mm/mempool.c: convert kmalloc_node(...GFP_ZERO...) to kzalloc_node(...)
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47
48 /*
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
51 */
52 static void __page_cache_release(struct page *page)
53 {
54 if (PageLRU(page)) {
55 struct zone *zone = page_zone(page);
56 struct lruvec *lruvec;
57 unsigned long flags;
58
59 spin_lock_irqsave(&zone->lru_lock, flags);
60 lruvec = mem_cgroup_page_lruvec(page, zone);
61 VM_BUG_ON(!PageLRU(page));
62 __ClearPageLRU(page);
63 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 spin_unlock_irqrestore(&zone->lru_lock, flags);
65 }
66 }
67
68 static void __put_single_page(struct page *page)
69 {
70 __page_cache_release(page);
71 free_hot_cold_page(page, 0);
72 }
73
74 static void __put_compound_page(struct page *page)
75 {
76 compound_page_dtor *dtor;
77
78 __page_cache_release(page);
79 dtor = get_compound_page_dtor(page);
80 (*dtor)(page);
81 }
82
83 static void put_compound_page(struct page *page)
84 {
85 /*
86 * hugetlbfs pages cannot be split from under us. If this is a
87 * hugetlbfs page, check refcount on head page and release the page if
88 * the refcount becomes zero.
89 */
90 if (PageHuge(page)) {
91 page = compound_head(page);
92 if (put_page_testzero(page))
93 __put_compound_page(page);
94
95 return;
96 }
97
98 if (unlikely(PageTail(page))) {
99 /* __split_huge_page_refcount can run under us */
100 struct page *page_head = compound_trans_head(page);
101
102 if (likely(page != page_head &&
103 get_page_unless_zero(page_head))) {
104 unsigned long flags;
105
106 /*
107 * THP can not break up slab pages so avoid taking
108 * compound_lock(). Slab performs non-atomic bit ops
109 * on page->flags for better performance. In particular
110 * slab_unlock() in slub used to be a hot path. It is
111 * still hot on arches that do not support
112 * this_cpu_cmpxchg_double().
113 */
114 if (PageSlab(page_head)) {
115 if (PageTail(page)) {
116 if (put_page_testzero(page_head))
117 VM_BUG_ON(1);
118
119 atomic_dec(&page->_mapcount);
120 goto skip_lock_tail;
121 } else
122 goto skip_lock;
123 }
124 /*
125 * page_head wasn't a dangling pointer but it
126 * may not be a head page anymore by the time
127 * we obtain the lock. That is ok as long as it
128 * can't be freed from under us.
129 */
130 flags = compound_lock_irqsave(page_head);
131 if (unlikely(!PageTail(page))) {
132 /* __split_huge_page_refcount run before us */
133 compound_unlock_irqrestore(page_head, flags);
134 skip_lock:
135 if (put_page_testzero(page_head))
136 __put_single_page(page_head);
137 out_put_single:
138 if (put_page_testzero(page))
139 __put_single_page(page);
140 return;
141 }
142 VM_BUG_ON(page_head != page->first_page);
143 /*
144 * We can release the refcount taken by
145 * get_page_unless_zero() now that
146 * __split_huge_page_refcount() is blocked on
147 * the compound_lock.
148 */
149 if (put_page_testzero(page_head))
150 VM_BUG_ON(1);
151 /* __split_huge_page_refcount will wait now */
152 VM_BUG_ON(page_mapcount(page) <= 0);
153 atomic_dec(&page->_mapcount);
154 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
155 VM_BUG_ON(atomic_read(&page->_count) != 0);
156 compound_unlock_irqrestore(page_head, flags);
157
158 skip_lock_tail:
159 if (put_page_testzero(page_head)) {
160 if (PageHead(page_head))
161 __put_compound_page(page_head);
162 else
163 __put_single_page(page_head);
164 }
165 } else {
166 /* page_head is a dangling pointer */
167 VM_BUG_ON(PageTail(page));
168 goto out_put_single;
169 }
170 } else if (put_page_testzero(page)) {
171 if (PageHead(page))
172 __put_compound_page(page);
173 else
174 __put_single_page(page);
175 }
176 }
177
178 void put_page(struct page *page)
179 {
180 if (unlikely(PageCompound(page)))
181 put_compound_page(page);
182 else if (put_page_testzero(page))
183 __put_single_page(page);
184 }
185 EXPORT_SYMBOL(put_page);
186
187 /*
188 * This function is exported but must not be called by anything other
189 * than get_page(). It implements the slow path of get_page().
190 */
191 bool __get_page_tail(struct page *page)
192 {
193 /*
194 * This takes care of get_page() if run on a tail page
195 * returned by one of the get_user_pages/follow_page variants.
196 * get_user_pages/follow_page itself doesn't need the compound
197 * lock because it runs __get_page_tail_foll() under the
198 * proper PT lock that already serializes against
199 * split_huge_page().
200 */
201 bool got = false;
202 struct page *page_head;
203
204 /*
205 * If this is a hugetlbfs page it cannot be split under us. Simply
206 * increment refcount for the head page.
207 */
208 if (PageHuge(page)) {
209 page_head = compound_head(page);
210 atomic_inc(&page_head->_count);
211 got = true;
212 } else {
213 unsigned long flags;
214
215 page_head = compound_trans_head(page);
216 if (likely(page != page_head &&
217 get_page_unless_zero(page_head))) {
218
219 /* Ref to put_compound_page() comment. */
220 if (PageSlab(page_head)) {
221 if (likely(PageTail(page))) {
222 __get_page_tail_foll(page, false);
223 return true;
224 } else {
225 put_page(page_head);
226 return false;
227 }
228 }
229
230 /*
231 * page_head wasn't a dangling pointer but it
232 * may not be a head page anymore by the time
233 * we obtain the lock. That is ok as long as it
234 * can't be freed from under us.
235 */
236 flags = compound_lock_irqsave(page_head);
237 /* here __split_huge_page_refcount won't run anymore */
238 if (likely(PageTail(page))) {
239 __get_page_tail_foll(page, false);
240 got = true;
241 }
242 compound_unlock_irqrestore(page_head, flags);
243 if (unlikely(!got))
244 put_page(page_head);
245 }
246 }
247 return got;
248 }
249 EXPORT_SYMBOL(__get_page_tail);
250
251 /**
252 * put_pages_list() - release a list of pages
253 * @pages: list of pages threaded on page->lru
254 *
255 * Release a list of pages which are strung together on page.lru. Currently
256 * used by read_cache_pages() and related error recovery code.
257 */
258 void put_pages_list(struct list_head *pages)
259 {
260 while (!list_empty(pages)) {
261 struct page *victim;
262
263 victim = list_entry(pages->prev, struct page, lru);
264 list_del(&victim->lru);
265 page_cache_release(victim);
266 }
267 }
268 EXPORT_SYMBOL(put_pages_list);
269
270 /*
271 * get_kernel_pages() - pin kernel pages in memory
272 * @kiov: An array of struct kvec structures
273 * @nr_segs: number of segments to pin
274 * @write: pinning for read/write, currently ignored
275 * @pages: array that receives pointers to the pages pinned.
276 * Should be at least nr_segs long.
277 *
278 * Returns number of pages pinned. This may be fewer than the number
279 * requested. If nr_pages is 0 or negative, returns 0. If no pages
280 * were pinned, returns -errno. Each page returned must be released
281 * with a put_page() call when it is finished with.
282 */
283 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
284 struct page **pages)
285 {
286 int seg;
287
288 for (seg = 0; seg < nr_segs; seg++) {
289 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
290 return seg;
291
292 pages[seg] = kmap_to_page(kiov[seg].iov_base);
293 page_cache_get(pages[seg]);
294 }
295
296 return seg;
297 }
298 EXPORT_SYMBOL_GPL(get_kernel_pages);
299
300 /*
301 * get_kernel_page() - pin a kernel page in memory
302 * @start: starting kernel address
303 * @write: pinning for read/write, currently ignored
304 * @pages: array that receives pointer to the page pinned.
305 * Must be at least nr_segs long.
306 *
307 * Returns 1 if page is pinned. If the page was not pinned, returns
308 * -errno. The page returned must be released with a put_page() call
309 * when it is finished with.
310 */
311 int get_kernel_page(unsigned long start, int write, struct page **pages)
312 {
313 const struct kvec kiov = {
314 .iov_base = (void *)start,
315 .iov_len = PAGE_SIZE
316 };
317
318 return get_kernel_pages(&kiov, 1, write, pages);
319 }
320 EXPORT_SYMBOL_GPL(get_kernel_page);
321
322 static void pagevec_lru_move_fn(struct pagevec *pvec,
323 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
324 void *arg)
325 {
326 int i;
327 struct zone *zone = NULL;
328 struct lruvec *lruvec;
329 unsigned long flags = 0;
330
331 for (i = 0; i < pagevec_count(pvec); i++) {
332 struct page *page = pvec->pages[i];
333 struct zone *pagezone = page_zone(page);
334
335 if (pagezone != zone) {
336 if (zone)
337 spin_unlock_irqrestore(&zone->lru_lock, flags);
338 zone = pagezone;
339 spin_lock_irqsave(&zone->lru_lock, flags);
340 }
341
342 lruvec = mem_cgroup_page_lruvec(page, zone);
343 (*move_fn)(page, lruvec, arg);
344 }
345 if (zone)
346 spin_unlock_irqrestore(&zone->lru_lock, flags);
347 release_pages(pvec->pages, pvec->nr, pvec->cold);
348 pagevec_reinit(pvec);
349 }
350
351 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
352 void *arg)
353 {
354 int *pgmoved = arg;
355
356 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
357 enum lru_list lru = page_lru_base_type(page);
358 list_move_tail(&page->lru, &lruvec->lists[lru]);
359 (*pgmoved)++;
360 }
361 }
362
363 /*
364 * pagevec_move_tail() must be called with IRQ disabled.
365 * Otherwise this may cause nasty races.
366 */
367 static void pagevec_move_tail(struct pagevec *pvec)
368 {
369 int pgmoved = 0;
370
371 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
372 __count_vm_events(PGROTATED, pgmoved);
373 }
374
375 /*
376 * Writeback is about to end against a page which has been marked for immediate
377 * reclaim. If it still appears to be reclaimable, move it to the tail of the
378 * inactive list.
379 */
380 void rotate_reclaimable_page(struct page *page)
381 {
382 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
383 !PageUnevictable(page) && PageLRU(page)) {
384 struct pagevec *pvec;
385 unsigned long flags;
386
387 page_cache_get(page);
388 local_irq_save(flags);
389 pvec = &__get_cpu_var(lru_rotate_pvecs);
390 if (!pagevec_add(pvec, page))
391 pagevec_move_tail(pvec);
392 local_irq_restore(flags);
393 }
394 }
395
396 static void update_page_reclaim_stat(struct lruvec *lruvec,
397 int file, int rotated)
398 {
399 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
400
401 reclaim_stat->recent_scanned[file]++;
402 if (rotated)
403 reclaim_stat->recent_rotated[file]++;
404 }
405
406 static void __activate_page(struct page *page, struct lruvec *lruvec,
407 void *arg)
408 {
409 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
410 int file = page_is_file_cache(page);
411 int lru = page_lru_base_type(page);
412
413 del_page_from_lru_list(page, lruvec, lru);
414 SetPageActive(page);
415 lru += LRU_ACTIVE;
416 add_page_to_lru_list(page, lruvec, lru);
417 trace_mm_lru_activate(page, page_to_pfn(page));
418
419 __count_vm_event(PGACTIVATE);
420 update_page_reclaim_stat(lruvec, file, 1);
421 }
422 }
423
424 #ifdef CONFIG_SMP
425 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
426
427 static void activate_page_drain(int cpu)
428 {
429 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
430
431 if (pagevec_count(pvec))
432 pagevec_lru_move_fn(pvec, __activate_page, NULL);
433 }
434
435 void activate_page(struct page *page)
436 {
437 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
438 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
439
440 page_cache_get(page);
441 if (!pagevec_add(pvec, page))
442 pagevec_lru_move_fn(pvec, __activate_page, NULL);
443 put_cpu_var(activate_page_pvecs);
444 }
445 }
446
447 #else
448 static inline void activate_page_drain(int cpu)
449 {
450 }
451
452 void activate_page(struct page *page)
453 {
454 struct zone *zone = page_zone(page);
455
456 spin_lock_irq(&zone->lru_lock);
457 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
458 spin_unlock_irq(&zone->lru_lock);
459 }
460 #endif
461
462 static void __lru_cache_activate_page(struct page *page)
463 {
464 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
465 int i;
466
467 /*
468 * Search backwards on the optimistic assumption that the page being
469 * activated has just been added to this pagevec. Note that only
470 * the local pagevec is examined as a !PageLRU page could be in the
471 * process of being released, reclaimed, migrated or on a remote
472 * pagevec that is currently being drained. Furthermore, marking
473 * a remote pagevec's page PageActive potentially hits a race where
474 * a page is marked PageActive just after it is added to the inactive
475 * list causing accounting errors and BUG_ON checks to trigger.
476 */
477 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
478 struct page *pagevec_page = pvec->pages[i];
479
480 if (pagevec_page == page) {
481 SetPageActive(page);
482 break;
483 }
484 }
485
486 put_cpu_var(lru_add_pvec);
487 }
488
489 /*
490 * Mark a page as having seen activity.
491 *
492 * inactive,unreferenced -> inactive,referenced
493 * inactive,referenced -> active,unreferenced
494 * active,unreferenced -> active,referenced
495 */
496 void mark_page_accessed(struct page *page)
497 {
498 if (!PageActive(page) && !PageUnevictable(page) &&
499 PageReferenced(page)) {
500
501 /*
502 * If the page is on the LRU, queue it for activation via
503 * activate_page_pvecs. Otherwise, assume the page is on a
504 * pagevec, mark it active and it'll be moved to the active
505 * LRU on the next drain.
506 */
507 if (PageLRU(page))
508 activate_page(page);
509 else
510 __lru_cache_activate_page(page);
511 ClearPageReferenced(page);
512 } else if (!PageReferenced(page)) {
513 SetPageReferenced(page);
514 }
515 }
516 EXPORT_SYMBOL(mark_page_accessed);
517
518 /*
519 * Queue the page for addition to the LRU via pagevec. The decision on whether
520 * to add the page to the [in]active [file|anon] list is deferred until the
521 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
522 * have the page added to the active list using mark_page_accessed().
523 */
524 void __lru_cache_add(struct page *page)
525 {
526 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
527
528 page_cache_get(page);
529 if (!pagevec_space(pvec))
530 __pagevec_lru_add(pvec);
531 pagevec_add(pvec, page);
532 put_cpu_var(lru_add_pvec);
533 }
534 EXPORT_SYMBOL(__lru_cache_add);
535
536 /**
537 * lru_cache_add - add a page to a page list
538 * @page: the page to be added to the LRU.
539 */
540 void lru_cache_add(struct page *page)
541 {
542 VM_BUG_ON(PageActive(page) && PageUnevictable(page));
543 VM_BUG_ON(PageLRU(page));
544 __lru_cache_add(page);
545 }
546
547 /**
548 * add_page_to_unevictable_list - add a page to the unevictable list
549 * @page: the page to be added to the unevictable list
550 *
551 * Add page directly to its zone's unevictable list. To avoid races with
552 * tasks that might be making the page evictable, through eg. munlock,
553 * munmap or exit, while it's not on the lru, we want to add the page
554 * while it's locked or otherwise "invisible" to other tasks. This is
555 * difficult to do when using the pagevec cache, so bypass that.
556 */
557 void add_page_to_unevictable_list(struct page *page)
558 {
559 struct zone *zone = page_zone(page);
560 struct lruvec *lruvec;
561
562 spin_lock_irq(&zone->lru_lock);
563 lruvec = mem_cgroup_page_lruvec(page, zone);
564 ClearPageActive(page);
565 SetPageUnevictable(page);
566 SetPageLRU(page);
567 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
568 spin_unlock_irq(&zone->lru_lock);
569 }
570
571 /*
572 * If the page can not be invalidated, it is moved to the
573 * inactive list to speed up its reclaim. It is moved to the
574 * head of the list, rather than the tail, to give the flusher
575 * threads some time to write it out, as this is much more
576 * effective than the single-page writeout from reclaim.
577 *
578 * If the page isn't page_mapped and dirty/writeback, the page
579 * could reclaim asap using PG_reclaim.
580 *
581 * 1. active, mapped page -> none
582 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
583 * 3. inactive, mapped page -> none
584 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
585 * 5. inactive, clean -> inactive, tail
586 * 6. Others -> none
587 *
588 * In 4, why it moves inactive's head, the VM expects the page would
589 * be write it out by flusher threads as this is much more effective
590 * than the single-page writeout from reclaim.
591 */
592 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
593 void *arg)
594 {
595 int lru, file;
596 bool active;
597
598 if (!PageLRU(page))
599 return;
600
601 if (PageUnevictable(page))
602 return;
603
604 /* Some processes are using the page */
605 if (page_mapped(page))
606 return;
607
608 active = PageActive(page);
609 file = page_is_file_cache(page);
610 lru = page_lru_base_type(page);
611
612 del_page_from_lru_list(page, lruvec, lru + active);
613 ClearPageActive(page);
614 ClearPageReferenced(page);
615 add_page_to_lru_list(page, lruvec, lru);
616
617 if (PageWriteback(page) || PageDirty(page)) {
618 /*
619 * PG_reclaim could be raced with end_page_writeback
620 * It can make readahead confusing. But race window
621 * is _really_ small and it's non-critical problem.
622 */
623 SetPageReclaim(page);
624 } else {
625 /*
626 * The page's writeback ends up during pagevec
627 * We moves tha page into tail of inactive.
628 */
629 list_move_tail(&page->lru, &lruvec->lists[lru]);
630 __count_vm_event(PGROTATED);
631 }
632
633 if (active)
634 __count_vm_event(PGDEACTIVATE);
635 update_page_reclaim_stat(lruvec, file, 0);
636 }
637
638 /*
639 * Drain pages out of the cpu's pagevecs.
640 * Either "cpu" is the current CPU, and preemption has already been
641 * disabled; or "cpu" is being hot-unplugged, and is already dead.
642 */
643 void lru_add_drain_cpu(int cpu)
644 {
645 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
646
647 if (pagevec_count(pvec))
648 __pagevec_lru_add(pvec);
649
650 pvec = &per_cpu(lru_rotate_pvecs, cpu);
651 if (pagevec_count(pvec)) {
652 unsigned long flags;
653
654 /* No harm done if a racing interrupt already did this */
655 local_irq_save(flags);
656 pagevec_move_tail(pvec);
657 local_irq_restore(flags);
658 }
659
660 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
661 if (pagevec_count(pvec))
662 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
663
664 activate_page_drain(cpu);
665 }
666
667 /**
668 * deactivate_page - forcefully deactivate a page
669 * @page: page to deactivate
670 *
671 * This function hints the VM that @page is a good reclaim candidate,
672 * for example if its invalidation fails due to the page being dirty
673 * or under writeback.
674 */
675 void deactivate_page(struct page *page)
676 {
677 /*
678 * In a workload with many unevictable page such as mprotect, unevictable
679 * page deactivation for accelerating reclaim is pointless.
680 */
681 if (PageUnevictable(page))
682 return;
683
684 if (likely(get_page_unless_zero(page))) {
685 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
686
687 if (!pagevec_add(pvec, page))
688 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
689 put_cpu_var(lru_deactivate_pvecs);
690 }
691 }
692
693 void lru_add_drain(void)
694 {
695 lru_add_drain_cpu(get_cpu());
696 put_cpu();
697 }
698
699 static void lru_add_drain_per_cpu(struct work_struct *dummy)
700 {
701 lru_add_drain();
702 }
703
704 /*
705 * Returns 0 for success
706 */
707 int lru_add_drain_all(void)
708 {
709 return schedule_on_each_cpu(lru_add_drain_per_cpu);
710 }
711
712 /*
713 * Batched page_cache_release(). Decrement the reference count on all the
714 * passed pages. If it fell to zero then remove the page from the LRU and
715 * free it.
716 *
717 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
718 * for the remainder of the operation.
719 *
720 * The locking in this function is against shrink_inactive_list(): we recheck
721 * the page count inside the lock to see whether shrink_inactive_list()
722 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
723 * will free it.
724 */
725 void release_pages(struct page **pages, int nr, int cold)
726 {
727 int i;
728 LIST_HEAD(pages_to_free);
729 struct zone *zone = NULL;
730 struct lruvec *lruvec;
731 unsigned long uninitialized_var(flags);
732
733 for (i = 0; i < nr; i++) {
734 struct page *page = pages[i];
735
736 if (unlikely(PageCompound(page))) {
737 if (zone) {
738 spin_unlock_irqrestore(&zone->lru_lock, flags);
739 zone = NULL;
740 }
741 put_compound_page(page);
742 continue;
743 }
744
745 if (!put_page_testzero(page))
746 continue;
747
748 if (PageLRU(page)) {
749 struct zone *pagezone = page_zone(page);
750
751 if (pagezone != zone) {
752 if (zone)
753 spin_unlock_irqrestore(&zone->lru_lock,
754 flags);
755 zone = pagezone;
756 spin_lock_irqsave(&zone->lru_lock, flags);
757 }
758
759 lruvec = mem_cgroup_page_lruvec(page, zone);
760 VM_BUG_ON(!PageLRU(page));
761 __ClearPageLRU(page);
762 del_page_from_lru_list(page, lruvec, page_off_lru(page));
763 }
764
765 /* Clear Active bit in case of parallel mark_page_accessed */
766 ClearPageActive(page);
767
768 list_add(&page->lru, &pages_to_free);
769 }
770 if (zone)
771 spin_unlock_irqrestore(&zone->lru_lock, flags);
772
773 free_hot_cold_page_list(&pages_to_free, cold);
774 }
775 EXPORT_SYMBOL(release_pages);
776
777 /*
778 * The pages which we're about to release may be in the deferred lru-addition
779 * queues. That would prevent them from really being freed right now. That's
780 * OK from a correctness point of view but is inefficient - those pages may be
781 * cache-warm and we want to give them back to the page allocator ASAP.
782 *
783 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
784 * and __pagevec_lru_add_active() call release_pages() directly to avoid
785 * mutual recursion.
786 */
787 void __pagevec_release(struct pagevec *pvec)
788 {
789 lru_add_drain();
790 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
791 pagevec_reinit(pvec);
792 }
793 EXPORT_SYMBOL(__pagevec_release);
794
795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
796 /* used by __split_huge_page_refcount() */
797 void lru_add_page_tail(struct page *page, struct page *page_tail,
798 struct lruvec *lruvec, struct list_head *list)
799 {
800 const int file = 0;
801
802 VM_BUG_ON(!PageHead(page));
803 VM_BUG_ON(PageCompound(page_tail));
804 VM_BUG_ON(PageLRU(page_tail));
805 VM_BUG_ON(NR_CPUS != 1 &&
806 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
807
808 if (!list)
809 SetPageLRU(page_tail);
810
811 if (likely(PageLRU(page)))
812 list_add_tail(&page_tail->lru, &page->lru);
813 else if (list) {
814 /* page reclaim is reclaiming a huge page */
815 get_page(page_tail);
816 list_add_tail(&page_tail->lru, list);
817 } else {
818 struct list_head *list_head;
819 /*
820 * Head page has not yet been counted, as an hpage,
821 * so we must account for each subpage individually.
822 *
823 * Use the standard add function to put page_tail on the list,
824 * but then correct its position so they all end up in order.
825 */
826 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
827 list_head = page_tail->lru.prev;
828 list_move_tail(&page_tail->lru, list_head);
829 }
830
831 if (!PageUnevictable(page))
832 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
833 }
834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
835
836 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
837 void *arg)
838 {
839 int file = page_is_file_cache(page);
840 int active = PageActive(page);
841 enum lru_list lru = page_lru(page);
842
843 VM_BUG_ON(PageLRU(page));
844
845 SetPageLRU(page);
846 add_page_to_lru_list(page, lruvec, lru);
847 update_page_reclaim_stat(lruvec, file, active);
848 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
849 }
850
851 /*
852 * Add the passed pages to the LRU, then drop the caller's refcount
853 * on them. Reinitialises the caller's pagevec.
854 */
855 void __pagevec_lru_add(struct pagevec *pvec)
856 {
857 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
858 }
859 EXPORT_SYMBOL(__pagevec_lru_add);
860
861 /**
862 * pagevec_lookup - gang pagecache lookup
863 * @pvec: Where the resulting pages are placed
864 * @mapping: The address_space to search
865 * @start: The starting page index
866 * @nr_pages: The maximum number of pages
867 *
868 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
869 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
870 * reference against the pages in @pvec.
871 *
872 * The search returns a group of mapping-contiguous pages with ascending
873 * indexes. There may be holes in the indices due to not-present pages.
874 *
875 * pagevec_lookup() returns the number of pages which were found.
876 */
877 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
878 pgoff_t start, unsigned nr_pages)
879 {
880 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
881 return pagevec_count(pvec);
882 }
883 EXPORT_SYMBOL(pagevec_lookup);
884
885 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
886 pgoff_t *index, int tag, unsigned nr_pages)
887 {
888 pvec->nr = find_get_pages_tag(mapping, index, tag,
889 nr_pages, pvec->pages);
890 return pagevec_count(pvec);
891 }
892 EXPORT_SYMBOL(pagevec_lookup_tag);
893
894 /*
895 * Perform any setup for the swap system
896 */
897 void __init swap_setup(void)
898 {
899 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
900 #ifdef CONFIG_SWAP
901 int i;
902
903 bdi_init(swapper_spaces[0].backing_dev_info);
904 for (i = 0; i < MAX_SWAPFILES; i++) {
905 spin_lock_init(&swapper_spaces[i].tree_lock);
906 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
907 }
908 #endif
909
910 /* Use a smaller cluster for small-memory machines */
911 if (megs < 16)
912 page_cluster = 2;
913 else
914 page_cluster = 3;
915 /*
916 * Right now other parts of the system means that we
917 * _really_ don't want to cluster much more
918 */
919 }
This page took 0.050627 seconds and 5 git commands to generate.