mm: get rid of pagevec_release_nonlru()
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33
34 #include "internal.h"
35
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41
42 /*
43 * This path almost never happens for VM activity - pages are normally
44 * freed via pagevecs. But it gets used by networking.
45 */
46 static void __page_cache_release(struct page *page)
47 {
48 if (PageLRU(page)) {
49 unsigned long flags;
50 struct zone *zone = page_zone(page);
51
52 spin_lock_irqsave(&zone->lru_lock, flags);
53 VM_BUG_ON(!PageLRU(page));
54 __ClearPageLRU(page);
55 del_page_from_lru(zone, page);
56 spin_unlock_irqrestore(&zone->lru_lock, flags);
57 }
58 free_hot_page(page);
59 }
60
61 static void put_compound_page(struct page *page)
62 {
63 page = compound_head(page);
64 if (put_page_testzero(page)) {
65 compound_page_dtor *dtor;
66
67 dtor = get_compound_page_dtor(page);
68 (*dtor)(page);
69 }
70 }
71
72 void put_page(struct page *page)
73 {
74 if (unlikely(PageCompound(page)))
75 put_compound_page(page);
76 else if (put_page_testzero(page))
77 __page_cache_release(page);
78 }
79 EXPORT_SYMBOL(put_page);
80
81 /**
82 * put_pages_list() - release a list of pages
83 * @pages: list of pages threaded on page->lru
84 *
85 * Release a list of pages which are strung together on page.lru. Currently
86 * used by read_cache_pages() and related error recovery code.
87 */
88 void put_pages_list(struct list_head *pages)
89 {
90 while (!list_empty(pages)) {
91 struct page *victim;
92
93 victim = list_entry(pages->prev, struct page, lru);
94 list_del(&victim->lru);
95 page_cache_release(victim);
96 }
97 }
98 EXPORT_SYMBOL(put_pages_list);
99
100 /*
101 * pagevec_move_tail() must be called with IRQ disabled.
102 * Otherwise this may cause nasty races.
103 */
104 static void pagevec_move_tail(struct pagevec *pvec)
105 {
106 int i;
107 int pgmoved = 0;
108 struct zone *zone = NULL;
109
110 for (i = 0; i < pagevec_count(pvec); i++) {
111 struct page *page = pvec->pages[i];
112 struct zone *pagezone = page_zone(page);
113
114 if (pagezone != zone) {
115 if (zone)
116 spin_unlock(&zone->lru_lock);
117 zone = pagezone;
118 spin_lock(&zone->lru_lock);
119 }
120 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
121 int lru = page_is_file_cache(page);
122 list_move_tail(&page->lru, &zone->lru[lru].list);
123 pgmoved++;
124 }
125 }
126 if (zone)
127 spin_unlock(&zone->lru_lock);
128 __count_vm_events(PGROTATED, pgmoved);
129 release_pages(pvec->pages, pvec->nr, pvec->cold);
130 pagevec_reinit(pvec);
131 }
132
133 /*
134 * Writeback is about to end against a page which has been marked for immediate
135 * reclaim. If it still appears to be reclaimable, move it to the tail of the
136 * inactive list.
137 */
138 void rotate_reclaimable_page(struct page *page)
139 {
140 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
141 !PageUnevictable(page) && PageLRU(page)) {
142 struct pagevec *pvec;
143 unsigned long flags;
144
145 page_cache_get(page);
146 local_irq_save(flags);
147 pvec = &__get_cpu_var(lru_rotate_pvecs);
148 if (!pagevec_add(pvec, page))
149 pagevec_move_tail(pvec);
150 local_irq_restore(flags);
151 }
152 }
153
154 /*
155 * FIXME: speed this up?
156 */
157 void activate_page(struct page *page)
158 {
159 struct zone *zone = page_zone(page);
160
161 spin_lock_irq(&zone->lru_lock);
162 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
163 int file = page_is_file_cache(page);
164 int lru = LRU_BASE + file;
165 del_page_from_lru_list(zone, page, lru);
166
167 SetPageActive(page);
168 lru += LRU_ACTIVE;
169 add_page_to_lru_list(zone, page, lru);
170 __count_vm_event(PGACTIVATE);
171 mem_cgroup_move_lists(page, lru);
172
173 zone->recent_rotated[!!file]++;
174 zone->recent_scanned[!!file]++;
175 }
176 spin_unlock_irq(&zone->lru_lock);
177 }
178
179 /*
180 * Mark a page as having seen activity.
181 *
182 * inactive,unreferenced -> inactive,referenced
183 * inactive,referenced -> active,unreferenced
184 * active,unreferenced -> active,referenced
185 */
186 void mark_page_accessed(struct page *page)
187 {
188 if (!PageActive(page) && !PageUnevictable(page) &&
189 PageReferenced(page) && PageLRU(page)) {
190 activate_page(page);
191 ClearPageReferenced(page);
192 } else if (!PageReferenced(page)) {
193 SetPageReferenced(page);
194 }
195 }
196
197 EXPORT_SYMBOL(mark_page_accessed);
198
199 void __lru_cache_add(struct page *page, enum lru_list lru)
200 {
201 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
202
203 page_cache_get(page);
204 if (!pagevec_add(pvec, page))
205 ____pagevec_lru_add(pvec, lru);
206 put_cpu_var(lru_add_pvecs);
207 }
208
209 /**
210 * lru_cache_add_lru - add a page to a page list
211 * @page: the page to be added to the LRU.
212 * @lru: the LRU list to which the page is added.
213 */
214 void lru_cache_add_lru(struct page *page, enum lru_list lru)
215 {
216 if (PageActive(page)) {
217 VM_BUG_ON(PageUnevictable(page));
218 ClearPageActive(page);
219 } else if (PageUnevictable(page)) {
220 VM_BUG_ON(PageActive(page));
221 ClearPageUnevictable(page);
222 }
223
224 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
225 __lru_cache_add(page, lru);
226 }
227
228 /**
229 * add_page_to_unevictable_list - add a page to the unevictable list
230 * @page: the page to be added to the unevictable list
231 *
232 * Add page directly to its zone's unevictable list. To avoid races with
233 * tasks that might be making the page evictable, through eg. munlock,
234 * munmap or exit, while it's not on the lru, we want to add the page
235 * while it's locked or otherwise "invisible" to other tasks. This is
236 * difficult to do when using the pagevec cache, so bypass that.
237 */
238 void add_page_to_unevictable_list(struct page *page)
239 {
240 struct zone *zone = page_zone(page);
241
242 spin_lock_irq(&zone->lru_lock);
243 SetPageUnevictable(page);
244 SetPageLRU(page);
245 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
246 spin_unlock_irq(&zone->lru_lock);
247 }
248
249 /**
250 * lru_cache_add_active_or_unevictable
251 * @page: the page to be added to LRU
252 * @vma: vma in which page is mapped for determining reclaimability
253 *
254 * place @page on active or unevictable LRU list, depending on
255 * page_evictable(). Note that if the page is not evictable,
256 * it goes directly back onto it's zone's unevictable list. It does
257 * NOT use a per cpu pagevec.
258 */
259 void lru_cache_add_active_or_unevictable(struct page *page,
260 struct vm_area_struct *vma)
261 {
262 if (page_evictable(page, vma))
263 lru_cache_add_lru(page, LRU_ACTIVE + page_is_file_cache(page));
264 else
265 add_page_to_unevictable_list(page);
266 }
267
268 /*
269 * Drain pages out of the cpu's pagevecs.
270 * Either "cpu" is the current CPU, and preemption has already been
271 * disabled; or "cpu" is being hot-unplugged, and is already dead.
272 */
273 static void drain_cpu_pagevecs(int cpu)
274 {
275 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
276 struct pagevec *pvec;
277 int lru;
278
279 for_each_lru(lru) {
280 pvec = &pvecs[lru - LRU_BASE];
281 if (pagevec_count(pvec))
282 ____pagevec_lru_add(pvec, lru);
283 }
284
285 pvec = &per_cpu(lru_rotate_pvecs, cpu);
286 if (pagevec_count(pvec)) {
287 unsigned long flags;
288
289 /* No harm done if a racing interrupt already did this */
290 local_irq_save(flags);
291 pagevec_move_tail(pvec);
292 local_irq_restore(flags);
293 }
294 }
295
296 void lru_add_drain(void)
297 {
298 drain_cpu_pagevecs(get_cpu());
299 put_cpu();
300 }
301
302 static void lru_add_drain_per_cpu(struct work_struct *dummy)
303 {
304 lru_add_drain();
305 }
306
307 /*
308 * Returns 0 for success
309 */
310 int lru_add_drain_all(void)
311 {
312 return schedule_on_each_cpu(lru_add_drain_per_cpu);
313 }
314
315 /*
316 * Batched page_cache_release(). Decrement the reference count on all the
317 * passed pages. If it fell to zero then remove the page from the LRU and
318 * free it.
319 *
320 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
321 * for the remainder of the operation.
322 *
323 * The locking in this function is against shrink_inactive_list(): we recheck
324 * the page count inside the lock to see whether shrink_inactive_list()
325 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
326 * will free it.
327 */
328 void release_pages(struct page **pages, int nr, int cold)
329 {
330 int i;
331 struct pagevec pages_to_free;
332 struct zone *zone = NULL;
333 unsigned long uninitialized_var(flags);
334
335 pagevec_init(&pages_to_free, cold);
336 for (i = 0; i < nr; i++) {
337 struct page *page = pages[i];
338
339 if (unlikely(PageCompound(page))) {
340 if (zone) {
341 spin_unlock_irqrestore(&zone->lru_lock, flags);
342 zone = NULL;
343 }
344 put_compound_page(page);
345 continue;
346 }
347
348 if (!put_page_testzero(page))
349 continue;
350
351 if (PageLRU(page)) {
352 struct zone *pagezone = page_zone(page);
353
354 if (pagezone != zone) {
355 if (zone)
356 spin_unlock_irqrestore(&zone->lru_lock,
357 flags);
358 zone = pagezone;
359 spin_lock_irqsave(&zone->lru_lock, flags);
360 }
361 VM_BUG_ON(!PageLRU(page));
362 __ClearPageLRU(page);
363 del_page_from_lru(zone, page);
364 }
365
366 if (!pagevec_add(&pages_to_free, page)) {
367 if (zone) {
368 spin_unlock_irqrestore(&zone->lru_lock, flags);
369 zone = NULL;
370 }
371 __pagevec_free(&pages_to_free);
372 pagevec_reinit(&pages_to_free);
373 }
374 }
375 if (zone)
376 spin_unlock_irqrestore(&zone->lru_lock, flags);
377
378 pagevec_free(&pages_to_free);
379 }
380
381 /*
382 * The pages which we're about to release may be in the deferred lru-addition
383 * queues. That would prevent them from really being freed right now. That's
384 * OK from a correctness point of view but is inefficient - those pages may be
385 * cache-warm and we want to give them back to the page allocator ASAP.
386 *
387 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
388 * and __pagevec_lru_add_active() call release_pages() directly to avoid
389 * mutual recursion.
390 */
391 void __pagevec_release(struct pagevec *pvec)
392 {
393 lru_add_drain();
394 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
395 pagevec_reinit(pvec);
396 }
397
398 EXPORT_SYMBOL(__pagevec_release);
399
400 /*
401 * Add the passed pages to the LRU, then drop the caller's refcount
402 * on them. Reinitialises the caller's pagevec.
403 */
404 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
405 {
406 int i;
407 struct zone *zone = NULL;
408 VM_BUG_ON(is_unevictable_lru(lru));
409
410 for (i = 0; i < pagevec_count(pvec); i++) {
411 struct page *page = pvec->pages[i];
412 struct zone *pagezone = page_zone(page);
413 int file;
414
415 if (pagezone != zone) {
416 if (zone)
417 spin_unlock_irq(&zone->lru_lock);
418 zone = pagezone;
419 spin_lock_irq(&zone->lru_lock);
420 }
421 VM_BUG_ON(PageActive(page));
422 VM_BUG_ON(PageUnevictable(page));
423 VM_BUG_ON(PageLRU(page));
424 SetPageLRU(page);
425 file = is_file_lru(lru);
426 zone->recent_scanned[file]++;
427 if (is_active_lru(lru)) {
428 SetPageActive(page);
429 zone->recent_rotated[file]++;
430 }
431 add_page_to_lru_list(zone, page, lru);
432 }
433 if (zone)
434 spin_unlock_irq(&zone->lru_lock);
435 release_pages(pvec->pages, pvec->nr, pvec->cold);
436 pagevec_reinit(pvec);
437 }
438
439 EXPORT_SYMBOL(____pagevec_lru_add);
440
441 /*
442 * Try to drop buffers from the pages in a pagevec
443 */
444 void pagevec_strip(struct pagevec *pvec)
445 {
446 int i;
447
448 for (i = 0; i < pagevec_count(pvec); i++) {
449 struct page *page = pvec->pages[i];
450
451 if (PagePrivate(page) && trylock_page(page)) {
452 if (PagePrivate(page))
453 try_to_release_page(page, 0);
454 unlock_page(page);
455 }
456 }
457 }
458
459 /**
460 * pagevec_swap_free - try to free swap space from the pages in a pagevec
461 * @pvec: pagevec with swapcache pages to free the swap space of
462 *
463 * The caller needs to hold an extra reference to each page and
464 * not hold the page lock on the pages. This function uses a
465 * trylock on the page lock so it may not always free the swap
466 * space associated with a page.
467 */
468 void pagevec_swap_free(struct pagevec *pvec)
469 {
470 int i;
471
472 for (i = 0; i < pagevec_count(pvec); i++) {
473 struct page *page = pvec->pages[i];
474
475 if (PageSwapCache(page) && trylock_page(page)) {
476 if (PageSwapCache(page))
477 remove_exclusive_swap_page_ref(page);
478 unlock_page(page);
479 }
480 }
481 }
482
483 /**
484 * pagevec_lookup - gang pagecache lookup
485 * @pvec: Where the resulting pages are placed
486 * @mapping: The address_space to search
487 * @start: The starting page index
488 * @nr_pages: The maximum number of pages
489 *
490 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
491 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
492 * reference against the pages in @pvec.
493 *
494 * The search returns a group of mapping-contiguous pages with ascending
495 * indexes. There may be holes in the indices due to not-present pages.
496 *
497 * pagevec_lookup() returns the number of pages which were found.
498 */
499 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
500 pgoff_t start, unsigned nr_pages)
501 {
502 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
503 return pagevec_count(pvec);
504 }
505
506 EXPORT_SYMBOL(pagevec_lookup);
507
508 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
509 pgoff_t *index, int tag, unsigned nr_pages)
510 {
511 pvec->nr = find_get_pages_tag(mapping, index, tag,
512 nr_pages, pvec->pages);
513 return pagevec_count(pvec);
514 }
515
516 EXPORT_SYMBOL(pagevec_lookup_tag);
517
518 #ifdef CONFIG_SMP
519 /*
520 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
521 * CPUs
522 */
523 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
524
525 static DEFINE_PER_CPU(long, committed_space);
526
527 void vm_acct_memory(long pages)
528 {
529 long *local;
530
531 preempt_disable();
532 local = &__get_cpu_var(committed_space);
533 *local += pages;
534 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
535 atomic_long_add(*local, &vm_committed_space);
536 *local = 0;
537 }
538 preempt_enable();
539 }
540
541 #ifdef CONFIG_HOTPLUG_CPU
542
543 /* Drop the CPU's cached committed space back into the central pool. */
544 static int cpu_swap_callback(struct notifier_block *nfb,
545 unsigned long action,
546 void *hcpu)
547 {
548 long *committed;
549
550 committed = &per_cpu(committed_space, (long)hcpu);
551 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
552 atomic_long_add(*committed, &vm_committed_space);
553 *committed = 0;
554 drain_cpu_pagevecs((long)hcpu);
555 }
556 return NOTIFY_OK;
557 }
558 #endif /* CONFIG_HOTPLUG_CPU */
559 #endif /* CONFIG_SMP */
560
561 /*
562 * Perform any setup for the swap system
563 */
564 void __init swap_setup(void)
565 {
566 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
567
568 #ifdef CONFIG_SWAP
569 bdi_init(swapper_space.backing_dev_info);
570 #endif
571
572 /* Use a smaller cluster for small-memory machines */
573 if (megs < 16)
574 page_cluster = 2;
575 else
576 page_cluster = 3;
577 /*
578 * Right now other parts of the system means that we
579 * _really_ don't want to cluster much more
580 */
581 #ifdef CONFIG_HOTPLUG_CPU
582 hotcpu_notifier(cpu_swap_callback, 0);
583 #endif
584 }
This page took 0.04133 seconds and 6 git commands to generate.