2 * sparse memory mappings.
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
20 * Permanent SPARSEMEM data:
22 * 1) mem_section - memory sections, mem_map's for valid memory
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
26 ____cacheline_internodealigned_in_smp
;
28 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
29 ____cacheline_internodealigned_in_smp
;
31 EXPORT_SYMBOL(mem_section
);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
45 int page_to_nid(const struct page
*page
)
47 return section_to_node_table
[page_to_section(page
)];
49 EXPORT_SYMBOL(page_to_nid
);
51 static void set_section_nid(unsigned long section_nr
, int nid
)
53 section_to_node_table
[section_nr
] = nid
;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr
, int nid
)
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
64 struct mem_section
*section
= NULL
;
65 unsigned long array_size
= SECTIONS_PER_ROOT
*
66 sizeof(struct mem_section
);
68 if (slab_is_available()) {
69 if (node_state(nid
, N_HIGH_MEMORY
))
70 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
72 section
= kzalloc(array_size
, GFP_KERNEL
);
74 section
= memblock_virt_alloc_node(array_size
, nid
);
80 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
82 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
83 struct mem_section
*section
;
85 if (mem_section
[root
])
88 section
= sparse_index_alloc(nid
);
92 mem_section
[root
] = section
;
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
108 int __section_nr(struct mem_section
* ms
)
110 unsigned long root_nr
;
111 struct mem_section
* root
;
113 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
114 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
118 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
122 VM_BUG_ON(root_nr
== NR_SECTION_ROOTS
);
124 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node. This keeps us from having to use another data structure. The
131 * node information is cleared just before we store the real mem_map.
133 static inline unsigned long sparse_encode_early_nid(int nid
)
135 return (nid
<< SECTION_NID_SHIFT
);
138 static inline int sparse_early_nid(struct mem_section
*section
)
140 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
143 /* Validate the physical addressing limitations of the model */
144 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
145 unsigned long *end_pfn
)
147 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
150 * Sanity checks - do not allow an architecture to pass
151 * in larger pfns than the maximum scope of sparsemem:
153 if (*start_pfn
> max_sparsemem_pfn
) {
154 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
155 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
158 *start_pfn
= max_sparsemem_pfn
;
159 *end_pfn
= max_sparsemem_pfn
;
160 } else if (*end_pfn
> max_sparsemem_pfn
) {
161 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
162 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
165 *end_pfn
= max_sparsemem_pfn
;
169 /* Record a memory area against a node. */
170 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
174 start
&= PAGE_SECTION_MASK
;
175 mminit_validate_memmodel_limits(&start
, &end
);
176 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
177 unsigned long section
= pfn_to_section_nr(pfn
);
178 struct mem_section
*ms
;
180 sparse_index_init(section
, nid
);
181 set_section_nid(section
, nid
);
183 ms
= __nr_to_section(section
);
184 if (!ms
->section_mem_map
)
185 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
186 SECTION_MARKED_PRESENT
;
191 * Only used by the i386 NUMA architecures, but relatively
194 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
195 unsigned long end_pfn
)
198 unsigned long nr_pages
= 0;
200 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
201 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
202 if (nid
!= early_pfn_to_nid(pfn
))
205 if (pfn_present(pfn
))
206 nr_pages
+= PAGES_PER_SECTION
;
209 return nr_pages
* sizeof(struct page
);
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
217 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
219 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
223 * Decode mem_map from the coded memmap
225 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
227 /* mask off the extra low bits of information */
228 coded_mem_map
&= SECTION_MAP_MASK
;
229 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
232 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
233 unsigned long pnum
, struct page
*mem_map
,
234 unsigned long *pageblock_bitmap
)
236 if (!present_section(ms
))
239 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
240 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
242 ms
->pageblock_flags
= pageblock_bitmap
;
247 unsigned long usemap_size(void)
249 unsigned long size_bytes
;
250 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
251 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
255 #ifdef CONFIG_MEMORY_HOTPLUG
256 static unsigned long *__kmalloc_section_usemap(void)
258 return kmalloc(usemap_size(), GFP_KERNEL
);
260 #endif /* CONFIG_MEMORY_HOTPLUG */
262 #ifdef CONFIG_MEMORY_HOTREMOVE
263 static unsigned long * __init
264 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
267 unsigned long goal
, limit
;
271 * A page may contain usemaps for other sections preventing the
272 * page being freed and making a section unremovable while
273 * other sections referencing the usemap remain active. Similarly,
274 * a pgdat can prevent a section being removed. If section A
275 * contains a pgdat and section B contains the usemap, both
276 * sections become inter-dependent. This allocates usemaps
277 * from the same section as the pgdat where possible to avoid
280 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
281 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
282 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
284 p
= memblock_virt_alloc_try_nid_nopanic(size
,
285 SMP_CACHE_BYTES
, goal
, limit
,
294 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
296 unsigned long usemap_snr
, pgdat_snr
;
297 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
298 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
299 struct pglist_data
*pgdat
= NODE_DATA(nid
);
302 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
303 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
304 if (usemap_snr
== pgdat_snr
)
307 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
308 /* skip redundant message */
311 old_usemap_snr
= usemap_snr
;
312 old_pgdat_snr
= pgdat_snr
;
314 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
315 if (usemap_nid
!= nid
) {
317 "node %d must be removed before remove section %ld\n",
322 * There is a circular dependency.
323 * Some platforms allow un-removable section because they will just
324 * gather other removable sections for dynamic partitioning.
325 * Just notify un-removable section's number here.
327 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
330 " have a circular dependency on usemap and pgdat allocations\n");
333 static unsigned long * __init
334 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
337 return memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
340 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
343 #endif /* CONFIG_MEMORY_HOTREMOVE */
345 static void __init
sparse_early_usemaps_alloc_node(void *data
,
346 unsigned long pnum_begin
,
347 unsigned long pnum_end
,
348 unsigned long usemap_count
, int nodeid
)
352 unsigned long **usemap_map
= (unsigned long **)data
;
353 int size
= usemap_size();
355 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid
),
356 size
* usemap_count
);
358 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
362 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
363 if (!present_section_nr(pnum
))
365 usemap_map
[pnum
] = usemap
;
367 check_usemap_section_nr(nodeid
, usemap_map
[pnum
]);
371 #ifndef CONFIG_SPARSEMEM_VMEMMAP
372 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
377 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
381 size
= PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
382 map
= memblock_virt_alloc_try_nid(size
,
383 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
384 BOOTMEM_ALLOC_ACCESSIBLE
, nid
);
387 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
388 unsigned long pnum_begin
,
389 unsigned long pnum_end
,
390 unsigned long map_count
, int nodeid
)
394 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
396 map
= alloc_remap(nodeid
, size
* map_count
);
398 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
399 if (!present_section_nr(pnum
))
407 size
= PAGE_ALIGN(size
);
408 map
= memblock_virt_alloc_try_nid(size
* map_count
,
409 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
410 BOOTMEM_ALLOC_ACCESSIBLE
, nodeid
);
412 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
413 if (!present_section_nr(pnum
))
422 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
423 struct mem_section
*ms
;
425 if (!present_section_nr(pnum
))
427 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
430 ms
= __nr_to_section(pnum
);
431 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
432 "some memory will not be available.\n", __func__
);
433 ms
->section_mem_map
= 0;
436 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
438 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439 static void __init
sparse_early_mem_maps_alloc_node(void *data
,
440 unsigned long pnum_begin
,
441 unsigned long pnum_end
,
442 unsigned long map_count
, int nodeid
)
444 struct page
**map_map
= (struct page
**)data
;
445 sparse_mem_maps_populate_node(map_map
, pnum_begin
, pnum_end
,
449 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
452 struct mem_section
*ms
= __nr_to_section(pnum
);
453 int nid
= sparse_early_nid(ms
);
455 map
= sparse_mem_map_populate(pnum
, nid
);
459 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
460 "some memory will not be available.\n", __func__
);
461 ms
->section_mem_map
= 0;
466 void __weak __meminit
vmemmap_populate_print_last(void)
471 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
472 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
474 static void __init
alloc_usemap_and_memmap(void (*alloc_func
)
475 (void *, unsigned long, unsigned long,
476 unsigned long, int), void *data
)
479 unsigned long map_count
;
480 int nodeid_begin
= 0;
481 unsigned long pnum_begin
= 0;
483 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
484 struct mem_section
*ms
;
486 if (!present_section_nr(pnum
))
488 ms
= __nr_to_section(pnum
);
489 nodeid_begin
= sparse_early_nid(ms
);
494 for (pnum
= pnum_begin
+ 1; pnum
< NR_MEM_SECTIONS
; pnum
++) {
495 struct mem_section
*ms
;
498 if (!present_section_nr(pnum
))
500 ms
= __nr_to_section(pnum
);
501 nodeid
= sparse_early_nid(ms
);
502 if (nodeid
== nodeid_begin
) {
506 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
507 alloc_func(data
, pnum_begin
, pnum
,
508 map_count
, nodeid_begin
);
509 /* new start, update count etc*/
510 nodeid_begin
= nodeid
;
515 alloc_func(data
, pnum_begin
, NR_MEM_SECTIONS
,
516 map_count
, nodeid_begin
);
520 * Allocate the accumulated non-linear sections, allocate a mem_map
521 * for each and record the physical to section mapping.
523 void __init
sparse_init(void)
527 unsigned long *usemap
;
528 unsigned long **usemap_map
;
530 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
532 struct page
**map_map
;
535 /* see include/linux/mmzone.h 'struct mem_section' definition */
536 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section
)));
538 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
539 set_pageblock_order();
542 * map is using big page (aka 2M in x86 64 bit)
543 * usemap is less one page (aka 24 bytes)
544 * so alloc 2M (with 2M align) and 24 bytes in turn will
545 * make next 2M slip to one more 2M later.
546 * then in big system, the memory will have a lot of holes...
547 * here try to allocate 2M pages continuously.
549 * powerpc need to call sparse_init_one_section right after each
550 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
552 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
553 usemap_map
= memblock_virt_alloc(size
, 0);
555 panic("can not allocate usemap_map\n");
556 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node
,
559 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560 size2
= sizeof(struct page
*) * NR_MEM_SECTIONS
;
561 map_map
= memblock_virt_alloc(size2
, 0);
563 panic("can not allocate map_map\n");
564 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node
,
568 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
569 if (!present_section_nr(pnum
))
572 usemap
= usemap_map
[pnum
];
576 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
579 map
= sparse_early_mem_map_alloc(pnum
);
584 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
588 vmemmap_populate_print_last();
590 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591 memblock_free_early(__pa(map_map
), size2
);
593 memblock_free_early(__pa(usemap_map
), size
);
596 #ifdef CONFIG_MEMORY_HOTPLUG
597 #ifdef CONFIG_SPARSEMEM_VMEMMAP
598 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
)
600 /* This will make the necessary allocations eventually. */
601 return sparse_mem_map_populate(pnum
, nid
);
603 static void __kfree_section_memmap(struct page
*memmap
)
605 unsigned long start
= (unsigned long)memmap
;
606 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
608 vmemmap_free(start
, end
);
610 #ifdef CONFIG_MEMORY_HOTREMOVE
611 static void free_map_bootmem(struct page
*memmap
)
613 unsigned long start
= (unsigned long)memmap
;
614 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
616 vmemmap_free(start
, end
);
618 #endif /* CONFIG_MEMORY_HOTREMOVE */
620 static struct page
*__kmalloc_section_memmap(void)
622 struct page
*page
, *ret
;
623 unsigned long memmap_size
= sizeof(struct page
) * PAGES_PER_SECTION
;
625 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
629 ret
= vmalloc(memmap_size
);
635 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
641 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
)
643 return __kmalloc_section_memmap();
646 static void __kfree_section_memmap(struct page
*memmap
)
648 if (is_vmalloc_addr(memmap
))
651 free_pages((unsigned long)memmap
,
652 get_order(sizeof(struct page
) * PAGES_PER_SECTION
));
655 #ifdef CONFIG_MEMORY_HOTREMOVE
656 static void free_map_bootmem(struct page
*memmap
)
658 unsigned long maps_section_nr
, removing_section_nr
, i
;
659 unsigned long magic
, nr_pages
;
660 struct page
*page
= virt_to_page(memmap
);
662 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
665 for (i
= 0; i
< nr_pages
; i
++, page
++) {
666 magic
= (unsigned long) page
->lru
.next
;
668 BUG_ON(magic
== NODE_INFO
);
670 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
671 removing_section_nr
= page
->private;
674 * When this function is called, the removing section is
675 * logical offlined state. This means all pages are isolated
676 * from page allocator. If removing section's memmap is placed
677 * on the same section, it must not be freed.
678 * If it is freed, page allocator may allocate it which will
679 * be removed physically soon.
681 if (maps_section_nr
!= removing_section_nr
)
682 put_page_bootmem(page
);
685 #endif /* CONFIG_MEMORY_HOTREMOVE */
686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
689 * returns the number of sections whose mem_maps were properly
690 * set. If this is <=0, then that means that the passed-in
691 * map was not consumed and must be freed.
693 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
)
695 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
696 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
697 struct mem_section
*ms
;
699 unsigned long *usemap
;
704 * no locking for this, because it does its own
705 * plus, it does a kmalloc
707 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
708 if (ret
< 0 && ret
!= -EEXIST
)
710 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
);
713 usemap
= __kmalloc_section_usemap();
715 __kfree_section_memmap(memmap
);
719 pgdat_resize_lock(pgdat
, &flags
);
721 ms
= __pfn_to_section(start_pfn
);
722 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
727 memset(memmap
, 0, sizeof(struct page
) * PAGES_PER_SECTION
);
729 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
731 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
734 pgdat_resize_unlock(pgdat
, &flags
);
737 __kfree_section_memmap(memmap
);
742 #ifdef CONFIG_MEMORY_HOTREMOVE
743 #ifdef CONFIG_MEMORY_FAILURE
744 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
751 for (i
= 0; i
< PAGES_PER_SECTION
; i
++) {
752 if (PageHWPoison(&memmap
[i
])) {
753 atomic_long_sub(1, &num_poisoned_pages
);
754 ClearPageHWPoison(&memmap
[i
]);
759 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
764 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
766 struct page
*usemap_page
;
771 usemap_page
= virt_to_page(usemap
);
773 * Check to see if allocation came from hot-plug-add
775 if (PageSlab(usemap_page
) || PageCompound(usemap_page
)) {
778 __kfree_section_memmap(memmap
);
783 * The usemap came from bootmem. This is packed with other usemaps
784 * on the section which has pgdat at boot time. Just keep it as is now.
788 free_map_bootmem(memmap
);
791 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
793 struct page
*memmap
= NULL
;
794 unsigned long *usemap
= NULL
, flags
;
795 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
797 pgdat_resize_lock(pgdat
, &flags
);
798 if (ms
->section_mem_map
) {
799 usemap
= ms
->pageblock_flags
;
800 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
802 ms
->section_mem_map
= 0;
803 ms
->pageblock_flags
= NULL
;
805 pgdat_resize_unlock(pgdat
, &flags
);
807 clear_hwpoisoned_pages(memmap
, PAGES_PER_SECTION
);
808 free_section_usemap(memmap
, usemap
);
810 #endif /* CONFIG_MEMORY_HOTREMOVE */
811 #endif /* CONFIG_MEMORY_HOTPLUG */