Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[deliverable/linux.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 long nr_swap_pages;
51 long total_swap_pages;
52 static int least_priority;
53
54 static const char Bad_file[] = "Bad swap file entry ";
55 static const char Unused_file[] = "Unused swap file entry ";
56 static const char Bad_offset[] = "Bad swap offset entry ";
57 static const char Unused_offset[] = "Unused swap offset entry ";
58
59 struct swap_list_t swap_list = {-1, -1};
60
61 struct swap_info_struct *swap_info[MAX_SWAPFILES];
62
63 static DEFINE_MUTEX(swapon_mutex);
64
65 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
66 /* Activity counter to indicate that a swapon or swapoff has occurred */
67 static atomic_t proc_poll_event = ATOMIC_INIT(0);
68
69 static inline unsigned char swap_count(unsigned char ent)
70 {
71 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
72 }
73
74 /* returns 1 if swap entry is freed */
75 static int
76 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
77 {
78 swp_entry_t entry = swp_entry(si->type, offset);
79 struct page *page;
80 int ret = 0;
81
82 page = find_get_page(&swapper_space, entry.val);
83 if (!page)
84 return 0;
85 /*
86 * This function is called from scan_swap_map() and it's called
87 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
88 * We have to use trylock for avoiding deadlock. This is a special
89 * case and you should use try_to_free_swap() with explicit lock_page()
90 * in usual operations.
91 */
92 if (trylock_page(page)) {
93 ret = try_to_free_swap(page);
94 unlock_page(page);
95 }
96 page_cache_release(page);
97 return ret;
98 }
99
100 /*
101 * swapon tell device that all the old swap contents can be discarded,
102 * to allow the swap device to optimize its wear-levelling.
103 */
104 static int discard_swap(struct swap_info_struct *si)
105 {
106 struct swap_extent *se;
107 sector_t start_block;
108 sector_t nr_blocks;
109 int err = 0;
110
111 /* Do not discard the swap header page! */
112 se = &si->first_swap_extent;
113 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
114 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
115 if (nr_blocks) {
116 err = blkdev_issue_discard(si->bdev, start_block,
117 nr_blocks, GFP_KERNEL, 0);
118 if (err)
119 return err;
120 cond_resched();
121 }
122
123 list_for_each_entry(se, &si->first_swap_extent.list, list) {
124 start_block = se->start_block << (PAGE_SHIFT - 9);
125 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
126
127 err = blkdev_issue_discard(si->bdev, start_block,
128 nr_blocks, GFP_KERNEL, 0);
129 if (err)
130 break;
131
132 cond_resched();
133 }
134 return err; /* That will often be -EOPNOTSUPP */
135 }
136
137 /*
138 * swap allocation tell device that a cluster of swap can now be discarded,
139 * to allow the swap device to optimize its wear-levelling.
140 */
141 static void discard_swap_cluster(struct swap_info_struct *si,
142 pgoff_t start_page, pgoff_t nr_pages)
143 {
144 struct swap_extent *se = si->curr_swap_extent;
145 int found_extent = 0;
146
147 while (nr_pages) {
148 struct list_head *lh;
149
150 if (se->start_page <= start_page &&
151 start_page < se->start_page + se->nr_pages) {
152 pgoff_t offset = start_page - se->start_page;
153 sector_t start_block = se->start_block + offset;
154 sector_t nr_blocks = se->nr_pages - offset;
155
156 if (nr_blocks > nr_pages)
157 nr_blocks = nr_pages;
158 start_page += nr_blocks;
159 nr_pages -= nr_blocks;
160
161 if (!found_extent++)
162 si->curr_swap_extent = se;
163
164 start_block <<= PAGE_SHIFT - 9;
165 nr_blocks <<= PAGE_SHIFT - 9;
166 if (blkdev_issue_discard(si->bdev, start_block,
167 nr_blocks, GFP_NOIO, 0))
168 break;
169 }
170
171 lh = se->list.next;
172 se = list_entry(lh, struct swap_extent, list);
173 }
174 }
175
176 static int wait_for_discard(void *word)
177 {
178 schedule();
179 return 0;
180 }
181
182 #define SWAPFILE_CLUSTER 256
183 #define LATENCY_LIMIT 256
184
185 static unsigned long scan_swap_map(struct swap_info_struct *si,
186 unsigned char usage)
187 {
188 unsigned long offset;
189 unsigned long scan_base;
190 unsigned long last_in_cluster = 0;
191 int latency_ration = LATENCY_LIMIT;
192 int found_free_cluster = 0;
193
194 /*
195 * We try to cluster swap pages by allocating them sequentially
196 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
197 * way, however, we resort to first-free allocation, starting
198 * a new cluster. This prevents us from scattering swap pages
199 * all over the entire swap partition, so that we reduce
200 * overall disk seek times between swap pages. -- sct
201 * But we do now try to find an empty cluster. -Andrea
202 * And we let swap pages go all over an SSD partition. Hugh
203 */
204
205 si->flags += SWP_SCANNING;
206 scan_base = offset = si->cluster_next;
207
208 if (unlikely(!si->cluster_nr--)) {
209 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
210 si->cluster_nr = SWAPFILE_CLUSTER - 1;
211 goto checks;
212 }
213 if (si->flags & SWP_DISCARDABLE) {
214 /*
215 * Start range check on racing allocations, in case
216 * they overlap the cluster we eventually decide on
217 * (we scan without swap_lock to allow preemption).
218 * It's hardly conceivable that cluster_nr could be
219 * wrapped during our scan, but don't depend on it.
220 */
221 if (si->lowest_alloc)
222 goto checks;
223 si->lowest_alloc = si->max;
224 si->highest_alloc = 0;
225 }
226 spin_unlock(&swap_lock);
227
228 /*
229 * If seek is expensive, start searching for new cluster from
230 * start of partition, to minimize the span of allocated swap.
231 * But if seek is cheap, search from our current position, so
232 * that swap is allocated from all over the partition: if the
233 * Flash Translation Layer only remaps within limited zones,
234 * we don't want to wear out the first zone too quickly.
235 */
236 if (!(si->flags & SWP_SOLIDSTATE))
237 scan_base = offset = si->lowest_bit;
238 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
239
240 /* Locate the first empty (unaligned) cluster */
241 for (; last_in_cluster <= si->highest_bit; offset++) {
242 if (si->swap_map[offset])
243 last_in_cluster = offset + SWAPFILE_CLUSTER;
244 else if (offset == last_in_cluster) {
245 spin_lock(&swap_lock);
246 offset -= SWAPFILE_CLUSTER - 1;
247 si->cluster_next = offset;
248 si->cluster_nr = SWAPFILE_CLUSTER - 1;
249 found_free_cluster = 1;
250 goto checks;
251 }
252 if (unlikely(--latency_ration < 0)) {
253 cond_resched();
254 latency_ration = LATENCY_LIMIT;
255 }
256 }
257
258 offset = si->lowest_bit;
259 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
260
261 /* Locate the first empty (unaligned) cluster */
262 for (; last_in_cluster < scan_base; offset++) {
263 if (si->swap_map[offset])
264 last_in_cluster = offset + SWAPFILE_CLUSTER;
265 else if (offset == last_in_cluster) {
266 spin_lock(&swap_lock);
267 offset -= SWAPFILE_CLUSTER - 1;
268 si->cluster_next = offset;
269 si->cluster_nr = SWAPFILE_CLUSTER - 1;
270 found_free_cluster = 1;
271 goto checks;
272 }
273 if (unlikely(--latency_ration < 0)) {
274 cond_resched();
275 latency_ration = LATENCY_LIMIT;
276 }
277 }
278
279 offset = scan_base;
280 spin_lock(&swap_lock);
281 si->cluster_nr = SWAPFILE_CLUSTER - 1;
282 si->lowest_alloc = 0;
283 }
284
285 checks:
286 if (!(si->flags & SWP_WRITEOK))
287 goto no_page;
288 if (!si->highest_bit)
289 goto no_page;
290 if (offset > si->highest_bit)
291 scan_base = offset = si->lowest_bit;
292
293 /* reuse swap entry of cache-only swap if not busy. */
294 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
295 int swap_was_freed;
296 spin_unlock(&swap_lock);
297 swap_was_freed = __try_to_reclaim_swap(si, offset);
298 spin_lock(&swap_lock);
299 /* entry was freed successfully, try to use this again */
300 if (swap_was_freed)
301 goto checks;
302 goto scan; /* check next one */
303 }
304
305 if (si->swap_map[offset])
306 goto scan;
307
308 if (offset == si->lowest_bit)
309 si->lowest_bit++;
310 if (offset == si->highest_bit)
311 si->highest_bit--;
312 si->inuse_pages++;
313 if (si->inuse_pages == si->pages) {
314 si->lowest_bit = si->max;
315 si->highest_bit = 0;
316 }
317 si->swap_map[offset] = usage;
318 si->cluster_next = offset + 1;
319 si->flags -= SWP_SCANNING;
320
321 if (si->lowest_alloc) {
322 /*
323 * Only set when SWP_DISCARDABLE, and there's a scan
324 * for a free cluster in progress or just completed.
325 */
326 if (found_free_cluster) {
327 /*
328 * To optimize wear-levelling, discard the
329 * old data of the cluster, taking care not to
330 * discard any of its pages that have already
331 * been allocated by racing tasks (offset has
332 * already stepped over any at the beginning).
333 */
334 if (offset < si->highest_alloc &&
335 si->lowest_alloc <= last_in_cluster)
336 last_in_cluster = si->lowest_alloc - 1;
337 si->flags |= SWP_DISCARDING;
338 spin_unlock(&swap_lock);
339
340 if (offset < last_in_cluster)
341 discard_swap_cluster(si, offset,
342 last_in_cluster - offset + 1);
343
344 spin_lock(&swap_lock);
345 si->lowest_alloc = 0;
346 si->flags &= ~SWP_DISCARDING;
347
348 smp_mb(); /* wake_up_bit advises this */
349 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
350
351 } else if (si->flags & SWP_DISCARDING) {
352 /*
353 * Delay using pages allocated by racing tasks
354 * until the whole discard has been issued. We
355 * could defer that delay until swap_writepage,
356 * but it's easier to keep this self-contained.
357 */
358 spin_unlock(&swap_lock);
359 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
360 wait_for_discard, TASK_UNINTERRUPTIBLE);
361 spin_lock(&swap_lock);
362 } else {
363 /*
364 * Note pages allocated by racing tasks while
365 * scan for a free cluster is in progress, so
366 * that its final discard can exclude them.
367 */
368 if (offset < si->lowest_alloc)
369 si->lowest_alloc = offset;
370 if (offset > si->highest_alloc)
371 si->highest_alloc = offset;
372 }
373 }
374 return offset;
375
376 scan:
377 spin_unlock(&swap_lock);
378 while (++offset <= si->highest_bit) {
379 if (!si->swap_map[offset]) {
380 spin_lock(&swap_lock);
381 goto checks;
382 }
383 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
384 spin_lock(&swap_lock);
385 goto checks;
386 }
387 if (unlikely(--latency_ration < 0)) {
388 cond_resched();
389 latency_ration = LATENCY_LIMIT;
390 }
391 }
392 offset = si->lowest_bit;
393 while (++offset < scan_base) {
394 if (!si->swap_map[offset]) {
395 spin_lock(&swap_lock);
396 goto checks;
397 }
398 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
399 spin_lock(&swap_lock);
400 goto checks;
401 }
402 if (unlikely(--latency_ration < 0)) {
403 cond_resched();
404 latency_ration = LATENCY_LIMIT;
405 }
406 }
407 spin_lock(&swap_lock);
408
409 no_page:
410 si->flags -= SWP_SCANNING;
411 return 0;
412 }
413
414 swp_entry_t get_swap_page(void)
415 {
416 struct swap_info_struct *si;
417 pgoff_t offset;
418 int type, next;
419 int wrapped = 0;
420
421 spin_lock(&swap_lock);
422 if (nr_swap_pages <= 0)
423 goto noswap;
424 nr_swap_pages--;
425
426 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
427 si = swap_info[type];
428 next = si->next;
429 if (next < 0 ||
430 (!wrapped && si->prio != swap_info[next]->prio)) {
431 next = swap_list.head;
432 wrapped++;
433 }
434
435 if (!si->highest_bit)
436 continue;
437 if (!(si->flags & SWP_WRITEOK))
438 continue;
439
440 swap_list.next = next;
441 /* This is called for allocating swap entry for cache */
442 offset = scan_swap_map(si, SWAP_HAS_CACHE);
443 if (offset) {
444 spin_unlock(&swap_lock);
445 return swp_entry(type, offset);
446 }
447 next = swap_list.next;
448 }
449
450 nr_swap_pages++;
451 noswap:
452 spin_unlock(&swap_lock);
453 return (swp_entry_t) {0};
454 }
455
456 /* The only caller of this function is now susupend routine */
457 swp_entry_t get_swap_page_of_type(int type)
458 {
459 struct swap_info_struct *si;
460 pgoff_t offset;
461
462 spin_lock(&swap_lock);
463 si = swap_info[type];
464 if (si && (si->flags & SWP_WRITEOK)) {
465 nr_swap_pages--;
466 /* This is called for allocating swap entry, not cache */
467 offset = scan_swap_map(si, 1);
468 if (offset) {
469 spin_unlock(&swap_lock);
470 return swp_entry(type, offset);
471 }
472 nr_swap_pages++;
473 }
474 spin_unlock(&swap_lock);
475 return (swp_entry_t) {0};
476 }
477
478 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
479 {
480 struct swap_info_struct *p;
481 unsigned long offset, type;
482
483 if (!entry.val)
484 goto out;
485 type = swp_type(entry);
486 if (type >= nr_swapfiles)
487 goto bad_nofile;
488 p = swap_info[type];
489 if (!(p->flags & SWP_USED))
490 goto bad_device;
491 offset = swp_offset(entry);
492 if (offset >= p->max)
493 goto bad_offset;
494 if (!p->swap_map[offset])
495 goto bad_free;
496 spin_lock(&swap_lock);
497 return p;
498
499 bad_free:
500 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
501 goto out;
502 bad_offset:
503 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
504 goto out;
505 bad_device:
506 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
507 goto out;
508 bad_nofile:
509 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
510 out:
511 return NULL;
512 }
513
514 static unsigned char swap_entry_free(struct swap_info_struct *p,
515 swp_entry_t entry, unsigned char usage)
516 {
517 unsigned long offset = swp_offset(entry);
518 unsigned char count;
519 unsigned char has_cache;
520
521 count = p->swap_map[offset];
522 has_cache = count & SWAP_HAS_CACHE;
523 count &= ~SWAP_HAS_CACHE;
524
525 if (usage == SWAP_HAS_CACHE) {
526 VM_BUG_ON(!has_cache);
527 has_cache = 0;
528 } else if (count == SWAP_MAP_SHMEM) {
529 /*
530 * Or we could insist on shmem.c using a special
531 * swap_shmem_free() and free_shmem_swap_and_cache()...
532 */
533 count = 0;
534 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
535 if (count == COUNT_CONTINUED) {
536 if (swap_count_continued(p, offset, count))
537 count = SWAP_MAP_MAX | COUNT_CONTINUED;
538 else
539 count = SWAP_MAP_MAX;
540 } else
541 count--;
542 }
543
544 if (!count)
545 mem_cgroup_uncharge_swap(entry);
546
547 usage = count | has_cache;
548 p->swap_map[offset] = usage;
549
550 /* free if no reference */
551 if (!usage) {
552 if (offset < p->lowest_bit)
553 p->lowest_bit = offset;
554 if (offset > p->highest_bit)
555 p->highest_bit = offset;
556 if (swap_list.next >= 0 &&
557 p->prio > swap_info[swap_list.next]->prio)
558 swap_list.next = p->type;
559 nr_swap_pages++;
560 p->inuse_pages--;
561 frontswap_invalidate_page(p->type, offset);
562 if (p->flags & SWP_BLKDEV) {
563 struct gendisk *disk = p->bdev->bd_disk;
564 if (disk->fops->swap_slot_free_notify)
565 disk->fops->swap_slot_free_notify(p->bdev,
566 offset);
567 }
568 }
569
570 return usage;
571 }
572
573 /*
574 * Caller has made sure that the swapdevice corresponding to entry
575 * is still around or has not been recycled.
576 */
577 void swap_free(swp_entry_t entry)
578 {
579 struct swap_info_struct *p;
580
581 p = swap_info_get(entry);
582 if (p) {
583 swap_entry_free(p, entry, 1);
584 spin_unlock(&swap_lock);
585 }
586 }
587
588 /*
589 * Called after dropping swapcache to decrease refcnt to swap entries.
590 */
591 void swapcache_free(swp_entry_t entry, struct page *page)
592 {
593 struct swap_info_struct *p;
594 unsigned char count;
595
596 p = swap_info_get(entry);
597 if (p) {
598 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
599 if (page)
600 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
601 spin_unlock(&swap_lock);
602 }
603 }
604
605 /*
606 * How many references to page are currently swapped out?
607 * This does not give an exact answer when swap count is continued,
608 * but does include the high COUNT_CONTINUED flag to allow for that.
609 */
610 int page_swapcount(struct page *page)
611 {
612 int count = 0;
613 struct swap_info_struct *p;
614 swp_entry_t entry;
615
616 entry.val = page_private(page);
617 p = swap_info_get(entry);
618 if (p) {
619 count = swap_count(p->swap_map[swp_offset(entry)]);
620 spin_unlock(&swap_lock);
621 }
622 return count;
623 }
624
625 /*
626 * We can write to an anon page without COW if there are no other references
627 * to it. And as a side-effect, free up its swap: because the old content
628 * on disk will never be read, and seeking back there to write new content
629 * later would only waste time away from clustering.
630 */
631 int reuse_swap_page(struct page *page)
632 {
633 int count;
634
635 VM_BUG_ON(!PageLocked(page));
636 if (unlikely(PageKsm(page)))
637 return 0;
638 count = page_mapcount(page);
639 if (count <= 1 && PageSwapCache(page)) {
640 count += page_swapcount(page);
641 if (count == 1 && !PageWriteback(page)) {
642 delete_from_swap_cache(page);
643 SetPageDirty(page);
644 }
645 }
646 return count <= 1;
647 }
648
649 /*
650 * If swap is getting full, or if there are no more mappings of this page,
651 * then try_to_free_swap is called to free its swap space.
652 */
653 int try_to_free_swap(struct page *page)
654 {
655 VM_BUG_ON(!PageLocked(page));
656
657 if (!PageSwapCache(page))
658 return 0;
659 if (PageWriteback(page))
660 return 0;
661 if (page_swapcount(page))
662 return 0;
663
664 /*
665 * Once hibernation has begun to create its image of memory,
666 * there's a danger that one of the calls to try_to_free_swap()
667 * - most probably a call from __try_to_reclaim_swap() while
668 * hibernation is allocating its own swap pages for the image,
669 * but conceivably even a call from memory reclaim - will free
670 * the swap from a page which has already been recorded in the
671 * image as a clean swapcache page, and then reuse its swap for
672 * another page of the image. On waking from hibernation, the
673 * original page might be freed under memory pressure, then
674 * later read back in from swap, now with the wrong data.
675 *
676 * Hibration suspends storage while it is writing the image
677 * to disk so check that here.
678 */
679 if (pm_suspended_storage())
680 return 0;
681
682 delete_from_swap_cache(page);
683 SetPageDirty(page);
684 return 1;
685 }
686
687 /*
688 * Free the swap entry like above, but also try to
689 * free the page cache entry if it is the last user.
690 */
691 int free_swap_and_cache(swp_entry_t entry)
692 {
693 struct swap_info_struct *p;
694 struct page *page = NULL;
695
696 if (non_swap_entry(entry))
697 return 1;
698
699 p = swap_info_get(entry);
700 if (p) {
701 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702 page = find_get_page(&swapper_space, entry.val);
703 if (page && !trylock_page(page)) {
704 page_cache_release(page);
705 page = NULL;
706 }
707 }
708 spin_unlock(&swap_lock);
709 }
710 if (page) {
711 /*
712 * Not mapped elsewhere, or swap space full? Free it!
713 * Also recheck PageSwapCache now page is locked (above).
714 */
715 if (PageSwapCache(page) && !PageWriteback(page) &&
716 (!page_mapped(page) || vm_swap_full())) {
717 delete_from_swap_cache(page);
718 SetPageDirty(page);
719 }
720 unlock_page(page);
721 page_cache_release(page);
722 }
723 return p != NULL;
724 }
725
726 #ifdef CONFIG_HIBERNATION
727 /*
728 * Find the swap type that corresponds to given device (if any).
729 *
730 * @offset - number of the PAGE_SIZE-sized block of the device, starting
731 * from 0, in which the swap header is expected to be located.
732 *
733 * This is needed for the suspend to disk (aka swsusp).
734 */
735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
736 {
737 struct block_device *bdev = NULL;
738 int type;
739
740 if (device)
741 bdev = bdget(device);
742
743 spin_lock(&swap_lock);
744 for (type = 0; type < nr_swapfiles; type++) {
745 struct swap_info_struct *sis = swap_info[type];
746
747 if (!(sis->flags & SWP_WRITEOK))
748 continue;
749
750 if (!bdev) {
751 if (bdev_p)
752 *bdev_p = bdgrab(sis->bdev);
753
754 spin_unlock(&swap_lock);
755 return type;
756 }
757 if (bdev == sis->bdev) {
758 struct swap_extent *se = &sis->first_swap_extent;
759
760 if (se->start_block == offset) {
761 if (bdev_p)
762 *bdev_p = bdgrab(sis->bdev);
763
764 spin_unlock(&swap_lock);
765 bdput(bdev);
766 return type;
767 }
768 }
769 }
770 spin_unlock(&swap_lock);
771 if (bdev)
772 bdput(bdev);
773
774 return -ENODEV;
775 }
776
777 /*
778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
779 * corresponding to given index in swap_info (swap type).
780 */
781 sector_t swapdev_block(int type, pgoff_t offset)
782 {
783 struct block_device *bdev;
784
785 if ((unsigned int)type >= nr_swapfiles)
786 return 0;
787 if (!(swap_info[type]->flags & SWP_WRITEOK))
788 return 0;
789 return map_swap_entry(swp_entry(type, offset), &bdev);
790 }
791
792 /*
793 * Return either the total number of swap pages of given type, or the number
794 * of free pages of that type (depending on @free)
795 *
796 * This is needed for software suspend
797 */
798 unsigned int count_swap_pages(int type, int free)
799 {
800 unsigned int n = 0;
801
802 spin_lock(&swap_lock);
803 if ((unsigned int)type < nr_swapfiles) {
804 struct swap_info_struct *sis = swap_info[type];
805
806 if (sis->flags & SWP_WRITEOK) {
807 n = sis->pages;
808 if (free)
809 n -= sis->inuse_pages;
810 }
811 }
812 spin_unlock(&swap_lock);
813 return n;
814 }
815 #endif /* CONFIG_HIBERNATION */
816
817 /*
818 * No need to decide whether this PTE shares the swap entry with others,
819 * just let do_wp_page work it out if a write is requested later - to
820 * force COW, vm_page_prot omits write permission from any private vma.
821 */
822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
823 unsigned long addr, swp_entry_t entry, struct page *page)
824 {
825 struct mem_cgroup *memcg;
826 spinlock_t *ptl;
827 pte_t *pte;
828 int ret = 1;
829
830 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
831 GFP_KERNEL, &memcg)) {
832 ret = -ENOMEM;
833 goto out_nolock;
834 }
835
836 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
837 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
838 mem_cgroup_cancel_charge_swapin(memcg);
839 ret = 0;
840 goto out;
841 }
842
843 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
844 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
845 get_page(page);
846 set_pte_at(vma->vm_mm, addr, pte,
847 pte_mkold(mk_pte(page, vma->vm_page_prot)));
848 page_add_anon_rmap(page, vma, addr);
849 mem_cgroup_commit_charge_swapin(page, memcg);
850 swap_free(entry);
851 /*
852 * Move the page to the active list so it is not
853 * immediately swapped out again after swapon.
854 */
855 activate_page(page);
856 out:
857 pte_unmap_unlock(pte, ptl);
858 out_nolock:
859 return ret;
860 }
861
862 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
863 unsigned long addr, unsigned long end,
864 swp_entry_t entry, struct page *page)
865 {
866 pte_t swp_pte = swp_entry_to_pte(entry);
867 pte_t *pte;
868 int ret = 0;
869
870 /*
871 * We don't actually need pte lock while scanning for swp_pte: since
872 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
873 * page table while we're scanning; though it could get zapped, and on
874 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
875 * of unmatched parts which look like swp_pte, so unuse_pte must
876 * recheck under pte lock. Scanning without pte lock lets it be
877 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
878 */
879 pte = pte_offset_map(pmd, addr);
880 do {
881 /*
882 * swapoff spends a _lot_ of time in this loop!
883 * Test inline before going to call unuse_pte.
884 */
885 if (unlikely(pte_same(*pte, swp_pte))) {
886 pte_unmap(pte);
887 ret = unuse_pte(vma, pmd, addr, entry, page);
888 if (ret)
889 goto out;
890 pte = pte_offset_map(pmd, addr);
891 }
892 } while (pte++, addr += PAGE_SIZE, addr != end);
893 pte_unmap(pte - 1);
894 out:
895 return ret;
896 }
897
898 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
899 unsigned long addr, unsigned long end,
900 swp_entry_t entry, struct page *page)
901 {
902 pmd_t *pmd;
903 unsigned long next;
904 int ret;
905
906 pmd = pmd_offset(pud, addr);
907 do {
908 next = pmd_addr_end(addr, end);
909 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
910 continue;
911 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
912 if (ret)
913 return ret;
914 } while (pmd++, addr = next, addr != end);
915 return 0;
916 }
917
918 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
919 unsigned long addr, unsigned long end,
920 swp_entry_t entry, struct page *page)
921 {
922 pud_t *pud;
923 unsigned long next;
924 int ret;
925
926 pud = pud_offset(pgd, addr);
927 do {
928 next = pud_addr_end(addr, end);
929 if (pud_none_or_clear_bad(pud))
930 continue;
931 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
932 if (ret)
933 return ret;
934 } while (pud++, addr = next, addr != end);
935 return 0;
936 }
937
938 static int unuse_vma(struct vm_area_struct *vma,
939 swp_entry_t entry, struct page *page)
940 {
941 pgd_t *pgd;
942 unsigned long addr, end, next;
943 int ret;
944
945 if (page_anon_vma(page)) {
946 addr = page_address_in_vma(page, vma);
947 if (addr == -EFAULT)
948 return 0;
949 else
950 end = addr + PAGE_SIZE;
951 } else {
952 addr = vma->vm_start;
953 end = vma->vm_end;
954 }
955
956 pgd = pgd_offset(vma->vm_mm, addr);
957 do {
958 next = pgd_addr_end(addr, end);
959 if (pgd_none_or_clear_bad(pgd))
960 continue;
961 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
962 if (ret)
963 return ret;
964 } while (pgd++, addr = next, addr != end);
965 return 0;
966 }
967
968 static int unuse_mm(struct mm_struct *mm,
969 swp_entry_t entry, struct page *page)
970 {
971 struct vm_area_struct *vma;
972 int ret = 0;
973
974 if (!down_read_trylock(&mm->mmap_sem)) {
975 /*
976 * Activate page so shrink_inactive_list is unlikely to unmap
977 * its ptes while lock is dropped, so swapoff can make progress.
978 */
979 activate_page(page);
980 unlock_page(page);
981 down_read(&mm->mmap_sem);
982 lock_page(page);
983 }
984 for (vma = mm->mmap; vma; vma = vma->vm_next) {
985 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
986 break;
987 }
988 up_read(&mm->mmap_sem);
989 return (ret < 0)? ret: 0;
990 }
991
992 /*
993 * Scan swap_map (or frontswap_map if frontswap parameter is true)
994 * from current position to next entry still in use.
995 * Recycle to start on reaching the end, returning 0 when empty.
996 */
997 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
998 unsigned int prev, bool frontswap)
999 {
1000 unsigned int max = si->max;
1001 unsigned int i = prev;
1002 unsigned char count;
1003
1004 /*
1005 * No need for swap_lock here: we're just looking
1006 * for whether an entry is in use, not modifying it; false
1007 * hits are okay, and sys_swapoff() has already prevented new
1008 * allocations from this area (while holding swap_lock).
1009 */
1010 for (;;) {
1011 if (++i >= max) {
1012 if (!prev) {
1013 i = 0;
1014 break;
1015 }
1016 /*
1017 * No entries in use at top of swap_map,
1018 * loop back to start and recheck there.
1019 */
1020 max = prev + 1;
1021 prev = 0;
1022 i = 1;
1023 }
1024 if (frontswap) {
1025 if (frontswap_test(si, i))
1026 break;
1027 else
1028 continue;
1029 }
1030 count = si->swap_map[i];
1031 if (count && swap_count(count) != SWAP_MAP_BAD)
1032 break;
1033 }
1034 return i;
1035 }
1036
1037 /*
1038 * We completely avoid races by reading each swap page in advance,
1039 * and then search for the process using it. All the necessary
1040 * page table adjustments can then be made atomically.
1041 *
1042 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1043 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1044 */
1045 int try_to_unuse(unsigned int type, bool frontswap,
1046 unsigned long pages_to_unuse)
1047 {
1048 struct swap_info_struct *si = swap_info[type];
1049 struct mm_struct *start_mm;
1050 unsigned char *swap_map;
1051 unsigned char swcount;
1052 struct page *page;
1053 swp_entry_t entry;
1054 unsigned int i = 0;
1055 int retval = 0;
1056
1057 /*
1058 * When searching mms for an entry, a good strategy is to
1059 * start at the first mm we freed the previous entry from
1060 * (though actually we don't notice whether we or coincidence
1061 * freed the entry). Initialize this start_mm with a hold.
1062 *
1063 * A simpler strategy would be to start at the last mm we
1064 * freed the previous entry from; but that would take less
1065 * advantage of mmlist ordering, which clusters forked mms
1066 * together, child after parent. If we race with dup_mmap(), we
1067 * prefer to resolve parent before child, lest we miss entries
1068 * duplicated after we scanned child: using last mm would invert
1069 * that.
1070 */
1071 start_mm = &init_mm;
1072 atomic_inc(&init_mm.mm_users);
1073
1074 /*
1075 * Keep on scanning until all entries have gone. Usually,
1076 * one pass through swap_map is enough, but not necessarily:
1077 * there are races when an instance of an entry might be missed.
1078 */
1079 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1080 if (signal_pending(current)) {
1081 retval = -EINTR;
1082 break;
1083 }
1084
1085 /*
1086 * Get a page for the entry, using the existing swap
1087 * cache page if there is one. Otherwise, get a clean
1088 * page and read the swap into it.
1089 */
1090 swap_map = &si->swap_map[i];
1091 entry = swp_entry(type, i);
1092 page = read_swap_cache_async(entry,
1093 GFP_HIGHUSER_MOVABLE, NULL, 0);
1094 if (!page) {
1095 /*
1096 * Either swap_duplicate() failed because entry
1097 * has been freed independently, and will not be
1098 * reused since sys_swapoff() already disabled
1099 * allocation from here, or alloc_page() failed.
1100 */
1101 if (!*swap_map)
1102 continue;
1103 retval = -ENOMEM;
1104 break;
1105 }
1106
1107 /*
1108 * Don't hold on to start_mm if it looks like exiting.
1109 */
1110 if (atomic_read(&start_mm->mm_users) == 1) {
1111 mmput(start_mm);
1112 start_mm = &init_mm;
1113 atomic_inc(&init_mm.mm_users);
1114 }
1115
1116 /*
1117 * Wait for and lock page. When do_swap_page races with
1118 * try_to_unuse, do_swap_page can handle the fault much
1119 * faster than try_to_unuse can locate the entry. This
1120 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1121 * defer to do_swap_page in such a case - in some tests,
1122 * do_swap_page and try_to_unuse repeatedly compete.
1123 */
1124 wait_on_page_locked(page);
1125 wait_on_page_writeback(page);
1126 lock_page(page);
1127 wait_on_page_writeback(page);
1128
1129 /*
1130 * Remove all references to entry.
1131 */
1132 swcount = *swap_map;
1133 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1134 retval = shmem_unuse(entry, page);
1135 /* page has already been unlocked and released */
1136 if (retval < 0)
1137 break;
1138 continue;
1139 }
1140 if (swap_count(swcount) && start_mm != &init_mm)
1141 retval = unuse_mm(start_mm, entry, page);
1142
1143 if (swap_count(*swap_map)) {
1144 int set_start_mm = (*swap_map >= swcount);
1145 struct list_head *p = &start_mm->mmlist;
1146 struct mm_struct *new_start_mm = start_mm;
1147 struct mm_struct *prev_mm = start_mm;
1148 struct mm_struct *mm;
1149
1150 atomic_inc(&new_start_mm->mm_users);
1151 atomic_inc(&prev_mm->mm_users);
1152 spin_lock(&mmlist_lock);
1153 while (swap_count(*swap_map) && !retval &&
1154 (p = p->next) != &start_mm->mmlist) {
1155 mm = list_entry(p, struct mm_struct, mmlist);
1156 if (!atomic_inc_not_zero(&mm->mm_users))
1157 continue;
1158 spin_unlock(&mmlist_lock);
1159 mmput(prev_mm);
1160 prev_mm = mm;
1161
1162 cond_resched();
1163
1164 swcount = *swap_map;
1165 if (!swap_count(swcount)) /* any usage ? */
1166 ;
1167 else if (mm == &init_mm)
1168 set_start_mm = 1;
1169 else
1170 retval = unuse_mm(mm, entry, page);
1171
1172 if (set_start_mm && *swap_map < swcount) {
1173 mmput(new_start_mm);
1174 atomic_inc(&mm->mm_users);
1175 new_start_mm = mm;
1176 set_start_mm = 0;
1177 }
1178 spin_lock(&mmlist_lock);
1179 }
1180 spin_unlock(&mmlist_lock);
1181 mmput(prev_mm);
1182 mmput(start_mm);
1183 start_mm = new_start_mm;
1184 }
1185 if (retval) {
1186 unlock_page(page);
1187 page_cache_release(page);
1188 break;
1189 }
1190
1191 /*
1192 * If a reference remains (rare), we would like to leave
1193 * the page in the swap cache; but try_to_unmap could
1194 * then re-duplicate the entry once we drop page lock,
1195 * so we might loop indefinitely; also, that page could
1196 * not be swapped out to other storage meanwhile. So:
1197 * delete from cache even if there's another reference,
1198 * after ensuring that the data has been saved to disk -
1199 * since if the reference remains (rarer), it will be
1200 * read from disk into another page. Splitting into two
1201 * pages would be incorrect if swap supported "shared
1202 * private" pages, but they are handled by tmpfs files.
1203 *
1204 * Given how unuse_vma() targets one particular offset
1205 * in an anon_vma, once the anon_vma has been determined,
1206 * this splitting happens to be just what is needed to
1207 * handle where KSM pages have been swapped out: re-reading
1208 * is unnecessarily slow, but we can fix that later on.
1209 */
1210 if (swap_count(*swap_map) &&
1211 PageDirty(page) && PageSwapCache(page)) {
1212 struct writeback_control wbc = {
1213 .sync_mode = WB_SYNC_NONE,
1214 };
1215
1216 swap_writepage(page, &wbc);
1217 lock_page(page);
1218 wait_on_page_writeback(page);
1219 }
1220
1221 /*
1222 * It is conceivable that a racing task removed this page from
1223 * swap cache just before we acquired the page lock at the top,
1224 * or while we dropped it in unuse_mm(). The page might even
1225 * be back in swap cache on another swap area: that we must not
1226 * delete, since it may not have been written out to swap yet.
1227 */
1228 if (PageSwapCache(page) &&
1229 likely(page_private(page) == entry.val))
1230 delete_from_swap_cache(page);
1231
1232 /*
1233 * So we could skip searching mms once swap count went
1234 * to 1, we did not mark any present ptes as dirty: must
1235 * mark page dirty so shrink_page_list will preserve it.
1236 */
1237 SetPageDirty(page);
1238 unlock_page(page);
1239 page_cache_release(page);
1240
1241 /*
1242 * Make sure that we aren't completely killing
1243 * interactive performance.
1244 */
1245 cond_resched();
1246 if (frontswap && pages_to_unuse > 0) {
1247 if (!--pages_to_unuse)
1248 break;
1249 }
1250 }
1251
1252 mmput(start_mm);
1253 return retval;
1254 }
1255
1256 /*
1257 * After a successful try_to_unuse, if no swap is now in use, we know
1258 * we can empty the mmlist. swap_lock must be held on entry and exit.
1259 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1260 * added to the mmlist just after page_duplicate - before would be racy.
1261 */
1262 static void drain_mmlist(void)
1263 {
1264 struct list_head *p, *next;
1265 unsigned int type;
1266
1267 for (type = 0; type < nr_swapfiles; type++)
1268 if (swap_info[type]->inuse_pages)
1269 return;
1270 spin_lock(&mmlist_lock);
1271 list_for_each_safe(p, next, &init_mm.mmlist)
1272 list_del_init(p);
1273 spin_unlock(&mmlist_lock);
1274 }
1275
1276 /*
1277 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1278 * corresponds to page offset for the specified swap entry.
1279 * Note that the type of this function is sector_t, but it returns page offset
1280 * into the bdev, not sector offset.
1281 */
1282 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1283 {
1284 struct swap_info_struct *sis;
1285 struct swap_extent *start_se;
1286 struct swap_extent *se;
1287 pgoff_t offset;
1288
1289 sis = swap_info[swp_type(entry)];
1290 *bdev = sis->bdev;
1291
1292 offset = swp_offset(entry);
1293 start_se = sis->curr_swap_extent;
1294 se = start_se;
1295
1296 for ( ; ; ) {
1297 struct list_head *lh;
1298
1299 if (se->start_page <= offset &&
1300 offset < (se->start_page + se->nr_pages)) {
1301 return se->start_block + (offset - se->start_page);
1302 }
1303 lh = se->list.next;
1304 se = list_entry(lh, struct swap_extent, list);
1305 sis->curr_swap_extent = se;
1306 BUG_ON(se == start_se); /* It *must* be present */
1307 }
1308 }
1309
1310 /*
1311 * Returns the page offset into bdev for the specified page's swap entry.
1312 */
1313 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1314 {
1315 swp_entry_t entry;
1316 entry.val = page_private(page);
1317 return map_swap_entry(entry, bdev);
1318 }
1319
1320 /*
1321 * Free all of a swapdev's extent information
1322 */
1323 static void destroy_swap_extents(struct swap_info_struct *sis)
1324 {
1325 while (!list_empty(&sis->first_swap_extent.list)) {
1326 struct swap_extent *se;
1327
1328 se = list_entry(sis->first_swap_extent.list.next,
1329 struct swap_extent, list);
1330 list_del(&se->list);
1331 kfree(se);
1332 }
1333
1334 if (sis->flags & SWP_FILE) {
1335 struct file *swap_file = sis->swap_file;
1336 struct address_space *mapping = swap_file->f_mapping;
1337
1338 sis->flags &= ~SWP_FILE;
1339 mapping->a_ops->swap_deactivate(swap_file);
1340 }
1341 }
1342
1343 /*
1344 * Add a block range (and the corresponding page range) into this swapdev's
1345 * extent list. The extent list is kept sorted in page order.
1346 *
1347 * This function rather assumes that it is called in ascending page order.
1348 */
1349 int
1350 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1351 unsigned long nr_pages, sector_t start_block)
1352 {
1353 struct swap_extent *se;
1354 struct swap_extent *new_se;
1355 struct list_head *lh;
1356
1357 if (start_page == 0) {
1358 se = &sis->first_swap_extent;
1359 sis->curr_swap_extent = se;
1360 se->start_page = 0;
1361 se->nr_pages = nr_pages;
1362 se->start_block = start_block;
1363 return 1;
1364 } else {
1365 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1366 se = list_entry(lh, struct swap_extent, list);
1367 BUG_ON(se->start_page + se->nr_pages != start_page);
1368 if (se->start_block + se->nr_pages == start_block) {
1369 /* Merge it */
1370 se->nr_pages += nr_pages;
1371 return 0;
1372 }
1373 }
1374
1375 /*
1376 * No merge. Insert a new extent, preserving ordering.
1377 */
1378 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1379 if (new_se == NULL)
1380 return -ENOMEM;
1381 new_se->start_page = start_page;
1382 new_se->nr_pages = nr_pages;
1383 new_se->start_block = start_block;
1384
1385 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1386 return 1;
1387 }
1388
1389 /*
1390 * A `swap extent' is a simple thing which maps a contiguous range of pages
1391 * onto a contiguous range of disk blocks. An ordered list of swap extents
1392 * is built at swapon time and is then used at swap_writepage/swap_readpage
1393 * time for locating where on disk a page belongs.
1394 *
1395 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1396 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1397 * swap files identically.
1398 *
1399 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1400 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1401 * swapfiles are handled *identically* after swapon time.
1402 *
1403 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1404 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1405 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1406 * requirements, they are simply tossed out - we will never use those blocks
1407 * for swapping.
1408 *
1409 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1410 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1411 * which will scribble on the fs.
1412 *
1413 * The amount of disk space which a single swap extent represents varies.
1414 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1415 * extents in the list. To avoid much list walking, we cache the previous
1416 * search location in `curr_swap_extent', and start new searches from there.
1417 * This is extremely effective. The average number of iterations in
1418 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1419 */
1420 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1421 {
1422 struct file *swap_file = sis->swap_file;
1423 struct address_space *mapping = swap_file->f_mapping;
1424 struct inode *inode = mapping->host;
1425 int ret;
1426
1427 if (S_ISBLK(inode->i_mode)) {
1428 ret = add_swap_extent(sis, 0, sis->max, 0);
1429 *span = sis->pages;
1430 return ret;
1431 }
1432
1433 if (mapping->a_ops->swap_activate) {
1434 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1435 if (!ret) {
1436 sis->flags |= SWP_FILE;
1437 ret = add_swap_extent(sis, 0, sis->max, 0);
1438 *span = sis->pages;
1439 }
1440 return ret;
1441 }
1442
1443 return generic_swapfile_activate(sis, swap_file, span);
1444 }
1445
1446 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1447 unsigned char *swap_map,
1448 unsigned long *frontswap_map)
1449 {
1450 int i, prev;
1451
1452 if (prio >= 0)
1453 p->prio = prio;
1454 else
1455 p->prio = --least_priority;
1456 p->swap_map = swap_map;
1457 frontswap_map_set(p, frontswap_map);
1458 p->flags |= SWP_WRITEOK;
1459 nr_swap_pages += p->pages;
1460 total_swap_pages += p->pages;
1461
1462 /* insert swap space into swap_list: */
1463 prev = -1;
1464 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1465 if (p->prio >= swap_info[i]->prio)
1466 break;
1467 prev = i;
1468 }
1469 p->next = i;
1470 if (prev < 0)
1471 swap_list.head = swap_list.next = p->type;
1472 else
1473 swap_info[prev]->next = p->type;
1474 }
1475
1476 static void enable_swap_info(struct swap_info_struct *p, int prio,
1477 unsigned char *swap_map,
1478 unsigned long *frontswap_map)
1479 {
1480 spin_lock(&swap_lock);
1481 _enable_swap_info(p, prio, swap_map, frontswap_map);
1482 frontswap_init(p->type);
1483 spin_unlock(&swap_lock);
1484 }
1485
1486 static void reinsert_swap_info(struct swap_info_struct *p)
1487 {
1488 spin_lock(&swap_lock);
1489 _enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1490 spin_unlock(&swap_lock);
1491 }
1492
1493 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1494 {
1495 struct swap_info_struct *p = NULL;
1496 unsigned char *swap_map;
1497 struct file *swap_file, *victim;
1498 struct address_space *mapping;
1499 struct inode *inode;
1500 struct filename *pathname;
1501 int i, type, prev;
1502 int err;
1503
1504 if (!capable(CAP_SYS_ADMIN))
1505 return -EPERM;
1506
1507 BUG_ON(!current->mm);
1508
1509 pathname = getname(specialfile);
1510 if (IS_ERR(pathname))
1511 return PTR_ERR(pathname);
1512
1513 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1514 err = PTR_ERR(victim);
1515 if (IS_ERR(victim))
1516 goto out;
1517
1518 mapping = victim->f_mapping;
1519 prev = -1;
1520 spin_lock(&swap_lock);
1521 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1522 p = swap_info[type];
1523 if (p->flags & SWP_WRITEOK) {
1524 if (p->swap_file->f_mapping == mapping)
1525 break;
1526 }
1527 prev = type;
1528 }
1529 if (type < 0) {
1530 err = -EINVAL;
1531 spin_unlock(&swap_lock);
1532 goto out_dput;
1533 }
1534 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1535 vm_unacct_memory(p->pages);
1536 else {
1537 err = -ENOMEM;
1538 spin_unlock(&swap_lock);
1539 goto out_dput;
1540 }
1541 if (prev < 0)
1542 swap_list.head = p->next;
1543 else
1544 swap_info[prev]->next = p->next;
1545 if (type == swap_list.next) {
1546 /* just pick something that's safe... */
1547 swap_list.next = swap_list.head;
1548 }
1549 if (p->prio < 0) {
1550 for (i = p->next; i >= 0; i = swap_info[i]->next)
1551 swap_info[i]->prio = p->prio--;
1552 least_priority++;
1553 }
1554 nr_swap_pages -= p->pages;
1555 total_swap_pages -= p->pages;
1556 p->flags &= ~SWP_WRITEOK;
1557 spin_unlock(&swap_lock);
1558
1559 set_current_oom_origin();
1560 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1561 clear_current_oom_origin();
1562
1563 if (err) {
1564 /* re-insert swap space back into swap_list */
1565 reinsert_swap_info(p);
1566 goto out_dput;
1567 }
1568
1569 destroy_swap_extents(p);
1570 if (p->flags & SWP_CONTINUED)
1571 free_swap_count_continuations(p);
1572
1573 mutex_lock(&swapon_mutex);
1574 spin_lock(&swap_lock);
1575 drain_mmlist();
1576
1577 /* wait for anyone still in scan_swap_map */
1578 p->highest_bit = 0; /* cuts scans short */
1579 while (p->flags >= SWP_SCANNING) {
1580 spin_unlock(&swap_lock);
1581 schedule_timeout_uninterruptible(1);
1582 spin_lock(&swap_lock);
1583 }
1584
1585 swap_file = p->swap_file;
1586 p->swap_file = NULL;
1587 p->max = 0;
1588 swap_map = p->swap_map;
1589 p->swap_map = NULL;
1590 p->flags = 0;
1591 frontswap_invalidate_area(type);
1592 spin_unlock(&swap_lock);
1593 mutex_unlock(&swapon_mutex);
1594 vfree(swap_map);
1595 vfree(frontswap_map_get(p));
1596 /* Destroy swap account informatin */
1597 swap_cgroup_swapoff(type);
1598
1599 inode = mapping->host;
1600 if (S_ISBLK(inode->i_mode)) {
1601 struct block_device *bdev = I_BDEV(inode);
1602 set_blocksize(bdev, p->old_block_size);
1603 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1604 } else {
1605 mutex_lock(&inode->i_mutex);
1606 inode->i_flags &= ~S_SWAPFILE;
1607 mutex_unlock(&inode->i_mutex);
1608 }
1609 filp_close(swap_file, NULL);
1610 err = 0;
1611 atomic_inc(&proc_poll_event);
1612 wake_up_interruptible(&proc_poll_wait);
1613
1614 out_dput:
1615 filp_close(victim, NULL);
1616 out:
1617 putname(pathname);
1618 return err;
1619 }
1620
1621 #ifdef CONFIG_PROC_FS
1622 static unsigned swaps_poll(struct file *file, poll_table *wait)
1623 {
1624 struct seq_file *seq = file->private_data;
1625
1626 poll_wait(file, &proc_poll_wait, wait);
1627
1628 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1629 seq->poll_event = atomic_read(&proc_poll_event);
1630 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1631 }
1632
1633 return POLLIN | POLLRDNORM;
1634 }
1635
1636 /* iterator */
1637 static void *swap_start(struct seq_file *swap, loff_t *pos)
1638 {
1639 struct swap_info_struct *si;
1640 int type;
1641 loff_t l = *pos;
1642
1643 mutex_lock(&swapon_mutex);
1644
1645 if (!l)
1646 return SEQ_START_TOKEN;
1647
1648 for (type = 0; type < nr_swapfiles; type++) {
1649 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1650 si = swap_info[type];
1651 if (!(si->flags & SWP_USED) || !si->swap_map)
1652 continue;
1653 if (!--l)
1654 return si;
1655 }
1656
1657 return NULL;
1658 }
1659
1660 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1661 {
1662 struct swap_info_struct *si = v;
1663 int type;
1664
1665 if (v == SEQ_START_TOKEN)
1666 type = 0;
1667 else
1668 type = si->type + 1;
1669
1670 for (; type < nr_swapfiles; type++) {
1671 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1672 si = swap_info[type];
1673 if (!(si->flags & SWP_USED) || !si->swap_map)
1674 continue;
1675 ++*pos;
1676 return si;
1677 }
1678
1679 return NULL;
1680 }
1681
1682 static void swap_stop(struct seq_file *swap, void *v)
1683 {
1684 mutex_unlock(&swapon_mutex);
1685 }
1686
1687 static int swap_show(struct seq_file *swap, void *v)
1688 {
1689 struct swap_info_struct *si = v;
1690 struct file *file;
1691 int len;
1692
1693 if (si == SEQ_START_TOKEN) {
1694 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1695 return 0;
1696 }
1697
1698 file = si->swap_file;
1699 len = seq_path(swap, &file->f_path, " \t\n\\");
1700 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1701 len < 40 ? 40 - len : 1, " ",
1702 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1703 "partition" : "file\t",
1704 si->pages << (PAGE_SHIFT - 10),
1705 si->inuse_pages << (PAGE_SHIFT - 10),
1706 si->prio);
1707 return 0;
1708 }
1709
1710 static const struct seq_operations swaps_op = {
1711 .start = swap_start,
1712 .next = swap_next,
1713 .stop = swap_stop,
1714 .show = swap_show
1715 };
1716
1717 static int swaps_open(struct inode *inode, struct file *file)
1718 {
1719 struct seq_file *seq;
1720 int ret;
1721
1722 ret = seq_open(file, &swaps_op);
1723 if (ret)
1724 return ret;
1725
1726 seq = file->private_data;
1727 seq->poll_event = atomic_read(&proc_poll_event);
1728 return 0;
1729 }
1730
1731 static const struct file_operations proc_swaps_operations = {
1732 .open = swaps_open,
1733 .read = seq_read,
1734 .llseek = seq_lseek,
1735 .release = seq_release,
1736 .poll = swaps_poll,
1737 };
1738
1739 static int __init procswaps_init(void)
1740 {
1741 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1742 return 0;
1743 }
1744 __initcall(procswaps_init);
1745 #endif /* CONFIG_PROC_FS */
1746
1747 #ifdef MAX_SWAPFILES_CHECK
1748 static int __init max_swapfiles_check(void)
1749 {
1750 MAX_SWAPFILES_CHECK();
1751 return 0;
1752 }
1753 late_initcall(max_swapfiles_check);
1754 #endif
1755
1756 static struct swap_info_struct *alloc_swap_info(void)
1757 {
1758 struct swap_info_struct *p;
1759 unsigned int type;
1760
1761 p = kzalloc(sizeof(*p), GFP_KERNEL);
1762 if (!p)
1763 return ERR_PTR(-ENOMEM);
1764
1765 spin_lock(&swap_lock);
1766 for (type = 0; type < nr_swapfiles; type++) {
1767 if (!(swap_info[type]->flags & SWP_USED))
1768 break;
1769 }
1770 if (type >= MAX_SWAPFILES) {
1771 spin_unlock(&swap_lock);
1772 kfree(p);
1773 return ERR_PTR(-EPERM);
1774 }
1775 if (type >= nr_swapfiles) {
1776 p->type = type;
1777 swap_info[type] = p;
1778 /*
1779 * Write swap_info[type] before nr_swapfiles, in case a
1780 * racing procfs swap_start() or swap_next() is reading them.
1781 * (We never shrink nr_swapfiles, we never free this entry.)
1782 */
1783 smp_wmb();
1784 nr_swapfiles++;
1785 } else {
1786 kfree(p);
1787 p = swap_info[type];
1788 /*
1789 * Do not memset this entry: a racing procfs swap_next()
1790 * would be relying on p->type to remain valid.
1791 */
1792 }
1793 INIT_LIST_HEAD(&p->first_swap_extent.list);
1794 p->flags = SWP_USED;
1795 p->next = -1;
1796 spin_unlock(&swap_lock);
1797
1798 return p;
1799 }
1800
1801 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1802 {
1803 int error;
1804
1805 if (S_ISBLK(inode->i_mode)) {
1806 p->bdev = bdgrab(I_BDEV(inode));
1807 error = blkdev_get(p->bdev,
1808 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1809 sys_swapon);
1810 if (error < 0) {
1811 p->bdev = NULL;
1812 return -EINVAL;
1813 }
1814 p->old_block_size = block_size(p->bdev);
1815 error = set_blocksize(p->bdev, PAGE_SIZE);
1816 if (error < 0)
1817 return error;
1818 p->flags |= SWP_BLKDEV;
1819 } else if (S_ISREG(inode->i_mode)) {
1820 p->bdev = inode->i_sb->s_bdev;
1821 mutex_lock(&inode->i_mutex);
1822 if (IS_SWAPFILE(inode))
1823 return -EBUSY;
1824 } else
1825 return -EINVAL;
1826
1827 return 0;
1828 }
1829
1830 static unsigned long read_swap_header(struct swap_info_struct *p,
1831 union swap_header *swap_header,
1832 struct inode *inode)
1833 {
1834 int i;
1835 unsigned long maxpages;
1836 unsigned long swapfilepages;
1837
1838 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1839 printk(KERN_ERR "Unable to find swap-space signature\n");
1840 return 0;
1841 }
1842
1843 /* swap partition endianess hack... */
1844 if (swab32(swap_header->info.version) == 1) {
1845 swab32s(&swap_header->info.version);
1846 swab32s(&swap_header->info.last_page);
1847 swab32s(&swap_header->info.nr_badpages);
1848 for (i = 0; i < swap_header->info.nr_badpages; i++)
1849 swab32s(&swap_header->info.badpages[i]);
1850 }
1851 /* Check the swap header's sub-version */
1852 if (swap_header->info.version != 1) {
1853 printk(KERN_WARNING
1854 "Unable to handle swap header version %d\n",
1855 swap_header->info.version);
1856 return 0;
1857 }
1858
1859 p->lowest_bit = 1;
1860 p->cluster_next = 1;
1861 p->cluster_nr = 0;
1862
1863 /*
1864 * Find out how many pages are allowed for a single swap
1865 * device. There are two limiting factors: 1) the number
1866 * of bits for the swap offset in the swp_entry_t type, and
1867 * 2) the number of bits in the swap pte as defined by the
1868 * different architectures. In order to find the
1869 * largest possible bit mask, a swap entry with swap type 0
1870 * and swap offset ~0UL is created, encoded to a swap pte,
1871 * decoded to a swp_entry_t again, and finally the swap
1872 * offset is extracted. This will mask all the bits from
1873 * the initial ~0UL mask that can't be encoded in either
1874 * the swp_entry_t or the architecture definition of a
1875 * swap pte.
1876 */
1877 maxpages = swp_offset(pte_to_swp_entry(
1878 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1879 if (maxpages > swap_header->info.last_page) {
1880 maxpages = swap_header->info.last_page + 1;
1881 /* p->max is an unsigned int: don't overflow it */
1882 if ((unsigned int)maxpages == 0)
1883 maxpages = UINT_MAX;
1884 }
1885 p->highest_bit = maxpages - 1;
1886
1887 if (!maxpages)
1888 return 0;
1889 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1890 if (swapfilepages && maxpages > swapfilepages) {
1891 printk(KERN_WARNING
1892 "Swap area shorter than signature indicates\n");
1893 return 0;
1894 }
1895 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1896 return 0;
1897 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1898 return 0;
1899
1900 return maxpages;
1901 }
1902
1903 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1904 union swap_header *swap_header,
1905 unsigned char *swap_map,
1906 unsigned long maxpages,
1907 sector_t *span)
1908 {
1909 int i;
1910 unsigned int nr_good_pages;
1911 int nr_extents;
1912
1913 nr_good_pages = maxpages - 1; /* omit header page */
1914
1915 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1916 unsigned int page_nr = swap_header->info.badpages[i];
1917 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1918 return -EINVAL;
1919 if (page_nr < maxpages) {
1920 swap_map[page_nr] = SWAP_MAP_BAD;
1921 nr_good_pages--;
1922 }
1923 }
1924
1925 if (nr_good_pages) {
1926 swap_map[0] = SWAP_MAP_BAD;
1927 p->max = maxpages;
1928 p->pages = nr_good_pages;
1929 nr_extents = setup_swap_extents(p, span);
1930 if (nr_extents < 0)
1931 return nr_extents;
1932 nr_good_pages = p->pages;
1933 }
1934 if (!nr_good_pages) {
1935 printk(KERN_WARNING "Empty swap-file\n");
1936 return -EINVAL;
1937 }
1938
1939 return nr_extents;
1940 }
1941
1942 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1943 {
1944 struct swap_info_struct *p;
1945 struct filename *name;
1946 struct file *swap_file = NULL;
1947 struct address_space *mapping;
1948 int i;
1949 int prio;
1950 int error;
1951 union swap_header *swap_header;
1952 int nr_extents;
1953 sector_t span;
1954 unsigned long maxpages;
1955 unsigned char *swap_map = NULL;
1956 unsigned long *frontswap_map = NULL;
1957 struct page *page = NULL;
1958 struct inode *inode = NULL;
1959
1960 if (swap_flags & ~SWAP_FLAGS_VALID)
1961 return -EINVAL;
1962
1963 if (!capable(CAP_SYS_ADMIN))
1964 return -EPERM;
1965
1966 p = alloc_swap_info();
1967 if (IS_ERR(p))
1968 return PTR_ERR(p);
1969
1970 name = getname(specialfile);
1971 if (IS_ERR(name)) {
1972 error = PTR_ERR(name);
1973 name = NULL;
1974 goto bad_swap;
1975 }
1976 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1977 if (IS_ERR(swap_file)) {
1978 error = PTR_ERR(swap_file);
1979 swap_file = NULL;
1980 goto bad_swap;
1981 }
1982
1983 p->swap_file = swap_file;
1984 mapping = swap_file->f_mapping;
1985
1986 for (i = 0; i < nr_swapfiles; i++) {
1987 struct swap_info_struct *q = swap_info[i];
1988
1989 if (q == p || !q->swap_file)
1990 continue;
1991 if (mapping == q->swap_file->f_mapping) {
1992 error = -EBUSY;
1993 goto bad_swap;
1994 }
1995 }
1996
1997 inode = mapping->host;
1998 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
1999 error = claim_swapfile(p, inode);
2000 if (unlikely(error))
2001 goto bad_swap;
2002
2003 /*
2004 * Read the swap header.
2005 */
2006 if (!mapping->a_ops->readpage) {
2007 error = -EINVAL;
2008 goto bad_swap;
2009 }
2010 page = read_mapping_page(mapping, 0, swap_file);
2011 if (IS_ERR(page)) {
2012 error = PTR_ERR(page);
2013 goto bad_swap;
2014 }
2015 swap_header = kmap(page);
2016
2017 maxpages = read_swap_header(p, swap_header, inode);
2018 if (unlikely(!maxpages)) {
2019 error = -EINVAL;
2020 goto bad_swap;
2021 }
2022
2023 /* OK, set up the swap map and apply the bad block list */
2024 swap_map = vzalloc(maxpages);
2025 if (!swap_map) {
2026 error = -ENOMEM;
2027 goto bad_swap;
2028 }
2029
2030 error = swap_cgroup_swapon(p->type, maxpages);
2031 if (error)
2032 goto bad_swap;
2033
2034 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2035 maxpages, &span);
2036 if (unlikely(nr_extents < 0)) {
2037 error = nr_extents;
2038 goto bad_swap;
2039 }
2040 /* frontswap enabled? set up bit-per-page map for frontswap */
2041 if (frontswap_enabled)
2042 frontswap_map = vzalloc(maxpages / sizeof(long));
2043
2044 if (p->bdev) {
2045 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2046 p->flags |= SWP_SOLIDSTATE;
2047 p->cluster_next = 1 + (random32() % p->highest_bit);
2048 }
2049 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2050 p->flags |= SWP_DISCARDABLE;
2051 }
2052
2053 mutex_lock(&swapon_mutex);
2054 prio = -1;
2055 if (swap_flags & SWAP_FLAG_PREFER)
2056 prio =
2057 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2058 enable_swap_info(p, prio, swap_map, frontswap_map);
2059
2060 printk(KERN_INFO "Adding %uk swap on %s. "
2061 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2062 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2063 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2064 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2065 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2066 (frontswap_map) ? "FS" : "");
2067
2068 mutex_unlock(&swapon_mutex);
2069 atomic_inc(&proc_poll_event);
2070 wake_up_interruptible(&proc_poll_wait);
2071
2072 if (S_ISREG(inode->i_mode))
2073 inode->i_flags |= S_SWAPFILE;
2074 error = 0;
2075 goto out;
2076 bad_swap:
2077 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2078 set_blocksize(p->bdev, p->old_block_size);
2079 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2080 }
2081 destroy_swap_extents(p);
2082 swap_cgroup_swapoff(p->type);
2083 spin_lock(&swap_lock);
2084 p->swap_file = NULL;
2085 p->flags = 0;
2086 spin_unlock(&swap_lock);
2087 vfree(swap_map);
2088 if (swap_file) {
2089 if (inode && S_ISREG(inode->i_mode)) {
2090 mutex_unlock(&inode->i_mutex);
2091 inode = NULL;
2092 }
2093 filp_close(swap_file, NULL);
2094 }
2095 out:
2096 if (page && !IS_ERR(page)) {
2097 kunmap(page);
2098 page_cache_release(page);
2099 }
2100 if (name)
2101 putname(name);
2102 if (inode && S_ISREG(inode->i_mode))
2103 mutex_unlock(&inode->i_mutex);
2104 return error;
2105 }
2106
2107 void si_swapinfo(struct sysinfo *val)
2108 {
2109 unsigned int type;
2110 unsigned long nr_to_be_unused = 0;
2111
2112 spin_lock(&swap_lock);
2113 for (type = 0; type < nr_swapfiles; type++) {
2114 struct swap_info_struct *si = swap_info[type];
2115
2116 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2117 nr_to_be_unused += si->inuse_pages;
2118 }
2119 val->freeswap = nr_swap_pages + nr_to_be_unused;
2120 val->totalswap = total_swap_pages + nr_to_be_unused;
2121 spin_unlock(&swap_lock);
2122 }
2123
2124 /*
2125 * Verify that a swap entry is valid and increment its swap map count.
2126 *
2127 * Returns error code in following case.
2128 * - success -> 0
2129 * - swp_entry is invalid -> EINVAL
2130 * - swp_entry is migration entry -> EINVAL
2131 * - swap-cache reference is requested but there is already one. -> EEXIST
2132 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2133 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2134 */
2135 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2136 {
2137 struct swap_info_struct *p;
2138 unsigned long offset, type;
2139 unsigned char count;
2140 unsigned char has_cache;
2141 int err = -EINVAL;
2142
2143 if (non_swap_entry(entry))
2144 goto out;
2145
2146 type = swp_type(entry);
2147 if (type >= nr_swapfiles)
2148 goto bad_file;
2149 p = swap_info[type];
2150 offset = swp_offset(entry);
2151
2152 spin_lock(&swap_lock);
2153 if (unlikely(offset >= p->max))
2154 goto unlock_out;
2155
2156 count = p->swap_map[offset];
2157 has_cache = count & SWAP_HAS_CACHE;
2158 count &= ~SWAP_HAS_CACHE;
2159 err = 0;
2160
2161 if (usage == SWAP_HAS_CACHE) {
2162
2163 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2164 if (!has_cache && count)
2165 has_cache = SWAP_HAS_CACHE;
2166 else if (has_cache) /* someone else added cache */
2167 err = -EEXIST;
2168 else /* no users remaining */
2169 err = -ENOENT;
2170
2171 } else if (count || has_cache) {
2172
2173 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2174 count += usage;
2175 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2176 err = -EINVAL;
2177 else if (swap_count_continued(p, offset, count))
2178 count = COUNT_CONTINUED;
2179 else
2180 err = -ENOMEM;
2181 } else
2182 err = -ENOENT; /* unused swap entry */
2183
2184 p->swap_map[offset] = count | has_cache;
2185
2186 unlock_out:
2187 spin_unlock(&swap_lock);
2188 out:
2189 return err;
2190
2191 bad_file:
2192 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2193 goto out;
2194 }
2195
2196 /*
2197 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2198 * (in which case its reference count is never incremented).
2199 */
2200 void swap_shmem_alloc(swp_entry_t entry)
2201 {
2202 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2203 }
2204
2205 /*
2206 * Increase reference count of swap entry by 1.
2207 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2208 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2209 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2210 * might occur if a page table entry has got corrupted.
2211 */
2212 int swap_duplicate(swp_entry_t entry)
2213 {
2214 int err = 0;
2215
2216 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2217 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2218 return err;
2219 }
2220
2221 /*
2222 * @entry: swap entry for which we allocate swap cache.
2223 *
2224 * Called when allocating swap cache for existing swap entry,
2225 * This can return error codes. Returns 0 at success.
2226 * -EBUSY means there is a swap cache.
2227 * Note: return code is different from swap_duplicate().
2228 */
2229 int swapcache_prepare(swp_entry_t entry)
2230 {
2231 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2232 }
2233
2234 struct swap_info_struct *page_swap_info(struct page *page)
2235 {
2236 swp_entry_t swap = { .val = page_private(page) };
2237 BUG_ON(!PageSwapCache(page));
2238 return swap_info[swp_type(swap)];
2239 }
2240
2241 /*
2242 * out-of-line __page_file_ methods to avoid include hell.
2243 */
2244 struct address_space *__page_file_mapping(struct page *page)
2245 {
2246 VM_BUG_ON(!PageSwapCache(page));
2247 return page_swap_info(page)->swap_file->f_mapping;
2248 }
2249 EXPORT_SYMBOL_GPL(__page_file_mapping);
2250
2251 pgoff_t __page_file_index(struct page *page)
2252 {
2253 swp_entry_t swap = { .val = page_private(page) };
2254 VM_BUG_ON(!PageSwapCache(page));
2255 return swp_offset(swap);
2256 }
2257 EXPORT_SYMBOL_GPL(__page_file_index);
2258
2259 /*
2260 * add_swap_count_continuation - called when a swap count is duplicated
2261 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2262 * page of the original vmalloc'ed swap_map, to hold the continuation count
2263 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2264 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2265 *
2266 * These continuation pages are seldom referenced: the common paths all work
2267 * on the original swap_map, only referring to a continuation page when the
2268 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2269 *
2270 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2271 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2272 * can be called after dropping locks.
2273 */
2274 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2275 {
2276 struct swap_info_struct *si;
2277 struct page *head;
2278 struct page *page;
2279 struct page *list_page;
2280 pgoff_t offset;
2281 unsigned char count;
2282
2283 /*
2284 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2285 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2286 */
2287 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2288
2289 si = swap_info_get(entry);
2290 if (!si) {
2291 /*
2292 * An acceptable race has occurred since the failing
2293 * __swap_duplicate(): the swap entry has been freed,
2294 * perhaps even the whole swap_map cleared for swapoff.
2295 */
2296 goto outer;
2297 }
2298
2299 offset = swp_offset(entry);
2300 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2301
2302 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2303 /*
2304 * The higher the swap count, the more likely it is that tasks
2305 * will race to add swap count continuation: we need to avoid
2306 * over-provisioning.
2307 */
2308 goto out;
2309 }
2310
2311 if (!page) {
2312 spin_unlock(&swap_lock);
2313 return -ENOMEM;
2314 }
2315
2316 /*
2317 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2318 * no architecture is using highmem pages for kernel pagetables: so it
2319 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2320 */
2321 head = vmalloc_to_page(si->swap_map + offset);
2322 offset &= ~PAGE_MASK;
2323
2324 /*
2325 * Page allocation does not initialize the page's lru field,
2326 * but it does always reset its private field.
2327 */
2328 if (!page_private(head)) {
2329 BUG_ON(count & COUNT_CONTINUED);
2330 INIT_LIST_HEAD(&head->lru);
2331 set_page_private(head, SWP_CONTINUED);
2332 si->flags |= SWP_CONTINUED;
2333 }
2334
2335 list_for_each_entry(list_page, &head->lru, lru) {
2336 unsigned char *map;
2337
2338 /*
2339 * If the previous map said no continuation, but we've found
2340 * a continuation page, free our allocation and use this one.
2341 */
2342 if (!(count & COUNT_CONTINUED))
2343 goto out;
2344
2345 map = kmap_atomic(list_page) + offset;
2346 count = *map;
2347 kunmap_atomic(map);
2348
2349 /*
2350 * If this continuation count now has some space in it,
2351 * free our allocation and use this one.
2352 */
2353 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2354 goto out;
2355 }
2356
2357 list_add_tail(&page->lru, &head->lru);
2358 page = NULL; /* now it's attached, don't free it */
2359 out:
2360 spin_unlock(&swap_lock);
2361 outer:
2362 if (page)
2363 __free_page(page);
2364 return 0;
2365 }
2366
2367 /*
2368 * swap_count_continued - when the original swap_map count is incremented
2369 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2370 * into, carry if so, or else fail until a new continuation page is allocated;
2371 * when the original swap_map count is decremented from 0 with continuation,
2372 * borrow from the continuation and report whether it still holds more.
2373 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2374 */
2375 static bool swap_count_continued(struct swap_info_struct *si,
2376 pgoff_t offset, unsigned char count)
2377 {
2378 struct page *head;
2379 struct page *page;
2380 unsigned char *map;
2381
2382 head = vmalloc_to_page(si->swap_map + offset);
2383 if (page_private(head) != SWP_CONTINUED) {
2384 BUG_ON(count & COUNT_CONTINUED);
2385 return false; /* need to add count continuation */
2386 }
2387
2388 offset &= ~PAGE_MASK;
2389 page = list_entry(head->lru.next, struct page, lru);
2390 map = kmap_atomic(page) + offset;
2391
2392 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2393 goto init_map; /* jump over SWAP_CONT_MAX checks */
2394
2395 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2396 /*
2397 * Think of how you add 1 to 999
2398 */
2399 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2400 kunmap_atomic(map);
2401 page = list_entry(page->lru.next, struct page, lru);
2402 BUG_ON(page == head);
2403 map = kmap_atomic(page) + offset;
2404 }
2405 if (*map == SWAP_CONT_MAX) {
2406 kunmap_atomic(map);
2407 page = list_entry(page->lru.next, struct page, lru);
2408 if (page == head)
2409 return false; /* add count continuation */
2410 map = kmap_atomic(page) + offset;
2411 init_map: *map = 0; /* we didn't zero the page */
2412 }
2413 *map += 1;
2414 kunmap_atomic(map);
2415 page = list_entry(page->lru.prev, struct page, lru);
2416 while (page != head) {
2417 map = kmap_atomic(page) + offset;
2418 *map = COUNT_CONTINUED;
2419 kunmap_atomic(map);
2420 page = list_entry(page->lru.prev, struct page, lru);
2421 }
2422 return true; /* incremented */
2423
2424 } else { /* decrementing */
2425 /*
2426 * Think of how you subtract 1 from 1000
2427 */
2428 BUG_ON(count != COUNT_CONTINUED);
2429 while (*map == COUNT_CONTINUED) {
2430 kunmap_atomic(map);
2431 page = list_entry(page->lru.next, struct page, lru);
2432 BUG_ON(page == head);
2433 map = kmap_atomic(page) + offset;
2434 }
2435 BUG_ON(*map == 0);
2436 *map -= 1;
2437 if (*map == 0)
2438 count = 0;
2439 kunmap_atomic(map);
2440 page = list_entry(page->lru.prev, struct page, lru);
2441 while (page != head) {
2442 map = kmap_atomic(page) + offset;
2443 *map = SWAP_CONT_MAX | count;
2444 count = COUNT_CONTINUED;
2445 kunmap_atomic(map);
2446 page = list_entry(page->lru.prev, struct page, lru);
2447 }
2448 return count == COUNT_CONTINUED;
2449 }
2450 }
2451
2452 /*
2453 * free_swap_count_continuations - swapoff free all the continuation pages
2454 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2455 */
2456 static void free_swap_count_continuations(struct swap_info_struct *si)
2457 {
2458 pgoff_t offset;
2459
2460 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2461 struct page *head;
2462 head = vmalloc_to_page(si->swap_map + offset);
2463 if (page_private(head)) {
2464 struct list_head *this, *next;
2465 list_for_each_safe(this, next, &head->lru) {
2466 struct page *page;
2467 page = list_entry(this, struct page, lru);
2468 list_del(this);
2469 __free_page(page);
2470 }
2471 }
2472 }
2473 }
This page took 0.085091 seconds and 5 git commands to generate.