4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
51 long total_swap_pages
;
52 static int least_priority
;
54 static const char Bad_file
[] = "Bad swap file entry ";
55 static const char Unused_file
[] = "Unused swap file entry ";
56 static const char Bad_offset
[] = "Bad swap offset entry ";
57 static const char Unused_offset
[] = "Unused swap offset entry ";
59 struct swap_list_t swap_list
= {-1, -1};
61 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
63 static DEFINE_MUTEX(swapon_mutex
);
65 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
66 /* Activity counter to indicate that a swapon or swapoff has occurred */
67 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
69 static inline unsigned char swap_count(unsigned char ent
)
71 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
74 /* returns 1 if swap entry is freed */
76 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
78 swp_entry_t entry
= swp_entry(si
->type
, offset
);
82 page
= find_get_page(&swapper_space
, entry
.val
);
86 * This function is called from scan_swap_map() and it's called
87 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
88 * We have to use trylock for avoiding deadlock. This is a special
89 * case and you should use try_to_free_swap() with explicit lock_page()
90 * in usual operations.
92 if (trylock_page(page
)) {
93 ret
= try_to_free_swap(page
);
96 page_cache_release(page
);
101 * swapon tell device that all the old swap contents can be discarded,
102 * to allow the swap device to optimize its wear-levelling.
104 static int discard_swap(struct swap_info_struct
*si
)
106 struct swap_extent
*se
;
107 sector_t start_block
;
111 /* Do not discard the swap header page! */
112 se
= &si
->first_swap_extent
;
113 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
114 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
116 err
= blkdev_issue_discard(si
->bdev
, start_block
,
117 nr_blocks
, GFP_KERNEL
, 0);
123 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
124 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
125 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
127 err
= blkdev_issue_discard(si
->bdev
, start_block
,
128 nr_blocks
, GFP_KERNEL
, 0);
134 return err
; /* That will often be -EOPNOTSUPP */
138 * swap allocation tell device that a cluster of swap can now be discarded,
139 * to allow the swap device to optimize its wear-levelling.
141 static void discard_swap_cluster(struct swap_info_struct
*si
,
142 pgoff_t start_page
, pgoff_t nr_pages
)
144 struct swap_extent
*se
= si
->curr_swap_extent
;
145 int found_extent
= 0;
148 struct list_head
*lh
;
150 if (se
->start_page
<= start_page
&&
151 start_page
< se
->start_page
+ se
->nr_pages
) {
152 pgoff_t offset
= start_page
- se
->start_page
;
153 sector_t start_block
= se
->start_block
+ offset
;
154 sector_t nr_blocks
= se
->nr_pages
- offset
;
156 if (nr_blocks
> nr_pages
)
157 nr_blocks
= nr_pages
;
158 start_page
+= nr_blocks
;
159 nr_pages
-= nr_blocks
;
162 si
->curr_swap_extent
= se
;
164 start_block
<<= PAGE_SHIFT
- 9;
165 nr_blocks
<<= PAGE_SHIFT
- 9;
166 if (blkdev_issue_discard(si
->bdev
, start_block
,
167 nr_blocks
, GFP_NOIO
, 0))
172 se
= list_entry(lh
, struct swap_extent
, list
);
176 static int wait_for_discard(void *word
)
182 #define SWAPFILE_CLUSTER 256
183 #define LATENCY_LIMIT 256
185 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
188 unsigned long offset
;
189 unsigned long scan_base
;
190 unsigned long last_in_cluster
= 0;
191 int latency_ration
= LATENCY_LIMIT
;
192 int found_free_cluster
= 0;
195 * We try to cluster swap pages by allocating them sequentially
196 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
197 * way, however, we resort to first-free allocation, starting
198 * a new cluster. This prevents us from scattering swap pages
199 * all over the entire swap partition, so that we reduce
200 * overall disk seek times between swap pages. -- sct
201 * But we do now try to find an empty cluster. -Andrea
202 * And we let swap pages go all over an SSD partition. Hugh
205 si
->flags
+= SWP_SCANNING
;
206 scan_base
= offset
= si
->cluster_next
;
208 if (unlikely(!si
->cluster_nr
--)) {
209 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
210 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
213 if (si
->flags
& SWP_DISCARDABLE
) {
215 * Start range check on racing allocations, in case
216 * they overlap the cluster we eventually decide on
217 * (we scan without swap_lock to allow preemption).
218 * It's hardly conceivable that cluster_nr could be
219 * wrapped during our scan, but don't depend on it.
221 if (si
->lowest_alloc
)
223 si
->lowest_alloc
= si
->max
;
224 si
->highest_alloc
= 0;
226 spin_unlock(&swap_lock
);
229 * If seek is expensive, start searching for new cluster from
230 * start of partition, to minimize the span of allocated swap.
231 * But if seek is cheap, search from our current position, so
232 * that swap is allocated from all over the partition: if the
233 * Flash Translation Layer only remaps within limited zones,
234 * we don't want to wear out the first zone too quickly.
236 if (!(si
->flags
& SWP_SOLIDSTATE
))
237 scan_base
= offset
= si
->lowest_bit
;
238 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
240 /* Locate the first empty (unaligned) cluster */
241 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
242 if (si
->swap_map
[offset
])
243 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
244 else if (offset
== last_in_cluster
) {
245 spin_lock(&swap_lock
);
246 offset
-= SWAPFILE_CLUSTER
- 1;
247 si
->cluster_next
= offset
;
248 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
249 found_free_cluster
= 1;
252 if (unlikely(--latency_ration
< 0)) {
254 latency_ration
= LATENCY_LIMIT
;
258 offset
= si
->lowest_bit
;
259 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
261 /* Locate the first empty (unaligned) cluster */
262 for (; last_in_cluster
< scan_base
; offset
++) {
263 if (si
->swap_map
[offset
])
264 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
265 else if (offset
== last_in_cluster
) {
266 spin_lock(&swap_lock
);
267 offset
-= SWAPFILE_CLUSTER
- 1;
268 si
->cluster_next
= offset
;
269 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
270 found_free_cluster
= 1;
273 if (unlikely(--latency_ration
< 0)) {
275 latency_ration
= LATENCY_LIMIT
;
280 spin_lock(&swap_lock
);
281 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
282 si
->lowest_alloc
= 0;
286 if (!(si
->flags
& SWP_WRITEOK
))
288 if (!si
->highest_bit
)
290 if (offset
> si
->highest_bit
)
291 scan_base
= offset
= si
->lowest_bit
;
293 /* reuse swap entry of cache-only swap if not busy. */
294 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
296 spin_unlock(&swap_lock
);
297 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
298 spin_lock(&swap_lock
);
299 /* entry was freed successfully, try to use this again */
302 goto scan
; /* check next one */
305 if (si
->swap_map
[offset
])
308 if (offset
== si
->lowest_bit
)
310 if (offset
== si
->highest_bit
)
313 if (si
->inuse_pages
== si
->pages
) {
314 si
->lowest_bit
= si
->max
;
317 si
->swap_map
[offset
] = usage
;
318 si
->cluster_next
= offset
+ 1;
319 si
->flags
-= SWP_SCANNING
;
321 if (si
->lowest_alloc
) {
323 * Only set when SWP_DISCARDABLE, and there's a scan
324 * for a free cluster in progress or just completed.
326 if (found_free_cluster
) {
328 * To optimize wear-levelling, discard the
329 * old data of the cluster, taking care not to
330 * discard any of its pages that have already
331 * been allocated by racing tasks (offset has
332 * already stepped over any at the beginning).
334 if (offset
< si
->highest_alloc
&&
335 si
->lowest_alloc
<= last_in_cluster
)
336 last_in_cluster
= si
->lowest_alloc
- 1;
337 si
->flags
|= SWP_DISCARDING
;
338 spin_unlock(&swap_lock
);
340 if (offset
< last_in_cluster
)
341 discard_swap_cluster(si
, offset
,
342 last_in_cluster
- offset
+ 1);
344 spin_lock(&swap_lock
);
345 si
->lowest_alloc
= 0;
346 si
->flags
&= ~SWP_DISCARDING
;
348 smp_mb(); /* wake_up_bit advises this */
349 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
351 } else if (si
->flags
& SWP_DISCARDING
) {
353 * Delay using pages allocated by racing tasks
354 * until the whole discard has been issued. We
355 * could defer that delay until swap_writepage,
356 * but it's easier to keep this self-contained.
358 spin_unlock(&swap_lock
);
359 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
360 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
361 spin_lock(&swap_lock
);
364 * Note pages allocated by racing tasks while
365 * scan for a free cluster is in progress, so
366 * that its final discard can exclude them.
368 if (offset
< si
->lowest_alloc
)
369 si
->lowest_alloc
= offset
;
370 if (offset
> si
->highest_alloc
)
371 si
->highest_alloc
= offset
;
377 spin_unlock(&swap_lock
);
378 while (++offset
<= si
->highest_bit
) {
379 if (!si
->swap_map
[offset
]) {
380 spin_lock(&swap_lock
);
383 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
384 spin_lock(&swap_lock
);
387 if (unlikely(--latency_ration
< 0)) {
389 latency_ration
= LATENCY_LIMIT
;
392 offset
= si
->lowest_bit
;
393 while (++offset
< scan_base
) {
394 if (!si
->swap_map
[offset
]) {
395 spin_lock(&swap_lock
);
398 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
399 spin_lock(&swap_lock
);
402 if (unlikely(--latency_ration
< 0)) {
404 latency_ration
= LATENCY_LIMIT
;
407 spin_lock(&swap_lock
);
410 si
->flags
-= SWP_SCANNING
;
414 swp_entry_t
get_swap_page(void)
416 struct swap_info_struct
*si
;
421 spin_lock(&swap_lock
);
422 if (nr_swap_pages
<= 0)
426 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
427 si
= swap_info
[type
];
430 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
431 next
= swap_list
.head
;
435 if (!si
->highest_bit
)
437 if (!(si
->flags
& SWP_WRITEOK
))
440 swap_list
.next
= next
;
441 /* This is called for allocating swap entry for cache */
442 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
444 spin_unlock(&swap_lock
);
445 return swp_entry(type
, offset
);
447 next
= swap_list
.next
;
452 spin_unlock(&swap_lock
);
453 return (swp_entry_t
) {0};
456 /* The only caller of this function is now susupend routine */
457 swp_entry_t
get_swap_page_of_type(int type
)
459 struct swap_info_struct
*si
;
462 spin_lock(&swap_lock
);
463 si
= swap_info
[type
];
464 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
466 /* This is called for allocating swap entry, not cache */
467 offset
= scan_swap_map(si
, 1);
469 spin_unlock(&swap_lock
);
470 return swp_entry(type
, offset
);
474 spin_unlock(&swap_lock
);
475 return (swp_entry_t
) {0};
478 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
480 struct swap_info_struct
*p
;
481 unsigned long offset
, type
;
485 type
= swp_type(entry
);
486 if (type
>= nr_swapfiles
)
489 if (!(p
->flags
& SWP_USED
))
491 offset
= swp_offset(entry
);
492 if (offset
>= p
->max
)
494 if (!p
->swap_map
[offset
])
496 spin_lock(&swap_lock
);
500 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
503 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
506 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
509 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
514 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
515 swp_entry_t entry
, unsigned char usage
)
517 unsigned long offset
= swp_offset(entry
);
519 unsigned char has_cache
;
521 count
= p
->swap_map
[offset
];
522 has_cache
= count
& SWAP_HAS_CACHE
;
523 count
&= ~SWAP_HAS_CACHE
;
525 if (usage
== SWAP_HAS_CACHE
) {
526 VM_BUG_ON(!has_cache
);
528 } else if (count
== SWAP_MAP_SHMEM
) {
530 * Or we could insist on shmem.c using a special
531 * swap_shmem_free() and free_shmem_swap_and_cache()...
534 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
535 if (count
== COUNT_CONTINUED
) {
536 if (swap_count_continued(p
, offset
, count
))
537 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
539 count
= SWAP_MAP_MAX
;
545 mem_cgroup_uncharge_swap(entry
);
547 usage
= count
| has_cache
;
548 p
->swap_map
[offset
] = usage
;
550 /* free if no reference */
552 if (offset
< p
->lowest_bit
)
553 p
->lowest_bit
= offset
;
554 if (offset
> p
->highest_bit
)
555 p
->highest_bit
= offset
;
556 if (swap_list
.next
>= 0 &&
557 p
->prio
> swap_info
[swap_list
.next
]->prio
)
558 swap_list
.next
= p
->type
;
561 frontswap_invalidate_page(p
->type
, offset
);
562 if (p
->flags
& SWP_BLKDEV
) {
563 struct gendisk
*disk
= p
->bdev
->bd_disk
;
564 if (disk
->fops
->swap_slot_free_notify
)
565 disk
->fops
->swap_slot_free_notify(p
->bdev
,
574 * Caller has made sure that the swapdevice corresponding to entry
575 * is still around or has not been recycled.
577 void swap_free(swp_entry_t entry
)
579 struct swap_info_struct
*p
;
581 p
= swap_info_get(entry
);
583 swap_entry_free(p
, entry
, 1);
584 spin_unlock(&swap_lock
);
589 * Called after dropping swapcache to decrease refcnt to swap entries.
591 void swapcache_free(swp_entry_t entry
, struct page
*page
)
593 struct swap_info_struct
*p
;
596 p
= swap_info_get(entry
);
598 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
600 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
601 spin_unlock(&swap_lock
);
606 * How many references to page are currently swapped out?
607 * This does not give an exact answer when swap count is continued,
608 * but does include the high COUNT_CONTINUED flag to allow for that.
610 int page_swapcount(struct page
*page
)
613 struct swap_info_struct
*p
;
616 entry
.val
= page_private(page
);
617 p
= swap_info_get(entry
);
619 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
620 spin_unlock(&swap_lock
);
626 * We can write to an anon page without COW if there are no other references
627 * to it. And as a side-effect, free up its swap: because the old content
628 * on disk will never be read, and seeking back there to write new content
629 * later would only waste time away from clustering.
631 int reuse_swap_page(struct page
*page
)
635 VM_BUG_ON(!PageLocked(page
));
636 if (unlikely(PageKsm(page
)))
638 count
= page_mapcount(page
);
639 if (count
<= 1 && PageSwapCache(page
)) {
640 count
+= page_swapcount(page
);
641 if (count
== 1 && !PageWriteback(page
)) {
642 delete_from_swap_cache(page
);
650 * If swap is getting full, or if there are no more mappings of this page,
651 * then try_to_free_swap is called to free its swap space.
653 int try_to_free_swap(struct page
*page
)
655 VM_BUG_ON(!PageLocked(page
));
657 if (!PageSwapCache(page
))
659 if (PageWriteback(page
))
661 if (page_swapcount(page
))
665 * Once hibernation has begun to create its image of memory,
666 * there's a danger that one of the calls to try_to_free_swap()
667 * - most probably a call from __try_to_reclaim_swap() while
668 * hibernation is allocating its own swap pages for the image,
669 * but conceivably even a call from memory reclaim - will free
670 * the swap from a page which has already been recorded in the
671 * image as a clean swapcache page, and then reuse its swap for
672 * another page of the image. On waking from hibernation, the
673 * original page might be freed under memory pressure, then
674 * later read back in from swap, now with the wrong data.
676 * Hibration suspends storage while it is writing the image
677 * to disk so check that here.
679 if (pm_suspended_storage())
682 delete_from_swap_cache(page
);
688 * Free the swap entry like above, but also try to
689 * free the page cache entry if it is the last user.
691 int free_swap_and_cache(swp_entry_t entry
)
693 struct swap_info_struct
*p
;
694 struct page
*page
= NULL
;
696 if (non_swap_entry(entry
))
699 p
= swap_info_get(entry
);
701 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
702 page
= find_get_page(&swapper_space
, entry
.val
);
703 if (page
&& !trylock_page(page
)) {
704 page_cache_release(page
);
708 spin_unlock(&swap_lock
);
712 * Not mapped elsewhere, or swap space full? Free it!
713 * Also recheck PageSwapCache now page is locked (above).
715 if (PageSwapCache(page
) && !PageWriteback(page
) &&
716 (!page_mapped(page
) || vm_swap_full())) {
717 delete_from_swap_cache(page
);
721 page_cache_release(page
);
726 #ifdef CONFIG_HIBERNATION
728 * Find the swap type that corresponds to given device (if any).
730 * @offset - number of the PAGE_SIZE-sized block of the device, starting
731 * from 0, in which the swap header is expected to be located.
733 * This is needed for the suspend to disk (aka swsusp).
735 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
737 struct block_device
*bdev
= NULL
;
741 bdev
= bdget(device
);
743 spin_lock(&swap_lock
);
744 for (type
= 0; type
< nr_swapfiles
; type
++) {
745 struct swap_info_struct
*sis
= swap_info
[type
];
747 if (!(sis
->flags
& SWP_WRITEOK
))
752 *bdev_p
= bdgrab(sis
->bdev
);
754 spin_unlock(&swap_lock
);
757 if (bdev
== sis
->bdev
) {
758 struct swap_extent
*se
= &sis
->first_swap_extent
;
760 if (se
->start_block
== offset
) {
762 *bdev_p
= bdgrab(sis
->bdev
);
764 spin_unlock(&swap_lock
);
770 spin_unlock(&swap_lock
);
778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
779 * corresponding to given index in swap_info (swap type).
781 sector_t
swapdev_block(int type
, pgoff_t offset
)
783 struct block_device
*bdev
;
785 if ((unsigned int)type
>= nr_swapfiles
)
787 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
789 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
793 * Return either the total number of swap pages of given type, or the number
794 * of free pages of that type (depending on @free)
796 * This is needed for software suspend
798 unsigned int count_swap_pages(int type
, int free
)
802 spin_lock(&swap_lock
);
803 if ((unsigned int)type
< nr_swapfiles
) {
804 struct swap_info_struct
*sis
= swap_info
[type
];
806 if (sis
->flags
& SWP_WRITEOK
) {
809 n
-= sis
->inuse_pages
;
812 spin_unlock(&swap_lock
);
815 #endif /* CONFIG_HIBERNATION */
818 * No need to decide whether this PTE shares the swap entry with others,
819 * just let do_wp_page work it out if a write is requested later - to
820 * force COW, vm_page_prot omits write permission from any private vma.
822 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
823 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
825 struct mem_cgroup
*memcg
;
830 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
,
831 GFP_KERNEL
, &memcg
)) {
836 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
837 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
838 mem_cgroup_cancel_charge_swapin(memcg
);
843 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
844 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
846 set_pte_at(vma
->vm_mm
, addr
, pte
,
847 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
848 page_add_anon_rmap(page
, vma
, addr
);
849 mem_cgroup_commit_charge_swapin(page
, memcg
);
852 * Move the page to the active list so it is not
853 * immediately swapped out again after swapon.
857 pte_unmap_unlock(pte
, ptl
);
862 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
863 unsigned long addr
, unsigned long end
,
864 swp_entry_t entry
, struct page
*page
)
866 pte_t swp_pte
= swp_entry_to_pte(entry
);
871 * We don't actually need pte lock while scanning for swp_pte: since
872 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
873 * page table while we're scanning; though it could get zapped, and on
874 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
875 * of unmatched parts which look like swp_pte, so unuse_pte must
876 * recheck under pte lock. Scanning without pte lock lets it be
877 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
879 pte
= pte_offset_map(pmd
, addr
);
882 * swapoff spends a _lot_ of time in this loop!
883 * Test inline before going to call unuse_pte.
885 if (unlikely(pte_same(*pte
, swp_pte
))) {
887 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
890 pte
= pte_offset_map(pmd
, addr
);
892 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
898 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
899 unsigned long addr
, unsigned long end
,
900 swp_entry_t entry
, struct page
*page
)
906 pmd
= pmd_offset(pud
, addr
);
908 next
= pmd_addr_end(addr
, end
);
909 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
911 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
914 } while (pmd
++, addr
= next
, addr
!= end
);
918 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
919 unsigned long addr
, unsigned long end
,
920 swp_entry_t entry
, struct page
*page
)
926 pud
= pud_offset(pgd
, addr
);
928 next
= pud_addr_end(addr
, end
);
929 if (pud_none_or_clear_bad(pud
))
931 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
934 } while (pud
++, addr
= next
, addr
!= end
);
938 static int unuse_vma(struct vm_area_struct
*vma
,
939 swp_entry_t entry
, struct page
*page
)
942 unsigned long addr
, end
, next
;
945 if (page_anon_vma(page
)) {
946 addr
= page_address_in_vma(page
, vma
);
950 end
= addr
+ PAGE_SIZE
;
952 addr
= vma
->vm_start
;
956 pgd
= pgd_offset(vma
->vm_mm
, addr
);
958 next
= pgd_addr_end(addr
, end
);
959 if (pgd_none_or_clear_bad(pgd
))
961 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
964 } while (pgd
++, addr
= next
, addr
!= end
);
968 static int unuse_mm(struct mm_struct
*mm
,
969 swp_entry_t entry
, struct page
*page
)
971 struct vm_area_struct
*vma
;
974 if (!down_read_trylock(&mm
->mmap_sem
)) {
976 * Activate page so shrink_inactive_list is unlikely to unmap
977 * its ptes while lock is dropped, so swapoff can make progress.
981 down_read(&mm
->mmap_sem
);
984 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
985 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
988 up_read(&mm
->mmap_sem
);
989 return (ret
< 0)? ret
: 0;
993 * Scan swap_map (or frontswap_map if frontswap parameter is true)
994 * from current position to next entry still in use.
995 * Recycle to start on reaching the end, returning 0 when empty.
997 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
998 unsigned int prev
, bool frontswap
)
1000 unsigned int max
= si
->max
;
1001 unsigned int i
= prev
;
1002 unsigned char count
;
1005 * No need for swap_lock here: we're just looking
1006 * for whether an entry is in use, not modifying it; false
1007 * hits are okay, and sys_swapoff() has already prevented new
1008 * allocations from this area (while holding swap_lock).
1017 * No entries in use at top of swap_map,
1018 * loop back to start and recheck there.
1025 if (frontswap_test(si
, i
))
1030 count
= si
->swap_map
[i
];
1031 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1038 * We completely avoid races by reading each swap page in advance,
1039 * and then search for the process using it. All the necessary
1040 * page table adjustments can then be made atomically.
1042 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1043 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1045 int try_to_unuse(unsigned int type
, bool frontswap
,
1046 unsigned long pages_to_unuse
)
1048 struct swap_info_struct
*si
= swap_info
[type
];
1049 struct mm_struct
*start_mm
;
1050 unsigned char *swap_map
;
1051 unsigned char swcount
;
1058 * When searching mms for an entry, a good strategy is to
1059 * start at the first mm we freed the previous entry from
1060 * (though actually we don't notice whether we or coincidence
1061 * freed the entry). Initialize this start_mm with a hold.
1063 * A simpler strategy would be to start at the last mm we
1064 * freed the previous entry from; but that would take less
1065 * advantage of mmlist ordering, which clusters forked mms
1066 * together, child after parent. If we race with dup_mmap(), we
1067 * prefer to resolve parent before child, lest we miss entries
1068 * duplicated after we scanned child: using last mm would invert
1071 start_mm
= &init_mm
;
1072 atomic_inc(&init_mm
.mm_users
);
1075 * Keep on scanning until all entries have gone. Usually,
1076 * one pass through swap_map is enough, but not necessarily:
1077 * there are races when an instance of an entry might be missed.
1079 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1080 if (signal_pending(current
)) {
1086 * Get a page for the entry, using the existing swap
1087 * cache page if there is one. Otherwise, get a clean
1088 * page and read the swap into it.
1090 swap_map
= &si
->swap_map
[i
];
1091 entry
= swp_entry(type
, i
);
1092 page
= read_swap_cache_async(entry
,
1093 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1096 * Either swap_duplicate() failed because entry
1097 * has been freed independently, and will not be
1098 * reused since sys_swapoff() already disabled
1099 * allocation from here, or alloc_page() failed.
1108 * Don't hold on to start_mm if it looks like exiting.
1110 if (atomic_read(&start_mm
->mm_users
) == 1) {
1112 start_mm
= &init_mm
;
1113 atomic_inc(&init_mm
.mm_users
);
1117 * Wait for and lock page. When do_swap_page races with
1118 * try_to_unuse, do_swap_page can handle the fault much
1119 * faster than try_to_unuse can locate the entry. This
1120 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1121 * defer to do_swap_page in such a case - in some tests,
1122 * do_swap_page and try_to_unuse repeatedly compete.
1124 wait_on_page_locked(page
);
1125 wait_on_page_writeback(page
);
1127 wait_on_page_writeback(page
);
1130 * Remove all references to entry.
1132 swcount
= *swap_map
;
1133 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1134 retval
= shmem_unuse(entry
, page
);
1135 /* page has already been unlocked and released */
1140 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1141 retval
= unuse_mm(start_mm
, entry
, page
);
1143 if (swap_count(*swap_map
)) {
1144 int set_start_mm
= (*swap_map
>= swcount
);
1145 struct list_head
*p
= &start_mm
->mmlist
;
1146 struct mm_struct
*new_start_mm
= start_mm
;
1147 struct mm_struct
*prev_mm
= start_mm
;
1148 struct mm_struct
*mm
;
1150 atomic_inc(&new_start_mm
->mm_users
);
1151 atomic_inc(&prev_mm
->mm_users
);
1152 spin_lock(&mmlist_lock
);
1153 while (swap_count(*swap_map
) && !retval
&&
1154 (p
= p
->next
) != &start_mm
->mmlist
) {
1155 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1156 if (!atomic_inc_not_zero(&mm
->mm_users
))
1158 spin_unlock(&mmlist_lock
);
1164 swcount
= *swap_map
;
1165 if (!swap_count(swcount
)) /* any usage ? */
1167 else if (mm
== &init_mm
)
1170 retval
= unuse_mm(mm
, entry
, page
);
1172 if (set_start_mm
&& *swap_map
< swcount
) {
1173 mmput(new_start_mm
);
1174 atomic_inc(&mm
->mm_users
);
1178 spin_lock(&mmlist_lock
);
1180 spin_unlock(&mmlist_lock
);
1183 start_mm
= new_start_mm
;
1187 page_cache_release(page
);
1192 * If a reference remains (rare), we would like to leave
1193 * the page in the swap cache; but try_to_unmap could
1194 * then re-duplicate the entry once we drop page lock,
1195 * so we might loop indefinitely; also, that page could
1196 * not be swapped out to other storage meanwhile. So:
1197 * delete from cache even if there's another reference,
1198 * after ensuring that the data has been saved to disk -
1199 * since if the reference remains (rarer), it will be
1200 * read from disk into another page. Splitting into two
1201 * pages would be incorrect if swap supported "shared
1202 * private" pages, but they are handled by tmpfs files.
1204 * Given how unuse_vma() targets one particular offset
1205 * in an anon_vma, once the anon_vma has been determined,
1206 * this splitting happens to be just what is needed to
1207 * handle where KSM pages have been swapped out: re-reading
1208 * is unnecessarily slow, but we can fix that later on.
1210 if (swap_count(*swap_map
) &&
1211 PageDirty(page
) && PageSwapCache(page
)) {
1212 struct writeback_control wbc
= {
1213 .sync_mode
= WB_SYNC_NONE
,
1216 swap_writepage(page
, &wbc
);
1218 wait_on_page_writeback(page
);
1222 * It is conceivable that a racing task removed this page from
1223 * swap cache just before we acquired the page lock at the top,
1224 * or while we dropped it in unuse_mm(). The page might even
1225 * be back in swap cache on another swap area: that we must not
1226 * delete, since it may not have been written out to swap yet.
1228 if (PageSwapCache(page
) &&
1229 likely(page_private(page
) == entry
.val
))
1230 delete_from_swap_cache(page
);
1233 * So we could skip searching mms once swap count went
1234 * to 1, we did not mark any present ptes as dirty: must
1235 * mark page dirty so shrink_page_list will preserve it.
1239 page_cache_release(page
);
1242 * Make sure that we aren't completely killing
1243 * interactive performance.
1246 if (frontswap
&& pages_to_unuse
> 0) {
1247 if (!--pages_to_unuse
)
1257 * After a successful try_to_unuse, if no swap is now in use, we know
1258 * we can empty the mmlist. swap_lock must be held on entry and exit.
1259 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1260 * added to the mmlist just after page_duplicate - before would be racy.
1262 static void drain_mmlist(void)
1264 struct list_head
*p
, *next
;
1267 for (type
= 0; type
< nr_swapfiles
; type
++)
1268 if (swap_info
[type
]->inuse_pages
)
1270 spin_lock(&mmlist_lock
);
1271 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1273 spin_unlock(&mmlist_lock
);
1277 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1278 * corresponds to page offset for the specified swap entry.
1279 * Note that the type of this function is sector_t, but it returns page offset
1280 * into the bdev, not sector offset.
1282 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1284 struct swap_info_struct
*sis
;
1285 struct swap_extent
*start_se
;
1286 struct swap_extent
*se
;
1289 sis
= swap_info
[swp_type(entry
)];
1292 offset
= swp_offset(entry
);
1293 start_se
= sis
->curr_swap_extent
;
1297 struct list_head
*lh
;
1299 if (se
->start_page
<= offset
&&
1300 offset
< (se
->start_page
+ se
->nr_pages
)) {
1301 return se
->start_block
+ (offset
- se
->start_page
);
1304 se
= list_entry(lh
, struct swap_extent
, list
);
1305 sis
->curr_swap_extent
= se
;
1306 BUG_ON(se
== start_se
); /* It *must* be present */
1311 * Returns the page offset into bdev for the specified page's swap entry.
1313 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1316 entry
.val
= page_private(page
);
1317 return map_swap_entry(entry
, bdev
);
1321 * Free all of a swapdev's extent information
1323 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1325 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1326 struct swap_extent
*se
;
1328 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1329 struct swap_extent
, list
);
1330 list_del(&se
->list
);
1334 if (sis
->flags
& SWP_FILE
) {
1335 struct file
*swap_file
= sis
->swap_file
;
1336 struct address_space
*mapping
= swap_file
->f_mapping
;
1338 sis
->flags
&= ~SWP_FILE
;
1339 mapping
->a_ops
->swap_deactivate(swap_file
);
1344 * Add a block range (and the corresponding page range) into this swapdev's
1345 * extent list. The extent list is kept sorted in page order.
1347 * This function rather assumes that it is called in ascending page order.
1350 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1351 unsigned long nr_pages
, sector_t start_block
)
1353 struct swap_extent
*se
;
1354 struct swap_extent
*new_se
;
1355 struct list_head
*lh
;
1357 if (start_page
== 0) {
1358 se
= &sis
->first_swap_extent
;
1359 sis
->curr_swap_extent
= se
;
1361 se
->nr_pages
= nr_pages
;
1362 se
->start_block
= start_block
;
1365 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1366 se
= list_entry(lh
, struct swap_extent
, list
);
1367 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1368 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1370 se
->nr_pages
+= nr_pages
;
1376 * No merge. Insert a new extent, preserving ordering.
1378 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1381 new_se
->start_page
= start_page
;
1382 new_se
->nr_pages
= nr_pages
;
1383 new_se
->start_block
= start_block
;
1385 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1390 * A `swap extent' is a simple thing which maps a contiguous range of pages
1391 * onto a contiguous range of disk blocks. An ordered list of swap extents
1392 * is built at swapon time and is then used at swap_writepage/swap_readpage
1393 * time for locating where on disk a page belongs.
1395 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1396 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1397 * swap files identically.
1399 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1400 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1401 * swapfiles are handled *identically* after swapon time.
1403 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1404 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1405 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1406 * requirements, they are simply tossed out - we will never use those blocks
1409 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1410 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1411 * which will scribble on the fs.
1413 * The amount of disk space which a single swap extent represents varies.
1414 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1415 * extents in the list. To avoid much list walking, we cache the previous
1416 * search location in `curr_swap_extent', and start new searches from there.
1417 * This is extremely effective. The average number of iterations in
1418 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1420 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1422 struct file
*swap_file
= sis
->swap_file
;
1423 struct address_space
*mapping
= swap_file
->f_mapping
;
1424 struct inode
*inode
= mapping
->host
;
1427 if (S_ISBLK(inode
->i_mode
)) {
1428 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1433 if (mapping
->a_ops
->swap_activate
) {
1434 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1436 sis
->flags
|= SWP_FILE
;
1437 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1443 return generic_swapfile_activate(sis
, swap_file
, span
);
1446 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1447 unsigned char *swap_map
,
1448 unsigned long *frontswap_map
)
1455 p
->prio
= --least_priority
;
1456 p
->swap_map
= swap_map
;
1457 frontswap_map_set(p
, frontswap_map
);
1458 p
->flags
|= SWP_WRITEOK
;
1459 nr_swap_pages
+= p
->pages
;
1460 total_swap_pages
+= p
->pages
;
1462 /* insert swap space into swap_list: */
1464 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1465 if (p
->prio
>= swap_info
[i
]->prio
)
1471 swap_list
.head
= swap_list
.next
= p
->type
;
1473 swap_info
[prev
]->next
= p
->type
;
1476 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1477 unsigned char *swap_map
,
1478 unsigned long *frontswap_map
)
1480 spin_lock(&swap_lock
);
1481 _enable_swap_info(p
, prio
, swap_map
, frontswap_map
);
1482 frontswap_init(p
->type
);
1483 spin_unlock(&swap_lock
);
1486 static void reinsert_swap_info(struct swap_info_struct
*p
)
1488 spin_lock(&swap_lock
);
1489 _enable_swap_info(p
, p
->prio
, p
->swap_map
, frontswap_map_get(p
));
1490 spin_unlock(&swap_lock
);
1493 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1495 struct swap_info_struct
*p
= NULL
;
1496 unsigned char *swap_map
;
1497 struct file
*swap_file
, *victim
;
1498 struct address_space
*mapping
;
1499 struct inode
*inode
;
1500 struct filename
*pathname
;
1504 if (!capable(CAP_SYS_ADMIN
))
1507 BUG_ON(!current
->mm
);
1509 pathname
= getname(specialfile
);
1510 if (IS_ERR(pathname
))
1511 return PTR_ERR(pathname
);
1513 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1514 err
= PTR_ERR(victim
);
1518 mapping
= victim
->f_mapping
;
1520 spin_lock(&swap_lock
);
1521 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1522 p
= swap_info
[type
];
1523 if (p
->flags
& SWP_WRITEOK
) {
1524 if (p
->swap_file
->f_mapping
== mapping
)
1531 spin_unlock(&swap_lock
);
1534 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1535 vm_unacct_memory(p
->pages
);
1538 spin_unlock(&swap_lock
);
1542 swap_list
.head
= p
->next
;
1544 swap_info
[prev
]->next
= p
->next
;
1545 if (type
== swap_list
.next
) {
1546 /* just pick something that's safe... */
1547 swap_list
.next
= swap_list
.head
;
1550 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1551 swap_info
[i
]->prio
= p
->prio
--;
1554 nr_swap_pages
-= p
->pages
;
1555 total_swap_pages
-= p
->pages
;
1556 p
->flags
&= ~SWP_WRITEOK
;
1557 spin_unlock(&swap_lock
);
1559 set_current_oom_origin();
1560 err
= try_to_unuse(type
, false, 0); /* force all pages to be unused */
1561 clear_current_oom_origin();
1564 /* re-insert swap space back into swap_list */
1565 reinsert_swap_info(p
);
1569 destroy_swap_extents(p
);
1570 if (p
->flags
& SWP_CONTINUED
)
1571 free_swap_count_continuations(p
);
1573 mutex_lock(&swapon_mutex
);
1574 spin_lock(&swap_lock
);
1577 /* wait for anyone still in scan_swap_map */
1578 p
->highest_bit
= 0; /* cuts scans short */
1579 while (p
->flags
>= SWP_SCANNING
) {
1580 spin_unlock(&swap_lock
);
1581 schedule_timeout_uninterruptible(1);
1582 spin_lock(&swap_lock
);
1585 swap_file
= p
->swap_file
;
1586 p
->swap_file
= NULL
;
1588 swap_map
= p
->swap_map
;
1591 frontswap_invalidate_area(type
);
1592 spin_unlock(&swap_lock
);
1593 mutex_unlock(&swapon_mutex
);
1595 vfree(frontswap_map_get(p
));
1596 /* Destroy swap account informatin */
1597 swap_cgroup_swapoff(type
);
1599 inode
= mapping
->host
;
1600 if (S_ISBLK(inode
->i_mode
)) {
1601 struct block_device
*bdev
= I_BDEV(inode
);
1602 set_blocksize(bdev
, p
->old_block_size
);
1603 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1605 mutex_lock(&inode
->i_mutex
);
1606 inode
->i_flags
&= ~S_SWAPFILE
;
1607 mutex_unlock(&inode
->i_mutex
);
1609 filp_close(swap_file
, NULL
);
1611 atomic_inc(&proc_poll_event
);
1612 wake_up_interruptible(&proc_poll_wait
);
1615 filp_close(victim
, NULL
);
1621 #ifdef CONFIG_PROC_FS
1622 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1624 struct seq_file
*seq
= file
->private_data
;
1626 poll_wait(file
, &proc_poll_wait
, wait
);
1628 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1629 seq
->poll_event
= atomic_read(&proc_poll_event
);
1630 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1633 return POLLIN
| POLLRDNORM
;
1637 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1639 struct swap_info_struct
*si
;
1643 mutex_lock(&swapon_mutex
);
1646 return SEQ_START_TOKEN
;
1648 for (type
= 0; type
< nr_swapfiles
; type
++) {
1649 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1650 si
= swap_info
[type
];
1651 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1660 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1662 struct swap_info_struct
*si
= v
;
1665 if (v
== SEQ_START_TOKEN
)
1668 type
= si
->type
+ 1;
1670 for (; type
< nr_swapfiles
; type
++) {
1671 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1672 si
= swap_info
[type
];
1673 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1682 static void swap_stop(struct seq_file
*swap
, void *v
)
1684 mutex_unlock(&swapon_mutex
);
1687 static int swap_show(struct seq_file
*swap
, void *v
)
1689 struct swap_info_struct
*si
= v
;
1693 if (si
== SEQ_START_TOKEN
) {
1694 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1698 file
= si
->swap_file
;
1699 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1700 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1701 len
< 40 ? 40 - len
: 1, " ",
1702 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1703 "partition" : "file\t",
1704 si
->pages
<< (PAGE_SHIFT
- 10),
1705 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1710 static const struct seq_operations swaps_op
= {
1711 .start
= swap_start
,
1717 static int swaps_open(struct inode
*inode
, struct file
*file
)
1719 struct seq_file
*seq
;
1722 ret
= seq_open(file
, &swaps_op
);
1726 seq
= file
->private_data
;
1727 seq
->poll_event
= atomic_read(&proc_poll_event
);
1731 static const struct file_operations proc_swaps_operations
= {
1734 .llseek
= seq_lseek
,
1735 .release
= seq_release
,
1739 static int __init
procswaps_init(void)
1741 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1744 __initcall(procswaps_init
);
1745 #endif /* CONFIG_PROC_FS */
1747 #ifdef MAX_SWAPFILES_CHECK
1748 static int __init
max_swapfiles_check(void)
1750 MAX_SWAPFILES_CHECK();
1753 late_initcall(max_swapfiles_check
);
1756 static struct swap_info_struct
*alloc_swap_info(void)
1758 struct swap_info_struct
*p
;
1761 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1763 return ERR_PTR(-ENOMEM
);
1765 spin_lock(&swap_lock
);
1766 for (type
= 0; type
< nr_swapfiles
; type
++) {
1767 if (!(swap_info
[type
]->flags
& SWP_USED
))
1770 if (type
>= MAX_SWAPFILES
) {
1771 spin_unlock(&swap_lock
);
1773 return ERR_PTR(-EPERM
);
1775 if (type
>= nr_swapfiles
) {
1777 swap_info
[type
] = p
;
1779 * Write swap_info[type] before nr_swapfiles, in case a
1780 * racing procfs swap_start() or swap_next() is reading them.
1781 * (We never shrink nr_swapfiles, we never free this entry.)
1787 p
= swap_info
[type
];
1789 * Do not memset this entry: a racing procfs swap_next()
1790 * would be relying on p->type to remain valid.
1793 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1794 p
->flags
= SWP_USED
;
1796 spin_unlock(&swap_lock
);
1801 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
1805 if (S_ISBLK(inode
->i_mode
)) {
1806 p
->bdev
= bdgrab(I_BDEV(inode
));
1807 error
= blkdev_get(p
->bdev
,
1808 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
1814 p
->old_block_size
= block_size(p
->bdev
);
1815 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
1818 p
->flags
|= SWP_BLKDEV
;
1819 } else if (S_ISREG(inode
->i_mode
)) {
1820 p
->bdev
= inode
->i_sb
->s_bdev
;
1821 mutex_lock(&inode
->i_mutex
);
1822 if (IS_SWAPFILE(inode
))
1830 static unsigned long read_swap_header(struct swap_info_struct
*p
,
1831 union swap_header
*swap_header
,
1832 struct inode
*inode
)
1835 unsigned long maxpages
;
1836 unsigned long swapfilepages
;
1838 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1839 printk(KERN_ERR
"Unable to find swap-space signature\n");
1843 /* swap partition endianess hack... */
1844 if (swab32(swap_header
->info
.version
) == 1) {
1845 swab32s(&swap_header
->info
.version
);
1846 swab32s(&swap_header
->info
.last_page
);
1847 swab32s(&swap_header
->info
.nr_badpages
);
1848 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1849 swab32s(&swap_header
->info
.badpages
[i
]);
1851 /* Check the swap header's sub-version */
1852 if (swap_header
->info
.version
!= 1) {
1854 "Unable to handle swap header version %d\n",
1855 swap_header
->info
.version
);
1860 p
->cluster_next
= 1;
1864 * Find out how many pages are allowed for a single swap
1865 * device. There are two limiting factors: 1) the number
1866 * of bits for the swap offset in the swp_entry_t type, and
1867 * 2) the number of bits in the swap pte as defined by the
1868 * different architectures. In order to find the
1869 * largest possible bit mask, a swap entry with swap type 0
1870 * and swap offset ~0UL is created, encoded to a swap pte,
1871 * decoded to a swp_entry_t again, and finally the swap
1872 * offset is extracted. This will mask all the bits from
1873 * the initial ~0UL mask that can't be encoded in either
1874 * the swp_entry_t or the architecture definition of a
1877 maxpages
= swp_offset(pte_to_swp_entry(
1878 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1879 if (maxpages
> swap_header
->info
.last_page
) {
1880 maxpages
= swap_header
->info
.last_page
+ 1;
1881 /* p->max is an unsigned int: don't overflow it */
1882 if ((unsigned int)maxpages
== 0)
1883 maxpages
= UINT_MAX
;
1885 p
->highest_bit
= maxpages
- 1;
1889 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1890 if (swapfilepages
&& maxpages
> swapfilepages
) {
1892 "Swap area shorter than signature indicates\n");
1895 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1897 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1903 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
1904 union swap_header
*swap_header
,
1905 unsigned char *swap_map
,
1906 unsigned long maxpages
,
1910 unsigned int nr_good_pages
;
1913 nr_good_pages
= maxpages
- 1; /* omit header page */
1915 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1916 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
1917 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
1919 if (page_nr
< maxpages
) {
1920 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1925 if (nr_good_pages
) {
1926 swap_map
[0] = SWAP_MAP_BAD
;
1928 p
->pages
= nr_good_pages
;
1929 nr_extents
= setup_swap_extents(p
, span
);
1932 nr_good_pages
= p
->pages
;
1934 if (!nr_good_pages
) {
1935 printk(KERN_WARNING
"Empty swap-file\n");
1942 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1944 struct swap_info_struct
*p
;
1945 struct filename
*name
;
1946 struct file
*swap_file
= NULL
;
1947 struct address_space
*mapping
;
1951 union swap_header
*swap_header
;
1954 unsigned long maxpages
;
1955 unsigned char *swap_map
= NULL
;
1956 unsigned long *frontswap_map
= NULL
;
1957 struct page
*page
= NULL
;
1958 struct inode
*inode
= NULL
;
1960 if (swap_flags
& ~SWAP_FLAGS_VALID
)
1963 if (!capable(CAP_SYS_ADMIN
))
1966 p
= alloc_swap_info();
1970 name
= getname(specialfile
);
1972 error
= PTR_ERR(name
);
1976 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
1977 if (IS_ERR(swap_file
)) {
1978 error
= PTR_ERR(swap_file
);
1983 p
->swap_file
= swap_file
;
1984 mapping
= swap_file
->f_mapping
;
1986 for (i
= 0; i
< nr_swapfiles
; i
++) {
1987 struct swap_info_struct
*q
= swap_info
[i
];
1989 if (q
== p
|| !q
->swap_file
)
1991 if (mapping
== q
->swap_file
->f_mapping
) {
1997 inode
= mapping
->host
;
1998 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
1999 error
= claim_swapfile(p
, inode
);
2000 if (unlikely(error
))
2004 * Read the swap header.
2006 if (!mapping
->a_ops
->readpage
) {
2010 page
= read_mapping_page(mapping
, 0, swap_file
);
2012 error
= PTR_ERR(page
);
2015 swap_header
= kmap(page
);
2017 maxpages
= read_swap_header(p
, swap_header
, inode
);
2018 if (unlikely(!maxpages
)) {
2023 /* OK, set up the swap map and apply the bad block list */
2024 swap_map
= vzalloc(maxpages
);
2030 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2034 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2036 if (unlikely(nr_extents
< 0)) {
2040 /* frontswap enabled? set up bit-per-page map for frontswap */
2041 if (frontswap_enabled
)
2042 frontswap_map
= vzalloc(maxpages
/ sizeof(long));
2045 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2046 p
->flags
|= SWP_SOLIDSTATE
;
2047 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
2049 if ((swap_flags
& SWAP_FLAG_DISCARD
) && discard_swap(p
) == 0)
2050 p
->flags
|= SWP_DISCARDABLE
;
2053 mutex_lock(&swapon_mutex
);
2055 if (swap_flags
& SWAP_FLAG_PREFER
)
2057 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2058 enable_swap_info(p
, prio
, swap_map
, frontswap_map
);
2060 printk(KERN_INFO
"Adding %uk swap on %s. "
2061 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2062 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2063 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2064 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2065 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2066 (frontswap_map
) ? "FS" : "");
2068 mutex_unlock(&swapon_mutex
);
2069 atomic_inc(&proc_poll_event
);
2070 wake_up_interruptible(&proc_poll_wait
);
2072 if (S_ISREG(inode
->i_mode
))
2073 inode
->i_flags
|= S_SWAPFILE
;
2077 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2078 set_blocksize(p
->bdev
, p
->old_block_size
);
2079 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2081 destroy_swap_extents(p
);
2082 swap_cgroup_swapoff(p
->type
);
2083 spin_lock(&swap_lock
);
2084 p
->swap_file
= NULL
;
2086 spin_unlock(&swap_lock
);
2089 if (inode
&& S_ISREG(inode
->i_mode
)) {
2090 mutex_unlock(&inode
->i_mutex
);
2093 filp_close(swap_file
, NULL
);
2096 if (page
&& !IS_ERR(page
)) {
2098 page_cache_release(page
);
2102 if (inode
&& S_ISREG(inode
->i_mode
))
2103 mutex_unlock(&inode
->i_mutex
);
2107 void si_swapinfo(struct sysinfo
*val
)
2110 unsigned long nr_to_be_unused
= 0;
2112 spin_lock(&swap_lock
);
2113 for (type
= 0; type
< nr_swapfiles
; type
++) {
2114 struct swap_info_struct
*si
= swap_info
[type
];
2116 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2117 nr_to_be_unused
+= si
->inuse_pages
;
2119 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2120 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2121 spin_unlock(&swap_lock
);
2125 * Verify that a swap entry is valid and increment its swap map count.
2127 * Returns error code in following case.
2129 * - swp_entry is invalid -> EINVAL
2130 * - swp_entry is migration entry -> EINVAL
2131 * - swap-cache reference is requested but there is already one. -> EEXIST
2132 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2133 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2135 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2137 struct swap_info_struct
*p
;
2138 unsigned long offset
, type
;
2139 unsigned char count
;
2140 unsigned char has_cache
;
2143 if (non_swap_entry(entry
))
2146 type
= swp_type(entry
);
2147 if (type
>= nr_swapfiles
)
2149 p
= swap_info
[type
];
2150 offset
= swp_offset(entry
);
2152 spin_lock(&swap_lock
);
2153 if (unlikely(offset
>= p
->max
))
2156 count
= p
->swap_map
[offset
];
2157 has_cache
= count
& SWAP_HAS_CACHE
;
2158 count
&= ~SWAP_HAS_CACHE
;
2161 if (usage
== SWAP_HAS_CACHE
) {
2163 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2164 if (!has_cache
&& count
)
2165 has_cache
= SWAP_HAS_CACHE
;
2166 else if (has_cache
) /* someone else added cache */
2168 else /* no users remaining */
2171 } else if (count
|| has_cache
) {
2173 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2175 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2177 else if (swap_count_continued(p
, offset
, count
))
2178 count
= COUNT_CONTINUED
;
2182 err
= -ENOENT
; /* unused swap entry */
2184 p
->swap_map
[offset
] = count
| has_cache
;
2187 spin_unlock(&swap_lock
);
2192 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2197 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2198 * (in which case its reference count is never incremented).
2200 void swap_shmem_alloc(swp_entry_t entry
)
2202 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2206 * Increase reference count of swap entry by 1.
2207 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2208 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2209 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2210 * might occur if a page table entry has got corrupted.
2212 int swap_duplicate(swp_entry_t entry
)
2216 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2217 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2222 * @entry: swap entry for which we allocate swap cache.
2224 * Called when allocating swap cache for existing swap entry,
2225 * This can return error codes. Returns 0 at success.
2226 * -EBUSY means there is a swap cache.
2227 * Note: return code is different from swap_duplicate().
2229 int swapcache_prepare(swp_entry_t entry
)
2231 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2234 struct swap_info_struct
*page_swap_info(struct page
*page
)
2236 swp_entry_t swap
= { .val
= page_private(page
) };
2237 BUG_ON(!PageSwapCache(page
));
2238 return swap_info
[swp_type(swap
)];
2242 * out-of-line __page_file_ methods to avoid include hell.
2244 struct address_space
*__page_file_mapping(struct page
*page
)
2246 VM_BUG_ON(!PageSwapCache(page
));
2247 return page_swap_info(page
)->swap_file
->f_mapping
;
2249 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2251 pgoff_t
__page_file_index(struct page
*page
)
2253 swp_entry_t swap
= { .val
= page_private(page
) };
2254 VM_BUG_ON(!PageSwapCache(page
));
2255 return swp_offset(swap
);
2257 EXPORT_SYMBOL_GPL(__page_file_index
);
2260 * add_swap_count_continuation - called when a swap count is duplicated
2261 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2262 * page of the original vmalloc'ed swap_map, to hold the continuation count
2263 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2264 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2266 * These continuation pages are seldom referenced: the common paths all work
2267 * on the original swap_map, only referring to a continuation page when the
2268 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2270 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2271 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2272 * can be called after dropping locks.
2274 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2276 struct swap_info_struct
*si
;
2279 struct page
*list_page
;
2281 unsigned char count
;
2284 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2285 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2287 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2289 si
= swap_info_get(entry
);
2292 * An acceptable race has occurred since the failing
2293 * __swap_duplicate(): the swap entry has been freed,
2294 * perhaps even the whole swap_map cleared for swapoff.
2299 offset
= swp_offset(entry
);
2300 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2302 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2304 * The higher the swap count, the more likely it is that tasks
2305 * will race to add swap count continuation: we need to avoid
2306 * over-provisioning.
2312 spin_unlock(&swap_lock
);
2317 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2318 * no architecture is using highmem pages for kernel pagetables: so it
2319 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2321 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2322 offset
&= ~PAGE_MASK
;
2325 * Page allocation does not initialize the page's lru field,
2326 * but it does always reset its private field.
2328 if (!page_private(head
)) {
2329 BUG_ON(count
& COUNT_CONTINUED
);
2330 INIT_LIST_HEAD(&head
->lru
);
2331 set_page_private(head
, SWP_CONTINUED
);
2332 si
->flags
|= SWP_CONTINUED
;
2335 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2339 * If the previous map said no continuation, but we've found
2340 * a continuation page, free our allocation and use this one.
2342 if (!(count
& COUNT_CONTINUED
))
2345 map
= kmap_atomic(list_page
) + offset
;
2350 * If this continuation count now has some space in it,
2351 * free our allocation and use this one.
2353 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2357 list_add_tail(&page
->lru
, &head
->lru
);
2358 page
= NULL
; /* now it's attached, don't free it */
2360 spin_unlock(&swap_lock
);
2368 * swap_count_continued - when the original swap_map count is incremented
2369 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2370 * into, carry if so, or else fail until a new continuation page is allocated;
2371 * when the original swap_map count is decremented from 0 with continuation,
2372 * borrow from the continuation and report whether it still holds more.
2373 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2375 static bool swap_count_continued(struct swap_info_struct
*si
,
2376 pgoff_t offset
, unsigned char count
)
2382 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2383 if (page_private(head
) != SWP_CONTINUED
) {
2384 BUG_ON(count
& COUNT_CONTINUED
);
2385 return false; /* need to add count continuation */
2388 offset
&= ~PAGE_MASK
;
2389 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2390 map
= kmap_atomic(page
) + offset
;
2392 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2393 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2395 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2397 * Think of how you add 1 to 999
2399 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2401 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2402 BUG_ON(page
== head
);
2403 map
= kmap_atomic(page
) + offset
;
2405 if (*map
== SWAP_CONT_MAX
) {
2407 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2409 return false; /* add count continuation */
2410 map
= kmap_atomic(page
) + offset
;
2411 init_map
: *map
= 0; /* we didn't zero the page */
2415 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2416 while (page
!= head
) {
2417 map
= kmap_atomic(page
) + offset
;
2418 *map
= COUNT_CONTINUED
;
2420 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2422 return true; /* incremented */
2424 } else { /* decrementing */
2426 * Think of how you subtract 1 from 1000
2428 BUG_ON(count
!= COUNT_CONTINUED
);
2429 while (*map
== COUNT_CONTINUED
) {
2431 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2432 BUG_ON(page
== head
);
2433 map
= kmap_atomic(page
) + offset
;
2440 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2441 while (page
!= head
) {
2442 map
= kmap_atomic(page
) + offset
;
2443 *map
= SWAP_CONT_MAX
| count
;
2444 count
= COUNT_CONTINUED
;
2446 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2448 return count
== COUNT_CONTINUED
;
2453 * free_swap_count_continuations - swapoff free all the continuation pages
2454 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2456 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2460 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2462 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2463 if (page_private(head
)) {
2464 struct list_head
*this, *next
;
2465 list_for_each_safe(this, next
, &head
->lru
) {
2467 page
= list_entry(this, struct page
, lru
);