Merge master.kernel.org:/pub/scm/linux/kernel/git/bart/ide-2.6
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23
24 /*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
100 */
101
102 #define FROZEN (1 << PG_active)
103
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109
110 static inline int SlabFrozen(struct page *page)
111 {
112 return page->flags & FROZEN;
113 }
114
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 page->flags |= FROZEN;
118 }
119
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 page->flags &= ~FROZEN;
123 }
124
125 static inline int SlabDebug(struct page *page)
126 {
127 return page->flags & SLABDEBUG;
128 }
129
130 static inline void SetSlabDebug(struct page *page)
131 {
132 page->flags |= SLABDEBUG;
133 }
134
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 page->flags &= ~SLABDEBUG;
138 }
139
140 /*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 #if PAGE_SHIFT <= 12
157
158 /*
159 * Small page size. Make sure that we do not fragment memory
160 */
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
163
164 #else
165
166 /*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
172
173 #endif
174
175 /*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
179 #define MIN_PARTIAL 2
180
181 /*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186 #define MAX_PARTIAL 10
187
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
190
191 /*
192 * Set of flags that will prevent slab merging
193 */
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
207
208 /* Internal SLUB flags */
209 #define __OBJECT_POISON 0x80000000 /* Poison object */
210
211 /* Not all arches define cache_line_size */
212 #ifndef cache_line_size
213 #define cache_line_size() L1_CACHE_BYTES
214 #endif
215
216 static int kmem_size = sizeof(struct kmem_cache);
217
218 #ifdef CONFIG_SMP
219 static struct notifier_block slab_notifier;
220 #endif
221
222 static enum {
223 DOWN, /* No slab functionality available */
224 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
225 UP, /* Everything works but does not show up in sysfs */
226 SYSFS /* Sysfs up */
227 } slab_state = DOWN;
228
229 /* A list of all slab caches on the system */
230 static DECLARE_RWSEM(slub_lock);
231 LIST_HEAD(slab_caches);
232
233 /*
234 * Tracking user of a slab.
235 */
236 struct track {
237 void *addr; /* Called from address */
238 int cpu; /* Was running on cpu */
239 int pid; /* Pid context */
240 unsigned long when; /* When did the operation occur */
241 };
242
243 enum track_item { TRACK_ALLOC, TRACK_FREE };
244
245 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
246 static int sysfs_slab_add(struct kmem_cache *);
247 static int sysfs_slab_alias(struct kmem_cache *, const char *);
248 static void sysfs_slab_remove(struct kmem_cache *);
249 #else
250 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
252 static void sysfs_slab_remove(struct kmem_cache *s) {}
253 #endif
254
255 /********************************************************************
256 * Core slab cache functions
257 *******************************************************************/
258
259 int slab_is_available(void)
260 {
261 return slab_state >= UP;
262 }
263
264 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
265 {
266 #ifdef CONFIG_NUMA
267 return s->node[node];
268 #else
269 return &s->local_node;
270 #endif
271 }
272
273 static inline int check_valid_pointer(struct kmem_cache *s,
274 struct page *page, const void *object)
275 {
276 void *base;
277
278 if (!object)
279 return 1;
280
281 base = page_address(page);
282 if (object < base || object >= base + s->objects * s->size ||
283 (object - base) % s->size) {
284 return 0;
285 }
286
287 return 1;
288 }
289
290 /*
291 * Slow version of get and set free pointer.
292 *
293 * This version requires touching the cache lines of kmem_cache which
294 * we avoid to do in the fast alloc free paths. There we obtain the offset
295 * from the page struct.
296 */
297 static inline void *get_freepointer(struct kmem_cache *s, void *object)
298 {
299 return *(void **)(object + s->offset);
300 }
301
302 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
303 {
304 *(void **)(object + s->offset) = fp;
305 }
306
307 /* Loop over all objects in a slab */
308 #define for_each_object(__p, __s, __addr) \
309 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
310 __p += (__s)->size)
311
312 /* Scan freelist */
313 #define for_each_free_object(__p, __s, __free) \
314 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
315
316 /* Determine object index from a given position */
317 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 return (p - addr) / s->size;
320 }
321
322 #ifdef CONFIG_SLUB_DEBUG
323 /*
324 * Debug settings:
325 */
326 static int slub_debug;
327
328 static char *slub_debug_slabs;
329
330 /*
331 * Object debugging
332 */
333 static void print_section(char *text, u8 *addr, unsigned int length)
334 {
335 int i, offset;
336 int newline = 1;
337 char ascii[17];
338
339 ascii[16] = 0;
340
341 for (i = 0; i < length; i++) {
342 if (newline) {
343 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
344 newline = 0;
345 }
346 printk(" %02x", addr[i]);
347 offset = i % 16;
348 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 if (offset == 15) {
350 printk(" %s\n",ascii);
351 newline = 1;
352 }
353 }
354 if (!newline) {
355 i %= 16;
356 while (i < 16) {
357 printk(" ");
358 ascii[i] = ' ';
359 i++;
360 }
361 printk(" %s\n", ascii);
362 }
363 }
364
365 static struct track *get_track(struct kmem_cache *s, void *object,
366 enum track_item alloc)
367 {
368 struct track *p;
369
370 if (s->offset)
371 p = object + s->offset + sizeof(void *);
372 else
373 p = object + s->inuse;
374
375 return p + alloc;
376 }
377
378 static void set_track(struct kmem_cache *s, void *object,
379 enum track_item alloc, void *addr)
380 {
381 struct track *p;
382
383 if (s->offset)
384 p = object + s->offset + sizeof(void *);
385 else
386 p = object + s->inuse;
387
388 p += alloc;
389 if (addr) {
390 p->addr = addr;
391 p->cpu = smp_processor_id();
392 p->pid = current ? current->pid : -1;
393 p->when = jiffies;
394 } else
395 memset(p, 0, sizeof(struct track));
396 }
397
398 static void init_tracking(struct kmem_cache *s, void *object)
399 {
400 if (s->flags & SLAB_STORE_USER) {
401 set_track(s, object, TRACK_FREE, NULL);
402 set_track(s, object, TRACK_ALLOC, NULL);
403 }
404 }
405
406 static void print_track(const char *s, struct track *t)
407 {
408 if (!t->addr)
409 return;
410
411 printk(KERN_ERR "%s: ", s);
412 __print_symbol("%s", (unsigned long)t->addr);
413 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
414 }
415
416 static void print_trailer(struct kmem_cache *s, u8 *p)
417 {
418 unsigned int off; /* Offset of last byte */
419
420 if (s->flags & SLAB_RED_ZONE)
421 print_section("Redzone", p + s->objsize,
422 s->inuse - s->objsize);
423
424 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
425 p + s->offset,
426 get_freepointer(s, p));
427
428 if (s->offset)
429 off = s->offset + sizeof(void *);
430 else
431 off = s->inuse;
432
433 if (s->flags & SLAB_STORE_USER) {
434 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
435 print_track("Last free ", get_track(s, p, TRACK_FREE));
436 off += 2 * sizeof(struct track);
437 }
438
439 if (off != s->size)
440 /* Beginning of the filler is the free pointer */
441 print_section("Filler", p + off, s->size - off);
442 }
443
444 static void object_err(struct kmem_cache *s, struct page *page,
445 u8 *object, char *reason)
446 {
447 u8 *addr = page_address(page);
448
449 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
450 s->name, reason, object, page);
451 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
452 object - addr, page->flags, page->inuse, page->freelist);
453 if (object > addr + 16)
454 print_section("Bytes b4", object - 16, 16);
455 print_section("Object", object, min(s->objsize, 128));
456 print_trailer(s, object);
457 dump_stack();
458 }
459
460 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
461 {
462 va_list args;
463 char buf[100];
464
465 va_start(args, reason);
466 vsnprintf(buf, sizeof(buf), reason, args);
467 va_end(args);
468 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
469 page);
470 dump_stack();
471 }
472
473 static void init_object(struct kmem_cache *s, void *object, int active)
474 {
475 u8 *p = object;
476
477 if (s->flags & __OBJECT_POISON) {
478 memset(p, POISON_FREE, s->objsize - 1);
479 p[s->objsize -1] = POISON_END;
480 }
481
482 if (s->flags & SLAB_RED_ZONE)
483 memset(p + s->objsize,
484 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
485 s->inuse - s->objsize);
486 }
487
488 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
489 {
490 while (bytes) {
491 if (*start != (u8)value)
492 return 0;
493 start++;
494 bytes--;
495 }
496 return 1;
497 }
498
499 /*
500 * Object layout:
501 *
502 * object address
503 * Bytes of the object to be managed.
504 * If the freepointer may overlay the object then the free
505 * pointer is the first word of the object.
506 *
507 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
508 * 0xa5 (POISON_END)
509 *
510 * object + s->objsize
511 * Padding to reach word boundary. This is also used for Redzoning.
512 * Padding is extended by another word if Redzoning is enabled and
513 * objsize == inuse.
514 *
515 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
516 * 0xcc (RED_ACTIVE) for objects in use.
517 *
518 * object + s->inuse
519 * Meta data starts here.
520 *
521 * A. Free pointer (if we cannot overwrite object on free)
522 * B. Tracking data for SLAB_STORE_USER
523 * C. Padding to reach required alignment boundary or at mininum
524 * one word if debuggin is on to be able to detect writes
525 * before the word boundary.
526 *
527 * Padding is done using 0x5a (POISON_INUSE)
528 *
529 * object + s->size
530 * Nothing is used beyond s->size.
531 *
532 * If slabcaches are merged then the objsize and inuse boundaries are mostly
533 * ignored. And therefore no slab options that rely on these boundaries
534 * may be used with merged slabcaches.
535 */
536
537 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
538 void *from, void *to)
539 {
540 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
541 s->name, message, data, from, to - 1);
542 memset(from, data, to - from);
543 }
544
545 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
546 {
547 unsigned long off = s->inuse; /* The end of info */
548
549 if (s->offset)
550 /* Freepointer is placed after the object. */
551 off += sizeof(void *);
552
553 if (s->flags & SLAB_STORE_USER)
554 /* We also have user information there */
555 off += 2 * sizeof(struct track);
556
557 if (s->size == off)
558 return 1;
559
560 if (check_bytes(p + off, POISON_INUSE, s->size - off))
561 return 1;
562
563 object_err(s, page, p, "Object padding check fails");
564
565 /*
566 * Restore padding
567 */
568 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
569 return 0;
570 }
571
572 static int slab_pad_check(struct kmem_cache *s, struct page *page)
573 {
574 u8 *p;
575 int length, remainder;
576
577 if (!(s->flags & SLAB_POISON))
578 return 1;
579
580 p = page_address(page);
581 length = s->objects * s->size;
582 remainder = (PAGE_SIZE << s->order) - length;
583 if (!remainder)
584 return 1;
585
586 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
587 slab_err(s, page, "Padding check failed");
588 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
589 p + length + remainder);
590 return 0;
591 }
592 return 1;
593 }
594
595 static int check_object(struct kmem_cache *s, struct page *page,
596 void *object, int active)
597 {
598 u8 *p = object;
599 u8 *endobject = object + s->objsize;
600
601 if (s->flags & SLAB_RED_ZONE) {
602 unsigned int red =
603 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
604
605 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
606 object_err(s, page, object,
607 active ? "Redzone Active" : "Redzone Inactive");
608 restore_bytes(s, "redzone", red,
609 endobject, object + s->inuse);
610 return 0;
611 }
612 } else {
613 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
614 !check_bytes(endobject, POISON_INUSE,
615 s->inuse - s->objsize)) {
616 object_err(s, page, p, "Alignment padding check fails");
617 /*
618 * Fix it so that there will not be another report.
619 *
620 * Hmmm... We may be corrupting an object that now expects
621 * to be longer than allowed.
622 */
623 restore_bytes(s, "alignment padding", POISON_INUSE,
624 endobject, object + s->inuse);
625 }
626 }
627
628 if (s->flags & SLAB_POISON) {
629 if (!active && (s->flags & __OBJECT_POISON) &&
630 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
631 p[s->objsize - 1] != POISON_END)) {
632
633 object_err(s, page, p, "Poison check failed");
634 restore_bytes(s, "Poison", POISON_FREE,
635 p, p + s->objsize -1);
636 restore_bytes(s, "Poison", POISON_END,
637 p + s->objsize - 1, p + s->objsize);
638 return 0;
639 }
640 /*
641 * check_pad_bytes cleans up on its own.
642 */
643 check_pad_bytes(s, page, p);
644 }
645
646 if (!s->offset && active)
647 /*
648 * Object and freepointer overlap. Cannot check
649 * freepointer while object is allocated.
650 */
651 return 1;
652
653 /* Check free pointer validity */
654 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
655 object_err(s, page, p, "Freepointer corrupt");
656 /*
657 * No choice but to zap it and thus loose the remainder
658 * of the free objects in this slab. May cause
659 * another error because the object count is now wrong.
660 */
661 set_freepointer(s, p, NULL);
662 return 0;
663 }
664 return 1;
665 }
666
667 static int check_slab(struct kmem_cache *s, struct page *page)
668 {
669 VM_BUG_ON(!irqs_disabled());
670
671 if (!PageSlab(page)) {
672 slab_err(s, page, "Not a valid slab page flags=%lx "
673 "mapping=0x%p count=%d", page->flags, page->mapping,
674 page_count(page));
675 return 0;
676 }
677 if (page->offset * sizeof(void *) != s->offset) {
678 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
679 "mapping=0x%p count=%d",
680 (unsigned long)(page->offset * sizeof(void *)),
681 page->flags,
682 page->mapping,
683 page_count(page));
684 return 0;
685 }
686 if (page->inuse > s->objects) {
687 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
688 "mapping=0x%p count=%d",
689 s->name, page->inuse, s->objects, page->flags,
690 page->mapping, page_count(page));
691 return 0;
692 }
693 /* Slab_pad_check fixes things up after itself */
694 slab_pad_check(s, page);
695 return 1;
696 }
697
698 /*
699 * Determine if a certain object on a page is on the freelist. Must hold the
700 * slab lock to guarantee that the chains are in a consistent state.
701 */
702 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
703 {
704 int nr = 0;
705 void *fp = page->freelist;
706 void *object = NULL;
707
708 while (fp && nr <= s->objects) {
709 if (fp == search)
710 return 1;
711 if (!check_valid_pointer(s, page, fp)) {
712 if (object) {
713 object_err(s, page, object,
714 "Freechain corrupt");
715 set_freepointer(s, object, NULL);
716 break;
717 } else {
718 slab_err(s, page, "Freepointer 0x%p corrupt",
719 fp);
720 page->freelist = NULL;
721 page->inuse = s->objects;
722 printk(KERN_ERR "@@@ SLUB %s: Freelist "
723 "cleared. Slab 0x%p\n",
724 s->name, page);
725 return 0;
726 }
727 break;
728 }
729 object = fp;
730 fp = get_freepointer(s, object);
731 nr++;
732 }
733
734 if (page->inuse != s->objects - nr) {
735 slab_err(s, page, "Wrong object count. Counter is %d but "
736 "counted were %d", s, page, page->inuse,
737 s->objects - nr);
738 page->inuse = s->objects - nr;
739 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
740 "Slab @0x%p\n", s->name, page);
741 }
742 return search == NULL;
743 }
744
745 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
746 {
747 if (s->flags & SLAB_TRACE) {
748 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
749 s->name,
750 alloc ? "alloc" : "free",
751 object, page->inuse,
752 page->freelist);
753
754 if (!alloc)
755 print_section("Object", (void *)object, s->objsize);
756
757 dump_stack();
758 }
759 }
760
761 /*
762 * Tracking of fully allocated slabs for debugging purposes.
763 */
764 static void add_full(struct kmem_cache_node *n, struct page *page)
765 {
766 spin_lock(&n->list_lock);
767 list_add(&page->lru, &n->full);
768 spin_unlock(&n->list_lock);
769 }
770
771 static void remove_full(struct kmem_cache *s, struct page *page)
772 {
773 struct kmem_cache_node *n;
774
775 if (!(s->flags & SLAB_STORE_USER))
776 return;
777
778 n = get_node(s, page_to_nid(page));
779
780 spin_lock(&n->list_lock);
781 list_del(&page->lru);
782 spin_unlock(&n->list_lock);
783 }
784
785 static void setup_object_debug(struct kmem_cache *s, struct page *page,
786 void *object)
787 {
788 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
789 return;
790
791 init_object(s, object, 0);
792 init_tracking(s, object);
793 }
794
795 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
796 void *object, void *addr)
797 {
798 if (!check_slab(s, page))
799 goto bad;
800
801 if (object && !on_freelist(s, page, object)) {
802 slab_err(s, page, "Object 0x%p already allocated", object);
803 goto bad;
804 }
805
806 if (!check_valid_pointer(s, page, object)) {
807 object_err(s, page, object, "Freelist Pointer check fails");
808 goto bad;
809 }
810
811 if (object && !check_object(s, page, object, 0))
812 goto bad;
813
814 /* Success perform special debug activities for allocs */
815 if (s->flags & SLAB_STORE_USER)
816 set_track(s, object, TRACK_ALLOC, addr);
817 trace(s, page, object, 1);
818 init_object(s, object, 1);
819 return 1;
820
821 bad:
822 if (PageSlab(page)) {
823 /*
824 * If this is a slab page then lets do the best we can
825 * to avoid issues in the future. Marking all objects
826 * as used avoids touching the remaining objects.
827 */
828 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
829 s->name, page);
830 page->inuse = s->objects;
831 page->freelist = NULL;
832 /* Fix up fields that may be corrupted */
833 page->offset = s->offset / sizeof(void *);
834 }
835 return 0;
836 }
837
838 static int free_debug_processing(struct kmem_cache *s, struct page *page,
839 void *object, void *addr)
840 {
841 if (!check_slab(s, page))
842 goto fail;
843
844 if (!check_valid_pointer(s, page, object)) {
845 slab_err(s, page, "Invalid object pointer 0x%p", object);
846 goto fail;
847 }
848
849 if (on_freelist(s, page, object)) {
850 slab_err(s, page, "Object 0x%p already free", object);
851 goto fail;
852 }
853
854 if (!check_object(s, page, object, 1))
855 return 0;
856
857 if (unlikely(s != page->slab)) {
858 if (!PageSlab(page))
859 slab_err(s, page, "Attempt to free object(0x%p) "
860 "outside of slab", object);
861 else
862 if (!page->slab) {
863 printk(KERN_ERR
864 "SLUB <none>: no slab for object 0x%p.\n",
865 object);
866 dump_stack();
867 }
868 else
869 slab_err(s, page, "object at 0x%p belongs "
870 "to slab %s", object, page->slab->name);
871 goto fail;
872 }
873
874 /* Special debug activities for freeing objects */
875 if (!SlabFrozen(page) && !page->freelist)
876 remove_full(s, page);
877 if (s->flags & SLAB_STORE_USER)
878 set_track(s, object, TRACK_FREE, addr);
879 trace(s, page, object, 0);
880 init_object(s, object, 0);
881 return 1;
882
883 fail:
884 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
885 s->name, page, object);
886 return 0;
887 }
888
889 static int __init setup_slub_debug(char *str)
890 {
891 if (!str || *str != '=')
892 slub_debug = DEBUG_DEFAULT_FLAGS;
893 else {
894 str++;
895 if (*str == 0 || *str == ',')
896 slub_debug = DEBUG_DEFAULT_FLAGS;
897 else
898 for( ;*str && *str != ','; str++)
899 switch (*str) {
900 case 'f' : case 'F' :
901 slub_debug |= SLAB_DEBUG_FREE;
902 break;
903 case 'z' : case 'Z' :
904 slub_debug |= SLAB_RED_ZONE;
905 break;
906 case 'p' : case 'P' :
907 slub_debug |= SLAB_POISON;
908 break;
909 case 'u' : case 'U' :
910 slub_debug |= SLAB_STORE_USER;
911 break;
912 case 't' : case 'T' :
913 slub_debug |= SLAB_TRACE;
914 break;
915 default:
916 printk(KERN_ERR "slub_debug option '%c' "
917 "unknown. skipped\n",*str);
918 }
919 }
920
921 if (*str == ',')
922 slub_debug_slabs = str + 1;
923 return 1;
924 }
925
926 __setup("slub_debug", setup_slub_debug);
927
928 static void kmem_cache_open_debug_check(struct kmem_cache *s)
929 {
930 /*
931 * The page->offset field is only 16 bit wide. This is an offset
932 * in units of words from the beginning of an object. If the slab
933 * size is bigger then we cannot move the free pointer behind the
934 * object anymore.
935 *
936 * On 32 bit platforms the limit is 256k. On 64bit platforms
937 * the limit is 512k.
938 *
939 * Debugging or ctor may create a need to move the free
940 * pointer. Fail if this happens.
941 */
942 if (s->objsize >= 65535 * sizeof(void *)) {
943 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
944 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
945 BUG_ON(s->ctor);
946 }
947 else
948 /*
949 * Enable debugging if selected on the kernel commandline.
950 */
951 if (slub_debug && (!slub_debug_slabs ||
952 strncmp(slub_debug_slabs, s->name,
953 strlen(slub_debug_slabs)) == 0))
954 s->flags |= slub_debug;
955 }
956 #else
957 static inline void setup_object_debug(struct kmem_cache *s,
958 struct page *page, void *object) {}
959
960 static inline int alloc_debug_processing(struct kmem_cache *s,
961 struct page *page, void *object, void *addr) { return 0; }
962
963 static inline int free_debug_processing(struct kmem_cache *s,
964 struct page *page, void *object, void *addr) { return 0; }
965
966 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
967 { return 1; }
968 static inline int check_object(struct kmem_cache *s, struct page *page,
969 void *object, int active) { return 1; }
970 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
971 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
972 #define slub_debug 0
973 #endif
974 /*
975 * Slab allocation and freeing
976 */
977 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
978 {
979 struct page * page;
980 int pages = 1 << s->order;
981
982 if (s->order)
983 flags |= __GFP_COMP;
984
985 if (s->flags & SLAB_CACHE_DMA)
986 flags |= SLUB_DMA;
987
988 if (node == -1)
989 page = alloc_pages(flags, s->order);
990 else
991 page = alloc_pages_node(node, flags, s->order);
992
993 if (!page)
994 return NULL;
995
996 mod_zone_page_state(page_zone(page),
997 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
998 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
999 pages);
1000
1001 return page;
1002 }
1003
1004 static void setup_object(struct kmem_cache *s, struct page *page,
1005 void *object)
1006 {
1007 setup_object_debug(s, page, object);
1008 if (unlikely(s->ctor))
1009 s->ctor(object, s, 0);
1010 }
1011
1012 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1013 {
1014 struct page *page;
1015 struct kmem_cache_node *n;
1016 void *start;
1017 void *end;
1018 void *last;
1019 void *p;
1020
1021 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1022
1023 if (flags & __GFP_WAIT)
1024 local_irq_enable();
1025
1026 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1027 if (!page)
1028 goto out;
1029
1030 n = get_node(s, page_to_nid(page));
1031 if (n)
1032 atomic_long_inc(&n->nr_slabs);
1033 page->offset = s->offset / sizeof(void *);
1034 page->slab = s;
1035 page->flags |= 1 << PG_slab;
1036 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1037 SLAB_STORE_USER | SLAB_TRACE))
1038 SetSlabDebug(page);
1039
1040 start = page_address(page);
1041 end = start + s->objects * s->size;
1042
1043 if (unlikely(s->flags & SLAB_POISON))
1044 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1045
1046 last = start;
1047 for_each_object(p, s, start) {
1048 setup_object(s, page, last);
1049 set_freepointer(s, last, p);
1050 last = p;
1051 }
1052 setup_object(s, page, last);
1053 set_freepointer(s, last, NULL);
1054
1055 page->freelist = start;
1056 page->lockless_freelist = NULL;
1057 page->inuse = 0;
1058 out:
1059 if (flags & __GFP_WAIT)
1060 local_irq_disable();
1061 return page;
1062 }
1063
1064 static void __free_slab(struct kmem_cache *s, struct page *page)
1065 {
1066 int pages = 1 << s->order;
1067
1068 if (unlikely(SlabDebug(page))) {
1069 void *p;
1070
1071 slab_pad_check(s, page);
1072 for_each_object(p, s, page_address(page))
1073 check_object(s, page, p, 0);
1074 }
1075
1076 mod_zone_page_state(page_zone(page),
1077 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1078 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1079 - pages);
1080
1081 page->mapping = NULL;
1082 __free_pages(page, s->order);
1083 }
1084
1085 static void rcu_free_slab(struct rcu_head *h)
1086 {
1087 struct page *page;
1088
1089 page = container_of((struct list_head *)h, struct page, lru);
1090 __free_slab(page->slab, page);
1091 }
1092
1093 static void free_slab(struct kmem_cache *s, struct page *page)
1094 {
1095 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1096 /*
1097 * RCU free overloads the RCU head over the LRU
1098 */
1099 struct rcu_head *head = (void *)&page->lru;
1100
1101 call_rcu(head, rcu_free_slab);
1102 } else
1103 __free_slab(s, page);
1104 }
1105
1106 static void discard_slab(struct kmem_cache *s, struct page *page)
1107 {
1108 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1109
1110 atomic_long_dec(&n->nr_slabs);
1111 reset_page_mapcount(page);
1112 ClearSlabDebug(page);
1113 __ClearPageSlab(page);
1114 free_slab(s, page);
1115 }
1116
1117 /*
1118 * Per slab locking using the pagelock
1119 */
1120 static __always_inline void slab_lock(struct page *page)
1121 {
1122 bit_spin_lock(PG_locked, &page->flags);
1123 }
1124
1125 static __always_inline void slab_unlock(struct page *page)
1126 {
1127 bit_spin_unlock(PG_locked, &page->flags);
1128 }
1129
1130 static __always_inline int slab_trylock(struct page *page)
1131 {
1132 int rc = 1;
1133
1134 rc = bit_spin_trylock(PG_locked, &page->flags);
1135 return rc;
1136 }
1137
1138 /*
1139 * Management of partially allocated slabs
1140 */
1141 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1142 {
1143 spin_lock(&n->list_lock);
1144 n->nr_partial++;
1145 list_add_tail(&page->lru, &n->partial);
1146 spin_unlock(&n->list_lock);
1147 }
1148
1149 static void add_partial(struct kmem_cache_node *n, struct page *page)
1150 {
1151 spin_lock(&n->list_lock);
1152 n->nr_partial++;
1153 list_add(&page->lru, &n->partial);
1154 spin_unlock(&n->list_lock);
1155 }
1156
1157 static void remove_partial(struct kmem_cache *s,
1158 struct page *page)
1159 {
1160 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1161
1162 spin_lock(&n->list_lock);
1163 list_del(&page->lru);
1164 n->nr_partial--;
1165 spin_unlock(&n->list_lock);
1166 }
1167
1168 /*
1169 * Lock slab and remove from the partial list.
1170 *
1171 * Must hold list_lock.
1172 */
1173 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1174 {
1175 if (slab_trylock(page)) {
1176 list_del(&page->lru);
1177 n->nr_partial--;
1178 SetSlabFrozen(page);
1179 return 1;
1180 }
1181 return 0;
1182 }
1183
1184 /*
1185 * Try to allocate a partial slab from a specific node.
1186 */
1187 static struct page *get_partial_node(struct kmem_cache_node *n)
1188 {
1189 struct page *page;
1190
1191 /*
1192 * Racy check. If we mistakenly see no partial slabs then we
1193 * just allocate an empty slab. If we mistakenly try to get a
1194 * partial slab and there is none available then get_partials()
1195 * will return NULL.
1196 */
1197 if (!n || !n->nr_partial)
1198 return NULL;
1199
1200 spin_lock(&n->list_lock);
1201 list_for_each_entry(page, &n->partial, lru)
1202 if (lock_and_freeze_slab(n, page))
1203 goto out;
1204 page = NULL;
1205 out:
1206 spin_unlock(&n->list_lock);
1207 return page;
1208 }
1209
1210 /*
1211 * Get a page from somewhere. Search in increasing NUMA distances.
1212 */
1213 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1214 {
1215 #ifdef CONFIG_NUMA
1216 struct zonelist *zonelist;
1217 struct zone **z;
1218 struct page *page;
1219
1220 /*
1221 * The defrag ratio allows a configuration of the tradeoffs between
1222 * inter node defragmentation and node local allocations. A lower
1223 * defrag_ratio increases the tendency to do local allocations
1224 * instead of attempting to obtain partial slabs from other nodes.
1225 *
1226 * If the defrag_ratio is set to 0 then kmalloc() always
1227 * returns node local objects. If the ratio is higher then kmalloc()
1228 * may return off node objects because partial slabs are obtained
1229 * from other nodes and filled up.
1230 *
1231 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1232 * defrag_ratio = 1000) then every (well almost) allocation will
1233 * first attempt to defrag slab caches on other nodes. This means
1234 * scanning over all nodes to look for partial slabs which may be
1235 * expensive if we do it every time we are trying to find a slab
1236 * with available objects.
1237 */
1238 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1239 return NULL;
1240
1241 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1242 ->node_zonelists[gfp_zone(flags)];
1243 for (z = zonelist->zones; *z; z++) {
1244 struct kmem_cache_node *n;
1245
1246 n = get_node(s, zone_to_nid(*z));
1247
1248 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1249 n->nr_partial > MIN_PARTIAL) {
1250 page = get_partial_node(n);
1251 if (page)
1252 return page;
1253 }
1254 }
1255 #endif
1256 return NULL;
1257 }
1258
1259 /*
1260 * Get a partial page, lock it and return it.
1261 */
1262 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1263 {
1264 struct page *page;
1265 int searchnode = (node == -1) ? numa_node_id() : node;
1266
1267 page = get_partial_node(get_node(s, searchnode));
1268 if (page || (flags & __GFP_THISNODE))
1269 return page;
1270
1271 return get_any_partial(s, flags);
1272 }
1273
1274 /*
1275 * Move a page back to the lists.
1276 *
1277 * Must be called with the slab lock held.
1278 *
1279 * On exit the slab lock will have been dropped.
1280 */
1281 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1282 {
1283 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1284
1285 ClearSlabFrozen(page);
1286 if (page->inuse) {
1287
1288 if (page->freelist)
1289 add_partial(n, page);
1290 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1291 add_full(n, page);
1292 slab_unlock(page);
1293
1294 } else {
1295 if (n->nr_partial < MIN_PARTIAL) {
1296 /*
1297 * Adding an empty slab to the partial slabs in order
1298 * to avoid page allocator overhead. This slab needs
1299 * to come after the other slabs with objects in
1300 * order to fill them up. That way the size of the
1301 * partial list stays small. kmem_cache_shrink can
1302 * reclaim empty slabs from the partial list.
1303 */
1304 add_partial_tail(n, page);
1305 slab_unlock(page);
1306 } else {
1307 slab_unlock(page);
1308 discard_slab(s, page);
1309 }
1310 }
1311 }
1312
1313 /*
1314 * Remove the cpu slab
1315 */
1316 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1317 {
1318 /*
1319 * Merge cpu freelist into freelist. Typically we get here
1320 * because both freelists are empty. So this is unlikely
1321 * to occur.
1322 */
1323 while (unlikely(page->lockless_freelist)) {
1324 void **object;
1325
1326 /* Retrieve object from cpu_freelist */
1327 object = page->lockless_freelist;
1328 page->lockless_freelist = page->lockless_freelist[page->offset];
1329
1330 /* And put onto the regular freelist */
1331 object[page->offset] = page->freelist;
1332 page->freelist = object;
1333 page->inuse--;
1334 }
1335 s->cpu_slab[cpu] = NULL;
1336 unfreeze_slab(s, page);
1337 }
1338
1339 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1340 {
1341 slab_lock(page);
1342 deactivate_slab(s, page, cpu);
1343 }
1344
1345 /*
1346 * Flush cpu slab.
1347 * Called from IPI handler with interrupts disabled.
1348 */
1349 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1350 {
1351 struct page *page = s->cpu_slab[cpu];
1352
1353 if (likely(page))
1354 flush_slab(s, page, cpu);
1355 }
1356
1357 static void flush_cpu_slab(void *d)
1358 {
1359 struct kmem_cache *s = d;
1360 int cpu = smp_processor_id();
1361
1362 __flush_cpu_slab(s, cpu);
1363 }
1364
1365 static void flush_all(struct kmem_cache *s)
1366 {
1367 #ifdef CONFIG_SMP
1368 on_each_cpu(flush_cpu_slab, s, 1, 1);
1369 #else
1370 unsigned long flags;
1371
1372 local_irq_save(flags);
1373 flush_cpu_slab(s);
1374 local_irq_restore(flags);
1375 #endif
1376 }
1377
1378 /*
1379 * Slow path. The lockless freelist is empty or we need to perform
1380 * debugging duties.
1381 *
1382 * Interrupts are disabled.
1383 *
1384 * Processing is still very fast if new objects have been freed to the
1385 * regular freelist. In that case we simply take over the regular freelist
1386 * as the lockless freelist and zap the regular freelist.
1387 *
1388 * If that is not working then we fall back to the partial lists. We take the
1389 * first element of the freelist as the object to allocate now and move the
1390 * rest of the freelist to the lockless freelist.
1391 *
1392 * And if we were unable to get a new slab from the partial slab lists then
1393 * we need to allocate a new slab. This is slowest path since we may sleep.
1394 */
1395 static void *__slab_alloc(struct kmem_cache *s,
1396 gfp_t gfpflags, int node, void *addr, struct page *page)
1397 {
1398 void **object;
1399 int cpu = smp_processor_id();
1400
1401 if (!page)
1402 goto new_slab;
1403
1404 slab_lock(page);
1405 if (unlikely(node != -1 && page_to_nid(page) != node))
1406 goto another_slab;
1407 load_freelist:
1408 object = page->freelist;
1409 if (unlikely(!object))
1410 goto another_slab;
1411 if (unlikely(SlabDebug(page)))
1412 goto debug;
1413
1414 object = page->freelist;
1415 page->lockless_freelist = object[page->offset];
1416 page->inuse = s->objects;
1417 page->freelist = NULL;
1418 slab_unlock(page);
1419 return object;
1420
1421 another_slab:
1422 deactivate_slab(s, page, cpu);
1423
1424 new_slab:
1425 page = get_partial(s, gfpflags, node);
1426 if (page) {
1427 s->cpu_slab[cpu] = page;
1428 goto load_freelist;
1429 }
1430
1431 page = new_slab(s, gfpflags, node);
1432 if (page) {
1433 cpu = smp_processor_id();
1434 if (s->cpu_slab[cpu]) {
1435 /*
1436 * Someone else populated the cpu_slab while we
1437 * enabled interrupts, or we have gotten scheduled
1438 * on another cpu. The page may not be on the
1439 * requested node even if __GFP_THISNODE was
1440 * specified. So we need to recheck.
1441 */
1442 if (node == -1 ||
1443 page_to_nid(s->cpu_slab[cpu]) == node) {
1444 /*
1445 * Current cpuslab is acceptable and we
1446 * want the current one since its cache hot
1447 */
1448 discard_slab(s, page);
1449 page = s->cpu_slab[cpu];
1450 slab_lock(page);
1451 goto load_freelist;
1452 }
1453 /* New slab does not fit our expectations */
1454 flush_slab(s, s->cpu_slab[cpu], cpu);
1455 }
1456 slab_lock(page);
1457 SetSlabFrozen(page);
1458 s->cpu_slab[cpu] = page;
1459 goto load_freelist;
1460 }
1461 return NULL;
1462 debug:
1463 object = page->freelist;
1464 if (!alloc_debug_processing(s, page, object, addr))
1465 goto another_slab;
1466
1467 page->inuse++;
1468 page->freelist = object[page->offset];
1469 slab_unlock(page);
1470 return object;
1471 }
1472
1473 /*
1474 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1475 * have the fastpath folded into their functions. So no function call
1476 * overhead for requests that can be satisfied on the fastpath.
1477 *
1478 * The fastpath works by first checking if the lockless freelist can be used.
1479 * If not then __slab_alloc is called for slow processing.
1480 *
1481 * Otherwise we can simply pick the next object from the lockless free list.
1482 */
1483 static void __always_inline *slab_alloc(struct kmem_cache *s,
1484 gfp_t gfpflags, int node, void *addr)
1485 {
1486 struct page *page;
1487 void **object;
1488 unsigned long flags;
1489
1490 local_irq_save(flags);
1491 page = s->cpu_slab[smp_processor_id()];
1492 if (unlikely(!page || !page->lockless_freelist ||
1493 (node != -1 && page_to_nid(page) != node)))
1494
1495 object = __slab_alloc(s, gfpflags, node, addr, page);
1496
1497 else {
1498 object = page->lockless_freelist;
1499 page->lockless_freelist = object[page->offset];
1500 }
1501 local_irq_restore(flags);
1502 return object;
1503 }
1504
1505 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1506 {
1507 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1508 }
1509 EXPORT_SYMBOL(kmem_cache_alloc);
1510
1511 #ifdef CONFIG_NUMA
1512 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1513 {
1514 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1515 }
1516 EXPORT_SYMBOL(kmem_cache_alloc_node);
1517 #endif
1518
1519 /*
1520 * Slow patch handling. This may still be called frequently since objects
1521 * have a longer lifetime than the cpu slabs in most processing loads.
1522 *
1523 * So we still attempt to reduce cache line usage. Just take the slab
1524 * lock and free the item. If there is no additional partial page
1525 * handling required then we can return immediately.
1526 */
1527 static void __slab_free(struct kmem_cache *s, struct page *page,
1528 void *x, void *addr)
1529 {
1530 void *prior;
1531 void **object = (void *)x;
1532
1533 slab_lock(page);
1534
1535 if (unlikely(SlabDebug(page)))
1536 goto debug;
1537 checks_ok:
1538 prior = object[page->offset] = page->freelist;
1539 page->freelist = object;
1540 page->inuse--;
1541
1542 if (unlikely(SlabFrozen(page)))
1543 goto out_unlock;
1544
1545 if (unlikely(!page->inuse))
1546 goto slab_empty;
1547
1548 /*
1549 * Objects left in the slab. If it
1550 * was not on the partial list before
1551 * then add it.
1552 */
1553 if (unlikely(!prior))
1554 add_partial(get_node(s, page_to_nid(page)), page);
1555
1556 out_unlock:
1557 slab_unlock(page);
1558 return;
1559
1560 slab_empty:
1561 if (prior)
1562 /*
1563 * Slab still on the partial list.
1564 */
1565 remove_partial(s, page);
1566
1567 slab_unlock(page);
1568 discard_slab(s, page);
1569 return;
1570
1571 debug:
1572 if (!free_debug_processing(s, page, x, addr))
1573 goto out_unlock;
1574 goto checks_ok;
1575 }
1576
1577 /*
1578 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1579 * can perform fastpath freeing without additional function calls.
1580 *
1581 * The fastpath is only possible if we are freeing to the current cpu slab
1582 * of this processor. This typically the case if we have just allocated
1583 * the item before.
1584 *
1585 * If fastpath is not possible then fall back to __slab_free where we deal
1586 * with all sorts of special processing.
1587 */
1588 static void __always_inline slab_free(struct kmem_cache *s,
1589 struct page *page, void *x, void *addr)
1590 {
1591 void **object = (void *)x;
1592 unsigned long flags;
1593
1594 local_irq_save(flags);
1595 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1596 !SlabDebug(page))) {
1597 object[page->offset] = page->lockless_freelist;
1598 page->lockless_freelist = object;
1599 } else
1600 __slab_free(s, page, x, addr);
1601
1602 local_irq_restore(flags);
1603 }
1604
1605 void kmem_cache_free(struct kmem_cache *s, void *x)
1606 {
1607 struct page *page;
1608
1609 page = virt_to_head_page(x);
1610
1611 slab_free(s, page, x, __builtin_return_address(0));
1612 }
1613 EXPORT_SYMBOL(kmem_cache_free);
1614
1615 /* Figure out on which slab object the object resides */
1616 static struct page *get_object_page(const void *x)
1617 {
1618 struct page *page = virt_to_head_page(x);
1619
1620 if (!PageSlab(page))
1621 return NULL;
1622
1623 return page;
1624 }
1625
1626 /*
1627 * Object placement in a slab is made very easy because we always start at
1628 * offset 0. If we tune the size of the object to the alignment then we can
1629 * get the required alignment by putting one properly sized object after
1630 * another.
1631 *
1632 * Notice that the allocation order determines the sizes of the per cpu
1633 * caches. Each processor has always one slab available for allocations.
1634 * Increasing the allocation order reduces the number of times that slabs
1635 * must be moved on and off the partial lists and is therefore a factor in
1636 * locking overhead.
1637 */
1638
1639 /*
1640 * Mininum / Maximum order of slab pages. This influences locking overhead
1641 * and slab fragmentation. A higher order reduces the number of partial slabs
1642 * and increases the number of allocations possible without having to
1643 * take the list_lock.
1644 */
1645 static int slub_min_order;
1646 static int slub_max_order = DEFAULT_MAX_ORDER;
1647 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1648
1649 /*
1650 * Merge control. If this is set then no merging of slab caches will occur.
1651 * (Could be removed. This was introduced to pacify the merge skeptics.)
1652 */
1653 static int slub_nomerge;
1654
1655 /*
1656 * Calculate the order of allocation given an slab object size.
1657 *
1658 * The order of allocation has significant impact on performance and other
1659 * system components. Generally order 0 allocations should be preferred since
1660 * order 0 does not cause fragmentation in the page allocator. Larger objects
1661 * be problematic to put into order 0 slabs because there may be too much
1662 * unused space left. We go to a higher order if more than 1/8th of the slab
1663 * would be wasted.
1664 *
1665 * In order to reach satisfactory performance we must ensure that a minimum
1666 * number of objects is in one slab. Otherwise we may generate too much
1667 * activity on the partial lists which requires taking the list_lock. This is
1668 * less a concern for large slabs though which are rarely used.
1669 *
1670 * slub_max_order specifies the order where we begin to stop considering the
1671 * number of objects in a slab as critical. If we reach slub_max_order then
1672 * we try to keep the page order as low as possible. So we accept more waste
1673 * of space in favor of a small page order.
1674 *
1675 * Higher order allocations also allow the placement of more objects in a
1676 * slab and thereby reduce object handling overhead. If the user has
1677 * requested a higher mininum order then we start with that one instead of
1678 * the smallest order which will fit the object.
1679 */
1680 static inline int slab_order(int size, int min_objects,
1681 int max_order, int fract_leftover)
1682 {
1683 int order;
1684 int rem;
1685
1686 for (order = max(slub_min_order,
1687 fls(min_objects * size - 1) - PAGE_SHIFT);
1688 order <= max_order; order++) {
1689
1690 unsigned long slab_size = PAGE_SIZE << order;
1691
1692 if (slab_size < min_objects * size)
1693 continue;
1694
1695 rem = slab_size % size;
1696
1697 if (rem <= slab_size / fract_leftover)
1698 break;
1699
1700 }
1701
1702 return order;
1703 }
1704
1705 static inline int calculate_order(int size)
1706 {
1707 int order;
1708 int min_objects;
1709 int fraction;
1710
1711 /*
1712 * Attempt to find best configuration for a slab. This
1713 * works by first attempting to generate a layout with
1714 * the best configuration and backing off gradually.
1715 *
1716 * First we reduce the acceptable waste in a slab. Then
1717 * we reduce the minimum objects required in a slab.
1718 */
1719 min_objects = slub_min_objects;
1720 while (min_objects > 1) {
1721 fraction = 8;
1722 while (fraction >= 4) {
1723 order = slab_order(size, min_objects,
1724 slub_max_order, fraction);
1725 if (order <= slub_max_order)
1726 return order;
1727 fraction /= 2;
1728 }
1729 min_objects /= 2;
1730 }
1731
1732 /*
1733 * We were unable to place multiple objects in a slab. Now
1734 * lets see if we can place a single object there.
1735 */
1736 order = slab_order(size, 1, slub_max_order, 1);
1737 if (order <= slub_max_order)
1738 return order;
1739
1740 /*
1741 * Doh this slab cannot be placed using slub_max_order.
1742 */
1743 order = slab_order(size, 1, MAX_ORDER, 1);
1744 if (order <= MAX_ORDER)
1745 return order;
1746 return -ENOSYS;
1747 }
1748
1749 /*
1750 * Figure out what the alignment of the objects will be.
1751 */
1752 static unsigned long calculate_alignment(unsigned long flags,
1753 unsigned long align, unsigned long size)
1754 {
1755 /*
1756 * If the user wants hardware cache aligned objects then
1757 * follow that suggestion if the object is sufficiently
1758 * large.
1759 *
1760 * The hardware cache alignment cannot override the
1761 * specified alignment though. If that is greater
1762 * then use it.
1763 */
1764 if ((flags & SLAB_HWCACHE_ALIGN) &&
1765 size > cache_line_size() / 2)
1766 return max_t(unsigned long, align, cache_line_size());
1767
1768 if (align < ARCH_SLAB_MINALIGN)
1769 return ARCH_SLAB_MINALIGN;
1770
1771 return ALIGN(align, sizeof(void *));
1772 }
1773
1774 static void init_kmem_cache_node(struct kmem_cache_node *n)
1775 {
1776 n->nr_partial = 0;
1777 atomic_long_set(&n->nr_slabs, 0);
1778 spin_lock_init(&n->list_lock);
1779 INIT_LIST_HEAD(&n->partial);
1780 INIT_LIST_HEAD(&n->full);
1781 }
1782
1783 #ifdef CONFIG_NUMA
1784 /*
1785 * No kmalloc_node yet so do it by hand. We know that this is the first
1786 * slab on the node for this slabcache. There are no concurrent accesses
1787 * possible.
1788 *
1789 * Note that this function only works on the kmalloc_node_cache
1790 * when allocating for the kmalloc_node_cache.
1791 */
1792 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1793 int node)
1794 {
1795 struct page *page;
1796 struct kmem_cache_node *n;
1797
1798 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1799
1800 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1801
1802 BUG_ON(!page);
1803 n = page->freelist;
1804 BUG_ON(!n);
1805 page->freelist = get_freepointer(kmalloc_caches, n);
1806 page->inuse++;
1807 kmalloc_caches->node[node] = n;
1808 setup_object_debug(kmalloc_caches, page, n);
1809 init_kmem_cache_node(n);
1810 atomic_long_inc(&n->nr_slabs);
1811 add_partial(n, page);
1812
1813 /*
1814 * new_slab() disables interupts. If we do not reenable interrupts here
1815 * then bootup would continue with interrupts disabled.
1816 */
1817 local_irq_enable();
1818 return n;
1819 }
1820
1821 static void free_kmem_cache_nodes(struct kmem_cache *s)
1822 {
1823 int node;
1824
1825 for_each_online_node(node) {
1826 struct kmem_cache_node *n = s->node[node];
1827 if (n && n != &s->local_node)
1828 kmem_cache_free(kmalloc_caches, n);
1829 s->node[node] = NULL;
1830 }
1831 }
1832
1833 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1834 {
1835 int node;
1836 int local_node;
1837
1838 if (slab_state >= UP)
1839 local_node = page_to_nid(virt_to_page(s));
1840 else
1841 local_node = 0;
1842
1843 for_each_online_node(node) {
1844 struct kmem_cache_node *n;
1845
1846 if (local_node == node)
1847 n = &s->local_node;
1848 else {
1849 if (slab_state == DOWN) {
1850 n = early_kmem_cache_node_alloc(gfpflags,
1851 node);
1852 continue;
1853 }
1854 n = kmem_cache_alloc_node(kmalloc_caches,
1855 gfpflags, node);
1856
1857 if (!n) {
1858 free_kmem_cache_nodes(s);
1859 return 0;
1860 }
1861
1862 }
1863 s->node[node] = n;
1864 init_kmem_cache_node(n);
1865 }
1866 return 1;
1867 }
1868 #else
1869 static void free_kmem_cache_nodes(struct kmem_cache *s)
1870 {
1871 }
1872
1873 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1874 {
1875 init_kmem_cache_node(&s->local_node);
1876 return 1;
1877 }
1878 #endif
1879
1880 /*
1881 * calculate_sizes() determines the order and the distribution of data within
1882 * a slab object.
1883 */
1884 static int calculate_sizes(struct kmem_cache *s)
1885 {
1886 unsigned long flags = s->flags;
1887 unsigned long size = s->objsize;
1888 unsigned long align = s->align;
1889
1890 /*
1891 * Determine if we can poison the object itself. If the user of
1892 * the slab may touch the object after free or before allocation
1893 * then we should never poison the object itself.
1894 */
1895 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1896 !s->ctor)
1897 s->flags |= __OBJECT_POISON;
1898 else
1899 s->flags &= ~__OBJECT_POISON;
1900
1901 /*
1902 * Round up object size to the next word boundary. We can only
1903 * place the free pointer at word boundaries and this determines
1904 * the possible location of the free pointer.
1905 */
1906 size = ALIGN(size, sizeof(void *));
1907
1908 #ifdef CONFIG_SLUB_DEBUG
1909 /*
1910 * If we are Redzoning then check if there is some space between the
1911 * end of the object and the free pointer. If not then add an
1912 * additional word to have some bytes to store Redzone information.
1913 */
1914 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1915 size += sizeof(void *);
1916 #endif
1917
1918 /*
1919 * With that we have determined the number of bytes in actual use
1920 * by the object. This is the potential offset to the free pointer.
1921 */
1922 s->inuse = size;
1923
1924 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1925 s->ctor)) {
1926 /*
1927 * Relocate free pointer after the object if it is not
1928 * permitted to overwrite the first word of the object on
1929 * kmem_cache_free.
1930 *
1931 * This is the case if we do RCU, have a constructor or
1932 * destructor or are poisoning the objects.
1933 */
1934 s->offset = size;
1935 size += sizeof(void *);
1936 }
1937
1938 #ifdef CONFIG_SLUB_DEBUG
1939 if (flags & SLAB_STORE_USER)
1940 /*
1941 * Need to store information about allocs and frees after
1942 * the object.
1943 */
1944 size += 2 * sizeof(struct track);
1945
1946 if (flags & SLAB_RED_ZONE)
1947 /*
1948 * Add some empty padding so that we can catch
1949 * overwrites from earlier objects rather than let
1950 * tracking information or the free pointer be
1951 * corrupted if an user writes before the start
1952 * of the object.
1953 */
1954 size += sizeof(void *);
1955 #endif
1956
1957 /*
1958 * Determine the alignment based on various parameters that the
1959 * user specified and the dynamic determination of cache line size
1960 * on bootup.
1961 */
1962 align = calculate_alignment(flags, align, s->objsize);
1963
1964 /*
1965 * SLUB stores one object immediately after another beginning from
1966 * offset 0. In order to align the objects we have to simply size
1967 * each object to conform to the alignment.
1968 */
1969 size = ALIGN(size, align);
1970 s->size = size;
1971
1972 s->order = calculate_order(size);
1973 if (s->order < 0)
1974 return 0;
1975
1976 /*
1977 * Determine the number of objects per slab
1978 */
1979 s->objects = (PAGE_SIZE << s->order) / size;
1980
1981 /*
1982 * Verify that the number of objects is within permitted limits.
1983 * The page->inuse field is only 16 bit wide! So we cannot have
1984 * more than 64k objects per slab.
1985 */
1986 if (!s->objects || s->objects > 65535)
1987 return 0;
1988 return 1;
1989
1990 }
1991
1992 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1993 const char *name, size_t size,
1994 size_t align, unsigned long flags,
1995 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1996 {
1997 memset(s, 0, kmem_size);
1998 s->name = name;
1999 s->ctor = ctor;
2000 s->objsize = size;
2001 s->flags = flags;
2002 s->align = align;
2003 kmem_cache_open_debug_check(s);
2004
2005 if (!calculate_sizes(s))
2006 goto error;
2007
2008 s->refcount = 1;
2009 #ifdef CONFIG_NUMA
2010 s->defrag_ratio = 100;
2011 #endif
2012
2013 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2014 return 1;
2015 error:
2016 if (flags & SLAB_PANIC)
2017 panic("Cannot create slab %s size=%lu realsize=%u "
2018 "order=%u offset=%u flags=%lx\n",
2019 s->name, (unsigned long)size, s->size, s->order,
2020 s->offset, flags);
2021 return 0;
2022 }
2023 EXPORT_SYMBOL(kmem_cache_open);
2024
2025 /*
2026 * Check if a given pointer is valid
2027 */
2028 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2029 {
2030 struct page * page;
2031
2032 page = get_object_page(object);
2033
2034 if (!page || s != page->slab)
2035 /* No slab or wrong slab */
2036 return 0;
2037
2038 if (!check_valid_pointer(s, page, object))
2039 return 0;
2040
2041 /*
2042 * We could also check if the object is on the slabs freelist.
2043 * But this would be too expensive and it seems that the main
2044 * purpose of kmem_ptr_valid is to check if the object belongs
2045 * to a certain slab.
2046 */
2047 return 1;
2048 }
2049 EXPORT_SYMBOL(kmem_ptr_validate);
2050
2051 /*
2052 * Determine the size of a slab object
2053 */
2054 unsigned int kmem_cache_size(struct kmem_cache *s)
2055 {
2056 return s->objsize;
2057 }
2058 EXPORT_SYMBOL(kmem_cache_size);
2059
2060 const char *kmem_cache_name(struct kmem_cache *s)
2061 {
2062 return s->name;
2063 }
2064 EXPORT_SYMBOL(kmem_cache_name);
2065
2066 /*
2067 * Attempt to free all slabs on a node. Return the number of slabs we
2068 * were unable to free.
2069 */
2070 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2071 struct list_head *list)
2072 {
2073 int slabs_inuse = 0;
2074 unsigned long flags;
2075 struct page *page, *h;
2076
2077 spin_lock_irqsave(&n->list_lock, flags);
2078 list_for_each_entry_safe(page, h, list, lru)
2079 if (!page->inuse) {
2080 list_del(&page->lru);
2081 discard_slab(s, page);
2082 } else
2083 slabs_inuse++;
2084 spin_unlock_irqrestore(&n->list_lock, flags);
2085 return slabs_inuse;
2086 }
2087
2088 /*
2089 * Release all resources used by a slab cache.
2090 */
2091 static int kmem_cache_close(struct kmem_cache *s)
2092 {
2093 int node;
2094
2095 flush_all(s);
2096
2097 /* Attempt to free all objects */
2098 for_each_online_node(node) {
2099 struct kmem_cache_node *n = get_node(s, node);
2100
2101 n->nr_partial -= free_list(s, n, &n->partial);
2102 if (atomic_long_read(&n->nr_slabs))
2103 return 1;
2104 }
2105 free_kmem_cache_nodes(s);
2106 return 0;
2107 }
2108
2109 /*
2110 * Close a cache and release the kmem_cache structure
2111 * (must be used for caches created using kmem_cache_create)
2112 */
2113 void kmem_cache_destroy(struct kmem_cache *s)
2114 {
2115 down_write(&slub_lock);
2116 s->refcount--;
2117 if (!s->refcount) {
2118 list_del(&s->list);
2119 if (kmem_cache_close(s))
2120 WARN_ON(1);
2121 sysfs_slab_remove(s);
2122 kfree(s);
2123 }
2124 up_write(&slub_lock);
2125 }
2126 EXPORT_SYMBOL(kmem_cache_destroy);
2127
2128 /********************************************************************
2129 * Kmalloc subsystem
2130 *******************************************************************/
2131
2132 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2133 EXPORT_SYMBOL(kmalloc_caches);
2134
2135 #ifdef CONFIG_ZONE_DMA
2136 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2137 #endif
2138
2139 static int __init setup_slub_min_order(char *str)
2140 {
2141 get_option (&str, &slub_min_order);
2142
2143 return 1;
2144 }
2145
2146 __setup("slub_min_order=", setup_slub_min_order);
2147
2148 static int __init setup_slub_max_order(char *str)
2149 {
2150 get_option (&str, &slub_max_order);
2151
2152 return 1;
2153 }
2154
2155 __setup("slub_max_order=", setup_slub_max_order);
2156
2157 static int __init setup_slub_min_objects(char *str)
2158 {
2159 get_option (&str, &slub_min_objects);
2160
2161 return 1;
2162 }
2163
2164 __setup("slub_min_objects=", setup_slub_min_objects);
2165
2166 static int __init setup_slub_nomerge(char *str)
2167 {
2168 slub_nomerge = 1;
2169 return 1;
2170 }
2171
2172 __setup("slub_nomerge", setup_slub_nomerge);
2173
2174 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2175 const char *name, int size, gfp_t gfp_flags)
2176 {
2177 unsigned int flags = 0;
2178
2179 if (gfp_flags & SLUB_DMA)
2180 flags = SLAB_CACHE_DMA;
2181
2182 down_write(&slub_lock);
2183 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2184 flags, NULL))
2185 goto panic;
2186
2187 list_add(&s->list, &slab_caches);
2188 up_write(&slub_lock);
2189 if (sysfs_slab_add(s))
2190 goto panic;
2191 return s;
2192
2193 panic:
2194 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2195 }
2196
2197 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2198 {
2199 int index = kmalloc_index(size);
2200
2201 if (!index)
2202 return NULL;
2203
2204 /* Allocation too large? */
2205 BUG_ON(index < 0);
2206
2207 #ifdef CONFIG_ZONE_DMA
2208 if ((flags & SLUB_DMA)) {
2209 struct kmem_cache *s;
2210 struct kmem_cache *x;
2211 char *text;
2212 size_t realsize;
2213
2214 s = kmalloc_caches_dma[index];
2215 if (s)
2216 return s;
2217
2218 /* Dynamically create dma cache */
2219 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2220 if (!x)
2221 panic("Unable to allocate memory for dma cache\n");
2222
2223 if (index <= KMALLOC_SHIFT_HIGH)
2224 realsize = 1 << index;
2225 else {
2226 if (index == 1)
2227 realsize = 96;
2228 else
2229 realsize = 192;
2230 }
2231
2232 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2233 (unsigned int)realsize);
2234 s = create_kmalloc_cache(x, text, realsize, flags);
2235 kmalloc_caches_dma[index] = s;
2236 return s;
2237 }
2238 #endif
2239 return &kmalloc_caches[index];
2240 }
2241
2242 void *__kmalloc(size_t size, gfp_t flags)
2243 {
2244 struct kmem_cache *s = get_slab(size, flags);
2245
2246 if (s)
2247 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2248 return ZERO_SIZE_PTR;
2249 }
2250 EXPORT_SYMBOL(__kmalloc);
2251
2252 #ifdef CONFIG_NUMA
2253 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2254 {
2255 struct kmem_cache *s = get_slab(size, flags);
2256
2257 if (s)
2258 return slab_alloc(s, flags, node, __builtin_return_address(0));
2259 return ZERO_SIZE_PTR;
2260 }
2261 EXPORT_SYMBOL(__kmalloc_node);
2262 #endif
2263
2264 size_t ksize(const void *object)
2265 {
2266 struct page *page;
2267 struct kmem_cache *s;
2268
2269 if (object == ZERO_SIZE_PTR)
2270 return 0;
2271
2272 page = get_object_page(object);
2273 BUG_ON(!page);
2274 s = page->slab;
2275 BUG_ON(!s);
2276
2277 /*
2278 * Debugging requires use of the padding between object
2279 * and whatever may come after it.
2280 */
2281 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2282 return s->objsize;
2283
2284 /*
2285 * If we have the need to store the freelist pointer
2286 * back there or track user information then we can
2287 * only use the space before that information.
2288 */
2289 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2290 return s->inuse;
2291
2292 /*
2293 * Else we can use all the padding etc for the allocation
2294 */
2295 return s->size;
2296 }
2297 EXPORT_SYMBOL(ksize);
2298
2299 void kfree(const void *x)
2300 {
2301 struct kmem_cache *s;
2302 struct page *page;
2303
2304 /*
2305 * This has to be an unsigned comparison. According to Linus
2306 * some gcc version treat a pointer as a signed entity. Then
2307 * this comparison would be true for all "negative" pointers
2308 * (which would cover the whole upper half of the address space).
2309 */
2310 if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
2311 return;
2312
2313 page = virt_to_head_page(x);
2314 s = page->slab;
2315
2316 slab_free(s, page, (void *)x, __builtin_return_address(0));
2317 }
2318 EXPORT_SYMBOL(kfree);
2319
2320 /*
2321 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2322 * the remaining slabs by the number of items in use. The slabs with the
2323 * most items in use come first. New allocations will then fill those up
2324 * and thus they can be removed from the partial lists.
2325 *
2326 * The slabs with the least items are placed last. This results in them
2327 * being allocated from last increasing the chance that the last objects
2328 * are freed in them.
2329 */
2330 int kmem_cache_shrink(struct kmem_cache *s)
2331 {
2332 int node;
2333 int i;
2334 struct kmem_cache_node *n;
2335 struct page *page;
2336 struct page *t;
2337 struct list_head *slabs_by_inuse =
2338 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2339 unsigned long flags;
2340
2341 if (!slabs_by_inuse)
2342 return -ENOMEM;
2343
2344 flush_all(s);
2345 for_each_online_node(node) {
2346 n = get_node(s, node);
2347
2348 if (!n->nr_partial)
2349 continue;
2350
2351 for (i = 0; i < s->objects; i++)
2352 INIT_LIST_HEAD(slabs_by_inuse + i);
2353
2354 spin_lock_irqsave(&n->list_lock, flags);
2355
2356 /*
2357 * Build lists indexed by the items in use in each slab.
2358 *
2359 * Note that concurrent frees may occur while we hold the
2360 * list_lock. page->inuse here is the upper limit.
2361 */
2362 list_for_each_entry_safe(page, t, &n->partial, lru) {
2363 if (!page->inuse && slab_trylock(page)) {
2364 /*
2365 * Must hold slab lock here because slab_free
2366 * may have freed the last object and be
2367 * waiting to release the slab.
2368 */
2369 list_del(&page->lru);
2370 n->nr_partial--;
2371 slab_unlock(page);
2372 discard_slab(s, page);
2373 } else {
2374 if (n->nr_partial > MAX_PARTIAL)
2375 list_move(&page->lru,
2376 slabs_by_inuse + page->inuse);
2377 }
2378 }
2379
2380 if (n->nr_partial <= MAX_PARTIAL)
2381 goto out;
2382
2383 /*
2384 * Rebuild the partial list with the slabs filled up most
2385 * first and the least used slabs at the end.
2386 */
2387 for (i = s->objects - 1; i >= 0; i--)
2388 list_splice(slabs_by_inuse + i, n->partial.prev);
2389
2390 out:
2391 spin_unlock_irqrestore(&n->list_lock, flags);
2392 }
2393
2394 kfree(slabs_by_inuse);
2395 return 0;
2396 }
2397 EXPORT_SYMBOL(kmem_cache_shrink);
2398
2399 /**
2400 * krealloc - reallocate memory. The contents will remain unchanged.
2401 * @p: object to reallocate memory for.
2402 * @new_size: how many bytes of memory are required.
2403 * @flags: the type of memory to allocate.
2404 *
2405 * The contents of the object pointed to are preserved up to the
2406 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2407 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2408 * %NULL pointer, the object pointed to is freed.
2409 */
2410 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2411 {
2412 void *ret;
2413 size_t ks;
2414
2415 if (unlikely(!p || p == ZERO_SIZE_PTR))
2416 return kmalloc(new_size, flags);
2417
2418 if (unlikely(!new_size)) {
2419 kfree(p);
2420 return ZERO_SIZE_PTR;
2421 }
2422
2423 ks = ksize(p);
2424 if (ks >= new_size)
2425 return (void *)p;
2426
2427 ret = kmalloc(new_size, flags);
2428 if (ret) {
2429 memcpy(ret, p, min(new_size, ks));
2430 kfree(p);
2431 }
2432 return ret;
2433 }
2434 EXPORT_SYMBOL(krealloc);
2435
2436 /********************************************************************
2437 * Basic setup of slabs
2438 *******************************************************************/
2439
2440 void __init kmem_cache_init(void)
2441 {
2442 int i;
2443 int caches = 0;
2444
2445 #ifdef CONFIG_NUMA
2446 /*
2447 * Must first have the slab cache available for the allocations of the
2448 * struct kmem_cache_node's. There is special bootstrap code in
2449 * kmem_cache_open for slab_state == DOWN.
2450 */
2451 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2452 sizeof(struct kmem_cache_node), GFP_KERNEL);
2453 kmalloc_caches[0].refcount = -1;
2454 caches++;
2455 #endif
2456
2457 /* Able to allocate the per node structures */
2458 slab_state = PARTIAL;
2459
2460 /* Caches that are not of the two-to-the-power-of size */
2461 if (KMALLOC_MIN_SIZE <= 64) {
2462 create_kmalloc_cache(&kmalloc_caches[1],
2463 "kmalloc-96", 96, GFP_KERNEL);
2464 caches++;
2465 }
2466 if (KMALLOC_MIN_SIZE <= 128) {
2467 create_kmalloc_cache(&kmalloc_caches[2],
2468 "kmalloc-192", 192, GFP_KERNEL);
2469 caches++;
2470 }
2471
2472 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
2473 create_kmalloc_cache(&kmalloc_caches[i],
2474 "kmalloc", 1 << i, GFP_KERNEL);
2475 caches++;
2476 }
2477
2478 slab_state = UP;
2479
2480 /* Provide the correct kmalloc names now that the caches are up */
2481 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2482 kmalloc_caches[i]. name =
2483 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2484
2485 #ifdef CONFIG_SMP
2486 register_cpu_notifier(&slab_notifier);
2487 #endif
2488
2489 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2490 nr_cpu_ids * sizeof(struct page *);
2491
2492 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2493 " CPUs=%d, Nodes=%d\n",
2494 caches, cache_line_size(),
2495 slub_min_order, slub_max_order, slub_min_objects,
2496 nr_cpu_ids, nr_node_ids);
2497 }
2498
2499 /*
2500 * Find a mergeable slab cache
2501 */
2502 static int slab_unmergeable(struct kmem_cache *s)
2503 {
2504 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2505 return 1;
2506
2507 if (s->ctor)
2508 return 1;
2509
2510 /*
2511 * We may have set a slab to be unmergeable during bootstrap.
2512 */
2513 if (s->refcount < 0)
2514 return 1;
2515
2516 return 0;
2517 }
2518
2519 static struct kmem_cache *find_mergeable(size_t size,
2520 size_t align, unsigned long flags,
2521 void (*ctor)(void *, struct kmem_cache *, unsigned long))
2522 {
2523 struct list_head *h;
2524
2525 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2526 return NULL;
2527
2528 if (ctor)
2529 return NULL;
2530
2531 size = ALIGN(size, sizeof(void *));
2532 align = calculate_alignment(flags, align, size);
2533 size = ALIGN(size, align);
2534
2535 list_for_each(h, &slab_caches) {
2536 struct kmem_cache *s =
2537 container_of(h, struct kmem_cache, list);
2538
2539 if (slab_unmergeable(s))
2540 continue;
2541
2542 if (size > s->size)
2543 continue;
2544
2545 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2546 (s->flags & SLUB_MERGE_SAME))
2547 continue;
2548 /*
2549 * Check if alignment is compatible.
2550 * Courtesy of Adrian Drzewiecki
2551 */
2552 if ((s->size & ~(align -1)) != s->size)
2553 continue;
2554
2555 if (s->size - size >= sizeof(void *))
2556 continue;
2557
2558 return s;
2559 }
2560 return NULL;
2561 }
2562
2563 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2564 size_t align, unsigned long flags,
2565 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2566 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2567 {
2568 struct kmem_cache *s;
2569
2570 BUG_ON(dtor);
2571 down_write(&slub_lock);
2572 s = find_mergeable(size, align, flags, ctor);
2573 if (s) {
2574 s->refcount++;
2575 /*
2576 * Adjust the object sizes so that we clear
2577 * the complete object on kzalloc.
2578 */
2579 s->objsize = max(s->objsize, (int)size);
2580 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2581 if (sysfs_slab_alias(s, name))
2582 goto err;
2583 } else {
2584 s = kmalloc(kmem_size, GFP_KERNEL);
2585 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2586 size, align, flags, ctor)) {
2587 if (sysfs_slab_add(s)) {
2588 kfree(s);
2589 goto err;
2590 }
2591 list_add(&s->list, &slab_caches);
2592 } else
2593 kfree(s);
2594 }
2595 up_write(&slub_lock);
2596 return s;
2597
2598 err:
2599 up_write(&slub_lock);
2600 if (flags & SLAB_PANIC)
2601 panic("Cannot create slabcache %s\n", name);
2602 else
2603 s = NULL;
2604 return s;
2605 }
2606 EXPORT_SYMBOL(kmem_cache_create);
2607
2608 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2609 {
2610 void *x;
2611
2612 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2613 if (x)
2614 memset(x, 0, s->objsize);
2615 return x;
2616 }
2617 EXPORT_SYMBOL(kmem_cache_zalloc);
2618
2619 #ifdef CONFIG_SMP
2620 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2621 {
2622 struct list_head *h;
2623
2624 down_read(&slub_lock);
2625 list_for_each(h, &slab_caches) {
2626 struct kmem_cache *s =
2627 container_of(h, struct kmem_cache, list);
2628
2629 func(s, cpu);
2630 }
2631 up_read(&slub_lock);
2632 }
2633
2634 /*
2635 * Version of __flush_cpu_slab for the case that interrupts
2636 * are enabled.
2637 */
2638 static void cpu_slab_flush(struct kmem_cache *s, int cpu)
2639 {
2640 unsigned long flags;
2641
2642 local_irq_save(flags);
2643 __flush_cpu_slab(s, cpu);
2644 local_irq_restore(flags);
2645 }
2646
2647 /*
2648 * Use the cpu notifier to insure that the cpu slabs are flushed when
2649 * necessary.
2650 */
2651 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2652 unsigned long action, void *hcpu)
2653 {
2654 long cpu = (long)hcpu;
2655
2656 switch (action) {
2657 case CPU_UP_CANCELED:
2658 case CPU_UP_CANCELED_FROZEN:
2659 case CPU_DEAD:
2660 case CPU_DEAD_FROZEN:
2661 for_all_slabs(cpu_slab_flush, cpu);
2662 break;
2663 default:
2664 break;
2665 }
2666 return NOTIFY_OK;
2667 }
2668
2669 static struct notifier_block __cpuinitdata slab_notifier =
2670 { &slab_cpuup_callback, NULL, 0 };
2671
2672 #endif
2673
2674 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2675 {
2676 struct kmem_cache *s = get_slab(size, gfpflags);
2677
2678 if (!s)
2679 return ZERO_SIZE_PTR;
2680
2681 return slab_alloc(s, gfpflags, -1, caller);
2682 }
2683
2684 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2685 int node, void *caller)
2686 {
2687 struct kmem_cache *s = get_slab(size, gfpflags);
2688
2689 if (!s)
2690 return ZERO_SIZE_PTR;
2691
2692 return slab_alloc(s, gfpflags, node, caller);
2693 }
2694
2695 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2696 static int validate_slab(struct kmem_cache *s, struct page *page)
2697 {
2698 void *p;
2699 void *addr = page_address(page);
2700 DECLARE_BITMAP(map, s->objects);
2701
2702 if (!check_slab(s, page) ||
2703 !on_freelist(s, page, NULL))
2704 return 0;
2705
2706 /* Now we know that a valid freelist exists */
2707 bitmap_zero(map, s->objects);
2708
2709 for_each_free_object(p, s, page->freelist) {
2710 set_bit(slab_index(p, s, addr), map);
2711 if (!check_object(s, page, p, 0))
2712 return 0;
2713 }
2714
2715 for_each_object(p, s, addr)
2716 if (!test_bit(slab_index(p, s, addr), map))
2717 if (!check_object(s, page, p, 1))
2718 return 0;
2719 return 1;
2720 }
2721
2722 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2723 {
2724 if (slab_trylock(page)) {
2725 validate_slab(s, page);
2726 slab_unlock(page);
2727 } else
2728 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2729 s->name, page);
2730
2731 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2732 if (!SlabDebug(page))
2733 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2734 "on slab 0x%p\n", s->name, page);
2735 } else {
2736 if (SlabDebug(page))
2737 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2738 "slab 0x%p\n", s->name, page);
2739 }
2740 }
2741
2742 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2743 {
2744 unsigned long count = 0;
2745 struct page *page;
2746 unsigned long flags;
2747
2748 spin_lock_irqsave(&n->list_lock, flags);
2749
2750 list_for_each_entry(page, &n->partial, lru) {
2751 validate_slab_slab(s, page);
2752 count++;
2753 }
2754 if (count != n->nr_partial)
2755 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2756 "counter=%ld\n", s->name, count, n->nr_partial);
2757
2758 if (!(s->flags & SLAB_STORE_USER))
2759 goto out;
2760
2761 list_for_each_entry(page, &n->full, lru) {
2762 validate_slab_slab(s, page);
2763 count++;
2764 }
2765 if (count != atomic_long_read(&n->nr_slabs))
2766 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2767 "counter=%ld\n", s->name, count,
2768 atomic_long_read(&n->nr_slabs));
2769
2770 out:
2771 spin_unlock_irqrestore(&n->list_lock, flags);
2772 return count;
2773 }
2774
2775 static unsigned long validate_slab_cache(struct kmem_cache *s)
2776 {
2777 int node;
2778 unsigned long count = 0;
2779
2780 flush_all(s);
2781 for_each_online_node(node) {
2782 struct kmem_cache_node *n = get_node(s, node);
2783
2784 count += validate_slab_node(s, n);
2785 }
2786 return count;
2787 }
2788
2789 #ifdef SLUB_RESILIENCY_TEST
2790 static void resiliency_test(void)
2791 {
2792 u8 *p;
2793
2794 printk(KERN_ERR "SLUB resiliency testing\n");
2795 printk(KERN_ERR "-----------------------\n");
2796 printk(KERN_ERR "A. Corruption after allocation\n");
2797
2798 p = kzalloc(16, GFP_KERNEL);
2799 p[16] = 0x12;
2800 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2801 " 0x12->0x%p\n\n", p + 16);
2802
2803 validate_slab_cache(kmalloc_caches + 4);
2804
2805 /* Hmmm... The next two are dangerous */
2806 p = kzalloc(32, GFP_KERNEL);
2807 p[32 + sizeof(void *)] = 0x34;
2808 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2809 " 0x34 -> -0x%p\n", p);
2810 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2811
2812 validate_slab_cache(kmalloc_caches + 5);
2813 p = kzalloc(64, GFP_KERNEL);
2814 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2815 *p = 0x56;
2816 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2817 p);
2818 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2819 validate_slab_cache(kmalloc_caches + 6);
2820
2821 printk(KERN_ERR "\nB. Corruption after free\n");
2822 p = kzalloc(128, GFP_KERNEL);
2823 kfree(p);
2824 *p = 0x78;
2825 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2826 validate_slab_cache(kmalloc_caches + 7);
2827
2828 p = kzalloc(256, GFP_KERNEL);
2829 kfree(p);
2830 p[50] = 0x9a;
2831 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2832 validate_slab_cache(kmalloc_caches + 8);
2833
2834 p = kzalloc(512, GFP_KERNEL);
2835 kfree(p);
2836 p[512] = 0xab;
2837 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2838 validate_slab_cache(kmalloc_caches + 9);
2839 }
2840 #else
2841 static void resiliency_test(void) {};
2842 #endif
2843
2844 /*
2845 * Generate lists of code addresses where slabcache objects are allocated
2846 * and freed.
2847 */
2848
2849 struct location {
2850 unsigned long count;
2851 void *addr;
2852 long long sum_time;
2853 long min_time;
2854 long max_time;
2855 long min_pid;
2856 long max_pid;
2857 cpumask_t cpus;
2858 nodemask_t nodes;
2859 };
2860
2861 struct loc_track {
2862 unsigned long max;
2863 unsigned long count;
2864 struct location *loc;
2865 };
2866
2867 static void free_loc_track(struct loc_track *t)
2868 {
2869 if (t->max)
2870 free_pages((unsigned long)t->loc,
2871 get_order(sizeof(struct location) * t->max));
2872 }
2873
2874 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2875 {
2876 struct location *l;
2877 int order;
2878
2879 if (!max)
2880 max = PAGE_SIZE / sizeof(struct location);
2881
2882 order = get_order(sizeof(struct location) * max);
2883
2884 l = (void *)__get_free_pages(GFP_ATOMIC, order);
2885
2886 if (!l)
2887 return 0;
2888
2889 if (t->count) {
2890 memcpy(l, t->loc, sizeof(struct location) * t->count);
2891 free_loc_track(t);
2892 }
2893 t->max = max;
2894 t->loc = l;
2895 return 1;
2896 }
2897
2898 static int add_location(struct loc_track *t, struct kmem_cache *s,
2899 const struct track *track)
2900 {
2901 long start, end, pos;
2902 struct location *l;
2903 void *caddr;
2904 unsigned long age = jiffies - track->when;
2905
2906 start = -1;
2907 end = t->count;
2908
2909 for ( ; ; ) {
2910 pos = start + (end - start + 1) / 2;
2911
2912 /*
2913 * There is nothing at "end". If we end up there
2914 * we need to add something to before end.
2915 */
2916 if (pos == end)
2917 break;
2918
2919 caddr = t->loc[pos].addr;
2920 if (track->addr == caddr) {
2921
2922 l = &t->loc[pos];
2923 l->count++;
2924 if (track->when) {
2925 l->sum_time += age;
2926 if (age < l->min_time)
2927 l->min_time = age;
2928 if (age > l->max_time)
2929 l->max_time = age;
2930
2931 if (track->pid < l->min_pid)
2932 l->min_pid = track->pid;
2933 if (track->pid > l->max_pid)
2934 l->max_pid = track->pid;
2935
2936 cpu_set(track->cpu, l->cpus);
2937 }
2938 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2939 return 1;
2940 }
2941
2942 if (track->addr < caddr)
2943 end = pos;
2944 else
2945 start = pos;
2946 }
2947
2948 /*
2949 * Not found. Insert new tracking element.
2950 */
2951 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2952 return 0;
2953
2954 l = t->loc + pos;
2955 if (pos < t->count)
2956 memmove(l + 1, l,
2957 (t->count - pos) * sizeof(struct location));
2958 t->count++;
2959 l->count = 1;
2960 l->addr = track->addr;
2961 l->sum_time = age;
2962 l->min_time = age;
2963 l->max_time = age;
2964 l->min_pid = track->pid;
2965 l->max_pid = track->pid;
2966 cpus_clear(l->cpus);
2967 cpu_set(track->cpu, l->cpus);
2968 nodes_clear(l->nodes);
2969 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2970 return 1;
2971 }
2972
2973 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2974 struct page *page, enum track_item alloc)
2975 {
2976 void *addr = page_address(page);
2977 DECLARE_BITMAP(map, s->objects);
2978 void *p;
2979
2980 bitmap_zero(map, s->objects);
2981 for_each_free_object(p, s, page->freelist)
2982 set_bit(slab_index(p, s, addr), map);
2983
2984 for_each_object(p, s, addr)
2985 if (!test_bit(slab_index(p, s, addr), map))
2986 add_location(t, s, get_track(s, p, alloc));
2987 }
2988
2989 static int list_locations(struct kmem_cache *s, char *buf,
2990 enum track_item alloc)
2991 {
2992 int n = 0;
2993 unsigned long i;
2994 struct loc_track t;
2995 int node;
2996
2997 t.count = 0;
2998 t.max = 0;
2999
3000 /* Push back cpu slabs */
3001 flush_all(s);
3002
3003 for_each_online_node(node) {
3004 struct kmem_cache_node *n = get_node(s, node);
3005 unsigned long flags;
3006 struct page *page;
3007
3008 if (!atomic_read(&n->nr_slabs))
3009 continue;
3010
3011 spin_lock_irqsave(&n->list_lock, flags);
3012 list_for_each_entry(page, &n->partial, lru)
3013 process_slab(&t, s, page, alloc);
3014 list_for_each_entry(page, &n->full, lru)
3015 process_slab(&t, s, page, alloc);
3016 spin_unlock_irqrestore(&n->list_lock, flags);
3017 }
3018
3019 for (i = 0; i < t.count; i++) {
3020 struct location *l = &t.loc[i];
3021
3022 if (n > PAGE_SIZE - 100)
3023 break;
3024 n += sprintf(buf + n, "%7ld ", l->count);
3025
3026 if (l->addr)
3027 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3028 else
3029 n += sprintf(buf + n, "<not-available>");
3030
3031 if (l->sum_time != l->min_time) {
3032 unsigned long remainder;
3033
3034 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3035 l->min_time,
3036 div_long_long_rem(l->sum_time, l->count, &remainder),
3037 l->max_time);
3038 } else
3039 n += sprintf(buf + n, " age=%ld",
3040 l->min_time);
3041
3042 if (l->min_pid != l->max_pid)
3043 n += sprintf(buf + n, " pid=%ld-%ld",
3044 l->min_pid, l->max_pid);
3045 else
3046 n += sprintf(buf + n, " pid=%ld",
3047 l->min_pid);
3048
3049 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3050 n < PAGE_SIZE - 60) {
3051 n += sprintf(buf + n, " cpus=");
3052 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3053 l->cpus);
3054 }
3055
3056 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3057 n < PAGE_SIZE - 60) {
3058 n += sprintf(buf + n, " nodes=");
3059 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3060 l->nodes);
3061 }
3062
3063 n += sprintf(buf + n, "\n");
3064 }
3065
3066 free_loc_track(&t);
3067 if (!t.count)
3068 n += sprintf(buf, "No data\n");
3069 return n;
3070 }
3071
3072 static unsigned long count_partial(struct kmem_cache_node *n)
3073 {
3074 unsigned long flags;
3075 unsigned long x = 0;
3076 struct page *page;
3077
3078 spin_lock_irqsave(&n->list_lock, flags);
3079 list_for_each_entry(page, &n->partial, lru)
3080 x += page->inuse;
3081 spin_unlock_irqrestore(&n->list_lock, flags);
3082 return x;
3083 }
3084
3085 enum slab_stat_type {
3086 SL_FULL,
3087 SL_PARTIAL,
3088 SL_CPU,
3089 SL_OBJECTS
3090 };
3091
3092 #define SO_FULL (1 << SL_FULL)
3093 #define SO_PARTIAL (1 << SL_PARTIAL)
3094 #define SO_CPU (1 << SL_CPU)
3095 #define SO_OBJECTS (1 << SL_OBJECTS)
3096
3097 static unsigned long slab_objects(struct kmem_cache *s,
3098 char *buf, unsigned long flags)
3099 {
3100 unsigned long total = 0;
3101 int cpu;
3102 int node;
3103 int x;
3104 unsigned long *nodes;
3105 unsigned long *per_cpu;
3106
3107 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3108 per_cpu = nodes + nr_node_ids;
3109
3110 for_each_possible_cpu(cpu) {
3111 struct page *page = s->cpu_slab[cpu];
3112 int node;
3113
3114 if (page) {
3115 node = page_to_nid(page);
3116 if (flags & SO_CPU) {
3117 int x = 0;
3118
3119 if (flags & SO_OBJECTS)
3120 x = page->inuse;
3121 else
3122 x = 1;
3123 total += x;
3124 nodes[node] += x;
3125 }
3126 per_cpu[node]++;
3127 }
3128 }
3129
3130 for_each_online_node(node) {
3131 struct kmem_cache_node *n = get_node(s, node);
3132
3133 if (flags & SO_PARTIAL) {
3134 if (flags & SO_OBJECTS)
3135 x = count_partial(n);
3136 else
3137 x = n->nr_partial;
3138 total += x;
3139 nodes[node] += x;
3140 }
3141
3142 if (flags & SO_FULL) {
3143 int full_slabs = atomic_read(&n->nr_slabs)
3144 - per_cpu[node]
3145 - n->nr_partial;
3146
3147 if (flags & SO_OBJECTS)
3148 x = full_slabs * s->objects;
3149 else
3150 x = full_slabs;
3151 total += x;
3152 nodes[node] += x;
3153 }
3154 }
3155
3156 x = sprintf(buf, "%lu", total);
3157 #ifdef CONFIG_NUMA
3158 for_each_online_node(node)
3159 if (nodes[node])
3160 x += sprintf(buf + x, " N%d=%lu",
3161 node, nodes[node]);
3162 #endif
3163 kfree(nodes);
3164 return x + sprintf(buf + x, "\n");
3165 }
3166
3167 static int any_slab_objects(struct kmem_cache *s)
3168 {
3169 int node;
3170 int cpu;
3171
3172 for_each_possible_cpu(cpu)
3173 if (s->cpu_slab[cpu])
3174 return 1;
3175
3176 for_each_node(node) {
3177 struct kmem_cache_node *n = get_node(s, node);
3178
3179 if (n->nr_partial || atomic_read(&n->nr_slabs))
3180 return 1;
3181 }
3182 return 0;
3183 }
3184
3185 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3186 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3187
3188 struct slab_attribute {
3189 struct attribute attr;
3190 ssize_t (*show)(struct kmem_cache *s, char *buf);
3191 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3192 };
3193
3194 #define SLAB_ATTR_RO(_name) \
3195 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3196
3197 #define SLAB_ATTR(_name) \
3198 static struct slab_attribute _name##_attr = \
3199 __ATTR(_name, 0644, _name##_show, _name##_store)
3200
3201 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3202 {
3203 return sprintf(buf, "%d\n", s->size);
3204 }
3205 SLAB_ATTR_RO(slab_size);
3206
3207 static ssize_t align_show(struct kmem_cache *s, char *buf)
3208 {
3209 return sprintf(buf, "%d\n", s->align);
3210 }
3211 SLAB_ATTR_RO(align);
3212
3213 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3214 {
3215 return sprintf(buf, "%d\n", s->objsize);
3216 }
3217 SLAB_ATTR_RO(object_size);
3218
3219 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3220 {
3221 return sprintf(buf, "%d\n", s->objects);
3222 }
3223 SLAB_ATTR_RO(objs_per_slab);
3224
3225 static ssize_t order_show(struct kmem_cache *s, char *buf)
3226 {
3227 return sprintf(buf, "%d\n", s->order);
3228 }
3229 SLAB_ATTR_RO(order);
3230
3231 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3232 {
3233 if (s->ctor) {
3234 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3235
3236 return n + sprintf(buf + n, "\n");
3237 }
3238 return 0;
3239 }
3240 SLAB_ATTR_RO(ctor);
3241
3242 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3243 {
3244 return sprintf(buf, "%d\n", s->refcount - 1);
3245 }
3246 SLAB_ATTR_RO(aliases);
3247
3248 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3249 {
3250 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3251 }
3252 SLAB_ATTR_RO(slabs);
3253
3254 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3255 {
3256 return slab_objects(s, buf, SO_PARTIAL);
3257 }
3258 SLAB_ATTR_RO(partial);
3259
3260 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3261 {
3262 return slab_objects(s, buf, SO_CPU);
3263 }
3264 SLAB_ATTR_RO(cpu_slabs);
3265
3266 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3267 {
3268 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3269 }
3270 SLAB_ATTR_RO(objects);
3271
3272 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3273 {
3274 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3275 }
3276
3277 static ssize_t sanity_checks_store(struct kmem_cache *s,
3278 const char *buf, size_t length)
3279 {
3280 s->flags &= ~SLAB_DEBUG_FREE;
3281 if (buf[0] == '1')
3282 s->flags |= SLAB_DEBUG_FREE;
3283 return length;
3284 }
3285 SLAB_ATTR(sanity_checks);
3286
3287 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3288 {
3289 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3290 }
3291
3292 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3293 size_t length)
3294 {
3295 s->flags &= ~SLAB_TRACE;
3296 if (buf[0] == '1')
3297 s->flags |= SLAB_TRACE;
3298 return length;
3299 }
3300 SLAB_ATTR(trace);
3301
3302 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3303 {
3304 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3305 }
3306
3307 static ssize_t reclaim_account_store(struct kmem_cache *s,
3308 const char *buf, size_t length)
3309 {
3310 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3311 if (buf[0] == '1')
3312 s->flags |= SLAB_RECLAIM_ACCOUNT;
3313 return length;
3314 }
3315 SLAB_ATTR(reclaim_account);
3316
3317 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3318 {
3319 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3320 }
3321 SLAB_ATTR_RO(hwcache_align);
3322
3323 #ifdef CONFIG_ZONE_DMA
3324 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3325 {
3326 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3327 }
3328 SLAB_ATTR_RO(cache_dma);
3329 #endif
3330
3331 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3332 {
3333 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3334 }
3335 SLAB_ATTR_RO(destroy_by_rcu);
3336
3337 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3338 {
3339 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3340 }
3341
3342 static ssize_t red_zone_store(struct kmem_cache *s,
3343 const char *buf, size_t length)
3344 {
3345 if (any_slab_objects(s))
3346 return -EBUSY;
3347
3348 s->flags &= ~SLAB_RED_ZONE;
3349 if (buf[0] == '1')
3350 s->flags |= SLAB_RED_ZONE;
3351 calculate_sizes(s);
3352 return length;
3353 }
3354 SLAB_ATTR(red_zone);
3355
3356 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3357 {
3358 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3359 }
3360
3361 static ssize_t poison_store(struct kmem_cache *s,
3362 const char *buf, size_t length)
3363 {
3364 if (any_slab_objects(s))
3365 return -EBUSY;
3366
3367 s->flags &= ~SLAB_POISON;
3368 if (buf[0] == '1')
3369 s->flags |= SLAB_POISON;
3370 calculate_sizes(s);
3371 return length;
3372 }
3373 SLAB_ATTR(poison);
3374
3375 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3376 {
3377 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3378 }
3379
3380 static ssize_t store_user_store(struct kmem_cache *s,
3381 const char *buf, size_t length)
3382 {
3383 if (any_slab_objects(s))
3384 return -EBUSY;
3385
3386 s->flags &= ~SLAB_STORE_USER;
3387 if (buf[0] == '1')
3388 s->flags |= SLAB_STORE_USER;
3389 calculate_sizes(s);
3390 return length;
3391 }
3392 SLAB_ATTR(store_user);
3393
3394 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3395 {
3396 return 0;
3397 }
3398
3399 static ssize_t validate_store(struct kmem_cache *s,
3400 const char *buf, size_t length)
3401 {
3402 if (buf[0] == '1')
3403 validate_slab_cache(s);
3404 else
3405 return -EINVAL;
3406 return length;
3407 }
3408 SLAB_ATTR(validate);
3409
3410 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3411 {
3412 return 0;
3413 }
3414
3415 static ssize_t shrink_store(struct kmem_cache *s,
3416 const char *buf, size_t length)
3417 {
3418 if (buf[0] == '1') {
3419 int rc = kmem_cache_shrink(s);
3420
3421 if (rc)
3422 return rc;
3423 } else
3424 return -EINVAL;
3425 return length;
3426 }
3427 SLAB_ATTR(shrink);
3428
3429 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3430 {
3431 if (!(s->flags & SLAB_STORE_USER))
3432 return -ENOSYS;
3433 return list_locations(s, buf, TRACK_ALLOC);
3434 }
3435 SLAB_ATTR_RO(alloc_calls);
3436
3437 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3438 {
3439 if (!(s->flags & SLAB_STORE_USER))
3440 return -ENOSYS;
3441 return list_locations(s, buf, TRACK_FREE);
3442 }
3443 SLAB_ATTR_RO(free_calls);
3444
3445 #ifdef CONFIG_NUMA
3446 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3447 {
3448 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3449 }
3450
3451 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3452 const char *buf, size_t length)
3453 {
3454 int n = simple_strtoul(buf, NULL, 10);
3455
3456 if (n < 100)
3457 s->defrag_ratio = n * 10;
3458 return length;
3459 }
3460 SLAB_ATTR(defrag_ratio);
3461 #endif
3462
3463 static struct attribute * slab_attrs[] = {
3464 &slab_size_attr.attr,
3465 &object_size_attr.attr,
3466 &objs_per_slab_attr.attr,
3467 &order_attr.attr,
3468 &objects_attr.attr,
3469 &slabs_attr.attr,
3470 &partial_attr.attr,
3471 &cpu_slabs_attr.attr,
3472 &ctor_attr.attr,
3473 &aliases_attr.attr,
3474 &align_attr.attr,
3475 &sanity_checks_attr.attr,
3476 &trace_attr.attr,
3477 &hwcache_align_attr.attr,
3478 &reclaim_account_attr.attr,
3479 &destroy_by_rcu_attr.attr,
3480 &red_zone_attr.attr,
3481 &poison_attr.attr,
3482 &store_user_attr.attr,
3483 &validate_attr.attr,
3484 &shrink_attr.attr,
3485 &alloc_calls_attr.attr,
3486 &free_calls_attr.attr,
3487 #ifdef CONFIG_ZONE_DMA
3488 &cache_dma_attr.attr,
3489 #endif
3490 #ifdef CONFIG_NUMA
3491 &defrag_ratio_attr.attr,
3492 #endif
3493 NULL
3494 };
3495
3496 static struct attribute_group slab_attr_group = {
3497 .attrs = slab_attrs,
3498 };
3499
3500 static ssize_t slab_attr_show(struct kobject *kobj,
3501 struct attribute *attr,
3502 char *buf)
3503 {
3504 struct slab_attribute *attribute;
3505 struct kmem_cache *s;
3506 int err;
3507
3508 attribute = to_slab_attr(attr);
3509 s = to_slab(kobj);
3510
3511 if (!attribute->show)
3512 return -EIO;
3513
3514 err = attribute->show(s, buf);
3515
3516 return err;
3517 }
3518
3519 static ssize_t slab_attr_store(struct kobject *kobj,
3520 struct attribute *attr,
3521 const char *buf, size_t len)
3522 {
3523 struct slab_attribute *attribute;
3524 struct kmem_cache *s;
3525 int err;
3526
3527 attribute = to_slab_attr(attr);
3528 s = to_slab(kobj);
3529
3530 if (!attribute->store)
3531 return -EIO;
3532
3533 err = attribute->store(s, buf, len);
3534
3535 return err;
3536 }
3537
3538 static struct sysfs_ops slab_sysfs_ops = {
3539 .show = slab_attr_show,
3540 .store = slab_attr_store,
3541 };
3542
3543 static struct kobj_type slab_ktype = {
3544 .sysfs_ops = &slab_sysfs_ops,
3545 };
3546
3547 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3548 {
3549 struct kobj_type *ktype = get_ktype(kobj);
3550
3551 if (ktype == &slab_ktype)
3552 return 1;
3553 return 0;
3554 }
3555
3556 static struct kset_uevent_ops slab_uevent_ops = {
3557 .filter = uevent_filter,
3558 };
3559
3560 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3561
3562 #define ID_STR_LENGTH 64
3563
3564 /* Create a unique string id for a slab cache:
3565 * format
3566 * :[flags-]size:[memory address of kmemcache]
3567 */
3568 static char *create_unique_id(struct kmem_cache *s)
3569 {
3570 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3571 char *p = name;
3572
3573 BUG_ON(!name);
3574
3575 *p++ = ':';
3576 /*
3577 * First flags affecting slabcache operations. We will only
3578 * get here for aliasable slabs so we do not need to support
3579 * too many flags. The flags here must cover all flags that
3580 * are matched during merging to guarantee that the id is
3581 * unique.
3582 */
3583 if (s->flags & SLAB_CACHE_DMA)
3584 *p++ = 'd';
3585 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3586 *p++ = 'a';
3587 if (s->flags & SLAB_DEBUG_FREE)
3588 *p++ = 'F';
3589 if (p != name + 1)
3590 *p++ = '-';
3591 p += sprintf(p, "%07d", s->size);
3592 BUG_ON(p > name + ID_STR_LENGTH - 1);
3593 return name;
3594 }
3595
3596 static int sysfs_slab_add(struct kmem_cache *s)
3597 {
3598 int err;
3599 const char *name;
3600 int unmergeable;
3601
3602 if (slab_state < SYSFS)
3603 /* Defer until later */
3604 return 0;
3605
3606 unmergeable = slab_unmergeable(s);
3607 if (unmergeable) {
3608 /*
3609 * Slabcache can never be merged so we can use the name proper.
3610 * This is typically the case for debug situations. In that
3611 * case we can catch duplicate names easily.
3612 */
3613 sysfs_remove_link(&slab_subsys.kobj, s->name);
3614 name = s->name;
3615 } else {
3616 /*
3617 * Create a unique name for the slab as a target
3618 * for the symlinks.
3619 */
3620 name = create_unique_id(s);
3621 }
3622
3623 kobj_set_kset_s(s, slab_subsys);
3624 kobject_set_name(&s->kobj, name);
3625 kobject_init(&s->kobj);
3626 err = kobject_add(&s->kobj);
3627 if (err)
3628 return err;
3629
3630 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3631 if (err)
3632 return err;
3633 kobject_uevent(&s->kobj, KOBJ_ADD);
3634 if (!unmergeable) {
3635 /* Setup first alias */
3636 sysfs_slab_alias(s, s->name);
3637 kfree(name);
3638 }
3639 return 0;
3640 }
3641
3642 static void sysfs_slab_remove(struct kmem_cache *s)
3643 {
3644 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3645 kobject_del(&s->kobj);
3646 }
3647
3648 /*
3649 * Need to buffer aliases during bootup until sysfs becomes
3650 * available lest we loose that information.
3651 */
3652 struct saved_alias {
3653 struct kmem_cache *s;
3654 const char *name;
3655 struct saved_alias *next;
3656 };
3657
3658 struct saved_alias *alias_list;
3659
3660 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3661 {
3662 struct saved_alias *al;
3663
3664 if (slab_state == SYSFS) {
3665 /*
3666 * If we have a leftover link then remove it.
3667 */
3668 sysfs_remove_link(&slab_subsys.kobj, name);
3669 return sysfs_create_link(&slab_subsys.kobj,
3670 &s->kobj, name);
3671 }
3672
3673 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3674 if (!al)
3675 return -ENOMEM;
3676
3677 al->s = s;
3678 al->name = name;
3679 al->next = alias_list;
3680 alias_list = al;
3681 return 0;
3682 }
3683
3684 static int __init slab_sysfs_init(void)
3685 {
3686 struct list_head *h;
3687 int err;
3688
3689 err = subsystem_register(&slab_subsys);
3690 if (err) {
3691 printk(KERN_ERR "Cannot register slab subsystem.\n");
3692 return -ENOSYS;
3693 }
3694
3695 slab_state = SYSFS;
3696
3697 list_for_each(h, &slab_caches) {
3698 struct kmem_cache *s =
3699 container_of(h, struct kmem_cache, list);
3700
3701 err = sysfs_slab_add(s);
3702 BUG_ON(err);
3703 }
3704
3705 while (alias_list) {
3706 struct saved_alias *al = alias_list;
3707
3708 alias_list = alias_list->next;
3709 err = sysfs_slab_alias(al->s, al->name);
3710 BUG_ON(err);
3711 kfree(al);
3712 }
3713
3714 resiliency_test();
3715 return 0;
3716 }
3717
3718 __initcall(slab_sysfs_init);
3719 #endif
This page took 0.188719 seconds and 6 git commands to generate.