slub: use new node functions
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236 /* Verify that a pointer has an address that is valid within a slab page */
237 static inline int check_valid_pointer(struct kmem_cache *s,
238 struct page *page, const void *object)
239 {
240 void *base;
241
242 if (!object)
243 return 1;
244
245 base = page_address(page);
246 if (object < base || object >= base + page->objects * s->size ||
247 (object - base) % s->size) {
248 return 0;
249 }
250
251 return 1;
252 }
253
254 static inline void *get_freepointer(struct kmem_cache *s, void *object)
255 {
256 return *(void **)(object + s->offset);
257 }
258
259 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260 {
261 prefetch(object + s->offset);
262 }
263
264 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265 {
266 void *p;
267
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270 #else
271 p = get_freepointer(s, object);
272 #endif
273 return p;
274 }
275
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 {
278 *(void **)(object + s->offset) = fp;
279 }
280
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 __p += (__s)->size)
285
286 /* Determine object index from a given position */
287 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288 {
289 return (p - addr) / s->size;
290 }
291
292 static inline size_t slab_ksize(const struct kmem_cache *s)
293 {
294 #ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300 return s->object_size;
301
302 #endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314 }
315
316 static inline int order_objects(int order, unsigned long size, int reserved)
317 {
318 return ((PAGE_SIZE << order) - reserved) / size;
319 }
320
321 static inline struct kmem_cache_order_objects oo_make(int order,
322 unsigned long size, int reserved)
323 {
324 struct kmem_cache_order_objects x = {
325 (order << OO_SHIFT) + order_objects(order, size, reserved)
326 };
327
328 return x;
329 }
330
331 static inline int oo_order(struct kmem_cache_order_objects x)
332 {
333 return x.x >> OO_SHIFT;
334 }
335
336 static inline int oo_objects(struct kmem_cache_order_objects x)
337 {
338 return x.x & OO_MASK;
339 }
340
341 /*
342 * Per slab locking using the pagelock
343 */
344 static __always_inline void slab_lock(struct page *page)
345 {
346 bit_spin_lock(PG_locked, &page->flags);
347 }
348
349 static __always_inline void slab_unlock(struct page *page)
350 {
351 __bit_spin_unlock(PG_locked, &page->flags);
352 }
353
354 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
355 {
356 struct page tmp;
357 tmp.counters = counters_new;
358 /*
359 * page->counters can cover frozen/inuse/objects as well
360 * as page->_count. If we assign to ->counters directly
361 * we run the risk of losing updates to page->_count, so
362 * be careful and only assign to the fields we need.
363 */
364 page->frozen = tmp.frozen;
365 page->inuse = tmp.inuse;
366 page->objects = tmp.objects;
367 }
368
369 /* Interrupts must be disabled (for the fallback code to work right) */
370 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
371 void *freelist_old, unsigned long counters_old,
372 void *freelist_new, unsigned long counters_new,
373 const char *n)
374 {
375 VM_BUG_ON(!irqs_disabled());
376 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
377 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
378 if (s->flags & __CMPXCHG_DOUBLE) {
379 if (cmpxchg_double(&page->freelist, &page->counters,
380 freelist_old, counters_old,
381 freelist_new, counters_new))
382 return 1;
383 } else
384 #endif
385 {
386 slab_lock(page);
387 if (page->freelist == freelist_old &&
388 page->counters == counters_old) {
389 page->freelist = freelist_new;
390 set_page_slub_counters(page, counters_new);
391 slab_unlock(page);
392 return 1;
393 }
394 slab_unlock(page);
395 }
396
397 cpu_relax();
398 stat(s, CMPXCHG_DOUBLE_FAIL);
399
400 #ifdef SLUB_DEBUG_CMPXCHG
401 pr_info("%s %s: cmpxchg double redo ", n, s->name);
402 #endif
403
404 return 0;
405 }
406
407 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
408 void *freelist_old, unsigned long counters_old,
409 void *freelist_new, unsigned long counters_new,
410 const char *n)
411 {
412 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
413 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
414 if (s->flags & __CMPXCHG_DOUBLE) {
415 if (cmpxchg_double(&page->freelist, &page->counters,
416 freelist_old, counters_old,
417 freelist_new, counters_new))
418 return 1;
419 } else
420 #endif
421 {
422 unsigned long flags;
423
424 local_irq_save(flags);
425 slab_lock(page);
426 if (page->freelist == freelist_old &&
427 page->counters == counters_old) {
428 page->freelist = freelist_new;
429 set_page_slub_counters(page, counters_new);
430 slab_unlock(page);
431 local_irq_restore(flags);
432 return 1;
433 }
434 slab_unlock(page);
435 local_irq_restore(flags);
436 }
437
438 cpu_relax();
439 stat(s, CMPXCHG_DOUBLE_FAIL);
440
441 #ifdef SLUB_DEBUG_CMPXCHG
442 pr_info("%s %s: cmpxchg double redo ", n, s->name);
443 #endif
444
445 return 0;
446 }
447
448 #ifdef CONFIG_SLUB_DEBUG
449 /*
450 * Determine a map of object in use on a page.
451 *
452 * Node listlock must be held to guarantee that the page does
453 * not vanish from under us.
454 */
455 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
456 {
457 void *p;
458 void *addr = page_address(page);
459
460 for (p = page->freelist; p; p = get_freepointer(s, p))
461 set_bit(slab_index(p, s, addr), map);
462 }
463
464 /*
465 * Debug settings:
466 */
467 #ifdef CONFIG_SLUB_DEBUG_ON
468 static int slub_debug = DEBUG_DEFAULT_FLAGS;
469 #else
470 static int slub_debug;
471 #endif
472
473 static char *slub_debug_slabs;
474 static int disable_higher_order_debug;
475
476 /*
477 * Object debugging
478 */
479 static void print_section(char *text, u8 *addr, unsigned int length)
480 {
481 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
482 length, 1);
483 }
484
485 static struct track *get_track(struct kmem_cache *s, void *object,
486 enum track_item alloc)
487 {
488 struct track *p;
489
490 if (s->offset)
491 p = object + s->offset + sizeof(void *);
492 else
493 p = object + s->inuse;
494
495 return p + alloc;
496 }
497
498 static void set_track(struct kmem_cache *s, void *object,
499 enum track_item alloc, unsigned long addr)
500 {
501 struct track *p = get_track(s, object, alloc);
502
503 if (addr) {
504 #ifdef CONFIG_STACKTRACE
505 struct stack_trace trace;
506 int i;
507
508 trace.nr_entries = 0;
509 trace.max_entries = TRACK_ADDRS_COUNT;
510 trace.entries = p->addrs;
511 trace.skip = 3;
512 save_stack_trace(&trace);
513
514 /* See rant in lockdep.c */
515 if (trace.nr_entries != 0 &&
516 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
517 trace.nr_entries--;
518
519 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
520 p->addrs[i] = 0;
521 #endif
522 p->addr = addr;
523 p->cpu = smp_processor_id();
524 p->pid = current->pid;
525 p->when = jiffies;
526 } else
527 memset(p, 0, sizeof(struct track));
528 }
529
530 static void init_tracking(struct kmem_cache *s, void *object)
531 {
532 if (!(s->flags & SLAB_STORE_USER))
533 return;
534
535 set_track(s, object, TRACK_FREE, 0UL);
536 set_track(s, object, TRACK_ALLOC, 0UL);
537 }
538
539 static void print_track(const char *s, struct track *t)
540 {
541 if (!t->addr)
542 return;
543
544 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
545 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
546 #ifdef CONFIG_STACKTRACE
547 {
548 int i;
549 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
550 if (t->addrs[i])
551 pr_err("\t%pS\n", (void *)t->addrs[i]);
552 else
553 break;
554 }
555 #endif
556 }
557
558 static void print_tracking(struct kmem_cache *s, void *object)
559 {
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
563 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
564 print_track("Freed", get_track(s, object, TRACK_FREE));
565 }
566
567 static void print_page_info(struct page *page)
568 {
569 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
570 page, page->objects, page->inuse, page->freelist, page->flags);
571
572 }
573
574 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
575 {
576 struct va_format vaf;
577 va_list args;
578
579 va_start(args, fmt);
580 vaf.fmt = fmt;
581 vaf.va = &args;
582 pr_err("=============================================================================\n");
583 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
584 pr_err("-----------------------------------------------------------------------------\n\n");
585
586 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
587 va_end(args);
588 }
589
590 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
591 {
592 struct va_format vaf;
593 va_list args;
594
595 va_start(args, fmt);
596 vaf.fmt = fmt;
597 vaf.va = &args;
598 pr_err("FIX %s: %pV\n", s->name, &vaf);
599 va_end(args);
600 }
601
602 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
603 {
604 unsigned int off; /* Offset of last byte */
605 u8 *addr = page_address(page);
606
607 print_tracking(s, p);
608
609 print_page_info(page);
610
611 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
612 p, p - addr, get_freepointer(s, p));
613
614 if (p > addr + 16)
615 print_section("Bytes b4 ", p - 16, 16);
616
617 print_section("Object ", p, min_t(unsigned long, s->object_size,
618 PAGE_SIZE));
619 if (s->flags & SLAB_RED_ZONE)
620 print_section("Redzone ", p + s->object_size,
621 s->inuse - s->object_size);
622
623 if (s->offset)
624 off = s->offset + sizeof(void *);
625 else
626 off = s->inuse;
627
628 if (s->flags & SLAB_STORE_USER)
629 off += 2 * sizeof(struct track);
630
631 if (off != s->size)
632 /* Beginning of the filler is the free pointer */
633 print_section("Padding ", p + off, s->size - off);
634
635 dump_stack();
636 }
637
638 static void object_err(struct kmem_cache *s, struct page *page,
639 u8 *object, char *reason)
640 {
641 slab_bug(s, "%s", reason);
642 print_trailer(s, page, object);
643 }
644
645 static void slab_err(struct kmem_cache *s, struct page *page,
646 const char *fmt, ...)
647 {
648 va_list args;
649 char buf[100];
650
651 va_start(args, fmt);
652 vsnprintf(buf, sizeof(buf), fmt, args);
653 va_end(args);
654 slab_bug(s, "%s", buf);
655 print_page_info(page);
656 dump_stack();
657 }
658
659 static void init_object(struct kmem_cache *s, void *object, u8 val)
660 {
661 u8 *p = object;
662
663 if (s->flags & __OBJECT_POISON) {
664 memset(p, POISON_FREE, s->object_size - 1);
665 p[s->object_size - 1] = POISON_END;
666 }
667
668 if (s->flags & SLAB_RED_ZONE)
669 memset(p + s->object_size, val, s->inuse - s->object_size);
670 }
671
672 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
673 void *from, void *to)
674 {
675 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
676 memset(from, data, to - from);
677 }
678
679 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
680 u8 *object, char *what,
681 u8 *start, unsigned int value, unsigned int bytes)
682 {
683 u8 *fault;
684 u8 *end;
685
686 fault = memchr_inv(start, value, bytes);
687 if (!fault)
688 return 1;
689
690 end = start + bytes;
691 while (end > fault && end[-1] == value)
692 end--;
693
694 slab_bug(s, "%s overwritten", what);
695 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
696 fault, end - 1, fault[0], value);
697 print_trailer(s, page, object);
698
699 restore_bytes(s, what, value, fault, end);
700 return 0;
701 }
702
703 /*
704 * Object layout:
705 *
706 * object address
707 * Bytes of the object to be managed.
708 * If the freepointer may overlay the object then the free
709 * pointer is the first word of the object.
710 *
711 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
712 * 0xa5 (POISON_END)
713 *
714 * object + s->object_size
715 * Padding to reach word boundary. This is also used for Redzoning.
716 * Padding is extended by another word if Redzoning is enabled and
717 * object_size == inuse.
718 *
719 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
720 * 0xcc (RED_ACTIVE) for objects in use.
721 *
722 * object + s->inuse
723 * Meta data starts here.
724 *
725 * A. Free pointer (if we cannot overwrite object on free)
726 * B. Tracking data for SLAB_STORE_USER
727 * C. Padding to reach required alignment boundary or at mininum
728 * one word if debugging is on to be able to detect writes
729 * before the word boundary.
730 *
731 * Padding is done using 0x5a (POISON_INUSE)
732 *
733 * object + s->size
734 * Nothing is used beyond s->size.
735 *
736 * If slabcaches are merged then the object_size and inuse boundaries are mostly
737 * ignored. And therefore no slab options that rely on these boundaries
738 * may be used with merged slabcaches.
739 */
740
741 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
742 {
743 unsigned long off = s->inuse; /* The end of info */
744
745 if (s->offset)
746 /* Freepointer is placed after the object. */
747 off += sizeof(void *);
748
749 if (s->flags & SLAB_STORE_USER)
750 /* We also have user information there */
751 off += 2 * sizeof(struct track);
752
753 if (s->size == off)
754 return 1;
755
756 return check_bytes_and_report(s, page, p, "Object padding",
757 p + off, POISON_INUSE, s->size - off);
758 }
759
760 /* Check the pad bytes at the end of a slab page */
761 static int slab_pad_check(struct kmem_cache *s, struct page *page)
762 {
763 u8 *start;
764 u8 *fault;
765 u8 *end;
766 int length;
767 int remainder;
768
769 if (!(s->flags & SLAB_POISON))
770 return 1;
771
772 start = page_address(page);
773 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
774 end = start + length;
775 remainder = length % s->size;
776 if (!remainder)
777 return 1;
778
779 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
780 if (!fault)
781 return 1;
782 while (end > fault && end[-1] == POISON_INUSE)
783 end--;
784
785 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
786 print_section("Padding ", end - remainder, remainder);
787
788 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
789 return 0;
790 }
791
792 static int check_object(struct kmem_cache *s, struct page *page,
793 void *object, u8 val)
794 {
795 u8 *p = object;
796 u8 *endobject = object + s->object_size;
797
798 if (s->flags & SLAB_RED_ZONE) {
799 if (!check_bytes_and_report(s, page, object, "Redzone",
800 endobject, val, s->inuse - s->object_size))
801 return 0;
802 } else {
803 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
804 check_bytes_and_report(s, page, p, "Alignment padding",
805 endobject, POISON_INUSE,
806 s->inuse - s->object_size);
807 }
808 }
809
810 if (s->flags & SLAB_POISON) {
811 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
812 (!check_bytes_and_report(s, page, p, "Poison", p,
813 POISON_FREE, s->object_size - 1) ||
814 !check_bytes_and_report(s, page, p, "Poison",
815 p + s->object_size - 1, POISON_END, 1)))
816 return 0;
817 /*
818 * check_pad_bytes cleans up on its own.
819 */
820 check_pad_bytes(s, page, p);
821 }
822
823 if (!s->offset && val == SLUB_RED_ACTIVE)
824 /*
825 * Object and freepointer overlap. Cannot check
826 * freepointer while object is allocated.
827 */
828 return 1;
829
830 /* Check free pointer validity */
831 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
832 object_err(s, page, p, "Freepointer corrupt");
833 /*
834 * No choice but to zap it and thus lose the remainder
835 * of the free objects in this slab. May cause
836 * another error because the object count is now wrong.
837 */
838 set_freepointer(s, p, NULL);
839 return 0;
840 }
841 return 1;
842 }
843
844 static int check_slab(struct kmem_cache *s, struct page *page)
845 {
846 int maxobj;
847
848 VM_BUG_ON(!irqs_disabled());
849
850 if (!PageSlab(page)) {
851 slab_err(s, page, "Not a valid slab page");
852 return 0;
853 }
854
855 maxobj = order_objects(compound_order(page), s->size, s->reserved);
856 if (page->objects > maxobj) {
857 slab_err(s, page, "objects %u > max %u",
858 s->name, page->objects, maxobj);
859 return 0;
860 }
861 if (page->inuse > page->objects) {
862 slab_err(s, page, "inuse %u > max %u",
863 s->name, page->inuse, page->objects);
864 return 0;
865 }
866 /* Slab_pad_check fixes things up after itself */
867 slab_pad_check(s, page);
868 return 1;
869 }
870
871 /*
872 * Determine if a certain object on a page is on the freelist. Must hold the
873 * slab lock to guarantee that the chains are in a consistent state.
874 */
875 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
876 {
877 int nr = 0;
878 void *fp;
879 void *object = NULL;
880 unsigned long max_objects;
881
882 fp = page->freelist;
883 while (fp && nr <= page->objects) {
884 if (fp == search)
885 return 1;
886 if (!check_valid_pointer(s, page, fp)) {
887 if (object) {
888 object_err(s, page, object,
889 "Freechain corrupt");
890 set_freepointer(s, object, NULL);
891 } else {
892 slab_err(s, page, "Freepointer corrupt");
893 page->freelist = NULL;
894 page->inuse = page->objects;
895 slab_fix(s, "Freelist cleared");
896 return 0;
897 }
898 break;
899 }
900 object = fp;
901 fp = get_freepointer(s, object);
902 nr++;
903 }
904
905 max_objects = order_objects(compound_order(page), s->size, s->reserved);
906 if (max_objects > MAX_OBJS_PER_PAGE)
907 max_objects = MAX_OBJS_PER_PAGE;
908
909 if (page->objects != max_objects) {
910 slab_err(s, page, "Wrong number of objects. Found %d but "
911 "should be %d", page->objects, max_objects);
912 page->objects = max_objects;
913 slab_fix(s, "Number of objects adjusted.");
914 }
915 if (page->inuse != page->objects - nr) {
916 slab_err(s, page, "Wrong object count. Counter is %d but "
917 "counted were %d", page->inuse, page->objects - nr);
918 page->inuse = page->objects - nr;
919 slab_fix(s, "Object count adjusted.");
920 }
921 return search == NULL;
922 }
923
924 static void trace(struct kmem_cache *s, struct page *page, void *object,
925 int alloc)
926 {
927 if (s->flags & SLAB_TRACE) {
928 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
929 s->name,
930 alloc ? "alloc" : "free",
931 object, page->inuse,
932 page->freelist);
933
934 if (!alloc)
935 print_section("Object ", (void *)object,
936 s->object_size);
937
938 dump_stack();
939 }
940 }
941
942 /*
943 * Hooks for other subsystems that check memory allocations. In a typical
944 * production configuration these hooks all should produce no code at all.
945 */
946 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
947 {
948 kmemleak_alloc(ptr, size, 1, flags);
949 }
950
951 static inline void kfree_hook(const void *x)
952 {
953 kmemleak_free(x);
954 }
955
956 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
957 {
958 flags &= gfp_allowed_mask;
959 lockdep_trace_alloc(flags);
960 might_sleep_if(flags & __GFP_WAIT);
961
962 return should_failslab(s->object_size, flags, s->flags);
963 }
964
965 static inline void slab_post_alloc_hook(struct kmem_cache *s,
966 gfp_t flags, void *object)
967 {
968 flags &= gfp_allowed_mask;
969 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
970 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
971 }
972
973 static inline void slab_free_hook(struct kmem_cache *s, void *x)
974 {
975 kmemleak_free_recursive(x, s->flags);
976
977 /*
978 * Trouble is that we may no longer disable interrupts in the fast path
979 * So in order to make the debug calls that expect irqs to be
980 * disabled we need to disable interrupts temporarily.
981 */
982 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
983 {
984 unsigned long flags;
985
986 local_irq_save(flags);
987 kmemcheck_slab_free(s, x, s->object_size);
988 debug_check_no_locks_freed(x, s->object_size);
989 local_irq_restore(flags);
990 }
991 #endif
992 if (!(s->flags & SLAB_DEBUG_OBJECTS))
993 debug_check_no_obj_freed(x, s->object_size);
994 }
995
996 /*
997 * Tracking of fully allocated slabs for debugging purposes.
998 */
999 static void add_full(struct kmem_cache *s,
1000 struct kmem_cache_node *n, struct page *page)
1001 {
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
1005 lockdep_assert_held(&n->list_lock);
1006 list_add(&page->lru, &n->full);
1007 }
1008
1009 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1010 {
1011 if (!(s->flags & SLAB_STORE_USER))
1012 return;
1013
1014 lockdep_assert_held(&n->list_lock);
1015 list_del(&page->lru);
1016 }
1017
1018 /* Tracking of the number of slabs for debugging purposes */
1019 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1020 {
1021 struct kmem_cache_node *n = get_node(s, node);
1022
1023 return atomic_long_read(&n->nr_slabs);
1024 }
1025
1026 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1027 {
1028 return atomic_long_read(&n->nr_slabs);
1029 }
1030
1031 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 /*
1036 * May be called early in order to allocate a slab for the
1037 * kmem_cache_node structure. Solve the chicken-egg
1038 * dilemma by deferring the increment of the count during
1039 * bootstrap (see early_kmem_cache_node_alloc).
1040 */
1041 if (likely(n)) {
1042 atomic_long_inc(&n->nr_slabs);
1043 atomic_long_add(objects, &n->total_objects);
1044 }
1045 }
1046 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1047 {
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 atomic_long_dec(&n->nr_slabs);
1051 atomic_long_sub(objects, &n->total_objects);
1052 }
1053
1054 /* Object debug checks for alloc/free paths */
1055 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1056 void *object)
1057 {
1058 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1059 return;
1060
1061 init_object(s, object, SLUB_RED_INACTIVE);
1062 init_tracking(s, object);
1063 }
1064
1065 static noinline int alloc_debug_processing(struct kmem_cache *s,
1066 struct page *page,
1067 void *object, unsigned long addr)
1068 {
1069 if (!check_slab(s, page))
1070 goto bad;
1071
1072 if (!check_valid_pointer(s, page, object)) {
1073 object_err(s, page, object, "Freelist Pointer check fails");
1074 goto bad;
1075 }
1076
1077 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1078 goto bad;
1079
1080 /* Success perform special debug activities for allocs */
1081 if (s->flags & SLAB_STORE_USER)
1082 set_track(s, object, TRACK_ALLOC, addr);
1083 trace(s, page, object, 1);
1084 init_object(s, object, SLUB_RED_ACTIVE);
1085 return 1;
1086
1087 bad:
1088 if (PageSlab(page)) {
1089 /*
1090 * If this is a slab page then lets do the best we can
1091 * to avoid issues in the future. Marking all objects
1092 * as used avoids touching the remaining objects.
1093 */
1094 slab_fix(s, "Marking all objects used");
1095 page->inuse = page->objects;
1096 page->freelist = NULL;
1097 }
1098 return 0;
1099 }
1100
1101 static noinline struct kmem_cache_node *free_debug_processing(
1102 struct kmem_cache *s, struct page *page, void *object,
1103 unsigned long addr, unsigned long *flags)
1104 {
1105 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1106
1107 spin_lock_irqsave(&n->list_lock, *flags);
1108 slab_lock(page);
1109
1110 if (!check_slab(s, page))
1111 goto fail;
1112
1113 if (!check_valid_pointer(s, page, object)) {
1114 slab_err(s, page, "Invalid object pointer 0x%p", object);
1115 goto fail;
1116 }
1117
1118 if (on_freelist(s, page, object)) {
1119 object_err(s, page, object, "Object already free");
1120 goto fail;
1121 }
1122
1123 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1124 goto out;
1125
1126 if (unlikely(s != page->slab_cache)) {
1127 if (!PageSlab(page)) {
1128 slab_err(s, page, "Attempt to free object(0x%p) "
1129 "outside of slab", object);
1130 } else if (!page->slab_cache) {
1131 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1132 object);
1133 dump_stack();
1134 } else
1135 object_err(s, page, object,
1136 "page slab pointer corrupt.");
1137 goto fail;
1138 }
1139
1140 if (s->flags & SLAB_STORE_USER)
1141 set_track(s, object, TRACK_FREE, addr);
1142 trace(s, page, object, 0);
1143 init_object(s, object, SLUB_RED_INACTIVE);
1144 out:
1145 slab_unlock(page);
1146 /*
1147 * Keep node_lock to preserve integrity
1148 * until the object is actually freed
1149 */
1150 return n;
1151
1152 fail:
1153 slab_unlock(page);
1154 spin_unlock_irqrestore(&n->list_lock, *flags);
1155 slab_fix(s, "Object at 0x%p not freed", object);
1156 return NULL;
1157 }
1158
1159 static int __init setup_slub_debug(char *str)
1160 {
1161 slub_debug = DEBUG_DEFAULT_FLAGS;
1162 if (*str++ != '=' || !*str)
1163 /*
1164 * No options specified. Switch on full debugging.
1165 */
1166 goto out;
1167
1168 if (*str == ',')
1169 /*
1170 * No options but restriction on slabs. This means full
1171 * debugging for slabs matching a pattern.
1172 */
1173 goto check_slabs;
1174
1175 if (tolower(*str) == 'o') {
1176 /*
1177 * Avoid enabling debugging on caches if its minimum order
1178 * would increase as a result.
1179 */
1180 disable_higher_order_debug = 1;
1181 goto out;
1182 }
1183
1184 slub_debug = 0;
1185 if (*str == '-')
1186 /*
1187 * Switch off all debugging measures.
1188 */
1189 goto out;
1190
1191 /*
1192 * Determine which debug features should be switched on
1193 */
1194 for (; *str && *str != ','; str++) {
1195 switch (tolower(*str)) {
1196 case 'f':
1197 slub_debug |= SLAB_DEBUG_FREE;
1198 break;
1199 case 'z':
1200 slub_debug |= SLAB_RED_ZONE;
1201 break;
1202 case 'p':
1203 slub_debug |= SLAB_POISON;
1204 break;
1205 case 'u':
1206 slub_debug |= SLAB_STORE_USER;
1207 break;
1208 case 't':
1209 slub_debug |= SLAB_TRACE;
1210 break;
1211 case 'a':
1212 slub_debug |= SLAB_FAILSLAB;
1213 break;
1214 default:
1215 pr_err("slub_debug option '%c' unknown. skipped\n",
1216 *str);
1217 }
1218 }
1219
1220 check_slabs:
1221 if (*str == ',')
1222 slub_debug_slabs = str + 1;
1223 out:
1224 return 1;
1225 }
1226
1227 __setup("slub_debug", setup_slub_debug);
1228
1229 static unsigned long kmem_cache_flags(unsigned long object_size,
1230 unsigned long flags, const char *name,
1231 void (*ctor)(void *))
1232 {
1233 /*
1234 * Enable debugging if selected on the kernel commandline.
1235 */
1236 if (slub_debug && (!slub_debug_slabs || (name &&
1237 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1238 flags |= slub_debug;
1239
1240 return flags;
1241 }
1242 #else
1243 static inline void setup_object_debug(struct kmem_cache *s,
1244 struct page *page, void *object) {}
1245
1246 static inline int alloc_debug_processing(struct kmem_cache *s,
1247 struct page *page, void *object, unsigned long addr) { return 0; }
1248
1249 static inline struct kmem_cache_node *free_debug_processing(
1250 struct kmem_cache *s, struct page *page, void *object,
1251 unsigned long addr, unsigned long *flags) { return NULL; }
1252
1253 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1254 { return 1; }
1255 static inline int check_object(struct kmem_cache *s, struct page *page,
1256 void *object, u8 val) { return 1; }
1257 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1258 struct page *page) {}
1259 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1260 struct page *page) {}
1261 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1262 unsigned long flags, const char *name,
1263 void (*ctor)(void *))
1264 {
1265 return flags;
1266 }
1267 #define slub_debug 0
1268
1269 #define disable_higher_order_debug 0
1270
1271 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1272 { return 0; }
1273 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1274 { return 0; }
1275 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1276 int objects) {}
1277 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1278 int objects) {}
1279
1280 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1281 {
1282 kmemleak_alloc(ptr, size, 1, flags);
1283 }
1284
1285 static inline void kfree_hook(const void *x)
1286 {
1287 kmemleak_free(x);
1288 }
1289
1290 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1291 { return 0; }
1292
1293 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1294 void *object)
1295 {
1296 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1297 flags & gfp_allowed_mask);
1298 }
1299
1300 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1301 {
1302 kmemleak_free_recursive(x, s->flags);
1303 }
1304
1305 #endif /* CONFIG_SLUB_DEBUG */
1306
1307 /*
1308 * Slab allocation and freeing
1309 */
1310 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1311 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1312 {
1313 struct page *page;
1314 int order = oo_order(oo);
1315
1316 flags |= __GFP_NOTRACK;
1317
1318 if (memcg_charge_slab(s, flags, order))
1319 return NULL;
1320
1321 if (node == NUMA_NO_NODE)
1322 page = alloc_pages(flags, order);
1323 else
1324 page = alloc_pages_exact_node(node, flags, order);
1325
1326 if (!page)
1327 memcg_uncharge_slab(s, order);
1328
1329 return page;
1330 }
1331
1332 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1333 {
1334 struct page *page;
1335 struct kmem_cache_order_objects oo = s->oo;
1336 gfp_t alloc_gfp;
1337
1338 flags &= gfp_allowed_mask;
1339
1340 if (flags & __GFP_WAIT)
1341 local_irq_enable();
1342
1343 flags |= s->allocflags;
1344
1345 /*
1346 * Let the initial higher-order allocation fail under memory pressure
1347 * so we fall-back to the minimum order allocation.
1348 */
1349 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1350
1351 page = alloc_slab_page(s, alloc_gfp, node, oo);
1352 if (unlikely(!page)) {
1353 oo = s->min;
1354 alloc_gfp = flags;
1355 /*
1356 * Allocation may have failed due to fragmentation.
1357 * Try a lower order alloc if possible
1358 */
1359 page = alloc_slab_page(s, alloc_gfp, node, oo);
1360
1361 if (page)
1362 stat(s, ORDER_FALLBACK);
1363 }
1364
1365 if (kmemcheck_enabled && page
1366 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1367 int pages = 1 << oo_order(oo);
1368
1369 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1370
1371 /*
1372 * Objects from caches that have a constructor don't get
1373 * cleared when they're allocated, so we need to do it here.
1374 */
1375 if (s->ctor)
1376 kmemcheck_mark_uninitialized_pages(page, pages);
1377 else
1378 kmemcheck_mark_unallocated_pages(page, pages);
1379 }
1380
1381 if (flags & __GFP_WAIT)
1382 local_irq_disable();
1383 if (!page)
1384 return NULL;
1385
1386 page->objects = oo_objects(oo);
1387 mod_zone_page_state(page_zone(page),
1388 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1389 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1390 1 << oo_order(oo));
1391
1392 return page;
1393 }
1394
1395 static void setup_object(struct kmem_cache *s, struct page *page,
1396 void *object)
1397 {
1398 setup_object_debug(s, page, object);
1399 if (unlikely(s->ctor))
1400 s->ctor(object);
1401 }
1402
1403 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1404 {
1405 struct page *page;
1406 void *start;
1407 void *last;
1408 void *p;
1409 int order;
1410
1411 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1412
1413 page = allocate_slab(s,
1414 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1415 if (!page)
1416 goto out;
1417
1418 order = compound_order(page);
1419 inc_slabs_node(s, page_to_nid(page), page->objects);
1420 page->slab_cache = s;
1421 __SetPageSlab(page);
1422 if (page->pfmemalloc)
1423 SetPageSlabPfmemalloc(page);
1424
1425 start = page_address(page);
1426
1427 if (unlikely(s->flags & SLAB_POISON))
1428 memset(start, POISON_INUSE, PAGE_SIZE << order);
1429
1430 last = start;
1431 for_each_object(p, s, start, page->objects) {
1432 setup_object(s, page, last);
1433 set_freepointer(s, last, p);
1434 last = p;
1435 }
1436 setup_object(s, page, last);
1437 set_freepointer(s, last, NULL);
1438
1439 page->freelist = start;
1440 page->inuse = page->objects;
1441 page->frozen = 1;
1442 out:
1443 return page;
1444 }
1445
1446 static void __free_slab(struct kmem_cache *s, struct page *page)
1447 {
1448 int order = compound_order(page);
1449 int pages = 1 << order;
1450
1451 if (kmem_cache_debug(s)) {
1452 void *p;
1453
1454 slab_pad_check(s, page);
1455 for_each_object(p, s, page_address(page),
1456 page->objects)
1457 check_object(s, page, p, SLUB_RED_INACTIVE);
1458 }
1459
1460 kmemcheck_free_shadow(page, compound_order(page));
1461
1462 mod_zone_page_state(page_zone(page),
1463 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1464 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1465 -pages);
1466
1467 __ClearPageSlabPfmemalloc(page);
1468 __ClearPageSlab(page);
1469
1470 page_mapcount_reset(page);
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += pages;
1473 __free_pages(page, order);
1474 memcg_uncharge_slab(s, order);
1475 }
1476
1477 #define need_reserve_slab_rcu \
1478 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1479
1480 static void rcu_free_slab(struct rcu_head *h)
1481 {
1482 struct page *page;
1483
1484 if (need_reserve_slab_rcu)
1485 page = virt_to_head_page(h);
1486 else
1487 page = container_of((struct list_head *)h, struct page, lru);
1488
1489 __free_slab(page->slab_cache, page);
1490 }
1491
1492 static void free_slab(struct kmem_cache *s, struct page *page)
1493 {
1494 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1495 struct rcu_head *head;
1496
1497 if (need_reserve_slab_rcu) {
1498 int order = compound_order(page);
1499 int offset = (PAGE_SIZE << order) - s->reserved;
1500
1501 VM_BUG_ON(s->reserved != sizeof(*head));
1502 head = page_address(page) + offset;
1503 } else {
1504 /*
1505 * RCU free overloads the RCU head over the LRU
1506 */
1507 head = (void *)&page->lru;
1508 }
1509
1510 call_rcu(head, rcu_free_slab);
1511 } else
1512 __free_slab(s, page);
1513 }
1514
1515 static void discard_slab(struct kmem_cache *s, struct page *page)
1516 {
1517 dec_slabs_node(s, page_to_nid(page), page->objects);
1518 free_slab(s, page);
1519 }
1520
1521 /*
1522 * Management of partially allocated slabs.
1523 */
1524 static inline void
1525 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1526 {
1527 n->nr_partial++;
1528 if (tail == DEACTIVATE_TO_TAIL)
1529 list_add_tail(&page->lru, &n->partial);
1530 else
1531 list_add(&page->lru, &n->partial);
1532 }
1533
1534 static inline void add_partial(struct kmem_cache_node *n,
1535 struct page *page, int tail)
1536 {
1537 lockdep_assert_held(&n->list_lock);
1538 __add_partial(n, page, tail);
1539 }
1540
1541 static inline void
1542 __remove_partial(struct kmem_cache_node *n, struct page *page)
1543 {
1544 list_del(&page->lru);
1545 n->nr_partial--;
1546 }
1547
1548 static inline void remove_partial(struct kmem_cache_node *n,
1549 struct page *page)
1550 {
1551 lockdep_assert_held(&n->list_lock);
1552 __remove_partial(n, page);
1553 }
1554
1555 /*
1556 * Remove slab from the partial list, freeze it and
1557 * return the pointer to the freelist.
1558 *
1559 * Returns a list of objects or NULL if it fails.
1560 */
1561 static inline void *acquire_slab(struct kmem_cache *s,
1562 struct kmem_cache_node *n, struct page *page,
1563 int mode, int *objects)
1564 {
1565 void *freelist;
1566 unsigned long counters;
1567 struct page new;
1568
1569 lockdep_assert_held(&n->list_lock);
1570
1571 /*
1572 * Zap the freelist and set the frozen bit.
1573 * The old freelist is the list of objects for the
1574 * per cpu allocation list.
1575 */
1576 freelist = page->freelist;
1577 counters = page->counters;
1578 new.counters = counters;
1579 *objects = new.objects - new.inuse;
1580 if (mode) {
1581 new.inuse = page->objects;
1582 new.freelist = NULL;
1583 } else {
1584 new.freelist = freelist;
1585 }
1586
1587 VM_BUG_ON(new.frozen);
1588 new.frozen = 1;
1589
1590 if (!__cmpxchg_double_slab(s, page,
1591 freelist, counters,
1592 new.freelist, new.counters,
1593 "acquire_slab"))
1594 return NULL;
1595
1596 remove_partial(n, page);
1597 WARN_ON(!freelist);
1598 return freelist;
1599 }
1600
1601 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1602 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1603
1604 /*
1605 * Try to allocate a partial slab from a specific node.
1606 */
1607 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1608 struct kmem_cache_cpu *c, gfp_t flags)
1609 {
1610 struct page *page, *page2;
1611 void *object = NULL;
1612 int available = 0;
1613 int objects;
1614
1615 /*
1616 * Racy check. If we mistakenly see no partial slabs then we
1617 * just allocate an empty slab. If we mistakenly try to get a
1618 * partial slab and there is none available then get_partials()
1619 * will return NULL.
1620 */
1621 if (!n || !n->nr_partial)
1622 return NULL;
1623
1624 spin_lock(&n->list_lock);
1625 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1626 void *t;
1627
1628 if (!pfmemalloc_match(page, flags))
1629 continue;
1630
1631 t = acquire_slab(s, n, page, object == NULL, &objects);
1632 if (!t)
1633 break;
1634
1635 available += objects;
1636 if (!object) {
1637 c->page = page;
1638 stat(s, ALLOC_FROM_PARTIAL);
1639 object = t;
1640 } else {
1641 put_cpu_partial(s, page, 0);
1642 stat(s, CPU_PARTIAL_NODE);
1643 }
1644 if (!kmem_cache_has_cpu_partial(s)
1645 || available > s->cpu_partial / 2)
1646 break;
1647
1648 }
1649 spin_unlock(&n->list_lock);
1650 return object;
1651 }
1652
1653 /*
1654 * Get a page from somewhere. Search in increasing NUMA distances.
1655 */
1656 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1657 struct kmem_cache_cpu *c)
1658 {
1659 #ifdef CONFIG_NUMA
1660 struct zonelist *zonelist;
1661 struct zoneref *z;
1662 struct zone *zone;
1663 enum zone_type high_zoneidx = gfp_zone(flags);
1664 void *object;
1665 unsigned int cpuset_mems_cookie;
1666
1667 /*
1668 * The defrag ratio allows a configuration of the tradeoffs between
1669 * inter node defragmentation and node local allocations. A lower
1670 * defrag_ratio increases the tendency to do local allocations
1671 * instead of attempting to obtain partial slabs from other nodes.
1672 *
1673 * If the defrag_ratio is set to 0 then kmalloc() always
1674 * returns node local objects. If the ratio is higher then kmalloc()
1675 * may return off node objects because partial slabs are obtained
1676 * from other nodes and filled up.
1677 *
1678 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1679 * defrag_ratio = 1000) then every (well almost) allocation will
1680 * first attempt to defrag slab caches on other nodes. This means
1681 * scanning over all nodes to look for partial slabs which may be
1682 * expensive if we do it every time we are trying to find a slab
1683 * with available objects.
1684 */
1685 if (!s->remote_node_defrag_ratio ||
1686 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1687 return NULL;
1688
1689 do {
1690 cpuset_mems_cookie = read_mems_allowed_begin();
1691 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1692 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1693 struct kmem_cache_node *n;
1694
1695 n = get_node(s, zone_to_nid(zone));
1696
1697 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1698 n->nr_partial > s->min_partial) {
1699 object = get_partial_node(s, n, c, flags);
1700 if (object) {
1701 /*
1702 * Don't check read_mems_allowed_retry()
1703 * here - if mems_allowed was updated in
1704 * parallel, that was a harmless race
1705 * between allocation and the cpuset
1706 * update
1707 */
1708 return object;
1709 }
1710 }
1711 }
1712 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1713 #endif
1714 return NULL;
1715 }
1716
1717 /*
1718 * Get a partial page, lock it and return it.
1719 */
1720 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1721 struct kmem_cache_cpu *c)
1722 {
1723 void *object;
1724 int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
1725
1726 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1727 if (object || node != NUMA_NO_NODE)
1728 return object;
1729
1730 return get_any_partial(s, flags, c);
1731 }
1732
1733 #ifdef CONFIG_PREEMPT
1734 /*
1735 * Calculate the next globally unique transaction for disambiguiation
1736 * during cmpxchg. The transactions start with the cpu number and are then
1737 * incremented by CONFIG_NR_CPUS.
1738 */
1739 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1740 #else
1741 /*
1742 * No preemption supported therefore also no need to check for
1743 * different cpus.
1744 */
1745 #define TID_STEP 1
1746 #endif
1747
1748 static inline unsigned long next_tid(unsigned long tid)
1749 {
1750 return tid + TID_STEP;
1751 }
1752
1753 static inline unsigned int tid_to_cpu(unsigned long tid)
1754 {
1755 return tid % TID_STEP;
1756 }
1757
1758 static inline unsigned long tid_to_event(unsigned long tid)
1759 {
1760 return tid / TID_STEP;
1761 }
1762
1763 static inline unsigned int init_tid(int cpu)
1764 {
1765 return cpu;
1766 }
1767
1768 static inline void note_cmpxchg_failure(const char *n,
1769 const struct kmem_cache *s, unsigned long tid)
1770 {
1771 #ifdef SLUB_DEBUG_CMPXCHG
1772 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1773
1774 pr_info("%s %s: cmpxchg redo ", n, s->name);
1775
1776 #ifdef CONFIG_PREEMPT
1777 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1778 pr_warn("due to cpu change %d -> %d\n",
1779 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1780 else
1781 #endif
1782 if (tid_to_event(tid) != tid_to_event(actual_tid))
1783 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1784 tid_to_event(tid), tid_to_event(actual_tid));
1785 else
1786 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1787 actual_tid, tid, next_tid(tid));
1788 #endif
1789 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1790 }
1791
1792 static void init_kmem_cache_cpus(struct kmem_cache *s)
1793 {
1794 int cpu;
1795
1796 for_each_possible_cpu(cpu)
1797 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1798 }
1799
1800 /*
1801 * Remove the cpu slab
1802 */
1803 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1804 void *freelist)
1805 {
1806 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1807 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1808 int lock = 0;
1809 enum slab_modes l = M_NONE, m = M_NONE;
1810 void *nextfree;
1811 int tail = DEACTIVATE_TO_HEAD;
1812 struct page new;
1813 struct page old;
1814
1815 if (page->freelist) {
1816 stat(s, DEACTIVATE_REMOTE_FREES);
1817 tail = DEACTIVATE_TO_TAIL;
1818 }
1819
1820 /*
1821 * Stage one: Free all available per cpu objects back
1822 * to the page freelist while it is still frozen. Leave the
1823 * last one.
1824 *
1825 * There is no need to take the list->lock because the page
1826 * is still frozen.
1827 */
1828 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1829 void *prior;
1830 unsigned long counters;
1831
1832 do {
1833 prior = page->freelist;
1834 counters = page->counters;
1835 set_freepointer(s, freelist, prior);
1836 new.counters = counters;
1837 new.inuse--;
1838 VM_BUG_ON(!new.frozen);
1839
1840 } while (!__cmpxchg_double_slab(s, page,
1841 prior, counters,
1842 freelist, new.counters,
1843 "drain percpu freelist"));
1844
1845 freelist = nextfree;
1846 }
1847
1848 /*
1849 * Stage two: Ensure that the page is unfrozen while the
1850 * list presence reflects the actual number of objects
1851 * during unfreeze.
1852 *
1853 * We setup the list membership and then perform a cmpxchg
1854 * with the count. If there is a mismatch then the page
1855 * is not unfrozen but the page is on the wrong list.
1856 *
1857 * Then we restart the process which may have to remove
1858 * the page from the list that we just put it on again
1859 * because the number of objects in the slab may have
1860 * changed.
1861 */
1862 redo:
1863
1864 old.freelist = page->freelist;
1865 old.counters = page->counters;
1866 VM_BUG_ON(!old.frozen);
1867
1868 /* Determine target state of the slab */
1869 new.counters = old.counters;
1870 if (freelist) {
1871 new.inuse--;
1872 set_freepointer(s, freelist, old.freelist);
1873 new.freelist = freelist;
1874 } else
1875 new.freelist = old.freelist;
1876
1877 new.frozen = 0;
1878
1879 if (!new.inuse && n->nr_partial >= s->min_partial)
1880 m = M_FREE;
1881 else if (new.freelist) {
1882 m = M_PARTIAL;
1883 if (!lock) {
1884 lock = 1;
1885 /*
1886 * Taking the spinlock removes the possiblity
1887 * that acquire_slab() will see a slab page that
1888 * is frozen
1889 */
1890 spin_lock(&n->list_lock);
1891 }
1892 } else {
1893 m = M_FULL;
1894 if (kmem_cache_debug(s) && !lock) {
1895 lock = 1;
1896 /*
1897 * This also ensures that the scanning of full
1898 * slabs from diagnostic functions will not see
1899 * any frozen slabs.
1900 */
1901 spin_lock(&n->list_lock);
1902 }
1903 }
1904
1905 if (l != m) {
1906
1907 if (l == M_PARTIAL)
1908
1909 remove_partial(n, page);
1910
1911 else if (l == M_FULL)
1912
1913 remove_full(s, n, page);
1914
1915 if (m == M_PARTIAL) {
1916
1917 add_partial(n, page, tail);
1918 stat(s, tail);
1919
1920 } else if (m == M_FULL) {
1921
1922 stat(s, DEACTIVATE_FULL);
1923 add_full(s, n, page);
1924
1925 }
1926 }
1927
1928 l = m;
1929 if (!__cmpxchg_double_slab(s, page,
1930 old.freelist, old.counters,
1931 new.freelist, new.counters,
1932 "unfreezing slab"))
1933 goto redo;
1934
1935 if (lock)
1936 spin_unlock(&n->list_lock);
1937
1938 if (m == M_FREE) {
1939 stat(s, DEACTIVATE_EMPTY);
1940 discard_slab(s, page);
1941 stat(s, FREE_SLAB);
1942 }
1943 }
1944
1945 /*
1946 * Unfreeze all the cpu partial slabs.
1947 *
1948 * This function must be called with interrupts disabled
1949 * for the cpu using c (or some other guarantee must be there
1950 * to guarantee no concurrent accesses).
1951 */
1952 static void unfreeze_partials(struct kmem_cache *s,
1953 struct kmem_cache_cpu *c)
1954 {
1955 #ifdef CONFIG_SLUB_CPU_PARTIAL
1956 struct kmem_cache_node *n = NULL, *n2 = NULL;
1957 struct page *page, *discard_page = NULL;
1958
1959 while ((page = c->partial)) {
1960 struct page new;
1961 struct page old;
1962
1963 c->partial = page->next;
1964
1965 n2 = get_node(s, page_to_nid(page));
1966 if (n != n2) {
1967 if (n)
1968 spin_unlock(&n->list_lock);
1969
1970 n = n2;
1971 spin_lock(&n->list_lock);
1972 }
1973
1974 do {
1975
1976 old.freelist = page->freelist;
1977 old.counters = page->counters;
1978 VM_BUG_ON(!old.frozen);
1979
1980 new.counters = old.counters;
1981 new.freelist = old.freelist;
1982
1983 new.frozen = 0;
1984
1985 } while (!__cmpxchg_double_slab(s, page,
1986 old.freelist, old.counters,
1987 new.freelist, new.counters,
1988 "unfreezing slab"));
1989
1990 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1991 page->next = discard_page;
1992 discard_page = page;
1993 } else {
1994 add_partial(n, page, DEACTIVATE_TO_TAIL);
1995 stat(s, FREE_ADD_PARTIAL);
1996 }
1997 }
1998
1999 if (n)
2000 spin_unlock(&n->list_lock);
2001
2002 while (discard_page) {
2003 page = discard_page;
2004 discard_page = discard_page->next;
2005
2006 stat(s, DEACTIVATE_EMPTY);
2007 discard_slab(s, page);
2008 stat(s, FREE_SLAB);
2009 }
2010 #endif
2011 }
2012
2013 /*
2014 * Put a page that was just frozen (in __slab_free) into a partial page
2015 * slot if available. This is done without interrupts disabled and without
2016 * preemption disabled. The cmpxchg is racy and may put the partial page
2017 * onto a random cpus partial slot.
2018 *
2019 * If we did not find a slot then simply move all the partials to the
2020 * per node partial list.
2021 */
2022 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2023 {
2024 #ifdef CONFIG_SLUB_CPU_PARTIAL
2025 struct page *oldpage;
2026 int pages;
2027 int pobjects;
2028
2029 do {
2030 pages = 0;
2031 pobjects = 0;
2032 oldpage = this_cpu_read(s->cpu_slab->partial);
2033
2034 if (oldpage) {
2035 pobjects = oldpage->pobjects;
2036 pages = oldpage->pages;
2037 if (drain && pobjects > s->cpu_partial) {
2038 unsigned long flags;
2039 /*
2040 * partial array is full. Move the existing
2041 * set to the per node partial list.
2042 */
2043 local_irq_save(flags);
2044 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2045 local_irq_restore(flags);
2046 oldpage = NULL;
2047 pobjects = 0;
2048 pages = 0;
2049 stat(s, CPU_PARTIAL_DRAIN);
2050 }
2051 }
2052
2053 pages++;
2054 pobjects += page->objects - page->inuse;
2055
2056 page->pages = pages;
2057 page->pobjects = pobjects;
2058 page->next = oldpage;
2059
2060 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2061 != oldpage);
2062 #endif
2063 }
2064
2065 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2066 {
2067 stat(s, CPUSLAB_FLUSH);
2068 deactivate_slab(s, c->page, c->freelist);
2069
2070 c->tid = next_tid(c->tid);
2071 c->page = NULL;
2072 c->freelist = NULL;
2073 }
2074
2075 /*
2076 * Flush cpu slab.
2077 *
2078 * Called from IPI handler with interrupts disabled.
2079 */
2080 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2081 {
2082 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2083
2084 if (likely(c)) {
2085 if (c->page)
2086 flush_slab(s, c);
2087
2088 unfreeze_partials(s, c);
2089 }
2090 }
2091
2092 static void flush_cpu_slab(void *d)
2093 {
2094 struct kmem_cache *s = d;
2095
2096 __flush_cpu_slab(s, smp_processor_id());
2097 }
2098
2099 static bool has_cpu_slab(int cpu, void *info)
2100 {
2101 struct kmem_cache *s = info;
2102 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2103
2104 return c->page || c->partial;
2105 }
2106
2107 static void flush_all(struct kmem_cache *s)
2108 {
2109 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2110 }
2111
2112 /*
2113 * Check if the objects in a per cpu structure fit numa
2114 * locality expectations.
2115 */
2116 static inline int node_match(struct page *page, int node)
2117 {
2118 #ifdef CONFIG_NUMA
2119 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2120 return 0;
2121 #endif
2122 return 1;
2123 }
2124
2125 #ifdef CONFIG_SLUB_DEBUG
2126 static int count_free(struct page *page)
2127 {
2128 return page->objects - page->inuse;
2129 }
2130
2131 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2132 {
2133 return atomic_long_read(&n->total_objects);
2134 }
2135 #endif /* CONFIG_SLUB_DEBUG */
2136
2137 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2138 static unsigned long count_partial(struct kmem_cache_node *n,
2139 int (*get_count)(struct page *))
2140 {
2141 unsigned long flags;
2142 unsigned long x = 0;
2143 struct page *page;
2144
2145 spin_lock_irqsave(&n->list_lock, flags);
2146 list_for_each_entry(page, &n->partial, lru)
2147 x += get_count(page);
2148 spin_unlock_irqrestore(&n->list_lock, flags);
2149 return x;
2150 }
2151 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2152
2153 static noinline void
2154 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2155 {
2156 #ifdef CONFIG_SLUB_DEBUG
2157 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2158 DEFAULT_RATELIMIT_BURST);
2159 int node;
2160 struct kmem_cache_node *n;
2161
2162 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2163 return;
2164
2165 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2166 nid, gfpflags);
2167 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2168 s->name, s->object_size, s->size, oo_order(s->oo),
2169 oo_order(s->min));
2170
2171 if (oo_order(s->min) > get_order(s->object_size))
2172 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2173 s->name);
2174
2175 for_each_kmem_cache_node(s, node, n) {
2176 unsigned long nr_slabs;
2177 unsigned long nr_objs;
2178 unsigned long nr_free;
2179
2180 nr_free = count_partial(n, count_free);
2181 nr_slabs = node_nr_slabs(n);
2182 nr_objs = node_nr_objs(n);
2183
2184 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2185 node, nr_slabs, nr_objs, nr_free);
2186 }
2187 #endif
2188 }
2189
2190 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2191 int node, struct kmem_cache_cpu **pc)
2192 {
2193 void *freelist;
2194 struct kmem_cache_cpu *c = *pc;
2195 struct page *page;
2196
2197 freelist = get_partial(s, flags, node, c);
2198
2199 if (freelist)
2200 return freelist;
2201
2202 page = new_slab(s, flags, node);
2203 if (page) {
2204 c = raw_cpu_ptr(s->cpu_slab);
2205 if (c->page)
2206 flush_slab(s, c);
2207
2208 /*
2209 * No other reference to the page yet so we can
2210 * muck around with it freely without cmpxchg
2211 */
2212 freelist = page->freelist;
2213 page->freelist = NULL;
2214
2215 stat(s, ALLOC_SLAB);
2216 c->page = page;
2217 *pc = c;
2218 } else
2219 freelist = NULL;
2220
2221 return freelist;
2222 }
2223
2224 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2225 {
2226 if (unlikely(PageSlabPfmemalloc(page)))
2227 return gfp_pfmemalloc_allowed(gfpflags);
2228
2229 return true;
2230 }
2231
2232 /*
2233 * Check the page->freelist of a page and either transfer the freelist to the
2234 * per cpu freelist or deactivate the page.
2235 *
2236 * The page is still frozen if the return value is not NULL.
2237 *
2238 * If this function returns NULL then the page has been unfrozen.
2239 *
2240 * This function must be called with interrupt disabled.
2241 */
2242 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2243 {
2244 struct page new;
2245 unsigned long counters;
2246 void *freelist;
2247
2248 do {
2249 freelist = page->freelist;
2250 counters = page->counters;
2251
2252 new.counters = counters;
2253 VM_BUG_ON(!new.frozen);
2254
2255 new.inuse = page->objects;
2256 new.frozen = freelist != NULL;
2257
2258 } while (!__cmpxchg_double_slab(s, page,
2259 freelist, counters,
2260 NULL, new.counters,
2261 "get_freelist"));
2262
2263 return freelist;
2264 }
2265
2266 /*
2267 * Slow path. The lockless freelist is empty or we need to perform
2268 * debugging duties.
2269 *
2270 * Processing is still very fast if new objects have been freed to the
2271 * regular freelist. In that case we simply take over the regular freelist
2272 * as the lockless freelist and zap the regular freelist.
2273 *
2274 * If that is not working then we fall back to the partial lists. We take the
2275 * first element of the freelist as the object to allocate now and move the
2276 * rest of the freelist to the lockless freelist.
2277 *
2278 * And if we were unable to get a new slab from the partial slab lists then
2279 * we need to allocate a new slab. This is the slowest path since it involves
2280 * a call to the page allocator and the setup of a new slab.
2281 */
2282 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2283 unsigned long addr, struct kmem_cache_cpu *c)
2284 {
2285 void *freelist;
2286 struct page *page;
2287 unsigned long flags;
2288
2289 local_irq_save(flags);
2290 #ifdef CONFIG_PREEMPT
2291 /*
2292 * We may have been preempted and rescheduled on a different
2293 * cpu before disabling interrupts. Need to reload cpu area
2294 * pointer.
2295 */
2296 c = this_cpu_ptr(s->cpu_slab);
2297 #endif
2298
2299 page = c->page;
2300 if (!page)
2301 goto new_slab;
2302 redo:
2303
2304 if (unlikely(!node_match(page, node))) {
2305 stat(s, ALLOC_NODE_MISMATCH);
2306 deactivate_slab(s, page, c->freelist);
2307 c->page = NULL;
2308 c->freelist = NULL;
2309 goto new_slab;
2310 }
2311
2312 /*
2313 * By rights, we should be searching for a slab page that was
2314 * PFMEMALLOC but right now, we are losing the pfmemalloc
2315 * information when the page leaves the per-cpu allocator
2316 */
2317 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2318 deactivate_slab(s, page, c->freelist);
2319 c->page = NULL;
2320 c->freelist = NULL;
2321 goto new_slab;
2322 }
2323
2324 /* must check again c->freelist in case of cpu migration or IRQ */
2325 freelist = c->freelist;
2326 if (freelist)
2327 goto load_freelist;
2328
2329 freelist = get_freelist(s, page);
2330
2331 if (!freelist) {
2332 c->page = NULL;
2333 stat(s, DEACTIVATE_BYPASS);
2334 goto new_slab;
2335 }
2336
2337 stat(s, ALLOC_REFILL);
2338
2339 load_freelist:
2340 /*
2341 * freelist is pointing to the list of objects to be used.
2342 * page is pointing to the page from which the objects are obtained.
2343 * That page must be frozen for per cpu allocations to work.
2344 */
2345 VM_BUG_ON(!c->page->frozen);
2346 c->freelist = get_freepointer(s, freelist);
2347 c->tid = next_tid(c->tid);
2348 local_irq_restore(flags);
2349 return freelist;
2350
2351 new_slab:
2352
2353 if (c->partial) {
2354 page = c->page = c->partial;
2355 c->partial = page->next;
2356 stat(s, CPU_PARTIAL_ALLOC);
2357 c->freelist = NULL;
2358 goto redo;
2359 }
2360
2361 freelist = new_slab_objects(s, gfpflags, node, &c);
2362
2363 if (unlikely(!freelist)) {
2364 slab_out_of_memory(s, gfpflags, node);
2365 local_irq_restore(flags);
2366 return NULL;
2367 }
2368
2369 page = c->page;
2370 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2371 goto load_freelist;
2372
2373 /* Only entered in the debug case */
2374 if (kmem_cache_debug(s) &&
2375 !alloc_debug_processing(s, page, freelist, addr))
2376 goto new_slab; /* Slab failed checks. Next slab needed */
2377
2378 deactivate_slab(s, page, get_freepointer(s, freelist));
2379 c->page = NULL;
2380 c->freelist = NULL;
2381 local_irq_restore(flags);
2382 return freelist;
2383 }
2384
2385 /*
2386 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2387 * have the fastpath folded into their functions. So no function call
2388 * overhead for requests that can be satisfied on the fastpath.
2389 *
2390 * The fastpath works by first checking if the lockless freelist can be used.
2391 * If not then __slab_alloc is called for slow processing.
2392 *
2393 * Otherwise we can simply pick the next object from the lockless free list.
2394 */
2395 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2396 gfp_t gfpflags, int node, unsigned long addr)
2397 {
2398 void **object;
2399 struct kmem_cache_cpu *c;
2400 struct page *page;
2401 unsigned long tid;
2402
2403 if (slab_pre_alloc_hook(s, gfpflags))
2404 return NULL;
2405
2406 s = memcg_kmem_get_cache(s, gfpflags);
2407 redo:
2408 /*
2409 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2410 * enabled. We may switch back and forth between cpus while
2411 * reading from one cpu area. That does not matter as long
2412 * as we end up on the original cpu again when doing the cmpxchg.
2413 *
2414 * Preemption is disabled for the retrieval of the tid because that
2415 * must occur from the current processor. We cannot allow rescheduling
2416 * on a different processor between the determination of the pointer
2417 * and the retrieval of the tid.
2418 */
2419 preempt_disable();
2420 c = this_cpu_ptr(s->cpu_slab);
2421
2422 /*
2423 * The transaction ids are globally unique per cpu and per operation on
2424 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2425 * occurs on the right processor and that there was no operation on the
2426 * linked list in between.
2427 */
2428 tid = c->tid;
2429 preempt_enable();
2430
2431 object = c->freelist;
2432 page = c->page;
2433 if (unlikely(!object || !node_match(page, node))) {
2434 object = __slab_alloc(s, gfpflags, node, addr, c);
2435 stat(s, ALLOC_SLOWPATH);
2436 } else {
2437 void *next_object = get_freepointer_safe(s, object);
2438
2439 /*
2440 * The cmpxchg will only match if there was no additional
2441 * operation and if we are on the right processor.
2442 *
2443 * The cmpxchg does the following atomically (without lock
2444 * semantics!)
2445 * 1. Relocate first pointer to the current per cpu area.
2446 * 2. Verify that tid and freelist have not been changed
2447 * 3. If they were not changed replace tid and freelist
2448 *
2449 * Since this is without lock semantics the protection is only
2450 * against code executing on this cpu *not* from access by
2451 * other cpus.
2452 */
2453 if (unlikely(!this_cpu_cmpxchg_double(
2454 s->cpu_slab->freelist, s->cpu_slab->tid,
2455 object, tid,
2456 next_object, next_tid(tid)))) {
2457
2458 note_cmpxchg_failure("slab_alloc", s, tid);
2459 goto redo;
2460 }
2461 prefetch_freepointer(s, next_object);
2462 stat(s, ALLOC_FASTPATH);
2463 }
2464
2465 if (unlikely(gfpflags & __GFP_ZERO) && object)
2466 memset(object, 0, s->object_size);
2467
2468 slab_post_alloc_hook(s, gfpflags, object);
2469
2470 return object;
2471 }
2472
2473 static __always_inline void *slab_alloc(struct kmem_cache *s,
2474 gfp_t gfpflags, unsigned long addr)
2475 {
2476 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2477 }
2478
2479 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2480 {
2481 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2482
2483 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2484 s->size, gfpflags);
2485
2486 return ret;
2487 }
2488 EXPORT_SYMBOL(kmem_cache_alloc);
2489
2490 #ifdef CONFIG_TRACING
2491 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2492 {
2493 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2494 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2495 return ret;
2496 }
2497 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2498 #endif
2499
2500 #ifdef CONFIG_NUMA
2501 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2502 {
2503 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2504
2505 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2506 s->object_size, s->size, gfpflags, node);
2507
2508 return ret;
2509 }
2510 EXPORT_SYMBOL(kmem_cache_alloc_node);
2511
2512 #ifdef CONFIG_TRACING
2513 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2514 gfp_t gfpflags,
2515 int node, size_t size)
2516 {
2517 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2518
2519 trace_kmalloc_node(_RET_IP_, ret,
2520 size, s->size, gfpflags, node);
2521 return ret;
2522 }
2523 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2524 #endif
2525 #endif
2526
2527 /*
2528 * Slow patch handling. This may still be called frequently since objects
2529 * have a longer lifetime than the cpu slabs in most processing loads.
2530 *
2531 * So we still attempt to reduce cache line usage. Just take the slab
2532 * lock and free the item. If there is no additional partial page
2533 * handling required then we can return immediately.
2534 */
2535 static void __slab_free(struct kmem_cache *s, struct page *page,
2536 void *x, unsigned long addr)
2537 {
2538 void *prior;
2539 void **object = (void *)x;
2540 int was_frozen;
2541 struct page new;
2542 unsigned long counters;
2543 struct kmem_cache_node *n = NULL;
2544 unsigned long uninitialized_var(flags);
2545
2546 stat(s, FREE_SLOWPATH);
2547
2548 if (kmem_cache_debug(s) &&
2549 !(n = free_debug_processing(s, page, x, addr, &flags)))
2550 return;
2551
2552 do {
2553 if (unlikely(n)) {
2554 spin_unlock_irqrestore(&n->list_lock, flags);
2555 n = NULL;
2556 }
2557 prior = page->freelist;
2558 counters = page->counters;
2559 set_freepointer(s, object, prior);
2560 new.counters = counters;
2561 was_frozen = new.frozen;
2562 new.inuse--;
2563 if ((!new.inuse || !prior) && !was_frozen) {
2564
2565 if (kmem_cache_has_cpu_partial(s) && !prior) {
2566
2567 /*
2568 * Slab was on no list before and will be
2569 * partially empty
2570 * We can defer the list move and instead
2571 * freeze it.
2572 */
2573 new.frozen = 1;
2574
2575 } else { /* Needs to be taken off a list */
2576
2577 n = get_node(s, page_to_nid(page));
2578 /*
2579 * Speculatively acquire the list_lock.
2580 * If the cmpxchg does not succeed then we may
2581 * drop the list_lock without any processing.
2582 *
2583 * Otherwise the list_lock will synchronize with
2584 * other processors updating the list of slabs.
2585 */
2586 spin_lock_irqsave(&n->list_lock, flags);
2587
2588 }
2589 }
2590
2591 } while (!cmpxchg_double_slab(s, page,
2592 prior, counters,
2593 object, new.counters,
2594 "__slab_free"));
2595
2596 if (likely(!n)) {
2597
2598 /*
2599 * If we just froze the page then put it onto the
2600 * per cpu partial list.
2601 */
2602 if (new.frozen && !was_frozen) {
2603 put_cpu_partial(s, page, 1);
2604 stat(s, CPU_PARTIAL_FREE);
2605 }
2606 /*
2607 * The list lock was not taken therefore no list
2608 * activity can be necessary.
2609 */
2610 if (was_frozen)
2611 stat(s, FREE_FROZEN);
2612 return;
2613 }
2614
2615 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2616 goto slab_empty;
2617
2618 /*
2619 * Objects left in the slab. If it was not on the partial list before
2620 * then add it.
2621 */
2622 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2623 if (kmem_cache_debug(s))
2624 remove_full(s, n, page);
2625 add_partial(n, page, DEACTIVATE_TO_TAIL);
2626 stat(s, FREE_ADD_PARTIAL);
2627 }
2628 spin_unlock_irqrestore(&n->list_lock, flags);
2629 return;
2630
2631 slab_empty:
2632 if (prior) {
2633 /*
2634 * Slab on the partial list.
2635 */
2636 remove_partial(n, page);
2637 stat(s, FREE_REMOVE_PARTIAL);
2638 } else {
2639 /* Slab must be on the full list */
2640 remove_full(s, n, page);
2641 }
2642
2643 spin_unlock_irqrestore(&n->list_lock, flags);
2644 stat(s, FREE_SLAB);
2645 discard_slab(s, page);
2646 }
2647
2648 /*
2649 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2650 * can perform fastpath freeing without additional function calls.
2651 *
2652 * The fastpath is only possible if we are freeing to the current cpu slab
2653 * of this processor. This typically the case if we have just allocated
2654 * the item before.
2655 *
2656 * If fastpath is not possible then fall back to __slab_free where we deal
2657 * with all sorts of special processing.
2658 */
2659 static __always_inline void slab_free(struct kmem_cache *s,
2660 struct page *page, void *x, unsigned long addr)
2661 {
2662 void **object = (void *)x;
2663 struct kmem_cache_cpu *c;
2664 unsigned long tid;
2665
2666 slab_free_hook(s, x);
2667
2668 redo:
2669 /*
2670 * Determine the currently cpus per cpu slab.
2671 * The cpu may change afterward. However that does not matter since
2672 * data is retrieved via this pointer. If we are on the same cpu
2673 * during the cmpxchg then the free will succedd.
2674 */
2675 preempt_disable();
2676 c = this_cpu_ptr(s->cpu_slab);
2677
2678 tid = c->tid;
2679 preempt_enable();
2680
2681 if (likely(page == c->page)) {
2682 set_freepointer(s, object, c->freelist);
2683
2684 if (unlikely(!this_cpu_cmpxchg_double(
2685 s->cpu_slab->freelist, s->cpu_slab->tid,
2686 c->freelist, tid,
2687 object, next_tid(tid)))) {
2688
2689 note_cmpxchg_failure("slab_free", s, tid);
2690 goto redo;
2691 }
2692 stat(s, FREE_FASTPATH);
2693 } else
2694 __slab_free(s, page, x, addr);
2695
2696 }
2697
2698 void kmem_cache_free(struct kmem_cache *s, void *x)
2699 {
2700 s = cache_from_obj(s, x);
2701 if (!s)
2702 return;
2703 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2704 trace_kmem_cache_free(_RET_IP_, x);
2705 }
2706 EXPORT_SYMBOL(kmem_cache_free);
2707
2708 /*
2709 * Object placement in a slab is made very easy because we always start at
2710 * offset 0. If we tune the size of the object to the alignment then we can
2711 * get the required alignment by putting one properly sized object after
2712 * another.
2713 *
2714 * Notice that the allocation order determines the sizes of the per cpu
2715 * caches. Each processor has always one slab available for allocations.
2716 * Increasing the allocation order reduces the number of times that slabs
2717 * must be moved on and off the partial lists and is therefore a factor in
2718 * locking overhead.
2719 */
2720
2721 /*
2722 * Mininum / Maximum order of slab pages. This influences locking overhead
2723 * and slab fragmentation. A higher order reduces the number of partial slabs
2724 * and increases the number of allocations possible without having to
2725 * take the list_lock.
2726 */
2727 static int slub_min_order;
2728 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2729 static int slub_min_objects;
2730
2731 /*
2732 * Merge control. If this is set then no merging of slab caches will occur.
2733 * (Could be removed. This was introduced to pacify the merge skeptics.)
2734 */
2735 static int slub_nomerge;
2736
2737 /*
2738 * Calculate the order of allocation given an slab object size.
2739 *
2740 * The order of allocation has significant impact on performance and other
2741 * system components. Generally order 0 allocations should be preferred since
2742 * order 0 does not cause fragmentation in the page allocator. Larger objects
2743 * be problematic to put into order 0 slabs because there may be too much
2744 * unused space left. We go to a higher order if more than 1/16th of the slab
2745 * would be wasted.
2746 *
2747 * In order to reach satisfactory performance we must ensure that a minimum
2748 * number of objects is in one slab. Otherwise we may generate too much
2749 * activity on the partial lists which requires taking the list_lock. This is
2750 * less a concern for large slabs though which are rarely used.
2751 *
2752 * slub_max_order specifies the order where we begin to stop considering the
2753 * number of objects in a slab as critical. If we reach slub_max_order then
2754 * we try to keep the page order as low as possible. So we accept more waste
2755 * of space in favor of a small page order.
2756 *
2757 * Higher order allocations also allow the placement of more objects in a
2758 * slab and thereby reduce object handling overhead. If the user has
2759 * requested a higher mininum order then we start with that one instead of
2760 * the smallest order which will fit the object.
2761 */
2762 static inline int slab_order(int size, int min_objects,
2763 int max_order, int fract_leftover, int reserved)
2764 {
2765 int order;
2766 int rem;
2767 int min_order = slub_min_order;
2768
2769 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2770 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2771
2772 for (order = max(min_order,
2773 fls(min_objects * size - 1) - PAGE_SHIFT);
2774 order <= max_order; order++) {
2775
2776 unsigned long slab_size = PAGE_SIZE << order;
2777
2778 if (slab_size < min_objects * size + reserved)
2779 continue;
2780
2781 rem = (slab_size - reserved) % size;
2782
2783 if (rem <= slab_size / fract_leftover)
2784 break;
2785
2786 }
2787
2788 return order;
2789 }
2790
2791 static inline int calculate_order(int size, int reserved)
2792 {
2793 int order;
2794 int min_objects;
2795 int fraction;
2796 int max_objects;
2797
2798 /*
2799 * Attempt to find best configuration for a slab. This
2800 * works by first attempting to generate a layout with
2801 * the best configuration and backing off gradually.
2802 *
2803 * First we reduce the acceptable waste in a slab. Then
2804 * we reduce the minimum objects required in a slab.
2805 */
2806 min_objects = slub_min_objects;
2807 if (!min_objects)
2808 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2809 max_objects = order_objects(slub_max_order, size, reserved);
2810 min_objects = min(min_objects, max_objects);
2811
2812 while (min_objects > 1) {
2813 fraction = 16;
2814 while (fraction >= 4) {
2815 order = slab_order(size, min_objects,
2816 slub_max_order, fraction, reserved);
2817 if (order <= slub_max_order)
2818 return order;
2819 fraction /= 2;
2820 }
2821 min_objects--;
2822 }
2823
2824 /*
2825 * We were unable to place multiple objects in a slab. Now
2826 * lets see if we can place a single object there.
2827 */
2828 order = slab_order(size, 1, slub_max_order, 1, reserved);
2829 if (order <= slub_max_order)
2830 return order;
2831
2832 /*
2833 * Doh this slab cannot be placed using slub_max_order.
2834 */
2835 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2836 if (order < MAX_ORDER)
2837 return order;
2838 return -ENOSYS;
2839 }
2840
2841 static void
2842 init_kmem_cache_node(struct kmem_cache_node *n)
2843 {
2844 n->nr_partial = 0;
2845 spin_lock_init(&n->list_lock);
2846 INIT_LIST_HEAD(&n->partial);
2847 #ifdef CONFIG_SLUB_DEBUG
2848 atomic_long_set(&n->nr_slabs, 0);
2849 atomic_long_set(&n->total_objects, 0);
2850 INIT_LIST_HEAD(&n->full);
2851 #endif
2852 }
2853
2854 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2855 {
2856 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2857 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2858
2859 /*
2860 * Must align to double word boundary for the double cmpxchg
2861 * instructions to work; see __pcpu_double_call_return_bool().
2862 */
2863 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2864 2 * sizeof(void *));
2865
2866 if (!s->cpu_slab)
2867 return 0;
2868
2869 init_kmem_cache_cpus(s);
2870
2871 return 1;
2872 }
2873
2874 static struct kmem_cache *kmem_cache_node;
2875
2876 /*
2877 * No kmalloc_node yet so do it by hand. We know that this is the first
2878 * slab on the node for this slabcache. There are no concurrent accesses
2879 * possible.
2880 *
2881 * Note that this function only works on the kmem_cache_node
2882 * when allocating for the kmem_cache_node. This is used for bootstrapping
2883 * memory on a fresh node that has no slab structures yet.
2884 */
2885 static void early_kmem_cache_node_alloc(int node)
2886 {
2887 struct page *page;
2888 struct kmem_cache_node *n;
2889
2890 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2891
2892 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2893
2894 BUG_ON(!page);
2895 if (page_to_nid(page) != node) {
2896 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2897 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2898 }
2899
2900 n = page->freelist;
2901 BUG_ON(!n);
2902 page->freelist = get_freepointer(kmem_cache_node, n);
2903 page->inuse = 1;
2904 page->frozen = 0;
2905 kmem_cache_node->node[node] = n;
2906 #ifdef CONFIG_SLUB_DEBUG
2907 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2908 init_tracking(kmem_cache_node, n);
2909 #endif
2910 init_kmem_cache_node(n);
2911 inc_slabs_node(kmem_cache_node, node, page->objects);
2912
2913 /*
2914 * No locks need to be taken here as it has just been
2915 * initialized and there is no concurrent access.
2916 */
2917 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2918 }
2919
2920 static void free_kmem_cache_nodes(struct kmem_cache *s)
2921 {
2922 int node;
2923 struct kmem_cache_node *n;
2924
2925 for_each_kmem_cache_node(s, node, n) {
2926 kmem_cache_free(kmem_cache_node, n);
2927 s->node[node] = NULL;
2928 }
2929 }
2930
2931 static int init_kmem_cache_nodes(struct kmem_cache *s)
2932 {
2933 int node;
2934
2935 for_each_node_state(node, N_NORMAL_MEMORY) {
2936 struct kmem_cache_node *n;
2937
2938 if (slab_state == DOWN) {
2939 early_kmem_cache_node_alloc(node);
2940 continue;
2941 }
2942 n = kmem_cache_alloc_node(kmem_cache_node,
2943 GFP_KERNEL, node);
2944
2945 if (!n) {
2946 free_kmem_cache_nodes(s);
2947 return 0;
2948 }
2949
2950 s->node[node] = n;
2951 init_kmem_cache_node(n);
2952 }
2953 return 1;
2954 }
2955
2956 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2957 {
2958 if (min < MIN_PARTIAL)
2959 min = MIN_PARTIAL;
2960 else if (min > MAX_PARTIAL)
2961 min = MAX_PARTIAL;
2962 s->min_partial = min;
2963 }
2964
2965 /*
2966 * calculate_sizes() determines the order and the distribution of data within
2967 * a slab object.
2968 */
2969 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2970 {
2971 unsigned long flags = s->flags;
2972 unsigned long size = s->object_size;
2973 int order;
2974
2975 /*
2976 * Round up object size to the next word boundary. We can only
2977 * place the free pointer at word boundaries and this determines
2978 * the possible location of the free pointer.
2979 */
2980 size = ALIGN(size, sizeof(void *));
2981
2982 #ifdef CONFIG_SLUB_DEBUG
2983 /*
2984 * Determine if we can poison the object itself. If the user of
2985 * the slab may touch the object after free or before allocation
2986 * then we should never poison the object itself.
2987 */
2988 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2989 !s->ctor)
2990 s->flags |= __OBJECT_POISON;
2991 else
2992 s->flags &= ~__OBJECT_POISON;
2993
2994
2995 /*
2996 * If we are Redzoning then check if there is some space between the
2997 * end of the object and the free pointer. If not then add an
2998 * additional word to have some bytes to store Redzone information.
2999 */
3000 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3001 size += sizeof(void *);
3002 #endif
3003
3004 /*
3005 * With that we have determined the number of bytes in actual use
3006 * by the object. This is the potential offset to the free pointer.
3007 */
3008 s->inuse = size;
3009
3010 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3011 s->ctor)) {
3012 /*
3013 * Relocate free pointer after the object if it is not
3014 * permitted to overwrite the first word of the object on
3015 * kmem_cache_free.
3016 *
3017 * This is the case if we do RCU, have a constructor or
3018 * destructor or are poisoning the objects.
3019 */
3020 s->offset = size;
3021 size += sizeof(void *);
3022 }
3023
3024 #ifdef CONFIG_SLUB_DEBUG
3025 if (flags & SLAB_STORE_USER)
3026 /*
3027 * Need to store information about allocs and frees after
3028 * the object.
3029 */
3030 size += 2 * sizeof(struct track);
3031
3032 if (flags & SLAB_RED_ZONE)
3033 /*
3034 * Add some empty padding so that we can catch
3035 * overwrites from earlier objects rather than let
3036 * tracking information or the free pointer be
3037 * corrupted if a user writes before the start
3038 * of the object.
3039 */
3040 size += sizeof(void *);
3041 #endif
3042
3043 /*
3044 * SLUB stores one object immediately after another beginning from
3045 * offset 0. In order to align the objects we have to simply size
3046 * each object to conform to the alignment.
3047 */
3048 size = ALIGN(size, s->align);
3049 s->size = size;
3050 if (forced_order >= 0)
3051 order = forced_order;
3052 else
3053 order = calculate_order(size, s->reserved);
3054
3055 if (order < 0)
3056 return 0;
3057
3058 s->allocflags = 0;
3059 if (order)
3060 s->allocflags |= __GFP_COMP;
3061
3062 if (s->flags & SLAB_CACHE_DMA)
3063 s->allocflags |= GFP_DMA;
3064
3065 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3066 s->allocflags |= __GFP_RECLAIMABLE;
3067
3068 /*
3069 * Determine the number of objects per slab
3070 */
3071 s->oo = oo_make(order, size, s->reserved);
3072 s->min = oo_make(get_order(size), size, s->reserved);
3073 if (oo_objects(s->oo) > oo_objects(s->max))
3074 s->max = s->oo;
3075
3076 return !!oo_objects(s->oo);
3077 }
3078
3079 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3080 {
3081 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3082 s->reserved = 0;
3083
3084 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3085 s->reserved = sizeof(struct rcu_head);
3086
3087 if (!calculate_sizes(s, -1))
3088 goto error;
3089 if (disable_higher_order_debug) {
3090 /*
3091 * Disable debugging flags that store metadata if the min slab
3092 * order increased.
3093 */
3094 if (get_order(s->size) > get_order(s->object_size)) {
3095 s->flags &= ~DEBUG_METADATA_FLAGS;
3096 s->offset = 0;
3097 if (!calculate_sizes(s, -1))
3098 goto error;
3099 }
3100 }
3101
3102 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3103 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3104 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3105 /* Enable fast mode */
3106 s->flags |= __CMPXCHG_DOUBLE;
3107 #endif
3108
3109 /*
3110 * The larger the object size is, the more pages we want on the partial
3111 * list to avoid pounding the page allocator excessively.
3112 */
3113 set_min_partial(s, ilog2(s->size) / 2);
3114
3115 /*
3116 * cpu_partial determined the maximum number of objects kept in the
3117 * per cpu partial lists of a processor.
3118 *
3119 * Per cpu partial lists mainly contain slabs that just have one
3120 * object freed. If they are used for allocation then they can be
3121 * filled up again with minimal effort. The slab will never hit the
3122 * per node partial lists and therefore no locking will be required.
3123 *
3124 * This setting also determines
3125 *
3126 * A) The number of objects from per cpu partial slabs dumped to the
3127 * per node list when we reach the limit.
3128 * B) The number of objects in cpu partial slabs to extract from the
3129 * per node list when we run out of per cpu objects. We only fetch
3130 * 50% to keep some capacity around for frees.
3131 */
3132 if (!kmem_cache_has_cpu_partial(s))
3133 s->cpu_partial = 0;
3134 else if (s->size >= PAGE_SIZE)
3135 s->cpu_partial = 2;
3136 else if (s->size >= 1024)
3137 s->cpu_partial = 6;
3138 else if (s->size >= 256)
3139 s->cpu_partial = 13;
3140 else
3141 s->cpu_partial = 30;
3142
3143 #ifdef CONFIG_NUMA
3144 s->remote_node_defrag_ratio = 1000;
3145 #endif
3146 if (!init_kmem_cache_nodes(s))
3147 goto error;
3148
3149 if (alloc_kmem_cache_cpus(s))
3150 return 0;
3151
3152 free_kmem_cache_nodes(s);
3153 error:
3154 if (flags & SLAB_PANIC)
3155 panic("Cannot create slab %s size=%lu realsize=%u "
3156 "order=%u offset=%u flags=%lx\n",
3157 s->name, (unsigned long)s->size, s->size,
3158 oo_order(s->oo), s->offset, flags);
3159 return -EINVAL;
3160 }
3161
3162 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3163 const char *text)
3164 {
3165 #ifdef CONFIG_SLUB_DEBUG
3166 void *addr = page_address(page);
3167 void *p;
3168 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3169 sizeof(long), GFP_ATOMIC);
3170 if (!map)
3171 return;
3172 slab_err(s, page, text, s->name);
3173 slab_lock(page);
3174
3175 get_map(s, page, map);
3176 for_each_object(p, s, addr, page->objects) {
3177
3178 if (!test_bit(slab_index(p, s, addr), map)) {
3179 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3180 print_tracking(s, p);
3181 }
3182 }
3183 slab_unlock(page);
3184 kfree(map);
3185 #endif
3186 }
3187
3188 /*
3189 * Attempt to free all partial slabs on a node.
3190 * This is called from kmem_cache_close(). We must be the last thread
3191 * using the cache and therefore we do not need to lock anymore.
3192 */
3193 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3194 {
3195 struct page *page, *h;
3196
3197 list_for_each_entry_safe(page, h, &n->partial, lru) {
3198 if (!page->inuse) {
3199 __remove_partial(n, page);
3200 discard_slab(s, page);
3201 } else {
3202 list_slab_objects(s, page,
3203 "Objects remaining in %s on kmem_cache_close()");
3204 }
3205 }
3206 }
3207
3208 /*
3209 * Release all resources used by a slab cache.
3210 */
3211 static inline int kmem_cache_close(struct kmem_cache *s)
3212 {
3213 int node;
3214 struct kmem_cache_node *n;
3215
3216 flush_all(s);
3217 /* Attempt to free all objects */
3218 for_each_kmem_cache_node(s, node, n) {
3219 free_partial(s, n);
3220 if (n->nr_partial || slabs_node(s, node))
3221 return 1;
3222 }
3223 free_percpu(s->cpu_slab);
3224 free_kmem_cache_nodes(s);
3225 return 0;
3226 }
3227
3228 int __kmem_cache_shutdown(struct kmem_cache *s)
3229 {
3230 return kmem_cache_close(s);
3231 }
3232
3233 /********************************************************************
3234 * Kmalloc subsystem
3235 *******************************************************************/
3236
3237 static int __init setup_slub_min_order(char *str)
3238 {
3239 get_option(&str, &slub_min_order);
3240
3241 return 1;
3242 }
3243
3244 __setup("slub_min_order=", setup_slub_min_order);
3245
3246 static int __init setup_slub_max_order(char *str)
3247 {
3248 get_option(&str, &slub_max_order);
3249 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3250
3251 return 1;
3252 }
3253
3254 __setup("slub_max_order=", setup_slub_max_order);
3255
3256 static int __init setup_slub_min_objects(char *str)
3257 {
3258 get_option(&str, &slub_min_objects);
3259
3260 return 1;
3261 }
3262
3263 __setup("slub_min_objects=", setup_slub_min_objects);
3264
3265 static int __init setup_slub_nomerge(char *str)
3266 {
3267 slub_nomerge = 1;
3268 return 1;
3269 }
3270
3271 __setup("slub_nomerge", setup_slub_nomerge);
3272
3273 void *__kmalloc(size_t size, gfp_t flags)
3274 {
3275 struct kmem_cache *s;
3276 void *ret;
3277
3278 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3279 return kmalloc_large(size, flags);
3280
3281 s = kmalloc_slab(size, flags);
3282
3283 if (unlikely(ZERO_OR_NULL_PTR(s)))
3284 return s;
3285
3286 ret = slab_alloc(s, flags, _RET_IP_);
3287
3288 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3289
3290 return ret;
3291 }
3292 EXPORT_SYMBOL(__kmalloc);
3293
3294 #ifdef CONFIG_NUMA
3295 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3296 {
3297 struct page *page;
3298 void *ptr = NULL;
3299
3300 flags |= __GFP_COMP | __GFP_NOTRACK;
3301 page = alloc_kmem_pages_node(node, flags, get_order(size));
3302 if (page)
3303 ptr = page_address(page);
3304
3305 kmalloc_large_node_hook(ptr, size, flags);
3306 return ptr;
3307 }
3308
3309 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3310 {
3311 struct kmem_cache *s;
3312 void *ret;
3313
3314 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3315 ret = kmalloc_large_node(size, flags, node);
3316
3317 trace_kmalloc_node(_RET_IP_, ret,
3318 size, PAGE_SIZE << get_order(size),
3319 flags, node);
3320
3321 return ret;
3322 }
3323
3324 s = kmalloc_slab(size, flags);
3325
3326 if (unlikely(ZERO_OR_NULL_PTR(s)))
3327 return s;
3328
3329 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3330
3331 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3332
3333 return ret;
3334 }
3335 EXPORT_SYMBOL(__kmalloc_node);
3336 #endif
3337
3338 size_t ksize(const void *object)
3339 {
3340 struct page *page;
3341
3342 if (unlikely(object == ZERO_SIZE_PTR))
3343 return 0;
3344
3345 page = virt_to_head_page(object);
3346
3347 if (unlikely(!PageSlab(page))) {
3348 WARN_ON(!PageCompound(page));
3349 return PAGE_SIZE << compound_order(page);
3350 }
3351
3352 return slab_ksize(page->slab_cache);
3353 }
3354 EXPORT_SYMBOL(ksize);
3355
3356 void kfree(const void *x)
3357 {
3358 struct page *page;
3359 void *object = (void *)x;
3360
3361 trace_kfree(_RET_IP_, x);
3362
3363 if (unlikely(ZERO_OR_NULL_PTR(x)))
3364 return;
3365
3366 page = virt_to_head_page(x);
3367 if (unlikely(!PageSlab(page))) {
3368 BUG_ON(!PageCompound(page));
3369 kfree_hook(x);
3370 __free_kmem_pages(page, compound_order(page));
3371 return;
3372 }
3373 slab_free(page->slab_cache, page, object, _RET_IP_);
3374 }
3375 EXPORT_SYMBOL(kfree);
3376
3377 /*
3378 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3379 * the remaining slabs by the number of items in use. The slabs with the
3380 * most items in use come first. New allocations will then fill those up
3381 * and thus they can be removed from the partial lists.
3382 *
3383 * The slabs with the least items are placed last. This results in them
3384 * being allocated from last increasing the chance that the last objects
3385 * are freed in them.
3386 */
3387 int __kmem_cache_shrink(struct kmem_cache *s)
3388 {
3389 int node;
3390 int i;
3391 struct kmem_cache_node *n;
3392 struct page *page;
3393 struct page *t;
3394 int objects = oo_objects(s->max);
3395 struct list_head *slabs_by_inuse =
3396 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3397 unsigned long flags;
3398
3399 if (!slabs_by_inuse)
3400 return -ENOMEM;
3401
3402 flush_all(s);
3403 for_each_kmem_cache_node(s, node, n) {
3404 if (!n->nr_partial)
3405 continue;
3406
3407 for (i = 0; i < objects; i++)
3408 INIT_LIST_HEAD(slabs_by_inuse + i);
3409
3410 spin_lock_irqsave(&n->list_lock, flags);
3411
3412 /*
3413 * Build lists indexed by the items in use in each slab.
3414 *
3415 * Note that concurrent frees may occur while we hold the
3416 * list_lock. page->inuse here is the upper limit.
3417 */
3418 list_for_each_entry_safe(page, t, &n->partial, lru) {
3419 list_move(&page->lru, slabs_by_inuse + page->inuse);
3420 if (!page->inuse)
3421 n->nr_partial--;
3422 }
3423
3424 /*
3425 * Rebuild the partial list with the slabs filled up most
3426 * first and the least used slabs at the end.
3427 */
3428 for (i = objects - 1; i > 0; i--)
3429 list_splice(slabs_by_inuse + i, n->partial.prev);
3430
3431 spin_unlock_irqrestore(&n->list_lock, flags);
3432
3433 /* Release empty slabs */
3434 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3435 discard_slab(s, page);
3436 }
3437
3438 kfree(slabs_by_inuse);
3439 return 0;
3440 }
3441
3442 static int slab_mem_going_offline_callback(void *arg)
3443 {
3444 struct kmem_cache *s;
3445
3446 mutex_lock(&slab_mutex);
3447 list_for_each_entry(s, &slab_caches, list)
3448 __kmem_cache_shrink(s);
3449 mutex_unlock(&slab_mutex);
3450
3451 return 0;
3452 }
3453
3454 static void slab_mem_offline_callback(void *arg)
3455 {
3456 struct kmem_cache_node *n;
3457 struct kmem_cache *s;
3458 struct memory_notify *marg = arg;
3459 int offline_node;
3460
3461 offline_node = marg->status_change_nid_normal;
3462
3463 /*
3464 * If the node still has available memory. we need kmem_cache_node
3465 * for it yet.
3466 */
3467 if (offline_node < 0)
3468 return;
3469
3470 mutex_lock(&slab_mutex);
3471 list_for_each_entry(s, &slab_caches, list) {
3472 n = get_node(s, offline_node);
3473 if (n) {
3474 /*
3475 * if n->nr_slabs > 0, slabs still exist on the node
3476 * that is going down. We were unable to free them,
3477 * and offline_pages() function shouldn't call this
3478 * callback. So, we must fail.
3479 */
3480 BUG_ON(slabs_node(s, offline_node));
3481
3482 s->node[offline_node] = NULL;
3483 kmem_cache_free(kmem_cache_node, n);
3484 }
3485 }
3486 mutex_unlock(&slab_mutex);
3487 }
3488
3489 static int slab_mem_going_online_callback(void *arg)
3490 {
3491 struct kmem_cache_node *n;
3492 struct kmem_cache *s;
3493 struct memory_notify *marg = arg;
3494 int nid = marg->status_change_nid_normal;
3495 int ret = 0;
3496
3497 /*
3498 * If the node's memory is already available, then kmem_cache_node is
3499 * already created. Nothing to do.
3500 */
3501 if (nid < 0)
3502 return 0;
3503
3504 /*
3505 * We are bringing a node online. No memory is available yet. We must
3506 * allocate a kmem_cache_node structure in order to bring the node
3507 * online.
3508 */
3509 mutex_lock(&slab_mutex);
3510 list_for_each_entry(s, &slab_caches, list) {
3511 /*
3512 * XXX: kmem_cache_alloc_node will fallback to other nodes
3513 * since memory is not yet available from the node that
3514 * is brought up.
3515 */
3516 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3517 if (!n) {
3518 ret = -ENOMEM;
3519 goto out;
3520 }
3521 init_kmem_cache_node(n);
3522 s->node[nid] = n;
3523 }
3524 out:
3525 mutex_unlock(&slab_mutex);
3526 return ret;
3527 }
3528
3529 static int slab_memory_callback(struct notifier_block *self,
3530 unsigned long action, void *arg)
3531 {
3532 int ret = 0;
3533
3534 switch (action) {
3535 case MEM_GOING_ONLINE:
3536 ret = slab_mem_going_online_callback(arg);
3537 break;
3538 case MEM_GOING_OFFLINE:
3539 ret = slab_mem_going_offline_callback(arg);
3540 break;
3541 case MEM_OFFLINE:
3542 case MEM_CANCEL_ONLINE:
3543 slab_mem_offline_callback(arg);
3544 break;
3545 case MEM_ONLINE:
3546 case MEM_CANCEL_OFFLINE:
3547 break;
3548 }
3549 if (ret)
3550 ret = notifier_from_errno(ret);
3551 else
3552 ret = NOTIFY_OK;
3553 return ret;
3554 }
3555
3556 static struct notifier_block slab_memory_callback_nb = {
3557 .notifier_call = slab_memory_callback,
3558 .priority = SLAB_CALLBACK_PRI,
3559 };
3560
3561 /********************************************************************
3562 * Basic setup of slabs
3563 *******************************************************************/
3564
3565 /*
3566 * Used for early kmem_cache structures that were allocated using
3567 * the page allocator. Allocate them properly then fix up the pointers
3568 * that may be pointing to the wrong kmem_cache structure.
3569 */
3570
3571 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3572 {
3573 int node;
3574 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3575 struct kmem_cache_node *n;
3576
3577 memcpy(s, static_cache, kmem_cache->object_size);
3578
3579 /*
3580 * This runs very early, and only the boot processor is supposed to be
3581 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3582 * IPIs around.
3583 */
3584 __flush_cpu_slab(s, smp_processor_id());
3585 for_each_kmem_cache_node(s, node, n) {
3586 struct page *p;
3587
3588 list_for_each_entry(p, &n->partial, lru)
3589 p->slab_cache = s;
3590
3591 #ifdef CONFIG_SLUB_DEBUG
3592 list_for_each_entry(p, &n->full, lru)
3593 p->slab_cache = s;
3594 #endif
3595 }
3596 list_add(&s->list, &slab_caches);
3597 return s;
3598 }
3599
3600 void __init kmem_cache_init(void)
3601 {
3602 static __initdata struct kmem_cache boot_kmem_cache,
3603 boot_kmem_cache_node;
3604
3605 if (debug_guardpage_minorder())
3606 slub_max_order = 0;
3607
3608 kmem_cache_node = &boot_kmem_cache_node;
3609 kmem_cache = &boot_kmem_cache;
3610
3611 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3612 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3613
3614 register_hotmemory_notifier(&slab_memory_callback_nb);
3615
3616 /* Able to allocate the per node structures */
3617 slab_state = PARTIAL;
3618
3619 create_boot_cache(kmem_cache, "kmem_cache",
3620 offsetof(struct kmem_cache, node) +
3621 nr_node_ids * sizeof(struct kmem_cache_node *),
3622 SLAB_HWCACHE_ALIGN);
3623
3624 kmem_cache = bootstrap(&boot_kmem_cache);
3625
3626 /*
3627 * Allocate kmem_cache_node properly from the kmem_cache slab.
3628 * kmem_cache_node is separately allocated so no need to
3629 * update any list pointers.
3630 */
3631 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3632
3633 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3634 create_kmalloc_caches(0);
3635
3636 #ifdef CONFIG_SMP
3637 register_cpu_notifier(&slab_notifier);
3638 #endif
3639
3640 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3641 cache_line_size(),
3642 slub_min_order, slub_max_order, slub_min_objects,
3643 nr_cpu_ids, nr_node_ids);
3644 }
3645
3646 void __init kmem_cache_init_late(void)
3647 {
3648 }
3649
3650 /*
3651 * Find a mergeable slab cache
3652 */
3653 static int slab_unmergeable(struct kmem_cache *s)
3654 {
3655 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3656 return 1;
3657
3658 if (!is_root_cache(s))
3659 return 1;
3660
3661 if (s->ctor)
3662 return 1;
3663
3664 /*
3665 * We may have set a slab to be unmergeable during bootstrap.
3666 */
3667 if (s->refcount < 0)
3668 return 1;
3669
3670 return 0;
3671 }
3672
3673 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3674 unsigned long flags, const char *name, void (*ctor)(void *))
3675 {
3676 struct kmem_cache *s;
3677
3678 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3679 return NULL;
3680
3681 if (ctor)
3682 return NULL;
3683
3684 size = ALIGN(size, sizeof(void *));
3685 align = calculate_alignment(flags, align, size);
3686 size = ALIGN(size, align);
3687 flags = kmem_cache_flags(size, flags, name, NULL);
3688
3689 list_for_each_entry(s, &slab_caches, list) {
3690 if (slab_unmergeable(s))
3691 continue;
3692
3693 if (size > s->size)
3694 continue;
3695
3696 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3697 continue;
3698 /*
3699 * Check if alignment is compatible.
3700 * Courtesy of Adrian Drzewiecki
3701 */
3702 if ((s->size & ~(align - 1)) != s->size)
3703 continue;
3704
3705 if (s->size - size >= sizeof(void *))
3706 continue;
3707
3708 return s;
3709 }
3710 return NULL;
3711 }
3712
3713 struct kmem_cache *
3714 __kmem_cache_alias(const char *name, size_t size, size_t align,
3715 unsigned long flags, void (*ctor)(void *))
3716 {
3717 struct kmem_cache *s;
3718
3719 s = find_mergeable(size, align, flags, name, ctor);
3720 if (s) {
3721 int i;
3722 struct kmem_cache *c;
3723
3724 s->refcount++;
3725
3726 /*
3727 * Adjust the object sizes so that we clear
3728 * the complete object on kzalloc.
3729 */
3730 s->object_size = max(s->object_size, (int)size);
3731 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3732
3733 for_each_memcg_cache_index(i) {
3734 c = cache_from_memcg_idx(s, i);
3735 if (!c)
3736 continue;
3737 c->object_size = s->object_size;
3738 c->inuse = max_t(int, c->inuse,
3739 ALIGN(size, sizeof(void *)));
3740 }
3741
3742 if (sysfs_slab_alias(s, name)) {
3743 s->refcount--;
3744 s = NULL;
3745 }
3746 }
3747
3748 return s;
3749 }
3750
3751 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3752 {
3753 int err;
3754
3755 err = kmem_cache_open(s, flags);
3756 if (err)
3757 return err;
3758
3759 /* Mutex is not taken during early boot */
3760 if (slab_state <= UP)
3761 return 0;
3762
3763 memcg_propagate_slab_attrs(s);
3764 err = sysfs_slab_add(s);
3765 if (err)
3766 kmem_cache_close(s);
3767
3768 return err;
3769 }
3770
3771 #ifdef CONFIG_SMP
3772 /*
3773 * Use the cpu notifier to insure that the cpu slabs are flushed when
3774 * necessary.
3775 */
3776 static int slab_cpuup_callback(struct notifier_block *nfb,
3777 unsigned long action, void *hcpu)
3778 {
3779 long cpu = (long)hcpu;
3780 struct kmem_cache *s;
3781 unsigned long flags;
3782
3783 switch (action) {
3784 case CPU_UP_CANCELED:
3785 case CPU_UP_CANCELED_FROZEN:
3786 case CPU_DEAD:
3787 case CPU_DEAD_FROZEN:
3788 mutex_lock(&slab_mutex);
3789 list_for_each_entry(s, &slab_caches, list) {
3790 local_irq_save(flags);
3791 __flush_cpu_slab(s, cpu);
3792 local_irq_restore(flags);
3793 }
3794 mutex_unlock(&slab_mutex);
3795 break;
3796 default:
3797 break;
3798 }
3799 return NOTIFY_OK;
3800 }
3801
3802 static struct notifier_block slab_notifier = {
3803 .notifier_call = slab_cpuup_callback
3804 };
3805
3806 #endif
3807
3808 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3809 {
3810 struct kmem_cache *s;
3811 void *ret;
3812
3813 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3814 return kmalloc_large(size, gfpflags);
3815
3816 s = kmalloc_slab(size, gfpflags);
3817
3818 if (unlikely(ZERO_OR_NULL_PTR(s)))
3819 return s;
3820
3821 ret = slab_alloc(s, gfpflags, caller);
3822
3823 /* Honor the call site pointer we received. */
3824 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3825
3826 return ret;
3827 }
3828
3829 #ifdef CONFIG_NUMA
3830 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3831 int node, unsigned long caller)
3832 {
3833 struct kmem_cache *s;
3834 void *ret;
3835
3836 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3837 ret = kmalloc_large_node(size, gfpflags, node);
3838
3839 trace_kmalloc_node(caller, ret,
3840 size, PAGE_SIZE << get_order(size),
3841 gfpflags, node);
3842
3843 return ret;
3844 }
3845
3846 s = kmalloc_slab(size, gfpflags);
3847
3848 if (unlikely(ZERO_OR_NULL_PTR(s)))
3849 return s;
3850
3851 ret = slab_alloc_node(s, gfpflags, node, caller);
3852
3853 /* Honor the call site pointer we received. */
3854 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3855
3856 return ret;
3857 }
3858 #endif
3859
3860 #ifdef CONFIG_SYSFS
3861 static int count_inuse(struct page *page)
3862 {
3863 return page->inuse;
3864 }
3865
3866 static int count_total(struct page *page)
3867 {
3868 return page->objects;
3869 }
3870 #endif
3871
3872 #ifdef CONFIG_SLUB_DEBUG
3873 static int validate_slab(struct kmem_cache *s, struct page *page,
3874 unsigned long *map)
3875 {
3876 void *p;
3877 void *addr = page_address(page);
3878
3879 if (!check_slab(s, page) ||
3880 !on_freelist(s, page, NULL))
3881 return 0;
3882
3883 /* Now we know that a valid freelist exists */
3884 bitmap_zero(map, page->objects);
3885
3886 get_map(s, page, map);
3887 for_each_object(p, s, addr, page->objects) {
3888 if (test_bit(slab_index(p, s, addr), map))
3889 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3890 return 0;
3891 }
3892
3893 for_each_object(p, s, addr, page->objects)
3894 if (!test_bit(slab_index(p, s, addr), map))
3895 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3896 return 0;
3897 return 1;
3898 }
3899
3900 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3901 unsigned long *map)
3902 {
3903 slab_lock(page);
3904 validate_slab(s, page, map);
3905 slab_unlock(page);
3906 }
3907
3908 static int validate_slab_node(struct kmem_cache *s,
3909 struct kmem_cache_node *n, unsigned long *map)
3910 {
3911 unsigned long count = 0;
3912 struct page *page;
3913 unsigned long flags;
3914
3915 spin_lock_irqsave(&n->list_lock, flags);
3916
3917 list_for_each_entry(page, &n->partial, lru) {
3918 validate_slab_slab(s, page, map);
3919 count++;
3920 }
3921 if (count != n->nr_partial)
3922 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3923 s->name, count, n->nr_partial);
3924
3925 if (!(s->flags & SLAB_STORE_USER))
3926 goto out;
3927
3928 list_for_each_entry(page, &n->full, lru) {
3929 validate_slab_slab(s, page, map);
3930 count++;
3931 }
3932 if (count != atomic_long_read(&n->nr_slabs))
3933 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3934 s->name, count, atomic_long_read(&n->nr_slabs));
3935
3936 out:
3937 spin_unlock_irqrestore(&n->list_lock, flags);
3938 return count;
3939 }
3940
3941 static long validate_slab_cache(struct kmem_cache *s)
3942 {
3943 int node;
3944 unsigned long count = 0;
3945 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3946 sizeof(unsigned long), GFP_KERNEL);
3947 struct kmem_cache_node *n;
3948
3949 if (!map)
3950 return -ENOMEM;
3951
3952 flush_all(s);
3953 for_each_kmem_cache_node(s, node, n)
3954 count += validate_slab_node(s, n, map);
3955 kfree(map);
3956 return count;
3957 }
3958 /*
3959 * Generate lists of code addresses where slabcache objects are allocated
3960 * and freed.
3961 */
3962
3963 struct location {
3964 unsigned long count;
3965 unsigned long addr;
3966 long long sum_time;
3967 long min_time;
3968 long max_time;
3969 long min_pid;
3970 long max_pid;
3971 DECLARE_BITMAP(cpus, NR_CPUS);
3972 nodemask_t nodes;
3973 };
3974
3975 struct loc_track {
3976 unsigned long max;
3977 unsigned long count;
3978 struct location *loc;
3979 };
3980
3981 static void free_loc_track(struct loc_track *t)
3982 {
3983 if (t->max)
3984 free_pages((unsigned long)t->loc,
3985 get_order(sizeof(struct location) * t->max));
3986 }
3987
3988 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3989 {
3990 struct location *l;
3991 int order;
3992
3993 order = get_order(sizeof(struct location) * max);
3994
3995 l = (void *)__get_free_pages(flags, order);
3996 if (!l)
3997 return 0;
3998
3999 if (t->count) {
4000 memcpy(l, t->loc, sizeof(struct location) * t->count);
4001 free_loc_track(t);
4002 }
4003 t->max = max;
4004 t->loc = l;
4005 return 1;
4006 }
4007
4008 static int add_location(struct loc_track *t, struct kmem_cache *s,
4009 const struct track *track)
4010 {
4011 long start, end, pos;
4012 struct location *l;
4013 unsigned long caddr;
4014 unsigned long age = jiffies - track->when;
4015
4016 start = -1;
4017 end = t->count;
4018
4019 for ( ; ; ) {
4020 pos = start + (end - start + 1) / 2;
4021
4022 /*
4023 * There is nothing at "end". If we end up there
4024 * we need to add something to before end.
4025 */
4026 if (pos == end)
4027 break;
4028
4029 caddr = t->loc[pos].addr;
4030 if (track->addr == caddr) {
4031
4032 l = &t->loc[pos];
4033 l->count++;
4034 if (track->when) {
4035 l->sum_time += age;
4036 if (age < l->min_time)
4037 l->min_time = age;
4038 if (age > l->max_time)
4039 l->max_time = age;
4040
4041 if (track->pid < l->min_pid)
4042 l->min_pid = track->pid;
4043 if (track->pid > l->max_pid)
4044 l->max_pid = track->pid;
4045
4046 cpumask_set_cpu(track->cpu,
4047 to_cpumask(l->cpus));
4048 }
4049 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4050 return 1;
4051 }
4052
4053 if (track->addr < caddr)
4054 end = pos;
4055 else
4056 start = pos;
4057 }
4058
4059 /*
4060 * Not found. Insert new tracking element.
4061 */
4062 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4063 return 0;
4064
4065 l = t->loc + pos;
4066 if (pos < t->count)
4067 memmove(l + 1, l,
4068 (t->count - pos) * sizeof(struct location));
4069 t->count++;
4070 l->count = 1;
4071 l->addr = track->addr;
4072 l->sum_time = age;
4073 l->min_time = age;
4074 l->max_time = age;
4075 l->min_pid = track->pid;
4076 l->max_pid = track->pid;
4077 cpumask_clear(to_cpumask(l->cpus));
4078 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4079 nodes_clear(l->nodes);
4080 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4081 return 1;
4082 }
4083
4084 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4085 struct page *page, enum track_item alloc,
4086 unsigned long *map)
4087 {
4088 void *addr = page_address(page);
4089 void *p;
4090
4091 bitmap_zero(map, page->objects);
4092 get_map(s, page, map);
4093
4094 for_each_object(p, s, addr, page->objects)
4095 if (!test_bit(slab_index(p, s, addr), map))
4096 add_location(t, s, get_track(s, p, alloc));
4097 }
4098
4099 static int list_locations(struct kmem_cache *s, char *buf,
4100 enum track_item alloc)
4101 {
4102 int len = 0;
4103 unsigned long i;
4104 struct loc_track t = { 0, 0, NULL };
4105 int node;
4106 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4107 sizeof(unsigned long), GFP_KERNEL);
4108 struct kmem_cache_node *n;
4109
4110 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4111 GFP_TEMPORARY)) {
4112 kfree(map);
4113 return sprintf(buf, "Out of memory\n");
4114 }
4115 /* Push back cpu slabs */
4116 flush_all(s);
4117
4118 for_each_kmem_cache_node(s, node, n) {
4119 unsigned long flags;
4120 struct page *page;
4121
4122 if (!atomic_long_read(&n->nr_slabs))
4123 continue;
4124
4125 spin_lock_irqsave(&n->list_lock, flags);
4126 list_for_each_entry(page, &n->partial, lru)
4127 process_slab(&t, s, page, alloc, map);
4128 list_for_each_entry(page, &n->full, lru)
4129 process_slab(&t, s, page, alloc, map);
4130 spin_unlock_irqrestore(&n->list_lock, flags);
4131 }
4132
4133 for (i = 0; i < t.count; i++) {
4134 struct location *l = &t.loc[i];
4135
4136 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4137 break;
4138 len += sprintf(buf + len, "%7ld ", l->count);
4139
4140 if (l->addr)
4141 len += sprintf(buf + len, "%pS", (void *)l->addr);
4142 else
4143 len += sprintf(buf + len, "<not-available>");
4144
4145 if (l->sum_time != l->min_time) {
4146 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4147 l->min_time,
4148 (long)div_u64(l->sum_time, l->count),
4149 l->max_time);
4150 } else
4151 len += sprintf(buf + len, " age=%ld",
4152 l->min_time);
4153
4154 if (l->min_pid != l->max_pid)
4155 len += sprintf(buf + len, " pid=%ld-%ld",
4156 l->min_pid, l->max_pid);
4157 else
4158 len += sprintf(buf + len, " pid=%ld",
4159 l->min_pid);
4160
4161 if (num_online_cpus() > 1 &&
4162 !cpumask_empty(to_cpumask(l->cpus)) &&
4163 len < PAGE_SIZE - 60) {
4164 len += sprintf(buf + len, " cpus=");
4165 len += cpulist_scnprintf(buf + len,
4166 PAGE_SIZE - len - 50,
4167 to_cpumask(l->cpus));
4168 }
4169
4170 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4171 len < PAGE_SIZE - 60) {
4172 len += sprintf(buf + len, " nodes=");
4173 len += nodelist_scnprintf(buf + len,
4174 PAGE_SIZE - len - 50,
4175 l->nodes);
4176 }
4177
4178 len += sprintf(buf + len, "\n");
4179 }
4180
4181 free_loc_track(&t);
4182 kfree(map);
4183 if (!t.count)
4184 len += sprintf(buf, "No data\n");
4185 return len;
4186 }
4187 #endif
4188
4189 #ifdef SLUB_RESILIENCY_TEST
4190 static void resiliency_test(void)
4191 {
4192 u8 *p;
4193
4194 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4195
4196 pr_err("SLUB resiliency testing\n");
4197 pr_err("-----------------------\n");
4198 pr_err("A. Corruption after allocation\n");
4199
4200 p = kzalloc(16, GFP_KERNEL);
4201 p[16] = 0x12;
4202 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4203 p + 16);
4204
4205 validate_slab_cache(kmalloc_caches[4]);
4206
4207 /* Hmmm... The next two are dangerous */
4208 p = kzalloc(32, GFP_KERNEL);
4209 p[32 + sizeof(void *)] = 0x34;
4210 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4211 p);
4212 pr_err("If allocated object is overwritten then not detectable\n\n");
4213
4214 validate_slab_cache(kmalloc_caches[5]);
4215 p = kzalloc(64, GFP_KERNEL);
4216 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4217 *p = 0x56;
4218 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4219 p);
4220 pr_err("If allocated object is overwritten then not detectable\n\n");
4221 validate_slab_cache(kmalloc_caches[6]);
4222
4223 pr_err("\nB. Corruption after free\n");
4224 p = kzalloc(128, GFP_KERNEL);
4225 kfree(p);
4226 *p = 0x78;
4227 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4228 validate_slab_cache(kmalloc_caches[7]);
4229
4230 p = kzalloc(256, GFP_KERNEL);
4231 kfree(p);
4232 p[50] = 0x9a;
4233 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4234 validate_slab_cache(kmalloc_caches[8]);
4235
4236 p = kzalloc(512, GFP_KERNEL);
4237 kfree(p);
4238 p[512] = 0xab;
4239 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4240 validate_slab_cache(kmalloc_caches[9]);
4241 }
4242 #else
4243 #ifdef CONFIG_SYSFS
4244 static void resiliency_test(void) {};
4245 #endif
4246 #endif
4247
4248 #ifdef CONFIG_SYSFS
4249 enum slab_stat_type {
4250 SL_ALL, /* All slabs */
4251 SL_PARTIAL, /* Only partially allocated slabs */
4252 SL_CPU, /* Only slabs used for cpu caches */
4253 SL_OBJECTS, /* Determine allocated objects not slabs */
4254 SL_TOTAL /* Determine object capacity not slabs */
4255 };
4256
4257 #define SO_ALL (1 << SL_ALL)
4258 #define SO_PARTIAL (1 << SL_PARTIAL)
4259 #define SO_CPU (1 << SL_CPU)
4260 #define SO_OBJECTS (1 << SL_OBJECTS)
4261 #define SO_TOTAL (1 << SL_TOTAL)
4262
4263 static ssize_t show_slab_objects(struct kmem_cache *s,
4264 char *buf, unsigned long flags)
4265 {
4266 unsigned long total = 0;
4267 int node;
4268 int x;
4269 unsigned long *nodes;
4270
4271 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4272 if (!nodes)
4273 return -ENOMEM;
4274
4275 if (flags & SO_CPU) {
4276 int cpu;
4277
4278 for_each_possible_cpu(cpu) {
4279 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4280 cpu);
4281 int node;
4282 struct page *page;
4283
4284 page = ACCESS_ONCE(c->page);
4285 if (!page)
4286 continue;
4287
4288 node = page_to_nid(page);
4289 if (flags & SO_TOTAL)
4290 x = page->objects;
4291 else if (flags & SO_OBJECTS)
4292 x = page->inuse;
4293 else
4294 x = 1;
4295
4296 total += x;
4297 nodes[node] += x;
4298
4299 page = ACCESS_ONCE(c->partial);
4300 if (page) {
4301 node = page_to_nid(page);
4302 if (flags & SO_TOTAL)
4303 WARN_ON_ONCE(1);
4304 else if (flags & SO_OBJECTS)
4305 WARN_ON_ONCE(1);
4306 else
4307 x = page->pages;
4308 total += x;
4309 nodes[node] += x;
4310 }
4311 }
4312 }
4313
4314 get_online_mems();
4315 #ifdef CONFIG_SLUB_DEBUG
4316 if (flags & SO_ALL) {
4317 struct kmem_cache_node *n;
4318
4319 for_each_kmem_cache_node(s, node, n) {
4320
4321 if (flags & SO_TOTAL)
4322 x = atomic_long_read(&n->total_objects);
4323 else if (flags & SO_OBJECTS)
4324 x = atomic_long_read(&n->total_objects) -
4325 count_partial(n, count_free);
4326 else
4327 x = atomic_long_read(&n->nr_slabs);
4328 total += x;
4329 nodes[node] += x;
4330 }
4331
4332 } else
4333 #endif
4334 if (flags & SO_PARTIAL) {
4335 struct kmem_cache_node *n;
4336
4337 for_each_kmem_cache_node(s, node, n) {
4338 if (flags & SO_TOTAL)
4339 x = count_partial(n, count_total);
4340 else if (flags & SO_OBJECTS)
4341 x = count_partial(n, count_inuse);
4342 else
4343 x = n->nr_partial;
4344 total += x;
4345 nodes[node] += x;
4346 }
4347 }
4348 x = sprintf(buf, "%lu", total);
4349 #ifdef CONFIG_NUMA
4350 for (node = 0; node < nr_node_ids; node++)
4351 if (nodes[node])
4352 x += sprintf(buf + x, " N%d=%lu",
4353 node, nodes[node]);
4354 #endif
4355 put_online_mems();
4356 kfree(nodes);
4357 return x + sprintf(buf + x, "\n");
4358 }
4359
4360 #ifdef CONFIG_SLUB_DEBUG
4361 static int any_slab_objects(struct kmem_cache *s)
4362 {
4363 int node;
4364 struct kmem_cache_node *n;
4365
4366 for_each_kmem_cache_node(s, node, n)
4367 if (atomic_long_read(&n->total_objects))
4368 return 1;
4369
4370 return 0;
4371 }
4372 #endif
4373
4374 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4375 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4376
4377 struct slab_attribute {
4378 struct attribute attr;
4379 ssize_t (*show)(struct kmem_cache *s, char *buf);
4380 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4381 };
4382
4383 #define SLAB_ATTR_RO(_name) \
4384 static struct slab_attribute _name##_attr = \
4385 __ATTR(_name, 0400, _name##_show, NULL)
4386
4387 #define SLAB_ATTR(_name) \
4388 static struct slab_attribute _name##_attr = \
4389 __ATTR(_name, 0600, _name##_show, _name##_store)
4390
4391 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4392 {
4393 return sprintf(buf, "%d\n", s->size);
4394 }
4395 SLAB_ATTR_RO(slab_size);
4396
4397 static ssize_t align_show(struct kmem_cache *s, char *buf)
4398 {
4399 return sprintf(buf, "%d\n", s->align);
4400 }
4401 SLAB_ATTR_RO(align);
4402
4403 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4404 {
4405 return sprintf(buf, "%d\n", s->object_size);
4406 }
4407 SLAB_ATTR_RO(object_size);
4408
4409 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4410 {
4411 return sprintf(buf, "%d\n", oo_objects(s->oo));
4412 }
4413 SLAB_ATTR_RO(objs_per_slab);
4414
4415 static ssize_t order_store(struct kmem_cache *s,
4416 const char *buf, size_t length)
4417 {
4418 unsigned long order;
4419 int err;
4420
4421 err = kstrtoul(buf, 10, &order);
4422 if (err)
4423 return err;
4424
4425 if (order > slub_max_order || order < slub_min_order)
4426 return -EINVAL;
4427
4428 calculate_sizes(s, order);
4429 return length;
4430 }
4431
4432 static ssize_t order_show(struct kmem_cache *s, char *buf)
4433 {
4434 return sprintf(buf, "%d\n", oo_order(s->oo));
4435 }
4436 SLAB_ATTR(order);
4437
4438 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4439 {
4440 return sprintf(buf, "%lu\n", s->min_partial);
4441 }
4442
4443 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4444 size_t length)
4445 {
4446 unsigned long min;
4447 int err;
4448
4449 err = kstrtoul(buf, 10, &min);
4450 if (err)
4451 return err;
4452
4453 set_min_partial(s, min);
4454 return length;
4455 }
4456 SLAB_ATTR(min_partial);
4457
4458 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4459 {
4460 return sprintf(buf, "%u\n", s->cpu_partial);
4461 }
4462
4463 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4464 size_t length)
4465 {
4466 unsigned long objects;
4467 int err;
4468
4469 err = kstrtoul(buf, 10, &objects);
4470 if (err)
4471 return err;
4472 if (objects && !kmem_cache_has_cpu_partial(s))
4473 return -EINVAL;
4474
4475 s->cpu_partial = objects;
4476 flush_all(s);
4477 return length;
4478 }
4479 SLAB_ATTR(cpu_partial);
4480
4481 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4482 {
4483 if (!s->ctor)
4484 return 0;
4485 return sprintf(buf, "%pS\n", s->ctor);
4486 }
4487 SLAB_ATTR_RO(ctor);
4488
4489 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4490 {
4491 return sprintf(buf, "%d\n", s->refcount - 1);
4492 }
4493 SLAB_ATTR_RO(aliases);
4494
4495 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4496 {
4497 return show_slab_objects(s, buf, SO_PARTIAL);
4498 }
4499 SLAB_ATTR_RO(partial);
4500
4501 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4502 {
4503 return show_slab_objects(s, buf, SO_CPU);
4504 }
4505 SLAB_ATTR_RO(cpu_slabs);
4506
4507 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4508 {
4509 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4510 }
4511 SLAB_ATTR_RO(objects);
4512
4513 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4514 {
4515 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4516 }
4517 SLAB_ATTR_RO(objects_partial);
4518
4519 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4520 {
4521 int objects = 0;
4522 int pages = 0;
4523 int cpu;
4524 int len;
4525
4526 for_each_online_cpu(cpu) {
4527 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4528
4529 if (page) {
4530 pages += page->pages;
4531 objects += page->pobjects;
4532 }
4533 }
4534
4535 len = sprintf(buf, "%d(%d)", objects, pages);
4536
4537 #ifdef CONFIG_SMP
4538 for_each_online_cpu(cpu) {
4539 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4540
4541 if (page && len < PAGE_SIZE - 20)
4542 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4543 page->pobjects, page->pages);
4544 }
4545 #endif
4546 return len + sprintf(buf + len, "\n");
4547 }
4548 SLAB_ATTR_RO(slabs_cpu_partial);
4549
4550 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4551 {
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4553 }
4554
4555 static ssize_t reclaim_account_store(struct kmem_cache *s,
4556 const char *buf, size_t length)
4557 {
4558 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4559 if (buf[0] == '1')
4560 s->flags |= SLAB_RECLAIM_ACCOUNT;
4561 return length;
4562 }
4563 SLAB_ATTR(reclaim_account);
4564
4565 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4566 {
4567 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4568 }
4569 SLAB_ATTR_RO(hwcache_align);
4570
4571 #ifdef CONFIG_ZONE_DMA
4572 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4573 {
4574 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4575 }
4576 SLAB_ATTR_RO(cache_dma);
4577 #endif
4578
4579 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4580 {
4581 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4582 }
4583 SLAB_ATTR_RO(destroy_by_rcu);
4584
4585 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4586 {
4587 return sprintf(buf, "%d\n", s->reserved);
4588 }
4589 SLAB_ATTR_RO(reserved);
4590
4591 #ifdef CONFIG_SLUB_DEBUG
4592 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4593 {
4594 return show_slab_objects(s, buf, SO_ALL);
4595 }
4596 SLAB_ATTR_RO(slabs);
4597
4598 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4599 {
4600 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4601 }
4602 SLAB_ATTR_RO(total_objects);
4603
4604 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4605 {
4606 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4607 }
4608
4609 static ssize_t sanity_checks_store(struct kmem_cache *s,
4610 const char *buf, size_t length)
4611 {
4612 s->flags &= ~SLAB_DEBUG_FREE;
4613 if (buf[0] == '1') {
4614 s->flags &= ~__CMPXCHG_DOUBLE;
4615 s->flags |= SLAB_DEBUG_FREE;
4616 }
4617 return length;
4618 }
4619 SLAB_ATTR(sanity_checks);
4620
4621 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4622 {
4623 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4624 }
4625
4626 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4627 size_t length)
4628 {
4629 s->flags &= ~SLAB_TRACE;
4630 if (buf[0] == '1') {
4631 s->flags &= ~__CMPXCHG_DOUBLE;
4632 s->flags |= SLAB_TRACE;
4633 }
4634 return length;
4635 }
4636 SLAB_ATTR(trace);
4637
4638 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4639 {
4640 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4641 }
4642
4643 static ssize_t red_zone_store(struct kmem_cache *s,
4644 const char *buf, size_t length)
4645 {
4646 if (any_slab_objects(s))
4647 return -EBUSY;
4648
4649 s->flags &= ~SLAB_RED_ZONE;
4650 if (buf[0] == '1') {
4651 s->flags &= ~__CMPXCHG_DOUBLE;
4652 s->flags |= SLAB_RED_ZONE;
4653 }
4654 calculate_sizes(s, -1);
4655 return length;
4656 }
4657 SLAB_ATTR(red_zone);
4658
4659 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4660 {
4661 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4662 }
4663
4664 static ssize_t poison_store(struct kmem_cache *s,
4665 const char *buf, size_t length)
4666 {
4667 if (any_slab_objects(s))
4668 return -EBUSY;
4669
4670 s->flags &= ~SLAB_POISON;
4671 if (buf[0] == '1') {
4672 s->flags &= ~__CMPXCHG_DOUBLE;
4673 s->flags |= SLAB_POISON;
4674 }
4675 calculate_sizes(s, -1);
4676 return length;
4677 }
4678 SLAB_ATTR(poison);
4679
4680 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4681 {
4682 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4683 }
4684
4685 static ssize_t store_user_store(struct kmem_cache *s,
4686 const char *buf, size_t length)
4687 {
4688 if (any_slab_objects(s))
4689 return -EBUSY;
4690
4691 s->flags &= ~SLAB_STORE_USER;
4692 if (buf[0] == '1') {
4693 s->flags &= ~__CMPXCHG_DOUBLE;
4694 s->flags |= SLAB_STORE_USER;
4695 }
4696 calculate_sizes(s, -1);
4697 return length;
4698 }
4699 SLAB_ATTR(store_user);
4700
4701 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4702 {
4703 return 0;
4704 }
4705
4706 static ssize_t validate_store(struct kmem_cache *s,
4707 const char *buf, size_t length)
4708 {
4709 int ret = -EINVAL;
4710
4711 if (buf[0] == '1') {
4712 ret = validate_slab_cache(s);
4713 if (ret >= 0)
4714 ret = length;
4715 }
4716 return ret;
4717 }
4718 SLAB_ATTR(validate);
4719
4720 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4721 {
4722 if (!(s->flags & SLAB_STORE_USER))
4723 return -ENOSYS;
4724 return list_locations(s, buf, TRACK_ALLOC);
4725 }
4726 SLAB_ATTR_RO(alloc_calls);
4727
4728 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4729 {
4730 if (!(s->flags & SLAB_STORE_USER))
4731 return -ENOSYS;
4732 return list_locations(s, buf, TRACK_FREE);
4733 }
4734 SLAB_ATTR_RO(free_calls);
4735 #endif /* CONFIG_SLUB_DEBUG */
4736
4737 #ifdef CONFIG_FAILSLAB
4738 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4739 {
4740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4741 }
4742
4743 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4744 size_t length)
4745 {
4746 s->flags &= ~SLAB_FAILSLAB;
4747 if (buf[0] == '1')
4748 s->flags |= SLAB_FAILSLAB;
4749 return length;
4750 }
4751 SLAB_ATTR(failslab);
4752 #endif
4753
4754 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4755 {
4756 return 0;
4757 }
4758
4759 static ssize_t shrink_store(struct kmem_cache *s,
4760 const char *buf, size_t length)
4761 {
4762 if (buf[0] == '1') {
4763 int rc = kmem_cache_shrink(s);
4764
4765 if (rc)
4766 return rc;
4767 } else
4768 return -EINVAL;
4769 return length;
4770 }
4771 SLAB_ATTR(shrink);
4772
4773 #ifdef CONFIG_NUMA
4774 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4775 {
4776 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4777 }
4778
4779 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4780 const char *buf, size_t length)
4781 {
4782 unsigned long ratio;
4783 int err;
4784
4785 err = kstrtoul(buf, 10, &ratio);
4786 if (err)
4787 return err;
4788
4789 if (ratio <= 100)
4790 s->remote_node_defrag_ratio = ratio * 10;
4791
4792 return length;
4793 }
4794 SLAB_ATTR(remote_node_defrag_ratio);
4795 #endif
4796
4797 #ifdef CONFIG_SLUB_STATS
4798 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4799 {
4800 unsigned long sum = 0;
4801 int cpu;
4802 int len;
4803 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4804
4805 if (!data)
4806 return -ENOMEM;
4807
4808 for_each_online_cpu(cpu) {
4809 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4810
4811 data[cpu] = x;
4812 sum += x;
4813 }
4814
4815 len = sprintf(buf, "%lu", sum);
4816
4817 #ifdef CONFIG_SMP
4818 for_each_online_cpu(cpu) {
4819 if (data[cpu] && len < PAGE_SIZE - 20)
4820 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4821 }
4822 #endif
4823 kfree(data);
4824 return len + sprintf(buf + len, "\n");
4825 }
4826
4827 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4828 {
4829 int cpu;
4830
4831 for_each_online_cpu(cpu)
4832 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4833 }
4834
4835 #define STAT_ATTR(si, text) \
4836 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4837 { \
4838 return show_stat(s, buf, si); \
4839 } \
4840 static ssize_t text##_store(struct kmem_cache *s, \
4841 const char *buf, size_t length) \
4842 { \
4843 if (buf[0] != '0') \
4844 return -EINVAL; \
4845 clear_stat(s, si); \
4846 return length; \
4847 } \
4848 SLAB_ATTR(text); \
4849
4850 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4851 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4852 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4853 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4854 STAT_ATTR(FREE_FROZEN, free_frozen);
4855 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4856 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4857 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4858 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4859 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4860 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4861 STAT_ATTR(FREE_SLAB, free_slab);
4862 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4863 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4864 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4865 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4866 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4867 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4868 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4869 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4870 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4871 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4872 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4873 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4874 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4875 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4876 #endif
4877
4878 static struct attribute *slab_attrs[] = {
4879 &slab_size_attr.attr,
4880 &object_size_attr.attr,
4881 &objs_per_slab_attr.attr,
4882 &order_attr.attr,
4883 &min_partial_attr.attr,
4884 &cpu_partial_attr.attr,
4885 &objects_attr.attr,
4886 &objects_partial_attr.attr,
4887 &partial_attr.attr,
4888 &cpu_slabs_attr.attr,
4889 &ctor_attr.attr,
4890 &aliases_attr.attr,
4891 &align_attr.attr,
4892 &hwcache_align_attr.attr,
4893 &reclaim_account_attr.attr,
4894 &destroy_by_rcu_attr.attr,
4895 &shrink_attr.attr,
4896 &reserved_attr.attr,
4897 &slabs_cpu_partial_attr.attr,
4898 #ifdef CONFIG_SLUB_DEBUG
4899 &total_objects_attr.attr,
4900 &slabs_attr.attr,
4901 &sanity_checks_attr.attr,
4902 &trace_attr.attr,
4903 &red_zone_attr.attr,
4904 &poison_attr.attr,
4905 &store_user_attr.attr,
4906 &validate_attr.attr,
4907 &alloc_calls_attr.attr,
4908 &free_calls_attr.attr,
4909 #endif
4910 #ifdef CONFIG_ZONE_DMA
4911 &cache_dma_attr.attr,
4912 #endif
4913 #ifdef CONFIG_NUMA
4914 &remote_node_defrag_ratio_attr.attr,
4915 #endif
4916 #ifdef CONFIG_SLUB_STATS
4917 &alloc_fastpath_attr.attr,
4918 &alloc_slowpath_attr.attr,
4919 &free_fastpath_attr.attr,
4920 &free_slowpath_attr.attr,
4921 &free_frozen_attr.attr,
4922 &free_add_partial_attr.attr,
4923 &free_remove_partial_attr.attr,
4924 &alloc_from_partial_attr.attr,
4925 &alloc_slab_attr.attr,
4926 &alloc_refill_attr.attr,
4927 &alloc_node_mismatch_attr.attr,
4928 &free_slab_attr.attr,
4929 &cpuslab_flush_attr.attr,
4930 &deactivate_full_attr.attr,
4931 &deactivate_empty_attr.attr,
4932 &deactivate_to_head_attr.attr,
4933 &deactivate_to_tail_attr.attr,
4934 &deactivate_remote_frees_attr.attr,
4935 &deactivate_bypass_attr.attr,
4936 &order_fallback_attr.attr,
4937 &cmpxchg_double_fail_attr.attr,
4938 &cmpxchg_double_cpu_fail_attr.attr,
4939 &cpu_partial_alloc_attr.attr,
4940 &cpu_partial_free_attr.attr,
4941 &cpu_partial_node_attr.attr,
4942 &cpu_partial_drain_attr.attr,
4943 #endif
4944 #ifdef CONFIG_FAILSLAB
4945 &failslab_attr.attr,
4946 #endif
4947
4948 NULL
4949 };
4950
4951 static struct attribute_group slab_attr_group = {
4952 .attrs = slab_attrs,
4953 };
4954
4955 static ssize_t slab_attr_show(struct kobject *kobj,
4956 struct attribute *attr,
4957 char *buf)
4958 {
4959 struct slab_attribute *attribute;
4960 struct kmem_cache *s;
4961 int err;
4962
4963 attribute = to_slab_attr(attr);
4964 s = to_slab(kobj);
4965
4966 if (!attribute->show)
4967 return -EIO;
4968
4969 err = attribute->show(s, buf);
4970
4971 return err;
4972 }
4973
4974 static ssize_t slab_attr_store(struct kobject *kobj,
4975 struct attribute *attr,
4976 const char *buf, size_t len)
4977 {
4978 struct slab_attribute *attribute;
4979 struct kmem_cache *s;
4980 int err;
4981
4982 attribute = to_slab_attr(attr);
4983 s = to_slab(kobj);
4984
4985 if (!attribute->store)
4986 return -EIO;
4987
4988 err = attribute->store(s, buf, len);
4989 #ifdef CONFIG_MEMCG_KMEM
4990 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4991 int i;
4992
4993 mutex_lock(&slab_mutex);
4994 if (s->max_attr_size < len)
4995 s->max_attr_size = len;
4996
4997 /*
4998 * This is a best effort propagation, so this function's return
4999 * value will be determined by the parent cache only. This is
5000 * basically because not all attributes will have a well
5001 * defined semantics for rollbacks - most of the actions will
5002 * have permanent effects.
5003 *
5004 * Returning the error value of any of the children that fail
5005 * is not 100 % defined, in the sense that users seeing the
5006 * error code won't be able to know anything about the state of
5007 * the cache.
5008 *
5009 * Only returning the error code for the parent cache at least
5010 * has well defined semantics. The cache being written to
5011 * directly either failed or succeeded, in which case we loop
5012 * through the descendants with best-effort propagation.
5013 */
5014 for_each_memcg_cache_index(i) {
5015 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5016 if (c)
5017 attribute->store(c, buf, len);
5018 }
5019 mutex_unlock(&slab_mutex);
5020 }
5021 #endif
5022 return err;
5023 }
5024
5025 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5026 {
5027 #ifdef CONFIG_MEMCG_KMEM
5028 int i;
5029 char *buffer = NULL;
5030 struct kmem_cache *root_cache;
5031
5032 if (is_root_cache(s))
5033 return;
5034
5035 root_cache = s->memcg_params->root_cache;
5036
5037 /*
5038 * This mean this cache had no attribute written. Therefore, no point
5039 * in copying default values around
5040 */
5041 if (!root_cache->max_attr_size)
5042 return;
5043
5044 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5045 char mbuf[64];
5046 char *buf;
5047 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5048
5049 if (!attr || !attr->store || !attr->show)
5050 continue;
5051
5052 /*
5053 * It is really bad that we have to allocate here, so we will
5054 * do it only as a fallback. If we actually allocate, though,
5055 * we can just use the allocated buffer until the end.
5056 *
5057 * Most of the slub attributes will tend to be very small in
5058 * size, but sysfs allows buffers up to a page, so they can
5059 * theoretically happen.
5060 */
5061 if (buffer)
5062 buf = buffer;
5063 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5064 buf = mbuf;
5065 else {
5066 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5067 if (WARN_ON(!buffer))
5068 continue;
5069 buf = buffer;
5070 }
5071
5072 attr->show(root_cache, buf);
5073 attr->store(s, buf, strlen(buf));
5074 }
5075
5076 if (buffer)
5077 free_page((unsigned long)buffer);
5078 #endif
5079 }
5080
5081 static void kmem_cache_release(struct kobject *k)
5082 {
5083 slab_kmem_cache_release(to_slab(k));
5084 }
5085
5086 static const struct sysfs_ops slab_sysfs_ops = {
5087 .show = slab_attr_show,
5088 .store = slab_attr_store,
5089 };
5090
5091 static struct kobj_type slab_ktype = {
5092 .sysfs_ops = &slab_sysfs_ops,
5093 .release = kmem_cache_release,
5094 };
5095
5096 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5097 {
5098 struct kobj_type *ktype = get_ktype(kobj);
5099
5100 if (ktype == &slab_ktype)
5101 return 1;
5102 return 0;
5103 }
5104
5105 static const struct kset_uevent_ops slab_uevent_ops = {
5106 .filter = uevent_filter,
5107 };
5108
5109 static struct kset *slab_kset;
5110
5111 static inline struct kset *cache_kset(struct kmem_cache *s)
5112 {
5113 #ifdef CONFIG_MEMCG_KMEM
5114 if (!is_root_cache(s))
5115 return s->memcg_params->root_cache->memcg_kset;
5116 #endif
5117 return slab_kset;
5118 }
5119
5120 #define ID_STR_LENGTH 64
5121
5122 /* Create a unique string id for a slab cache:
5123 *
5124 * Format :[flags-]size
5125 */
5126 static char *create_unique_id(struct kmem_cache *s)
5127 {
5128 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5129 char *p = name;
5130
5131 BUG_ON(!name);
5132
5133 *p++ = ':';
5134 /*
5135 * First flags affecting slabcache operations. We will only
5136 * get here for aliasable slabs so we do not need to support
5137 * too many flags. The flags here must cover all flags that
5138 * are matched during merging to guarantee that the id is
5139 * unique.
5140 */
5141 if (s->flags & SLAB_CACHE_DMA)
5142 *p++ = 'd';
5143 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5144 *p++ = 'a';
5145 if (s->flags & SLAB_DEBUG_FREE)
5146 *p++ = 'F';
5147 if (!(s->flags & SLAB_NOTRACK))
5148 *p++ = 't';
5149 if (p != name + 1)
5150 *p++ = '-';
5151 p += sprintf(p, "%07d", s->size);
5152
5153 #ifdef CONFIG_MEMCG_KMEM
5154 if (!is_root_cache(s))
5155 p += sprintf(p, "-%08d",
5156 memcg_cache_id(s->memcg_params->memcg));
5157 #endif
5158
5159 BUG_ON(p > name + ID_STR_LENGTH - 1);
5160 return name;
5161 }
5162
5163 static int sysfs_slab_add(struct kmem_cache *s)
5164 {
5165 int err;
5166 const char *name;
5167 int unmergeable = slab_unmergeable(s);
5168
5169 if (unmergeable) {
5170 /*
5171 * Slabcache can never be merged so we can use the name proper.
5172 * This is typically the case for debug situations. In that
5173 * case we can catch duplicate names easily.
5174 */
5175 sysfs_remove_link(&slab_kset->kobj, s->name);
5176 name = s->name;
5177 } else {
5178 /*
5179 * Create a unique name for the slab as a target
5180 * for the symlinks.
5181 */
5182 name = create_unique_id(s);
5183 }
5184
5185 s->kobj.kset = cache_kset(s);
5186 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5187 if (err)
5188 goto out_put_kobj;
5189
5190 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5191 if (err)
5192 goto out_del_kobj;
5193
5194 #ifdef CONFIG_MEMCG_KMEM
5195 if (is_root_cache(s)) {
5196 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5197 if (!s->memcg_kset) {
5198 err = -ENOMEM;
5199 goto out_del_kobj;
5200 }
5201 }
5202 #endif
5203
5204 kobject_uevent(&s->kobj, KOBJ_ADD);
5205 if (!unmergeable) {
5206 /* Setup first alias */
5207 sysfs_slab_alias(s, s->name);
5208 }
5209 out:
5210 if (!unmergeable)
5211 kfree(name);
5212 return err;
5213 out_del_kobj:
5214 kobject_del(&s->kobj);
5215 out_put_kobj:
5216 kobject_put(&s->kobj);
5217 goto out;
5218 }
5219
5220 void sysfs_slab_remove(struct kmem_cache *s)
5221 {
5222 if (slab_state < FULL)
5223 /*
5224 * Sysfs has not been setup yet so no need to remove the
5225 * cache from sysfs.
5226 */
5227 return;
5228
5229 #ifdef CONFIG_MEMCG_KMEM
5230 kset_unregister(s->memcg_kset);
5231 #endif
5232 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5233 kobject_del(&s->kobj);
5234 kobject_put(&s->kobj);
5235 }
5236
5237 /*
5238 * Need to buffer aliases during bootup until sysfs becomes
5239 * available lest we lose that information.
5240 */
5241 struct saved_alias {
5242 struct kmem_cache *s;
5243 const char *name;
5244 struct saved_alias *next;
5245 };
5246
5247 static struct saved_alias *alias_list;
5248
5249 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5250 {
5251 struct saved_alias *al;
5252
5253 if (slab_state == FULL) {
5254 /*
5255 * If we have a leftover link then remove it.
5256 */
5257 sysfs_remove_link(&slab_kset->kobj, name);
5258 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5259 }
5260
5261 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5262 if (!al)
5263 return -ENOMEM;
5264
5265 al->s = s;
5266 al->name = name;
5267 al->next = alias_list;
5268 alias_list = al;
5269 return 0;
5270 }
5271
5272 static int __init slab_sysfs_init(void)
5273 {
5274 struct kmem_cache *s;
5275 int err;
5276
5277 mutex_lock(&slab_mutex);
5278
5279 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5280 if (!slab_kset) {
5281 mutex_unlock(&slab_mutex);
5282 pr_err("Cannot register slab subsystem.\n");
5283 return -ENOSYS;
5284 }
5285
5286 slab_state = FULL;
5287
5288 list_for_each_entry(s, &slab_caches, list) {
5289 err = sysfs_slab_add(s);
5290 if (err)
5291 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5292 s->name);
5293 }
5294
5295 while (alias_list) {
5296 struct saved_alias *al = alias_list;
5297
5298 alias_list = alias_list->next;
5299 err = sysfs_slab_alias(al->s, al->name);
5300 if (err)
5301 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5302 al->name);
5303 kfree(al);
5304 }
5305
5306 mutex_unlock(&slab_mutex);
5307 resiliency_test();
5308 return 0;
5309 }
5310
5311 __initcall(slab_sysfs_init);
5312 #endif /* CONFIG_SYSFS */
5313
5314 /*
5315 * The /proc/slabinfo ABI
5316 */
5317 #ifdef CONFIG_SLABINFO
5318 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5319 {
5320 unsigned long nr_slabs = 0;
5321 unsigned long nr_objs = 0;
5322 unsigned long nr_free = 0;
5323 int node;
5324 struct kmem_cache_node *n;
5325
5326 for_each_kmem_cache_node(s, node, n) {
5327 nr_slabs += node_nr_slabs(n);
5328 nr_objs += node_nr_objs(n);
5329 nr_free += count_partial(n, count_free);
5330 }
5331
5332 sinfo->active_objs = nr_objs - nr_free;
5333 sinfo->num_objs = nr_objs;
5334 sinfo->active_slabs = nr_slabs;
5335 sinfo->num_slabs = nr_slabs;
5336 sinfo->objects_per_slab = oo_objects(s->oo);
5337 sinfo->cache_order = oo_order(s->oo);
5338 }
5339
5340 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5341 {
5342 }
5343
5344 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5345 size_t count, loff_t *ppos)
5346 {
5347 return -EIO;
5348 }
5349 #endif /* CONFIG_SLABINFO */
This page took 0.145922 seconds and 6 git commands to generate.