Merge remote-tracking branches 'spi/topic/sh', 'spi/topic/sh-msiof' and 'spi/topic...
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 return s->node[node];
239 }
240
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244 {
245 void *base;
246
247 if (!object)
248 return 1;
249
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257 }
258
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 return *(void **)(object + s->offset);
262 }
263
264 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265 {
266 prefetch(object + s->offset);
267 }
268
269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 {
271 void *p;
272
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275 #else
276 p = get_freepointer(s, object);
277 #endif
278 return p;
279 }
280
281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 {
283 *(void **)(object + s->offset) = fp;
284 }
285
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 __p += (__s)->size)
290
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 return (p - addr) / s->size;
295 }
296
297 static inline size_t slab_ksize(const struct kmem_cache *s)
298 {
299 #ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 return s->object_size;
306
307 #endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319 }
320
321 static inline int order_objects(int order, unsigned long size, int reserved)
322 {
323 return ((PAGE_SIZE << order) - reserved) / size;
324 }
325
326 static inline struct kmem_cache_order_objects oo_make(int order,
327 unsigned long size, int reserved)
328 {
329 struct kmem_cache_order_objects x = {
330 (order << OO_SHIFT) + order_objects(order, size, reserved)
331 };
332
333 return x;
334 }
335
336 static inline int oo_order(struct kmem_cache_order_objects x)
337 {
338 return x.x >> OO_SHIFT;
339 }
340
341 static inline int oo_objects(struct kmem_cache_order_objects x)
342 {
343 return x.x & OO_MASK;
344 }
345
346 /*
347 * Per slab locking using the pagelock
348 */
349 static __always_inline void slab_lock(struct page *page)
350 {
351 bit_spin_lock(PG_locked, &page->flags);
352 }
353
354 static __always_inline void slab_unlock(struct page *page)
355 {
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return 1;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return 1;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return 0;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return 1;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return 1;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return 0;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 /*
470 * Debug settings:
471 */
472 #ifdef CONFIG_SLUB_DEBUG_ON
473 static int slub_debug = DEBUG_DEFAULT_FLAGS;
474 #else
475 static int slub_debug;
476 #endif
477
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480
481 /*
482 * Object debugging
483 */
484 static void print_section(char *text, u8 *addr, unsigned int length)
485 {
486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 length, 1);
488 }
489
490 static struct track *get_track(struct kmem_cache *s, void *object,
491 enum track_item alloc)
492 {
493 struct track *p;
494
495 if (s->offset)
496 p = object + s->offset + sizeof(void *);
497 else
498 p = object + s->inuse;
499
500 return p + alloc;
501 }
502
503 static void set_track(struct kmem_cache *s, void *object,
504 enum track_item alloc, unsigned long addr)
505 {
506 struct track *p = get_track(s, object, alloc);
507
508 if (addr) {
509 #ifdef CONFIG_STACKTRACE
510 struct stack_trace trace;
511 int i;
512
513 trace.nr_entries = 0;
514 trace.max_entries = TRACK_ADDRS_COUNT;
515 trace.entries = p->addrs;
516 trace.skip = 3;
517 save_stack_trace(&trace);
518
519 /* See rant in lockdep.c */
520 if (trace.nr_entries != 0 &&
521 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 trace.nr_entries--;
523
524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 p->addrs[i] = 0;
526 #endif
527 p->addr = addr;
528 p->cpu = smp_processor_id();
529 p->pid = current->pid;
530 p->when = jiffies;
531 } else
532 memset(p, 0, sizeof(struct track));
533 }
534
535 static void init_tracking(struct kmem_cache *s, void *object)
536 {
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 set_track(s, object, TRACK_FREE, 0UL);
541 set_track(s, object, TRACK_ALLOC, 0UL);
542 }
543
544 static void print_track(const char *s, struct track *t)
545 {
546 if (!t->addr)
547 return;
548
549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 #ifdef CONFIG_STACKTRACE
552 {
553 int i;
554 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 if (t->addrs[i])
556 pr_err("\t%pS\n", (void *)t->addrs[i]);
557 else
558 break;
559 }
560 #endif
561 }
562
563 static void print_tracking(struct kmem_cache *s, void *object)
564 {
565 if (!(s->flags & SLAB_STORE_USER))
566 return;
567
568 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 print_track("Freed", get_track(s, object, TRACK_FREE));
570 }
571
572 static void print_page_info(struct page *page)
573 {
574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
576
577 }
578
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 struct va_format vaf;
582 va_list args;
583
584 va_start(args, fmt);
585 vaf.fmt = fmt;
586 vaf.va = &args;
587 pr_err("=============================================================================\n");
588 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
589 pr_err("-----------------------------------------------------------------------------\n\n");
590
591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592 va_end(args);
593 }
594
595 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
596 {
597 struct va_format vaf;
598 va_list args;
599
600 va_start(args, fmt);
601 vaf.fmt = fmt;
602 vaf.va = &args;
603 pr_err("FIX %s: %pV\n", s->name, &vaf);
604 va_end(args);
605 }
606
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 unsigned int off; /* Offset of last byte */
610 u8 *addr = page_address(page);
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
620 print_section("Bytes b4 ", p - 16, 16);
621
622 print_section("Object ", p, min_t(unsigned long, s->object_size,
623 PAGE_SIZE));
624 if (s->flags & SLAB_RED_ZONE)
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
627
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
633 if (s->flags & SLAB_STORE_USER)
634 off += 2 * sizeof(struct track);
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p + off, s->size - off);
639
640 dump_stack();
641 }
642
643 static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645 {
646 slab_bug(s, "%s", reason);
647 print_trailer(s, page, object);
648 }
649
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
652 {
653 va_list args;
654 char buf[100];
655
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
658 va_end(args);
659 slab_bug(s, "%s", buf);
660 print_page_info(page);
661 dump_stack();
662 }
663
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
674 memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679 {
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682 }
683
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
686 u8 *start, unsigned int value, unsigned int bytes)
687 {
688 u8 *fault;
689 u8 *end;
690
691 fault = memchr_inv(start, value, bytes);
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
706 }
707
708 /*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
715 *
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
723 *
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
728 * Meta data starts here.
729 *
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
737 *
738 * object + s->size
739 * Nothing is used beyond s->size.
740 *
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
744 */
745
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
763 }
764
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
777 start = page_address(page);
778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 end = start + length;
780 remainder = length % s->size;
781 if (!remainder)
782 return 1;
783
784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 print_section("Padding ", end - remainder, remainder);
792
793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 return 0;
795 }
796
797 static int check_object(struct kmem_cache *s, struct page *page,
798 void *object, u8 val)
799 {
800 u8 *p = object;
801 u8 *endobject = object + s->object_size;
802
803 if (s->flags & SLAB_RED_ZONE) {
804 if (!check_bytes_and_report(s, page, object, "Redzone",
805 endobject, val, s->inuse - s->object_size))
806 return 0;
807 } else {
808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 check_bytes_and_report(s, page, p, "Alignment padding",
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
812 }
813 }
814
815 if (s->flags & SLAB_POISON) {
816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 (!check_bytes_and_report(s, page, p, "Poison", p,
818 POISON_FREE, s->object_size - 1) ||
819 !check_bytes_and_report(s, page, p, "Poison",
820 p + s->object_size - 1, POISON_END, 1)))
821 return 0;
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
828 if (!s->offset && val == SLUB_RED_ACTIVE)
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
842 */
843 set_freepointer(s, p, NULL);
844 return 0;
845 }
846 return 1;
847 }
848
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 int maxobj;
852
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
856 slab_err(s, page, "Not a valid slab page");
857 return 0;
858 }
859
860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
867 slab_err(s, page, "inuse %u > max %u",
868 s->name, page->inuse, page->objects);
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874 }
875
876 /*
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
879 */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 int nr = 0;
883 void *fp;
884 void *object = NULL;
885 unsigned long max_objects;
886
887 fp = page->freelist;
888 while (fp && nr <= page->objects) {
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
895 set_freepointer(s, object, NULL);
896 } else {
897 slab_err(s, page, "Freepointer corrupt");
898 page->freelist = NULL;
899 page->inuse = page->objects;
900 slab_fix(s, "Freelist cleared");
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
920 if (page->inuse != page->objects - nr) {
921 slab_err(s, page, "Wrong object count. Counter is %d but "
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
924 slab_fix(s, "Object count adjusted.");
925 }
926 return search == NULL;
927 }
928
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
931 {
932 if (s->flags & SLAB_TRACE) {
933 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
940 print_section("Object ", (void *)object,
941 s->object_size);
942
943 dump_stack();
944 }
945 }
946
947 /*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 kmemleak_alloc(ptr, size, 1, flags);
954 }
955
956 static inline void kfree_hook(const void *x)
957 {
958 kmemleak_free(x);
959 }
960
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 flags &= gfp_allowed_mask;
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
967 return should_failslab(s->object_size, flags, s->flags);
968 }
969
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
972 {
973 flags &= gfp_allowed_mask;
974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 kmemleak_free_recursive(x, s->flags);
981
982 /*
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
994 local_irq_restore(flags);
995 }
996 #endif
997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 debug_check_no_obj_freed(x, s->object_size);
999 }
1000
1001 /*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 */
1004 static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
1006 {
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
1010 lockdep_assert_held(&n->list_lock);
1011 list_add(&page->lru, &n->full);
1012 }
1013
1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 {
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
1019 lockdep_assert_held(&n->list_lock);
1020 list_del(&page->lru);
1021 }
1022
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025 {
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029 }
1030
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032 {
1033 return atomic_long_read(&n->nr_slabs);
1034 }
1035
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
1046 if (likely(n)) {
1047 atomic_long_inc(&n->nr_slabs);
1048 atomic_long_add(objects, &n->total_objects);
1049 }
1050 }
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
1056 atomic_long_sub(objects, &n->total_objects);
1057 }
1058
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062 {
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
1066 init_object(s, object, SLUB_RED_INACTIVE);
1067 init_tracking(s, object);
1068 }
1069
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
1072 void *object, unsigned long addr)
1073 {
1074 if (!check_slab(s, page))
1075 goto bad;
1076
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
1079 goto bad;
1080 }
1081
1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083 goto bad;
1084
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
1089 init_object(s, object, SLUB_RED_ACTIVE);
1090 return 1;
1091
1092 bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
1097 * as used avoids touching the remaining objects.
1098 */
1099 slab_fix(s, "Marking all objects used");
1100 page->inuse = page->objects;
1101 page->freelist = NULL;
1102 }
1103 return 0;
1104 }
1105
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
1109 {
1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111
1112 spin_lock_irqsave(&n->list_lock, *flags);
1113 slab_lock(page);
1114
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
1124 object_err(s, page, object, "Object already free");
1125 goto fail;
1126 }
1127
1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129 goto out;
1130
1131 if (unlikely(s != page->slab_cache)) {
1132 if (!PageSlab(page)) {
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1135 } else if (!page->slab_cache) {
1136 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1137 object);
1138 dump_stack();
1139 } else
1140 object_err(s, page, object,
1141 "page slab pointer corrupt.");
1142 goto fail;
1143 }
1144
1145 if (s->flags & SLAB_STORE_USER)
1146 set_track(s, object, TRACK_FREE, addr);
1147 trace(s, page, object, 0);
1148 init_object(s, object, SLUB_RED_INACTIVE);
1149 out:
1150 slab_unlock(page);
1151 /*
1152 * Keep node_lock to preserve integrity
1153 * until the object is actually freed
1154 */
1155 return n;
1156
1157 fail:
1158 slab_unlock(page);
1159 spin_unlock_irqrestore(&n->list_lock, *flags);
1160 slab_fix(s, "Object at 0x%p not freed", object);
1161 return NULL;
1162 }
1163
1164 static int __init setup_slub_debug(char *str)
1165 {
1166 slub_debug = DEBUG_DEFAULT_FLAGS;
1167 if (*str++ != '=' || !*str)
1168 /*
1169 * No options specified. Switch on full debugging.
1170 */
1171 goto out;
1172
1173 if (*str == ',')
1174 /*
1175 * No options but restriction on slabs. This means full
1176 * debugging for slabs matching a pattern.
1177 */
1178 goto check_slabs;
1179
1180 if (tolower(*str) == 'o') {
1181 /*
1182 * Avoid enabling debugging on caches if its minimum order
1183 * would increase as a result.
1184 */
1185 disable_higher_order_debug = 1;
1186 goto out;
1187 }
1188
1189 slub_debug = 0;
1190 if (*str == '-')
1191 /*
1192 * Switch off all debugging measures.
1193 */
1194 goto out;
1195
1196 /*
1197 * Determine which debug features should be switched on
1198 */
1199 for (; *str && *str != ','; str++) {
1200 switch (tolower(*str)) {
1201 case 'f':
1202 slub_debug |= SLAB_DEBUG_FREE;
1203 break;
1204 case 'z':
1205 slub_debug |= SLAB_RED_ZONE;
1206 break;
1207 case 'p':
1208 slub_debug |= SLAB_POISON;
1209 break;
1210 case 'u':
1211 slub_debug |= SLAB_STORE_USER;
1212 break;
1213 case 't':
1214 slub_debug |= SLAB_TRACE;
1215 break;
1216 case 'a':
1217 slub_debug |= SLAB_FAILSLAB;
1218 break;
1219 default:
1220 pr_err("slub_debug option '%c' unknown. skipped\n",
1221 *str);
1222 }
1223 }
1224
1225 check_slabs:
1226 if (*str == ',')
1227 slub_debug_slabs = str + 1;
1228 out:
1229 return 1;
1230 }
1231
1232 __setup("slub_debug", setup_slub_debug);
1233
1234 static unsigned long kmem_cache_flags(unsigned long object_size,
1235 unsigned long flags, const char *name,
1236 void (*ctor)(void *))
1237 {
1238 /*
1239 * Enable debugging if selected on the kernel commandline.
1240 */
1241 if (slub_debug && (!slub_debug_slabs || (name &&
1242 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1243 flags |= slub_debug;
1244
1245 return flags;
1246 }
1247 #else
1248 static inline void setup_object_debug(struct kmem_cache *s,
1249 struct page *page, void *object) {}
1250
1251 static inline int alloc_debug_processing(struct kmem_cache *s,
1252 struct page *page, void *object, unsigned long addr) { return 0; }
1253
1254 static inline struct kmem_cache_node *free_debug_processing(
1255 struct kmem_cache *s, struct page *page, void *object,
1256 unsigned long addr, unsigned long *flags) { return NULL; }
1257
1258 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1259 { return 1; }
1260 static inline int check_object(struct kmem_cache *s, struct page *page,
1261 void *object, u8 val) { return 1; }
1262 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263 struct page *page) {}
1264 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 struct page *page) {}
1266 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1267 unsigned long flags, const char *name,
1268 void (*ctor)(void *))
1269 {
1270 return flags;
1271 }
1272 #define slub_debug 0
1273
1274 #define disable_higher_order_debug 0
1275
1276 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1277 { return 0; }
1278 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1279 { return 0; }
1280 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1281 int objects) {}
1282 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1283 int objects) {}
1284
1285 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1286 {
1287 kmemleak_alloc(ptr, size, 1, flags);
1288 }
1289
1290 static inline void kfree_hook(const void *x)
1291 {
1292 kmemleak_free(x);
1293 }
1294
1295 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1296 { return 0; }
1297
1298 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1299 void *object)
1300 {
1301 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1302 flags & gfp_allowed_mask);
1303 }
1304
1305 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306 {
1307 kmemleak_free_recursive(x, s->flags);
1308 }
1309
1310 #endif /* CONFIG_SLUB_DEBUG */
1311
1312 /*
1313 * Slab allocation and freeing
1314 */
1315 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1316 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1317 {
1318 struct page *page;
1319 int order = oo_order(oo);
1320
1321 flags |= __GFP_NOTRACK;
1322
1323 if (memcg_charge_slab(s, flags, order))
1324 return NULL;
1325
1326 if (node == NUMA_NO_NODE)
1327 page = alloc_pages(flags, order);
1328 else
1329 page = alloc_pages_exact_node(node, flags, order);
1330
1331 if (!page)
1332 memcg_uncharge_slab(s, order);
1333
1334 return page;
1335 }
1336
1337 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1338 {
1339 struct page *page;
1340 struct kmem_cache_order_objects oo = s->oo;
1341 gfp_t alloc_gfp;
1342
1343 flags &= gfp_allowed_mask;
1344
1345 if (flags & __GFP_WAIT)
1346 local_irq_enable();
1347
1348 flags |= s->allocflags;
1349
1350 /*
1351 * Let the initial higher-order allocation fail under memory pressure
1352 * so we fall-back to the minimum order allocation.
1353 */
1354 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1355
1356 page = alloc_slab_page(s, alloc_gfp, node, oo);
1357 if (unlikely(!page)) {
1358 oo = s->min;
1359 alloc_gfp = flags;
1360 /*
1361 * Allocation may have failed due to fragmentation.
1362 * Try a lower order alloc if possible
1363 */
1364 page = alloc_slab_page(s, alloc_gfp, node, oo);
1365
1366 if (page)
1367 stat(s, ORDER_FALLBACK);
1368 }
1369
1370 if (kmemcheck_enabled && page
1371 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1372 int pages = 1 << oo_order(oo);
1373
1374 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1375
1376 /*
1377 * Objects from caches that have a constructor don't get
1378 * cleared when they're allocated, so we need to do it here.
1379 */
1380 if (s->ctor)
1381 kmemcheck_mark_uninitialized_pages(page, pages);
1382 else
1383 kmemcheck_mark_unallocated_pages(page, pages);
1384 }
1385
1386 if (flags & __GFP_WAIT)
1387 local_irq_disable();
1388 if (!page)
1389 return NULL;
1390
1391 page->objects = oo_objects(oo);
1392 mod_zone_page_state(page_zone(page),
1393 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1394 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1395 1 << oo_order(oo));
1396
1397 return page;
1398 }
1399
1400 static void setup_object(struct kmem_cache *s, struct page *page,
1401 void *object)
1402 {
1403 setup_object_debug(s, page, object);
1404 if (unlikely(s->ctor))
1405 s->ctor(object);
1406 }
1407
1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409 {
1410 struct page *page;
1411 void *start;
1412 void *last;
1413 void *p;
1414 int order;
1415
1416 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1417
1418 page = allocate_slab(s,
1419 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1420 if (!page)
1421 goto out;
1422
1423 order = compound_order(page);
1424 inc_slabs_node(s, page_to_nid(page), page->objects);
1425 page->slab_cache = s;
1426 __SetPageSlab(page);
1427 if (page->pfmemalloc)
1428 SetPageSlabPfmemalloc(page);
1429
1430 start = page_address(page);
1431
1432 if (unlikely(s->flags & SLAB_POISON))
1433 memset(start, POISON_INUSE, PAGE_SIZE << order);
1434
1435 last = start;
1436 for_each_object(p, s, start, page->objects) {
1437 setup_object(s, page, last);
1438 set_freepointer(s, last, p);
1439 last = p;
1440 }
1441 setup_object(s, page, last);
1442 set_freepointer(s, last, NULL);
1443
1444 page->freelist = start;
1445 page->inuse = page->objects;
1446 page->frozen = 1;
1447 out:
1448 return page;
1449 }
1450
1451 static void __free_slab(struct kmem_cache *s, struct page *page)
1452 {
1453 int order = compound_order(page);
1454 int pages = 1 << order;
1455
1456 if (kmem_cache_debug(s)) {
1457 void *p;
1458
1459 slab_pad_check(s, page);
1460 for_each_object(p, s, page_address(page),
1461 page->objects)
1462 check_object(s, page, p, SLUB_RED_INACTIVE);
1463 }
1464
1465 kmemcheck_free_shadow(page, compound_order(page));
1466
1467 mod_zone_page_state(page_zone(page),
1468 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1469 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1470 -pages);
1471
1472 __ClearPageSlabPfmemalloc(page);
1473 __ClearPageSlab(page);
1474
1475 page_mapcount_reset(page);
1476 if (current->reclaim_state)
1477 current->reclaim_state->reclaimed_slab += pages;
1478 __free_pages(page, order);
1479 memcg_uncharge_slab(s, order);
1480 }
1481
1482 #define need_reserve_slab_rcu \
1483 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1484
1485 static void rcu_free_slab(struct rcu_head *h)
1486 {
1487 struct page *page;
1488
1489 if (need_reserve_slab_rcu)
1490 page = virt_to_head_page(h);
1491 else
1492 page = container_of((struct list_head *)h, struct page, lru);
1493
1494 __free_slab(page->slab_cache, page);
1495 }
1496
1497 static void free_slab(struct kmem_cache *s, struct page *page)
1498 {
1499 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1500 struct rcu_head *head;
1501
1502 if (need_reserve_slab_rcu) {
1503 int order = compound_order(page);
1504 int offset = (PAGE_SIZE << order) - s->reserved;
1505
1506 VM_BUG_ON(s->reserved != sizeof(*head));
1507 head = page_address(page) + offset;
1508 } else {
1509 /*
1510 * RCU free overloads the RCU head over the LRU
1511 */
1512 head = (void *)&page->lru;
1513 }
1514
1515 call_rcu(head, rcu_free_slab);
1516 } else
1517 __free_slab(s, page);
1518 }
1519
1520 static void discard_slab(struct kmem_cache *s, struct page *page)
1521 {
1522 dec_slabs_node(s, page_to_nid(page), page->objects);
1523 free_slab(s, page);
1524 }
1525
1526 /*
1527 * Management of partially allocated slabs.
1528 */
1529 static inline void
1530 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1531 {
1532 n->nr_partial++;
1533 if (tail == DEACTIVATE_TO_TAIL)
1534 list_add_tail(&page->lru, &n->partial);
1535 else
1536 list_add(&page->lru, &n->partial);
1537 }
1538
1539 static inline void add_partial(struct kmem_cache_node *n,
1540 struct page *page, int tail)
1541 {
1542 lockdep_assert_held(&n->list_lock);
1543 __add_partial(n, page, tail);
1544 }
1545
1546 static inline void
1547 __remove_partial(struct kmem_cache_node *n, struct page *page)
1548 {
1549 list_del(&page->lru);
1550 n->nr_partial--;
1551 }
1552
1553 static inline void remove_partial(struct kmem_cache_node *n,
1554 struct page *page)
1555 {
1556 lockdep_assert_held(&n->list_lock);
1557 __remove_partial(n, page);
1558 }
1559
1560 /*
1561 * Remove slab from the partial list, freeze it and
1562 * return the pointer to the freelist.
1563 *
1564 * Returns a list of objects or NULL if it fails.
1565 */
1566 static inline void *acquire_slab(struct kmem_cache *s,
1567 struct kmem_cache_node *n, struct page *page,
1568 int mode, int *objects)
1569 {
1570 void *freelist;
1571 unsigned long counters;
1572 struct page new;
1573
1574 lockdep_assert_held(&n->list_lock);
1575
1576 /*
1577 * Zap the freelist and set the frozen bit.
1578 * The old freelist is the list of objects for the
1579 * per cpu allocation list.
1580 */
1581 freelist = page->freelist;
1582 counters = page->counters;
1583 new.counters = counters;
1584 *objects = new.objects - new.inuse;
1585 if (mode) {
1586 new.inuse = page->objects;
1587 new.freelist = NULL;
1588 } else {
1589 new.freelist = freelist;
1590 }
1591
1592 VM_BUG_ON(new.frozen);
1593 new.frozen = 1;
1594
1595 if (!__cmpxchg_double_slab(s, page,
1596 freelist, counters,
1597 new.freelist, new.counters,
1598 "acquire_slab"))
1599 return NULL;
1600
1601 remove_partial(n, page);
1602 WARN_ON(!freelist);
1603 return freelist;
1604 }
1605
1606 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1607 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1608
1609 /*
1610 * Try to allocate a partial slab from a specific node.
1611 */
1612 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1613 struct kmem_cache_cpu *c, gfp_t flags)
1614 {
1615 struct page *page, *page2;
1616 void *object = NULL;
1617 int available = 0;
1618 int objects;
1619
1620 /*
1621 * Racy check. If we mistakenly see no partial slabs then we
1622 * just allocate an empty slab. If we mistakenly try to get a
1623 * partial slab and there is none available then get_partials()
1624 * will return NULL.
1625 */
1626 if (!n || !n->nr_partial)
1627 return NULL;
1628
1629 spin_lock(&n->list_lock);
1630 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1631 void *t;
1632
1633 if (!pfmemalloc_match(page, flags))
1634 continue;
1635
1636 t = acquire_slab(s, n, page, object == NULL, &objects);
1637 if (!t)
1638 break;
1639
1640 available += objects;
1641 if (!object) {
1642 c->page = page;
1643 stat(s, ALLOC_FROM_PARTIAL);
1644 object = t;
1645 } else {
1646 put_cpu_partial(s, page, 0);
1647 stat(s, CPU_PARTIAL_NODE);
1648 }
1649 if (!kmem_cache_has_cpu_partial(s)
1650 || available > s->cpu_partial / 2)
1651 break;
1652
1653 }
1654 spin_unlock(&n->list_lock);
1655 return object;
1656 }
1657
1658 /*
1659 * Get a page from somewhere. Search in increasing NUMA distances.
1660 */
1661 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1662 struct kmem_cache_cpu *c)
1663 {
1664 #ifdef CONFIG_NUMA
1665 struct zonelist *zonelist;
1666 struct zoneref *z;
1667 struct zone *zone;
1668 enum zone_type high_zoneidx = gfp_zone(flags);
1669 void *object;
1670 unsigned int cpuset_mems_cookie;
1671
1672 /*
1673 * The defrag ratio allows a configuration of the tradeoffs between
1674 * inter node defragmentation and node local allocations. A lower
1675 * defrag_ratio increases the tendency to do local allocations
1676 * instead of attempting to obtain partial slabs from other nodes.
1677 *
1678 * If the defrag_ratio is set to 0 then kmalloc() always
1679 * returns node local objects. If the ratio is higher then kmalloc()
1680 * may return off node objects because partial slabs are obtained
1681 * from other nodes and filled up.
1682 *
1683 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1684 * defrag_ratio = 1000) then every (well almost) allocation will
1685 * first attempt to defrag slab caches on other nodes. This means
1686 * scanning over all nodes to look for partial slabs which may be
1687 * expensive if we do it every time we are trying to find a slab
1688 * with available objects.
1689 */
1690 if (!s->remote_node_defrag_ratio ||
1691 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1692 return NULL;
1693
1694 do {
1695 cpuset_mems_cookie = read_mems_allowed_begin();
1696 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1697 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1698 struct kmem_cache_node *n;
1699
1700 n = get_node(s, zone_to_nid(zone));
1701
1702 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1703 n->nr_partial > s->min_partial) {
1704 object = get_partial_node(s, n, c, flags);
1705 if (object) {
1706 /*
1707 * Don't check read_mems_allowed_retry()
1708 * here - if mems_allowed was updated in
1709 * parallel, that was a harmless race
1710 * between allocation and the cpuset
1711 * update
1712 */
1713 return object;
1714 }
1715 }
1716 }
1717 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1718 #endif
1719 return NULL;
1720 }
1721
1722 /*
1723 * Get a partial page, lock it and return it.
1724 */
1725 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1726 struct kmem_cache_cpu *c)
1727 {
1728 void *object;
1729 int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
1730
1731 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1732 if (object || node != NUMA_NO_NODE)
1733 return object;
1734
1735 return get_any_partial(s, flags, c);
1736 }
1737
1738 #ifdef CONFIG_PREEMPT
1739 /*
1740 * Calculate the next globally unique transaction for disambiguiation
1741 * during cmpxchg. The transactions start with the cpu number and are then
1742 * incremented by CONFIG_NR_CPUS.
1743 */
1744 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1745 #else
1746 /*
1747 * No preemption supported therefore also no need to check for
1748 * different cpus.
1749 */
1750 #define TID_STEP 1
1751 #endif
1752
1753 static inline unsigned long next_tid(unsigned long tid)
1754 {
1755 return tid + TID_STEP;
1756 }
1757
1758 static inline unsigned int tid_to_cpu(unsigned long tid)
1759 {
1760 return tid % TID_STEP;
1761 }
1762
1763 static inline unsigned long tid_to_event(unsigned long tid)
1764 {
1765 return tid / TID_STEP;
1766 }
1767
1768 static inline unsigned int init_tid(int cpu)
1769 {
1770 return cpu;
1771 }
1772
1773 static inline void note_cmpxchg_failure(const char *n,
1774 const struct kmem_cache *s, unsigned long tid)
1775 {
1776 #ifdef SLUB_DEBUG_CMPXCHG
1777 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1778
1779 pr_info("%s %s: cmpxchg redo ", n, s->name);
1780
1781 #ifdef CONFIG_PREEMPT
1782 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1783 pr_warn("due to cpu change %d -> %d\n",
1784 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1785 else
1786 #endif
1787 if (tid_to_event(tid) != tid_to_event(actual_tid))
1788 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1789 tid_to_event(tid), tid_to_event(actual_tid));
1790 else
1791 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1792 actual_tid, tid, next_tid(tid));
1793 #endif
1794 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1795 }
1796
1797 static void init_kmem_cache_cpus(struct kmem_cache *s)
1798 {
1799 int cpu;
1800
1801 for_each_possible_cpu(cpu)
1802 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1803 }
1804
1805 /*
1806 * Remove the cpu slab
1807 */
1808 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1809 void *freelist)
1810 {
1811 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1812 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1813 int lock = 0;
1814 enum slab_modes l = M_NONE, m = M_NONE;
1815 void *nextfree;
1816 int tail = DEACTIVATE_TO_HEAD;
1817 struct page new;
1818 struct page old;
1819
1820 if (page->freelist) {
1821 stat(s, DEACTIVATE_REMOTE_FREES);
1822 tail = DEACTIVATE_TO_TAIL;
1823 }
1824
1825 /*
1826 * Stage one: Free all available per cpu objects back
1827 * to the page freelist while it is still frozen. Leave the
1828 * last one.
1829 *
1830 * There is no need to take the list->lock because the page
1831 * is still frozen.
1832 */
1833 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1834 void *prior;
1835 unsigned long counters;
1836
1837 do {
1838 prior = page->freelist;
1839 counters = page->counters;
1840 set_freepointer(s, freelist, prior);
1841 new.counters = counters;
1842 new.inuse--;
1843 VM_BUG_ON(!new.frozen);
1844
1845 } while (!__cmpxchg_double_slab(s, page,
1846 prior, counters,
1847 freelist, new.counters,
1848 "drain percpu freelist"));
1849
1850 freelist = nextfree;
1851 }
1852
1853 /*
1854 * Stage two: Ensure that the page is unfrozen while the
1855 * list presence reflects the actual number of objects
1856 * during unfreeze.
1857 *
1858 * We setup the list membership and then perform a cmpxchg
1859 * with the count. If there is a mismatch then the page
1860 * is not unfrozen but the page is on the wrong list.
1861 *
1862 * Then we restart the process which may have to remove
1863 * the page from the list that we just put it on again
1864 * because the number of objects in the slab may have
1865 * changed.
1866 */
1867 redo:
1868
1869 old.freelist = page->freelist;
1870 old.counters = page->counters;
1871 VM_BUG_ON(!old.frozen);
1872
1873 /* Determine target state of the slab */
1874 new.counters = old.counters;
1875 if (freelist) {
1876 new.inuse--;
1877 set_freepointer(s, freelist, old.freelist);
1878 new.freelist = freelist;
1879 } else
1880 new.freelist = old.freelist;
1881
1882 new.frozen = 0;
1883
1884 if (!new.inuse && n->nr_partial >= s->min_partial)
1885 m = M_FREE;
1886 else if (new.freelist) {
1887 m = M_PARTIAL;
1888 if (!lock) {
1889 lock = 1;
1890 /*
1891 * Taking the spinlock removes the possiblity
1892 * that acquire_slab() will see a slab page that
1893 * is frozen
1894 */
1895 spin_lock(&n->list_lock);
1896 }
1897 } else {
1898 m = M_FULL;
1899 if (kmem_cache_debug(s) && !lock) {
1900 lock = 1;
1901 /*
1902 * This also ensures that the scanning of full
1903 * slabs from diagnostic functions will not see
1904 * any frozen slabs.
1905 */
1906 spin_lock(&n->list_lock);
1907 }
1908 }
1909
1910 if (l != m) {
1911
1912 if (l == M_PARTIAL)
1913
1914 remove_partial(n, page);
1915
1916 else if (l == M_FULL)
1917
1918 remove_full(s, n, page);
1919
1920 if (m == M_PARTIAL) {
1921
1922 add_partial(n, page, tail);
1923 stat(s, tail);
1924
1925 } else if (m == M_FULL) {
1926
1927 stat(s, DEACTIVATE_FULL);
1928 add_full(s, n, page);
1929
1930 }
1931 }
1932
1933 l = m;
1934 if (!__cmpxchg_double_slab(s, page,
1935 old.freelist, old.counters,
1936 new.freelist, new.counters,
1937 "unfreezing slab"))
1938 goto redo;
1939
1940 if (lock)
1941 spin_unlock(&n->list_lock);
1942
1943 if (m == M_FREE) {
1944 stat(s, DEACTIVATE_EMPTY);
1945 discard_slab(s, page);
1946 stat(s, FREE_SLAB);
1947 }
1948 }
1949
1950 /*
1951 * Unfreeze all the cpu partial slabs.
1952 *
1953 * This function must be called with interrupts disabled
1954 * for the cpu using c (or some other guarantee must be there
1955 * to guarantee no concurrent accesses).
1956 */
1957 static void unfreeze_partials(struct kmem_cache *s,
1958 struct kmem_cache_cpu *c)
1959 {
1960 #ifdef CONFIG_SLUB_CPU_PARTIAL
1961 struct kmem_cache_node *n = NULL, *n2 = NULL;
1962 struct page *page, *discard_page = NULL;
1963
1964 while ((page = c->partial)) {
1965 struct page new;
1966 struct page old;
1967
1968 c->partial = page->next;
1969
1970 n2 = get_node(s, page_to_nid(page));
1971 if (n != n2) {
1972 if (n)
1973 spin_unlock(&n->list_lock);
1974
1975 n = n2;
1976 spin_lock(&n->list_lock);
1977 }
1978
1979 do {
1980
1981 old.freelist = page->freelist;
1982 old.counters = page->counters;
1983 VM_BUG_ON(!old.frozen);
1984
1985 new.counters = old.counters;
1986 new.freelist = old.freelist;
1987
1988 new.frozen = 0;
1989
1990 } while (!__cmpxchg_double_slab(s, page,
1991 old.freelist, old.counters,
1992 new.freelist, new.counters,
1993 "unfreezing slab"));
1994
1995 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1996 page->next = discard_page;
1997 discard_page = page;
1998 } else {
1999 add_partial(n, page, DEACTIVATE_TO_TAIL);
2000 stat(s, FREE_ADD_PARTIAL);
2001 }
2002 }
2003
2004 if (n)
2005 spin_unlock(&n->list_lock);
2006
2007 while (discard_page) {
2008 page = discard_page;
2009 discard_page = discard_page->next;
2010
2011 stat(s, DEACTIVATE_EMPTY);
2012 discard_slab(s, page);
2013 stat(s, FREE_SLAB);
2014 }
2015 #endif
2016 }
2017
2018 /*
2019 * Put a page that was just frozen (in __slab_free) into a partial page
2020 * slot if available. This is done without interrupts disabled and without
2021 * preemption disabled. The cmpxchg is racy and may put the partial page
2022 * onto a random cpus partial slot.
2023 *
2024 * If we did not find a slot then simply move all the partials to the
2025 * per node partial list.
2026 */
2027 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2028 {
2029 #ifdef CONFIG_SLUB_CPU_PARTIAL
2030 struct page *oldpage;
2031 int pages;
2032 int pobjects;
2033
2034 do {
2035 pages = 0;
2036 pobjects = 0;
2037 oldpage = this_cpu_read(s->cpu_slab->partial);
2038
2039 if (oldpage) {
2040 pobjects = oldpage->pobjects;
2041 pages = oldpage->pages;
2042 if (drain && pobjects > s->cpu_partial) {
2043 unsigned long flags;
2044 /*
2045 * partial array is full. Move the existing
2046 * set to the per node partial list.
2047 */
2048 local_irq_save(flags);
2049 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2050 local_irq_restore(flags);
2051 oldpage = NULL;
2052 pobjects = 0;
2053 pages = 0;
2054 stat(s, CPU_PARTIAL_DRAIN);
2055 }
2056 }
2057
2058 pages++;
2059 pobjects += page->objects - page->inuse;
2060
2061 page->pages = pages;
2062 page->pobjects = pobjects;
2063 page->next = oldpage;
2064
2065 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2066 != oldpage);
2067 #endif
2068 }
2069
2070 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2071 {
2072 stat(s, CPUSLAB_FLUSH);
2073 deactivate_slab(s, c->page, c->freelist);
2074
2075 c->tid = next_tid(c->tid);
2076 c->page = NULL;
2077 c->freelist = NULL;
2078 }
2079
2080 /*
2081 * Flush cpu slab.
2082 *
2083 * Called from IPI handler with interrupts disabled.
2084 */
2085 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2086 {
2087 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2088
2089 if (likely(c)) {
2090 if (c->page)
2091 flush_slab(s, c);
2092
2093 unfreeze_partials(s, c);
2094 }
2095 }
2096
2097 static void flush_cpu_slab(void *d)
2098 {
2099 struct kmem_cache *s = d;
2100
2101 __flush_cpu_slab(s, smp_processor_id());
2102 }
2103
2104 static bool has_cpu_slab(int cpu, void *info)
2105 {
2106 struct kmem_cache *s = info;
2107 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2108
2109 return c->page || c->partial;
2110 }
2111
2112 static void flush_all(struct kmem_cache *s)
2113 {
2114 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2115 }
2116
2117 /*
2118 * Check if the objects in a per cpu structure fit numa
2119 * locality expectations.
2120 */
2121 static inline int node_match(struct page *page, int node)
2122 {
2123 #ifdef CONFIG_NUMA
2124 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2125 return 0;
2126 #endif
2127 return 1;
2128 }
2129
2130 #ifdef CONFIG_SLUB_DEBUG
2131 static int count_free(struct page *page)
2132 {
2133 return page->objects - page->inuse;
2134 }
2135
2136 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2137 {
2138 return atomic_long_read(&n->total_objects);
2139 }
2140 #endif /* CONFIG_SLUB_DEBUG */
2141
2142 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2143 static unsigned long count_partial(struct kmem_cache_node *n,
2144 int (*get_count)(struct page *))
2145 {
2146 unsigned long flags;
2147 unsigned long x = 0;
2148 struct page *page;
2149
2150 spin_lock_irqsave(&n->list_lock, flags);
2151 list_for_each_entry(page, &n->partial, lru)
2152 x += get_count(page);
2153 spin_unlock_irqrestore(&n->list_lock, flags);
2154 return x;
2155 }
2156 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2157
2158 static noinline void
2159 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2160 {
2161 #ifdef CONFIG_SLUB_DEBUG
2162 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2163 DEFAULT_RATELIMIT_BURST);
2164 int node;
2165
2166 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2167 return;
2168
2169 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2170 nid, gfpflags);
2171 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2172 s->name, s->object_size, s->size, oo_order(s->oo),
2173 oo_order(s->min));
2174
2175 if (oo_order(s->min) > get_order(s->object_size))
2176 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2177 s->name);
2178
2179 for_each_online_node(node) {
2180 struct kmem_cache_node *n = get_node(s, node);
2181 unsigned long nr_slabs;
2182 unsigned long nr_objs;
2183 unsigned long nr_free;
2184
2185 if (!n)
2186 continue;
2187
2188 nr_free = count_partial(n, count_free);
2189 nr_slabs = node_nr_slabs(n);
2190 nr_objs = node_nr_objs(n);
2191
2192 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2193 node, nr_slabs, nr_objs, nr_free);
2194 }
2195 #endif
2196 }
2197
2198 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2199 int node, struct kmem_cache_cpu **pc)
2200 {
2201 void *freelist;
2202 struct kmem_cache_cpu *c = *pc;
2203 struct page *page;
2204
2205 freelist = get_partial(s, flags, node, c);
2206
2207 if (freelist)
2208 return freelist;
2209
2210 page = new_slab(s, flags, node);
2211 if (page) {
2212 c = raw_cpu_ptr(s->cpu_slab);
2213 if (c->page)
2214 flush_slab(s, c);
2215
2216 /*
2217 * No other reference to the page yet so we can
2218 * muck around with it freely without cmpxchg
2219 */
2220 freelist = page->freelist;
2221 page->freelist = NULL;
2222
2223 stat(s, ALLOC_SLAB);
2224 c->page = page;
2225 *pc = c;
2226 } else
2227 freelist = NULL;
2228
2229 return freelist;
2230 }
2231
2232 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2233 {
2234 if (unlikely(PageSlabPfmemalloc(page)))
2235 return gfp_pfmemalloc_allowed(gfpflags);
2236
2237 return true;
2238 }
2239
2240 /*
2241 * Check the page->freelist of a page and either transfer the freelist to the
2242 * per cpu freelist or deactivate the page.
2243 *
2244 * The page is still frozen if the return value is not NULL.
2245 *
2246 * If this function returns NULL then the page has been unfrozen.
2247 *
2248 * This function must be called with interrupt disabled.
2249 */
2250 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2251 {
2252 struct page new;
2253 unsigned long counters;
2254 void *freelist;
2255
2256 do {
2257 freelist = page->freelist;
2258 counters = page->counters;
2259
2260 new.counters = counters;
2261 VM_BUG_ON(!new.frozen);
2262
2263 new.inuse = page->objects;
2264 new.frozen = freelist != NULL;
2265
2266 } while (!__cmpxchg_double_slab(s, page,
2267 freelist, counters,
2268 NULL, new.counters,
2269 "get_freelist"));
2270
2271 return freelist;
2272 }
2273
2274 /*
2275 * Slow path. The lockless freelist is empty or we need to perform
2276 * debugging duties.
2277 *
2278 * Processing is still very fast if new objects have been freed to the
2279 * regular freelist. In that case we simply take over the regular freelist
2280 * as the lockless freelist and zap the regular freelist.
2281 *
2282 * If that is not working then we fall back to the partial lists. We take the
2283 * first element of the freelist as the object to allocate now and move the
2284 * rest of the freelist to the lockless freelist.
2285 *
2286 * And if we were unable to get a new slab from the partial slab lists then
2287 * we need to allocate a new slab. This is the slowest path since it involves
2288 * a call to the page allocator and the setup of a new slab.
2289 */
2290 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2291 unsigned long addr, struct kmem_cache_cpu *c)
2292 {
2293 void *freelist;
2294 struct page *page;
2295 unsigned long flags;
2296
2297 local_irq_save(flags);
2298 #ifdef CONFIG_PREEMPT
2299 /*
2300 * We may have been preempted and rescheduled on a different
2301 * cpu before disabling interrupts. Need to reload cpu area
2302 * pointer.
2303 */
2304 c = this_cpu_ptr(s->cpu_slab);
2305 #endif
2306
2307 page = c->page;
2308 if (!page)
2309 goto new_slab;
2310 redo:
2311
2312 if (unlikely(!node_match(page, node))) {
2313 stat(s, ALLOC_NODE_MISMATCH);
2314 deactivate_slab(s, page, c->freelist);
2315 c->page = NULL;
2316 c->freelist = NULL;
2317 goto new_slab;
2318 }
2319
2320 /*
2321 * By rights, we should be searching for a slab page that was
2322 * PFMEMALLOC but right now, we are losing the pfmemalloc
2323 * information when the page leaves the per-cpu allocator
2324 */
2325 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2326 deactivate_slab(s, page, c->freelist);
2327 c->page = NULL;
2328 c->freelist = NULL;
2329 goto new_slab;
2330 }
2331
2332 /* must check again c->freelist in case of cpu migration or IRQ */
2333 freelist = c->freelist;
2334 if (freelist)
2335 goto load_freelist;
2336
2337 freelist = get_freelist(s, page);
2338
2339 if (!freelist) {
2340 c->page = NULL;
2341 stat(s, DEACTIVATE_BYPASS);
2342 goto new_slab;
2343 }
2344
2345 stat(s, ALLOC_REFILL);
2346
2347 load_freelist:
2348 /*
2349 * freelist is pointing to the list of objects to be used.
2350 * page is pointing to the page from which the objects are obtained.
2351 * That page must be frozen for per cpu allocations to work.
2352 */
2353 VM_BUG_ON(!c->page->frozen);
2354 c->freelist = get_freepointer(s, freelist);
2355 c->tid = next_tid(c->tid);
2356 local_irq_restore(flags);
2357 return freelist;
2358
2359 new_slab:
2360
2361 if (c->partial) {
2362 page = c->page = c->partial;
2363 c->partial = page->next;
2364 stat(s, CPU_PARTIAL_ALLOC);
2365 c->freelist = NULL;
2366 goto redo;
2367 }
2368
2369 freelist = new_slab_objects(s, gfpflags, node, &c);
2370
2371 if (unlikely(!freelist)) {
2372 slab_out_of_memory(s, gfpflags, node);
2373 local_irq_restore(flags);
2374 return NULL;
2375 }
2376
2377 page = c->page;
2378 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2379 goto load_freelist;
2380
2381 /* Only entered in the debug case */
2382 if (kmem_cache_debug(s) &&
2383 !alloc_debug_processing(s, page, freelist, addr))
2384 goto new_slab; /* Slab failed checks. Next slab needed */
2385
2386 deactivate_slab(s, page, get_freepointer(s, freelist));
2387 c->page = NULL;
2388 c->freelist = NULL;
2389 local_irq_restore(flags);
2390 return freelist;
2391 }
2392
2393 /*
2394 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2395 * have the fastpath folded into their functions. So no function call
2396 * overhead for requests that can be satisfied on the fastpath.
2397 *
2398 * The fastpath works by first checking if the lockless freelist can be used.
2399 * If not then __slab_alloc is called for slow processing.
2400 *
2401 * Otherwise we can simply pick the next object from the lockless free list.
2402 */
2403 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2404 gfp_t gfpflags, int node, unsigned long addr)
2405 {
2406 void **object;
2407 struct kmem_cache_cpu *c;
2408 struct page *page;
2409 unsigned long tid;
2410
2411 if (slab_pre_alloc_hook(s, gfpflags))
2412 return NULL;
2413
2414 s = memcg_kmem_get_cache(s, gfpflags);
2415 redo:
2416 /*
2417 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2418 * enabled. We may switch back and forth between cpus while
2419 * reading from one cpu area. That does not matter as long
2420 * as we end up on the original cpu again when doing the cmpxchg.
2421 *
2422 * Preemption is disabled for the retrieval of the tid because that
2423 * must occur from the current processor. We cannot allow rescheduling
2424 * on a different processor between the determination of the pointer
2425 * and the retrieval of the tid.
2426 */
2427 preempt_disable();
2428 c = this_cpu_ptr(s->cpu_slab);
2429
2430 /*
2431 * The transaction ids are globally unique per cpu and per operation on
2432 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2433 * occurs on the right processor and that there was no operation on the
2434 * linked list in between.
2435 */
2436 tid = c->tid;
2437 preempt_enable();
2438
2439 object = c->freelist;
2440 page = c->page;
2441 if (unlikely(!object || !node_match(page, node))) {
2442 object = __slab_alloc(s, gfpflags, node, addr, c);
2443 stat(s, ALLOC_SLOWPATH);
2444 } else {
2445 void *next_object = get_freepointer_safe(s, object);
2446
2447 /*
2448 * The cmpxchg will only match if there was no additional
2449 * operation and if we are on the right processor.
2450 *
2451 * The cmpxchg does the following atomically (without lock
2452 * semantics!)
2453 * 1. Relocate first pointer to the current per cpu area.
2454 * 2. Verify that tid and freelist have not been changed
2455 * 3. If they were not changed replace tid and freelist
2456 *
2457 * Since this is without lock semantics the protection is only
2458 * against code executing on this cpu *not* from access by
2459 * other cpus.
2460 */
2461 if (unlikely(!this_cpu_cmpxchg_double(
2462 s->cpu_slab->freelist, s->cpu_slab->tid,
2463 object, tid,
2464 next_object, next_tid(tid)))) {
2465
2466 note_cmpxchg_failure("slab_alloc", s, tid);
2467 goto redo;
2468 }
2469 prefetch_freepointer(s, next_object);
2470 stat(s, ALLOC_FASTPATH);
2471 }
2472
2473 if (unlikely(gfpflags & __GFP_ZERO) && object)
2474 memset(object, 0, s->object_size);
2475
2476 slab_post_alloc_hook(s, gfpflags, object);
2477
2478 return object;
2479 }
2480
2481 static __always_inline void *slab_alloc(struct kmem_cache *s,
2482 gfp_t gfpflags, unsigned long addr)
2483 {
2484 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2485 }
2486
2487 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2488 {
2489 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2490
2491 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2492 s->size, gfpflags);
2493
2494 return ret;
2495 }
2496 EXPORT_SYMBOL(kmem_cache_alloc);
2497
2498 #ifdef CONFIG_TRACING
2499 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2500 {
2501 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2502 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2503 return ret;
2504 }
2505 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2506 #endif
2507
2508 #ifdef CONFIG_NUMA
2509 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2510 {
2511 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2512
2513 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2514 s->object_size, s->size, gfpflags, node);
2515
2516 return ret;
2517 }
2518 EXPORT_SYMBOL(kmem_cache_alloc_node);
2519
2520 #ifdef CONFIG_TRACING
2521 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2522 gfp_t gfpflags,
2523 int node, size_t size)
2524 {
2525 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2526
2527 trace_kmalloc_node(_RET_IP_, ret,
2528 size, s->size, gfpflags, node);
2529 return ret;
2530 }
2531 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2532 #endif
2533 #endif
2534
2535 /*
2536 * Slow patch handling. This may still be called frequently since objects
2537 * have a longer lifetime than the cpu slabs in most processing loads.
2538 *
2539 * So we still attempt to reduce cache line usage. Just take the slab
2540 * lock and free the item. If there is no additional partial page
2541 * handling required then we can return immediately.
2542 */
2543 static void __slab_free(struct kmem_cache *s, struct page *page,
2544 void *x, unsigned long addr)
2545 {
2546 void *prior;
2547 void **object = (void *)x;
2548 int was_frozen;
2549 struct page new;
2550 unsigned long counters;
2551 struct kmem_cache_node *n = NULL;
2552 unsigned long uninitialized_var(flags);
2553
2554 stat(s, FREE_SLOWPATH);
2555
2556 if (kmem_cache_debug(s) &&
2557 !(n = free_debug_processing(s, page, x, addr, &flags)))
2558 return;
2559
2560 do {
2561 if (unlikely(n)) {
2562 spin_unlock_irqrestore(&n->list_lock, flags);
2563 n = NULL;
2564 }
2565 prior = page->freelist;
2566 counters = page->counters;
2567 set_freepointer(s, object, prior);
2568 new.counters = counters;
2569 was_frozen = new.frozen;
2570 new.inuse--;
2571 if ((!new.inuse || !prior) && !was_frozen) {
2572
2573 if (kmem_cache_has_cpu_partial(s) && !prior) {
2574
2575 /*
2576 * Slab was on no list before and will be
2577 * partially empty
2578 * We can defer the list move and instead
2579 * freeze it.
2580 */
2581 new.frozen = 1;
2582
2583 } else { /* Needs to be taken off a list */
2584
2585 n = get_node(s, page_to_nid(page));
2586 /*
2587 * Speculatively acquire the list_lock.
2588 * If the cmpxchg does not succeed then we may
2589 * drop the list_lock without any processing.
2590 *
2591 * Otherwise the list_lock will synchronize with
2592 * other processors updating the list of slabs.
2593 */
2594 spin_lock_irqsave(&n->list_lock, flags);
2595
2596 }
2597 }
2598
2599 } while (!cmpxchg_double_slab(s, page,
2600 prior, counters,
2601 object, new.counters,
2602 "__slab_free"));
2603
2604 if (likely(!n)) {
2605
2606 /*
2607 * If we just froze the page then put it onto the
2608 * per cpu partial list.
2609 */
2610 if (new.frozen && !was_frozen) {
2611 put_cpu_partial(s, page, 1);
2612 stat(s, CPU_PARTIAL_FREE);
2613 }
2614 /*
2615 * The list lock was not taken therefore no list
2616 * activity can be necessary.
2617 */
2618 if (was_frozen)
2619 stat(s, FREE_FROZEN);
2620 return;
2621 }
2622
2623 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2624 goto slab_empty;
2625
2626 /*
2627 * Objects left in the slab. If it was not on the partial list before
2628 * then add it.
2629 */
2630 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2631 if (kmem_cache_debug(s))
2632 remove_full(s, n, page);
2633 add_partial(n, page, DEACTIVATE_TO_TAIL);
2634 stat(s, FREE_ADD_PARTIAL);
2635 }
2636 spin_unlock_irqrestore(&n->list_lock, flags);
2637 return;
2638
2639 slab_empty:
2640 if (prior) {
2641 /*
2642 * Slab on the partial list.
2643 */
2644 remove_partial(n, page);
2645 stat(s, FREE_REMOVE_PARTIAL);
2646 } else {
2647 /* Slab must be on the full list */
2648 remove_full(s, n, page);
2649 }
2650
2651 spin_unlock_irqrestore(&n->list_lock, flags);
2652 stat(s, FREE_SLAB);
2653 discard_slab(s, page);
2654 }
2655
2656 /*
2657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2658 * can perform fastpath freeing without additional function calls.
2659 *
2660 * The fastpath is only possible if we are freeing to the current cpu slab
2661 * of this processor. This typically the case if we have just allocated
2662 * the item before.
2663 *
2664 * If fastpath is not possible then fall back to __slab_free where we deal
2665 * with all sorts of special processing.
2666 */
2667 static __always_inline void slab_free(struct kmem_cache *s,
2668 struct page *page, void *x, unsigned long addr)
2669 {
2670 void **object = (void *)x;
2671 struct kmem_cache_cpu *c;
2672 unsigned long tid;
2673
2674 slab_free_hook(s, x);
2675
2676 redo:
2677 /*
2678 * Determine the currently cpus per cpu slab.
2679 * The cpu may change afterward. However that does not matter since
2680 * data is retrieved via this pointer. If we are on the same cpu
2681 * during the cmpxchg then the free will succedd.
2682 */
2683 preempt_disable();
2684 c = this_cpu_ptr(s->cpu_slab);
2685
2686 tid = c->tid;
2687 preempt_enable();
2688
2689 if (likely(page == c->page)) {
2690 set_freepointer(s, object, c->freelist);
2691
2692 if (unlikely(!this_cpu_cmpxchg_double(
2693 s->cpu_slab->freelist, s->cpu_slab->tid,
2694 c->freelist, tid,
2695 object, next_tid(tid)))) {
2696
2697 note_cmpxchg_failure("slab_free", s, tid);
2698 goto redo;
2699 }
2700 stat(s, FREE_FASTPATH);
2701 } else
2702 __slab_free(s, page, x, addr);
2703
2704 }
2705
2706 void kmem_cache_free(struct kmem_cache *s, void *x)
2707 {
2708 s = cache_from_obj(s, x);
2709 if (!s)
2710 return;
2711 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2712 trace_kmem_cache_free(_RET_IP_, x);
2713 }
2714 EXPORT_SYMBOL(kmem_cache_free);
2715
2716 /*
2717 * Object placement in a slab is made very easy because we always start at
2718 * offset 0. If we tune the size of the object to the alignment then we can
2719 * get the required alignment by putting one properly sized object after
2720 * another.
2721 *
2722 * Notice that the allocation order determines the sizes of the per cpu
2723 * caches. Each processor has always one slab available for allocations.
2724 * Increasing the allocation order reduces the number of times that slabs
2725 * must be moved on and off the partial lists and is therefore a factor in
2726 * locking overhead.
2727 */
2728
2729 /*
2730 * Mininum / Maximum order of slab pages. This influences locking overhead
2731 * and slab fragmentation. A higher order reduces the number of partial slabs
2732 * and increases the number of allocations possible without having to
2733 * take the list_lock.
2734 */
2735 static int slub_min_order;
2736 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2737 static int slub_min_objects;
2738
2739 /*
2740 * Merge control. If this is set then no merging of slab caches will occur.
2741 * (Could be removed. This was introduced to pacify the merge skeptics.)
2742 */
2743 static int slub_nomerge;
2744
2745 /*
2746 * Calculate the order of allocation given an slab object size.
2747 *
2748 * The order of allocation has significant impact on performance and other
2749 * system components. Generally order 0 allocations should be preferred since
2750 * order 0 does not cause fragmentation in the page allocator. Larger objects
2751 * be problematic to put into order 0 slabs because there may be too much
2752 * unused space left. We go to a higher order if more than 1/16th of the slab
2753 * would be wasted.
2754 *
2755 * In order to reach satisfactory performance we must ensure that a minimum
2756 * number of objects is in one slab. Otherwise we may generate too much
2757 * activity on the partial lists which requires taking the list_lock. This is
2758 * less a concern for large slabs though which are rarely used.
2759 *
2760 * slub_max_order specifies the order where we begin to stop considering the
2761 * number of objects in a slab as critical. If we reach slub_max_order then
2762 * we try to keep the page order as low as possible. So we accept more waste
2763 * of space in favor of a small page order.
2764 *
2765 * Higher order allocations also allow the placement of more objects in a
2766 * slab and thereby reduce object handling overhead. If the user has
2767 * requested a higher mininum order then we start with that one instead of
2768 * the smallest order which will fit the object.
2769 */
2770 static inline int slab_order(int size, int min_objects,
2771 int max_order, int fract_leftover, int reserved)
2772 {
2773 int order;
2774 int rem;
2775 int min_order = slub_min_order;
2776
2777 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2778 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2779
2780 for (order = max(min_order,
2781 fls(min_objects * size - 1) - PAGE_SHIFT);
2782 order <= max_order; order++) {
2783
2784 unsigned long slab_size = PAGE_SIZE << order;
2785
2786 if (slab_size < min_objects * size + reserved)
2787 continue;
2788
2789 rem = (slab_size - reserved) % size;
2790
2791 if (rem <= slab_size / fract_leftover)
2792 break;
2793
2794 }
2795
2796 return order;
2797 }
2798
2799 static inline int calculate_order(int size, int reserved)
2800 {
2801 int order;
2802 int min_objects;
2803 int fraction;
2804 int max_objects;
2805
2806 /*
2807 * Attempt to find best configuration for a slab. This
2808 * works by first attempting to generate a layout with
2809 * the best configuration and backing off gradually.
2810 *
2811 * First we reduce the acceptable waste in a slab. Then
2812 * we reduce the minimum objects required in a slab.
2813 */
2814 min_objects = slub_min_objects;
2815 if (!min_objects)
2816 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2817 max_objects = order_objects(slub_max_order, size, reserved);
2818 min_objects = min(min_objects, max_objects);
2819
2820 while (min_objects > 1) {
2821 fraction = 16;
2822 while (fraction >= 4) {
2823 order = slab_order(size, min_objects,
2824 slub_max_order, fraction, reserved);
2825 if (order <= slub_max_order)
2826 return order;
2827 fraction /= 2;
2828 }
2829 min_objects--;
2830 }
2831
2832 /*
2833 * We were unable to place multiple objects in a slab. Now
2834 * lets see if we can place a single object there.
2835 */
2836 order = slab_order(size, 1, slub_max_order, 1, reserved);
2837 if (order <= slub_max_order)
2838 return order;
2839
2840 /*
2841 * Doh this slab cannot be placed using slub_max_order.
2842 */
2843 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2844 if (order < MAX_ORDER)
2845 return order;
2846 return -ENOSYS;
2847 }
2848
2849 static void
2850 init_kmem_cache_node(struct kmem_cache_node *n)
2851 {
2852 n->nr_partial = 0;
2853 spin_lock_init(&n->list_lock);
2854 INIT_LIST_HEAD(&n->partial);
2855 #ifdef CONFIG_SLUB_DEBUG
2856 atomic_long_set(&n->nr_slabs, 0);
2857 atomic_long_set(&n->total_objects, 0);
2858 INIT_LIST_HEAD(&n->full);
2859 #endif
2860 }
2861
2862 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2863 {
2864 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2865 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2866
2867 /*
2868 * Must align to double word boundary for the double cmpxchg
2869 * instructions to work; see __pcpu_double_call_return_bool().
2870 */
2871 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2872 2 * sizeof(void *));
2873
2874 if (!s->cpu_slab)
2875 return 0;
2876
2877 init_kmem_cache_cpus(s);
2878
2879 return 1;
2880 }
2881
2882 static struct kmem_cache *kmem_cache_node;
2883
2884 /*
2885 * No kmalloc_node yet so do it by hand. We know that this is the first
2886 * slab on the node for this slabcache. There are no concurrent accesses
2887 * possible.
2888 *
2889 * Note that this function only works on the kmem_cache_node
2890 * when allocating for the kmem_cache_node. This is used for bootstrapping
2891 * memory on a fresh node that has no slab structures yet.
2892 */
2893 static void early_kmem_cache_node_alloc(int node)
2894 {
2895 struct page *page;
2896 struct kmem_cache_node *n;
2897
2898 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2899
2900 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2901
2902 BUG_ON(!page);
2903 if (page_to_nid(page) != node) {
2904 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2905 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2906 }
2907
2908 n = page->freelist;
2909 BUG_ON(!n);
2910 page->freelist = get_freepointer(kmem_cache_node, n);
2911 page->inuse = 1;
2912 page->frozen = 0;
2913 kmem_cache_node->node[node] = n;
2914 #ifdef CONFIG_SLUB_DEBUG
2915 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2916 init_tracking(kmem_cache_node, n);
2917 #endif
2918 init_kmem_cache_node(n);
2919 inc_slabs_node(kmem_cache_node, node, page->objects);
2920
2921 /*
2922 * No locks need to be taken here as it has just been
2923 * initialized and there is no concurrent access.
2924 */
2925 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2926 }
2927
2928 static void free_kmem_cache_nodes(struct kmem_cache *s)
2929 {
2930 int node;
2931
2932 for_each_node_state(node, N_NORMAL_MEMORY) {
2933 struct kmem_cache_node *n = s->node[node];
2934
2935 if (n)
2936 kmem_cache_free(kmem_cache_node, n);
2937
2938 s->node[node] = NULL;
2939 }
2940 }
2941
2942 static int init_kmem_cache_nodes(struct kmem_cache *s)
2943 {
2944 int node;
2945
2946 for_each_node_state(node, N_NORMAL_MEMORY) {
2947 struct kmem_cache_node *n;
2948
2949 if (slab_state == DOWN) {
2950 early_kmem_cache_node_alloc(node);
2951 continue;
2952 }
2953 n = kmem_cache_alloc_node(kmem_cache_node,
2954 GFP_KERNEL, node);
2955
2956 if (!n) {
2957 free_kmem_cache_nodes(s);
2958 return 0;
2959 }
2960
2961 s->node[node] = n;
2962 init_kmem_cache_node(n);
2963 }
2964 return 1;
2965 }
2966
2967 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2968 {
2969 if (min < MIN_PARTIAL)
2970 min = MIN_PARTIAL;
2971 else if (min > MAX_PARTIAL)
2972 min = MAX_PARTIAL;
2973 s->min_partial = min;
2974 }
2975
2976 /*
2977 * calculate_sizes() determines the order and the distribution of data within
2978 * a slab object.
2979 */
2980 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2981 {
2982 unsigned long flags = s->flags;
2983 unsigned long size = s->object_size;
2984 int order;
2985
2986 /*
2987 * Round up object size to the next word boundary. We can only
2988 * place the free pointer at word boundaries and this determines
2989 * the possible location of the free pointer.
2990 */
2991 size = ALIGN(size, sizeof(void *));
2992
2993 #ifdef CONFIG_SLUB_DEBUG
2994 /*
2995 * Determine if we can poison the object itself. If the user of
2996 * the slab may touch the object after free or before allocation
2997 * then we should never poison the object itself.
2998 */
2999 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3000 !s->ctor)
3001 s->flags |= __OBJECT_POISON;
3002 else
3003 s->flags &= ~__OBJECT_POISON;
3004
3005
3006 /*
3007 * If we are Redzoning then check if there is some space between the
3008 * end of the object and the free pointer. If not then add an
3009 * additional word to have some bytes to store Redzone information.
3010 */
3011 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3012 size += sizeof(void *);
3013 #endif
3014
3015 /*
3016 * With that we have determined the number of bytes in actual use
3017 * by the object. This is the potential offset to the free pointer.
3018 */
3019 s->inuse = size;
3020
3021 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3022 s->ctor)) {
3023 /*
3024 * Relocate free pointer after the object if it is not
3025 * permitted to overwrite the first word of the object on
3026 * kmem_cache_free.
3027 *
3028 * This is the case if we do RCU, have a constructor or
3029 * destructor or are poisoning the objects.
3030 */
3031 s->offset = size;
3032 size += sizeof(void *);
3033 }
3034
3035 #ifdef CONFIG_SLUB_DEBUG
3036 if (flags & SLAB_STORE_USER)
3037 /*
3038 * Need to store information about allocs and frees after
3039 * the object.
3040 */
3041 size += 2 * sizeof(struct track);
3042
3043 if (flags & SLAB_RED_ZONE)
3044 /*
3045 * Add some empty padding so that we can catch
3046 * overwrites from earlier objects rather than let
3047 * tracking information or the free pointer be
3048 * corrupted if a user writes before the start
3049 * of the object.
3050 */
3051 size += sizeof(void *);
3052 #endif
3053
3054 /*
3055 * SLUB stores one object immediately after another beginning from
3056 * offset 0. In order to align the objects we have to simply size
3057 * each object to conform to the alignment.
3058 */
3059 size = ALIGN(size, s->align);
3060 s->size = size;
3061 if (forced_order >= 0)
3062 order = forced_order;
3063 else
3064 order = calculate_order(size, s->reserved);
3065
3066 if (order < 0)
3067 return 0;
3068
3069 s->allocflags = 0;
3070 if (order)
3071 s->allocflags |= __GFP_COMP;
3072
3073 if (s->flags & SLAB_CACHE_DMA)
3074 s->allocflags |= GFP_DMA;
3075
3076 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3077 s->allocflags |= __GFP_RECLAIMABLE;
3078
3079 /*
3080 * Determine the number of objects per slab
3081 */
3082 s->oo = oo_make(order, size, s->reserved);
3083 s->min = oo_make(get_order(size), size, s->reserved);
3084 if (oo_objects(s->oo) > oo_objects(s->max))
3085 s->max = s->oo;
3086
3087 return !!oo_objects(s->oo);
3088 }
3089
3090 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3091 {
3092 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3093 s->reserved = 0;
3094
3095 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3096 s->reserved = sizeof(struct rcu_head);
3097
3098 if (!calculate_sizes(s, -1))
3099 goto error;
3100 if (disable_higher_order_debug) {
3101 /*
3102 * Disable debugging flags that store metadata if the min slab
3103 * order increased.
3104 */
3105 if (get_order(s->size) > get_order(s->object_size)) {
3106 s->flags &= ~DEBUG_METADATA_FLAGS;
3107 s->offset = 0;
3108 if (!calculate_sizes(s, -1))
3109 goto error;
3110 }
3111 }
3112
3113 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3114 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3115 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3116 /* Enable fast mode */
3117 s->flags |= __CMPXCHG_DOUBLE;
3118 #endif
3119
3120 /*
3121 * The larger the object size is, the more pages we want on the partial
3122 * list to avoid pounding the page allocator excessively.
3123 */
3124 set_min_partial(s, ilog2(s->size) / 2);
3125
3126 /*
3127 * cpu_partial determined the maximum number of objects kept in the
3128 * per cpu partial lists of a processor.
3129 *
3130 * Per cpu partial lists mainly contain slabs that just have one
3131 * object freed. If they are used for allocation then they can be
3132 * filled up again with minimal effort. The slab will never hit the
3133 * per node partial lists and therefore no locking will be required.
3134 *
3135 * This setting also determines
3136 *
3137 * A) The number of objects from per cpu partial slabs dumped to the
3138 * per node list when we reach the limit.
3139 * B) The number of objects in cpu partial slabs to extract from the
3140 * per node list when we run out of per cpu objects. We only fetch
3141 * 50% to keep some capacity around for frees.
3142 */
3143 if (!kmem_cache_has_cpu_partial(s))
3144 s->cpu_partial = 0;
3145 else if (s->size >= PAGE_SIZE)
3146 s->cpu_partial = 2;
3147 else if (s->size >= 1024)
3148 s->cpu_partial = 6;
3149 else if (s->size >= 256)
3150 s->cpu_partial = 13;
3151 else
3152 s->cpu_partial = 30;
3153
3154 #ifdef CONFIG_NUMA
3155 s->remote_node_defrag_ratio = 1000;
3156 #endif
3157 if (!init_kmem_cache_nodes(s))
3158 goto error;
3159
3160 if (alloc_kmem_cache_cpus(s))
3161 return 0;
3162
3163 free_kmem_cache_nodes(s);
3164 error:
3165 if (flags & SLAB_PANIC)
3166 panic("Cannot create slab %s size=%lu realsize=%u "
3167 "order=%u offset=%u flags=%lx\n",
3168 s->name, (unsigned long)s->size, s->size,
3169 oo_order(s->oo), s->offset, flags);
3170 return -EINVAL;
3171 }
3172
3173 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3174 const char *text)
3175 {
3176 #ifdef CONFIG_SLUB_DEBUG
3177 void *addr = page_address(page);
3178 void *p;
3179 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3180 sizeof(long), GFP_ATOMIC);
3181 if (!map)
3182 return;
3183 slab_err(s, page, text, s->name);
3184 slab_lock(page);
3185
3186 get_map(s, page, map);
3187 for_each_object(p, s, addr, page->objects) {
3188
3189 if (!test_bit(slab_index(p, s, addr), map)) {
3190 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3191 print_tracking(s, p);
3192 }
3193 }
3194 slab_unlock(page);
3195 kfree(map);
3196 #endif
3197 }
3198
3199 /*
3200 * Attempt to free all partial slabs on a node.
3201 * This is called from kmem_cache_close(). We must be the last thread
3202 * using the cache and therefore we do not need to lock anymore.
3203 */
3204 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3205 {
3206 struct page *page, *h;
3207
3208 list_for_each_entry_safe(page, h, &n->partial, lru) {
3209 if (!page->inuse) {
3210 __remove_partial(n, page);
3211 discard_slab(s, page);
3212 } else {
3213 list_slab_objects(s, page,
3214 "Objects remaining in %s on kmem_cache_close()");
3215 }
3216 }
3217 }
3218
3219 /*
3220 * Release all resources used by a slab cache.
3221 */
3222 static inline int kmem_cache_close(struct kmem_cache *s)
3223 {
3224 int node;
3225
3226 flush_all(s);
3227 /* Attempt to free all objects */
3228 for_each_node_state(node, N_NORMAL_MEMORY) {
3229 struct kmem_cache_node *n = get_node(s, node);
3230
3231 free_partial(s, n);
3232 if (n->nr_partial || slabs_node(s, node))
3233 return 1;
3234 }
3235 free_percpu(s->cpu_slab);
3236 free_kmem_cache_nodes(s);
3237 return 0;
3238 }
3239
3240 int __kmem_cache_shutdown(struct kmem_cache *s)
3241 {
3242 return kmem_cache_close(s);
3243 }
3244
3245 /********************************************************************
3246 * Kmalloc subsystem
3247 *******************************************************************/
3248
3249 static int __init setup_slub_min_order(char *str)
3250 {
3251 get_option(&str, &slub_min_order);
3252
3253 return 1;
3254 }
3255
3256 __setup("slub_min_order=", setup_slub_min_order);
3257
3258 static int __init setup_slub_max_order(char *str)
3259 {
3260 get_option(&str, &slub_max_order);
3261 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3262
3263 return 1;
3264 }
3265
3266 __setup("slub_max_order=", setup_slub_max_order);
3267
3268 static int __init setup_slub_min_objects(char *str)
3269 {
3270 get_option(&str, &slub_min_objects);
3271
3272 return 1;
3273 }
3274
3275 __setup("slub_min_objects=", setup_slub_min_objects);
3276
3277 static int __init setup_slub_nomerge(char *str)
3278 {
3279 slub_nomerge = 1;
3280 return 1;
3281 }
3282
3283 __setup("slub_nomerge", setup_slub_nomerge);
3284
3285 void *__kmalloc(size_t size, gfp_t flags)
3286 {
3287 struct kmem_cache *s;
3288 void *ret;
3289
3290 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3291 return kmalloc_large(size, flags);
3292
3293 s = kmalloc_slab(size, flags);
3294
3295 if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 return s;
3297
3298 ret = slab_alloc(s, flags, _RET_IP_);
3299
3300 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3301
3302 return ret;
3303 }
3304 EXPORT_SYMBOL(__kmalloc);
3305
3306 #ifdef CONFIG_NUMA
3307 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3308 {
3309 struct page *page;
3310 void *ptr = NULL;
3311
3312 flags |= __GFP_COMP | __GFP_NOTRACK;
3313 page = alloc_kmem_pages_node(node, flags, get_order(size));
3314 if (page)
3315 ptr = page_address(page);
3316
3317 kmalloc_large_node_hook(ptr, size, flags);
3318 return ptr;
3319 }
3320
3321 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3322 {
3323 struct kmem_cache *s;
3324 void *ret;
3325
3326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3327 ret = kmalloc_large_node(size, flags, node);
3328
3329 trace_kmalloc_node(_RET_IP_, ret,
3330 size, PAGE_SIZE << get_order(size),
3331 flags, node);
3332
3333 return ret;
3334 }
3335
3336 s = kmalloc_slab(size, flags);
3337
3338 if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 return s;
3340
3341 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3342
3343 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3344
3345 return ret;
3346 }
3347 EXPORT_SYMBOL(__kmalloc_node);
3348 #endif
3349
3350 size_t ksize(const void *object)
3351 {
3352 struct page *page;
3353
3354 if (unlikely(object == ZERO_SIZE_PTR))
3355 return 0;
3356
3357 page = virt_to_head_page(object);
3358
3359 if (unlikely(!PageSlab(page))) {
3360 WARN_ON(!PageCompound(page));
3361 return PAGE_SIZE << compound_order(page);
3362 }
3363
3364 return slab_ksize(page->slab_cache);
3365 }
3366 EXPORT_SYMBOL(ksize);
3367
3368 void kfree(const void *x)
3369 {
3370 struct page *page;
3371 void *object = (void *)x;
3372
3373 trace_kfree(_RET_IP_, x);
3374
3375 if (unlikely(ZERO_OR_NULL_PTR(x)))
3376 return;
3377
3378 page = virt_to_head_page(x);
3379 if (unlikely(!PageSlab(page))) {
3380 BUG_ON(!PageCompound(page));
3381 kfree_hook(x);
3382 __free_kmem_pages(page, compound_order(page));
3383 return;
3384 }
3385 slab_free(page->slab_cache, page, object, _RET_IP_);
3386 }
3387 EXPORT_SYMBOL(kfree);
3388
3389 /*
3390 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3391 * the remaining slabs by the number of items in use. The slabs with the
3392 * most items in use come first. New allocations will then fill those up
3393 * and thus they can be removed from the partial lists.
3394 *
3395 * The slabs with the least items are placed last. This results in them
3396 * being allocated from last increasing the chance that the last objects
3397 * are freed in them.
3398 */
3399 int __kmem_cache_shrink(struct kmem_cache *s)
3400 {
3401 int node;
3402 int i;
3403 struct kmem_cache_node *n;
3404 struct page *page;
3405 struct page *t;
3406 int objects = oo_objects(s->max);
3407 struct list_head *slabs_by_inuse =
3408 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3409 unsigned long flags;
3410
3411 if (!slabs_by_inuse)
3412 return -ENOMEM;
3413
3414 flush_all(s);
3415 for_each_node_state(node, N_NORMAL_MEMORY) {
3416 n = get_node(s, node);
3417
3418 if (!n->nr_partial)
3419 continue;
3420
3421 for (i = 0; i < objects; i++)
3422 INIT_LIST_HEAD(slabs_by_inuse + i);
3423
3424 spin_lock_irqsave(&n->list_lock, flags);
3425
3426 /*
3427 * Build lists indexed by the items in use in each slab.
3428 *
3429 * Note that concurrent frees may occur while we hold the
3430 * list_lock. page->inuse here is the upper limit.
3431 */
3432 list_for_each_entry_safe(page, t, &n->partial, lru) {
3433 list_move(&page->lru, slabs_by_inuse + page->inuse);
3434 if (!page->inuse)
3435 n->nr_partial--;
3436 }
3437
3438 /*
3439 * Rebuild the partial list with the slabs filled up most
3440 * first and the least used slabs at the end.
3441 */
3442 for (i = objects - 1; i > 0; i--)
3443 list_splice(slabs_by_inuse + i, n->partial.prev);
3444
3445 spin_unlock_irqrestore(&n->list_lock, flags);
3446
3447 /* Release empty slabs */
3448 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3449 discard_slab(s, page);
3450 }
3451
3452 kfree(slabs_by_inuse);
3453 return 0;
3454 }
3455
3456 static int slab_mem_going_offline_callback(void *arg)
3457 {
3458 struct kmem_cache *s;
3459
3460 mutex_lock(&slab_mutex);
3461 list_for_each_entry(s, &slab_caches, list)
3462 __kmem_cache_shrink(s);
3463 mutex_unlock(&slab_mutex);
3464
3465 return 0;
3466 }
3467
3468 static void slab_mem_offline_callback(void *arg)
3469 {
3470 struct kmem_cache_node *n;
3471 struct kmem_cache *s;
3472 struct memory_notify *marg = arg;
3473 int offline_node;
3474
3475 offline_node = marg->status_change_nid_normal;
3476
3477 /*
3478 * If the node still has available memory. we need kmem_cache_node
3479 * for it yet.
3480 */
3481 if (offline_node < 0)
3482 return;
3483
3484 mutex_lock(&slab_mutex);
3485 list_for_each_entry(s, &slab_caches, list) {
3486 n = get_node(s, offline_node);
3487 if (n) {
3488 /*
3489 * if n->nr_slabs > 0, slabs still exist on the node
3490 * that is going down. We were unable to free them,
3491 * and offline_pages() function shouldn't call this
3492 * callback. So, we must fail.
3493 */
3494 BUG_ON(slabs_node(s, offline_node));
3495
3496 s->node[offline_node] = NULL;
3497 kmem_cache_free(kmem_cache_node, n);
3498 }
3499 }
3500 mutex_unlock(&slab_mutex);
3501 }
3502
3503 static int slab_mem_going_online_callback(void *arg)
3504 {
3505 struct kmem_cache_node *n;
3506 struct kmem_cache *s;
3507 struct memory_notify *marg = arg;
3508 int nid = marg->status_change_nid_normal;
3509 int ret = 0;
3510
3511 /*
3512 * If the node's memory is already available, then kmem_cache_node is
3513 * already created. Nothing to do.
3514 */
3515 if (nid < 0)
3516 return 0;
3517
3518 /*
3519 * We are bringing a node online. No memory is available yet. We must
3520 * allocate a kmem_cache_node structure in order to bring the node
3521 * online.
3522 */
3523 mutex_lock(&slab_mutex);
3524 list_for_each_entry(s, &slab_caches, list) {
3525 /*
3526 * XXX: kmem_cache_alloc_node will fallback to other nodes
3527 * since memory is not yet available from the node that
3528 * is brought up.
3529 */
3530 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3531 if (!n) {
3532 ret = -ENOMEM;
3533 goto out;
3534 }
3535 init_kmem_cache_node(n);
3536 s->node[nid] = n;
3537 }
3538 out:
3539 mutex_unlock(&slab_mutex);
3540 return ret;
3541 }
3542
3543 static int slab_memory_callback(struct notifier_block *self,
3544 unsigned long action, void *arg)
3545 {
3546 int ret = 0;
3547
3548 switch (action) {
3549 case MEM_GOING_ONLINE:
3550 ret = slab_mem_going_online_callback(arg);
3551 break;
3552 case MEM_GOING_OFFLINE:
3553 ret = slab_mem_going_offline_callback(arg);
3554 break;
3555 case MEM_OFFLINE:
3556 case MEM_CANCEL_ONLINE:
3557 slab_mem_offline_callback(arg);
3558 break;
3559 case MEM_ONLINE:
3560 case MEM_CANCEL_OFFLINE:
3561 break;
3562 }
3563 if (ret)
3564 ret = notifier_from_errno(ret);
3565 else
3566 ret = NOTIFY_OK;
3567 return ret;
3568 }
3569
3570 static struct notifier_block slab_memory_callback_nb = {
3571 .notifier_call = slab_memory_callback,
3572 .priority = SLAB_CALLBACK_PRI,
3573 };
3574
3575 /********************************************************************
3576 * Basic setup of slabs
3577 *******************************************************************/
3578
3579 /*
3580 * Used for early kmem_cache structures that were allocated using
3581 * the page allocator. Allocate them properly then fix up the pointers
3582 * that may be pointing to the wrong kmem_cache structure.
3583 */
3584
3585 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3586 {
3587 int node;
3588 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3589
3590 memcpy(s, static_cache, kmem_cache->object_size);
3591
3592 /*
3593 * This runs very early, and only the boot processor is supposed to be
3594 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3595 * IPIs around.
3596 */
3597 __flush_cpu_slab(s, smp_processor_id());
3598 for_each_node_state(node, N_NORMAL_MEMORY) {
3599 struct kmem_cache_node *n = get_node(s, node);
3600 struct page *p;
3601
3602 if (n) {
3603 list_for_each_entry(p, &n->partial, lru)
3604 p->slab_cache = s;
3605
3606 #ifdef CONFIG_SLUB_DEBUG
3607 list_for_each_entry(p, &n->full, lru)
3608 p->slab_cache = s;
3609 #endif
3610 }
3611 }
3612 list_add(&s->list, &slab_caches);
3613 return s;
3614 }
3615
3616 void __init kmem_cache_init(void)
3617 {
3618 static __initdata struct kmem_cache boot_kmem_cache,
3619 boot_kmem_cache_node;
3620
3621 if (debug_guardpage_minorder())
3622 slub_max_order = 0;
3623
3624 kmem_cache_node = &boot_kmem_cache_node;
3625 kmem_cache = &boot_kmem_cache;
3626
3627 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3628 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3629
3630 register_hotmemory_notifier(&slab_memory_callback_nb);
3631
3632 /* Able to allocate the per node structures */
3633 slab_state = PARTIAL;
3634
3635 create_boot_cache(kmem_cache, "kmem_cache",
3636 offsetof(struct kmem_cache, node) +
3637 nr_node_ids * sizeof(struct kmem_cache_node *),
3638 SLAB_HWCACHE_ALIGN);
3639
3640 kmem_cache = bootstrap(&boot_kmem_cache);
3641
3642 /*
3643 * Allocate kmem_cache_node properly from the kmem_cache slab.
3644 * kmem_cache_node is separately allocated so no need to
3645 * update any list pointers.
3646 */
3647 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3648
3649 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3650 create_kmalloc_caches(0);
3651
3652 #ifdef CONFIG_SMP
3653 register_cpu_notifier(&slab_notifier);
3654 #endif
3655
3656 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3657 cache_line_size(),
3658 slub_min_order, slub_max_order, slub_min_objects,
3659 nr_cpu_ids, nr_node_ids);
3660 }
3661
3662 void __init kmem_cache_init_late(void)
3663 {
3664 }
3665
3666 /*
3667 * Find a mergeable slab cache
3668 */
3669 static int slab_unmergeable(struct kmem_cache *s)
3670 {
3671 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3672 return 1;
3673
3674 if (!is_root_cache(s))
3675 return 1;
3676
3677 if (s->ctor)
3678 return 1;
3679
3680 /*
3681 * We may have set a slab to be unmergeable during bootstrap.
3682 */
3683 if (s->refcount < 0)
3684 return 1;
3685
3686 return 0;
3687 }
3688
3689 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3690 unsigned long flags, const char *name, void (*ctor)(void *))
3691 {
3692 struct kmem_cache *s;
3693
3694 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3695 return NULL;
3696
3697 if (ctor)
3698 return NULL;
3699
3700 size = ALIGN(size, sizeof(void *));
3701 align = calculate_alignment(flags, align, size);
3702 size = ALIGN(size, align);
3703 flags = kmem_cache_flags(size, flags, name, NULL);
3704
3705 list_for_each_entry(s, &slab_caches, list) {
3706 if (slab_unmergeable(s))
3707 continue;
3708
3709 if (size > s->size)
3710 continue;
3711
3712 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3713 continue;
3714 /*
3715 * Check if alignment is compatible.
3716 * Courtesy of Adrian Drzewiecki
3717 */
3718 if ((s->size & ~(align - 1)) != s->size)
3719 continue;
3720
3721 if (s->size - size >= sizeof(void *))
3722 continue;
3723
3724 return s;
3725 }
3726 return NULL;
3727 }
3728
3729 struct kmem_cache *
3730 __kmem_cache_alias(const char *name, size_t size, size_t align,
3731 unsigned long flags, void (*ctor)(void *))
3732 {
3733 struct kmem_cache *s;
3734
3735 s = find_mergeable(size, align, flags, name, ctor);
3736 if (s) {
3737 int i;
3738 struct kmem_cache *c;
3739
3740 s->refcount++;
3741
3742 /*
3743 * Adjust the object sizes so that we clear
3744 * the complete object on kzalloc.
3745 */
3746 s->object_size = max(s->object_size, (int)size);
3747 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3748
3749 for_each_memcg_cache_index(i) {
3750 c = cache_from_memcg_idx(s, i);
3751 if (!c)
3752 continue;
3753 c->object_size = s->object_size;
3754 c->inuse = max_t(int, c->inuse,
3755 ALIGN(size, sizeof(void *)));
3756 }
3757
3758 if (sysfs_slab_alias(s, name)) {
3759 s->refcount--;
3760 s = NULL;
3761 }
3762 }
3763
3764 return s;
3765 }
3766
3767 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3768 {
3769 int err;
3770
3771 err = kmem_cache_open(s, flags);
3772 if (err)
3773 return err;
3774
3775 /* Mutex is not taken during early boot */
3776 if (slab_state <= UP)
3777 return 0;
3778
3779 memcg_propagate_slab_attrs(s);
3780 err = sysfs_slab_add(s);
3781 if (err)
3782 kmem_cache_close(s);
3783
3784 return err;
3785 }
3786
3787 #ifdef CONFIG_SMP
3788 /*
3789 * Use the cpu notifier to insure that the cpu slabs are flushed when
3790 * necessary.
3791 */
3792 static int slab_cpuup_callback(struct notifier_block *nfb,
3793 unsigned long action, void *hcpu)
3794 {
3795 long cpu = (long)hcpu;
3796 struct kmem_cache *s;
3797 unsigned long flags;
3798
3799 switch (action) {
3800 case CPU_UP_CANCELED:
3801 case CPU_UP_CANCELED_FROZEN:
3802 case CPU_DEAD:
3803 case CPU_DEAD_FROZEN:
3804 mutex_lock(&slab_mutex);
3805 list_for_each_entry(s, &slab_caches, list) {
3806 local_irq_save(flags);
3807 __flush_cpu_slab(s, cpu);
3808 local_irq_restore(flags);
3809 }
3810 mutex_unlock(&slab_mutex);
3811 break;
3812 default:
3813 break;
3814 }
3815 return NOTIFY_OK;
3816 }
3817
3818 static struct notifier_block slab_notifier = {
3819 .notifier_call = slab_cpuup_callback
3820 };
3821
3822 #endif
3823
3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3825 {
3826 struct kmem_cache *s;
3827 void *ret;
3828
3829 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 return kmalloc_large(size, gfpflags);
3831
3832 s = kmalloc_slab(size, gfpflags);
3833
3834 if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 return s;
3836
3837 ret = slab_alloc(s, gfpflags, caller);
3838
3839 /* Honor the call site pointer we received. */
3840 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841
3842 return ret;
3843 }
3844
3845 #ifdef CONFIG_NUMA
3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847 int node, unsigned long caller)
3848 {
3849 struct kmem_cache *s;
3850 void *ret;
3851
3852 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 ret = kmalloc_large_node(size, gfpflags, node);
3854
3855 trace_kmalloc_node(caller, ret,
3856 size, PAGE_SIZE << get_order(size),
3857 gfpflags, node);
3858
3859 return ret;
3860 }
3861
3862 s = kmalloc_slab(size, gfpflags);
3863
3864 if (unlikely(ZERO_OR_NULL_PTR(s)))
3865 return s;
3866
3867 ret = slab_alloc_node(s, gfpflags, node, caller);
3868
3869 /* Honor the call site pointer we received. */
3870 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871
3872 return ret;
3873 }
3874 #endif
3875
3876 #ifdef CONFIG_SYSFS
3877 static int count_inuse(struct page *page)
3878 {
3879 return page->inuse;
3880 }
3881
3882 static int count_total(struct page *page)
3883 {
3884 return page->objects;
3885 }
3886 #endif
3887
3888 #ifdef CONFIG_SLUB_DEBUG
3889 static int validate_slab(struct kmem_cache *s, struct page *page,
3890 unsigned long *map)
3891 {
3892 void *p;
3893 void *addr = page_address(page);
3894
3895 if (!check_slab(s, page) ||
3896 !on_freelist(s, page, NULL))
3897 return 0;
3898
3899 /* Now we know that a valid freelist exists */
3900 bitmap_zero(map, page->objects);
3901
3902 get_map(s, page, map);
3903 for_each_object(p, s, addr, page->objects) {
3904 if (test_bit(slab_index(p, s, addr), map))
3905 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3906 return 0;
3907 }
3908
3909 for_each_object(p, s, addr, page->objects)
3910 if (!test_bit(slab_index(p, s, addr), map))
3911 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 return 0;
3913 return 1;
3914 }
3915
3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3917 unsigned long *map)
3918 {
3919 slab_lock(page);
3920 validate_slab(s, page, map);
3921 slab_unlock(page);
3922 }
3923
3924 static int validate_slab_node(struct kmem_cache *s,
3925 struct kmem_cache_node *n, unsigned long *map)
3926 {
3927 unsigned long count = 0;
3928 struct page *page;
3929 unsigned long flags;
3930
3931 spin_lock_irqsave(&n->list_lock, flags);
3932
3933 list_for_each_entry(page, &n->partial, lru) {
3934 validate_slab_slab(s, page, map);
3935 count++;
3936 }
3937 if (count != n->nr_partial)
3938 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3939 s->name, count, n->nr_partial);
3940
3941 if (!(s->flags & SLAB_STORE_USER))
3942 goto out;
3943
3944 list_for_each_entry(page, &n->full, lru) {
3945 validate_slab_slab(s, page, map);
3946 count++;
3947 }
3948 if (count != atomic_long_read(&n->nr_slabs))
3949 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3950 s->name, count, atomic_long_read(&n->nr_slabs));
3951
3952 out:
3953 spin_unlock_irqrestore(&n->list_lock, flags);
3954 return count;
3955 }
3956
3957 static long validate_slab_cache(struct kmem_cache *s)
3958 {
3959 int node;
3960 unsigned long count = 0;
3961 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962 sizeof(unsigned long), GFP_KERNEL);
3963
3964 if (!map)
3965 return -ENOMEM;
3966
3967 flush_all(s);
3968 for_each_node_state(node, N_NORMAL_MEMORY) {
3969 struct kmem_cache_node *n = get_node(s, node);
3970
3971 count += validate_slab_node(s, n, map);
3972 }
3973 kfree(map);
3974 return count;
3975 }
3976 /*
3977 * Generate lists of code addresses where slabcache objects are allocated
3978 * and freed.
3979 */
3980
3981 struct location {
3982 unsigned long count;
3983 unsigned long addr;
3984 long long sum_time;
3985 long min_time;
3986 long max_time;
3987 long min_pid;
3988 long max_pid;
3989 DECLARE_BITMAP(cpus, NR_CPUS);
3990 nodemask_t nodes;
3991 };
3992
3993 struct loc_track {
3994 unsigned long max;
3995 unsigned long count;
3996 struct location *loc;
3997 };
3998
3999 static void free_loc_track(struct loc_track *t)
4000 {
4001 if (t->max)
4002 free_pages((unsigned long)t->loc,
4003 get_order(sizeof(struct location) * t->max));
4004 }
4005
4006 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007 {
4008 struct location *l;
4009 int order;
4010
4011 order = get_order(sizeof(struct location) * max);
4012
4013 l = (void *)__get_free_pages(flags, order);
4014 if (!l)
4015 return 0;
4016
4017 if (t->count) {
4018 memcpy(l, t->loc, sizeof(struct location) * t->count);
4019 free_loc_track(t);
4020 }
4021 t->max = max;
4022 t->loc = l;
4023 return 1;
4024 }
4025
4026 static int add_location(struct loc_track *t, struct kmem_cache *s,
4027 const struct track *track)
4028 {
4029 long start, end, pos;
4030 struct location *l;
4031 unsigned long caddr;
4032 unsigned long age = jiffies - track->when;
4033
4034 start = -1;
4035 end = t->count;
4036
4037 for ( ; ; ) {
4038 pos = start + (end - start + 1) / 2;
4039
4040 /*
4041 * There is nothing at "end". If we end up there
4042 * we need to add something to before end.
4043 */
4044 if (pos == end)
4045 break;
4046
4047 caddr = t->loc[pos].addr;
4048 if (track->addr == caddr) {
4049
4050 l = &t->loc[pos];
4051 l->count++;
4052 if (track->when) {
4053 l->sum_time += age;
4054 if (age < l->min_time)
4055 l->min_time = age;
4056 if (age > l->max_time)
4057 l->max_time = age;
4058
4059 if (track->pid < l->min_pid)
4060 l->min_pid = track->pid;
4061 if (track->pid > l->max_pid)
4062 l->max_pid = track->pid;
4063
4064 cpumask_set_cpu(track->cpu,
4065 to_cpumask(l->cpus));
4066 }
4067 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068 return 1;
4069 }
4070
4071 if (track->addr < caddr)
4072 end = pos;
4073 else
4074 start = pos;
4075 }
4076
4077 /*
4078 * Not found. Insert new tracking element.
4079 */
4080 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081 return 0;
4082
4083 l = t->loc + pos;
4084 if (pos < t->count)
4085 memmove(l + 1, l,
4086 (t->count - pos) * sizeof(struct location));
4087 t->count++;
4088 l->count = 1;
4089 l->addr = track->addr;
4090 l->sum_time = age;
4091 l->min_time = age;
4092 l->max_time = age;
4093 l->min_pid = track->pid;
4094 l->max_pid = track->pid;
4095 cpumask_clear(to_cpumask(l->cpus));
4096 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097 nodes_clear(l->nodes);
4098 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099 return 1;
4100 }
4101
4102 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103 struct page *page, enum track_item alloc,
4104 unsigned long *map)
4105 {
4106 void *addr = page_address(page);
4107 void *p;
4108
4109 bitmap_zero(map, page->objects);
4110 get_map(s, page, map);
4111
4112 for_each_object(p, s, addr, page->objects)
4113 if (!test_bit(slab_index(p, s, addr), map))
4114 add_location(t, s, get_track(s, p, alloc));
4115 }
4116
4117 static int list_locations(struct kmem_cache *s, char *buf,
4118 enum track_item alloc)
4119 {
4120 int len = 0;
4121 unsigned long i;
4122 struct loc_track t = { 0, 0, NULL };
4123 int node;
4124 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125 sizeof(unsigned long), GFP_KERNEL);
4126
4127 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128 GFP_TEMPORARY)) {
4129 kfree(map);
4130 return sprintf(buf, "Out of memory\n");
4131 }
4132 /* Push back cpu slabs */
4133 flush_all(s);
4134
4135 for_each_node_state(node, N_NORMAL_MEMORY) {
4136 struct kmem_cache_node *n = get_node(s, node);
4137 unsigned long flags;
4138 struct page *page;
4139
4140 if (!atomic_long_read(&n->nr_slabs))
4141 continue;
4142
4143 spin_lock_irqsave(&n->list_lock, flags);
4144 list_for_each_entry(page, &n->partial, lru)
4145 process_slab(&t, s, page, alloc, map);
4146 list_for_each_entry(page, &n->full, lru)
4147 process_slab(&t, s, page, alloc, map);
4148 spin_unlock_irqrestore(&n->list_lock, flags);
4149 }
4150
4151 for (i = 0; i < t.count; i++) {
4152 struct location *l = &t.loc[i];
4153
4154 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155 break;
4156 len += sprintf(buf + len, "%7ld ", l->count);
4157
4158 if (l->addr)
4159 len += sprintf(buf + len, "%pS", (void *)l->addr);
4160 else
4161 len += sprintf(buf + len, "<not-available>");
4162
4163 if (l->sum_time != l->min_time) {
4164 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165 l->min_time,
4166 (long)div_u64(l->sum_time, l->count),
4167 l->max_time);
4168 } else
4169 len += sprintf(buf + len, " age=%ld",
4170 l->min_time);
4171
4172 if (l->min_pid != l->max_pid)
4173 len += sprintf(buf + len, " pid=%ld-%ld",
4174 l->min_pid, l->max_pid);
4175 else
4176 len += sprintf(buf + len, " pid=%ld",
4177 l->min_pid);
4178
4179 if (num_online_cpus() > 1 &&
4180 !cpumask_empty(to_cpumask(l->cpus)) &&
4181 len < PAGE_SIZE - 60) {
4182 len += sprintf(buf + len, " cpus=");
4183 len += cpulist_scnprintf(buf + len,
4184 PAGE_SIZE - len - 50,
4185 to_cpumask(l->cpus));
4186 }
4187
4188 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189 len < PAGE_SIZE - 60) {
4190 len += sprintf(buf + len, " nodes=");
4191 len += nodelist_scnprintf(buf + len,
4192 PAGE_SIZE - len - 50,
4193 l->nodes);
4194 }
4195
4196 len += sprintf(buf + len, "\n");
4197 }
4198
4199 free_loc_track(&t);
4200 kfree(map);
4201 if (!t.count)
4202 len += sprintf(buf, "No data\n");
4203 return len;
4204 }
4205 #endif
4206
4207 #ifdef SLUB_RESILIENCY_TEST
4208 static void resiliency_test(void)
4209 {
4210 u8 *p;
4211
4212 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213
4214 pr_err("SLUB resiliency testing\n");
4215 pr_err("-----------------------\n");
4216 pr_err("A. Corruption after allocation\n");
4217
4218 p = kzalloc(16, GFP_KERNEL);
4219 p[16] = 0x12;
4220 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4221 p + 16);
4222
4223 validate_slab_cache(kmalloc_caches[4]);
4224
4225 /* Hmmm... The next two are dangerous */
4226 p = kzalloc(32, GFP_KERNEL);
4227 p[32 + sizeof(void *)] = 0x34;
4228 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4229 p);
4230 pr_err("If allocated object is overwritten then not detectable\n\n");
4231
4232 validate_slab_cache(kmalloc_caches[5]);
4233 p = kzalloc(64, GFP_KERNEL);
4234 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4235 *p = 0x56;
4236 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4237 p);
4238 pr_err("If allocated object is overwritten then not detectable\n\n");
4239 validate_slab_cache(kmalloc_caches[6]);
4240
4241 pr_err("\nB. Corruption after free\n");
4242 p = kzalloc(128, GFP_KERNEL);
4243 kfree(p);
4244 *p = 0x78;
4245 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4246 validate_slab_cache(kmalloc_caches[7]);
4247
4248 p = kzalloc(256, GFP_KERNEL);
4249 kfree(p);
4250 p[50] = 0x9a;
4251 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4252 validate_slab_cache(kmalloc_caches[8]);
4253
4254 p = kzalloc(512, GFP_KERNEL);
4255 kfree(p);
4256 p[512] = 0xab;
4257 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4258 validate_slab_cache(kmalloc_caches[9]);
4259 }
4260 #else
4261 #ifdef CONFIG_SYSFS
4262 static void resiliency_test(void) {};
4263 #endif
4264 #endif
4265
4266 #ifdef CONFIG_SYSFS
4267 enum slab_stat_type {
4268 SL_ALL, /* All slabs */
4269 SL_PARTIAL, /* Only partially allocated slabs */
4270 SL_CPU, /* Only slabs used for cpu caches */
4271 SL_OBJECTS, /* Determine allocated objects not slabs */
4272 SL_TOTAL /* Determine object capacity not slabs */
4273 };
4274
4275 #define SO_ALL (1 << SL_ALL)
4276 #define SO_PARTIAL (1 << SL_PARTIAL)
4277 #define SO_CPU (1 << SL_CPU)
4278 #define SO_OBJECTS (1 << SL_OBJECTS)
4279 #define SO_TOTAL (1 << SL_TOTAL)
4280
4281 static ssize_t show_slab_objects(struct kmem_cache *s,
4282 char *buf, unsigned long flags)
4283 {
4284 unsigned long total = 0;
4285 int node;
4286 int x;
4287 unsigned long *nodes;
4288
4289 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4290 if (!nodes)
4291 return -ENOMEM;
4292
4293 if (flags & SO_CPU) {
4294 int cpu;
4295
4296 for_each_possible_cpu(cpu) {
4297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4298 cpu);
4299 int node;
4300 struct page *page;
4301
4302 page = ACCESS_ONCE(c->page);
4303 if (!page)
4304 continue;
4305
4306 node = page_to_nid(page);
4307 if (flags & SO_TOTAL)
4308 x = page->objects;
4309 else if (flags & SO_OBJECTS)
4310 x = page->inuse;
4311 else
4312 x = 1;
4313
4314 total += x;
4315 nodes[node] += x;
4316
4317 page = ACCESS_ONCE(c->partial);
4318 if (page) {
4319 node = page_to_nid(page);
4320 if (flags & SO_TOTAL)
4321 WARN_ON_ONCE(1);
4322 else if (flags & SO_OBJECTS)
4323 WARN_ON_ONCE(1);
4324 else
4325 x = page->pages;
4326 total += x;
4327 nodes[node] += x;
4328 }
4329 }
4330 }
4331
4332 get_online_mems();
4333 #ifdef CONFIG_SLUB_DEBUG
4334 if (flags & SO_ALL) {
4335 for_each_node_state(node, N_NORMAL_MEMORY) {
4336 struct kmem_cache_node *n = get_node(s, node);
4337
4338 if (flags & SO_TOTAL)
4339 x = atomic_long_read(&n->total_objects);
4340 else if (flags & SO_OBJECTS)
4341 x = atomic_long_read(&n->total_objects) -
4342 count_partial(n, count_free);
4343 else
4344 x = atomic_long_read(&n->nr_slabs);
4345 total += x;
4346 nodes[node] += x;
4347 }
4348
4349 } else
4350 #endif
4351 if (flags & SO_PARTIAL) {
4352 for_each_node_state(node, N_NORMAL_MEMORY) {
4353 struct kmem_cache_node *n = get_node(s, node);
4354
4355 if (flags & SO_TOTAL)
4356 x = count_partial(n, count_total);
4357 else if (flags & SO_OBJECTS)
4358 x = count_partial(n, count_inuse);
4359 else
4360 x = n->nr_partial;
4361 total += x;
4362 nodes[node] += x;
4363 }
4364 }
4365 x = sprintf(buf, "%lu", total);
4366 #ifdef CONFIG_NUMA
4367 for_each_node_state(node, N_NORMAL_MEMORY)
4368 if (nodes[node])
4369 x += sprintf(buf + x, " N%d=%lu",
4370 node, nodes[node]);
4371 #endif
4372 put_online_mems();
4373 kfree(nodes);
4374 return x + sprintf(buf + x, "\n");
4375 }
4376
4377 #ifdef CONFIG_SLUB_DEBUG
4378 static int any_slab_objects(struct kmem_cache *s)
4379 {
4380 int node;
4381
4382 for_each_online_node(node) {
4383 struct kmem_cache_node *n = get_node(s, node);
4384
4385 if (!n)
4386 continue;
4387
4388 if (atomic_long_read(&n->total_objects))
4389 return 1;
4390 }
4391 return 0;
4392 }
4393 #endif
4394
4395 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4396 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4397
4398 struct slab_attribute {
4399 struct attribute attr;
4400 ssize_t (*show)(struct kmem_cache *s, char *buf);
4401 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4402 };
4403
4404 #define SLAB_ATTR_RO(_name) \
4405 static struct slab_attribute _name##_attr = \
4406 __ATTR(_name, 0400, _name##_show, NULL)
4407
4408 #define SLAB_ATTR(_name) \
4409 static struct slab_attribute _name##_attr = \
4410 __ATTR(_name, 0600, _name##_show, _name##_store)
4411
4412 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4413 {
4414 return sprintf(buf, "%d\n", s->size);
4415 }
4416 SLAB_ATTR_RO(slab_size);
4417
4418 static ssize_t align_show(struct kmem_cache *s, char *buf)
4419 {
4420 return sprintf(buf, "%d\n", s->align);
4421 }
4422 SLAB_ATTR_RO(align);
4423
4424 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4425 {
4426 return sprintf(buf, "%d\n", s->object_size);
4427 }
4428 SLAB_ATTR_RO(object_size);
4429
4430 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4431 {
4432 return sprintf(buf, "%d\n", oo_objects(s->oo));
4433 }
4434 SLAB_ATTR_RO(objs_per_slab);
4435
4436 static ssize_t order_store(struct kmem_cache *s,
4437 const char *buf, size_t length)
4438 {
4439 unsigned long order;
4440 int err;
4441
4442 err = kstrtoul(buf, 10, &order);
4443 if (err)
4444 return err;
4445
4446 if (order > slub_max_order || order < slub_min_order)
4447 return -EINVAL;
4448
4449 calculate_sizes(s, order);
4450 return length;
4451 }
4452
4453 static ssize_t order_show(struct kmem_cache *s, char *buf)
4454 {
4455 return sprintf(buf, "%d\n", oo_order(s->oo));
4456 }
4457 SLAB_ATTR(order);
4458
4459 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4460 {
4461 return sprintf(buf, "%lu\n", s->min_partial);
4462 }
4463
4464 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4465 size_t length)
4466 {
4467 unsigned long min;
4468 int err;
4469
4470 err = kstrtoul(buf, 10, &min);
4471 if (err)
4472 return err;
4473
4474 set_min_partial(s, min);
4475 return length;
4476 }
4477 SLAB_ATTR(min_partial);
4478
4479 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4480 {
4481 return sprintf(buf, "%u\n", s->cpu_partial);
4482 }
4483
4484 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4485 size_t length)
4486 {
4487 unsigned long objects;
4488 int err;
4489
4490 err = kstrtoul(buf, 10, &objects);
4491 if (err)
4492 return err;
4493 if (objects && !kmem_cache_has_cpu_partial(s))
4494 return -EINVAL;
4495
4496 s->cpu_partial = objects;
4497 flush_all(s);
4498 return length;
4499 }
4500 SLAB_ATTR(cpu_partial);
4501
4502 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4503 {
4504 if (!s->ctor)
4505 return 0;
4506 return sprintf(buf, "%pS\n", s->ctor);
4507 }
4508 SLAB_ATTR_RO(ctor);
4509
4510 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4511 {
4512 return sprintf(buf, "%d\n", s->refcount - 1);
4513 }
4514 SLAB_ATTR_RO(aliases);
4515
4516 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4517 {
4518 return show_slab_objects(s, buf, SO_PARTIAL);
4519 }
4520 SLAB_ATTR_RO(partial);
4521
4522 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4523 {
4524 return show_slab_objects(s, buf, SO_CPU);
4525 }
4526 SLAB_ATTR_RO(cpu_slabs);
4527
4528 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4529 {
4530 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4531 }
4532 SLAB_ATTR_RO(objects);
4533
4534 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4535 {
4536 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4537 }
4538 SLAB_ATTR_RO(objects_partial);
4539
4540 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4541 {
4542 int objects = 0;
4543 int pages = 0;
4544 int cpu;
4545 int len;
4546
4547 for_each_online_cpu(cpu) {
4548 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4549
4550 if (page) {
4551 pages += page->pages;
4552 objects += page->pobjects;
4553 }
4554 }
4555
4556 len = sprintf(buf, "%d(%d)", objects, pages);
4557
4558 #ifdef CONFIG_SMP
4559 for_each_online_cpu(cpu) {
4560 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4561
4562 if (page && len < PAGE_SIZE - 20)
4563 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4564 page->pobjects, page->pages);
4565 }
4566 #endif
4567 return len + sprintf(buf + len, "\n");
4568 }
4569 SLAB_ATTR_RO(slabs_cpu_partial);
4570
4571 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4572 {
4573 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4574 }
4575
4576 static ssize_t reclaim_account_store(struct kmem_cache *s,
4577 const char *buf, size_t length)
4578 {
4579 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4580 if (buf[0] == '1')
4581 s->flags |= SLAB_RECLAIM_ACCOUNT;
4582 return length;
4583 }
4584 SLAB_ATTR(reclaim_account);
4585
4586 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4587 {
4588 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4589 }
4590 SLAB_ATTR_RO(hwcache_align);
4591
4592 #ifdef CONFIG_ZONE_DMA
4593 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4594 {
4595 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4596 }
4597 SLAB_ATTR_RO(cache_dma);
4598 #endif
4599
4600 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4601 {
4602 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4603 }
4604 SLAB_ATTR_RO(destroy_by_rcu);
4605
4606 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4607 {
4608 return sprintf(buf, "%d\n", s->reserved);
4609 }
4610 SLAB_ATTR_RO(reserved);
4611
4612 #ifdef CONFIG_SLUB_DEBUG
4613 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4614 {
4615 return show_slab_objects(s, buf, SO_ALL);
4616 }
4617 SLAB_ATTR_RO(slabs);
4618
4619 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4620 {
4621 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4622 }
4623 SLAB_ATTR_RO(total_objects);
4624
4625 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4626 {
4627 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4628 }
4629
4630 static ssize_t sanity_checks_store(struct kmem_cache *s,
4631 const char *buf, size_t length)
4632 {
4633 s->flags &= ~SLAB_DEBUG_FREE;
4634 if (buf[0] == '1') {
4635 s->flags &= ~__CMPXCHG_DOUBLE;
4636 s->flags |= SLAB_DEBUG_FREE;
4637 }
4638 return length;
4639 }
4640 SLAB_ATTR(sanity_checks);
4641
4642 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4643 {
4644 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4645 }
4646
4647 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4648 size_t length)
4649 {
4650 s->flags &= ~SLAB_TRACE;
4651 if (buf[0] == '1') {
4652 s->flags &= ~__CMPXCHG_DOUBLE;
4653 s->flags |= SLAB_TRACE;
4654 }
4655 return length;
4656 }
4657 SLAB_ATTR(trace);
4658
4659 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4660 {
4661 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4662 }
4663
4664 static ssize_t red_zone_store(struct kmem_cache *s,
4665 const char *buf, size_t length)
4666 {
4667 if (any_slab_objects(s))
4668 return -EBUSY;
4669
4670 s->flags &= ~SLAB_RED_ZONE;
4671 if (buf[0] == '1') {
4672 s->flags &= ~__CMPXCHG_DOUBLE;
4673 s->flags |= SLAB_RED_ZONE;
4674 }
4675 calculate_sizes(s, -1);
4676 return length;
4677 }
4678 SLAB_ATTR(red_zone);
4679
4680 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4681 {
4682 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4683 }
4684
4685 static ssize_t poison_store(struct kmem_cache *s,
4686 const char *buf, size_t length)
4687 {
4688 if (any_slab_objects(s))
4689 return -EBUSY;
4690
4691 s->flags &= ~SLAB_POISON;
4692 if (buf[0] == '1') {
4693 s->flags &= ~__CMPXCHG_DOUBLE;
4694 s->flags |= SLAB_POISON;
4695 }
4696 calculate_sizes(s, -1);
4697 return length;
4698 }
4699 SLAB_ATTR(poison);
4700
4701 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4702 {
4703 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4704 }
4705
4706 static ssize_t store_user_store(struct kmem_cache *s,
4707 const char *buf, size_t length)
4708 {
4709 if (any_slab_objects(s))
4710 return -EBUSY;
4711
4712 s->flags &= ~SLAB_STORE_USER;
4713 if (buf[0] == '1') {
4714 s->flags &= ~__CMPXCHG_DOUBLE;
4715 s->flags |= SLAB_STORE_USER;
4716 }
4717 calculate_sizes(s, -1);
4718 return length;
4719 }
4720 SLAB_ATTR(store_user);
4721
4722 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4723 {
4724 return 0;
4725 }
4726
4727 static ssize_t validate_store(struct kmem_cache *s,
4728 const char *buf, size_t length)
4729 {
4730 int ret = -EINVAL;
4731
4732 if (buf[0] == '1') {
4733 ret = validate_slab_cache(s);
4734 if (ret >= 0)
4735 ret = length;
4736 }
4737 return ret;
4738 }
4739 SLAB_ATTR(validate);
4740
4741 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4742 {
4743 if (!(s->flags & SLAB_STORE_USER))
4744 return -ENOSYS;
4745 return list_locations(s, buf, TRACK_ALLOC);
4746 }
4747 SLAB_ATTR_RO(alloc_calls);
4748
4749 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4750 {
4751 if (!(s->flags & SLAB_STORE_USER))
4752 return -ENOSYS;
4753 return list_locations(s, buf, TRACK_FREE);
4754 }
4755 SLAB_ATTR_RO(free_calls);
4756 #endif /* CONFIG_SLUB_DEBUG */
4757
4758 #ifdef CONFIG_FAILSLAB
4759 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4760 {
4761 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4762 }
4763
4764 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4765 size_t length)
4766 {
4767 s->flags &= ~SLAB_FAILSLAB;
4768 if (buf[0] == '1')
4769 s->flags |= SLAB_FAILSLAB;
4770 return length;
4771 }
4772 SLAB_ATTR(failslab);
4773 #endif
4774
4775 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4776 {
4777 return 0;
4778 }
4779
4780 static ssize_t shrink_store(struct kmem_cache *s,
4781 const char *buf, size_t length)
4782 {
4783 if (buf[0] == '1') {
4784 int rc = kmem_cache_shrink(s);
4785
4786 if (rc)
4787 return rc;
4788 } else
4789 return -EINVAL;
4790 return length;
4791 }
4792 SLAB_ATTR(shrink);
4793
4794 #ifdef CONFIG_NUMA
4795 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4796 {
4797 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4798 }
4799
4800 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4801 const char *buf, size_t length)
4802 {
4803 unsigned long ratio;
4804 int err;
4805
4806 err = kstrtoul(buf, 10, &ratio);
4807 if (err)
4808 return err;
4809
4810 if (ratio <= 100)
4811 s->remote_node_defrag_ratio = ratio * 10;
4812
4813 return length;
4814 }
4815 SLAB_ATTR(remote_node_defrag_ratio);
4816 #endif
4817
4818 #ifdef CONFIG_SLUB_STATS
4819 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4820 {
4821 unsigned long sum = 0;
4822 int cpu;
4823 int len;
4824 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4825
4826 if (!data)
4827 return -ENOMEM;
4828
4829 for_each_online_cpu(cpu) {
4830 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4831
4832 data[cpu] = x;
4833 sum += x;
4834 }
4835
4836 len = sprintf(buf, "%lu", sum);
4837
4838 #ifdef CONFIG_SMP
4839 for_each_online_cpu(cpu) {
4840 if (data[cpu] && len < PAGE_SIZE - 20)
4841 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4842 }
4843 #endif
4844 kfree(data);
4845 return len + sprintf(buf + len, "\n");
4846 }
4847
4848 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4849 {
4850 int cpu;
4851
4852 for_each_online_cpu(cpu)
4853 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4854 }
4855
4856 #define STAT_ATTR(si, text) \
4857 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4858 { \
4859 return show_stat(s, buf, si); \
4860 } \
4861 static ssize_t text##_store(struct kmem_cache *s, \
4862 const char *buf, size_t length) \
4863 { \
4864 if (buf[0] != '0') \
4865 return -EINVAL; \
4866 clear_stat(s, si); \
4867 return length; \
4868 } \
4869 SLAB_ATTR(text); \
4870
4871 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4872 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4873 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4874 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4875 STAT_ATTR(FREE_FROZEN, free_frozen);
4876 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4877 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4878 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4879 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4880 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4881 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4882 STAT_ATTR(FREE_SLAB, free_slab);
4883 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4884 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4885 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4886 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4887 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4888 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4889 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4890 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4891 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4892 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4893 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4894 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4895 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4896 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4897 #endif
4898
4899 static struct attribute *slab_attrs[] = {
4900 &slab_size_attr.attr,
4901 &object_size_attr.attr,
4902 &objs_per_slab_attr.attr,
4903 &order_attr.attr,
4904 &min_partial_attr.attr,
4905 &cpu_partial_attr.attr,
4906 &objects_attr.attr,
4907 &objects_partial_attr.attr,
4908 &partial_attr.attr,
4909 &cpu_slabs_attr.attr,
4910 &ctor_attr.attr,
4911 &aliases_attr.attr,
4912 &align_attr.attr,
4913 &hwcache_align_attr.attr,
4914 &reclaim_account_attr.attr,
4915 &destroy_by_rcu_attr.attr,
4916 &shrink_attr.attr,
4917 &reserved_attr.attr,
4918 &slabs_cpu_partial_attr.attr,
4919 #ifdef CONFIG_SLUB_DEBUG
4920 &total_objects_attr.attr,
4921 &slabs_attr.attr,
4922 &sanity_checks_attr.attr,
4923 &trace_attr.attr,
4924 &red_zone_attr.attr,
4925 &poison_attr.attr,
4926 &store_user_attr.attr,
4927 &validate_attr.attr,
4928 &alloc_calls_attr.attr,
4929 &free_calls_attr.attr,
4930 #endif
4931 #ifdef CONFIG_ZONE_DMA
4932 &cache_dma_attr.attr,
4933 #endif
4934 #ifdef CONFIG_NUMA
4935 &remote_node_defrag_ratio_attr.attr,
4936 #endif
4937 #ifdef CONFIG_SLUB_STATS
4938 &alloc_fastpath_attr.attr,
4939 &alloc_slowpath_attr.attr,
4940 &free_fastpath_attr.attr,
4941 &free_slowpath_attr.attr,
4942 &free_frozen_attr.attr,
4943 &free_add_partial_attr.attr,
4944 &free_remove_partial_attr.attr,
4945 &alloc_from_partial_attr.attr,
4946 &alloc_slab_attr.attr,
4947 &alloc_refill_attr.attr,
4948 &alloc_node_mismatch_attr.attr,
4949 &free_slab_attr.attr,
4950 &cpuslab_flush_attr.attr,
4951 &deactivate_full_attr.attr,
4952 &deactivate_empty_attr.attr,
4953 &deactivate_to_head_attr.attr,
4954 &deactivate_to_tail_attr.attr,
4955 &deactivate_remote_frees_attr.attr,
4956 &deactivate_bypass_attr.attr,
4957 &order_fallback_attr.attr,
4958 &cmpxchg_double_fail_attr.attr,
4959 &cmpxchg_double_cpu_fail_attr.attr,
4960 &cpu_partial_alloc_attr.attr,
4961 &cpu_partial_free_attr.attr,
4962 &cpu_partial_node_attr.attr,
4963 &cpu_partial_drain_attr.attr,
4964 #endif
4965 #ifdef CONFIG_FAILSLAB
4966 &failslab_attr.attr,
4967 #endif
4968
4969 NULL
4970 };
4971
4972 static struct attribute_group slab_attr_group = {
4973 .attrs = slab_attrs,
4974 };
4975
4976 static ssize_t slab_attr_show(struct kobject *kobj,
4977 struct attribute *attr,
4978 char *buf)
4979 {
4980 struct slab_attribute *attribute;
4981 struct kmem_cache *s;
4982 int err;
4983
4984 attribute = to_slab_attr(attr);
4985 s = to_slab(kobj);
4986
4987 if (!attribute->show)
4988 return -EIO;
4989
4990 err = attribute->show(s, buf);
4991
4992 return err;
4993 }
4994
4995 static ssize_t slab_attr_store(struct kobject *kobj,
4996 struct attribute *attr,
4997 const char *buf, size_t len)
4998 {
4999 struct slab_attribute *attribute;
5000 struct kmem_cache *s;
5001 int err;
5002
5003 attribute = to_slab_attr(attr);
5004 s = to_slab(kobj);
5005
5006 if (!attribute->store)
5007 return -EIO;
5008
5009 err = attribute->store(s, buf, len);
5010 #ifdef CONFIG_MEMCG_KMEM
5011 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5012 int i;
5013
5014 mutex_lock(&slab_mutex);
5015 if (s->max_attr_size < len)
5016 s->max_attr_size = len;
5017
5018 /*
5019 * This is a best effort propagation, so this function's return
5020 * value will be determined by the parent cache only. This is
5021 * basically because not all attributes will have a well
5022 * defined semantics for rollbacks - most of the actions will
5023 * have permanent effects.
5024 *
5025 * Returning the error value of any of the children that fail
5026 * is not 100 % defined, in the sense that users seeing the
5027 * error code won't be able to know anything about the state of
5028 * the cache.
5029 *
5030 * Only returning the error code for the parent cache at least
5031 * has well defined semantics. The cache being written to
5032 * directly either failed or succeeded, in which case we loop
5033 * through the descendants with best-effort propagation.
5034 */
5035 for_each_memcg_cache_index(i) {
5036 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5037 if (c)
5038 attribute->store(c, buf, len);
5039 }
5040 mutex_unlock(&slab_mutex);
5041 }
5042 #endif
5043 return err;
5044 }
5045
5046 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5047 {
5048 #ifdef CONFIG_MEMCG_KMEM
5049 int i;
5050 char *buffer = NULL;
5051 struct kmem_cache *root_cache;
5052
5053 if (is_root_cache(s))
5054 return;
5055
5056 root_cache = s->memcg_params->root_cache;
5057
5058 /*
5059 * This mean this cache had no attribute written. Therefore, no point
5060 * in copying default values around
5061 */
5062 if (!root_cache->max_attr_size)
5063 return;
5064
5065 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5066 char mbuf[64];
5067 char *buf;
5068 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5069
5070 if (!attr || !attr->store || !attr->show)
5071 continue;
5072
5073 /*
5074 * It is really bad that we have to allocate here, so we will
5075 * do it only as a fallback. If we actually allocate, though,
5076 * we can just use the allocated buffer until the end.
5077 *
5078 * Most of the slub attributes will tend to be very small in
5079 * size, but sysfs allows buffers up to a page, so they can
5080 * theoretically happen.
5081 */
5082 if (buffer)
5083 buf = buffer;
5084 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5085 buf = mbuf;
5086 else {
5087 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5088 if (WARN_ON(!buffer))
5089 continue;
5090 buf = buffer;
5091 }
5092
5093 attr->show(root_cache, buf);
5094 attr->store(s, buf, strlen(buf));
5095 }
5096
5097 if (buffer)
5098 free_page((unsigned long)buffer);
5099 #endif
5100 }
5101
5102 static void kmem_cache_release(struct kobject *k)
5103 {
5104 slab_kmem_cache_release(to_slab(k));
5105 }
5106
5107 static const struct sysfs_ops slab_sysfs_ops = {
5108 .show = slab_attr_show,
5109 .store = slab_attr_store,
5110 };
5111
5112 static struct kobj_type slab_ktype = {
5113 .sysfs_ops = &slab_sysfs_ops,
5114 .release = kmem_cache_release,
5115 };
5116
5117 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5118 {
5119 struct kobj_type *ktype = get_ktype(kobj);
5120
5121 if (ktype == &slab_ktype)
5122 return 1;
5123 return 0;
5124 }
5125
5126 static const struct kset_uevent_ops slab_uevent_ops = {
5127 .filter = uevent_filter,
5128 };
5129
5130 static struct kset *slab_kset;
5131
5132 static inline struct kset *cache_kset(struct kmem_cache *s)
5133 {
5134 #ifdef CONFIG_MEMCG_KMEM
5135 if (!is_root_cache(s))
5136 return s->memcg_params->root_cache->memcg_kset;
5137 #endif
5138 return slab_kset;
5139 }
5140
5141 #define ID_STR_LENGTH 64
5142
5143 /* Create a unique string id for a slab cache:
5144 *
5145 * Format :[flags-]size
5146 */
5147 static char *create_unique_id(struct kmem_cache *s)
5148 {
5149 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5150 char *p = name;
5151
5152 BUG_ON(!name);
5153
5154 *p++ = ':';
5155 /*
5156 * First flags affecting slabcache operations. We will only
5157 * get here for aliasable slabs so we do not need to support
5158 * too many flags. The flags here must cover all flags that
5159 * are matched during merging to guarantee that the id is
5160 * unique.
5161 */
5162 if (s->flags & SLAB_CACHE_DMA)
5163 *p++ = 'd';
5164 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5165 *p++ = 'a';
5166 if (s->flags & SLAB_DEBUG_FREE)
5167 *p++ = 'F';
5168 if (!(s->flags & SLAB_NOTRACK))
5169 *p++ = 't';
5170 if (p != name + 1)
5171 *p++ = '-';
5172 p += sprintf(p, "%07d", s->size);
5173
5174 #ifdef CONFIG_MEMCG_KMEM
5175 if (!is_root_cache(s))
5176 p += sprintf(p, "-%08d",
5177 memcg_cache_id(s->memcg_params->memcg));
5178 #endif
5179
5180 BUG_ON(p > name + ID_STR_LENGTH - 1);
5181 return name;
5182 }
5183
5184 static int sysfs_slab_add(struct kmem_cache *s)
5185 {
5186 int err;
5187 const char *name;
5188 int unmergeable = slab_unmergeable(s);
5189
5190 if (unmergeable) {
5191 /*
5192 * Slabcache can never be merged so we can use the name proper.
5193 * This is typically the case for debug situations. In that
5194 * case we can catch duplicate names easily.
5195 */
5196 sysfs_remove_link(&slab_kset->kobj, s->name);
5197 name = s->name;
5198 } else {
5199 /*
5200 * Create a unique name for the slab as a target
5201 * for the symlinks.
5202 */
5203 name = create_unique_id(s);
5204 }
5205
5206 s->kobj.kset = cache_kset(s);
5207 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5208 if (err)
5209 goto out_put_kobj;
5210
5211 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5212 if (err)
5213 goto out_del_kobj;
5214
5215 #ifdef CONFIG_MEMCG_KMEM
5216 if (is_root_cache(s)) {
5217 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5218 if (!s->memcg_kset) {
5219 err = -ENOMEM;
5220 goto out_del_kobj;
5221 }
5222 }
5223 #endif
5224
5225 kobject_uevent(&s->kobj, KOBJ_ADD);
5226 if (!unmergeable) {
5227 /* Setup first alias */
5228 sysfs_slab_alias(s, s->name);
5229 }
5230 out:
5231 if (!unmergeable)
5232 kfree(name);
5233 return err;
5234 out_del_kobj:
5235 kobject_del(&s->kobj);
5236 out_put_kobj:
5237 kobject_put(&s->kobj);
5238 goto out;
5239 }
5240
5241 void sysfs_slab_remove(struct kmem_cache *s)
5242 {
5243 if (slab_state < FULL)
5244 /*
5245 * Sysfs has not been setup yet so no need to remove the
5246 * cache from sysfs.
5247 */
5248 return;
5249
5250 #ifdef CONFIG_MEMCG_KMEM
5251 kset_unregister(s->memcg_kset);
5252 #endif
5253 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5254 kobject_del(&s->kobj);
5255 kobject_put(&s->kobj);
5256 }
5257
5258 /*
5259 * Need to buffer aliases during bootup until sysfs becomes
5260 * available lest we lose that information.
5261 */
5262 struct saved_alias {
5263 struct kmem_cache *s;
5264 const char *name;
5265 struct saved_alias *next;
5266 };
5267
5268 static struct saved_alias *alias_list;
5269
5270 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5271 {
5272 struct saved_alias *al;
5273
5274 if (slab_state == FULL) {
5275 /*
5276 * If we have a leftover link then remove it.
5277 */
5278 sysfs_remove_link(&slab_kset->kobj, name);
5279 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5280 }
5281
5282 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5283 if (!al)
5284 return -ENOMEM;
5285
5286 al->s = s;
5287 al->name = name;
5288 al->next = alias_list;
5289 alias_list = al;
5290 return 0;
5291 }
5292
5293 static int __init slab_sysfs_init(void)
5294 {
5295 struct kmem_cache *s;
5296 int err;
5297
5298 mutex_lock(&slab_mutex);
5299
5300 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5301 if (!slab_kset) {
5302 mutex_unlock(&slab_mutex);
5303 pr_err("Cannot register slab subsystem.\n");
5304 return -ENOSYS;
5305 }
5306
5307 slab_state = FULL;
5308
5309 list_for_each_entry(s, &slab_caches, list) {
5310 err = sysfs_slab_add(s);
5311 if (err)
5312 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5313 s->name);
5314 }
5315
5316 while (alias_list) {
5317 struct saved_alias *al = alias_list;
5318
5319 alias_list = alias_list->next;
5320 err = sysfs_slab_alias(al->s, al->name);
5321 if (err)
5322 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5323 al->name);
5324 kfree(al);
5325 }
5326
5327 mutex_unlock(&slab_mutex);
5328 resiliency_test();
5329 return 0;
5330 }
5331
5332 __initcall(slab_sysfs_init);
5333 #endif /* CONFIG_SYSFS */
5334
5335 /*
5336 * The /proc/slabinfo ABI
5337 */
5338 #ifdef CONFIG_SLABINFO
5339 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5340 {
5341 unsigned long nr_slabs = 0;
5342 unsigned long nr_objs = 0;
5343 unsigned long nr_free = 0;
5344 int node;
5345
5346 for_each_online_node(node) {
5347 struct kmem_cache_node *n = get_node(s, node);
5348
5349 if (!n)
5350 continue;
5351
5352 nr_slabs += node_nr_slabs(n);
5353 nr_objs += node_nr_objs(n);
5354 nr_free += count_partial(n, count_free);
5355 }
5356
5357 sinfo->active_objs = nr_objs - nr_free;
5358 sinfo->num_objs = nr_objs;
5359 sinfo->active_slabs = nr_slabs;
5360 sinfo->num_slabs = nr_slabs;
5361 sinfo->objects_per_slab = oo_objects(s->oo);
5362 sinfo->cache_order = oo_order(s->oo);
5363 }
5364
5365 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5366 {
5367 }
5368
5369 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5370 size_t count, loff_t *ppos)
5371 {
5372 return -EIO;
5373 }
5374 #endif /* CONFIG_SLABINFO */
This page took 0.132248 seconds and 6 git commands to generate.