each_online_cpu(cpu) {
2045 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2046
2047 if (c)
2048 continue;
2049
2050 c = alloc_kmem_cache_cpu(s, cpu, flags);
2051 if (!c) {
2052 free_kmem_cache_cpus(s);
2053 return 0;
2054 }
2055 s->cpu_slab[cpu] = c;
2056 }
2057 return 1;
2058 }
2059
2060 /*
2061 * Initialize the per cpu array.
2062 */
2063 static void init_alloc_cpu_cpu(int cpu)
2064 {
2065 int i;
2066
2067 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2068 return;
2069
2070 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2071 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2072
2073 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2074 }
2075
2076 static void __init init_alloc_cpu(void)
2077 {
2078 int cpu;
2079
2080 for_each_online_cpu(cpu)
2081 init_alloc_cpu_cpu(cpu);
2082 }
2083
2084 #else
2085 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2086 static inline void init_alloc_cpu(void) {}
2087
2088 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2089 {
2090 init_kmem_cache_cpu(s, &s->cpu_slab);
2091 return 1;
2092 }
2093 #endif
2094
2095 #ifdef CONFIG_NUMA
2096 /*
2097 * No kmalloc_node yet so do it by hand. We know that this is the first
2098 * slab on the node for this slabcache. There are no concurrent accesses
2099 * possible.
2100 *
2101 * Note that this function only works on the kmalloc_node_cache
2102 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2103 * memory on a fresh node that has no slab structures yet.
2104 */
2105 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2106 {
2107 struct page *page;
2108 struct kmem_cache_node *n;
2109 unsigned long flags;
2110
2111 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2112
2113 page = new_slab(kmalloc_caches, gfpflags, node);
2114
2115 BUG_ON(!page);
2116 if (page_to_nid(page) != node) {
2117 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2118 "node %d\n", node);
2119 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2120 "in order to be able to continue\n");
2121 }
2122
2123 n = page->freelist;
2124 BUG_ON(!n);
2125 page->freelist = get_freepointer(kmalloc_caches, n);
2126 page->inuse++;
2127 kmalloc_caches->node[node] = n;
2128 #ifdef CONFIG_SLUB_DEBUG
2129 init_object(kmalloc_caches, n, 1);
2130 init_tracking(kmalloc_caches, n);
2131 #endif
2132 init_kmem_cache_node(n, kmalloc_caches);
2133 inc_slabs_node(kmalloc_caches, node, page->objects);
2134
2135 /*
2136 * lockdep requires consistent irq usage for each lock
2137 * so even though there cannot be a race this early in
2138 * the boot sequence, we still disable irqs.
2139 */
2140 local_irq_save(flags);
2141 add_partial(n, page, 0);
2142 local_irq_restore(flags);
2143 }
2144
2145 static void free_kmem_cache_nodes(struct kmem_cache *s)
2146 {
2147 int node;
2148
2149 for_each_node_state(node, N_NORMAL_MEMORY) {
2150 struct kmem_cache_node *n = s->node[node];
2151 if (n && n != &s->local_node)
2152 kmem_cache_free(kmalloc_caches, n);
2153 s->node[node] = NULL;
2154 }
2155 }
2156
2157 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2158 {
2159 int node;
2160 int local_node;
2161
2162 if (slab_state >= UP)
2163 local_node = page_to_nid(virt_to_page(s));
2164 else
2165 local_node = 0;
2166
2167 for_each_node_state(node, N_NORMAL_MEMORY) {
2168 struct kmem_cache_node *n;
2169
2170 if (local_node == node)
2171 n = &s->local_node;
2172 else {
2173 if (slab_state == DOWN) {
2174 early_kmem_cache_node_alloc(gfpflags, node);
2175 continue;
2176 }
2177 n = kmem_cache_alloc_node(kmalloc_caches,
2178 gfpflags, node);
2179
2180 if (!n) {
2181 free_kmem_cache_nodes(s);
2182 return 0;
2183 }
2184
2185 }
2186 s->node[node] = n;
2187 init_kmem_cache_node(n, s);
2188 }
2189 return 1;
2190 }
2191 #else
2192 static void free_kmem_cache_nodes(struct kmem_cache *s)
2193 {
2194 }
2195
2196 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2197 {
2198 init_kmem_cache_node(&s->local_node, s);
2199 return 1;
2200 }
2201 #endif
2202
2203 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2204 {
2205 if (min < MIN_PARTIAL)
2206 min = MIN_PARTIAL;
2207 else if (min > MAX_PARTIAL)
2208 min = MAX_PARTIAL;
2209 s->min_partial = min;
2210 }
2211
2212 /*
2213 * calculate_sizes() determines the order and the distribution of data within
2214 * a slab object.
2215 */
2216 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2217 {
2218 unsigned long flags = s->flags;
2219 unsigned long size = s->objsize;
2220 unsigned long align = s->align;
2221 int order;
2222
2223 /*
2224 * Round up object size to the next word boundary. We can only
2225 * place the free pointer at word boundaries and this determines
2226 * the possible location of the free pointer.
2227 */
2228 size = ALIGN(size, sizeof(void *));
2229
2230 #ifdef CONFIG_SLUB_DEBUG
2231 /*
2232 * Determine if we can poison the object itself. If the user of
2233 * the slab may touch the object after free or before allocation
2234 * then we should never poison the object itself.
2235 */
2236 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2237 !s->ctor)
2238 s->flags |= __OBJECT_POISON;
2239 else
2240 s->flags &= ~__OBJECT_POISON;
2241
2242
2243 /*
2244 * If we are Redzoning then check if there is some space between the
2245 * end of the object and the free pointer. If not then add an
2246 * additional word to have some bytes to store Redzone information.
2247 */
2248 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2249 size += sizeof(void *);
2250 #endif
2251
2252 /*
2253 * With that we have determined the number of bytes in actual use
2254 * by the object. This is the potential offset to the free pointer.
2255 */
2256 s->inuse = size;
2257
2258 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2259 s->ctor)) {
2260 /*
2261 * Relocate free pointer after the object if it is not
2262 * permitted to overwrite the first word of the object on
2263 * kmem_cache_free.
2264 *
2265 * This is the case if we do RCU, have a constructor or
2266 * destructor or are poisoning the objects.
2267 */
2268 s->offset = size;
2269 size += sizeof(void *);
2270 }
2271
2272 #ifdef CONFIG_SLUB_DEBUG
2273 if (flags & SLAB_STORE_USER)
2274 /*
2275 * Need to store information about allocs and frees after
2276 * the object.
2277 */
2278 size += 2 * sizeof(struct track);
2279
2280 if (flags & SLAB_RED_ZONE)
2281 /*
2282 * Add some empty padding so that we can catch
2283 * overwrites from earlier objects rather than let
2284 * tracking information or the free pointer be
2285 * corrupted if a user writes before the start
2286 * of the object.
2287 */
2288 size += sizeof(void *);
2289 #endif
2290
2291 /*
2292 * Determine the alignment based on various parameters that the
2293 * user specified and the dynamic determination of cache line size
2294 * on bootup.
2295 */
2296 align = calculate_alignment(flags, align, s->objsize);
2297
2298 /*
2299 * SLUB stores one object immediately after another beginning from
2300 * offset 0. In order to align the objects we have to simply size
2301 * each object to conform to the alignment.
2302 */
2303 size = ALIGN(size, align);
2304 s->size = size;
2305 if (forced_order >= 0)
2306 order = forced_order;
2307 else
2308 order = calculate_order(size);
2309
2310 if (order < 0)
2311 return 0;
2312
2313 s->allocflags = 0;
2314 if (order)
2315 s->allocflags |= __GFP_COMP;
2316
2317 if (s->flags & SLAB_CACHE_DMA)
2318 s->allocflags |= SLUB_DMA;
2319
2320 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2321 s->allocflags |= __GFP_RECLAIMABLE;
2322
2323 /*
2324 * Determine the number of objects per slab
2325 */
2326 s->oo = oo_make(order, size);
2327 s->min = oo_make(get_order(size), size);
2328 if (oo_objects(s->oo) > oo_objects(s->max))
2329 s->max = s->oo;
2330
2331 return !!oo_objects(s->oo);
2332
2333 }
2334
2335 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2336 const char *name, size_t size,
2337 size_t align, unsigned long flags,
2338 void (*ctor)(void *))
2339 {
2340 memset(s, 0, kmem_size);
2341 s->name = name;
2342 s->ctor = ctor;
2343 s->objsize = size;
2344 s->align = align;
2345 s->flags = kmem_cache_flags(size, flags, name, ctor);
2346
2347 if (!calculate_sizes(s, -1))
2348 goto error;
2349
2350 /*
2351 * The larger the object size is, the more pages we want on the partial
2352 * list to avoid pounding the page allocator excessively.
2353 */
2354 set_min_partial(s, ilog2(s->size));
2355 s->refcount = 1;
2356 #ifdef CONFIG_NUMA
2357 s->remote_node_defrag_ratio = 1000;
2358 #endif
2359 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2360 goto error;
2361
2362 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2363 return 1;
2364 free_kmem_cache_nodes(s);
2365 error:
2366 if (flags & SLAB_PANIC)
2367 panic("Cannot create slab %s size=%lu realsize=%u "
2368 "order=%u offset=%u flags=%lx\n",
2369 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2370 s->offset, flags);
2371 return 0;
2372 }
2373
2374 /*
2375 * Check if a given pointer is valid
2376 */
2377 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2378 {
2379 struct page *page;
2380
2381 page = get_object_page(object);
2382
2383 if (!page || s != page->slab)
2384 /* No slab or wrong slab */
2385 return 0;
2386
2387 if (!check_valid_pointer(s, page, object))
2388 return 0;
2389
2390 /*
2391 * We could also check if the object is on the slabs freelist.
2392 * But this would be too expensive and it seems that the main
2393 * purpose of kmem_ptr_valid() is to check if the object belongs
2394 * to a certain slab.
2395 */
2396 return 1;
2397 }
2398 EXPORT_SYMBOL(kmem_ptr_validate);
2399
2400 /*
2401 * Determine the size of a slab object
2402 */
2403 unsigned int kmem_cache_size(struct kmem_cache *s)
2404 {
2405 return s->objsize;
2406 }
2407 EXPORT_SYMBOL(kmem_cache_size);
2408
2409 const char *kmem_cache_name(struct kmem_cache *s)
2410 {
2411 return s->name;
2412 }
2413 EXPORT_SYMBOL(kmem_cache_name);
2414
2415 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2416 const char *text)
2417 {
2418 #ifdef CONFIG_SLUB_DEBUG
2419 void *addr = page_address(page);
2420 void *p;
2421 DECLARE_BITMAP(map, page->objects);
2422
2423 bitmap_zero(map, page->objects);
2424 slab_err(s, page, "%s", text);
2425 slab_lock(page);
2426 for_each_free_object(p, s, page->freelist)
2427 set_bit(slab_index(p, s, addr), map);
2428
2429 for_each_object(p, s, addr, page->objects) {
2430
2431 if (!test_bit(slab_index(p, s, addr), map)) {
2432 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2433 p, p - addr);
2434 print_tracking(s, p);
2435 }
2436 }
2437 slab_unlock(page);
2438 #endif
2439 }
2440
2441 /*
2442 * Attempt to free all partial slabs on a node.
2443 */
2444 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2445 {
2446 unsigned long flags;
2447 struct page *page, *h;
2448
2449 spin_lock_irqsave(&n->list_lock, flags);
2450 list_for_each_entry_safe(page, h, &n->partial, lru) {
2451 if (!page->inuse) {
2452 list_del(&page->lru);
2453 discard_slab(s, page);
2454 n->nr_partial--;
2455 } else {
2456 list_slab_objects(s, page,
2457 "Objects remaining on kmem_cache_close()");
2458 }
2459 }
2460 spin_unlock_irqrestore(&n->list_lock, flags);
2461 }
2462
2463 /*
2464 * Release all resources used by a slab cache.
2465 */
2466 static inline int kmem_cache_close(struct kmem_cache *s)
2467 {
2468 int node;
2469
2470 flush_all(s);
2471
2472 /* Attempt to free all objects */
2473 free_kmem_cache_cpus(s);
2474 for_each_node_state(node, N_NORMAL_MEMORY) {
2475 struct kmem_cache_node *n = get_node(s, node);
2476
2477 free_partial(s, n);
2478 if (n->nr_partial || slabs_node(s, node))
2479 return 1;
2480 }
2481 free_kmem_cache_nodes(s);
2482 return 0;
2483 }
2484
2485 /*
2486 * Close a cache and release the kmem_cache structure
2487 * (must be used for caches created using kmem_cache_create)
2488 */
2489 void kmem_cache_destroy(struct kmem_cache *s)
2490 {
2491 down_write(&slub_lock);
2492 s->refcount--;
2493 if (!s->refcount) {
2494 list_del(&s->list);
2495 up_write(&slub_lock);
2496 if (kmem_cache_close(s)) {
2497 printk(KERN_ERR "SLUB %s: %s called for cache that "
2498 "still has objects.\n", s->name, __func__);
2499 dump_stack();
2500 }
2501 sysfs_slab_remove(s);
2502 } else
2503 up_write(&slub_lock);
2504 }
2505 EXPORT_SYMBOL(kmem_cache_destroy);
2506
2507 /********************************************************************
2508 * Kmalloc subsystem
2509 *******************************************************************/
2510
2511 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2512 EXPORT_SYMBOL(kmalloc_caches);
2513
2514 static int __init setup_slub_min_order(char *str)
2515 {
2516 get_option(&str, &slub_min_order);
2517
2518 return 1;
2519 }
2520
2521 __setup("slub_min_order=", setup_slub_min_order);
2522
2523 static int __init setup_slub_max_order(char *str)
2524 {
2525 get_option(&str, &slub_max_order);
2526
2527 return 1;
2528 }
2529
2530 __setup("slub_max_order=", setup_slub_max_order);
2531
2532 static int __init setup_slub_min_objects(char *str)
2533 {
2534 get_option(&str, &slub_min_objects);
2535
2536 return 1;
2537 }
2538
2539 __setup("slub_min_objects=", setup_slub_min_objects);
2540
2541 static int __init setup_slub_nomerge(char *str)
2542 {
2543 slub_nomerge = 1;
2544 return 1;
2545 }
2546
2547 __setup("slub_nomerge", setup_slub_nomerge);
2548
2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2550 const char *name, int size, gfp_t gfp_flags)
2551 {
2552 unsigned int flags = 0;
2553
2554 if (gfp_flags & SLUB_DMA)
2555 flags = SLAB_CACHE_DMA;
2556
2557 down_write(&slub_lock);
2558 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2559 flags, NULL))
2560 goto panic;
2561
2562 list_add(&s->list, &slab_caches);
2563 up_write(&slub_lock);
2564 if (sysfs_slab_add(s))
2565 goto panic;
2566 return s;
2567
2568 panic:
2569 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2570 }
2571
2572 #ifdef CONFIG_ZONE_DMA
2573 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2574
2575 static void sysfs_add_func(struct work_struct *w)
2576 {
2577 struct kmem_cache *s;
2578
2579 down_write(&slub_lock);
2580 list_for_each_entry(s, &slab_caches, list) {
2581 if (s->flags & __SYSFS_ADD_DEFERRED) {
2582 s->flags &= ~__SYSFS_ADD_DEFERRED;
2583 sysfs_slab_add(s);
2584 }
2585 }
2586 up_write(&slub_lock);
2587 }
2588
2589 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2590
2591 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2592 {
2593 struct kmem_cache *s;
2594 char *text;
2595 size_t realsize;
2596
2597 s = kmalloc_caches_dma[index];
2598 if (s)
2599 return s;
2600
2601 /* Dynamically create dma cache */
2602 if (flags & __GFP_WAIT)
2603 down_write(&slub_lock);
2604 else {
2605 if (!down_write_trylock(&slub_lock))
2606 goto out;
2607 }
2608
2609 if (kmalloc_caches_dma[index])
2610 goto unlock_out;
2611
2612 realsize = kmalloc_caches[index].objsize;
2613 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2614 (unsigned int)realsize);
2615 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2616
2617 if (!s || !text || !kmem_cache_open(s, flags, text,
2618 realsize, ARCH_KMALLOC_MINALIGN,
2619 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2620 kfree(s);
2621 kfree(text);
2622 goto unlock_out;
2623 }
2624
2625 list_add(&s->list, &slab_caches);
2626 kmalloc_caches_dma[index] = s;
2627
2628 schedule_work(&sysfs_add_work);
2629
2630 unlock_out:
2631 up_write(&slub_lock);
2632 out:
2633 return kmalloc_caches_dma[index];
2634 }
2635 #endif
2636
2637 /*
2638 * Conversion table for small slabs sizes / 8 to the index in the
2639 * kmalloc array. This is necessary for slabs < 192 since we have non power
2640 * of two cache sizes there. The size of larger slabs can be determined using
2641 * fls.
2642 */
2643 static s8 size_index[24] = {
2644 3, /* 8 */
2645 4, /* 16 */
2646 5, /* 24 */
2647 5, /* 32 */
2648 6, /* 40 */
2649 6, /* 48 */
2650 6, /* 56 */
2651 6, /* 64 */
2652 1, /* 72 */
2653 1, /* 80 */
2654 1, /* 88 */
2655 1, /* 96 */
2656 7, /* 104 */
2657 7, /* 112 */
2658 7, /* 120 */
2659 7, /* 128 */
2660 2, /* 136 */
2661 2, /* 144 */
2662 2, /* 152 */
2663 2, /* 160 */
2664 2, /* 168 */
2665 2, /* 176 */
2666 2, /* 184 */
2667 2 /* 192 */
2668 };
2669
2670 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2671 {
2672 int index;
2673
2674 if (size <= 192) {
2675 if (!size)
2676 return ZERO_SIZE_PTR;
2677
2678 index = size_index[(size - 1) / 8];
2679 } else
2680 index = fls(size - 1);
2681
2682 #ifdef CONFIG_ZONE_DMA
2683 if (unlikely((flags & SLUB_DMA)))
2684 return dma_kmalloc_cache(index, flags);
2685
2686 #endif
2687 return &kmalloc_caches[index];
2688 }
2689
2690 void *__kmalloc(size_t size, gfp_t flags)
2691 {
2692 struct kmem_cache *s;
2693 void *ret;
2694
2695 if (unlikely(size > SLUB_MAX_SIZE))
2696 return kmalloc_large(size, flags);
2697
2698 s = get_slab(size, flags);
2699
2700 if (unlikely(ZERO_OR_NULL_PTR(s)))
2701 return s;
2702
2703 ret = slab_alloc(s, flags, -1, _RET_IP_);
2704
2705 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
2706 size, s->size, flags);
2707
2708 return ret;
2709 }
2710 EXPORT_SYMBOL(__kmalloc);
2711
2712 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2713 {
2714 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2715 get_order(size));
2716
2717 if (page)
2718 return page_address(page);
2719 else
2720 return NULL;
2721 }
2722
2723 #ifdef CONFIG_NUMA
2724 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2725 {
2726 struct kmem_cache *s;
2727 void *ret;
2728
2729 if (unlikely(size > SLUB_MAX_SIZE)) {
2730 ret = kmalloc_large_node(size, flags, node);
2731
2732 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC,
2733 _RET_IP_, ret,
2734 size, PAGE_SIZE << get_order(size),
2735 flags, node);
2736
2737 return ret;
2738 }
2739
2740 s = get_slab(size, flags);
2741
2742 if (unlikely(ZERO_OR_NULL_PTR(s)))
2743 return s;
2744
2745 ret = slab_alloc(s, flags, node, _RET_IP_);
2746
2747 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
2748 size, s->size, flags, node);
2749
2750 return ret;
2751 }
2752 EXPORT_SYMBOL(__kmalloc_node);
2753 #endif
2754
2755 size_t ksize(const void *object)
2756 {
2757 struct page *page;
2758 struct kmem_cache *s;
2759
2760 if (unlikely(object == ZERO_SIZE_PTR))
2761 return 0;
2762
2763 page = virt_to_head_page(object);
2764
2765 if (unlikely(!PageSlab(page))) {
2766 WARN_ON(!PageCompound(page));
2767 return PAGE_SIZE << compound_order(page);
2768 }
2769 s = page->slab;
2770
2771 #ifdef CONFIG_SLUB_DEBUG
2772 /*
2773 * Debugging requires use of the padding between object
2774 * and whatever may come after it.
2775 */
2776 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2777 return s->objsize;
2778
2779 #endif
2780 /*
2781 * If we have the need to store the freelist pointer
2782 * back there or track user information then we can
2783 * only use the space before that information.
2784 */
2785 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2786 return s->inuse;
2787 /*
2788 * Else we can use all the padding etc for the allocation
2789 */
2790 return s->size;
2791 }
2792 EXPORT_SYMBOL(ksize);
2793
2794 void kfree(const void *x)
2795 {
2796 struct page *page;
2797 void *object = (void *)x;
2798
2799 if (unlikely(ZERO_OR_NULL_PTR(x)))
2800 return;
2801
2802 page = virt_to_head_page(x);
2803 if (unlikely(!PageSlab(page))) {
2804 BUG_ON(!PageCompound(page));
2805 put_page(page);
2806 return;
2807 }
2808 slab_free(page->slab, page, object, _RET_IP_);
2809
2810 kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, x);
2811 }
2812 EXPORT_SYMBOL(kfree);
2813
2814 /*
2815 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2816 * the remaining slabs by the number of items in use. The slabs with the
2817 * most items in use come first. New allocations will then fill those up
2818 * and thus they can be removed from the partial lists.
2819 *
2820 * The slabs with the least items are placed last. This results in them
2821 * being allocated from last increasing the chance that the last objects
2822 * are freed in them.
2823 */
2824 int kmem_cache_shrink(struct kmem_cache *s)
2825 {
2826 int node;
2827 int i;
2828 struct kmem_cache_node *n;
2829 struct page *page;
2830 struct page *t;
2831 int objects = oo_objects(s->max);
2832 struct list_head *slabs_by_inuse =
2833 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2834 unsigned long flags;
2835
2836 if (!slabs_by_inuse)
2837 return -ENOMEM;
2838
2839 flush_all(s);
2840 for_each_node_state(node, N_NORMAL_MEMORY) {
2841 n = get_node(s, node);
2842
2843 if (!n->nr_partial)
2844 continue;
2845
2846 for (i = 0; i < objects; i++)
2847 INIT_LIST_HEAD(slabs_by_inuse + i);
2848
2849 spin_lock_irqsave(&n->list_lock, flags);
2850
2851 /*
2852 * Build lists indexed by the items in use in each slab.
2853 *
2854 * Note that concurrent frees may occur while we hold the
2855 * list_lock. page->inuse here is the upper limit.
2856 */
2857 list_for_each_entry_safe(page, t, &n->partial, lru) {
2858 if (!page->inuse && slab_trylock(page)) {
2859 /*
2860 * Must hold slab lock here because slab_free
2861 * may have freed the last object and be
2862 * waiting to release the slab.
2863 */
2864 list_del(&page->lru);
2865 n->nr_partial--;
2866 slab_unlock(page);
2867 discard_slab(s, page);
2868 } else {
2869 list_move(&page->lru,
2870 slabs_by_inuse + page->inuse);
2871 }
2872 }
2873
2874 /*
2875 * Rebuild the partial list with the slabs filled up most
2876 * first and the least used slabs at the end.
2877 */
2878 for (i = objects - 1; i >= 0; i--)
2879 list_splice(slabs_by_inuse + i, n->partial.prev);
2880
2881 spin_unlock_irqrestore(&n->list_lock, flags);
2882 }
2883
2884 kfree(slabs_by_inuse);
2885 return 0;
2886 }
2887 EXPORT_SYMBOL(kmem_cache_shrink);
2888
2889 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2890 static int slab_mem_going_offline_callback(void *arg)
2891 {
2892 struct kmem_cache *s;
2893
2894 down_read(&slub_lock);
2895 list_for_each_entry(s, &slab_caches, list)
2896 kmem_cache_shrink(s);
2897 up_read(&slub_lock);
2898
2899 return 0;
2900 }
2901
2902 static void slab_mem_offline_callback(void *arg)
2903 {
2904 struct kmem_cache_node *n;
2905 struct kmem_cache *s;
2906 struct memory_notify *marg = arg;
2907 int offline_node;
2908
2909 offline_node = marg->status_change_nid;
2910
2911 /*
2912 * If the node still has available memory. we need kmem_cache_node
2913 * for it yet.
2914 */
2915 if (offline_node < 0)
2916 return;
2917
2918 down_read(&slub_lock);
2919 list_for_each_entry(s, &slab_caches, list) {
2920 n = get_node(s, offline_node);
2921 if (n) {
2922 /*
2923 * if n->nr_slabs > 0, slabs still exist on the node
2924 * that is going down. We were unable to free them,
2925 * and offline_pages() function shoudn't call this
2926 * callback. So, we must fail.
2927 */
2928 BUG_ON(slabs_node(s, offline_node));
2929
2930 s->node[offline_node] = NULL;
2931 kmem_cache_free(kmalloc_caches, n);
2932 }
2933 }
2934 up_read(&slub_lock);
2935 }
2936
2937 static int slab_mem_going_online_callback(void *arg)
2938 {
2939 struct kmem_cache_node *n;
2940 struct kmem_cache *s;
2941 struct memory_notify *marg = arg;
2942 int nid = marg->status_change_nid;
2943 int ret = 0;
2944
2945 /*
2946 * If the node's memory is already available, then kmem_cache_node is
2947 * already created. Nothing to do.
2948 */
2949 if (nid < 0)
2950 return 0;
2951
2952 /*
2953 * We are bringing a node online. No memory is available yet. We must
2954 * allocate a kmem_cache_node structure in order to bring the node
2955 * online.
2956 */
2957 down_read(&slub_lock);
2958 list_for_each_entry(s, &slab_caches, list) {
2959 /*
2960 * XXX: kmem_cache_alloc_node will fallback to other nodes
2961 * since memory is not yet available from the node that
2962 * is brought up.
2963 */
2964 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2965 if (!n) {
2966 ret = -ENOMEM;
2967 goto out;
2968 }
2969 init_kmem_cache_node(n, s);
2970 s->node[nid] = n;
2971 }
2972 out:
2973 up_read(&slub_lock);
2974 return ret;
2975 }
2976
2977 static int slab_memory_callback(struct notifier_block *self,
2978 unsigned long action, void *arg)
2979 {
2980 int ret = 0;
2981
2982 switch (action) {
2983 case MEM_GOING_ONLINE:
2984 ret = slab_mem_going_online_callback(arg);
2985 break;
2986 case MEM_GOING_OFFLINE:
2987 ret = slab_mem_going_offline_callback(arg);
2988 break;
2989 case MEM_OFFLINE:
2990 case MEM_CANCEL_ONLINE:
2991 slab_mem_offline_callback(arg);
2992 break;
2993 case MEM_ONLINE:
2994 case MEM_CANCEL_OFFLINE:
2995 break;
2996 }
2997 if (ret)
2998 ret = notifier_from_errno(ret);
2999 else
3000 ret = NOTIFY_OK;
3001 return ret;
3002 }
3003
3004 #endif /* CONFIG_MEMORY_HOTPLUG */
3005
3006 /********************************************************************
3007 * Basic setup of slabs
3008 *******************************************************************/
3009
3010 void __init kmem_cache_init(void)
3011 {
3012 int i;
3013 int caches = 0;
3014
3015 init_alloc_cpu();
3016
3017 #ifdef CONFIG_NUMA
3018 /*
3019 * Must first have the slab cache available for the allocations of the
3020 * struct kmem_cache_node's. There is special bootstrap code in
3021 * kmem_cache_open for slab_state == DOWN.
3022 */
3023 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3024 sizeof(struct kmem_cache_node), GFP_KERNEL);
3025 kmalloc_caches[0].refcount = -1;
3026 caches++;
3027
3028 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3029 #endif
3030
3031 /* Able to allocate the per node structures */
3032 slab_state = PARTIAL;
3033
3034 /* Caches that are not of the two-to-the-power-of size */
3035 if (KMALLOC_MIN_SIZE <= 64) {
3036 create_kmalloc_cache(&kmalloc_caches[1],
3037 "kmalloc-96", 96, GFP_KERNEL);
3038 caches++;
3039 create_kmalloc_cache(&kmalloc_caches[2],
3040 "kmalloc-192", 192, GFP_KERNEL);
3041 caches++;
3042 }
3043
3044 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3045 create_kmalloc_cache(&kmalloc_caches[i],
3046 "kmalloc", 1 << i, GFP_KERNEL);
3047 caches++;
3048 }
3049
3050
3051 /*
3052 * Patch up the size_index table if we have strange large alignment
3053 * requirements for the kmalloc array. This is only the case for
3054 * MIPS it seems. The standard arches will not generate any code here.
3055 *
3056 * Largest permitted alignment is 256 bytes due to the way we
3057 * handle the index determination for the smaller caches.
3058 *
3059 * Make sure that nothing crazy happens if someone starts tinkering
3060 * around with ARCH_KMALLOC_MINALIGN
3061 */
3062 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3063 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3064
3065 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3066 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3067
3068 if (KMALLOC_MIN_SIZE == 128) {
3069 /*
3070 * The 192 byte sized cache is not used if the alignment
3071 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3072 * instead.
3073 */
3074 for (i = 128 + 8; i <= 192; i += 8)
3075 size_index[(i - 1) / 8] = 8;
3076 }
3077
3078 slab_state = UP;
3079
3080 /* Provide the correct kmalloc names now that the caches are up */
3081 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3082 kmalloc_caches[i]. name =
3083 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3084
3085 #ifdef CONFIG_SMP
3086 register_cpu_notifier(&slab_notifier);
3087 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3088 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3089 #else
3090 kmem_size = sizeof(struct kmem_cache);
3091 #endif
3092
3093 printk(KERN_INFO
3094 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3095 " CPUs=%d, Nodes=%d\n",
3096 caches, cache_line_size(),
3097 slub_min_order, slub_max_order, slub_min_objects,
3098 nr_cpu_ids, nr_node_ids);
3099 }
3100
3101 /*
3102 * Find a mergeable slab cache
3103 */
3104 static int slab_unmergeable(struct kmem_cache *s)
3105 {
3106 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3107 return 1;
3108
3109 if (s->ctor)
3110 return 1;
3111
3112 /*
3113 * We may have set a slab to be unmergeable during bootstrap.
3114 */
3115 if (s->refcount < 0)
3116 return 1;
3117
3118 return 0;
3119 }
3120
3121 static struct kmem_cache *find_mergeable(size_t size,
3122 size_t align, unsigned long flags, const char *name,
3123 void (*ctor)(void *))
3124 {
3125 struct kmem_cache *s;
3126
3127 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3128 return NULL;
3129
3130 if (ctor)
3131 return NULL;
3132
3133 size = ALIGN(size, sizeof(void *));
3134 align = calculate_alignment(flags, align, size);
3135 size = ALIGN(size, align);
3136 flags = kmem_cache_flags(size, flags, name, NULL);
3137
3138 list_for_each_entry(s, &slab_caches, list) {
3139 if (slab_unmergeable(s))
3140 continue;
3141
3142 if (size > s->size)
3143 continue;
3144
3145 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3146 continue;
3147 /*
3148 * Check if alignment is compatible.
3149 * Courtesy of Adrian Drzewiecki
3150 */
3151 if ((s->size & ~(align - 1)) != s->size)
3152 continue;
3153
3154 if (s->size - size >= sizeof(void *))
3155 continue;
3156
3157 return s;
3158 }
3159 return NULL;
3160 }
3161
3162 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3163 size_t align, unsigned long flags, void (*ctor)(void *))
3164 {
3165 struct kmem_cache *s;
3166
3167 down_write(&slub_lock);
3168 s = find_mergeable(size, align, flags, name, ctor);
3169 if (s) {
3170 int cpu;
3171
3172 s->refcount++;
3173 /*
3174 * Adjust the object sizes so that we clear
3175 * the complete object on kzalloc.
3176 */
3177 s->objsize = max(s->objsize, (int)size);
3178
3179 /*
3180 * And then we need to update the object size in the
3181 * per cpu structures
3182 */
3183 for_each_online_cpu(cpu)
3184 get_cpu_slab(s, cpu)->objsize = s->objsize;
3185
3186 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3187 up_write(&slub_lock);
3188
3189 if (sysfs_slab_alias(s, name)) {
3190 down_write(&slub_lock);
3191 s->refcount--;
3192 up_write(&slub_lock);
3193 goto err;
3194 }
3195 return s;
3196 }
3197
3198 s = kmalloc(kmem_size, GFP_KERNEL);
3199 if (s) {
3200 if (kmem_cache_open(s, GFP_KERNEL, name,
3201 size, align, flags, ctor)) {
3202 list_add(&s->list, &slab_caches);
3203 up_write(&slub_lock);
3204 if (sysfs_slab_add(s)) {
3205 down_write(&slub_lock);
3206 list_del(&s->list);
3207 up_write(&slub_lock);
3208 kfree(s);
3209 goto err;
3210 }
3211 return s;
3212 }
3213 kfree(s);
3214 }
3215 up_write(&slub_lock);
3216
3217 err:
3218 if (flags & SLAB_PANIC)
3219 panic("Cannot create slabcache %s\n", name);
3220 else
3221 s = NULL;
3222 return s;
3223 }
3224 EXPORT_SYMBOL(kmem_cache_create);
3225
3226 #ifdef CONFIG_SMP
3227 /*
3228 * Use the cpu notifier to insure that the cpu slabs are flushed when
3229 * necessary.
3230 */
3231 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3232 unsigned long action, void *hcpu)
3233 {
3234 long cpu = (long)hcpu;
3235 struct kmem_cache *s;
3236 unsigned long flags;
3237
3238 switch (action) {
3239 case CPU_UP_PREPARE:
3240 case CPU_UP_PREPARE_FROZEN:
3241 init_alloc_cpu_cpu(cpu);
3242 down_read(&slub_lock);
3243 list_for_each_entry(s, &slab_caches, list)
3244 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3245 GFP_KERNEL);
3246 up_read(&slub_lock);
3247 break;
3248
3249 case CPU_UP_CANCELED:
3250 case CPU_UP_CANCELED_FROZEN:
3251 case CPU_DEAD:
3252 case CPU_DEAD_FROZEN:
3253 down_read(&slub_lock);
3254 list_for_each_entry(s, &slab_caches, list) {
3255 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3256
3257 local_irq_save(flags);
3258 __flush_cpu_slab(s, cpu);
3259 local_irq_restore(flags);
3260 free_kmem_cache_cpu(c, cpu);
3261 s->cpu_slab[cpu] = NULL;
3262 }
3263 up_read(&slub_lock);
3264 break;
3265 default:
3266 break;
3267 }
3268 return NOTIFY_OK;
3269 }
3270
3271 static struct notifier_block __cpuinitdata slab_notifier = {
3272 .notifier_call = slab_cpuup_callback
3273 };
3274
3275 #endif
3276
3277 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3278 {
3279 struct kmem_cache *s;
3280 void *ret;
3281
3282 if (unlikely(size > SLUB_MAX_SIZE))
3283 return kmalloc_large(size, gfpflags);
3284
3285 s = get_slab(size, gfpflags);
3286
3287 if (unlikely(ZERO_OR_NULL_PTR(s)))
3288 return s;
3289
3290 ret = slab_alloc(s, gfpflags, -1, caller);
3291
3292 /* Honor the call site pointer we recieved. */
3293 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, caller, ret, size,
3294 s->size, gfpflags);
3295
3296 return ret;
3297 }
3298
3299 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3300 int node, unsigned long caller)
3301 {
3302 struct kmem_cache *s;
3303 void *ret;
3304
3305 if (unlikely(size > SLUB_MAX_SIZE))
3306 return kmalloc_large_node(size, gfpflags, node);
3307
3308 s = get_slab(size, gfpflags);
3309
3310 if (unlikely(ZERO_OR_NULL_PTR(s)))
3311 return s;
3312
3313 ret = slab_alloc(s, gfpflags, node, caller);
3314
3315 /* Honor the call site pointer we recieved. */
3316 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, caller, ret,
3317 size, s->size, gfpflags, node);
3318
3319 return ret;
3320 }
3321
3322 #ifdef CONFIG_SLUB_DEBUG
3323 static unsigned long count_partial(struct kmem_cache_node *n,
3324 int (*get_count)(struct page *))
3325 {
3326 unsigned long flags;
3327 unsigned long x = 0;
3328 struct page *page;
3329
3330 spin_lock_irqsave(&n->list_lock, flags);
3331 list_for_each_entry(page, &n->partial, lru)
3332 x += get_count(page);
3333 spin_unlock_irqrestore(&n->list_lock, flags);
3334 return x;
3335 }
3336
3337 static int count_inuse(struct page *page)
3338 {
3339 return page->inuse;
3340 }
3341
3342 static int count_total(struct page *page)
3343 {
3344 return page->objects;
3345 }
3346
3347 static int count_free(struct page *page)
3348 {
3349 return page->objects - page->inuse;
3350 }
3351
3352 static int validate_slab(struct kmem_cache *s, struct page *page,
3353 unsigned long *map)
3354 {
3355 void *p;
3356 void *addr = page_address(page);
3357
3358 if (!check_slab(s, page) ||
3359 !on_freelist(s, page, NULL))
3360 return 0;
3361
3362 /* Now we know that a valid freelist exists */
3363 bitmap_zero(map, page->objects);
3364
3365 for_each_free_object(p, s, page->freelist) {
3366 set_bit(slab_index(p, s, addr), map);
3367 if (!check_object(s, page, p, 0))
3368 return 0;
3369 }
3370
3371 for_each_object(p, s, addr, page->objects)
3372 if (!test_bit(slab_index(p, s, addr), map))
3373 if (!check_object(s, page, p, 1))
3374 return 0;
3375 return 1;
3376 }
3377
3378 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3379 unsigned long *map)
3380 {
3381 if (slab_trylock(page)) {
3382 validate_slab(s, page, map);
3383 slab_unlock(page);
3384 } else
3385 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3386 s->name, page);
3387
3388 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3389 if (!PageSlubDebug(page))
3390 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3391 "on slab 0x%p\n", s->name, page);
3392 } else {
3393 if (PageSlubDebug(page))
3394 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3395 "slab 0x%p\n", s->name, page);
3396 }
3397 }
3398
3399 static int validate_slab_node(struct kmem_cache *s,
3400 struct kmem_cache_node *n, unsigned long *map)
3401 {
3402 unsigned long count = 0;
3403 struct page *page;
3404 unsigned long flags;
3405
3406 spin_lock_irqsave(&n->list_lock, flags);
3407
3408 list_for_each_entry(page, &n->partial, lru) {
3409 validate_slab_slab(s, page, map);
3410 count++;
3411 }
3412 if (count != n->nr_partial)
3413 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3414 "counter=%ld\n", s->name, count, n->nr_partial);
3415
3416 if (!(s->flags & SLAB_STORE_USER))
3417 goto out;
3418
3419 list_for_each_entry(page, &n->full, lru) {
3420 validate_slab_slab(s, page, map);
3421 count++;
3422 }
3423 if (count != atomic_long_read(&n->nr_slabs))
3424 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3425 "counter=%ld\n", s->name, count,
3426 atomic_long_read(&n->nr_slabs));
3427
3428 out:
3429 spin_unlock_irqrestore(&n->list_lock, flags);
3430 return count;
3431 }
3432
3433 static long validate_slab_cache(struct kmem_cache *s)
3434 {
3435 int node;
3436 unsigned long count = 0;
3437 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3438 sizeof(unsigned long), GFP_KERNEL);
3439
3440 if (!map)
3441 return -ENOMEM;
3442
3443 flush_all(s);
3444 for_each_node_state(node, N_NORMAL_MEMORY) {
3445 struct kmem_cache_node *n = get_node(s, node);
3446
3447 count += validate_slab_node(s, n, map);
3448 }
3449 kfree(map);
3450 return count;
3451 }
3452
3453 #ifdef SLUB_RESILIENCY_TEST
3454 static void resiliency_test(void)
3455 {
3456 u8 *p;
3457
3458 printk(KERN_ERR "SLUB resiliency testing\n");
3459 printk(KERN_ERR "-----------------------\n");
3460 printk(KERN_ERR "A. Corruption after allocation\n");
3461
3462 p = kzalloc(16, GFP_KERNEL);
3463 p[16] = 0x12;
3464 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3465 " 0x12->0x%p\n\n", p + 16);
3466
3467 validate_slab_cache(kmalloc_caches + 4);
3468
3469 /* Hmmm... The next two are dangerous */
3470 p = kzalloc(32, GFP_KERNEL);
3471 p[32 + sizeof(void *)] = 0x34;
3472 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3473 " 0x34 -> -0x%p\n", p);
3474 printk(KERN_ERR
3475 "If allocated object is overwritten then not detectable\n\n");
3476
3477 validate_slab_cache(kmalloc_caches + 5);
3478 p = kzalloc(64, GFP_KERNEL);
3479 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3480 *p = 0x56;
3481 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3482 p);
3483 printk(KERN_ERR
3484 "If allocated object is overwritten then not detectable\n\n");
3485 validate_slab_cache(kmalloc_caches + 6);
3486
3487 printk(KERN_ERR "\nB. Corruption after free\n");
3488 p = kzalloc(128, GFP_KERNEL);
3489 kfree(p);
3490 *p = 0x78;
3491 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3492 validate_slab_cache(kmalloc_caches + 7);
3493
3494 p = kzalloc(256, GFP_KERNEL);
3495 kfree(p);
3496 p[50] = 0x9a;
3497 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3498 p);
3499 validate_slab_cache(kmalloc_caches + 8);
3500
3501 p = kzalloc(512, GFP_KERNEL);
3502 kfree(p);
3503 p[512] = 0xab;
3504 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3505 validate_slab_cache(kmalloc_caches + 9);
3506 }
3507 #else
3508 static void resiliency_test(void) {};
3509 #endif
3510
3511 /*
3512 * Generate lists of code addresses where slabcache objects are allocated
3513 * and freed.
3514 */
3515
3516 struct location {
3517 unsigned long count;
3518 unsigned long addr;
3519 long long sum_time;
3520 long min_time;
3521 long max_time;
3522 long min_pid;
3523 long max_pid;
3524 DECLARE_BITMAP(cpus, NR_CPUS);
3525 nodemask_t nodes;
3526 };
3527
3528 struct loc_track {
3529 unsigned long max;
3530 unsigned long count;
3531 struct location *loc;
3532 };
3533
3534 static void free_loc_track(struct loc_track *t)
3535 {
3536 if (t->max)
3537 free_pages((unsigned long)t->loc,
3538 get_order(sizeof(struct location) * t->max));
3539 }
3540
3541 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3542 {
3543 struct location *l;
3544 int order;
3545
3546 order = get_order(sizeof(struct location) * max);
3547
3548 l = (void *)__get_free_pages(flags, order);
3549 if (!l)
3550 return 0;
3551
3552 if (t->count) {
3553 memcpy(l, t->loc, sizeof(struct location) * t->count);
3554 free_loc_track(t);
3555 }
3556 t->max = max;
3557 t->loc = l;
3558 return 1;
3559 }
3560
3561 static int add_location(struct loc_track *t, struct kmem_cache *s,
3562 const struct track *track)
3563 {
3564 long start, end, pos;
3565 struct location *l;
3566 unsigned long caddr;
3567 unsigned long age = jiffies - track->when;
3568
3569 start = -1;
3570 end = t->count;
3571
3572 for ( ; ; ) {
3573 pos = start + (end - start + 1) / 2;
3574
3575 /*
3576 * There is nothing at "end". If we end up there
3577 * we need to add something to before end.
3578 */
3579 if (pos == end)
3580 break;
3581
3582 caddr = t->loc[pos].addr;
3583 if (track->addr == caddr) {
3584
3585 l = &t->loc[pos];
3586 l->count++;
3587 if (track->when) {
3588 l->sum_time += age;
3589 if (age < l->min_time)
3590 l->min_time = age;
3591 if (age > l->max_time)
3592 l->max_time = age;
3593
3594 if (track->pid < l->min_pid)
3595 l->min_pid = track->pid;
3596 if (track->pid > l->max_pid)
3597 l->max_pid = track->pid;
3598
3599 cpumask_set_cpu(track->cpu,
3600 to_cpumask(l->cpus));
3601 }
3602 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3603 return 1;
3604 }
3605
3606 if (track->addr < caddr)
3607 end = pos;
3608 else
3609 start = pos;
3610 }
3611
3612 /*
3613 * Not found. Insert new tracking element.
3614 */
3615 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3616 return 0;
3617
3618 l = t->loc + pos;
3619 if (pos < t->count)
3620 memmove(l + 1, l,
3621 (t->count - pos) * sizeof(struct location));
3622 t->count++;
3623 l->count = 1;
3624 l->addr = track->addr;
3625 l->sum_time = age;
3626 l->min_time = age;
3627 l->max_time = age;
3628 l->min_pid = track->pid;
3629 l->max_pid = track->pid;
3630 cpumask_clear(to_cpumask(l->cpus));
3631 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3632 nodes_clear(l->nodes);
3633 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3634 return 1;
3635 }
3636
3637 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3638 struct page *page, enum track_item alloc)
3639 {
3640 void *addr = page_address(page);
3641 DECLARE_BITMAP(map, page->objects);
3642 void *p;
3643
3644 bitmap_zero(map, page->objects);
3645 for_each_free_object(p, s, page->freelist)
3646 set_bit(slab_index(p, s, addr), map);
3647
3648 for_each_object(p, s, addr, page->objects)
3649 if (!test_bit(slab_index(p, s, addr), map))
3650 add_location(t, s, get_track(s, p, alloc));
3651 }
3652
3653 static int list_locations(struct kmem_cache *s, char *buf,
3654 enum track_item alloc)
3655 {
3656 int len = 0;
3657 unsigned long i;
3658 struct loc_track t = { 0, 0, NULL };
3659 int node;
3660
3661 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3662 GFP_TEMPORARY))
3663 return sprintf(buf, "Out of memory\n");
3664
3665 /* Push back cpu slabs */
3666 flush_all(s);
3667
3668 for_each_node_state(node, N_NORMAL_MEMORY) {
3669 struct kmem_cache_node *n = get_node(s, node);
3670 unsigned long flags;
3671 struct page *page;
3672
3673 if (!atomic_long_read(&n->nr_slabs))
3674 continue;
3675
3676 spin_lock_irqsave(&n->list_lock, flags);
3677 list_for_each_entry(page, &n->partial, lru)
3678 process_slab(&t, s, page, alloc);
3679 list_for_each_entry(page, &n->full, lru)
3680 process_slab(&t, s, page, alloc);
3681 spin_unlock_irqrestore(&n->list_lock, flags);
3682 }
3683
3684 for (i = 0; i < t.count; i++) {
3685 struct location *l = &t.loc[i];
3686
3687 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3688 break;
3689 len += sprintf(buf + len, "%7ld ", l->count);
3690
3691 if (l->addr)
3692 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3693 else
3694 len += sprintf(buf + len, "<not-available>");
3695
3696 if (l->sum_time != l->min_time) {
3697 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3698 l->min_time,
3699 (long)div_u64(l->sum_time, l->count),
3700 l->max_time);
3701 } else
3702 len += sprintf(buf + len, " age=%ld",
3703 l->min_time);
3704
3705 if (l->min_pid != l->max_pid)
3706 len += sprintf(buf + len, " pid=%ld-%ld",
3707 l->min_pid, l->max_pid);
3708 else
3709 len += sprintf(buf + len, " pid=%ld",
3710 l->min_pid);
3711
3712 if (num_online_cpus() > 1 &&
3713 !cpumask_empty(to_cpumask(l->cpus)) &&
3714 len < PAGE_SIZE - 60) {
3715 len += sprintf(buf + len, " cpus=");
3716 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3717 to_cpumask(l->cpus));
3718 }
3719
3720 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3721 len < PAGE_SIZE - 60) {
3722 len += sprintf(buf + len, " nodes=");
3723 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3724 l->nodes);
3725 }
3726
3727 len += sprintf(buf + len, "\n");
3728 }
3729
3730 free_loc_track(&t);
3731 if (!t.count)
3732 len += sprintf(buf, "No data\n");
3733 return len;
3734 }
3735
3736 enum slab_stat_type {
3737 SL_ALL, /* All slabs */
3738 SL_PARTIAL, /* Only partially allocated slabs */
3739 SL_CPU, /* Only slabs used for cpu caches */
3740 SL_OBJECTS, /* Determine allocated objects not slabs */
3741 SL_TOTAL /* Determine object capacity not slabs */
3742 };
3743
3744 #define SO_ALL (1 << SL_ALL)
3745 #define SO_PARTIAL (1 << SL_PARTIAL)
3746 #define SO_CPU (1 << SL_CPU)
3747 #define SO_OBJECTS (1 << SL_OBJECTS)
3748 #define SO_TOTAL (1 << SL_TOTAL)
3749
3750 static ssize_t show_slab_objects(struct kmem_cache *s,
3751 char *buf, unsigned long flags)
3752 {
3753 unsigned long total = 0;
3754 int node;
3755 int x;
3756 unsigned long *nodes;
3757 unsigned long *per_cpu;
3758
3759 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3760 if (!nodes)
3761 return -ENOMEM;
3762 per_cpu = nodes + nr_node_ids;
3763
3764 if (flags & SO_CPU) {
3765 int cpu;
3766
3767 for_each_possible_cpu(cpu) {
3768 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3769
3770 if (!c || c->node < 0)
3771 continue;
3772
3773 if (c->page) {
3774 if (flags & SO_TOTAL)
3775 x = c->page->objects;
3776 else if (flags & SO_OBJECTS)
3777 x = c->page->inuse;
3778 else
3779 x = 1;
3780
3781 total += x;
3782 nodes[c->node] += x;
3783 }
3784 per_cpu[c->node]++;
3785 }
3786 }
3787
3788 if (flags & SO_ALL) {
3789 for_each_node_state(node, N_NORMAL_MEMORY) {
3790 struct kmem_cache_node *n = get_node(s, node);
3791
3792 if (flags & SO_TOTAL)
3793 x = atomic_long_read(&n->total_objects);
3794 else if (flags & SO_OBJECTS)
3795 x = atomic_long_read(&n->total_objects) -
3796 count_partial(n, count_free);
3797
3798 else
3799 x = atomic_long_read(&n->nr_slabs);
3800 total += x;
3801 nodes[node] += x;
3802 }
3803
3804 } else if (flags & SO_PARTIAL) {
3805 for_each_node_state(node, N_NORMAL_MEMORY) {
3806 struct kmem_cache_node *n = get_node(s, node);
3807
3808 if (flags & SO_TOTAL)
3809 x = count_partial(n, count_total);
3810 else if (flags & SO_OBJECTS)
3811 x = count_partial(n, count_inuse);
3812 else
3813 x = n->nr_partial;
3814 total += x;
3815 nodes[node] += x;
3816 }
3817 }
3818 x = sprintf(buf, "%lu", total);
3819 #ifdef CONFIG_NUMA
3820 for_each_node_state(node, N_NORMAL_MEMORY)
3821 if (nodes[node])
3822 x += sprintf(buf + x, " N%d=%lu",
3823 node, nodes[node]);
3824 #endif
3825 kfree(nodes);
3826 return x + sprintf(buf + x, "\n");
3827 }
3828
3829 static int any_slab_objects(struct kmem_cache *s)
3830 {
3831 int node;
3832
3833 for_each_online_node(node) {
3834 struct kmem_cache_node *n = get_node(s, node);
3835
3836 if (!n)
3837 continue;
3838
3839 if (atomic_long_read(&n->total_objects))
3840 return 1;
3841 }
3842 return 0;
3843 }
3844
3845 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3846 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3847
3848 struct slab_attribute {
3849 struct attribute attr;
3850 ssize_t (*show)(struct kmem_cache *s, char *buf);
3851 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3852 };
3853
3854 #define SLAB_ATTR_RO(_name) \
3855 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3856
3857 #define SLAB_ATTR(_name) \
3858 static struct slab_attribute _name##_attr = \
3859 __ATTR(_name, 0644, _name##_show, _name##_store)
3860
3861 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3862 {
3863 return sprintf(buf, "%d\n", s->size);
3864 }
3865 SLAB_ATTR_RO(slab_size);
3866
3867 static ssize_t align_show(struct kmem_cache *s, char *buf)
3868 {
3869 return sprintf(buf, "%d\n", s->align);
3870 }
3871 SLAB_ATTR_RO(align);
3872
3873 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3874 {
3875 return sprintf(buf, "%d\n", s->objsize);
3876 }
3877 SLAB_ATTR_RO(object_size);
3878
3879 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3880 {
3881 return sprintf(buf, "%d\n", oo_objects(s->oo));
3882 }
3883 SLAB_ATTR_RO(objs_per_slab);
3884
3885 static ssize_t order_store(struct kmem_cache *s,
3886 const char *buf, size_t length)
3887 {
3888 unsigned long order;
3889 int err;
3890
3891 err = strict_strtoul(buf, 10, &order);
3892 if (err)
3893 return err;
3894
3895 if (order > slub_max_order || order < slub_min_order)
3896 return -EINVAL;
3897
3898 calculate_sizes(s, order);
3899 return length;
3900 }
3901
3902 static ssize_t order_show(struct kmem_cache *s, char *buf)
3903 {
3904 return sprintf(buf, "%d\n", oo_order(s->oo));
3905 }
3906 SLAB_ATTR(order);
3907
3908 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3909 {
3910 return sprintf(buf, "%lu\n", s->min_partial);
3911 }
3912
3913 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3914 size_t length)
3915 {
3916 unsigned long min;
3917 int err;
3918
3919 err = strict_strtoul(buf, 10, &min);
3920 if (err)
3921 return err;
3922
3923 set_min_partial(s, min);
3924 return length;
3925 }
3926 SLAB_ATTR(min_partial);
3927
3928 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3929 {
3930 if (s->ctor) {
3931 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3932
3933 return n + sprintf(buf + n, "\n");
3934 }
3935 return 0;
3936 }
3937 SLAB_ATTR_RO(ctor);
3938
3939 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3940 {
3941 return sprintf(buf, "%d\n", s->refcount - 1);
3942 }
3943 SLAB_ATTR_RO(aliases);
3944
3945 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3946 {
3947 return show_slab_objects(s, buf, SO_ALL);
3948 }
3949 SLAB_ATTR_RO(slabs);
3950
3951 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3952 {
3953 return show_slab_objects(s, buf, SO_PARTIAL);
3954 }
3955 SLAB_ATTR_RO(partial);
3956
3957 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3958 {
3959 return show_slab_objects(s, buf, SO_CPU);
3960 }
3961 SLAB_ATTR_RO(cpu_slabs);
3962
3963 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3964 {
3965 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3966 }
3967 SLAB_ATTR_RO(objects);
3968
3969 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3970 {
3971 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3972 }
3973 SLAB_ATTR_RO(objects_partial);
3974
3975 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3976 {
3977 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3978 }
3979 SLAB_ATTR_RO(total_objects);
3980
3981 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3982 {
3983 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3984 }
3985
3986 static ssize_t sanity_checks_store(struct kmem_cache *s,
3987 const char *buf, size_t length)
3988 {
3989 s->flags &= ~SLAB_DEBUG_FREE;
3990 if (buf[0] == '1')
3991 s->flags |= SLAB_DEBUG_FREE;
3992 return length;
3993 }
3994 SLAB_ATTR(sanity_checks);
3995
3996 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3997 {
3998 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3999 }
4000
4001 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4002 size_t length)
4003 {
4004 s->flags &= ~SLAB_TRACE;
4005 if (buf[0] == '1')
4006 s->flags |= SLAB_TRACE;
4007 return length;
4008 }
4009 SLAB_ATTR(trace);
4010
4011 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4012 {
4013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4014 }
4015
4016 static ssize_t reclaim_account_store(struct kmem_cache *s,
4017 const char *buf, size_t length)
4018 {
4019 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4020 if (buf[0] == '1')
4021 s->flags |= SLAB_RECLAIM_ACCOUNT;
4022 return length;
4023 }
4024 SLAB_ATTR(reclaim_account);
4025
4026 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4027 {
4028 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4029 }
4030 SLAB_ATTR_RO(hwcache_align);
4031
4032 #ifdef CONFIG_ZONE_DMA
4033 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4034 {
4035 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4036 }
4037 SLAB_ATTR_RO(cache_dma);
4038 #endif
4039
4040 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4041 {
4042 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4043 }
4044 SLAB_ATTR_RO(destroy_by_rcu);
4045
4046 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4047 {
4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4049 }
4050
4051 static ssize_t red_zone_store(struct kmem_cache *s,
4052 const char *buf, size_t length)
4053 {
4054 if (any_slab_objects(s))
4055 return -EBUSY;
4056
4057 s->flags &= ~SLAB_RED_ZONE;
4058 if (buf[0] == '1')
4059 s->flags |= SLAB_RED_ZONE;
4060 calculate_sizes(s, -1);
4061 return length;
4062 }
4063 SLAB_ATTR(red_zone);
4064
4065 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4066 {
4067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4068 }
4069
4070 static ssize_t poison_store(struct kmem_cache *s,
4071 const char *buf, size_t length)
4072 {
4073 if (any_slab_objects(s))
4074 return -EBUSY;
4075
4076 s->flags &= ~SLAB_POISON;
4077 if (buf[0] == '1')
4078 s->flags |= SLAB_POISON;
4079 calculate_sizes(s, -1);
4080 return length;
4081 }
4082 SLAB_ATTR(poison);
4083
4084 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4085 {
4086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4087 }
4088
4089 static ssize_t store_user_store(struct kmem_cache *s,
4090 const char *buf, size_t length)
4091 {
4092 if (any_slab_objects(s))
4093 return -EBUSY;
4094
4095 s->flags &= ~SLAB_STORE_USER;
4096 if (buf[0] == '1')
4097 s->flags |= SLAB_STORE_USER;
4098 calculate_sizes(s, -1);
4099 return length;
4100 }
4101 SLAB_ATTR(store_user);
4102
4103 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4104 {
4105 return 0;
4106 }
4107
4108 static ssize_t validate_store(struct kmem_cache *s,
4109 const char *buf, size_t length)
4110 {
4111 int ret = -EINVAL;
4112
4113 if (buf[0] == '1') {
4114 ret = validate_slab_cache(s);
4115 if (ret >= 0)
4116 ret = length;
4117 }
4118 return ret;
4119 }
4120 SLAB_ATTR(validate);
4121
4122 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4123 {
4124 return 0;
4125 }
4126
4127 static ssize_t shrink_store(struct kmem_cache *s,
4128 const char *buf, size_t length)
4129 {
4130 if (buf[0] == '1') {
4131 int rc = kmem_cache_shrink(s);
4132
4133 if (rc)
4134 return rc;
4135 } else
4136 return -EINVAL;
4137 return length;
4138 }
4139 SLAB_ATTR(shrink);
4140
4141 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4142 {
4143 if (!(s->flags & SLAB_STORE_USER))
4144 return -ENOSYS;
4145 return list_locations(s, buf, TRACK_ALLOC);
4146 }
4147 SLAB_ATTR_RO(alloc_calls);
4148
4149 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4150 {
4151 if (!(s->flags & SLAB_STORE_USER))
4152 return -ENOSYS;
4153 return list_locations(s, buf, TRACK_FREE);
4154 }
4155 SLAB_ATTR_RO(free_calls);
4156
4157 #ifdef CONFIG_NUMA
4158 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4159 {
4160 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4161 }
4162
4163 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4164 const char *buf, size_t length)
4165 {
4166 unsigned long ratio;
4167 int err;
4168
4169 err = strict_strtoul(buf, 10, &ratio);
4170 if (err)
4171 return err;
4172
4173 if (ratio <= 100)
4174 s->remote_node_defrag_ratio = ratio * 10;
4175
4176 return length;
4177 }
4178 SLAB_ATTR(remote_node_defrag_ratio);
4179 #endif
4180
4181 #ifdef CONFIG_SLUB_STATS
4182 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4183 {
4184 unsigned long sum = 0;
4185 int cpu;
4186 int len;
4187 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4188
4189 if (!data)
4190 return -ENOMEM;
4191
4192 for_each_online_cpu(cpu) {
4193 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4194
4195 data[cpu] = x;
4196 sum += x;
4197 }
4198
4199 len = sprintf(buf, "%lu", sum);
4200
4201 #ifdef CONFIG_SMP
4202 for_each_online_cpu(cpu) {
4203 if (data[cpu] && len < PAGE_SIZE - 20)
4204 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4205 }
4206 #endif
4207 kfree(data);
4208 return len + sprintf(buf + len, "\n");
4209 }
4210
4211 #define STAT_ATTR(si, text) \
4212 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4213 { \
4214 return show_stat(s, buf, si); \
4215 } \
4216 SLAB_ATTR_RO(text); \
4217
4218 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4219 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4220 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4221 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4222 STAT_ATTR(FREE_FROZEN, free_frozen);
4223 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4224 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4225 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4226 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4227 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4228 STAT_ATTR(FREE_SLAB, free_slab);
4229 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4230 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4231 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4232 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4233 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4234 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4235 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4236 #endif
4237
4238 static struct attribute *slab_attrs[] = {
4239 &slab_size_attr.attr,
4240 &object_size_attr.attr,
4241 &objs_per_slab_attr.attr,
4242 &order_attr.attr,
4243 &min_partial_attr.attr,
4244 &objects_attr.attr,
4245 &objects_partial_attr.attr,
4246 &total_objects_attr.attr,
4247 &slabs_attr.attr,
4248 &partial_attr.attr,
4249 &cpu_slabs_attr.attr,
4250 &ctor_attr.attr,
4251 &aliases_attr.attr,
4252 &align_attr.attr,
4253 &sanity_checks_attr.attr,
4254 &trace_attr.attr,
4255 &hwcache_align_attr.attr,
4256 &reclaim_account_attr.attr,
4257 &destroy_by_rcu_attr.attr,
4258 &red_zone_attr.attr,
4259 &poison_attr.attr,
4260 &store_user_attr.attr,
4261 &validate_attr.attr,
4262 &shrink_attr.attr,
4263 &alloc_calls_attr.attr,
4264 &free_calls_attr.attr,
4265 #ifdef CONFIG_ZONE_DMA
4266 &cache_dma_attr.attr,
4267 #endif
4268 #ifdef CONFIG_NUMA
4269 &remote_node_defrag_ratio_attr.attr,
4270 #endif
4271 #ifdef CONFIG_SLUB_STATS
4272 &alloc_fastpath_attr.attr,
4273 &alloc_slowpath_attr.attr,
4274 &free_fastpath_attr.attr,
4275 &free_slowpath_attr.attr,
4276 &free_frozen_attr.attr,
4277 &free_add_partial_attr.attr,
4278 &free_remove_partial_attr.attr,
4279 &alloc_from_partial_attr.attr,
4280 &alloc_slab_attr.attr,
4281 &alloc_refill_attr.attr,
4282 &free_slab_attr.attr,
4283 &cpuslab_flush_attr.attr,
4284 &deactivate_full_attr.attr,
4285 &deactivate_empty_attr.attr,
4286 &deactivate_to_head_attr.attr,
4287 &deactivate_to_tail_attr.attr,
4288 &deactivate_remote_frees_attr.attr,
4289 &order_fallback_attr.attr,
4290 #endif
4291 NULL
4292 };
4293
4294 static struct attribute_group slab_attr_group = {
4295 .attrs = slab_attrs,
4296 };
4297
4298 static ssize_t slab_attr_show(struct kobject *kobj,
4299 struct attribute *attr,
4300 char *buf)
4301 {
4302 struct slab_attribute *attribute;
4303 struct kmem_cache *s;
4304 int err;
4305
4306 attribute = to_slab_attr(attr);
4307 s = to_slab(kobj);
4308
4309 if (!attribute->show)
4310 return -EIO;
4311
4312 err = attribute->show(s, buf);
4313
4314 return err;
4315 }
4316
4317 static ssize_t slab_attr_store(struct kobject *kobj,
4318 struct attribute *attr,
4319 const char *buf, size_t len)
4320 {
4321 struct slab_attribute *attribute;
4322 struct kmem_cache *s;
4323 int err;
4324
4325 attribute = to_slab_attr(attr);
4326 s = to_slab(kobj);
4327
4328 if (!attribute->store)
4329 return -EIO;
4330
4331 err = attribute->store(s, buf, len);
4332
4333 return err;
4334 }
4335
4336 static void kmem_cache_release(struct kobject *kobj)
4337 {
4338 struct kmem_cache *s = to_slab(kobj);
4339
4340 kfree(s);
4341 }
4342
4343 static struct sysfs_ops slab_sysfs_ops = {
4344 .show = slab_attr_show,
4345 .store = slab_attr_store,
4346 };
4347
4348 static struct kobj_type slab_ktype = {
4349 .sysfs_ops = &slab_sysfs_ops,
4350 .release = kmem_cache_release
4351 };
4352
4353 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4354 {
4355 struct kobj_type *ktype = get_ktype(kobj);
4356
4357 if (ktype == &slab_ktype)
4358 return 1;
4359 return 0;
4360 }
4361
4362 static struct kset_uevent_ops slab_uevent_ops = {
4363 .filter = uevent_filter,
4364 };
4365
4366 static struct kset *slab_kset;
4367
4368 #define ID_STR_LENGTH 64
4369
4370 /* Create a unique string id for a slab cache:
4371 *
4372 * Format :[flags-]size
4373 */
4374 static char *create_unique_id(struct kmem_cache *s)
4375 {
4376 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4377 char *p = name;
4378
4379 BUG_ON(!name);
4380
4381 *p++ = ':';
4382 /*
4383 * First flags affecting slabcache operations. We will only
4384 * get here for aliasable slabs so we do not need to support
4385 * too many flags. The flags here must cover all flags that
4386 * are matched during merging to guarantee that the id is
4387 * unique.
4388 */
4389 if (s->flags & SLAB_CACHE_DMA)
4390 *p++ = 'd';
4391 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4392 *p++ = 'a';
4393 if (s->flags & SLAB_DEBUG_FREE)
4394 *p++ = 'F';
4395 if (p != name + 1)
4396 *p++ = '-';
4397 p += sprintf(p, "%07d", s->size);
4398 BUG_ON(p > name + ID_STR_LENGTH - 1);
4399 return name;
4400 }
4401
4402 static int sysfs_slab_add(struct kmem_cache *s)
4403 {
4404 int err;
4405 const char *name;
4406 int unmergeable;
4407
4408 if (slab_state < SYSFS)
4409 /* Defer until later */
4410 return 0;
4411
4412 unmergeable = slab_unmergeable(s);
4413 if (unmergeable) {
4414 /*
4415 * Slabcache can never be merged so we can use the name proper.
4416 * This is typically the case for debug situations. In that
4417 * case we can catch duplicate names easily.
4418 */
4419 sysfs_remove_link(&slab_kset->kobj, s->name);
4420 name = s->name;
4421 } else {
4422 /*
4423 * Create a unique name for the slab as a target
4424 * for the symlinks.
4425 */
4426 name = create_unique_id(s);
4427 }
4428
4429 s->kobj.kset = slab_kset;
4430 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4431 if (err) {
4432 kobject_put(&s->kobj);
4433 return err;
4434 }
4435
4436 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4437 if (err)
4438 return err;
4439 kobject_uevent(&s->kobj, KOBJ_ADD);
4440 if (!unmergeable) {
4441 /* Setup first alias */
4442 sysfs_slab_alias(s, s->name);
4443 kfree(name);
4444 }
4445 return 0;
4446 }
4447
4448 static void sysfs_slab_remove(struct kmem_cache *s)
4449 {
4450 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4451 kobject_del(&s->kobj);
4452 kobject_put(&s->kobj);
4453 }
4454
4455 /*
4456 * Need to buffer aliases during bootup until sysfs becomes
4457 * available lest we lose that information.
4458 */
4459 struct saved_alias {
4460 struct kmem_cache *s;
4461 const char *name;
4462 struct saved_alias *next;
4463 };
4464
4465 static struct saved_alias *alias_list;
4466
4467 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4468 {
4469 struct saved_alias *al;
4470
4471 if (slab_state == SYSFS) {
4472 /*
4473 * If we have a leftover link then remove it.
4474 */
4475 sysfs_remove_link(&slab_kset->kobj, name);
4476 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4477 }
4478
4479 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4480 if (!al)
4481 return -ENOMEM;
4482
4483 al->s = s;
4484 al->name = name;
4485 al->next = alias_list;
4486 alias_list = al;
4487 return 0;
4488 }
4489
4490 static int __init slab_sysfs_init(void)
4491 {
4492 struct kmem_cache *s;
4493 int err;
4494
4495 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4496 if (!slab_kset) {
4497 printk(KERN_ERR "Cannot register slab subsystem.\n");
4498 return -ENOSYS;
4499 }
4500
4501 slab_state = SYSFS;
4502
4503 list_for_each_entry(s, &slab_caches, list) {
4504 err = sysfs_slab_add(s);
4505 if (err)
4506 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4507 " to sysfs\n", s->name);
4508 }
4509
4510 while (alias_list) {
4511 struct saved_alias *al = alias_list;
4512
4513 alias_list = alias_list->next;
4514 err = sysfs_slab_alias(al->s, al->name);
4515 if (err)
4516 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4517 " %s to sysfs\n", s->name);
4518 kfree(al);
4519 }
4520
4521 resiliency_test();
4522 return 0;
4523 }
4524
4525 __initcall(slab_sysfs_init);
4526 #endif
4527
4528 /*
4529 * The /proc/slabinfo ABI
4530 */
4531 #ifdef CONFIG_SLABINFO
4532 static void print_slabinfo_header(struct seq_file *m)
4533 {
4534 seq_puts(m, "slabinfo - version: 2.1\n");
4535 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4536 "<objperslab> <pagesperslab>");
4537 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4538 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4539 seq_putc(m, '\n');
4540 }
4541
4542 static void *s_start(struct seq_file *m, loff_t *pos)
4543 {
4544 loff_t n = *pos;
4545
4546 down_read(&slub_lock);
4547 if (!n)
4548 print_slabinfo_header(m);
4549
4550 return seq_list_start(&slab_caches, *pos);
4551 }
4552
4553 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4554 {
4555 return seq_list_next(p, &slab_caches, pos);
4556 }
4557
4558 static void s_stop(struct seq_file *m, void *p)
4559 {
4560 up_read(&slub_lock);
4561 }
4562
4563 static int s_show(struct seq_file *m, void *p)
4564 {
4565 unsigned long nr_partials = 0;
4566 unsigned long nr_slabs = 0;
4567 unsigned long nr_inuse = 0;
4568 unsigned long nr_objs = 0;
4569 unsigned long nr_free = 0;
4570 struct kmem_cache *s;
4571 int node;
4572
4573 s = list_entry(p, struct kmem_cache, list);
4574
4575 for_each_online_node(node) {
4576 struct kmem_cache_node *n = get_node(s, node);
4577
4578 if (!n)
4579 continue;
4580
4581 nr_partials += n->nr_partial;
4582 nr_slabs += atomic_long_read(&n->nr_slabs);
4583 nr_objs += atomic_long_read(&n->total_objects);
4584 nr_free += count_partial(n, count_free);
4585 }
4586
4587 nr_inuse = nr_objs - nr_free;
4588
4589 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4590 nr_objs, s->size, oo_objects(s->oo),
4591 (1 << oo_order(s->oo)));
4592 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4593 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4594 0UL);
4595 seq_putc(m, '\n');
4596 return 0;
4597 }
4598
4599 static const struct seq_operations slabinfo_op = {
4600 .start = s_start,
4601 .next = s_next,
4602 .stop = s_stop,
4603 .show = s_show,
4604 };
4605
4606 static int slabinfo_open(struct inode *inode, struct file *file)
4607 {
4608 return seq_open(file, &slabinfo_op);
4609 }
4610
4611 static const struct file_operations proc_slabinfo_operations = {
4612 .open = slabinfo_open,
4613 .read = seq_read,
4614 .llseek = seq_lseek,
4615 .release = seq_release,
4616 };
4617
4618 static int __init slab_proc_init(void)
4619 {
4620 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4621 return 0;
4622 }
4623 module_init(slab_proc_init);
4624 #endif /* CONFIG_SLABINFO */
This page took 0.119173 seconds and 6 git commands to generate.