mm: simplify code of swap.c
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42
43 /*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47 static void __page_cache_release(struct page *page)
48 {
49 if (PageLRU(page)) {
50 unsigned long flags;
51 struct zone *zone = page_zone(page);
52
53 spin_lock_irqsave(&zone->lru_lock, flags);
54 VM_BUG_ON(!PageLRU(page));
55 __ClearPageLRU(page);
56 del_page_from_lru(zone, page);
57 spin_unlock_irqrestore(&zone->lru_lock, flags);
58 }
59 }
60
61 static void __put_single_page(struct page *page)
62 {
63 __page_cache_release(page);
64 free_hot_cold_page(page, 0);
65 }
66
67 static void __put_compound_page(struct page *page)
68 {
69 compound_page_dtor *dtor;
70
71 __page_cache_release(page);
72 dtor = get_compound_page_dtor(page);
73 (*dtor)(page);
74 }
75
76 static void put_compound_page(struct page *page)
77 {
78 if (unlikely(PageTail(page))) {
79 /* __split_huge_page_refcount can run under us */
80 struct page *page_head = page->first_page;
81 smp_rmb();
82 /*
83 * If PageTail is still set after smp_rmb() we can be sure
84 * that the page->first_page we read wasn't a dangling pointer.
85 * See __split_huge_page_refcount() smp_wmb().
86 */
87 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
88 unsigned long flags;
89 /*
90 * Verify that our page_head wasn't converted
91 * to a a regular page before we got a
92 * reference on it.
93 */
94 if (unlikely(!PageHead(page_head))) {
95 /* PageHead is cleared after PageTail */
96 smp_rmb();
97 VM_BUG_ON(PageTail(page));
98 goto out_put_head;
99 }
100 /*
101 * Only run compound_lock on a valid PageHead,
102 * after having it pinned with
103 * get_page_unless_zero() above.
104 */
105 smp_mb();
106 /* page_head wasn't a dangling pointer */
107 flags = compound_lock_irqsave(page_head);
108 if (unlikely(!PageTail(page))) {
109 /* __split_huge_page_refcount run before us */
110 compound_unlock_irqrestore(page_head, flags);
111 VM_BUG_ON(PageHead(page_head));
112 out_put_head:
113 if (put_page_testzero(page_head))
114 __put_single_page(page_head);
115 out_put_single:
116 if (put_page_testzero(page))
117 __put_single_page(page);
118 return;
119 }
120 VM_BUG_ON(page_head != page->first_page);
121 /*
122 * We can release the refcount taken by
123 * get_page_unless_zero now that
124 * split_huge_page_refcount is blocked on the
125 * compound_lock.
126 */
127 if (put_page_testzero(page_head))
128 VM_BUG_ON(1);
129 /* __split_huge_page_refcount will wait now */
130 VM_BUG_ON(atomic_read(&page->_count) <= 0);
131 atomic_dec(&page->_count);
132 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
133 compound_unlock_irqrestore(page_head, flags);
134 if (put_page_testzero(page_head)) {
135 if (PageHead(page_head))
136 __put_compound_page(page_head);
137 else
138 __put_single_page(page_head);
139 }
140 } else {
141 /* page_head is a dangling pointer */
142 VM_BUG_ON(PageTail(page));
143 goto out_put_single;
144 }
145 } else if (put_page_testzero(page)) {
146 if (PageHead(page))
147 __put_compound_page(page);
148 else
149 __put_single_page(page);
150 }
151 }
152
153 void put_page(struct page *page)
154 {
155 if (unlikely(PageCompound(page)))
156 put_compound_page(page);
157 else if (put_page_testzero(page))
158 __put_single_page(page);
159 }
160 EXPORT_SYMBOL(put_page);
161
162 /**
163 * put_pages_list() - release a list of pages
164 * @pages: list of pages threaded on page->lru
165 *
166 * Release a list of pages which are strung together on page.lru. Currently
167 * used by read_cache_pages() and related error recovery code.
168 */
169 void put_pages_list(struct list_head *pages)
170 {
171 while (!list_empty(pages)) {
172 struct page *victim;
173
174 victim = list_entry(pages->prev, struct page, lru);
175 list_del(&victim->lru);
176 page_cache_release(victim);
177 }
178 }
179 EXPORT_SYMBOL(put_pages_list);
180
181 static void pagevec_lru_move_fn(struct pagevec *pvec,
182 void (*move_fn)(struct page *page, void *arg),
183 void *arg)
184 {
185 int i;
186 struct zone *zone = NULL;
187 unsigned long flags = 0;
188
189 for (i = 0; i < pagevec_count(pvec); i++) {
190 struct page *page = pvec->pages[i];
191 struct zone *pagezone = page_zone(page);
192
193 if (pagezone != zone) {
194 if (zone)
195 spin_unlock_irqrestore(&zone->lru_lock, flags);
196 zone = pagezone;
197 spin_lock_irqsave(&zone->lru_lock, flags);
198 }
199
200 (*move_fn)(page, arg);
201 }
202 if (zone)
203 spin_unlock_irqrestore(&zone->lru_lock, flags);
204 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
205 pagevec_reinit(pvec);
206 }
207
208 static void pagevec_move_tail_fn(struct page *page, void *arg)
209 {
210 int *pgmoved = arg;
211 struct zone *zone = page_zone(page);
212
213 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
214 int lru = page_lru_base_type(page);
215 list_move_tail(&page->lru, &zone->lru[lru].list);
216 (*pgmoved)++;
217 }
218 }
219
220 /*
221 * pagevec_move_tail() must be called with IRQ disabled.
222 * Otherwise this may cause nasty races.
223 */
224 static void pagevec_move_tail(struct pagevec *pvec)
225 {
226 int pgmoved = 0;
227
228 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
229 __count_vm_events(PGROTATED, pgmoved);
230 }
231
232 /*
233 * Writeback is about to end against a page which has been marked for immediate
234 * reclaim. If it still appears to be reclaimable, move it to the tail of the
235 * inactive list.
236 */
237 void rotate_reclaimable_page(struct page *page)
238 {
239 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
240 !PageUnevictable(page) && PageLRU(page)) {
241 struct pagevec *pvec;
242 unsigned long flags;
243
244 page_cache_get(page);
245 local_irq_save(flags);
246 pvec = &__get_cpu_var(lru_rotate_pvecs);
247 if (!pagevec_add(pvec, page))
248 pagevec_move_tail(pvec);
249 local_irq_restore(flags);
250 }
251 }
252
253 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
254 int file, int rotated)
255 {
256 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
257 struct zone_reclaim_stat *memcg_reclaim_stat;
258
259 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
260
261 reclaim_stat->recent_scanned[file]++;
262 if (rotated)
263 reclaim_stat->recent_rotated[file]++;
264
265 if (!memcg_reclaim_stat)
266 return;
267
268 memcg_reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 memcg_reclaim_stat->recent_rotated[file]++;
271 }
272
273 /*
274 * FIXME: speed this up?
275 */
276 void activate_page(struct page *page)
277 {
278 struct zone *zone = page_zone(page);
279
280 spin_lock_irq(&zone->lru_lock);
281 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
282 int file = page_is_file_cache(page);
283 int lru = page_lru_base_type(page);
284 del_page_from_lru_list(zone, page, lru);
285
286 SetPageActive(page);
287 lru += LRU_ACTIVE;
288 add_page_to_lru_list(zone, page, lru);
289 __count_vm_event(PGACTIVATE);
290
291 update_page_reclaim_stat(zone, page, file, 1);
292 }
293 spin_unlock_irq(&zone->lru_lock);
294 }
295
296 /*
297 * Mark a page as having seen activity.
298 *
299 * inactive,unreferenced -> inactive,referenced
300 * inactive,referenced -> active,unreferenced
301 * active,unreferenced -> active,referenced
302 */
303 void mark_page_accessed(struct page *page)
304 {
305 if (!PageActive(page) && !PageUnevictable(page) &&
306 PageReferenced(page) && PageLRU(page)) {
307 activate_page(page);
308 ClearPageReferenced(page);
309 } else if (!PageReferenced(page)) {
310 SetPageReferenced(page);
311 }
312 }
313
314 EXPORT_SYMBOL(mark_page_accessed);
315
316 void __lru_cache_add(struct page *page, enum lru_list lru)
317 {
318 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
319
320 page_cache_get(page);
321 if (!pagevec_add(pvec, page))
322 ____pagevec_lru_add(pvec, lru);
323 put_cpu_var(lru_add_pvecs);
324 }
325 EXPORT_SYMBOL(__lru_cache_add);
326
327 /**
328 * lru_cache_add_lru - add a page to a page list
329 * @page: the page to be added to the LRU.
330 * @lru: the LRU list to which the page is added.
331 */
332 void lru_cache_add_lru(struct page *page, enum lru_list lru)
333 {
334 if (PageActive(page)) {
335 VM_BUG_ON(PageUnevictable(page));
336 ClearPageActive(page);
337 } else if (PageUnevictable(page)) {
338 VM_BUG_ON(PageActive(page));
339 ClearPageUnevictable(page);
340 }
341
342 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
343 __lru_cache_add(page, lru);
344 }
345
346 /**
347 * add_page_to_unevictable_list - add a page to the unevictable list
348 * @page: the page to be added to the unevictable list
349 *
350 * Add page directly to its zone's unevictable list. To avoid races with
351 * tasks that might be making the page evictable, through eg. munlock,
352 * munmap or exit, while it's not on the lru, we want to add the page
353 * while it's locked or otherwise "invisible" to other tasks. This is
354 * difficult to do when using the pagevec cache, so bypass that.
355 */
356 void add_page_to_unevictable_list(struct page *page)
357 {
358 struct zone *zone = page_zone(page);
359
360 spin_lock_irq(&zone->lru_lock);
361 SetPageUnevictable(page);
362 SetPageLRU(page);
363 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
364 spin_unlock_irq(&zone->lru_lock);
365 }
366
367 /*
368 * Drain pages out of the cpu's pagevecs.
369 * Either "cpu" is the current CPU, and preemption has already been
370 * disabled; or "cpu" is being hot-unplugged, and is already dead.
371 */
372 static void drain_cpu_pagevecs(int cpu)
373 {
374 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
375 struct pagevec *pvec;
376 int lru;
377
378 for_each_lru(lru) {
379 pvec = &pvecs[lru - LRU_BASE];
380 if (pagevec_count(pvec))
381 ____pagevec_lru_add(pvec, lru);
382 }
383
384 pvec = &per_cpu(lru_rotate_pvecs, cpu);
385 if (pagevec_count(pvec)) {
386 unsigned long flags;
387
388 /* No harm done if a racing interrupt already did this */
389 local_irq_save(flags);
390 pagevec_move_tail(pvec);
391 local_irq_restore(flags);
392 }
393 }
394
395 void lru_add_drain(void)
396 {
397 drain_cpu_pagevecs(get_cpu());
398 put_cpu();
399 }
400
401 static void lru_add_drain_per_cpu(struct work_struct *dummy)
402 {
403 lru_add_drain();
404 }
405
406 /*
407 * Returns 0 for success
408 */
409 int lru_add_drain_all(void)
410 {
411 return schedule_on_each_cpu(lru_add_drain_per_cpu);
412 }
413
414 /*
415 * Batched page_cache_release(). Decrement the reference count on all the
416 * passed pages. If it fell to zero then remove the page from the LRU and
417 * free it.
418 *
419 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
420 * for the remainder of the operation.
421 *
422 * The locking in this function is against shrink_inactive_list(): we recheck
423 * the page count inside the lock to see whether shrink_inactive_list()
424 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
425 * will free it.
426 */
427 void release_pages(struct page **pages, int nr, int cold)
428 {
429 int i;
430 struct pagevec pages_to_free;
431 struct zone *zone = NULL;
432 unsigned long uninitialized_var(flags);
433
434 pagevec_init(&pages_to_free, cold);
435 for (i = 0; i < nr; i++) {
436 struct page *page = pages[i];
437
438 if (unlikely(PageCompound(page))) {
439 if (zone) {
440 spin_unlock_irqrestore(&zone->lru_lock, flags);
441 zone = NULL;
442 }
443 put_compound_page(page);
444 continue;
445 }
446
447 if (!put_page_testzero(page))
448 continue;
449
450 if (PageLRU(page)) {
451 struct zone *pagezone = page_zone(page);
452
453 if (pagezone != zone) {
454 if (zone)
455 spin_unlock_irqrestore(&zone->lru_lock,
456 flags);
457 zone = pagezone;
458 spin_lock_irqsave(&zone->lru_lock, flags);
459 }
460 VM_BUG_ON(!PageLRU(page));
461 __ClearPageLRU(page);
462 del_page_from_lru(zone, page);
463 }
464
465 if (!pagevec_add(&pages_to_free, page)) {
466 if (zone) {
467 spin_unlock_irqrestore(&zone->lru_lock, flags);
468 zone = NULL;
469 }
470 __pagevec_free(&pages_to_free);
471 pagevec_reinit(&pages_to_free);
472 }
473 }
474 if (zone)
475 spin_unlock_irqrestore(&zone->lru_lock, flags);
476
477 pagevec_free(&pages_to_free);
478 }
479 EXPORT_SYMBOL(release_pages);
480
481 /*
482 * The pages which we're about to release may be in the deferred lru-addition
483 * queues. That would prevent them from really being freed right now. That's
484 * OK from a correctness point of view but is inefficient - those pages may be
485 * cache-warm and we want to give them back to the page allocator ASAP.
486 *
487 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
488 * and __pagevec_lru_add_active() call release_pages() directly to avoid
489 * mutual recursion.
490 */
491 void __pagevec_release(struct pagevec *pvec)
492 {
493 lru_add_drain();
494 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
495 pagevec_reinit(pvec);
496 }
497
498 EXPORT_SYMBOL(__pagevec_release);
499
500 /* used by __split_huge_page_refcount() */
501 void lru_add_page_tail(struct zone* zone,
502 struct page *page, struct page *page_tail)
503 {
504 int active;
505 enum lru_list lru;
506 const int file = 0;
507 struct list_head *head;
508
509 VM_BUG_ON(!PageHead(page));
510 VM_BUG_ON(PageCompound(page_tail));
511 VM_BUG_ON(PageLRU(page_tail));
512 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
513
514 SetPageLRU(page_tail);
515
516 if (page_evictable(page_tail, NULL)) {
517 if (PageActive(page)) {
518 SetPageActive(page_tail);
519 active = 1;
520 lru = LRU_ACTIVE_ANON;
521 } else {
522 active = 0;
523 lru = LRU_INACTIVE_ANON;
524 }
525 update_page_reclaim_stat(zone, page_tail, file, active);
526 if (likely(PageLRU(page)))
527 head = page->lru.prev;
528 else
529 head = &zone->lru[lru].list;
530 __add_page_to_lru_list(zone, page_tail, lru, head);
531 } else {
532 SetPageUnevictable(page_tail);
533 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
534 }
535 }
536
537 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
538 {
539 enum lru_list lru = (enum lru_list)arg;
540 struct zone *zone = page_zone(page);
541 int file = is_file_lru(lru);
542 int active = is_active_lru(lru);
543
544 VM_BUG_ON(PageActive(page));
545 VM_BUG_ON(PageUnevictable(page));
546 VM_BUG_ON(PageLRU(page));
547
548 SetPageLRU(page);
549 if (active)
550 SetPageActive(page);
551 update_page_reclaim_stat(zone, page, file, active);
552 add_page_to_lru_list(zone, page, lru);
553 }
554
555 /*
556 * Add the passed pages to the LRU, then drop the caller's refcount
557 * on them. Reinitialises the caller's pagevec.
558 */
559 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
560 {
561 VM_BUG_ON(is_unevictable_lru(lru));
562
563 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
564 }
565
566 EXPORT_SYMBOL(____pagevec_lru_add);
567
568 /*
569 * Try to drop buffers from the pages in a pagevec
570 */
571 void pagevec_strip(struct pagevec *pvec)
572 {
573 int i;
574
575 for (i = 0; i < pagevec_count(pvec); i++) {
576 struct page *page = pvec->pages[i];
577
578 if (page_has_private(page) && trylock_page(page)) {
579 if (page_has_private(page))
580 try_to_release_page(page, 0);
581 unlock_page(page);
582 }
583 }
584 }
585
586 /**
587 * pagevec_lookup - gang pagecache lookup
588 * @pvec: Where the resulting pages are placed
589 * @mapping: The address_space to search
590 * @start: The starting page index
591 * @nr_pages: The maximum number of pages
592 *
593 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
594 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
595 * reference against the pages in @pvec.
596 *
597 * The search returns a group of mapping-contiguous pages with ascending
598 * indexes. There may be holes in the indices due to not-present pages.
599 *
600 * pagevec_lookup() returns the number of pages which were found.
601 */
602 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
603 pgoff_t start, unsigned nr_pages)
604 {
605 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
606 return pagevec_count(pvec);
607 }
608
609 EXPORT_SYMBOL(pagevec_lookup);
610
611 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
612 pgoff_t *index, int tag, unsigned nr_pages)
613 {
614 pvec->nr = find_get_pages_tag(mapping, index, tag,
615 nr_pages, pvec->pages);
616 return pagevec_count(pvec);
617 }
618
619 EXPORT_SYMBOL(pagevec_lookup_tag);
620
621 /*
622 * Perform any setup for the swap system
623 */
624 void __init swap_setup(void)
625 {
626 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
627
628 #ifdef CONFIG_SWAP
629 bdi_init(swapper_space.backing_dev_info);
630 #endif
631
632 /* Use a smaller cluster for small-memory machines */
633 if (megs < 16)
634 page_cluster = 2;
635 else
636 page_cluster = 3;
637 /*
638 * Right now other parts of the system means that we
639 * _really_ don't want to cluster much more
640 */
641 }
This page took 0.042857 seconds and 6 git commands to generate.